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An Exact Algorithm  
for the Multiple Vehicle Pickup and Delivery Problem 

 
 
ABSTRACT  
 

We consider the Multiple Vehicle Pickup and Delivery Problem (MVPDP) with 

objective of minimizing the total travel cost and the fixed vehicle cost.   Most of the 

optimization based approaches for solving the MVPDP are developed for a restrictive 

hard time window or tight capacity environment that depend significantly on the 

reduction of the feasible solution space.   We develop an alternative optimization solution 

approach for the MVPDP that does not require these constraints to be tight.  The problem 

is formulated as a 0-1 integer-programming problem.  A branch-and-cut algorithm is 

developed to optimally solve the problem.  Four classes of valid inequalities for the 

MVPDP are proposed.  By using the proposed solution approach, we were able to 

optimally solve problem instances of up to 5 vehicles and 17 customers on problems 

without clusters and up to 5 vehicles and 25 customers on problems with clusters within a 

stopping criterion of three CPU hours on a Sun Fire 4800 Server.  

  



Introduction 

The Pickup and Delivery Problem (PDP) generally consists of a fleet of vehicles and a set 

of customer requests. Each request specifies the size of the load to be transported and the 

locations of two stops: pickup and delivery points.   Furthermore, the same vehicle must 

visit the pickup location before the delivery location.  The pickup portion of the request is 

considered serviced when all the units to be transported of the request are on board the 

vehicle while the delivery portion of the request is considered serviced when all the units 

are disembarked off the same vehicle. Each vehicle has a given capacity, a start location 

and an end location. The objective is to minimize the total cost, which may include the 

fixed vehicle cost and the travel cost, while satisfying all customer demand. 

The PDP has received attention by many researchers over the last two decades. 

This interest is due in part to its practical importance.  For example, the well-known Dial-

a-Ride Problem (DARP) can be considered as a PDP in which the loads to be transported 

represent people and with some special service-constraints such as maximum ride time.  

Therefore the size of a load and vehicle capacity must be integer.  The rapid growth of 

the parcel transportation industry due to increasing e-commerce demand and the growth 

of the paratransit industry due to the American with Disabilities Act (ADA) further 

highlight the significance of the PDP.  

The PDP is known to be NP-hard in the strong sense.  Due to its computational 

difficulty, prior work on exact algorithmic development for the PDP has focused either 

on the single vehicle problem (referred to as SVPDP) or problems with hard time 

windows (referred to as PDPHTW).   
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Psaraftis (1980) proposed the first exact algorithm for the SVPDP, which was 

based on dynamic programming.  Kalantari, Hill, and Arora (1985) developed a branch-

and-bound algorithm for the SVPDP, and problem instances with up to 15 customers 

were optimally solved with this algorithm.  Fischetti and Toth (1989) solved the problem 

by using an additive bounding approach in a branch-and-bound algorithm.  Ruland and 

Rodin (1997) presented a branch-and-cut algorithm, and problem instances with up to 15 

customers were optimally solved. 

In the PDPHTW, a time window is associated with each stop of the request 

whether it is a pickup or delivery point.   A feasible schedule satisfies all requests within 

the given time window.  The research interest in the PDPHTW is aroused partially by the 

increasing number of practical applications such as paratransit vehicle routing.  With hard 

time windows, it may be possible to optimally solve moderate size problems using 

dynamic programming algorithms since hard time windows can reduce the solution space 

by eliminating a large number of states.  The two keys in implementing a dynamic 

programming approach are state definition and state elimination.  Psaraftis (1983) 

presented a forward dynamic programming algorithm to solve the single-vehicle 

PDPHTW. Desrosiers, Dumas, and Soumis (1986) provided an alternative dynamic 

programming algorithm for the same problem.    Dumas, Desrosiers, and Soumis (1991) 

developed a column generation solution procedure to optimally solve the PDPHTW with 

up to 55 customers using a single vehicle.  Their approach works well only under either 

restrictive capacity or time window constraints.  For example, in their problem instance 

of 55 customers, the restrictive capacity and time window constraints enabled them to 

significantly reduce the number of arcs in the problem to 1996 from a total of over 

2  



12,000.  Clearly, the tighter the time window and capacity constraints, the more difficult 

it is to identify a feasible schedule.  However, tight capacity and time window restrictions 

reduce the solution space significantly, thus making the above approaches 

computationally tractable to find optimal solutions for small to moderate size problems.    

The focus of this paper is to develop an exact solution procedure for the Multiple 

Vehicle Pickup and Delivery Problem (MVPDP) that does not depend on elimination 

techniques for reducing the solution space due to violations in capacity and time window 

constraints.  That is, we consider problems where these constraints are not tight.  Clearly, 

problems without hard time windows are similar to problems with hard time windows 

with arbitrarily large windows.  However, as earlier stated, large time windows make 

dynamic programming approaches computationally intractable. There are many 

applications such as carrier delivery in which the vehicle capacity is not restrictive and 

the time windows are sufficiently large (e.g, end of business day).  Savelsbergh and Sol 

(1995) provide other examples where there are not restrictive time window constraints. 

Our solution approach is based on a branch-and-cut algorithm.  In §4, we show 

that our algorithm can optimally solve problem instances of up to 5 vehicles and 17 

customers on problems without clusters and 5 vehicles and 25 customers on problems 

with clusters within a stopping criterion of three CPU hours on a SUN Fire 4800 System.  

Although our focus is on exact solution procedures, we note that there also has been a 

large body of work that focused on heuristic development for the MVPDP due to the 

combinatorial nature of the problem.  Savelsbergh and Sol (1995) provide an excellent 

review of this work.  More recent approximation solution procedures include the column 

management scheme by Savelsbergh and Sol (1998), the insertion heuristic developed by 
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Madsen, Ravn, and Rygaard (1995), the clustering algorithm developed by Ioachim et al. 

(1995), and the parallel insertion heuristic developed by Toth and Vigo (1997).  

The remainder of the paper is organized as follows. In §1, we present a new 

mixed integer linear programming formulation for the MVPDP that only introduces 

integer variables representing arc flow.  That is, no additional binary variables are needed 

to represent pairing the pickup with the delivery request on the same vehicle.  

Furthermore, our formulation does not include an extra index for the binary variables to 

represent vehicle number.  Several classes of valid constraints are then identified in §2.  

In §3, the details of the branch-and-cut procedure including the prediction strategy and 

branch methods are presented.  Computational results are shown in §4, followed by some 

concluding remarks in §5. 

 

1. Formulation 

We provide an integer programming formulation for the PDP with multiple 

heterogeneous vehicles, which implies that each vehicle may have its own capacity, 

depart depot, and return depot.  The objective is to find a collection of at most m simple 

circuits (m is the number of vehicles in the fleet) with minimum total costs, defined as the 

sum of the travel costs, and fixed operating cost for each used vehicle. 

Let there be n customers.  Each customer has a pickup and a delivery request.  

Node i represents the pickup node for customer i and node n+i represents the delivery 

node for customer i.  Denote N+
r ={1, 2, …, n} the node set for all pickup requests and  

N-
r ={n+1, n+2, …, 2n} the node set for all delivery requests.  For example, node 1 and 
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node n+1 represent the pickup and delivery locations for customer 1, respectively.  Let Nr 

= N+
r ∪ N-

r = {1, 2, …, 2n} represent the node set for all service stops.   

Let there be m vehicles to be routed and scheduled.  In our network we represent 

the departure and return depots for all vehicles by m+1 nodes.  They are node set Nq = 

{2n+1, 2n+2, …, 2n+m+1}.  Node 2n+1 represents the departure node for the first 

vehicle.  Nodes 2n+v, v=2, 3, …, m represent the return node for the (v-1)th vehicle as 

well as the departure node for the vth vehicle.  Node 2n+m+1 represents the return node 

for the mth vehicle. 

We remark that extending the network from a single vehicle to a multiple case for 

a VRP is straightforward since there is no pairing constraint that requires a pickup to be 

matched with the delivery on the same vehicle.  That is, in the PDP the two nodes 

representing the pickup and delivery points of a request must be on the same path for a 

given vehicle.  Our network design takes into consideration this pairing constraint while 

attempting to keep the number of arc flow variables to a minimum. 

The network for the problem can be constructed as follows: G (N, A) where the 

node set N= Nr ∪ Nq and A is the arc set.  Let A= Ar ∪ Aq ∪ Ar,q , where Ar represents 

the set of arcs between nodes of Nr, Aq represents the set of arcs between nodes of Nq, 

and Ar,q represents the set of arcs connecting Nr and Nq.  In Ar we exclude all arcs (i+n, i), 

1≤ i ≤ n because they violate the requirement of pickup before delivery.  An example of 

graph Ar for a two customer case is shown in Figure 1a, where nodes 1 and 2 represent 

the pickup nodes and nodes 3 and 4 represent the delivery nodes of customer 1 and 2 

respectively.  Arc set Aq has exactly m+1 arcs that formulate a loop.  Figure 1b shows the 

arcs of type Aq in a two-vehicle case.  In this example node 5 represents the departure 

5  



node of vehicle 1, node 6 represents the return node of vehicle 1 and the departure node 

of vehicle 2, and node 7 represents the return node of vehicle 2.  Note that the nodes in 

Nq can represent two different physical locations. Let arc set Ar,q = Ar-,q ∪ Aq,r+.  Arc set 

Ar-,q represents all arcs from Nr
- to Nq/{2n+1}.  Arc set Aq,r+ represents all arcs from 

Nq/{2n+m+1} to Nr
+.  An example of the entire graph for n=2 and m=2 case is showed in 

Figure 1c.  Note that the graph is not a complete graph.  This enables us to minimize the 

number of arcs that will be the integer variables in the formulation. 

Let pi,j be the travel cost for arc (i, j) in arc set A.  The definition is as follows 
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Let Uv be the fixed cost incurred by using vehicle v, v = 1, 2, …, m.  Define the 

cost ci,j on each directed arc connecting node i to j in arc set A as follows.  
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From the definition of the above network, it is easy to see that any feasible solution 

to the pickup and delivery problem can be represented as a Hamiltonian tour in this 

network.  Hence, the problem can be defined to identify the minimal cost Hamiltonian 

tour that satisfies all the pickup and delivery constraints in this new graph. 

Denote the capacity of each vehicle by Dv, v=1, 2, …, m and di the pickup 

demand at each pickup node i = {1, 2, ..., n}.  To represent the vehicle capacity 

constraints in our formulation, two additional variables fi and gi are defined as follows, 
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This problem is formulated as an integer programming problem. We define two 

binary decision variables: 
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 Note that to define the order of nodes in a Hamiltonian tour, we assume that the 

tour starts from node 2n+1, which is the departure depot for the first vehicle, and ends in 

node 2n+m+1, which is the return depot for the last vehicle.  

 We next present a mathematical formulation of the MVPDP referred to as F1.  

Our formulation does not require an extra index for vehicle number in the arc flow 

variables to enforce the pairing of the pickup and delivery requests.  
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Constraints (1) and (2) are the basic network constraints, which impose that exactly 

one vehicle enters and leaves each service vertex.  

Constraints (3) and (4) are copy constraints, because their function is to copy all the 

values of bk,i to bk,j, where k∈N and k≠i.  That is, if xi,j = 1, meaning node i is 

immediately before node j, constraints (3) and (4) force bk,i = bk,j for all k∈N and k≠i.  

Then constraint (5) enforces bi,j = 1 and condition (6) defines bi,i=0.  When xi,j = 0, 

constraints (3) to (5) become redundant.  
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Constraints (7) and (8) are prior constraints, which force the pickup node to be 

visited before the corresponding delivery node. 

Constraint (9) is the pairing constraint, which ensures that the pickup and delivery 

requests for each customer must be satisfied by the same vehicle.  

Constraint (10) is the vehicle capacity constraint, which enforces that at any time 

the load on the vehicle is under the vehicle capacity.  Because the vehicle capacity can 

only be violated at the pickup locations, the load of the vehicle is checked only at each 

pickup load.  At each pickup node j, the capacity of the vehicle that will visit node j is 

.  The current load of the vehicle before visiting node j is ∑
∈ qNk

jkkbf , ∑
∈Ni

iji gb , . 

Constraint (11) sets node 2n+1 as the first node in the tour.  Constraints (12) and 

(13) enforce that the departure depots of the vehicle 1, …, m, are visited in this sequence 

in the tour.  Recall that nodes 2n+v, v=2, 3, …, m represent the return node for the (v-1)th 

vehicle as well as the departure node for the vth vehicle.  These two constraints enforce 

that each vehicle returns to its own depot.   Finally constraint (14) sets node 2n+m+1 as 

the last node in the tour.  

A characteristic of the formulation is that the subtour elimination has been 

implicitly included in the formulation.  In other words, any integer solution of the above 

formulation must represent a Hamiltonian tour in the network. 

Proposition 1.   There doesn’t exist any subtour in any feasible solution of Formulation 

F1 including the linear relaxation of constraint (16). 

PROOF: 

 The proof is by contradiction.  Suppose part of the x variables generate a subtour 

(ni, ni+1, …, ni+z, nj, ni), where ni, ni+1, …, ni+z, nj are arbitrary z+2 number of different 
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nodes in the network (z < 2n+m-1), ni and nj are two arbitrary adjacent nodes in this 

subtour.  Because xj,i=1, constraint (5) enforces bj,i = 1.  On the other hand, since xi,i+1 = 

1, xi+1,i+2 = 1, …, xi+z,j = 1 and j≠i, j≠i+1, …, j≠i+z copy constraints (3) and (4) force bj,i = 

bj,i+1 = bj,i+2 = … = bj,i+z = bj,j.  Therefore, bj,j = bj,i = 1, which is a contradiction of 

constraint (6).  � 

Because of the b variables, we do not need a third index in the arc flow variables to 

represent vehicle number in order to enforce the pairing constraints.  Furthermore, the 0-

1-integer restriction for the b variables (constraint (16)) can be relaxed.  This relaxation 

reduces the number of integer variables by around a half and makes the above MVPDP 

have only arc flow binary variables equivalent to multiple vehicle routing problems. 

Proposition 2.   The b variables must be binary in any feasible solution to Formulation 

F1 with the linear relaxation of constraint (16). 

PROOF: 

 First let {(X, B)} be the solution set including all feasible solutions of the above 

formulation with the linear relaxation of the b variables, and {(X’, B’)} be the feasible 

solution set of the above formulation.  Clearly, {(X’, B’)}⊂{(X, B)}.  On the other hand, 

for any specific feasible solution (x, b)∈{(X, B)}, constraint (11) forces all bk,2n+1=0, for 

k∈N and constraint (1) ensures that there exists a node y, where x2n+1,y = 1, y∈N.  

Constraint (5) sets b2n+1,y = 1 and copy constraints (3) and (4) force all other bk,y = 0, 

k∈N/{2n+1}.  Thus all bk,y are binary for k∈N.  This process can be repeated starting 

from node y and until all nodes in node set N are evaluated.   Hence, all b variables are 

binary.  Note that all nodes in N will be evaluated is due to Proposition 1, which ensures 

that no subtour will be created in any feasible solution to the problem including the linear 
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relaxation of constraint (16).  Therefore, (x, b) ∈{(X’, B’)} and then {(X, B)}⊂ {(X’, 

B’)}.  � 

 The reverse relationship between the x and b variables does not hold.  That is, 

given that the b variables are integer, it does not imply that the x variables will be integer.  

This is due to the inequality constraint (5), which is a one way constraint and can only set 

bi,j from xi,j. 

 Because we only need to enforce the integrality of the arc flow variables, our 

formulation has 4n2+2mn+(m+1-3n) integer variables.  It saves around O(mn2) integer 

variables comparing with the formulation of Desaulniers et al. (2000).  The addition of 

more vehicles does not significantly increase the number of binary variables in our 

formulation.  

 A simple extension of the above formulation can be used to solve the PDPHTW.  

Let variable Ti be the time at which service at node i begins, i∈Nr.  ti,j and si represent the 

travel time from node i to j and the service time at node i, arc (i, j)∈A.   Next, let [ei, li] 

denote the service time window for each pickup or delivery node i, i={1, 2, …, 2n}.  Let 

also Ev denote the earliest start time for vehicle v and Lv denote the latest return time for 

vehicle v, v={1, 2, …, m}.  Then the following constraints (17) to (20) can be used to 

deal with the hard time window case, where M is a very big number. 
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 Constraint (17) ensures that the service at node i cannot be started until the 

vehicle finishes serving the immediate precedent node and travels to the current node.  
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For the PDPHTW there exists an optimal solution that all used vehicles start at their 

earliest possible start time, therefore constraint (18) forces the first service time for each 

vehicle assuming that vehicle i starts at time Ei.  Constraint (19) ensures that no vehicle 

violates the time window in the return depot, and constraint (20) ensures that the service 

start time is within the time window.   

 

2.  Identification of Valid Inequalities  

Let Γ denote the set that includes all the feasible solutions satisfying constraints (1) to 

(16).  Then Conv(Γ), the convex hull of  Γ, is the MVPDP polytope.  Let Γrelax include all 

feasible solutions of the LP relaxation satisfying constraints (1) to (16).   Then Conv(Γ) ⊂ 

Conv(Γrelax).  In order to optimally solve the formulation with a branch-and-cut 

algorithm, some tight inequalities must be identified to make Conv(Γrelax) approach 

Conv(Γ).  The ideal case is when these inequalities induce all the facets of Conv(Γ).  

Then, Conv(Γ) =Conv(Γrelax) and no branching is necessary.  This section describes four 

classes of equalities/inequalities used in our algorithm to cut Conv(Γrelax).  We next prove 

that they are valid inequalities for Conv(Γ).  We use the term valid inequality to mean 

that it will not eliminate any extreme points of Conv(Γ).   

 

2.1.   Transfer Prior Constraint 

Proposition 3  (Transfer Prior Constraint) For any pair of pickup and delivery nodes i 

and n+i ∈ Nr and an arbitrary collection of nodes (h1, h2, …, hk) ∈ N/{i, n+i}, 1 ≤  k  ≤ 

|N| -2, 
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 The proof is by contradiction.  Suppose the above inequality is not satisfied we 
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2.2.   Adjacent Prior Constraint 

Proposition 4. (Adjacent Prior Constraint). For any pair of pickup and delivery nodes i 

and i+n∈Nr and an arbitrary node k, k∈N/{i, i+n}, 
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PROOF. 

We prove inequality (22).  If node k and node i are not adjacent, then the right 

part of inequality (22) equals 0.  It’s satisfied. 

If node i is immediately before node k, then node i+n must be after node k.  Thus 

bk,i = 0 and bk,i+n=1.  It’s satisfied.  

If node i is immediately after node k, then node i+n must be after node k too.  

Thus bk,i = 1 and bk,i+n=1.  It’s satisfied.  

 Inequality (23) can be proved similarly.  � 

 

2.3.   Pairing Prior Constraint 

Proposition 5. (Pairing Prior Constraint).  For any pair of pickup and delivery nodes i 

and i+n ∈ Nr, 
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PROOF.  For any node i∈N, let Si = .   From the definition of the b variables, S∑
++

=

12

1
,

mn

k
ikb i 

represents the sequence number of node i in the tour (e.g., S2n+1=0 and S2n+m+1=2n+m).   

Therefore Si +1 ≤Si+n.  � 

 

2.4.   Valid Equalities 

One of the constraints for the MVPDP is that each pair of pickup and delivery requests 

must be satisfied by the same vehicle.  Although constraint (9) ensures this requirement is 

met for integer solutions, we can add another equality referred to as Vehicle Return 
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Constraint that cuts some fractional solutions that violate this requirement.   For any node 

i, i∈Nq, 

  )25(0
12

1
, =∑

++

=

mn

k
kik gb

This equality is a valid cut because the load of each vehicle must equal zero after the 

vehicle returns to the depot.   

Another trivial but useful equality which can be derived directly from the 

definition of  the b variables is as follows 

)26(,1., jiandNjiallforbb ijji ≠∈=+  

 

 

2.5. Computational Savings of Using Valid Inequalities 
             
In Table 1 we compare the quality of the lower bound ZLP obtained in the root of the 

branch-and-cut tree, the integrality gap between ZLP and the optimal solution ZOPT, and 

the entire computational time with and without the proposed valid inequalities. This 

experiment uses Solomon’s benchmark problems for the vehicle routing problem.  These 

problems can be found in the following web page:  

http://www.cba.neu.edu/~msolomon/problems.htm 

Since the benchmark problems are intended for the vehicle routing problem, we 

randomly selected pickup and delivery pairings. The first column of Table 1 shows the 

number of customers for the problem.   The number of nodes used from the benchmark 

problems is twice the number of customers plus two since these experiments assume a 

single vehicle.   The node sets are derived from Solomon’s benchmark problem R101.  
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Without using valid inequalities Using valid inequalities Num. 
of 
Cust. 

ZLP ZOPT Gap 
(%) 

CPU Time 
(Sec.) 

ZLP ZOPT Gap 
(%) 

CPU Time 
(Sec.) 

5 151.1 154 1.8 1.7 154.0 154 0.0 0.8 
8 212.3 240 11.5 109.1 231.4 240 3.6 46.5 
10 247.0 276 10.5 712.4 265.2 276 3.9 293.5 
12 290.5 318 8.6 905.3 310.3 318 2.4 382.4 

 
Table 1 Computational Comparison between using Valid Inequalities and without 

using Valid Inequalities 
  

 From the above Table 1, we can observe that using the proposed valid inequalities 

clearly outperforms without using them.  Note that a more detailed analysis of the 

complete solution procedure is provided in §4.  These experiments are meant to show the 

usefulness in the computation of these proposed valid inequalities.    

 

 

3. Branch-and-cut Algorithm  

We next describe a branch-and-cut algorithm that finds an optimal solution for the 

MVPDP.  The performance of this algorithm will be analyzed through computational 

experiments in §4.   

 

3.1. Bounding 

At each node of the search tree, a linear relaxation is defined by (1) to (16) as well as 

additional constraints (21) to (26).  Note that the sum of the number of constraints of type 

(3) and (4) for a n-customer problem is around 16n3 and the number of constraints of type 
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(5) is around 4n2.   When xi,j = 0, the corresponding 4n+2m+1 constraints (3) to (5) will 

be redundant.  According to our computational experience, a large number of x variables 

out of the total of around 4n2+2mn equal to zero in each iteration.  There is no need to 

include all these redundant constraints at every step of the process.  Therefore we treat 

constraints (3) to (5) in the same manner as constraints (21) to (26).  That is, they will be 

added to the problem only if they are violated when not included.   

A computational comparison between including all constraints from (3) to (5) in the 

formulation with adding them iteratively is shown in Table 2. Similar to the previous 

experiments, we selected Solomon’s benchmark problem R101 and R102 for this set of 

experiments.  Since the benchmark problems are intended for the vehicle routing 

problem, we randomly selected pickup and delivery pairings. The first column of Table 2 

shows the number of customers for the problem.   The number of nodes used from the 

benchmark problems is twice the number of customers plus two since these experiments 

assume a single vehicle.  When the number of customers is 50 or less, we strictly used the 

data set R101.  When the number of customers is greater than 50, we used both R101 and 

R102 problems, since each of these problems have a maximum of a 101 locations.   

The second and third columns of Table 2 show the CPU Time for solving the LP-

relaxation by CPLEX when including all constraints (3) to (5) in the problem and the 

number of these types of constraints, respectively.  Columns four and five show the CPU 

time of solving the LP relaxation if these constraints are added iteratively and the total 

number of these types of constraints that were iteratively added in finding the optimal 

solution to the LP relaxation, respectively.  As the table shows, the iterative procedure 

can greatly reduce the solution time of solving the LP relaxation. 
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Number of 
Customers 

CPU Time for 
Solving the Entire  
LP Problem (Sec.) 

Total 
Number of 
Constraints 
(3) to (5) 

CPU Time for Solving  
the LP Problem 
Iteratively (Sec.) 

Number of 
Constraints 
(3) to (5) 
Added 

20 1 123,260 1 61 
40 21 1,004,920 5 151 
60 138 3,412,980 13 189 
80 505 8,115,440 50 274 
100 1536 15,880,300 188 420 

  

Table 2 Computational Comparison between Including all Constraints from (3) to 

(5) in the Formulation with Adding them Iteratively 

  
 

This table is meant to illustrate the potential benefit of the iterative procedure over 

solving the entire LP-relaxation.    

 The complete steps of the algorithm are shown in Figure 2.  At each node, we first 

solve the LP-relaxation of the problem including only constraints (1), (2), and (6)-(16).   

The additional constraints are only included to the LP-relaxation if they are violated.  We 

note that although the integer solution of our formulation does not include any subtours 

(Proposition 1), subtour elimination constraints are necessary for fractional solutions to 

improve the lower bound.  We used the algorithm from Padberg and Rinaldi (1990,1991) 

to identify the subtour elimination inequalities for fractional solutions.  The trigger level 

of 6n, where n is the number of customers, in step 4 and the trigger level of 4 in step 7 

were experimentally determined.  Using zero as a trigger level may cause the addition of 

some constraints to the LP-relaxation that will be naturally eliminated in a subsequent 

step of the procedure.  That is, these triggers tend to reduce the number of repeated LP-
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relaxations that needed to be solved.  We will discuss our branching strategy, integer 

prediction, and elimination of ineffective constraints next. 

 

3.2.  Branching 

When the bounding procedure fails to yield an integer solution, branching is performed 

on one of the fraction nodes of the branching decision tree.  We have tested two different 

branching strategies.    

 The first branching method is the adaptation of the common fractional variable 

branching scheme.  First, define Qi,j, where i<j, as follows, 
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 The fractional xi,j variable with the highest Qi,j value, which is incident to the 

nodes connected by the edges that is fixed to one, will be given the highest priority to be 

branched next.  Branching creates two or three child nodes.  If arc (i, j)∈A and arc (j, 

i)∈A, there are three child nodes: xi,j =xj,i=0; xi,j =1 and xj,i=0; xi,j=0 and xj,i=1; Otherwise 

two child nodes are generated.  

 The second branching method is due to the characteristic of the formulation.  In 

§2.3, we defined Si = , 1 ≤ i ≤ 2n+m+1, for each node i and pointed out that S∑
++

=

12

1
,

mn

k
ikb i 

implies the sequence number of node i in the tour.   Therefore, solving the MVPDP can 

also be expressed as finding an assignment of the integer values 0, 1, …, 2n+m to the  

integer variables S1, S2, …, S2n+m+1 satisfying the capacity constraints, prior constraints, 

and pairing constraints.   At each fractional node, we calculate Q’i,j = |Si – Sj|  for each 
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pair of i, j, i<j and 1 ≤ i, j ≤ 2n+m+1.  We branch the pair (i, j) with the minimal Q’i,j 

value.  Two child nodes are created.  One has the new constraint Si – Sj > 1 and the other 

has the new constraint Si – Sj ≤ 1. 

 

3.3.  Integer Prediction 

In the branch and bound algorithm, finding a good integer solution early can reduce the 

number of explored nodes, which makes the procedure more efficient.  At each fraction 

node in our branching decision tree, we predict the corresponding integer solution from 

the current fractional solution.  Our prediction procedure relies on the Si variables too.  

First the Si for each node i is calculated, then the nodes are sorted in increasing order of 

Si.  Assume they are {L1, L2, …, L2m+n+1}.   We know it is a Hamiltonian tour in our 

network, and due to the Pairing Prior Constraint in §2.3 all prior constraints have been 

satisfied.  But because of possible fractional values of the solution, the pairing and 

capacity constraints may not be satisfied.  Thus we need to check whether these two 

constraints are satisfied.  If not, a simple heuristic procedure is applied to adjust the 

sequence to satisfy all these constraints.   The heuristic is as follows.  First, the violations 

of the pairing constraints are resolved.  Assume there are j pairing constraints violated.  

For each of these J customers, the pairing constraint can be satisfied by either inserting 

the pickup location to the tour of the vehicle visiting only the delivery location or 

inserting the delivery location to the tour of the vehicle visiting only the pickup location.  

The option with the lower total travel cost is chosen.   Then the violations of the capacity 

constraints are resolved by moving some delivery request forward within the same 

vehicle’s tour.  Now we have a feasible solution for the MVPDP.  Its cost will be 
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computed and compared with the current best integer solution.  If it is better than the 

current best integer solution, it will be set as the new best integer solution.   

 In Table 3 we compared the elapsed CPU time and the number of explored nodes 

of finding the optimal integer solution with and without using prediction.  Similar to the 

previous experiments, we selected Solomon’s benchmark problem R101 for this set of 

experiments.  The first column in Table 3 shows the number of customers.  The second 

and third columns in the table show the CPU time and the number of explored nodes 

without using the prediction strategy.   The fourth and fifth columns show the CPU time 

and the number of explored nodes using prediction.  The sixth column shows the average 

number of the violated pairing constraints at each branching node.  Note that the saving 

in the CPU time is not as much as the saving in the number of the explored nodes due to 

the additional computation time needed in the prediction.  As the table shows, prediction 

shows a slight benefit in reducing the CPU time of finding an optimal solution.  

 

Without Using Prediction Using Prediction Num. 
of 
Cust. 

CPU Time 
of Finding 
Optimal 
Solution 
(Sec.) 

Number of 
Nodes Explored 
When Finding 
Optimal Solution

CPU Time 
of Finding 
Optimal 
Solution 
(Sec.) 

Number of 
Nodes Explored 
When Finding 
Optimal Solution 
 

Average 
Number of 
Violated 
Pairing 
Constraints 

5 1.6 9 1.3 7 0 
8 23.5 109 14.7 86 0.3 
10 126.5 176 102.7 143 0.8 
15 2876.0 1038 2335.4 895 2.1 

 
Table 3 Computational Comparison between using Prediction and without using 

Prediction 
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3.4. Eliminate Ineffective constraints 

From the above description, the procedure of iteratively solving the LP relaxation by 

adding violated constraints can cause other constraints to become redundant in solving 

any node in the branch tree. These redundancy constraints are eliminated after solving 

each node by checking whether the slack variable of the constraint is greater than zero. 

As observed by Laporte et al. (1985), the elimination of these ineffective constraints can 

result in computational savings, even though occasionally such constraints may need to 

be reintroduced.  Our experiments also showed that purging of these ineffective 

constraints saved computational time, especially for the problems with more customers.  

For example, for problems with 15 customers, eliminating ineffective constraints saves 

on average 12% computational time over the case without eliminating ineffective 

constraints.   

 

 

4. Computational Results 

We implemented our algorithm using C++ on a SUN Fire 4800 System (12 900MHZ 

CPUs).  The LP solver is CPLEX 4.0.  This section presents the computational results 

from our branch and cut algorithm.   

As opposed to the vehicle routing problem, there are few clearly defined 

benchmark problems for the pickup and delivery problem.   We test our approach based 

on two data sets.  The first data set is the modification of Solomon’s benchmark problems 

for the vehicle routing problem.  The second data set is generated using the same method 

of Savelsbergh and Sol (1998).   In all our experiments, we assume that the distance 
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between two points is the Euclidean distance.   The travel cost and travel time between 

two points are equal to the distance between these points.   All numbers are rounded to 

the nearest integers.     

 

 4.1. Solomon’s benchmark problem 

We next compare our algorithm on Solomon’s vehicle routing test problems. From 

Solomon’s benchmark problems, we studied two different categories of problems: R1 and 

C1.  We skip the R2 and C2 type problems because they are the same as R1 and C1 

respectively when the time window is not considered.  In each category, two cases are 

studied.  They are R101, R102, C101 and C102. The R-type problems have all locations 

randomly generated while the C-type problems have locations that are clustered. 

 Since Solomon’s data sets are for the VRP, we randomly paired the requests to 

form the customers.  For each data set, ten different random pairings were generated.  For 

the C-type problems, three sampling methods were tested.   They were: 

• Ensuring pickup and delivery locations of a customer were in the same cluster 

• Ensuring pickup and delivery locations of a customer were not in the same cluster 

• No restriction was made on the pairing between the pickup and delivery locations 

 The fleet size was set to five with the vehicle capacity set to 200.   The fixed cost 

of using a vehicle was set to zero to encourage multiple vehicle usage.  Note that if the 

location of the depots for all vehicles are identical and there are no time window or 

capacity constraints, there exists an optimal solution that uses only one vehicle for the 

MVPDP.  Therefore, in our experiments each vehicle has its own unique departure/return 

depot, and it was randomly selected from the data set. 
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 The following Tables 4 to 8 show the average results of the ten samples of each 

case.  In each table, the first column shows the number of customers.  The average linear 

programming bound at the root (ZLP) is shown in the second column.  The third and 

fourth columns show the average value of the optimal solution (ZOPT) and the total CPU 

time of solving the whole problem.  The average number of used vehicles is displayed in 

the fifth column.  The sixth column shows the average integrality gap: ZOPT-ZLP.   

 

Number 
of 

Customers 

Average 
ZLP

Average 
ZOPT  

CPU 
(Sec.) 

Average Used 
Vehicles 

Average 
Gap  

7 195.1 214.8 33.3 1.1 19.74 
10 268.1 289.1 258.9 1.7 21.03 
12 321.0 342.3 428.2 1.5 21.34 
15 351.3 374.1 1325.1 1.7 22.79 
17 377.3 401.5 10425.4 2.3 24.2 

 
Table 4 Results of MVPDP using Problem Set R101 
 

 
Number 

of 
Customers 

Average 
ZLP

Average 
ZOPT  

CPU 
(Sec.) 

Average Used 
Vehicles 

Average 
Gap  

7 206.57 225.2 28.7 1.1 18.63 
10 271.74 291.8 228.0 1.7 20.06 
12 319.66 340.7 395.6 1.9 21.04 
15 354.63 379.3 1384.3 2.1 24.67 
17 377.90 403.2 10583.2 2.4 25.30 

 
Table 5 Results of MVPDP using Problem Set R102 

 
 
 As expected, there is not much of a difference in the solving time between R101 

and R102 problems (Tables 4 and 5), and the number of used vehicles increases as the 
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problem size increases.   However, the average gap between the LP solution and the 

optimal integer solution doesn’t increase significantly as the problem size increases.   We 

note that we were able to find the optimal solution in all ten samples for each problem 

size listed in the table within the stopping criterion of three CPU hours.  

 Tables 6 and 7 show the results of solving Solomon’s C type benchmark problems 

when there is no restriction placed on the pairing between the pickup and delivery 

location.  Recall, for these data sets the demand locations are clustered.   

 

Number of 
Customers 

Average 
ZLP

Average 
ZOPT  

CPU 
(Sec.) 

Average Used 
Vehicles 

Average 
Gap  

7 152.66 161.0 221.2 1.3 8.34 
10 169.51 184.2 1466.0 1.9 14.69 
12 174.77 191.5 4728.3 2.6 16.73 

 
Table 6 Results of MVPDP using Problem Set C101 
 
 

 
Number of 
Customers 

Average 
ZLP

Average 
ZOPT  

CPU 
(Sec.) 

Average Used 
Vehicles 

Average 
Gap  

7 151.7 159.8 197.6 1.3 8.13 
10 170.1 183.9 1448.9 1.7 13.75 
12 175.1 192.1 4821.0 2.5 17.05 

 
Table 7 Results of MVPDP using Problem Set C102 

 

 Comparing Tables 4 and 5 with Tables 6 and 7, we find that our algorithm on 

average can solve the R-type problem faster than the same size C-type problem.  The 

average gap between the LP-relaxation and the optimal solution in the C-type problem is 

less than that for the corresponding R-type problem, which may be due to the fact that the 

optimal integer solution for the C-type problem is smaller.    
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 To further understand the relationship between the solving time and the data sets, 

we ran additional experiments in which we did not make a complete random pairing 

between the pickup and delivery locations of the same request.  In one set of experiments, 

the pickup and delivery locations for each customer are paired exclusively in the same 

cluster, and in the other set of experiments they are restricted to be in different clusters. 

The computational results are shown in the Tables 8 and 9.  

Number of 
Customers 

Average 
ZLP

Average 
ZOPT  

CPU 
(Sec.) 

Average Used 
Vehicles 

Average 
Gap  

7 78.58 79.3 1.1 1.7 0.72 
10 82.82 84.0 6.0 1.9 1.18 
12 87.34 89.2 16.8 2.7 1.86 
15 99.88 102.0 63.4 2.8 2.12 
17 138.03 140.6 245.0 3.6 2.57 
20 141.4 144.5 737.5 3.8 3.10 
22 162.19 165.6 1598.0 4.8 3.41 
25 164.84 169.4 3626.0 4.8 4.56 

 

Table 8 Results of MVPDP using Problem Set C101 When the Pickup and 

Delivery Locations for the Same Customers are in the Same Cluster 

 

Number of 
Customers 

Average 
ZLP

Average 
ZOPT  

CPU 
(Sec.) 

Average Used 
Vehicles 

Average 
Gap  

7 157.45 165.3 234.5 1.2 7.85 
10 176.16 198.5 2615.7 1.6 22.34 
12 196.57 224.5 9732.5 1.9 27.93 

 
Table 9 Results of MVPDP using Problem Set C101 When the Pickup and 

Delivery Locations for the Same Customers are in Different Clusters 
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 Comparing Tables 8 and 9, problems in which the pickup and delivery locations 

are in different clusters are harder to solve than problems in which the pickup and 

delivery locations are in the same cluster by using our algorithm.  Comparing Tables 8 

and 9 with the results in Table 6, it is clear that problems in Table 8 are the easiest 

category of problems for our formulation.  They can even be solved faster than the same 

size R-type problem.  Problems in Table 9 are the hardest set of problems to solve for our 

formulation.   Since problems in Table 6 can be viewed as random combinations of those 

in Tables 8 and 9, they can be solved faster than problems in Table 9 but slower than 

problems in Table 8. 

  
4.2. Test Problems for m-PDPHTW 

 Our formulation can be easily extended to deal with the hard time window 

problem by including constraints (17) to (20).  The purpose of this analysis is to study the 

sensitivity of the gap between the linear and integer optimal solution as the capacity and 

time window constraints are relaxed.   We note that the gap will increase when the time 

window increases regardless of the solution technique applied to the problem.  The 

purpose of this analysis is to study the sensitivity of this gap as the constraints are 

relaxed.   

 We attempted to solve the problem instances used by Dumas, Desrosiers, and 

Soumis (1991), but unfortunately they are no longer available.   Thus, we used a similar 

method to that of Savelsbergh and Sol (1998) to randomly generate test instances for the 

hard time window case.    Their method can be described as follows. 

 One hundred points are randomly generated within a 200×200 square.   All pickup 

and delivery locations are randomly selected from these 100 points.  The load for each 
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customer is randomly selected from an interval [qmin, qmax].  The capacity for each vehicle 

is set to Q.  The time window for each vehicle is [0, 600].   Let ti be the travel time from 

the pickup location i+ of customer i to the delivery location i- of customer i.  Randomly 

select a number ui from the interval [0, 600-ti], then define the time window for i+ as [ui , 

ui+60] and time window for i- as [ui+ti , ui+ti+60].   If there are n customers, the fleet will 

have n available vehicles.  The departure and return depots are the same for the same 

vehicle.   The vehicle depots are also selected from those 100 points, but on the condition 

that the number j vehicle could serve customer j within its requested time windows.  

Therefore, there exists at least one feasible solution that has each vehicle servicing only 

one customer.  Table 10 lists the problem classes with the parameters. 

 

Class |N| |M| qmin qmax Q w 
A15 15 15 5 15 15 60 
B15 15 15 5 20 20 60 
C15 15 15 5 15 15 120 
D15 15 15 5 20 20 120 
E15 15 15 5 15 ∞ ∞ 

Table 10 Problem Classes 
 

 Before solving the problem, we use the same steps as Dumas, Desrosiers, and 

Soumis (1991) to determine the admissible arcs in the hard time window and vehicle 

capacity conditions.  In Table 11 we show the computational results of solving the above 

five problem classes.  The vehicle cost was set to 10000 except for the E class problem 

because without the restrictive capacity and time windows, the optimal solution will only 

include a single vehicle if the fixed vehicle cost is set to a high number for the E class 
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problem.   ZOPT is the optimal solution and ZLP is the linear programming bound at the 

root of the branch-and-bound tree.   

 

Problem ZOPT ZLP Gap 

IP 
CPU 
Time 
(Sec.) 

 Problem ZOPT ZLP Gap 

IP 
CPU 
Time 
(Sec.) 

A15.1 61036 61036.0 0 4.3  B15.1 51216 51212.6 0.28 15.3 
A15.2 51444 51442.3 0.11 18.1  B15.2 51379 51373.6 0.39 12.7 
A15.3 41101 41032.1 6.26 11.7  B15.3 61145 61145.0 0 4.3 
A15.4 51222 51180.4 3.40 262.3  B15.4 71263 71220.8 3.34 74.5 
A15.5 61319 61316.8 0.17 13.2  B15.5 41207 41207.0 0 3.7 
A15.6 51384 51372.1 0.86 91.2  B15.6 61252 61252.0 0 3.0 
A15.7 41186 41186.0 0 2.9  B15.7 51063 51035.9 2.55 175.7 
A15.8 91152 91152.0 0 4.0  B15.8 71028 71028.0 0 5.4 
A15.9 61092 61092.0 0 3.5  B15.9 41493 41455.9 2.48 138.4 

A15.10 61264 61254.1 0.78 19.8  B15.10 91125 91125.0 0 2.3 
C15.1 50962 50937.4 2.56 436  D15.1 41024 40974.0 4.87 1050 
C15.2 31056 31040.4 1.48 279  D15.2 30948 30933.7 1.51 194 
C15.3 50984 50975.0 0.89 65  D15.3 50794 50787.3 0.84 106 
C15.4 30946 30926.9 2.01 596  D15.4 30869 30863.9 0.59 87 
C15.5 31009 30989.4 1.94 493  D15.5 50967 50957.0 1.02 71 
C15.6 40891 40874.3 1.87 480  D15.6 21019 20957.8 6.01 1878 
C15.7 50930 50905.0 2.70 1078  D15.7 40895 40881.1 1.55 409 
C15.8 41017 41002.7 1.41 103    D15.8 30914 30891.9 2.42 461 
C15.9 30887 30862.8 2.73 574  D15.9 50936 50905.6 3.25 877 

C15.10 50893 50867.4 2.87 645  D15.10 41020 41009.3 1.05 172 
E15.1 50819 50803.5 1.89 208       
E15.2 30845 30816.0 3.20 2064       
E15.3 40651 40617.5 5.15 1213       
E15.4 30848 30809.2 4.58 6142       
E15.5 30821 30819.0 0.24 22       
E15.6 20858 20801.7 6.67 17359       
E15.7 10847 10807.5 6.69 2983       
E15.8 50731 50706.3 3.38 775       
E15.9 40858 40812.0 5.36 3238       

E15.10 20681 20633.8 6.93 5243       
 

Table 11 Computational Result for Five Problem Classes 
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 We remark that in their experiments Savelsbergh and Sol (1998) do not consider 

the E class of problems since their set of experiments focused on tight time window and 

capacity constraints using a Column Generation Method to solve the problem sets.  They 

also run problem sets consisting of 30 customers as opposed to our 15 since it is 

computationally prohibitive to optimally solve the larger problem instances for the E 

class of problems.    

 Using the same definition of Savelsbergh and Sol (1998), the integrality gap is 

calculated by (ZOPT - ZLP)/( ZOPT – Total cost of using vehicles).  Table 11 shows that the 

gap of our formulation does not deteriorate significantly when the time window and 

capacity constraints are relaxed.   For example, the average gap for the five classes of 

problems are: A class 1.158; B class 0.896; C class 2.046; D class 2.311; E class 4.409.   

We note that for the problem sets with tight capacity and time window constraints 

(classes A, B, C, and D) our gap is higher than those reported by Savelsbergh and Sol 

(1998).  This result is to be expected since the Column Generation Method is a very 

effective technique to optimally solve the problem when a significant number of arcs can 

be eliminated.   Our proposed approach is primarily intended for problems from class E. 

 

5. Conclusions  

 This paper presents a new 0-1 linear programming formulation for the multiple 

vehicle pickup and delivery problem.    Our solution approach is based on a branch-and- 

cut algorithm. By using the proposed solution approach, we were able to optimally solve 

problem instances of up to 5 vehicles and 17 customers on problems without clusters and 
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up to 5 vehicles and 25 customers on problems with clusters within a stopping criterion of 

three CPU hours on a SUN Fire 4800 System. 
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Figure 1 Network for a 2-customer and 2-vehicle Case 
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Figure 2 Flow Chart of the Entire Algorithm 
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