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Abstract In this chapter we discuss the Vehicle Routing Problem with Time Win­
dows in terms of its mathematical modeling, its structure and decom­
position alternatives. We then present the master problem and the 
subproblem for the column generation approach, respectively. Next, 
we illustrate a branch-and-bound framework and address acceleration 
strategies used to increase the efficiency of branch-and-price methods. 
Then, we describe generalizations of the problem and report computa­
tional results for the classic Solomon test sets. Finally, we present our 
conclusions and discuss some open problems. 

!• Introduction 
The vehicle routing problem (VRP) involves finding a set of routes, 

starting and ending at a depot, that together cover a set of customers. 
Each customer has a given demand, and no vehicle can service more 
customers than its capacity permits. The objective is to minimize the 
total distance traveled or the number of vehicles used, or a combination 
of these. In this chapter, we consider the vehicle routing problem with 
time windows (VRPTW), which is a generalization of the VRP where the 
service at any customer starts within a given time interval, called a time 
window. Time windows are called soft when they can be considered non-
biding for a penalty cost. They are hard when they cannot be violated, 
i.e., if a vehicle arrives too early at a customer, it must wait until the 
time window opens; and it is not allowed to arrive late. This is the case 
we consider here. 
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The remarkable advances in information technology have enabled 
companies to focus on efficiency and timeliness throughout the sup­
ply chain. In turn, the VRPTW has increasingly become an invalu­
able tool in modeling a variety of aspects of supply chain design and 
operation. Important VRPTW applications include deliveries to super­
markets, bank and postal deliveries, industrial refuse collection, school 
bus routing, security patrol service, and urban newspaper distribution. 
Its increased practical visibility has evolved in parallel with the develop­
ment of broader and deeper research directed at its solution. Significant 
progress has been made in both the design of heuristics and the devel­
opment of optimal approaches. 

In this chapter we will concentrate on exact methods for the VRPTW 
based on column generation. These date back to Desrochers, Desrosiers 
and Solomon (1992) who used column generation in a Dantzig-Wolfe 
decomposition framework and Halse (1992) who implemented a decom­
position based on variable splitting (also known as Lagrangean decompo­
sition). Later, Kohl and Madsen (1997) developed an algorithm exploit­
ing Lagrangean relaxation. Then, Kohl, Desrosiers, Madsen, Solomon 
and Soumis (1999); Larsen (1999); Cook and Rich (1999) extended the 
previous approaches by developing Dantzig-Wolfe based decomposition 
algorithms involving cutting planes and/or parallel platforms. Kalle-
hauge (2000) suggested a hybrid algorithm based on a combination 
of Lagrangean relaxation and Dantzig-Wolfe decomposition. Recently, 
Chabrier (2005); Chabrier, Danna and Le Pape (2002); Feillet, Dejax, 
Gendreau and Gueguen (2004); Irnich and Villeneuve (2005); Rousseau, 
Gendreau and Pesant (2004) have proposed algorithms based on en­
hanced subproblem methodology. Advancements in master problem ap­
proaches have been made by Danna and Le Pape (2005); Larsen (2004). 

This chapter has the following organization. In Section 2 we describe 
the mathematical model of the VRPTW and in Section 3 we discuss 
the structure of the problem and decomposition alternatives. Next, Sec­
tions 4 and 5 present the master problem and the subproblem for the col­
umn generation approach, respectively. Section 6 illustrates the branch-
and-bound framework, while Section 7 addresses acceleration strategies 
used to increase the efficiency of branch-and-price methods. Then, we 
describe generalizations of the VRPTW in Section 8 and report compu­
tational results for the classic Solomon test sets in Section 9. Finally we 
present our conclusions and discuss some open problems in 10. 
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2. The model 

The VRPTW is defined by a fleet of vehicles, V, a set of customers, 
C, and a directed graph Q, Typically the fleet is considered to be homo­
geneous, that is, all vehicles are identical. The graph consists of |C| + 2 
vertices, where the customers are denoted 1,2,... ,n and the depot is 
represented by the vertices 0 ("the starting depot") and n + 1 ("the re­
turning depot"). The set of all vertices, that is, 0 , 1 , . . . , n-(-1 is denoted 
J\f. The set of arcs, v4, represents direct connections between the depot 
and the customers and among the customers. There are no arcs ending 
at vertex 0 or originating from vertex n + 1. With each arc (i , i) , where 
i ^ j^ we associate a cost Cij and a time tij^ which may include service 
time at customer i. 

Each vehicle has a capacity q and each customer i a demand di. Each 
customer i has a time window [ai^hi] and a vehicle must arrive at the 
customer before hi. If it arrives before the time window opens, it has to 
wait until ai to service the customer. The time windows for both depots 
are assumed to be identical to [ao,&o] which represents the scheduling 
horizon. The vehicles may not leave the depot before ao and must return 
at the latest at time 6n+i-

It is assumed that g, a ,̂ 6̂ , d̂ , QJ are non-negative integers and tij 
are positive integers. Note that this assumption is necessary to develop 
an algorithm for the shortest path with resource constraints used in the 
column generation approach presented later. Furthermore it is assumed 
that the triangle inequality is satisfled for both cij and tij. 

The model contains two sets of decision variables x and s. For each 
arc (i, j ) , where i 7̂  j , i / n + 1, j ^ 0, and each vehicle k we define 
Xij]^ as 

{1, if vehicle k drives directly from vertex i to vertex j , 

0, otherwise. 

The decision variable Sik is defined for each vertex i and each vehi­
cle k and denotes the time vehicle k starts to service customer i. In 
case vehicle k does not service customer i, sik has no meaning and con­
sequently it's value is considered irrelevant. We assume ao = 0 and 
therefore 5o/c = 0, for all k. 

The goal is to design a set of routes that minimizes total cost, such 
that 

• each customer is serviced exactly once, 

• every route originates at vertex 0 and ends at vertex n + 1, and 
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• the time windows of the customers and capacity constraints of the 
vehicles are observed. 

This informal VRPTW description can be stated mathematically as a 
multicommodity network flow problem with time windows and capacity 
constraints: 

m i n ^ ^ ^ CijXijk s.t, (3.1) 

I ] I ] ^ Ü ^ = 1 ViGC, (3.2) 
keVjeM 

^ di Y^ Xijk <q \/k eV, (3.3) 
ieC jeAf 

J2xojk = l VfcGV, (3.4) 
jeJ\f 

Y^ Xihk - Yl ^^^J^ = ^ "iheC.WkeV, (3.5) 
leAf jeAf 

Y,Xi,n+i.k = l VfceV, (3.6) 
ieM" 

Xijk{sik + Uj - Sjk) < 0 Vi, j G Af, Vfc G V, (3.7) 

ai < Sik <bi Vi G AT, Vfc G V, (3.8) 
Xijk € {0,1} Vi, j G AT, Vfc G V. (3.9) 

The objective function (3.1) minimizes the total travel cost. The con­
straints (3.2) ensure that each customer is visited exactly once, and (3.3) 
state that a vehicle can only be loaded up to it's capacity. Next, equa­
tions (3.4), (3.5) and (3.6) indicate that each vehicle must leave the 
depot 0; after a vehicle arrives at a customer it has to leave for another 
destination; and finally, all vehicles must arrive at the depot n + 1. The 
inequalities (3.7) establish the relationship between the vehicle depar­
ture time from a customer and its immediate successor. Finally con­
straints (3.8) affirm that the time windows are observed, and (3.9) are 
the integrality constraints. Note that an unused vehicle is modeled by 
driving the "empty" route (0,n + 1). 

The model can also incorporate a constraint giving an upper bound 
on the number of vehicles, as is the case in Desrosiers, Dumas, Solomon 
and Soumis (1995): 

^J2'^^Jk<\V\ VfcGV, VjGAA (3.10) 
keVjeAf 
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Note also that the nonhnear restrictions (3.7) can be hnearized as: 

Sik + tij - Mij{l - Xijk) < Sjk Vi, j G A/", Vfc G V. (3.11) 

The large constants Mij can be decreased to max{6i+t^j —a^}, (z, j) G A, 
For each vehicle, the service start variables impose a unique route 

direction thereby eliminating any subtours. Hence, the classical VRP 
subtour elimination constraints become redundant. Finally, the objec­
tive function (3.1) has been universally used when solving the VRPTW 
to optimality. In the research on heuristics it has been common to min­
imize the number of vehicles which may lead to additional travel cost. 

The VRPTW is a generalization of both the traveling salesman prob­
lem (TSP) and the VRP. When the time constraints (3.7) and (3.8)) 
are not binding the problem relaxes to a VRP. This can be modeled by 
setting â  = 0 and 6̂  = M, where M is a large scalar, for all customers 
i. If only one vehicle is available the problem becomes a TSP. If sev­
eral vehicles are available and the cost structure is: CQJ — 1^ j E C and 
Cij = 0, otherwise, we obtain the bin-packing problem. Since trips be­
tween customers are "free", the order in which these are visited becomes 
unimportant and the objective turns to "squeezing" as much demand as 
possible into as few vehicles (bins) as possible. In case the capacity con­
straints (3.2) are not binding the problem becomes a m-TSPTW, or, if 
only one vehicle is available, a TSPTW. 

3, Structure and decomposition 
A closer look at the above model reveals that only the assignment con­

straints (3.2) are coupling the vehicles while the remaining constraints 
are dealing with each vehicle separately. This strongly suggests the use 
of Lagrangean relaxation (LR) or decomposition, for example Dantzig-
Wolfe (DWD), to break up the overall problem into a subproblem for 
each vehicle and a master problem. To date, the most successful de­
composition approaches for the VRPTW cast the subproblem as a con­
strained shortest path structure. The master problem is an integer pro­
gram whose solution cannot be obtained directly, so its LP relaxation is 
solved. The column generation process alternates between solving this 
hnear master problem and the subproblem. The former finds new mul­
tipliers to send to the latter which uses this information to find new 
columns to send back. A lower bound on the optimal integer solution 
of the VRPTW model is obtained at the end of this back and forth 
process. This is then used within a branch-and-bound framework to ob­
tain the optimal VRPTW solution. If the vehicles are identical, as we 
have assumed here, all subproblems will be equivalent and therefore it 
is necessary to only solve one. The master problem and the subproblem 
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will be discussed in more detail in Sections 4 and 5, respectively. The 
complete column generation process is described in Section 1, while the 
subproblem forms the subject of Section 2. 

In addition, other LRs are possible but not promissing. One may 
consider relaxing the time and capacity constraints (3.3), (3.7) and (3.8). 
This yields a linear network flow problem which possesses the integrality 
property. The corresponding bound can be calculated very fast, but is 
not likely to be very strong unless capacity is not binding and time 
windows are very narrow (see Desrosiers, Dumas, Solomon and Soumis, 
1995). Relaxing only the capacity or time window constraints also does 
not seem sensible since the relaxed problem is not generally easier to 
solve than the original. 

Desrochers, Desrosiers and Solomon (1992) were the first to apply 
DWD with a free number of vehicles. The assignment constraints were 
considered the coupling constraints, while the subproblem was a shortest 
path problem with resource constraints. Relaxing the same constraint 
set and applying LR was first proposed by Kohl and Madsen (1997). 
Desrosiers, Sauve and Soumis (1988) have used a similar relaxation to 
calculate a lower bound for the minimum fleet size for the m-TSPTW. 

Jörnsten, Madsen and S0rensen (1986) suggested solving the VRPTW 
by variable sphtting (later called Lagrangean decomposition, or LD). In 
follow-up work, Halse (1992) described three different variable splitting 
methods where ^jXijk was replaced by yik in constraint set (3.2) and 
possibly (3.3). In turn, the constraint yik — ^j^ijk was introduced 
and Lagrangeanly relaxed. The problem decomposes into two problems, 
one in the x- and s-variables and the other in the y-variables. The 
former problem is further decomposed by vehicle and it is a shortest 
path problem with resource constraints. The latter is an assignment-
type problem. Specifically, the approaches are: 

• VSl: Keep constraints (3.2) and (3.3) in the y-problem. This 
represents a generalized assignment problem (GAP) and the x/s-
problem becomes a shortest path problem with time windows 
(SPPTW). The GAP has the special structure where ah right hand 
sides in (3.3) are identical and di does not depend on fc. 

• VS2: Keep constraints (3.2) in the y-problem. The y-problem be­
comes a "Semi assignment" problem (SAP) consisting of constraints 
(3.2) only. The x/s-problem is equivalent to a shortest path prob­
lem with time windows and capacity constraints (SPPTWCC). 
The SAP is easily solvable and possesses the integrality property. 
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• VS3: Keep constraints (3.2) in the y-problem and constraints (3.3) 
in both the y- and the a:/5-problem. The y-problem is a GAP and 
the x/s-problem constitutes a SPPTWCC. 

In the LD master problem, whose role is to find multipliers to the 
relaxed equation relating x and y, the number of multipliers is larger 
than in the LR considered above. This clearly makes the master problem 
more difficult. Also the subproblems are no longer identical since the LD 
multipliers depend on both customer and vehicle. Note that only VSl 
and VS2 have been implemented. 

We now define LB(VSl), LB(VS2) and LB(VS3) as the best lower 
bounds obtainable from the three variable splitting approaches, respec­
tively. It can be shown that the previous LR and the DWD yield the 
same lower bound LB(LR/DWD). Provided that the vehicles are iden­
tical, Kohl (1995) has derived the following results: 

LB(VS3) > LB(VSl), 

LB(VS3) > LB(VS2), 

LB(LR/DWD) - LB(VS2). 

There exist instances for which LB(VS3) > LB(VSl). He further showed 
that LB(VS2) = LB(VS3) under some weak supplementary conditions. 
This is surprising because it implies there is no additional gain to be 
derived from solving two hard integer problems (the SPPTWCC and 
GAP) instead of just one (the SPPTWCC). However, in the more general 
case where vehicles have different capacities it might be possible that the 
VS3 model yields a better bound than VS2. 

To conclude, in VRPTW case, the variable splitting methods men­
tioned above generally provide similar lower bounds to those obtained 
from the ordinary LR or DWD. 

A. The master problem 

The column generation methodology has been successfully applied to 
the VRPTW by numerous researchers. It represents a generalization of 
the linear DWD since the master problem and the subproblem are integer 
and mixed-integer programs, respectively. Often the master problem is 
simply stated as a set partitioning problem on which column generation 
is applied, thereby avoiding the description of the DWD on which it 
is based. To gain an appreciation for different cutting and branching 
opportunities compatible with column generation, here we present the 
master problem by going through the steps of the DWD based on the 
multicommodity network flow formulation (3.1)-(3.9). 
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The column generation approach exploits the fact that only constraint 
set (3.2) links the vehicles together. Hence, the integer master problem 
is defined through (3.1)-(3.2) and (3.9), that is, it contains the objective 
function, the assignment of customers to exactly one vehicle and the 
binary requirement on the flow variables. The rest of the constraints and 
(3.9) are part of the subproblem which has a modified objective function 
that decomposes into \V\ independent subproblems, one for each vehicle. 
In the rest of this section we will focus on the linear master problem 
(3.1)-(3.2). Branching, necessary to solve the integer master problem, 
will be discussed in Section 6. 

Let V^ be the set of feasible paths for vehicle k^ k eV, Hence, p eV^ 
corresponds to an elementary path which can also be described by using 
the binary values x -̂ , where rr̂ - = 1, if vehicle k goes directly from 
vertex i to vertex j on path p, and x -̂̂  — 0, otherwise. Any solution 
x^A to the master problem (3.1)-(3.2) can be written as a non-negative 
convex combination of a finite number of elementary paths, i.e., 

4 = E 4pyp ^k e ^^ (̂̂ '•̂ •) e - '̂ (3-12) 

E r f ^ l VfcGV, (3.13) 

y j > 0 VfeGV, ypeVK (3.14) 

Using x^jp we can define the cost of a path, c^, and the number of times 
a customer i is visited by vehicle /c, a^, as: 

4= Yl 4 4 P '̂ ^ € V, Vp G V^ 
ihJ)eA 

J2 ^ijp Vfce V, ViGAT, VpeT^^ 
jeMu{n+i} 

Now we can substitute these values into (3.1)-(3.2) and arrive at the 
revised formulation of the master problem: 

min5] J2 4yi •̂̂ •' (3-15) 
keVpeV'^ 

E E <yp = 1 ^̂  ̂  ̂ ' (3.16) 
keVpev^ 

Y,yp= 1 ^fcev, (3.17) 
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y^ > 0 Vfc G V, Vp G P ^ (3.18) 

The mathematical formulation (3.15)-(3.18) is then the hnear relaxation 
of a set partitioning type problem with an additional constraint on the 
total number of vehicles and a set of convex combination constraints. 

In the usual case of a single depot and a homogeneous fleet of vehicles 
with the same initial conditions for all vehicles, all V^ are identical, that 
is, V^ = V^ k e V, Furthermore, the networks for the subproblems 
are also identical. Therefore constraints (3.17) can be aggregated. By 
letting Up = YlkeV Vp^ ^^^ index k can be eliminated from the formulation 
(3.15)-(3.18). The resulting model given below is the classical hnear 
relaxation of the set partitioning formulation: 

min y ^ Cpyp s,t,^ (3.19) 

^aipVp^l yieC, (3.20) 
pev 

yp>0 VpGP. (3.21) 

In the column generation methodology, the set of columns in the linear 
master problem is limited to only those that have already been generated, 
hence the term restricted master problem. It consists of finding a set of 
minimum cost paths among all paths presently in the master problem. 
The restricted master problem can mathematically be stated as; 

min 2 , ^pVp ^'i'^ (3.22) 
peV 

Y^üipVp^l \/ieC, (3.23) 
pev 

yp>0 VpGP^ (3.24) 

Each decision variable i/p counts the number of times path p is used. 
This is not necessarily integer, but can be any real number in the inter­
val [0; 1]. The set V^ contains all the paths generated, aip denotes the 
number of times customer i is serviced on path p, and, Cp is the cost of 
the path. The parameter aip should in principle be either 0 or 1, but 
since the subproblem is relaxed (see Section 5) it can take larger integer 
values. 

Solving the restricted master yields a solution y = (yi, 7/2? • • • ? y\v'\) 
which might be integer but this is not guaranteed. If it is integer, a feasi­
ble but not necessarily optimal solution to the VRPTW has been found. 
In addition to the primal solution, a dual solution </> = (01, (/)2,..., (ß\c\) 
is also obtained. 
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Figure 3.1. Number of labels generated in the subproblem wrt. the iteration number 
for the Dantzig-Wolfe method and the bundle method on the Solomon instance R104 
with 100 customers (from Kallehauge, 2000). 
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(b) Stabilized cutting-plane algorithm. 

Figure 3.2. The Euclidian distance between the current dual variables and the opti­
mum dual variables. Observe the different scales. 
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An initial start for the restricted master problem is often the set of 
routes visiting a single customer, that is, routes of the type depot-z-
depot (cf. Section 8). When the optimal solution to the restricted master 
problem is found, the simplex algorithm asks for a new variable (i.e. a 
column/path p E V\ V) with negative reduced cost. Such a column is 
found by solving a subproblem, sometimes called the pricing problem. 
For the VRPTW, the subproblem should solve the problem "Find the 
path with minimal reduced cost." Solving the subproblem is in fact an 
implicit enumeration of all feasible paths, and the process terminates 
when the optimal objective of the subproblem is non-negative (it will 
actually be 0). 

It is not surprising that the behavior of the dual variables plays a piv­
otal role in the overall performance of the column generation principle 
for the VRPTW. It has been observed by Kallehauge (2000) that dual 
variables do not converge smoothly to their respective optima. Assume 
that the paths (0, i, n+1) are used to initialize the algorithm. Figure 3.1 
illustrates the instability of the column generation algorithm compared 
to the stabilized cutting-plane algorithm presented in the above paper. 
Furthermore, Figure 3.2 illustrates the effect of the size of the multi­
pliers on the computational difficulty of the SPPTWCC subproblems. 
Whereas the multipliers are large in the Dantzig-Wolfe process, they 
are small in the cutting-plane approach. This problem originates in the 
coordination between the master problem and the subproblem. 

Finally, in many routing problems the optimal solution remains un­
changed even if overcovering rather than exact covering of customers is 
allowed. Due to the triangle inequality in the VRPTW, overcovering will 
always be more expensive than just covering and therefore an optimal 
solution will always be one where each customer is visited exactly once. 
The advantage of allowing overcovering is that the linear relaxation of 
the Set Covering Problem is easier to solve than that of the Set Parti­
tioning Problem, and this will in turn lead to the computation of good 
estimates of the dual variables. 

5, The subproblem 
In the column generation approach for the VRPTW, the subprob­

lem decomposes into |V| identical problems, each one being a shortest 
path problem with resource constraints (time windows and vehicle capac­
ity). More specifically, the subproblem is an Elementary Shortest Path 
Problem with Time Windows and Capacity Constraints (ESPPTWCC), 
where elementary means that each customer can appear at most once in 
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the shortest path. It can be formulated as: 

i€j\fjeAf 

^diY^ Xij < q, 

ieAf jeN 

Si + tij - Mij{l - Xij) < Sj Vi, j € 

Q-i ^ Si < hi VJ € A/", 

.xi^€{0,l} \/i,jeM 

M, 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

Constraint (3.26) is the capacity constraint, constraints (3,30) and 
(3.31) are time constraints, while constraint (3.32) ensures integrahty. 
The constraints (3.27), (3.28) and (3.29) are flow constraints resulting 
in a path from the depot 0 to the depot n + 1. When solving the 
ESPPTWCC as the subproblem in the VRPTW, cij is the modified 
cost of using arc (i, j ) , where QJ = cij — ixi. Note that while QJ is a 
non-negative integer, Cij can be any real number. 

This subproblem does not posses the integrality property, and there­
fore solving it as a Hnear mixed-integer programming problem will po­
tentially result in a reduction of the integrality gap between the optimal 
solution of the LP-relaxed version of the VRPTW and the optimal inte­
ger solution to the problem. 

Since the ESPPTWCC is NP-hard in the strong sense (see Dror, 1994; 
Kohl, 1995), the usual approach has been to slightly alter the problem by 
relaxing some of the constraints. In particular, allowing cycles changes 
the problem to the Shortest Path Problem with Time Windows and 
Capacity Constraints (SPPTWCC). Since arcs can now be used more 
than once (and customers may therefore be visited more than once), the 
decision variables xij and si are replaced by X\A and s\. The variable x-̂ -
is set to 1 if the arc (i, j) is used as the /'th arc on the shortest path, and 0 
otherwise, and the variable s\ is set to the start of service at customer i as 
customer number i, where / G £ = {1, 2 , . . . , |£j}, \C\ = [^n+i/mint^jj. 
The SPPTWCC can now be described by the following mathematical 
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model: 

min J ] ] ^ ^ Cijxij, s.t. (3.33) 
lec ieJ\fj&Af 

E E 4 = 1' (3-34) 
ieAfjeAf 

E E 4 - E E ^ ' 7 ' ^ 0 Vi€£-{1}, (3.35) 
ieAfjeAf ieAfjeAf 

E^^EE4^5' (3-36) 
iec lec j€Äf 

E ^ O i = l, (3.37) 
jeJ\r 

E 4 ' - E 4 = 0 ^heCyieC-{l}, (3.38) 

EE<n+i-=l, (3.39) 

s\ + tij -K{1 -x\j) < s] yi, j eÄfyieC- {1}, (3.40) 

ai<s\< hi Vi G N, (3.41) 

xl̂ . €{0,1} Vi,j€Ar. (3.42) 

In this formulation, (3.34) forces the first arc to be used only once, 
while (3.35) states that arc / can only be used provided that arc / — 1 
is used. The remaining constraints are the original constraints (3.3) 
to (3.9) extended to include the additional superscript / and the changes 
related to its inclusion. Note that (3.34) is redundant as it is covered 
by (3.37), but it has been kept in the model as to indicate the origin 
node. 

This problem can be solved by a pseudo-polynomial algorithm de­
scribed in Desrochers, Desrosiers and Solomon (1992). This and ah 
other current approaches are based on dynamic programming. Even 
though negative cycles are possible, the time windows and the capacity 
constraints prohibits infinite cycling. Note that capacity is accumulated 
every time a customer is serviced in a cycle. If the distance used to com­
pute the cost of routes satisfies the triangle inequality, the optimal so­
lution contains only elementary routes. Solving the SPPTWCC instead 
of the ESPPTWCC augments the size of the set of admissible columns 
generated for the master problem. Consequently the lower bound on the 
master problem may decrease. A slight improvement can be obtained 
by implementing 2-cycle ehmination in the solution process which dates 
back to Kolen, Rinnooy Kan and Trienekens (1987). 
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While the SPPTWCC relaxation was at the time a computational 
necessity, the ESPPTWCC has recently been tackled directly Work on 
this problem and /c-cycle elimination, where /c > 3, proved very suc­
cessful in expanding the scope of the VRPTW problems solved. Even 
though the ESPPTWCC continues to be regarded as difficult to solve 
when time windows are wide, two research groups have recently used 
it directly in VRPTW optimal algorithms. Chabrier (2005); Chabrier, 
Danna and Le Pape (2002), and independently Feillet, Dejax, Gendreau 
and Gueguen (2004) have extended the dynamic programming approach 
of Desrochers, Desrosiers and Solomon (1992) to the ESPPTWCC by 
adapting the path dominance rule. They then incorporated several 
heuristic modifications to make the algorithm much faster. Chabrier 
(2005) and Chabrier, Danna and Le Pape (2002) obtained lower bounds 
superior to those based on the SPPTWCC resulting in excellent com­
putational results to be described in Section 9. A different approach 
that has not yet been tried on the VRPTW is presented in Dumitrescu 
and Poland (2003). The authors compare three scaling techniques and a 
standard label-setting method. They show that integrating preprocess­
ing information within the label-setting method can be very beneficial 
in terms of both memory and run time. Further improvements of the 
label-setting method can be obtained by using Lagrangean relaxation. 

Instead of dealing with the computational burden of the ESPPTWCC 
or the weakened lower bound provided by the SPPTWCC, one could 
consider a middle of the road approach. That is, disallow cycles of 
small length. As discussed above, cycle elimination corresponding to 
k = 2 has been a common technique. In the SPPTWCC-fc-cyc, paths 
with cycles of length of at most k are eliminated. The case k > 3 has 
been considered by Irnich and Villeneuve (2005) with encouraging results 
presented in Section 9. Recently Rousseau, Gendreau and Pesant (2004) 
have presented results where Constraint Programming is used to solve 
the subproblem. Taking into account the difference in computer power, 
the authors conclude that their approach is not any faster than that of 
Desrochers, Desrosiers and Solomon (1992). 

6. Branch-and-bound 
The column generation approach does not automatically guarantee 

integer solutions and often the solutions obtained will indeed be frac­
tional. Therefore a branch-and-bound framework has to be established. 
The calculations are organised in a branching tree. For the VRPTW only 
binary strategies have been proposed in the literature although it should 
be noted that it is generally not difficult to come up with non-binary 
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branching trees for the problem. The branching decisions are generahy 
based on considerations related to the original 3-index flow formulation 
(3.2)-(3.9). The column generation process is then repeated at each 
node in the branch-and-bound tree. 

6.1 Branching on the number of vehicles 

Branching on the number of vehicles was originally proposed by 
Desrochers, Desrosiers and Solomon (1992). If the number of vehicles is 
fractional we introduce a bound on the number of vehicles. Note that 
this branching strategy does not require that the flow and time variables 
of the original model be computed. 

This branching rule can be implemented fairly easily and only concerns 
the master problem. We denote the flow over an arc by fij and this is 
the sum of all flows over that arc, that is fij — X /̂̂ ŷ xijk^ The fij values 
can easily be derived from the solution of the master problem. When 
we branch on the number of vehicles, two child nodes are created, one 
imposing on the master problem, parent node the additional constraint 
YljeC f^j — Rl while the other forcing J2jeC f^j — L̂ J' where / is the 
fractional sum of all variables in the master problem. 

Note that branching on the number of vehicles is not necessarily 
enough to obtain an integer solution as it is possible to derive solutions 
where the sum of the vehicles is integer, but yet there are fractional 
vehicles driving around the network. 

6.2 Branching on flow variables 

Branching on a single variable Xijk is possible only if each vehicle 
can be distinguished. In column generation this can be achieved by 
solving the subproblem for each vehicle individually and by introducing 
an additional constraint in the master problem 

J ^ t/p - 1 V/c € V 
pePk 

where Pk is the set of routes generated for each vehicle k and i/p is the 
binary variable indicating whether route p is used. 

Since most cases described in the literature assume a homogeneous 
fleet, it doesn't make sense to branch on individual vehicles. Instead, 
branching can be done on sums of flows, that is either on ^ • Xijk or on 
Ylk^ijk (equivalent to fij). Branching on Ylj^ijk results in a diff'erent 
subproblem for each vehicle, even though the vehicles are identical. That 
is because imposing ^ • Xijk ~ 1 forces customer i to be visited by vehicle 
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fc, while Ylij ̂ ijk — 0 implies that customer i is assigned to any vehicle 
but k. 

The standard practice has been to branch on ^ ^ Xijk since the branch­
ing decision can easily be transfered to the master problem and sub-
problem. This was proposed independently by Halse (1992); Desrochers, 
Desrosiers and Solomon (1992). When ^ ^ Xijk = 1, customer j succeeds 
customer i on the same route, while if ^ ^ Xijk = 0, customer i does not 
immediately precede j . If there is more than one candidate for branch­
ing, that is, there are several fractional variables, we would generally like 
to choose a candidate that is not close to either 0 or 1 in order to make 
an impact. When selecting among the nodes to branch on, a common 
heuristic is to branch on the variable maximizing Cij{mm{xijk^ 1 — Xijk}) 
using a best-first strategy In order to create more complex strategies the 
branching schemes can be applied hierarchically, such as first branching 
on the number of vehicles and then on J2k ^u^' ^^ mixed. 

6.3 Branching on resource windows 
Branching on resource windows was first proposed by 

Gehnas, Desrochers, Desrosiers and Solomon (1995) and is presently the 
only alternative to branching on flow variables. In the VRPTW model 
resource windows can be interpreted as either the time windows or the 
capacity constraints. We will only discuss branching on time windows, 
as capacity is significantly less constraining in many cases. In Gelinas, 
Desrochers, Desrosiers and Solomon (1995) only branching on time win­
dows was used. 

Branching on time windows results in splitting a time window into 
two smaller ones. Branching has to be done in such a way that at least 
one route is infeasible in each of the two sub-windows. 

In order to branch on time windows three decisions have to be taken: 

1) How should the node for branching be chosen? 

2) Which time window should be divided? 

3) Where should the partition point be? 

In order to decide on the above issues, we define feasibility intervals 
[/[,ii[] for all vertices i e Af and ah routes r with fractional flow. /[ is 
the earliest time that service can start at vertex i on route r, and ?x[ is 
the latest time that service can start, that is, [/[,t̂ ^] is the time interval 
during which route r must visit vertex i to remain feasible. 
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The intervals can easily be computed by a recursive formula. Addi­
tionally we define 

Li= max [ID, 
rractional routes r 

Ui = min {ul}, 
fractional routes r 

ieN, 

ieN. 

(3.43) 

(3.44) 

If Li > Ui at least two routes (or two visits by the same route) have 
disjoint feasibility intervals, i.e., the vertex is a candidate for branching 
on time windows. We can branch on a candidate vertex i by dividing the 
time windows [a ,̂ bi] at any integer value in the open interval [C/̂ , Li[. It 
should be noted that situations can arise where there are no candidates 
for branching on time windows, but the solution is not feasible. 

Three different strategies were proposed by Gelinas, Desrochers, Des-
rosiers and Solomon (1995) aiming at the elimination of cycles, the min­
imization of the number of visits to a customer i and the balancing of 
flow in the two branch-and-bound nodes. 

After having chosen the candidate vertex i for branching, an integer 
t E [Ui^Li[ has to be selected in order to determine the division. Here t 
is chosen in order to divide the time window of the customer such that 
1) the flow is balanced and 2) the time window is divided as evenly as 
possible. 

7. Acceleration strategies 

7,1 Preprocessing 
The aim of preprocessing is to narrow the solution space by tight­

ening the formulation before the actual optimization is started. This 
can be done by flxing some variables, reducing the interval of values a 
variable can take and so on. In the VRPTW, the time windows can be 
narrowed if the triangle inequality holds. Accordingly, Kontoravdis and 
Bard (1995) propose the following scheme. The earhest time a vehicle 
can arrive at a customer is by arriving straight from the depot and the 
latest time it can leave is by going directly back to the depot. Hence, 
for each customer i, its time window can be strengthened from [a ,̂ bi] to 
[maxjao + toz, a^}, min{6n+i - U,n+i, bi}]-

A further reduction of the time windows can be achieved by the 
method developed by Desrochers, Desrosiers and Solomon (1992). The 
time windows are reduced by applying the following four rules in a cyclic 
manner. The process is stopped when one whole cycle is performed with­
out changing any of the time windows. The four rules are: 



84 COL UMN GENERA TION 

1) Minimal arrival time from predecessors: 

ai = max • 
W) 

ja/, min |6/,min{ai + t i / } | j . 

2) Minimal arrival time to successors: 

ai — max < a/, min I 6/, min{aj — '̂ /j} r r• 

3) Maximal departure time from predecessors: 

hi = min |6/ , max ja/, max{&^ + t ^ j | | . 

4) Maximal departure time to successors: 

hi = min < 6/, max < a/, max{6j — tij} ? >. 

The first rule adjusts the start of the time window to the earliest time 
a vehicle can arrive coming straight from any possible predecessor. In a 
similar fashion, the second rule modifies the start of the time window in 
order to minimize the excess time spent before the time windows of all 
possible successors open if the vehicle continues to a successor as quickly 
as possible. The two remaining rules use the same principles to adjust 
the closing of the time window. With respect to capacity, an arc (i, j ) 
can obviously be removed if di + dj > q, 

7.2 Subproblem strategies 
A well known strategy for accelerating column generation is to return 

many negative marginal cost columns to the master problem. Even 
though in principle only one needs to be returned, several can be if they 
are available. Computational tests conducted by Kohl (1995); Larsen 
(1999) confirm the benefits of this approach. 

7.3 Master problem strategies 
Along with the novel perspectives on the subproblem solution de­

scribed in 5, master problem acceleration strategies have been key to the 
evolution of VRPTW approaches over the last few years. One approach 
is to accelerate the solution at the root node of the branch-and-bound 
tree by using a local search method to generate a set of initial columns. 
This helps the column generation process get a fast increase in the quality 
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of the dual variables. It has been implemented by numerous researchers 
and has finally been discussed in the literature by Danna and Le Pape 
(2005). The authors use a local search method based on the savings 
algorithm incorporating time windows which produces a set of routes 
better than the trivial depot-customer-depot ones. Furthermore, local 
search is used along with a MIP solver throughout the branch-and-price 
process to generate good integer solutions fast. Two different heuristics, 
a local search method based on large neighborhood search and a guided 
tabu search, were tested and proved beneficial, especially on Solomon's 
Rl and RCl problem classes. 

Two new approaches have been suggested by Larsen (2004, 1999). 
First, during the execution of the branch-and-price a large number of 
columns are generated and many of these only participate in a few com­
putations and will not be used afterwards. If kept, each column will 
increase computing time when solving the relaxed set partitioning prob­
lem and when adjusting the upper bounds on variables due to branching 
decisions. Therefore Larsen (2004) suggests to keep track of how long a 
column is part of a basis. If it does not participate in a basis for a given 
number of branch-and-bound nodes it is removed from the model. This 
was also suggested by Desaulniers, Desrosiers and Solomon (2002) where 
it was also noted that a certain number of nonbasic columns should re­
main in the problem. Larsen (2004) reports that deleting columns that 
have not been part of the basis for the last 20 branch-and-bound nodes 
outperforms the code without column deletion by a factor of 2.5 aggre­
gated over 27 instances. 

The second acceleration approach is to stop the algorithm for the 
SPPTWCC before it completes. Computations can be stopped as soon 
as at least one route with negative cost has been generated. This ap­
proach is denoted "forced early stop" in Larsen (1999) and results in 
dramatic running time reductions, especially for problems with large 
time windows. For these, the values of the dual variables at the begin­
ning of the procedure will however be of poor quality. Only when the 
subproblem proves optimality it cannot be stopped prematurely. 

7A Cutting planes 
The barebone column generation methodology for solving the VRPTW 

is part of the popular approach for solving difficult integer programming 
problems by relaxing the integrality constraints of the original problem. 
Typically, the optimal solution to the relaxed problem is not feasible 
for the original problem and branch-and-bound is used in order to get 
integer solutions. 
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Cutting planes has been proposed to improve the polyhedral descrip­
tion of the relaxed problem in order to get an integer solution or at 
least narrow the integrality gap. Kohl, Desrosiers, Madsen, Solomon 
and Soumis (1999) suggested three cuts in order to tighten the LP for­
mulation of the VRPTW problem. As these cuts are only introduced at 
the root node, this is not a branch-and-cut approach, where cuts can be 
introduced at any node of the search tree. 

The method is based on subtour elimination constraints and comb in­
equalities transferred from the TSP, and 2-path cuts. To detect subtour 
elimination constraints, a separation algorithm by Crowder and Pad-
berg (1980) was implemented. With respect to the comb inequalities, 
only combs with 3 teeth and 2 nodes were detected. The separation algo­
rithm was a primitive enumeration scheme. Neither of these constraints 
had a large impact on tightening the bound. 

A new idea introduced by Kohl, Desrosiers, Madsen, Solomon and 
Soumis (1999) was the inclusion of 2-path cuts. The basis of this set of 
cuts is the subtour ehmination inequality in the strong form: x{S) > 
k{S)^\/S C C, where x{S) is the flow leaving the set 5, and k{S) is 
the minimum number of vehicles needed to service the customers in S. 
Determining k{S) is not an easy task, but using the triangle inequality 
on the travel times we have that ^i C ^2 =r̂  k{Si) < fc(S'2). Sets S that 
satisfy x{S) < 2 and k{S) > 1 must now be found. As k{S) is an integer, 
k{S) > 1 implies k{S) > 2. So we need to identify sets S that require at 
least two vehicles to be serviced, but are currently serviced by less than 
two. 

For a set 5, two checks have to be performed: 1) k{S) > 1 and 2) can 
the customers be serviced by a single vehicle? The first check is easy, but 
the second requires the solution of the TSPTW feasibility problem. Since 
this problem is NP-hard the separation algorithm can only be applied 
to small sets. This is done heuristically using a simple greedy algorithm 
based on Laporte, Nobert and Desrochers (1985). 

The 2-path cuts outperformed the branch-and-price method without 
2-path cuts. The proportion of the integrality gap closed by the 2-path 
cuts varies from 100% to 10% in a few cases. Overall 12 new unsolved 
Solomon instances were closed. 

Cook and Rich (1999) extended the above 2-path cut approach to k-
path cuts involving the solution of a VRPTW with (A; - 1) customers as 
part of the separation algorithm. The authors performed experiments 
with /c up to 6. For larger /c, the percentage of the integrality gap 
that is closed is of course larger, but the separation algorithm requires 
substantially more time and therefore it is not evident that it is preferable 
to use k larger than 2. 
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Recently, Bard, Kontoravdis and Yu (2002) have proposed a branch-
and-cut algorithm for the arc formulation of the VRPTW. This devel­
opment parallels the initial uses of this technique for the VRP (Naddef 
and Rinaldi, 2002). Based on the results obtained by Mak (2001), a new 
arc formulation of the VRPTW is presented in Kallehauge and Boland 
(2004). In this formulation the time and capacity restrictions are mod­
eled using infeasible path elimination constraints (IPECS). This new 
class of inequalities can be viewed as a strengthening of the IPECS de­
scribed in Ascheuer, Fischetti and Grötschel (2000), Ascheuer, Fischetti 
and Grötschel (2001); Bard, Kontoravdis and Yu (2002) and can also 
be incorporated at the master problem level in the path formulation 
considered in this chapter. 

Another line of research involves valid inequalities derived from the 
precedence relationships established by the time windows. That is, if 
a set of customers is served by the same vehicle, the associated time 
windows create a precedence structure among the corresponding nodes 
(Ascheuer, Fischetti and Grötschel, 2001). In Kallehauge and Boland 
(2004), two classes of valid inequalities for the precedence-constrained 
asymmetric traveling salesman polytope (Balas, Fischetti and Pulley-
blank, 1995) are transferred to the VRPTW. 

8- Generalizations of the VRPTW model 
The methods considered in this chapter can be generalized and ap­

plied to a number of related problems as discussed by Desrosiers, Dumas, 
Solomon and Soumis (1995). Here we will concentrate on routing gener­
alizations and show how a number of more complex routing problems can 
be modeled based on the framework introduced in the previous sections. 

8.1 Non-identical vehicles 
In the general case vehicles may differ with respect to travel time, 

travel costs, capacity and possibly other characteristics. We define a class 
of vehicles as a set of identical vehicles. There may be a cost associated 
with the vehicles of a particular class, and there may be bounds on their 
availability as well. These bounds are modeled in to the master problem 
as supplementary constraints. 

The subproblem must be solved separately for each class of vehicles. 
The marginal costs of the arcs originating at the depot of the subproblem 
for a particular vehicle class must be modified by the simplex multiplier 
of the constraints on the availability of this class in the master problem. 
One can chose to solve one or more of the subproblems between each 
master iteration. The LP optimaHty criterion is that no subproblem 
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generates columns with negative reduced costs. It is likely to be efficient 
to branch on the number of vehicles of a particular class if this number 
is fractional. 

A special case occurs if vehicles do not differ with respect to traveling 
time, travel cost and time windows, but only have different capacities 
and possible availability and fixed costs. This problem is clearly solv­
able as described above, but it can also be transformed into the identical 
vehicle problem described earlier in this chapter. The advantage of this 
transformation is that only one subproblem must be solved at each it­
eration. To illustrate how the transformation works consider a problem 
with two classes of vehicles, with vehicle capacities qi and q2 respectively, 
where qi < q2' The fixed costs of using the vehicles are ci and C2, respec­
tively. Two extra nodes are inserted in parallel between the depot and 
the customers and any path must go through exactly one of these nodes. 
The two arcs from the depot to the new nodes are priced ci and C2, 
respectively. If node 1 is chosen, the capacity is reduced by 2̂ — Qi since 
the resource window of node 1 starts at this quantity. Since the resource 
window of the depot is [0, ̂ 2]? a path going through node 1 cannot service 
customers with accumulated demand of more than 2̂ ~~{(l2 — qi) — qi- If 
there are bounds on the availability of the vehicles, these are inserted in 
the master problem and the simplex multipliers modify the cost of the 
two new arcs between the depot and the new nodes. 

8-2 Multiple depots 
If the vehicles are based at different depots, one subproblem must 

be solved for each depot. Constraints on the availability of vehicles at 
a particular depot are kept in the master problem, and the associated 
simplex multiplier modifies the cost of arcs originating at the depot. This 
is equivalent to the general non-identical vehicle case discussed above. 

One may assume that the vehicles are allowed to finish their routes 
at a depot different from the one the vehicles started, but that the num­
ber of vehicles starting and ending at any depot remains constant. In 
this particular case it is sufficient to solve one subproblem. One extra 
node per depot is created "before" the customers and one "after" the cus­
tomers. For each depot there will be a constraint r in the master problem 
requiring the number of vehicles housed at. that depot be kept constant. 
The right hand side will be zero, and the left hand side coefficient (r,p) 
will be 1 if route p starts at the depot associated with constraint r and 
ends at another depot, —1 if the route starts at another depot and ends 
at the depot associated with constraint r, and zero otherwise. The cor­
responding simplex multipliers modify the cost of arcs originating at the 
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depot (with opposite sign). It is also easy to introduce different fixed 
costs associated with the vehicles housed at the depots. 

8.3 Multiple or soft time windows 
Customers may have several (disjoint) time intervals in which they 

can be serviced, A vehicle arriving between two time windows must 
wait until the beginning of the next time window. This doesn't truly 
complicate the problem since the usual dominance criterion in the sub-
problem remains valid. A vehicle arriving at a particular node at time 
ti can do everything a vehicle arriving at time 2̂ can, provided that 
h < t2. 

If there exist a cost c{si) dependent on the time si service at customer 
i begins, the time window is said to be soft. If the cost is non-decreasing 
with increasing time this is not problematic, since the dominance criteria 
remain valid. The most general case where c{si) is a general function is 
not efficiently solvable. loachim, Gelinas, Desrosiers and Soumis (1998) 
present an algorithm for the hnear case. 

9. Computational experiments 
Almost from the first computational experiments, a set of problems 

became the test-bed for both heuristic and exact investigations of the 
VRPTW. Solomon (1987) proposed a set of 164 instances that have 
remained the leading test set ever since. For the researchers working on 
heuristic algorithms for the VRPTW a need for bigger problems made 
Homberger and Gehring (1999) propose a series of extended Solomon 
problems. These larger problems have as many as 1000 customers and 
several have been solved by exact methods. 

9*1 The Solomon instances 
The test sets reflect several structural factors in vehicle routing and 

scheduling such as geographical data, number of customers serviced by 
a single vehicle and the characteristics of the time windows (e.g., tight­
ness, positioning and the fraction of time-constrained customers in the 
instances). Customers are distributed within a [0,100]^ square. 

The instances are divided into 6 groups (test-sets) denoted Rl, R2, 
CI, C2, RCl and RC2. Each of the test sets contain between 8 and 12 
instances. In Rl and R2 the geographical data is randomly generated by 
a random uniform distribution. In the test sets CI and C2 the customers 
are placed in clusters, and finally in the RCl and RC2 test-sets some 
customers are placed in clusters while others are placed randomly. In 
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the test sets Rl, CI and RCl the scheduhng horizon is short permitting 
approximately 5 to 10 customers to be serviced on each route. The R2, 
C2 and RC2 problems have a long scheduling horizon allowing routes 
with more than 30 customers to be feasible. This makes the problems 
very hard to solve exactly and they have not been used until recently 
to test exact methods. The time windows for the test sets CI and C2 
are generated to permit good, maybe even optimal, cluster-by-cluster 
solutions. For each class of problems the geographical position of the 
customers is the same in all instances whereas the time windows are 
changed. 

Each instance has 100 customers, but by considering only the first 25 
or 50 customers, smaller instances can easily be generated. It should be 
noted that for the RC-sets this results in the customers being clustered 
since the clustered customers appear at the beginning of the file. Travel 
time between two customers is usually assumed to be equal to the travel 
distance plus the service time at the predecessor customer. 

9.2 Computational results 
This section reviews the results obtained by the best exact algorithms 

for the VRPTW. All are based on the column generation approach. The 
tables 3.1 through 3.6 present the solutions for the six diflferent sets of 
the Solomon instances that have been solved to optimality. Column K 
indicates the number of vehicles used in the optimal solution while the 
column "Authors" give reference to the first publication (s) of the optimal 
solution for the problem: Kohl, Desrosiers, Madsen, Solomon and Soumis 
(1999) (KDMSS), Larsen (1999) (L), Kallehauge, Larsen and Madsen 
(2000) (KLM), Cook and Rich (1999) (CR), Irnichand Villeneuve (2005) 
(IV), Chabrier (2005) (C), and Danna and Le Pape (2005) (DLP). It 
should be noted that Desrochers, Desrosiers and Solomon (1992) prior 
to Kohl, Desrosiers, Madsen, Solomon and Soumis (1999) solved 50 of 
the 87 Solomon problems with narrow time windows, but with different 
travel times. Whereas all the above mentioned papers compute the travel 
times using one decimal point precision and truncation, time and cost 
is computed differently in Desrochers, Desrosiers and Solomon (1992). 
Furthermore, solutions to all CI instances were reported for the first 
time by Kohl and Madsen (1997), who used a Lagrangian relaxation 
approach. 

As discussed in Cordeau, Desaulniers, Desrosiers, Solomon, and Soumis 
(2002), the optimal algorithm of Kohl, Desrosiers, Madsen, Solomon 
and Soumis (1999) solved 69 of the 87 Solomon benchmark short hori­
zon problems to optimality. Eleven additional problems were solved by 
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Table 3.1. Optimal solutions for the Rl instances. 

Problem 

R101.25 
R101.50 
RlOl.lOO 
R102.25 
R102.50 
R102.100 
R103.25 
R103.50 
R103.100 
R104.25 
R104.50 
R104.100 
R105.25 
R105.50 
R105.100 
R106.25 
R106.50 
R106.100 

K 

8 
12 
20 

7 
11 
18 
5 
9 

14 
4 
6 

11 
6 
9 

15 
5 
8 

13 

Dist. 

617.1 
1044 

1637.7 
547.1 

909 
1466.6 
454.6 
772.9 

1208.7 
416.9 
625.4 
971.5 
530.5 
899.3 

1355.3 
465.4 

793 
1234.6 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
CR+L 
KDMSS 
KDMSS 
IV 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
CR+KLM 

Problem 

R107.25 
R107.50 
R107.100 
R108.25 
R108.50 
R108.100 
R109.25 
R109.50 
R109.100 
R110.25 
R110.50 
RllO.lOO 
R111.25 
R111.50 
Rill.100 
R112.25 
R112,50 
R112.100 

K 

4 
7 

11 
4 
6 

5 
8 

13 
5 
7 

12 
4 
7 

12 
4 
6 

Dist. 

424.3 
711.1 

1064.6 
397.3 
617.7 

441.3 
786.8 

1146.9 
444.1 

697 
1068 

428.8 
707.2 

1048.7 
393 

630.2 

Authors 

KDMSS 
KDMSS 
CR+KLM 
KDMSS 
CR+KLM 

KDMSS 
KDMSS 
CR+KLM 
KDMSS 
KDMSS 
CR+KLM 
KDMSS 
CR+KLM 
CR+KLM 
KDMSS 
CR+KLM 

Larsen (1999); Cook and Rich (1999); Kallehauge, Larsen and Madsen 
(2000). Recently, Irnich and Villeneuve (2005) were successful in closing 
three additional instances. Four 100-customer instances are still open. 

As also reported in Cordeau, Desaulniers, Desrosiers, Solomon, and 
Soumis (2002); Larsen (1999); Cook and Rich (1999); Kallehauge, Larsen 
and Madsen (2000) also provided exact solutions to 42 of the 81 Solomon 
long horizon problems. Since then, Irnich and Villeneuve (2005); Chabrier 
(2005); Danna and Le Pape (2005) have solved an additional 21 instances, 
leaving 18 problems still unsolved. 

10- Conclusions 

In this chapter we have highlighted the noteworthy developments 
for optimal column generation approaches to the VRPTW. To date, 
such methods incorporating branching and cutting on solutions obtained 
through Dantzig-Wolfe decomposition are the best performing algorithms. 
Valid inequalities have proved an invaluable tool in strengthening the LP 
relaxation for this class of problems. 
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Table 3.2. Optimal solutions for the CI instances 

Problem 

C101.25 
C101.50 
ClOl.lOO 
C102.25 
C102.50 
C102.100 
C103.25 
C103.50 
C103.100 
C104.25 
C104.50 
C104.100 
C105.25 
C105.50 
C105.100 

K 

3 
5 

10 
3 
5 

10 
3 
5 

10 
3 
5 

' 10 
3 
5 

' 10 

Dist. 

191.3 
362.4 
827.3 
190.3 
361.4 
827.3 
190.3 
361.4 
826.3 
186.9 

358 
822.9 
191.3 
362.4 
827.3 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 

Problem K 

C106.25 3 
C106.50 5 
C106.100 10 
C107.25 3 
C107.50 5 
C107.100 10 
C108.25 3 
C108.50 5 
C108.100 10 
C109.25 3 
C109.50 5 
C109.100 10 

Table 3.3. Optimal solutions for the RCl instances. 

Problem 

RC101.25 
RC101.50 
RClOl.lOO : 
RC102.25 
RC102.50 
RC102.100 : 
RC103.25 
RC103.50 
RC103.100 : 
RC104.25 
RC104.50 
RC104.100 

K 

4 
8 

Dist. 

461.1 
944 

15 1619.8 
3 
7 

351.8 
822.5 

14 1457.4 
3 
6 

11 
3 
5 

332.8 
710.9 
1258 

306.6 
545.8 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 
CR+KLM 
KDMSS 
KDMSS 
CR+KLM 
KDMSS 
KDMSS 

Problem 

RC105.25 
RC105.50 
RC105.100 
RC106.25 
RC106.50 

• RC106.100 
RC107.25 
RC107.50 

[ RC107.100 
RC108.25 
RC108.50 
RC108.100 

Dist. Authors 

191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 
191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 
191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 
191.3 KDMSS 
362.4 KDMSS 
827.3 KDMSS 

K 

4 
8 

15 
3 
6 

3 
6 

12 
3 
6 

11 

Dist. 

411.3 
855.3 

1513.7 
345.5 
723.2 

298.3 
642.7 

1207.8 
294.5 
598.1 

1114.2 

Authors 

KDMSS 
KDMSS 
KDMSS 
KDMSS 
KDMSS 

KDMSS 
KDMSS 
IV 
KDMSS 
KDMSS 
IV 

Recent advances have stemmed from work on parallel implementa­
tions of the overall approach, acceleration strategies, primarily at the 
master problem level, and the subproblem. Solving the subproblem as 
a ESPPTWCC or a SPPTWCC-fe-cyc has shown to be very beneficial 
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Table 3.4- Optimal solutions for the R2 instances. 

Problem 

R201.25 
R201.50 
R201.100 
R202.25 
R202.50 
R202.100 
R203.25 
R203.50 
R203.100 
R204.25 
R204.50 
R204.100 
R205.25 
R205.50 
R205.100 
R206.25 
R206.50 
R206.100 

K 

4 
6 
8 
4 
5 

3 
5 

2 
2 

3 
4 

3 
4 

Dist. 

463.3 
791.9 

1143.2 
410.5 
698.5 

391.4 
605.3 

355 
506.4 

393 
690.1 

374.4 
632.4 

Authors 

CR+KLM 
CR+KLM 
KLM 
CR+KLM 
CR+KLM 

CR+KLM 
IV+C 

IV+C 
IV 

CR+KLM 
IV+C 

CR+KLM 
IV+C 

Problem 

R207.25 
R207.50 
R207.100 
R208.25 
R208.50 
R208.100 
R209.25 
R209.50 
R209.100 
R210.25 
R210.50 
R210.100 
R211.25 
R211.50 
R211.100 

K 

3 

1 

2 
4 

3 
4 

2 
3 

Dist. 

361.6 

328.2 

370.7 
600.6 

404.6 
645.6 

350.9 
535.5 

Authors 

KLM 

IV+C 

KLM 
IV+C 

CR+KLM 
IV+C 

KLM 
IV+DLP 

Table 3.5. Optimal solutions for the C2 instances. 

Problem 

C201.25 
C201.50 
C201.100 
C202.25 
C202.50 
C202.100 
C203.25 
C203.50 
C203.100 
C204.25 
C204.50 
C204.100 

K 

2 
3 
3 
2 
3 
3 
2 
3 
3 
1 
2 
3 

Dist. 

214.7 
360.2 
589.1 
214.7 
360.2 
589.1 
214.7 
359.8 
588.7 
213.1 
350.1 
588.1 

Authors 

CR+L 
CR+L 
CR+KLM 
CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
KLM 
CR+KLM 
KLM 
IV 

Problem 

C205.25 
C205.50 
C205.100 
C206.25 
C206.50 
C206.100 
C207.25 
C207.50 
C207.100 
C208.25 
C208.50 
C208.100 

K 

2 
3 
3 
2 
3 
3 
2 
3 
3 
2 
2 
3 

Dist. 

214.7 
359.8 
586.4 
214.7 
359.8 

586 
214.5 
359.6 
585.8 
214.5 
350.5 
585.8 

Authors 

CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
CR+KLM 
CR+L 
CR+KLM 
KLM 
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Table 3.6. Optimal solutions for the RC2 instances. 

Problem 

RC201.25 
RC201.50 
RC201.100 
RC202.25 
RC202.50 
RC202.100 
RC203.25 
RC203.50 
RC203.100 
RC204.25 
RC204.50 
RC204.100 

K 

3 
5 
9 
3 
5 
8 
2 
4 

3 
3 

Dist. 

360.2 
684.8 

1261.8 
338 

613.6 
1092.3 
326.9 

490.122 

299.7 
444.2 

Authors 

CR+L 
L+KLM 
KLM 
CR+KLM 
IV+C 
IV+C 
IV+C 
IV+C 

C 
DLP 

Problem 

RC205.25 
RC205.50 
RC205.100 
RC206.25 
RC206.50 
RC206.100 
RC207.25 
RC207.50 
RC207.100 
RC208.25 
RC208.50 
RC208.100 

K 

3 
5 
7 
3 
5 

3 
4 

2 

Dist. 

338 
630.2 
1154 
324 
610 

298.3 
558.6 

269.1 

Authors 

L+KLM 
IV+C 
IV+C 
KLM 
IV+C 

KLM 
C 

C 

Nevertheless, 25% of Solomon's problems are still unsolved. Additional 
research in each of these areas should lead to further advances. We 
expect that the further study of polyhedral structures, paralellism, ac­
celeration strategies, and the subproblem will constitute the backbone of 
research in this area for the next several years. Master problem acceler­
ation methods relying on local search heuristics is just beginning. Other 
strategies may consider the principle of stabilization for column gener­
ation discussed in du Merle, Villeneuve, Desrosiers and Hansen (1999) 
for the VRPTW. Speedup factors of 1 to 10 were achieved by using 
stabilized column generation on the airline crew pairing problem which 
closely related to the VRPTW. 

Decomposition algorithms are also easily adaptable to other settings. 
This is because they comprise modules, such as dynamic programming, 
that can handle a variety of objectives. Lateness, for one, is becoming an 
increasingly important benchmark in today's supply chains that empha­
size on time deliveries. Moreover, they can be run as optimization-based 
heuristics by means of early stopping criteria. 

We hope that this chapter has shed sufficient light on current devel­
opments to lead to exciting further research. 
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