
ISaGRAF
Version 3.4

USER'S GUIDE

CJ INTERNATIONAL

User's guide

A-2 CJ International

Information in this document is subject to change without notice and does not represent a
commitment on the part of CJ International. The software, which includes information
contained in any databases, described in this document is furnished under a license
agreement or nondisclosure agreement and may be used or copied only in accordance with
the terms of that agreement. It is against the law to copy the software except as specifically
allowed in the license or nondisclosure agreement. No part of this manual may be reproduced
in any form or by any means, electronic or mechanical, including photocopying and recording,
for any purpose without the express written permission of CJ International.

© 2000 CJ International. All rights reserved.
Printed in France by CJ International.
2 Rue Hector BERLIOZ
F-38600 FONTAINE
Phone: 33 (0)4 76 26 87 30
Fax: 33 (0)4 76 26 87 39

ISaGRAF is a registered trademark of CJ International.
MS-DOS is a registered trademark of Microsoft Corporation.
Windows is a registered trademark of Microsoft Corporation.
Windows NT is a registered trademark of Microsoft Corporation.
OS-9 and ULTRA-C are registered trademarks of Microware Corporation.
VxWorks and Tornado are registered trademarks of Wind River Systems, Inc.

All other brand or product names are trademarks or registered trademarks of their respective
holders.

User's guide

CJ International A-3

Table of contents

A. USER'S GUIDE A-11

A.1 Getting started A-12
A.1.1 Installing ISaGRAF A-12
A.1.2 Using on-line information A-14
A.1.3 A sample application A-15

A.2 Managing projects A-19
A.2.1 Creating and working with projects A-19
A.2.2 Working with several groups of projects A-21
A.2.3 Options A-21
A.2.4 Tools A-22

A.3 Managing programs A-23
A.3.1 The components of a project A-23
A.3.2 Working with programs A-25
A.3.3 Running the code generation tools A-28
A.3.4 Other ISaGRAF tools A-29
A.3.5 Adding commands to the Tools menu A-29
A.3.6 Simulating and debugging the application A-30

A.4 Using the SFC editor A-32
A.4.1 SFC language main topics A-32
A.4.2 Entering an SFC chart A-34
A.4.3 Working on an existing SFC chart A-36
A.4.4 Entering the level 2 programming A-37
A.4.5 Using the SFC gallery A-41

A.5 Using the Flow Chart editor A-42
A.5.1 Basics of the FC language A-42
A.5.2 Entering a Flow Chart A-43
A.5.3 Working on an existing chart A-46
A.5.4 Entering level 2 programs A-46
A.5.5 Programming level 2 with Quick LD A-47

User's guide

A-4 CJ International

A.5.6 Display options A-48

A.6 Using the Quick LD editor A-49
A.6.1 Basics of the LD language A-49
A.6.2 Entering an LD diagram A-51
A.6.3 Working on an existing diagram A-54
A.6.4 Display options A-55

A.7 Using the FBD/LD editor A-57
A.7.1 Basics of the FBD/LD languages A-57
A.7.2 Entering an FBD diagram A-59
A.7.3 Working on an existing diagram A-61
A.7.4 Display options A-62
A.7.5 Styles and modification tracking A-63

A.8 Using the text editor A-65
A.8.1 Editing commands A-65
A.8.2 Options A-65

A.9 More about program editors A-67
A.9.1 Calling other ISaGRAF tools A-67
A.9.2 Parameters of the program A-67
A.9.3 Other commands of the "File" menu A-68
A.9.4 Updating the program diary A-69
A.9.5 Selecting a variable from dictionary A-69
A.9.6 The output window A-70

A.10 Using the dictionary editor A-72
A.10.1 The dictionary main window A-74
A.10.2 Managing variables A-74
A.10.3 Description of objects A-76
A.10.4 Quick declaration A-77
A.10.5 Modbus SCADA addressing map A-78
A.10.6 Exchanging information with other applications A-79

A.11 Using I/O connection editor A-83
A.11.1 Defining I/O boards A-84
A.11.2 Setting board parameters A-85
A.11.3 Connecting I/O channels A-85
A.11.4 Directly represented variables A-85

User's guide

CJ International A-5

A.11.5 Numbering A-86
A.11.6 Setting individual protections A-87

A.12 Creating conversion tables A-88
A.12.1 Main commands A-88
A.12.2 Entering points of a table A-88
A.12.3 Rules and limits A-89

A.13 Using the code generator A-90
A.13.1 Main commands A-90
A.13.2 Compiler options A-91
A.13.3 Producing C source code A-93
A.13.4 Viewing information A-93
A.13.5 Defining resources A-94

A.14 Cross References A-99

A.15 Using the graphic debugger A-101
A.15.1 The debugger window A-101
A.15.2 Controlling the application A-102
A.15.3 Options A-104
A.15.4 "Write" commands A-104
A.15.5 On line modification A-106
A.15.6 DDE exchanges A-109

A.16 Spying Lists of variables A-110

A.17 Debugging ST and IL programs A-112

A.18 Debugging with SpotLight A-113
A.18.1 Building the graphic layout A-113
A.18.2 The list layout A-115
A.18.3 Defining the item style A-115
A.18.4 Commands of the "File" menu A-116
A.18.5 Note for ISaGRAF V3.2 users A-117

A.19 Uploading applications A-118
A.19.1 Uploading a project A-118
A.19.2 Communication settings A-118
A.19.3 Preparing a project for upload A-119

User's guide

A-6 CJ International

A.19.4 How zipped source is stored in the target A-119
A.19.5 Memory requirements on the target A-120
A.19.6 About uploaded project A-120
A.19.7 Compatibility issues A-120

A.20 Using the Diagnosis tool A-121

A.21 Using the ISaGRAF simulator A-122
A.21.1 Links with the debugger A-122
A.21.2 I/O simulation A-122
A.21.3 Library components A-123
A.21.4 Options A-123
A.21.5 Saving and restoring input states A-124
A.21.6 The cycle profiler A-124
A.21.7 Simulation scripts A-125

A.22 Using the Library Manager A-133
A.22.1 Managing library elements A-133
A.22.2 I/O configuration A-135
A.22.3 I/O complex equipment A-136
A.22.4 I/O board A-137
A.22.5 Functions and blocks written in IEC languages A-138
A.22.6 "C" Functions and function blocks A-140
A.22.7 Conversion functions A-140

A.23 Using the Archive utility A-141
A.23.1 Calling the archive manager A-141
A.23.2 Options A-142
A.23.3 Backup and restore A-142
A.23.4 Archive files A-142

A.24 Printing a complete document A-144
A.24.1 Customising the table of contents A-144
A.24.2 Options A-145

A.25 Password protection A-147

A.26 Advanced programming techniques A-150
A.26.1 More about ISaGRAF tools A-150
A.26.2 Locked I/Os and virtual I/Os A-150

User's guide

CJ International A-7

A.26.3 PC-PLC link validation A-153
A.26.4 ISaGRAF directories A-153
A.26.5 Application symbols A-155
A.26.6 Limits of ISaGRAF "LARGE" (WDL) workbench A-159

B. LANGUAGE REFERENCE B-163

B.1 Project architecture B-164
B.1.1 Programs B-164
B.1.2 Cyclic and sequential operations B-164
B.1.3 Child SFC and FC programs B-165
B.1.4 Functions and sub-programs B-165
B.1.5 Function blocks B-166
B.1.6 Description language B-167
B.1.7 Execution rules B-168

B.2 Common objects B-169
B.2.1 Basic types B-169
B.2.2 Constant expressions B-169
B.2.3 Variables B-171
B.2.4 Comments B-174
B.2.5 Defined words B-175

B.3 SFC language B-177
B.3.1 SFC chart main format B-177
B.3.2 SFC basic components B-177
B.3.3 Divergences and convergences B-179
B.3.4 Macro steps B-181
B.3.5 Actions within the steps B-182
B.3.6 Conditions attached to transitions B-187
B.3.7 SFC dynamic rules B-189
B.3.8 SFC program hierarchy B-190

B.4 Flow Chart language B-191
B.4.1 FC components B-191
B.4.2 FC complex structures B-194
B.4.3 FC dynamic behaviour B-195
B.4.4 FC checking B-195

B.5 FBD language B-196

User's guide

A-8 CJ International

B.5.1 FBD diagram main format B-196
B.5.2 RETURN statement B-197
B.5.3 Jumps and labels B-197
B.5.4 Boolean negation B-198
B.5.5 Calling function or function blocks from the FBD B-198

B.6 LD language B-200
B.6.1 Power rails and connection lines B-200
B.6.2 Multiple connection B-201
B.6.3 Basic LD contacts and coils B-202
B.6.4 RETURN statement B-207
B.6.5 Jumps and labels B-208
B.6.6 Blocks in LD B-209

B.7 ST language B-210
B.7.1 ST main syntax B-210
B.7.2 Expression and parentheses B-210
B.7.3 Function or function block calls B-211
B.7.4 ST specific boolean operators B-212
B.7.5 ST basic statements B-214
B.7.6 ST extensions B-219

B.8 IL language B-225
B.8.1 IL main syntax B-225
B.8.2 IL operators B-226

B.9 Standard operators, function blocks and functions B-233
B.9.1 Standard operators B-233
B.9.2 Standard function blocks B-253
B.9.3 Standard functions B-270

C. TARGET USER'S GUIDE C-311

C.1 Introduction C-312

C.2 Installation C-313

C.3 Getting started with ISaGRAF DOS target C-314
C.3.1 Running ISaGRAF: ISA.EXE C-314
C.3.2 Specific features C-315

User's guide

CJ International A-9

C.4 Getting started with ISaGRAF OS9 target C-318
C.4.1 Running the ISaGRAF single task: isa C-318
C.4.2 Running the ISaGRAF multitasks: isaker, isatst, isanet C-319
C.4.3 Specific features C-323

C.5 Getting started with ISaGRAF VxWorks target C-327
C.5.1 The system resource manager: isassr.o C-327
C.5.2 Common features to isa.o, isakerse.o and isakeret.o C-327
C.5.3 Running the ISaGRAF single task: isa.o C-328
C.5.4 Running the ISaGRAF multitasks: isakerse.o and isakeret.o C-330
C.5.5 Specific features C-334

C.6 Getting started with ISaGRAF NT target C-338
C.6.1 Running ISaGRAF C-338
C.6.2 General information on options C-338
C.6.3 Specific features C-342
C.6.4 User interface C-346

C.7 "C" programming C-352
C.7.1 Overview C-352
C.7.2 "C" Conversion functions C-353
C.7.3 "C" Functions C-358
C.7.4 "C" FUNCTION BLOCKS C-365
C.7.5 Compiling and linking techniques C-381

C.8 Modbus link C-387
C.8.1 MODBUS network and protocol C-387
C.8.2 ISaGRAF implementation C-388

C.9 Power fail management C-393
C.9.1 Basics C-393
C.9.2 Application variables backup C-394
C.9.3 Program state backup C-397

C.10 Appendix: Error list and description C-399

D. GLOSSARY D-409

E. GENERAL INDEX E-417

User's guide

A-10 CJ International

User's guide

CJ International A-11

A. User's guide

User's guide

A-12 CJ International

A.1 Getting started

This chapter covers the installation of the ISaGRAF workbench. It also includes a
short example of an ISaGRAF application, giving the user a brief outline of its main
features and enabling the immediate use of ISaGRAF.

A.1.1 Installing ISaGRAF

This chapter covers the installation of the ISaGRAF Workbench and how to set up
the computer for application development.

Hardware and software requirements
The ISaGRAF Workbench can be installed on any computer meeting the minimum
qualifications for Windows Version 3.1. However, the following hardware is
recommended for application development:

• A personal computer using an 80486 or higher microprocessor
 (Pentium processor recommended)
• 8 megabytes of conventional and extended memory
 (16 megabytes recommended)
• One 3.5-inch (1.44 megabyte) disk drive
• One hard disk with at least 20 megabytes of available space
• A graphic VGA or SVGA adapter and compatible monitor
• A mouse (required for graphic development tools)
• A parallel LPT1 port (required for protection key)

Before installing the ISaGRAF workbench, the following software should already
included on the system:

• Windows Version 3.1 running in 386 enhanced mode
• Windows 95
• Windows NT Version 3.51 or 4.00

Using the installation program
The ISaGRAF workbench is installed by using INSTALL, the ISaGRAF installation
program. This program copies the ISaGRAF software from the ISaGRAF CD-ROM
or disks onto the user's hard disk. INSTALL also adds the group "ISaGRAF" to the
Program Manager window and creates an initialisation file named "ISA.ini" in the
installed EXE sub-directory.

INSTALL is a Windows program, which must be run from the Windows Program
Manager or the Run command of the Start menu of Windows 95. To install
ISaGRAF, the following steps must be performed:

• Insert ISaGRAF CD-ROM or floppy disk #1 into the appropriate drive
• From the Program Manager or the Start menu, run "SETUP.EXE" on the root
folder of the CD-ROM, or "A:\INSTALL.EXE" in the case of floppy disks.

User's guide

CJ International A-13

• Follow the on-line instructions to complete the installation. It is recommended that
the ISaGRAF Workbench be installed on a new directory to avoid confusing files
with files from other ISaGRAF versions.

INSTALL will ask whether the following components are required:

• ISaGRAF executable programs
• On line information and help files
• ISaGRAF standard libraries
• ISaGRAF sample applications

It is highly recommended that when installing ISaGRAF for the first time all
components be included. Further components can, however, be added at a later
date by re-installing the ISaGRAF Workbench.

The default name for the ISaGRAF main directory is "\ISAWIN". This allows
ISaGRAF for Windows to be easily installed on the same disk as a version of
ISaGRAF for MS-DOS. Refer to the "ISaGRAF directories" section in the
"Advanced techniques" chapter for more about ISaGRAF disk architecture. Once all
the ISaGRAF files have been copied, the following group is added to your Program
Manager Window:

Here are the main ISaGRAF icons:

Projects: Project management
Libraries: Library management
Book: On-line information about ISaGRAF
Diagnosis: Diagnosis tool for end user
Read Me: Information about the ISaGRAF new version
Report: Standard Bug report form

In case you encounter a problem, use the standard bug report form. Open it, fill the
items requested and use the File/Save As menu command to save it with a given
file name. Then send this file to CJ International, using Fax or e-mail.

Updating system files
Once installation is complete, the CONFIG.SYS file needs to be updated before
restarting the computer. The ISaGRAF directory pathname does not have to be
inserted in the PATH variable.
ISaGRAF does not use any MS-DOS environment variable. However, the following
statements can be added to the CONFIG.SYS file:

User's guide

A-14 CJ International

files=20
buffers=20

The ISaGRAF Workbench uses a serial port to communicate with the ISaGRAF
target PLC. The default serial port for ISaGRAF is COM1. If the mouse also uses a
serial port, choose COM2 for the mouse, so the default COM1 specification will be
valid for any new ISaGRAF applications.

After updating the CONFIG.SYS file, it is necessary to restart the computer for the
changes to take effect.

⇒⇒⇒⇒ Important for Windows NT user:
When the Workbench is used under Windows NT 3.51 or 4.00, the following line
has to be inserted in [WS001] section of ISA.ini file in \ISAWIN\EXE directory:

[WS001]
NT=1
Isa=C:\ISAWIN
IsaExe=C:\ISAWIN\EXE
IsaApl=C:\ISAWIN\APL1
IsaTmp=C:\ISAWIN\TMP

This is absolutely required for RS communication.

The protection key
A hardware key protects the ISaGRAF software against illegal copies. However,
most functions of the ISaGRAF workbench are still available when the key is not
inserted. The protection key also defines the option of the ISaGRAF Workbench,
and defines the maximum size of developed applications. When the key is not
inserted or not properly connected, some of the ISaGRAF Workbench functions will
not run. This is NORMAL behaviour. To ensure that the key is properly connected,
select the "About..." choice of the "Help" menu in any ISaGRAF window. The
available option of the ISaGRAF workbench is displayed.

The key can be connected to any parallel port on the computer. If the machine has
more than one parallel port, it is preferred to connect the key and the printer to
different ports. For some PC/printer configurations, the key may not be recognised
when its output is connected to an "off-line" printer. In this case, disconnect the
printer, or start it in the "on-line" state, and restart the ISaGRAF Workbench.

Note that no key is needed for the ISaGRAF-32 Workbench.

⇒⇒⇒⇒ Important for Windows NT user:
On Windows NT systems, the Sentinel/Rainbow Driver has to be installed in order
for the protection key to be seen. A separate diskette is provided.

A.1.2 Using on-line information

On-line information is installed with the ISaGRAF workbench, for the following
topics:
• ISaGRAF languages reference

User's guide

CJ International A-15

• Complete user's guide (for any ISaGRAF tool)
• Technical note for elements in the libraries

From any ISaGRAF window, select the choices of the "Help" menu to display online
information.

A.1.3 A sample application

This chapter explains, step by step, all the basic operations required to make,
design, generate and test a short but complete multi-language application.

Below are the complete specifications of this application, mixing LD and SFC
representations:
Boolean variables:

IX0_1, IX0_2: input variables for process command
RunCmd: internal "run/stop" command
QX1_1: output variable: status of the process

Program Command: Cyclic begin section - LD language
Evaluates the internal "run/stop" command

IX0_1 IX0_2 RunCmd

Program RunStop: Sequential section - SFC language
Controls the process

1

1
TRUE;

2 (* Wait: no special action *)

2
RunCmd;

3 QX1_1;

3
NOT(RunCmd);

2

Start Running the ISaGRAF workbench
To run the ISaGRAF Workbench, run the "Projects" command, in the "ISaGRAF"
group, from the Start menu of Windows.

Creating the project
Create the project (called "RunStop") using the "New" command of the "File" menu
or the New button. In the open dialog box:

Enter project name: "RunStop"
Select I/O configuration: "Sim_Boo"

User's guide

A-16 CJ International

Press the "OK" button.
The project has now been created.

Opening the project
The programs of the project are defined by opening the ISaGRAF program
management window. Use the "Open" command of the Project management
window, or double click the mouse on the name of the project or use the Edit
button.

Creating the programs
The Program Management window is now open and empty (no programs defined).
The first program is created using the "New" command of the "File" menu or the
"New" button. In the open dialog box:

Enter the name of the program: "Command".
Select the "Quick LD" language.
Select the "Beginning of cycle" section.
Press the "OK" button to create the program.

The same operation must be repeated for the second program:
Use the "New" command of the "File" menu, or the "New" button. In the open dialog
box:

Enter the name of the program: "RunStop".
Select the "SFC" language.
Select the "Sequential" section.
Press the "OK" button to create the program.

The programs are now created. They appear in the Program Management window.

Declaring the variables
Before entering the programs, the internal variable to be used in the programming
must be declared. This is done using the command "Dictionary" of the "File" menu
or the Dictionary button. I/O variables are automatically declared when the project is
created.
The dictionary window is now opened. With the menu "File", the Sub-menu "Other",
the Sub-menu "Global variables" and then the command "Booleans", select the
"Global" boolean dictionary. Buttons Global objects and Boolean can be used for
the same effect.
The "New" command of the "Edit" menu is used to create new boolean variables.
You can also use the Insert objects button. In the open dialog box, enter the
description of the internal variable:

name: RunCmd
comment: Run/Stop command: internal
attribute: Select the "Internal" attribute
Press the "Store" button: the variable is created.
Press the "Cancel" button to exit the dialog box.

Finally, exit the dictionary editor and save the modifications entered: Menu "File" -
Command "Exit". Click on "YES" to save modifications.

Editing the Quick LD program

User's guide

CJ International A-17

To start editing the "Command" LD program, double click on its name in the
Program Management window or use the Edit button.
The ISaGRAF Quick LD Editor window is now open. To increase the working area,
resize the window to use the full screen size.

F2 F3 Press F2 and F3 key:
(* *)

Associate variables to the LD symbols: move the cursor using the keyboard arrows.
Place the cursor on each symbol and press Enter key. The variable section dialog
box is opened.
For the first contact, type in the variable selection box: IX0_1 then Enter.
For the second contact, type in the variable selection box: IX0_2 then Enter.
For the coil, type in the variable selection box: RunCmd then Enter.

The program is now complete. Here is the result:
IX0_1 IX0_2 RunCmd

Exit from the editor, and save the modifications entered: Menu "File" - Command
"Exit". Click on "YES" to save modifications.

Editing the SFC program
To start editing the "RunStop" SFC program, double click on its name in the
Program Management window or use the Edit button.
The SFC Editor window is now open. To increase the working area, resize the
window to use the full screen size:

The initial step already exists and is selected. Press the "Down" keyboard arrow to
select the empty cell after the initial step (0,1)

F4 F3 Press F4 then F3 to insert a step and a transition.
F4 F3 Press F4 then F3 to insert one more step and transition.
F5 Press F5 to insert a jump to a step and select GS2 as the destination of the jump.

The chart is now complete. Press the "Zoom" button in the toolbar to increase size
of cells and give space to display level 2 instructions. Here is the chart:

1

1
2

2
3

3

2

User's guide

A-18 CJ International

To enter the programming of transition "2", select it using the keyboard arrows and
press "Enter" key. The Level 2 programming window is open. Enter level 2
programming for transition 2:

RunCmd;
^TAB Press "Control + Tab" keys to move focus back to the SFC chart, move selection on

step 3, and press "Enter" key to edit its level 2 text:
QX1_1;

And do the same to enter text of transition 3:
Not (RunCmd);

^F4 Press "Control + F4" keys to close the level 2 window.
The SFC program is now complete. Exit from the editor with Menu "File" and
Command "Exit", and save the modifications entered clicking on "YES".

Building the application code
Use the "Make" menu and command "Make Application" from the Program
Management window to build the application code or the button in the Toolbar.

When the code generation is complete, a dialog box appears, which asks you to exit
the code generation now or to continue working with it: Press the button "Exit".

Simulation
Use the "Debug" menu and command "Simulate" from the Program Management
window to run the ISaGRAF kernel simulator or the button in the Toolbar.

When the Simulator window appears, the application can be tested. In this example,
both inputs 1 and 2 (green buttons) must be pressed to run the process (output red
LED lights).

Close the Debugger window to exit from simulation: Menu "File" - Command "Exit".

User's guide

CJ International A-19

A.2 Managing projects

To run the ISaGRAF project management tool, double click the mouse on the
"Projects" icon, in the ISaGRAF group. The "Project Management" window is then
opened. A project corresponds to one PLC loop run on a target PLC. The upper
window contains the list of the existing projects. The text descriptor of the selected
project is displayed in the lower window.

Resizing windows
Just click on the separator (splitter) between project list and descriptor to resize
corresponding windows. The descriptor window cannot be completely hidden. It
always contains at least one line of text.

Inserting separators
A separator line can be inserted before any project name. This allows grouping
some projects attached to the same application in the list layout. Use the "Edit /
Toggle separator" command to insert or delete a separator before the selected
project.

 Moving projects in the list
To move a project in the list, you first have to select (highlight) it. Then click on its
name and drag it to a new location in the list. When dragging the project, a small
arrow on the left margin indicates where it will be placed. You can also use the
"Move" commands of the "Edit" menu to move the selected project line by line.
Note that if a separator is placed before the selected project, it is moved with the
project.

A.2.1 Creating and working with projects

The commands of the project manager menu are used to create new projects, edit
them and manage existing projects.

Creating a new project
To create a new project, first enter its name. An empty project is then created, with
no object in it. An I/O configuration can be attached to the new created project. This
I/O configuration must be defined in library. If a configuration is chosen, ISaGRAF
will automatically set-up the I/O connection and declare the corresponding I/O
variables in the new project dictionary. When creating or renaming a project, you
have to conform the following naming rules:
• name cannot exceed 8 characters
• the first character must be a letter
• the following characters can be letters, digits or underscore character
• the project's name is case insensitive
When a project is created, use the "Edit / Set comment text" command to enter
the text to be displayed with the project name in the list.

User's guide

A-20 CJ International

Editing the project descriptor
The "Project / Project descriptor" command is used to edit the project text
descriptor. This document fully identifies the project from the others on the project
list. The project descriptor can also be used to record any remarks during the
project lifetime.

Editing project
The "File / Open" command opens the Program Management window for the
selected project. From this window, all the contents (programs, application
parameters...) of the project, can be managed. It is also possible to double click on
a project name, to edit it.

The history of modifications
"The ISaGRAF system stores any modification relative to a component of a project
in a history file. Each modification is identified in the history by a title, a date and a
time. The history file contains the last 500 modifications. There is one history file for
each project. The history of modifications for the project is the complement of the
"diary" files attached to the programs of the project. The "Project / History"
command allows the user to view or print the history of modifications for the
selected project. The user can select one or more items in the main list, and press
the following buttons:
OK...................... closes this window
Print sends the contents of the list to the printer
Help.................... displays help about this dialog box
[erase] Selected . removes (deletes) the selected lines from the list
[erase] All clears the complete list
Find.................... finds a pattern in the list

The input box above the "Find" button is used to enter a search pattern. This
function is case insensitive. When the search reaches the bottom of the list, it
continues from the top of the list to the starting position.

Printing a complete document
The "Project / Print" command allows the user to build and print a complete
document about the selected project. This document can group any component
(program, variable, parameters...) of the selected project. To build a specific (non-
complete) document, the user only has to define its table of contents.

Password protection
The "Project / Set password" command enables the user to define password
protection for tools and data of the selected project. Refer to the "Password
protection" section, at the end of the first part in this manual for further information
about password levels and data protection. Passwords are only relative to the
selected project. They have no influence on other projects and ISaGRAF libraries.

User's guide

CJ International A-21

A.2.2 Working with several groups of projects

An ISaGRAF project corresponds to one directory on the disk, where all the project
files are store. A "Project Group" corresponds to a list of project directories grouped
together under the same root directory. A project group is identified by a name. As
default, ISaGRAF creates two project groups:

"Default" on "\ISAWIN\APL": your working area
"Samples".......... on "\ISAWIN\SMP": sample applications delivered with ISaGRAF

workbench

The name of the currently selected project group is written in the toolbar, close to
the button used to select a project group:

You can also run the "File / Select project group" to select an existing group or
create a new one. The following dialog box is open:

Select a group in the list and press "Select" to activate it in the project management
list. You can also double click on its name to select it. Use the "New group"
command to create a new group. This command can be used either to assign a
group name to an existing directory, or to create a new group with a new directory.

Note: No group can be selected or created when other ISaGRAF windows (program
manager, editors...) are open.

A.2.3 Options

The commands of the "Options" menu are used to display or hide the toolbar,
select the character font for text, and set the Project Manager "auto close" mode.
The character font selected is the one used to display the project descriptor, and is
also used by all ISaGRAF text editors.

When the "Keep Project Manager open" option is removed, the Project Manager
window is automatically closed when a project is entered.

User's guide

A-22 CJ International

A.2.4 Tools

The commands of the "Tools" menu are used to run other ISaGRAF applications.
The "Tools / Archive Projects" command runs the ISaGRAF archive manager to
save or restore projects. The "Tools / Archive Common data" command is used to
save or restore files used by all projects (such as common defined words).

The "Tools / Libraries" command runs the ISaGRAF library manager in a separate
window.

The "Tools / Import IL program" can be used to import a project described as a
single IL program in a text file, according to PLC Open file exchange format.

User's guide

CJ International A-23

A.3 Managing programs

The Program Management window shows the programs (also called modules or
programming units) of the application and groups into its menus the available
commands, to create the project architecture, run editors, compiler and debugger.
This window is the workbench kernel during the development of an application. The
Program Management window opens when running the "Open" command in the
Project Management window.

A.3.1 The components of a project

The components of a project are called programs. A program is a logical entity that
describes one part of the control execution. Global variables (such as I/O variables)
can be used by any program in the application. Local variables may be used by only
one program. Programs are listed in a hierarchy tree, divided into different logical
sections. The window shows the programs and the links between them. The "Top
level" programs appear on the left side of the hierarchy tree.

Top level programs
The top-level programs appear on the left side of the hierarchy tree. Top level
programs of the three first sections are always active, and are executed in the
following order, during the run time cycle (scan):
• (Read inputs)
• Execute the top level programs of the BEGIN section
• Execute the top level programs of the SEQUENTIAL section
• Execute the top level programs of the END section
• (Refresh outputs)

The programs of the "Begin" or "End" sections describe cyclic operations. They are
not dependent on Time. The programs of the "Sequential" section describe
sequential operations, where the Time variable explicitly appears to distinguish
basic operations. The main programs of the "Begin" section are systematically
executed at the beginning of each run time cycle. The main programs of the "End"
section are systematically executed at the end of each run time cycle. The main
programs of the "Sequential" section are executed on the basis of the SFC or FC
rules and must be written in SFC or FC language. The programs of the cyclic
sections cannot be described in the SFC or FC language. Any program of any
section may own one or more sub-programs.

Functions and function blocks
The programs of the "Functions" section can be called by any program of any
section in the project. A function is an algorithm that processes one output value
from several input values. A function algorithm only works with volatile intermediate
variables, erased from one call to the other. This implies that a function should
never call a function block. A program of the "Functions" section cannot be
described in the SFC or FC language.

User's guide

A-24 CJ International

Unlike functions, "Function blocks" associate an algorithm working on input values
with hidden static data, which are copied (instanced) by the system on each
different use of the function block. The programs of the "Function Blocks" section
can be called by any program of any section in the project. They cannot be
programmed in SFC or FC language.

Sub-programs
Sub-programs are functions dedicated to one (SFC, FC or other) father program. A
sub-program can be executed (called) by its parent program only. Each program of
each section may have one or more sub-programs. Any language apart from SFC
and FC can be used to describe a sub-program.

Child SFC and FC programs
A child SFC program is a parallel program that can be started or killed by its
parent program. The parent program and child program must both be described in
SFC language.
When a parent program starts a child SFC program, it puts a SFC token into each
initial step of the child program. When a parent program kills a child SFC program,
it clears all the tokens existing in the steps of the child.
Any FC program of the sequential section may control other FC sub-programs. An
FC father program is blocked (waits) during execution of an FC sub-program. It is
not possible that simultaneous operations are done in father FC program and one of
its FC sub-programs.

Links between programs and sub-programs:
Sub-programs and child programs are linked to their parent program by a line in the
hierarchy tree. An arrow ends a link between an SFC program and an SFC child
program. Note that such a link represents parallel operations.

Programming languages
Each program is described in only one language. This language, selected when the
program is created, cannot be changed afterwards. However, FBD diagrams may
include parts in LD, and LD diagrams may include function block calls. Available
graphic languages are SFC (Sequential Function Chart), FC (Flow Chart) FBD
(Functional Block Diagram) and LD (Ladder Diagram). Available literal languages
are ST (Structured Text) and IL (Instruction List). SFC and FC languages are
reserved for main and child programs of the sequential section. The language of
each program is shown as an icon beside the program name in the Program
Management window. Below are the icons used to represent the languages:

 SFC Sequential Function Chart
 FC Flow Chart
 FBD Functional Block Diagram
 LD............... Ladder Diagram (entered with Quick LD editor)
 ST............... Structured Text
 IL Instruction List

User's guide

CJ International A-25

A.3.2 Working with programs

The "File" menu groups all the commands used to create, update or modify
programs. It also launches appropriate editors to enter the contents of application
programs.

Creating a new program
The "New" function of the "File" menu allows the creation of top level, child or sub-
programs into each program section. The first piece of information to be entered is
the name of the new program according to the following naming rules:
• the maximum length of a name is 8 characters
• the first character must be a letter
• the following characters must be letters, digits or '_' character
• the naming of a program is case insensitive

Next, select the editing language chosen to describe the new program:

SFC.................... Sequential Function Chart
FC Flow Chart
FBD.................... Functional Block Diagram (may include parts in LD)
LD Ladder Diagram entered with Quick LD editor
ST Structured Text
IL........................ Instruction List

Finally, select an execution style for the program:

Begin.................. top level of the "Begin" section
Sequential top level of the "Sequential" section
End top level of the "End" section
Function in the "Functions" section
Function block in the "Function Blocks" section
Child of............... SFC or FC child or sub-program of an existing program

By selecting one of the first five choices, the program is put at the top level of a
Begin, End, Sequential, Functions or Function Blocks section. The selection of
the latter indicates that the new program is an SFC child program or an FC sub-
program or a sub-program. Remember that a top-level sequential program must be
described in the SFC or FC language, and that the SFC and FC languages cannot
be used for cyclic programs and their sub-programs.

Entering comments for each program
ISaGRAF allows you to attach a description text to each program of the project.
This comment text is displayed with smaller character font beside the name of the
program. Use the "File / Program comment text" command to enter or change the
comment attached to the selected program.

Editing the contents of a program
This command allows the modification of a program's contents. The editor used to
enter a program depends on the language chosen for that program. Program editing

User's guide

A-26 CJ International

is carried out in individual windows, so that it is possible to edit more than one
program through parallel windows. Pressing the ENTER key allows the editing of
the highlighted program. The user can also double click with the mouse on the
name of the program to edit it.

Editing the "diary" file
A diary file is attached to each program. This is a text file, which contains all the
notes about the modifications made to the program during its lifetime. The diary file
can be edited, freely modified or printed at any time. When leaving the editor used
to modify the source code of a program, a window is automatically opened to enter
notes for the diary list. Such notes are inserted with the correct date and time into
the diary file.

The dictionary of variables
The "File / Dictionary" command runs the dictionary editor, where are declared the
variables of the project. Variables may be global (known by any program in the
project) or local to the selected program. The dictionary editor may also be used to
declare defined words, which are semantic aliases, used to replace a name or an
expression in the source code of a program.

Parameters of a function, sub-program or function block
The "File / Parameters" command allows the user to define the call and return
parameters of the selected sub-program, function or function block. This command
has no effect if a main program of the "Begin" or "End" section, or an SFC program
is selected in the Program Management window.
Sub-programs, functions or function blocks may have up to 32 parameters (input or
output). A function or sub-program always has one (and only one) return parameter,
which must have the same name as the function, in order to conform to ST
language writing conventions.

The list in the upper left side of the window shows the parameters, in the order of
the calling model: first the calling parameters, last the return parameters. The lower
part of the window shows the detailed description of the parameter currently
selected in the list. Any of the ISaGRAF data types may be used for a parameter.
The return parameters must be located after calling parameters in the list. Naming
parameters must conform to the following rules:
• the length of the name cannot exceed 16 characters
• the first character must be a letter
• the following characters must be letters, digits or underscore character
• naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the
return parameters are put at the end of the list.

Moving a program in the hierarchy tree
The "Rename/move" command of the "File" menu is used to change the name of a
program, or to move it into another section of the hierarchy tree. However the

User's guide

CJ International A-27

description language of an existing program cannot be changed. When running this
command, the same window as the one used for creating programs is opened, and
all fields are set up with the attributes of the selected program. The name of a
program can be modified, and another section or parent program selected to move
it into the hierarchy tree.

The "Arrange programs" command of the "File" menu is used to give an explicit
order between a list of programs with same level and father. If the selected program
is at the top level, the command is used to arrange the top-level programs of the
selected section. If the selected program is at a lower level, the command arranges
only the SFC children and sub-programs which have the same father as the
selected one. When the "Arrange programs" dialog box is opened, select the
program you want to move, and press the "Up" or "Down" button to move it in the
list.

Copying programs
To make a copy of a program, select the source program from the list of programs,
and run the "File / Copy" command. When running this command, the same
window as that used for creating programs is opened, with all fields set up with the
attributes of the selected program. Enter the name of the destination program and
its location in the sections of the hierarchy tree. If the destination program does not
exist, it is created at the specified location. If the destination program already exists,
it is overwritten. All the local declarations and defined words are copied with the
program. The description language of the destination program must be the same as
the one used for the source program. Press the "OK" button to copy the program.

The "Copy to other project" command of the "File" menu copies the selected
program into another project, with the same name. The child SFC programs and
sub-programs of the selected program can be copied with it. The names of the
selected program and its children must not be used in the target project. Programs
cannot be overwritten by this command. All the attached local declarations and
defined words are copied with the programs.

Deleting programs
To delete a program, first select it from the list of programs, and then run the "File /
Delete" command. A program owning child or sub-programs cannot be deleted. In
order to delete a program with child or sub-programs, the child or sub-programs
must be deleted first. All the local declarations and defined words are deleted with
the program.

Importing function or function block from library
The "Tools / Import from library" command is used to copy a function or a
function block written in IEC language described in the library to the "Functions" or
"Function blocks" section of the open project. Local variables and defined words
attached to the imported function are copied with it. When a function has been
correctly imported from the library, it can be placed in another section or another
location in the hierarchy tree, using the "File / Rename/Move" command. In order
to avoid naming clashes, the imported function or function block must be renamed
when imported in the project area. Don't forget to rename also the return parameter
in the case of a function.

User's guide

A-28 CJ International

Exporting function or function block to library
The "Tools / Export to library" command is used to send a program of the
"Functions" or "Function blocks" section (in the open project) to the appropriate
library. Local variables and defined words attached to the exported function or block
are copied with it. The exported function or block will have to be re-compiled
(verified) from the ISaGRAF Library Manager, to ensure that it can be used in a
library environment. Functions and function blocks of the library cannot use global
variables.

A.3.3 Running the code generation tools

The commands of the "Make" menu are used to run the code generator, and to
enter options and additional data used when producing the application code. Refer
to the chapter "Using the code generator" in this document for further information
about these tools.

Make the application code
The "Make" command starts the project code generation. The options for target
code generation must be set correctly before running this command. Before
generating the target code, any program that is still not verified is checked to detect
the syntax errors. ISaGRAF includes an incremental compiler, which does not re-
compile programs, which have already been compiled.

Verify the selected program
The "Verify" command allows the user to verify the syntax of the program currently
selected in the list. When a program is verified, with no error detected, it is not re-
verified during the code generation until its contents or dependent defined words or
variables change.

Simulating a modification
The "Touch" command simulates a modification of each program so that all of them
will be compiled again during the next code generation.

Application run-time options
This command opens a dialog box where are entered the main run-time parameters
for the execution of the application. This includes the cycle timing programming, run
time error management, the starting mode and the hardware implementation of
retained variables. Refer to the chapter "Using the Code Generator" in this
document for more explanations about this command.

Compiler options
This command is used to set-up the options used by the ISaGRAF Code Generator
to produce and optimise target code. Refer to the chapter "Using the Code
Generator" in this document for more explanations about this command.

Defining resources

User's guide

CJ International A-29

A "resource" is a user defined data (for example a file) which has to be merged
with the target code so it can be downloaded with it. Refer to the section "Using the
Code Generator" in this document for more explanations about the format of the
resource definition file.

A.3.4 Other ISaGRAF tools

The "Project" menu groups the commands that run ISaGRAF tools for the selected
project. Refer to the corresponding chapters in this document for more information
about these tools.

Wiring I/O variables
The "IO connection" command runs the ISaGRAF I/O variable connection editor.
This tool is used to establish the relationship between I/O variables declared in the
project dictionary and corresponding I/O hardware.

Running the cross reference editor
The "Cross references" command allows the user to calculate, to view or to print
the cross references of the project. The cross-references show the user all the
occurrences of each variable in the source code of the programs, in the entire
project. This function is very useful to detect an access to a variable or any global
resource, or to list all the occurrences of a global variable in the source code.

Entering the project descriptor
The "Project descriptor" command is used to edit the project text descriptor. This
document fully identifies the project from the others on the project list. The project
descriptor can also be used to record any remarks during the project lifetime. The
project descriptor is the one displayed in the Project Manager window.

Printing a complete document
The "Print project document" command allows the user to build and print a
complete document about the selected project. This document can group any
component (program, variable, parameters...) of the selected project. To build a
specific (non-complete) document, the user only has to define its table of contents.

History of modifications
This command opens a dialog box where is displayed the history of modifications
for the project. Refer to the chapter "Managing projects" in this document for more
explanations about this command.

A.3.5 Adding commands to the Tools menu

ISaGRAF provides the way to insert other commands in the "Tools" menu. User
defined commands to be added are described in "\ISAWIN\COM\ISA.MNU" text file.
You can add up to 10 commands. Comments may be inserted on any line,
beginning with ";" character. Each command is described on two lines of text,
according to the following syntax:

User's guide

A-30 CJ International

M=menu_string
C=command_line

The menu string is the text to be displayed in the "Tools" menu. The command line
is any MS-DOS or Windows executable, and can be completed with arguments. In
command line, you can use "%A" characters to replace the name of the open
project, and "%P" characters to replace the name of the selected program. The
following example runs "Notepad" to edit the selected program (to be used with ST
and IL programs):

M=Edit with Notepad
C=Notepad.exe \isawin\apl\%A\%P.lsf

A.3.6 Simulating and debugging the application

The command of the "Debug" menu are used to run the ISaGRAF graphic
debugger, either in simulation mode or in real connected mode.

Simulation
The "Simulate" command opens the debugger in simulation mode. In this mode,
another window appears, called the simulator. This command is very useful to test
any application when the target machine is unavailable. Starting the simulator
closes the Program Management window. The Program Management window is
then re-opened in debug mode after both debugger and simulation windows are
opened. The simulator cannot be started if the target code has not been generated.
The simulator cannot be started when child windows (editors, code generation, I/O
connection...) are opened. Each of them must be closed before running this
command. This command is also available from menus of ISaGRAF editors.

Real debugging
The "Debug" command opens the debugger main window, and closes the Program
Management window. The Program Management window is then re-opened in
debug mode as soon as communication is established between the debugger and
the target application. The debugger cannot be started if the target code has not
been generated. The debugger cannot be started when child windows (editors, code
generation, I/O connection...) are opened. Each of them must be closed before
running this command. This command is also available from menus of ISaGRAF
editors.

Preparing the debug workspace
The "Debug / Workspace" command enables you to define a list of documents for
initial workspace. Such documents can be programs, SpotLight graphics, and lists
of variables. Graphics and lists of time diagrams from previous ISaGRAF versions
are also listed with project documents. Documents defined in the initial workspace
are automatically opened when simulation or On Line monitoring is launched.

User's guide

CJ International A-31

The dialog box shows the existing documents of the project on the left, and
documents selected for the initial workspace on the right. Use ">>" and "<<" push
buttons to move documents from one list to the other. Each project has its own list
of documents for initial workspace.

Link set-up
The "Link set-up" command It enables the user to define the parameters of the link
used for communication between the debugger on the host PC and the target
ISaGRAF system.
The "Slave number" identifies the target ISaGRAF system or task. It can be from 1
to 255. Refer to the target supplier manual for the slave number of the target
system used.
The "Communication port" identifies the hardware media between ISaGRAF
workbench and target. It can be either the name of a serial port, or "Ethernet",
reserved TCP-IP communication using the "Winsock" Version 1.1.
The "Time out" is the time left to the target system for its communication
operations between the end of a debugger question and the beginning of its
response. This time is set as a number in milliseconds. The "Retries" field is the
number of automatic trials the debugger executes for a communication operation
before detecting a communication error.

Serial link set-up
When a serial port (COM1..4) is selected, the "Set-up" button is used to access to
other serial link communication parameters.
The transmission baud rate, parity and format may be selected. When the
"hardware" choice is selected for "Flow Control", the ISaGRAF Workbench
controls the CTS and DSR lines to enable hardware handshaking during
exchanges.

Ethernet link set-up
When "Ethernet" is selected as a communication port, the "Set-up" button is used
to enter the "Internet Address" and "Internet port" number, for TCP-IP
communication.
These fields use the standard formats defined by the Socket interface. The
Workbench uses the WINSOCK.DLL Version 1.1 library for TCP-IP
communications. This file must be correctly installed on the hard disk. "1100" is the
default port number used if not specified when running the ISaGRAF target.

User's guide

A-32 CJ International

A.4 Using the SFC editor

The SFC language is used to describe operations of a sequential process. It uses a
simple graphic representation for the different steps of a process, and conditions
that enable the change of active steps. An SFC program is entered by using the
ISaGRAF graphic SFC editor. SFC is the core of the IEC 1131-3 standard. The
other languages usually describe the actions within the steps and the logical
conditions for the transitions. The ISaGRAF graphic SFC editor allows the user to
enter complete SFC programs. It combines graphic and text editing capabilities,
thus allowing the entry of both the SFC chart, and the corresponding actions and
conditions.

A.4.1 SFC language main topics

The SFC language is used to represent sequential processes. It divides the process
cycle into a number of well-defined successive steps (self-contained situations),
separated by transitions. Refer to the ISaGRAF Languages Reference Manual for
more details on the SFC language.
SFC components are joined by oriented lines. The default orientation of a line is
up to down. These are the basic graphic components used to build an SFC chart:

...................... Initial step

...................... Step

...................... Transition

...................... Jump to a step

...................... Macro step

...................... Macro beginning step

...................... Macro ending step

The SFC programming is usually separated into two different levels: The Level 1
shows the graphic chart, reference numbers of the steps and the transitions, and
comments attached to the steps and the transitions. The Level 2 is the ST or IL
programming of the actions within the steps, or the conditions attached to the
transitions. Actions or conditions may refer to sub-programs written in other
languages (FBD, LD, ST or IL). Below is an example of level 1 and level 2
programming:

User's guide

CJ International A-33

10 Start mixing

Mixing done
11

10 Start mixing

Mixing done
11 MixLevel > 100;

Action (P):
MixLevel := 10;
End_action;

Level 1: Level 2:

The level 2 programming of a step is entered in a text editor. It can include action
blocks programmed in ST or IL. The level 2 programming of a transition can be
entered either in IL or ST text languages, or with Quick LD editor.

Divergences and convergences
Divergences and convergences are used to represent multiple links between steps
and transitions. Simple divergences or convergences represent different inclusive
possibilities between different sub parts of the process.

Single divergence (OR)
Warning: following transitions are not
implicitely exclusive

Single convergence (OR)

Double divergences represent parallel processes.

Double divergence (AND)

Double convergence (AND)

These are parallel
processes

Jump to a step

User's guide

A-34 CJ International

The SFC editor only allows the user to draw links in the up to down direction. A
jump to a step can be used to represent a link to an upper part of the chart.
Following charts are equivalent:

1

2

3

4

5

1

2

3

4

5

1

66

Jump to a transition is forbidden, and must be explicitly represented as a double
(AND) convergence.

Macro steps
A macro step is a unique representation of a stand-alone group of steps and
transitions. A macro step begins with a beginning step and terminates with an
ending step.

The detailed representation of a macro step must be described in the same SFC
program. The macro-step symbol must have the same reference number as the
macro beginning step. A macro step description may contain another macro step.

A.4.2 Entering an SFC chart

To draw an SFC chart, the user simply has to introduce the significant components
of the chart. All the single lines joining two elements (horizontally or vertically) are
drawn automatically by the SFC editor. To place an SFC component on the chart,
the user has to move the selection to appropriate location and select the type of the
component in the editor toolbar. The symbol is inserted at the current position. The
following keyboard sequences can also be used:

User's guide

CJ International A-35

................. Insert an initial step

................. Insert a single step

................. Insert a transition

................. Insert a jump to a step
 Insert an OR divergence or convergence / Add branches
 Insert an AND divergence or convergence / Add branches
................. Insert a macro step
 Insert begin or end step for the body of a macro step

(The " " symbol indicates a combination with SHIFT key)

The editing grid shows matrix cells. An editor option allows the user to show or
hide the grid during chart input. The grid is very useful for initial layout of SFC chart,
or selecting sub-parts of the chart. Use the "Options / Layout" command to display
or hide the grid.
The ISaGRAF SFC editor always shows the current position in the matrix. The
focused cell is marked in grey. The small square on its bottom right corner can be
used to freely resize the cells. The X/Y ratio of the cells can also be changed this
way.

Creating a divergence or convergence
Divergences and convergences are always drawn from the left to the right. To
draw a divergence or a convergence, its left branches has to be placed on the
chart area. The type of drawing (simple or double) is set by selecting one of these
buttons in the toolbar.

 Insert an OR divergence or convergence / Add branches
 Insert an AND divergence or convergence / Add branches

Adding branches to divergences
The start and stop position of each auxiliary branch is placed on the divergence
or convergence line using these buttons in the toolbar. The left corner of the
divergence or convergence must be present before inserting new branches. The
right corners have the same style (simple or double) as the main left corner. Right
corners cannot be placed if the main left corner has not been added.

 Insert an OR divergence or convergence / Add branches
 Insert an AND divergence or convergence / Add branches

User's guide

A-36 CJ International

Inserting a macro step
This button is used to insert a macro step in the main chart. The body of the macro
step must be entered elsewhere in the same SFC program.

 Body of a macro step
Macro steps must be described in the same SFC program as the main chart. A
macro step must start with a beginning step and stop with an ending step. The
sub-chart described as the macro implementation must be self-contained. The
macro beginning step must have the same reference as the macro-step symbol of
the main branch.

A.4.3 Working on an existing SFC chart

You can use either the mouse or keyboards arrows to select a rectangle area in the
chart. The whole selected area is marked in grey. The commands of the "Edit"
menu can then used:

 Cut / copy / delete / paste commands
The following commands are available from the "Edit" menu when the "arrow"
button is selected in the editor toolbar:
Cut Move selected rectangle from the screen to the SFC clipboard
Copy................... Copy selected rectangle from the screen to the SFC clipboard
Delete................. Clear (delete) selected rectangle
Paste.................. Insert contents SFC clipboard at the current position

The "Edit / Paste" copies SFC clipboard to the screen. Copy / Paste commands
work on both SFC chart and step/transition level 2 programming. It is also possible
to copy a chart in a program and paste it in another SFC program. Elements are
inserted before the currently selected position.

Move elements
When SFC elements are selected in the SFC chart, you can move them to another
location of the chart by dragging the selection with the mouse. While you drag the
selection, the initial location of selected elements is hatched.

The destination area for moved elements must be empty. No insertion is possible
while moving SFC symbols.

User's guide

CJ International A-37

Renumbering steps and transitions
Each step or transition is identified by a logical number in the SFC chart. The "Edit /
Renumber" command allows the user to automatically set up numerically
sequential reference numbers for any of the steps and the transitions of the
currently edited SFC program. When a step number is changed, all the jumps to
this step are automatically updated with the new reference number. (This also
applies to macro steps and beginning steps)

Direct access to a step or transition
The "Edit / Go to" command allows the user to access an existing step or
transition. The scrolling position is automatically adapted so that the step or
transition is visible.

Find and replace texts
The "Edit / Find Replace" command can be used to find or replace text strings in
the complete program (all steps and transitions). The Find/Replace dialog box is
used to enter a searched text and directly open the level 2 programming section
where text occurs.

A.4.4 Entering the level 2 programming

To enter the Level 2 text, the user must double click on the step or transition
symbol. The level 2 programming is displayed on the right of the SFC window. The
separation line between SFC chart and level 2 programming can be freely moved.

You can open one or two level 2 areas at the same time. The following commands
are available from keyboard, mouse or the "Edit" menu:

Keyboard Mouse "Edit" menu
Open in last default window Enter Double Click Edit level 2
Open in separate window Ctrl+Enter Ctrl + DoubleClick Edit Level 2

in separate
window

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2
window.

The default language for Level 2 programming is ST (Structured Text). For
transitions, level 2 programming can also be entered with Quick LD editor. Use the
"ST/LD" button in level 2 title bar to change the active language. This command is
valid only if the level 2 programming window is empty.

User's guide

A-38 CJ International

A single line edit box appears at the top of the level 2 window. It is used to enter a
short description text. This text will be displayed as an IEC comment in drawing of
SFC symbols. It is very useful as it is used by other commands such as "Go To..."
and also in the SFC printout to document SFC steps and transitions.

The "Options / Refresh" command can be used at any time when level 2 windows
are open to refresh the main SFC chart with modified level 2 programs.

Inserting a variable name
When programming in text language, press this button to select a variable declared
in the project dictionary and insert its name at the current position of the caret.
When programming in Quick LD, press this button to select the variable to be
attached to the selected contact or block I/O parameter.

Inserting a Pulse action block in step
When programming the level 2 of a step, press this button to insert the template of
a Pulse action block at the current position of the caret. Below is the format of a
Pulse action block:

Action (P) :
ST statement;
...

End_Action;

Pulse actions are instructions, which are executed only once when the step
becomes active. Refer to the ISaGRAF language reference for further details on
SFC programming.

Inserting a Non stored action block in step
When programming the level 2 of a step, press this button to insert the template of
a Non stored action block at the current position of the caret. Below is the format of
a Non stored action block:

Action (N) :
ST statement;
...

End_Action;

User's guide

CJ International A-39

Non stored actions are instructions which are executed on every PLC cycle when
the step is active. Refer to the ISaGRAF language reference for further details on
SFC programming.

 New P0 and P1 action qualifiers
ISaGRAF supports new P0 and P1 action qualifiers. When programming the level 2
of a step, press these buttons to insert the template of a P0 or P1 action block at
the current position of the caret. Below is the format of such blocks:

Action (P0) : Action (P1) :
ST statement; ST statement;
... ...

End_Action; End_Action;

P1 actions are instructions which are executed only once when the step becomes
active (same as Pulse). P0 actions are instructions, which are executed only once
when the step becomes inactive. Refer to the ISaGRAF language reference for
further details on SFC programming.

Boolean actions
Other text semantics are available to directly act on a boolean variable according to
the step activity. Such actions consist of attaching the step activity signal to an
internal or output boolean variable. This is the syntax of the basic boolean actions:

<boolean_variable> (N); assigns the step activity signal to the variable
<boolean_variable>; same effect (N attribute is optional)
/ <boolean_variable>; assigns the negation of the step activity signal

to the variable

Other features are available to set or reset a boolean variable, when the step
becomes active. This is the syntax of set and reset boolean actions:

<boolean_variable> (S); sets the variable to TRUE when the step
activity signal becomes TRUE

<boolean_variable> (R); resets the variable to FALSE when the step
activity signal becomes TRUE

SFC actions
Other text semantics are available to control the execution of a child SFC program.
An SFC action is a child SFC sequence, started or killed according to the condition
of the step activity signal. An SFC action can have the N (Non stored), S (Set), or R
(Reset) qualifier. This is the syntax of the basic SFC actions:

<child_program> (N); starts the child sequence when the step
becomes active, and kills the child sequence
when the step becomes inactive

<child_program>; same effect as the preceding syntax (N
attribute is optional)

User's guide

A-40 CJ International

<child_program> (S); starts the child sequence when the step
becomes active - nothing is done when the
step becomes inactive

<child_program> (R); kills the child sequence when the step
becomes active - nothing is done when the
step becomes inactive

The SFC sequence specified as an action must be an existing child SFC program
of the currently edited program, created with the ISaGRAF program manager.

Transitions written in ST
The level 2 of a transition is a boolean expression. To program it in ST language,
just enter the boolean condition according to the ST syntax. Optionally, a semicolon
may be added at the end of the expression.

Transitions written in Quick Ladder
Quick LD editor is available to program the level 2 condition of a transition. In this
case, the diagram is made of just one rung, with only one coil, which represents the
transition. The name of the transition is not repeated with the coil symbol. Below is
an example of transition condition programmed in Quick LD.

When programming in Quick LD, use the keyboard arrows to move the selection in
the programming logical grid, and then use the following shortcuts to insert
symbols:
F2:...................... insert a contact after the selected symbol / initiate the rung
F3:...................... insert a contact before the selected symbol
F4:...................... insert a contact in parallel with the selected symbol
F6:...................... insert a block after the selected symbol
F7:...................... insert a block before the selected symbol
F8:...................... insert a block in parallel with the selected symbol
You can also click on the function key bar at the bottom of the level 2 window
instead of hitting function keys.

Hit RETURN when the selection is on a contact or a block I/O parameter to select a
variable or enter a constant value. Hit RETURN when the selection is on a function
block to select the type of the function block. You can also double click on a symbol
for the same effect.

Hit SPACE bar when a contact is selected to change the type of contact (direct,
negated or with pulse detection). Refer to the chapter "Using the Quick LD editor" in
this document for more details about Quick LD capabilities.

User's guide

CJ International A-41

A.4.5 Using the SFC gallery

The ISaGRAF SFC editor manages an SFC gallery: it is a collection of SFC
structures that can be inserted in any SFC chart. Elements of the SFC gallery can
optionally embed the level 2 programming of steps and transitions. Use the
following commands of the "Tools" menu:

Copy to SFC gallery copy selected elements to SFC gallery
Paste from SFC gallery paste an SFC gallery element at the current location

When copying to SFC gallery (i.e. creating a new SFC gallery element), you can
optionally ask to embed level 2 programming of selected SFC symbols.

User's guide

A-42 CJ International

A.5 Using the Flow Chart editor

The ISaGRAF Flow Chart graphic editor allows the user to enter complete FC (Flow
Chart) programs, with actions and tests (decisions) programmed in either ST, IL or
Quick LD language. Flow Chart is a decision diagram, which can also be used to
describe sequential operations as it enables some advanced features such as non-
blocking backward jumps.

A.5.1 Basics of the FC language

Flow Chart (FC) is a graphic language used to describe sequential operations. A
Flow Chart diagram is composed of Actions and Tests. Between Actions and tests
are oriented links representing data flow. Below are graphic components of the Flow
Chart language:

Beginning of FC chart: A "begin" symbol must appear at the beginning of a Flow
Chart program. It is unique and cannot be omitted. It represents the initial state of
the chart when it is activated.

Ending of FC chart: An "end" symbol must appear at the end of a Flow Chart
program. It is unique and cannot be omitted. It is possible that no connection is
drawn to the "End" symbol (always looping chart), but "End" symbol is still drawn
anyway at the bottom of the chart. It represents the final state of the chart, when its
execution has been completed.

FC flow links: A flow link is a line that represents a flow between two points of the
diagram. A link is always terminated by an arrow. Two links cannot start from the
same source connection point.

FC actions: An action symbol represents actions to be performed. An action is
identified by a number and a name. Two different objects of the same chart cannot
have the same name or logical number. Programming language for an action can
be ST, LD or IL. An action is always connected with links, one arriving to it, one
starting from it.

FC tests: A test represents a boolean condition. A test is identified by a number
and a name. According to the evaluation of attached ST, LD or IL expression, the
flow is directed to "YES" or "NO" path. When programmed in ST text, the
expression may optionally be followed by a semicolon. When programmed in LD,
the unique coil represents the condition value.

FC sub-program: The system enables the description of a hierarchised structure of
FC programs. FC programs are organised in a hierarchy tree. Each FC program
can call other FC programs. Such a program is called a child program of the FC
program, which calls it. FC programs, which call FC sub-programs, are called father
program. FC programs are linked together into a main hierarchy tree, using a

User's guide

CJ International A-43

"father - child" relation. A sub-program symbol in a Flow Chart represents a call to a
Flow Chart sub-program. Execution of the calling FC program is suspended till the
sub-program execution is complete.

FC I/O specific action: An I/O specific action symbol represents actions to be
performed. As other actions, an I/O specific action is identified by a number and a
name. The same semantic is used on standard actions and I/O specific actions.
The aim of I/O specific actions is only to make the chart more readable and to give
focus on non-portable parts of the chart. Using I/O specific actions is an optional
feature. I/O specific blocks have exactly the same behaviour as standard actions.

FC connectors: Connectors are used to represent a link between two points of the
diagram without drawing it. A connector is represented as a circle and is connected
to the source of the flow. The drawing of the connector is completed, on the
appropriate side (depending on the direction of the data flow), by the identification of
the target point (generally the name of the target symbol). A connector always
targets a defined Flow Chart symbol. The destination symbol is identified by its
logical number.

FC comments: A comment block contains text that has no sense for the semantic
of the chart. It can be inserted anywhere on a free space of the Flow Chart
document window, and is used to document the program.

A.5.2 Entering a Flow Chart

To enter a chart, you have to place elements (actions, decision tests, connectors...)
in the graphic area, and draw flow links between them.

Inserting objects
To insert an object in the diagram, select the corresponding button in the toolbar
and click in the graphic area, where you want to insert it. You can either put the
element on an empty area, or insert it in a flow by clicking on a flow link. Insertion
on a link is allowed for top to bottom vertical links only. You can insert the following
basic elements:

...................... action programmed in ST, IL or Quick LD

...................... I/O specific action (highlights a particular non-portable action)

...................... test (decision) programmed in ST, IL or Quick LD

...................... connector

...................... call to an FC sub-program

...................... comment (description text)

The ISaGRAF Flow Chart editor also proposes you a list of classical Flow Chart
structures. Such structures can only be inserted on an existing flow link. They
cannot be put in an empty area:

User's guide

A-44 CJ International

...................... If / Then / Else (binary selection)

...................... Repeat until (waits for a condition)

...................... While (loops while a condition is true)

Selecting objects
Selecting graphic objects is needed for most of the editing commands. The
ISaGRAF FC graphic editor enables the selection of one or more objects existing in
the diagram area. To select objects, the "select" (button with an arrow) choice must
be checked in the editor toolbar. To select one object, the user only has to click on
its symbol.

To select a list of objects, drag the mouse in the diagram to draw a rectangle area.
All graphic objects in the selection rectangle are marked as "selected".

A selected object is drawn in dark blue colour, with little black squares around its
graphic symbol. It is also possible to add or remove one object to a multiple
selection, by clicking on its symbol with Shift or Ctrl key pressed.

By making a new selection, selection of all objects previously selected is removed.
To remove the existing selection, simply click with the mouse in an empty area,
outside of the rectangle which borders the selected objects.

For single selection, it is possible to use keyboard arrows to move selection from
one object to the other in the chart. Flow links can also be selected.

Inserting comments
Comments may be inserted anywhere in an empty part of the diagram. Comments
have no influence on the program execution. They allow a higher readability of the
diagram. To insert a comment block, select the corresponding button in the toolbar,
and click in the diagram where comment must be put. Double click on a comment
to enter / change its text. No special leading or trailing characters such as "(*" and
"*)" are needed when entering the text of a comment block. A comment block may
be resized by dragging the corners of its border when it is selected.

Drawing flow links
Select this button in the toolbar to draw a flow link between existing elements. A link
must always be drawn in the direction of the flow. First select a non-connected
output point of an FC element, and drag the mouse to the destination point to insert
the link. The destination point can either be the top (input point) of a non-connected
FC element, or any location on an existing link. Convergence points between links
are shown with small grey circles in the Flow Chart. Convergence points can also
be selected and moved in order to arrange the diagram.

Using connectors
The ISaGRAF Flow Chart editor enables the use of graphic connectors, as a
replacement of a visible flow link. Connectors can be very useful to avoid very long
links and increase chart readability. A connector cannot be used to establish a link
with another FC program.

User's guide

CJ International A-45

A connector is put in the chart as other FC objects. It is represented by a circle
containing the numerical reference of targeted element (destination of the flow link).
The short description text of the target element is displayed close to the connector
circle.

Moving objects
To move objects in the chart, you have to select them, and drag the mouse to move
them within the chart. You can either move a single element or a multiple selection.
Elements cannot be overlapped when moving them. Moving elements cannot be
used to connect them to an existing link.

When a single element (action, test...) is moved, the ISaGRAF Flow Chart editor
automatically moves with the selected element all objects placed below and
connected to it. This feature does not operate in the case of a multiple selection.

Resizing objects
Any graphic element of a flow apart from "Begin", "End" symbols and connectors
can be resized freely. To resize an element, you first have to select it. Then drag
with the mouse the small squares drawn on its border to change its size.

When an element is connected to a flow link, resizing it horizontally acts on both left
and right borders, so that the element is still correctly centred on the link when
resized.

Swapping the outputs of a test
You can swap locations of YES / NO outputs on a test (decision). To do that, simply
double click on either "Yes" or "No" marks displayed close to the test symbol.

User's guide

A-46 CJ International

A.5.3 Working on an existing chart

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a chart
The DEL key can be used to remove the selected elements. Pending links are
deleted with selected elements. Use "Edit / Undo" command to restore elements
after a DEL command. The DEL command can also be applied to a group of
elements selected in the diagram. The "Cut", "Copy", "Paste" commands of the
"Edit" menu are used to move or copy selected elements.

Find and replace
The "Edit / Find Replace" commands can be used to find or replace text strings in
the complete program (all actions and tests programmed in ST, IL or Quick LD).
The Find/Replace dialog box is used to enter a text to be searched and to directly
open the programming section where the text is found.

Direct access to an element
The "Edit Go to" command allows the user to access a graphic element existing in
the chart. The scrolling position is automatically adapted so that the element is
visible. The element, when reached, is selected.

Renumbering elements
The "Edit / Renumber" command is used to renumber elements of the Flow Chart.
Any FC element put in the chart is identified with a unique reference number.
Reference numbers are allocated by the editor each time new elements are
inserted. The "Renumber" allows you to re-adjust element numbering according to
their location in the chart. Growing numbering is performed from top to bottom and
from left to right

A.5.4 Entering level 2 programs

To enter the level 2 program, the user must double click on the action or test
symbol. The level 2 programming is displayed on the right of the FC window. The
separation line between FC chart and level 2 programming can be freely moved.
You can open one or two level 2 areas at the same time. The following commands
are available from keyboard, mouse or the "Edit" menu:

Keyboard Mouse "Edit" menu
Open in last default window Enter Double Click Edit level 2
Open in separate window Ctrl+Enter Ctrl + DoubleClick Edit Level 2 in

separate window

When two level 2 windows are visible, the separation between them can be freely
moved. The button on the right of the level 2 title bar is used to close a level 2
window.

User's guide

CJ International A-47

The default language for Level 2 programming is ST (Structured Text). The
programming language can also be IL or Quick LD. The name of the selected
language is displayed in a small box in the level 2 title bar. Run the "Options / Set
Level 2 language" command from menus or click on that box to change the active
language. This command is valid only if the level 2 programming window is empty.

A single line edit box appears at the top of the level 2 window. It is used to enter a
short description text. This text will be displayed as an IEC comment in the drawing
of FC symbols. It is very useful as it is used by other commands such as "Go To..."
and also in the FC printout to document FC actions and tests.

The "Options / Refresh" command can be used at any time when level 2 windows
are open to refresh the main FC chart with modified level 2 programs.

A.5.5 Programming level 2 with Quick LD

Quick LD editor is available for level 2 programming. In the case of a decision test,
the LD diagram is made of just one rung, with only one coil, which represents the
decision. The name of the test is not repeated with the coil symbol. Below is an
example of a test programmed in Quick LD.

When programming in Quick LD, use the keyboard arrows to move the selection in
the programming logical grid, and then use the following shortcuts to insert
symbols:
F2:...................... insert a contact after the selected symbol / initiate the rung
F3:...................... insert a contact before the selected symbol
F4:...................... insert a contact in parallel with the selected symbol
F5:...................... add a coil in parallel with the selected one (not for tests)
F6:...................... insert a block after the selected symbol
F7:...................... insert a block before the selected symbol
F8:...................... insert a block in parallel with the selected symbol

User's guide

A-48 CJ International

F9:...................... add a jump symbol in parallel with the selected coil (not for tests)

A jump leads to a rung name. The name of a rung can be entered by hitting ENTER
when selection is on the rung head. The ISaGRAF editor keeps the memory of the
rung labels you already entered, whether it has been specified for a rung name or a
jump operation. The "Jump/Label"' dialog box gives you the possibility either to
enter a new label, or to select an existing one. If you enter a new name, it will
automatically be added to the list. The "Remove" button is used to remove the
selected name from the list. It does not remove the label on the rung you selected
in the diagram. To do this, just press OK when the edit box is empty.

You can also press buttons in the LD toolbar instead of hitting function keys.

Hit ENTER when the selection is on a contact or a block I/O parameter to select a
variable or enter a constant value. Hit ENTER when the selection is on a function
block to select the type of the function block. You can also double click on a symbol
for the same effect.

Hit Control + SPACE bar when a contact is selected to change the type of contact
or coil (direct, negated). Refer to the chapter "Using the Quick LD editor" in this
document for more details about Quick LD capabilities.

A.5.6 Display options

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
diagram. Use the check boxes in the "Workspace" group to display or hide editor
toolbars and status bar. Option of the "Document" group allow you to show or hide
points of the editing grid and to display chart either in black and white or with
colours.

Use the "Zoom" button of the toolbar to change current zoom ratio. This command
is also available when working on a Quick LD program attached to an action or a
test.

Use the "Grid" button of the toolbar to show or hide points of the editing grid. This
command is also available when working on a Quick LD program attached to an
action or a test.

Use the "Options / Font" command to select the name of the character font to be
used in all ISaGRAF documents. When called from an ST or IL block, you can
specify size of the font. When selecting font for a graphic view (FC or Quick LD),
font style and size are not relevant and do not need to be specified. ISaGRAF
graphic editors always calculate the font size according to the current zoom ratio.

User's guide

CJ International A-49

A.6 Using the Quick LD editor

The LD language enables graphic representation of boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology.
Boolean input variables are attached to graphic contacts. Boolean output variables
are attached to graphic coils. The ISaGRAF Quick LD editor provides easy LD
diagram entering using either keyboard or mouse. Elements are automatically
linked and arranged on rungs by the Quick LD editor. No connection is drawn
manually by the user. The Quick LD editor also arranges rungs in the diagram so
that the space filled by the diagram is always optimised.

A.6.1 Basics of the LD language

An LD program is expressed as a list of rungs where contacts and coils are
arranged. Below are the basic components of an LD diagram:

Rung head (left power rail)
Each rung begins with a left power rail, which represents the initial "TRUE" state.
ISaGRAF Quick LD editor automatically creates the left power rail when the first
contact of the rung is placed by the user. Each rung may have a logical name,
which can be used as a label for jump instructions.

Contacts
A contact modifies the boolean data flow, according to the state of a boolean
variable. The name of the variable is displayed upon the contact symbol. The
following types of contacts are supported by ISaGRAF Quick LD editor:

.................... direct contact

.................... negated contact

.................... contact with positive (rising) edge detection

.................... contact with negative (falling) edge detection

Coils
A coil represents an action. The rung state (state of the link on the left of the coil) is
used to force a boolean variable. The name of the variable is displayed upon the
coil symbol. The following types of coils are supported by ISaGRAF Quick LD
editor:

.................... direct coil

.................... negated coil

.................... "set" action coil

.................... "reset" action coil

.................... coil with positive (rising) edge detection

.................... coil with negative (falling) edge detection

User's guide

A-50 CJ International

Function blocks
A block in an LD diagram can represent a function, a function block, a sub-program
or an operator. Its first input and output parameters are always connected to the
rung. Other input and output parameters are literally written outside of the block
rectangle.

Rung end (right power rail)
A rung ends with a right power rail. Using the Quick LD editor, the right power rail is
automatically inserted when a coil is placed by the user.

Jump symbol
A jump symbol always refers to a rung label, i.e. the name of a rung defined
somewhere in the same LD diagram. It is placed at the end of a rung. When the
rung state is TRUE, the execution of the diagram directly jumps to this target rung.
Note that backward jumps are dangerous as they may lead to a blocking of the PLC
loop in some cases.

Return symbol
A return symbol is placed at the end of a rung. It indicates that the execution of the
program must be stopped if the rung state is TRUE.

The "EN" input
On some operators, functions or function blocks, the first input does not have
boolean data type. As the first input must always be connected to the rung, another
input is automatically inserted at the first position, called "EN". The block is
executed only if the EN input is TRUE. Below is the example of a comparison
operator, and the equivalent code expressed in ST:

IF rung_state THEN
 q := (value1 > value 2);
ELSE
 q := FALSE;
END_IF;
(* continue rung with q state *)

The "ENO" output
On some operators, functions or function blocks, the first output does not have
boolean data type. As the first output must always be connected to the rung,
another output is automatically inserted at the first position, called "ENO". The ENO
output always takes the same state as the first input of the block. Below is an
example with AVERAGE function block, and the equivalent code expressed in ST:

User's guide

CJ International A-51

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;
(* continue rung with eno state *)

On some cases, both EN and ENO are required. Below is an example with an
arithmetic operator, and the equivalent code expressed in ST:

IF rung_state THEN
 result := (value1 + value2);
END_IF;
eno := rung_state;
(* continue rung with eno state *)

Limitations of Quick LD editor
The ISaGRAF Quick LD editor does not allow to continue a rung (insert other
contacts or coils) on the right of a coil. If several outputs have to be made on the
same rung, the corresponding coils must be drawn in parallel.

A.6.2 Entering an LD diagram

All the editing commands of the Quick LD editor may be achieved either with the
keyboard or with the mouse.

The editing grid
The LD diagram is entered in a logical matrix. Each cell of the matrix may contain
up to one LD symbol. Use the arrows of the keyboard, or click on a cell to move the
current selection. The selected cell is marked in reverse. For some cut/copy/paste
operations, it is possible to select several cells. To do that with the mouse, just drag
the mouse cursor in the diagram. With keyboard, use arrow keys with SHIFT key
pressed.

Starting a new rung
To add a new rung to a diagram, move the selection after the last existing rung and
insert a contact (hit F2 or press the corresponding button in the LD toolbar). A new
rung with one contact and one coil is created.

Entering the rung comment
Each rung may be documented with up to two lines of text. To enter a rung
comment text, move the selection on the cell upon the rung and hit ENTER key, or
double click on this cell with the mouse:

User's guide

A-52 CJ International

Hit ENTER on this cell

Entering the rung label
Each rung may be identified by a name. This name can be used as a target label for
jump operations. To enter or change the label of a rung, move the selection on rung
head and hit ENTER key, or double click on this cell with the mouse:

Hit ENTER on this cell

The ISaGRAF Quick LD editor keeps the memory of the rung labels you already
entered, whether it has been specified for a rung name or a jump operation. The
"Jump/Label"' dialog box gives you the possibility either to enter a new label, or to
select an existing one.

If you enter a new name, it will automatically be added to the list. The "Remove"
button is used to remove the selected name from the list. It does not remove the
label on the rung you selected in the diagram. To do this, just press OK when the
edit box is empty.

Inserting symbols on a rung
The insertion of symbols (contacts, coils, blocks...) on an existing rung is always
made according to the current selection. You have to select a valid cell position
within the rung and hit one of the following function keys to insert:
F2....................... a contact before the selected symbol (on the left)
F3....................... a contact after the selected symbol (on the right)
F4....................... a contact in parallel with the selected symbol
F6....................... a block before the selected symbol (on the left)
F7....................... a block after the selected symbol (on the right)
F8....................... a block in parallel with the selected symbol

User's guide

CJ International A-53

The following commands are valid when the selection is on the rung output (coil):
F5....................... add a coil in parallel with the selected one
F9....................... add a "Jump" symbol in parallel with the selected one
Shift + F9 add a "Return" symbol in parallel with the selected one

For parallel insertion (F4/F8), if several contacts of a rung are selected together, the
symbol is inserted in parallel with the group of selected elements. Below is an
example:

To insert symbols in the diagram, you can also use the commands of the "Insert"
menu. With the mouse, you can click on the LD toolbar, on the type of symbol you
want to insert:

Entering symbols
To associate a variable symbol to a contact or a coil, select it and hit ENTER. With
the mouse, double click on the contact or coil. A variable selection box appears.
Refer to chapter "More about program editors" in this document for further
information about how to use this box. To associate a function, function block or
operator to a block, hit ENTER when the selection is on the inside its rectangle. To
associate a variable symbol to an input or output block parameter the selection
must be on the corresponding location, outside the rectangle of the block.

Dialog boxes including variable or block selection lists are normally used for text
input. If the "Manual keyboard input" mode is checked in the "Options" menu,
variable symbols and block names are entered directly in a single text edit box.
Enter new text and hit "Enter" key to validate it, or hit "Escape" key to exit
modification and close the text editing box. The text edit box used in "manual
keyboard input" mode cannot be closed with the mouse.

Changing the type of contacts and coils
The "Edit / Change coil/contact type" changes the type of the selected contact or
coil. A contact may be direct, negated, with positive or negative edge detection. A
coil may be direct, negated, set or reset, with positive or negative edge detection.
Hitting the SPACE bar has the same effect.

Inserting a rung in a diagram
The "Edit / Insert rung" command insert a new rung in the diagram, before the
selected one. The rung is initiated with one contact and one coil.

User's guide

A-54 CJ International

A.6.3 Working on an existing diagram

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a diagram
The DEL key can be used to remove the selected elements. It is not possible to
remove a coil, a jump or return symbol when it is the only output of a rung. Use
"Edit / Undo" command to restore elements after a DEL command. The DEL
command can also be applied to a group of elements selected in the diagram. The
DEL command can be used when selection is on the rung comment text to reset it.
The DEL command, used when the selection is on the rung head, removes the
entire rung.

Copying symbols
The "Cut", "Copy", "Paste" commands of the "Edit" menu are used to move or
copy selected elements. These commands do not act on rung comments. The "Edit
/ Paste special" command gives you the choice to insert the pasted elements:
• before the selected element (on the left)
• after the selected element (on the right)
• in parallel with the selected element

Managing entire rungs
All editing commands (delete, copy, cut...) act on the entire rung if the selection is
on the rung header (left power rail). This provides an easy way to arrange rungs in
the diagram, just by moving the selection in the first column. It is also possible to
extend the selection vertically so that it includes several rung headers. In this case
edition commands may be applied to a list of entire rungs.

Find and replace
The "Edit / Find" and "Edit / Replace" menu commands are used to find and
replace texts in the diagram. Only complete names can be found. Search acts on
contacts, coils, block names, block parameters and run labels. It cannot be used to
find a string in a rung comment. The Replace command cannot be used to change
the type of a block. The research can be made upward or downward, starting at
position of the current selection. It "loops" when the limits of the diagram are
reached. The following shortcuts are also available for quick research of variable
names:

ALT+F2 finds the next element with the same variable name as the element currently
selected. This feature can also be applied to function blocks and rung labels.

ALT+F5 finds the next coil with the same variable name as the element currently selected.
This feature is mainly used in debug mode, to quickly find out the rungs which
forces a suspicious variable.

User's guide

CJ International A-55

A.6.4 Display options

The commands of the "Options" menu are used to customise the drawing of the LD
diagram on the screen, and to hide or display some types of information.

Rung comments
Use the "Options / Rung comments" command to hide or display the rung
comments in the whole diagram. Hiding the rung comments can be required to have
a more condensed view on a huge diagram, as each comment consumes one row
in the editing matrix. This option does not affect the contents of the existing rung
comments, and can be swapped at any time.

Names and aliases
Each variable, when associated to a contact, a coil or a block I/O parameter is
identified by its symbolic name. The ISaGRAF Quick LD editor also introduces the
notion or "alias" for each variable. The alias of the variable is the variable comment
text, truncated before the first ':' character, and limited to 16 characters. Below are
examples:

variable comment: alias:
short text short text
long text with no separator long text with n
short text: long description short text

Aliases have no effect on the execution of the LD diagram and should be
considered as comments for the syntactic point of view. A variable alias is
automatically extracted from the variable comment when the name is selected in
the variable list. It cannot be changed manually. Use the "Options / Contacts and
coils" commands to select a display mode for variable identification. The following
modes are available:
• display only the variable names
• display only the variable aliases
• display both names and aliases

Quick LD editor does not automatically updates LD documents when variable
aliases are changed in the dictionary. Use the "Options / Contacts and coils /
Update aliases" command to update all aliases in edited diagram. You can also set
the "Always update on Open" option from "Options / Contacts and coils" to ask
ISaGRAF to automatically update all used aliases each time a Quick LD program is
open. Warning: Setting this option may significantly increase the time spent to open
a program.

Drawing options
The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
graphic LD diagram.
Use the check boxes in the "Workspace" group to display or hide editor tool bar,
status bar and LD toolbar. Options of the "Document" group allow you to show or
hide points of the editing grid, and to enable/disable the use of colours for the
drawing.

User's guide

A-56 CJ International

Options of the "Zoom" group allow you to select a main zoom ratio. You can also
use the "zoom" button in the editor toolbar to swap between default zoom ratios.

You can also customise the X/Y aspect ratio of cells in the editing grid. This last
option can be used to reduce the default cell width, if you commonly use short
names for variables. You can also use the "width" button in the editor toolbar to
change the X/Y aspect ratio without entering the Layout dialog box.

Use the "Options / Font" command to select the name of the character font to be
used in all ISaGRAF graphic documents. When selecting font, font style and size
are not relevant and do not need to be specified. ISaGRAF graphic editors always
calculate the font size according to selected zoom ratio.

User's guide

CJ International A-57

A.7 Using the FBD/LD editor

The ISaGRAF FBD/LD graphic editor allows the user to enter complete FBD
programs, which may includes parts in LD. It combines graphic and text-editing
capabilities, so both diagrams and corresponding inputs and outputs can be
entered. As this editor is more dedicated to FBD language, pure LD diagrams
should rather be entered using the ISaGRAF Quick LQ editor.

A.7.1 Basics of the FBD/LD languages

The FBD language is a graphic representation of many different types of equations.
Operators are represented by rectangular function boxes. Function inputs are
connected to the left side of the box. Function outputs are connected to the right
side. Diagram inputs and outputs (variables) are connected to the function boxes
with logical links. An output of a function box may be connected to the input of
another box.

The LD language enables graphic representation of boolean expressions. Boolean
AND, OR, NOT operators are explicitly represented by the diagram topology.
Boolean input variables are attached to graphic contacts. Boolean output variables
are attached to graphic coils. Contacts and coils are connected together and to left
and right power rails by horizontal lines. Each line segment has a boolean state of
FALSE or TRUE. The boolean state is the same for all the segments directly linked
together. Any horizontal line connected to the left vertical power rail has the TRUE
state.

LD and FBD diagrams are always interpreted from the left to the right, and from the
top to the bottom. Refer to the ISaGRAF Language reference Manual for more
details about LD and FBD languages. These are the basic graphic components of
the LD and FBD languages, such as supported by the FBD/LD editor:

Left power rail
Rungs must be connected on the left to a left power rail, which represents the
initial "TRUE" state. ISaGRAF FBD editor also allows connecting any boolean
symbol to a left power rail.

Right power rail
Coils may be connected on the right to a right power rail. This is an optional
feature when using the ISaGRAF FBD/LD editor. If a coil is not connected on the
right, it includes a right power rail in its own drawing.

LD vertical "OR" connection
LD vertical connection accepts several connections on the left and several
connections on the right. Each connection on the right is equal to the OR
combination of the connections on the left.

Contacts

User's guide

A-58 CJ International

A contact modifies the boolean data flow, according to the state of a boolean
variable. The name of the variable is displayed upon the contact symbol. The
following types of contacts are supported by ISaGRAF FBD/LD editor:

.................... direct contact

.................... negated contact

.................... contact with positive (rising) edge detection

.................... contact with negative (falling) edge detection

Coils
A coil represents an action. It must be connected on the left to a boolean symbol
such as a contact. The name of the variable is displayed upon the coil symbol. The
following types of coils are supported by ISaGRAF FBD/LD editor:

.................... direct coil

.................... negated coil

.................... "set" action coil

.................... "reset" action coil

Function blocks
A block in an FBD diagram can represent a function, a function block, a sub-
program or an operator. Inputs and outputs must be connected to variables,
contacts or coils, or other block inputs or outputs. Formal parameter names are
displayed inside of the block rectangle.

Labels
Labels can be placed everywhere in the diagram. Labels are used as targets for
jump instructions, to change the execution order in the diagram. Labels are not
connected to other elements. It is highly recommended to place labels on the left of
the diagram, in order to increase the diagram readability.

Jumps
A jump symbol always refers to a label placed elsewhere in the diagram. Its left
connection must be linked to a boolean point. When the left connection is TRUE,
the execution of the diagram directly jumps to this target label. Note that backward
jumps are dangerous as they may lead to a blocking of the PLC loop in some
cases.

Return symbol
A return symbol is connected to a boolean point. It indicates that the execution of
the program must be stopped if the rung state is TRUE.

User's guide

CJ International A-59

Variables
Variables in the diagram are represented inside small rectangles, connected on the
left or on the right to other elements of the diagram.

Connection links
Connection links are drawn between elements put in the diagram. Links are always
drawn from an output to an input point (in the direction of the data flow).

Connection links with boolean negation
Some boolean links are represented with a small circle on their right extremity. This
represent a boolean negation of the information transported by the link.

User defined corners
User defined points may be defined on links. They allow the user to manually
control the routing of a link. If no corner is placed, the ISaGRAF FBD/LD editor uses
a default routing algorithm.

A.7.2 Entering an FBD diagram

To enter a diagram, you have to place elements (blocks, variables, contacts,
coils...) in the graphic area, and draw links between them.

Inserting objects
To insert an object in the diagram, select the corresponding button in the toolbar
and click in the graphic area, where you want to insert it.

Selecting objects
Selecting graphic objects is needed for most of the editing commands. The
ISaGRAF LD/FBD graphic editor enables the selection of one or more existing
objects in the diagram area. To select objects, the "select" (button with an arrow)
choice must be checked in the editor toolbar. To select one object, the user only
has to click on its symbol. To select a list of objects, drag the mouse in the diagram
and select a rectangle area. All the graphic objects that intersect the selection
rectangle are marked as "selected". A selected object is drawn with little black
squares around its graphic symbol. By making a new selection, all previously
selected objects are unselected. To remove the existing selection, simply click with
the mouse on an empty area, outside of the rectangle which borders the selected
objects.

Inserting comments
Comments may be inserted anywhere in the diagram. Comments have no influence
on the program execution. They allow a higher readability of the diagram. To insert
a comment block, select this button in the toolbar, and drag the mouse to select the
rectangle area where comment must be drawn. Then enter the text of the comment.
No special leading or trailing characters such as "(*" and "*)" are needed when
entering the text of a comment block. A comment block may be resized by dragging
the corners of its border when it is selected.

User's guide

A-60 CJ International

Moving objects
To move objects in the diagram, you have to select them, and drag the mouse to
move the selected area in the diagram. To move connected objects, the user simply
has to move the graphic symbols put on the diagram. The ISaGRAF LD/FBD editor
will automatically redraw the connection lines between the objects that were moved,
based on their new location.

 Drawing links
Select one of these buttons in the toolbar to draw a link between connection points
of existing elements. If you draw a link from a connection point to an empty location
in the diagram, a user-defined corner automatically terminates it, so that you can
continue drawing another segment.

Changing link drawing
The "Tools / Move line" command is used when a link is selected in the diagram to
change its automatic routing. This command has no effect when the link is
connected to a user-defined corner. When a link is drawn as three segments, this
command changes the position of the second segment. Below are examples:

Changing the type of a link
You can easily change the type of link (with or without Boolean negation) by double
clicking with the mouse on its right extremity.

Drawing LD rungs
To draw a new LD rung, first insert the left power rail. Then place a coil: it will be
automatically linked to the power rail. Other contacts and vertical OR connections
may be directly inserted on the rung line, without drawing any new connection link.
When a new LD contact or coil is inserted in an empty space of the editing area, the
new horizontal rung line is automatically drawn from the new inserted element to the
existing power rails on the left and on the right. This line is not automatically drawn
if the new contact or coil is not placed between power rails. The new inserted
contact or coil can then be freely moved on the drawn rung. The horizontal lines
created by the editor while inserting an LD contact or coil symbol can be selected
and deleted. You can insert a new LD contact or coil symbol on the horizontal line of
an existing rung. The editor automatically cuts the rungs and connects it to the left
and right connection points of the new inserted contact or coil.

Multiple connections
A multiple connection can be created on the right of any output point. It means that
the information is broadcasted to several other points in the diagram. The same
state is propagated on each extremity on the right. The number of lines drawn at the
right of an output connection point is not limited. Two connection lines cannot have

User's guide

CJ International A-61

their right extremity connected on the same input point, except for the following LD
symbols:

...................... right power rail

...................... multiple connection on the left (OR) operator
These LD symbols can have an unlimited number of inputs.

A.7.3 Working on an existing diagram

The commands of the "Edit" menu are used to change or complete an existing
diagram. Most of these commands act on the elements currently selected in the
diagram.

Correcting a diagram
The DEL key can be used to remove the selected elements. Pending links are
deleted with selected elements. Use "Edit / Undo" command to restore elements
after a DEL command. The DEL command can also be applied to a group of
elements selected in the diagram. The "Cut", "Copy", "Paste" commands of the
"Edit" menu are used to move or copy selected elements.

Find and replace
The "Edit / Find" and "Edit / Replace" menu commands are used to find and
replace texts in the diagram. Only complete names can be found. Research acts on
contacts, coils, block names, variables and labels. It cannot be used to find a string
in a comment text. The Replace command cannot be used to change the name of a
block. The research can be made upward or downward, starting at the current
selection position. It "loops" when the limits of the diagram are reached.

Displaying the execution order
When an FBD diagram includes backward loops, the execution order cannot follow
the single left to right / top to bottom method. In order to avoid confusion, use the
"Tools / Show execution order" command or press Control + F1 keys to display
the execution order that will be used at compiling time. Tags numbered from 1 to N
are displayed close to symbols that lead to an action (coils, set variables and
function blocks).

Entering symbols and texts
Double click with the mouse on an element to enter the associated symbol or text.
This applies to variables, contacts and coils, comment texts and labels. When used
on a contact or coil, this also allows to change its type (direct, negated...).

Dialog boxes including variable or block selection lists are normally used for text
input. If the "Manual keyboard input" mode is checked in the "Options" menu,
variable symbols and block names are entered directly in a single text edit box.
Enter new text and hit "Enter" key to validate it, or hit "Escape" key to exit
modification and close the text editing box. The text edit box used in "manual
keyboard input" mode cannot be closed with the mouse.

User's guide

A-62 CJ International

If the "Auto input" mode is checked in the "Options" menu, the variable symbol
must be entered immediately each time a new contact or coil is inserted. The
symbol must always be entered immediately when a variable or label is inserted.

Selecting function block type
Double click with the mouse on a block is used to change its type. The block type is
selected from the list of available operators, functions and function blocks. This
command also allows changing the number of input points in the case of a
commutative operator. (e.g. AND, OR, ADD, MUL...)

Getting free space
When you press the right button of the mouse in the FBD drawing area, a popup
menu is displayed. It contains the following commands that can be used to insert or
remove free space at the location of the mouse cursor:

Insert rows: This command inserts horizontal free space, made of 4 rows
according to the grid step, starting at the position of the mouse
cursor where popup menu is open.

Delete rows: This command removes unused horizontal space (rows) starting
at the position of the mouse cursor where popup menu is open.
This command cannot be used to remove FBD elements.

When popup menu is open, a grey line in the FBD drawing area indicates where
empty space will be inserted or removed.

A.7.4 Display options

The commands of the "Options" menu are used to customise the drawing of the
FBD diagram on the screen.

Layout customisation

The "Options / Layout" command opens a dialog box where are grouped all the
parameters and options concerning the editor workspace and the drawing of the
graphic diagram. Use the check boxes in the "Workspace" group to display or hide
editor toolbars and status bar. Option of the "Document" group allows you to show
or hide points of the editing grid.

Options of the "Zoom" group allow you to select a main zoom ratio. You can also
use the "zoom" button in the editor toolbar to swap between default zoom ratios.

Use the "Options / Font" command to select the name of the character font to be
used in all ISaGRAF graphic documents. When selecting font, font style and size
are not relevant and do not need to be specified. ISaGRAF graphic editors always
calculate the font size according to selected zoom ratio.

User's guide

CJ International A-63

A.7.5 Styles and modification tracking

The ISaGRAF LD/FBD editor enables you to assign a graphic style to any
component of an LD/FBD diagram. A style is mainly defined as a special diagram
colouring. But ISaGRAF also uses styles to enable modification tracking in
diagrams for version control purpose.

Note that styles are not visible during simulation or on-line debug, as colours (red
and blue) are used in that mode to highlight TRUE / FALSE states of spied
variables.

Predefined styles
The following styles are pre-defined:

Normal............... Default drawing (black). For modification tracking, "normal" style
indicates that elements having that style are part of the original
diagram. "Normal" style elements are normally scanned during
execution.

Modified Elements marked as "modified" are painted in pink. For
modification tracking, the "modified" style is used to highlight
elements that have been added or changed after the original
release of the diagram. "Modified" style elements are normally
scanned during execution.

Deleted Elements marked as "deleted" are painted in grey, with dashed
lines. Such elements are not taken into account for the execution
of the diagram. This style is used to keep a track of elements
removed after the original release when version control is
required.

Custom.............. In addition to predefined style, ISaGRAF LD/FBD editor allows
you to select any colour to be applied to a part of the diagram.
Such elements are considered as having a "Custom" style. The
use of "Custom" style has no effect on the diagram execution at
run time.

Use the commands of "Style" sub-menu in "Edit" menu to manually apply a style to
selected elements.

Modification tracking
The use of styles and the availability of the "Deleted" style allow automatic
modification tracking in an existing diagram. Use the "Mark modifications"
command in "Edit/Style" menu to enable or disable modification tracking.
When the "Mark modifications" option is set, all elements changed in or added to
the diagram are automatically set with "Modified" style. When an element is deleted,
using "Delete" or "Cut" commands, they are not visually removed from the diagram,
but simply marked with "Deleted" style". This enables the user to automatically keep
a trace of all modifications entered in the diagram.
Use the "Edit/Style/Remove all deleted items" to actually remove all elements
marked with "Deleted" style from the LD/FBD diagram. This command does not
take care of the current selection, and always applies to the entire diagram.

User's guide

A-64 CJ International

To "restore" one element marked with the "Deleted" style, select the desired
element and apply to it the "Normal" style, the "Modified" style or any "Custom"
style. Such operation may lead to invalid connections (more than one link
connected to the same input point) that will be detected during next program
verification.

User's guide

CJ International A-65

A.8 Using the text editor

This chapter only describes features and commands of the ISaGRAF text editor,
particularly when used to enter the source code of ST and IL programs.

A.8.1 Editing commands

The commands of the "Edit" menu are used to work on the edited text. Most of
these commands act on the characters currently selected in the diagram, or
perform an action at the current location of the caret.

 Cut and paste
The DEL key can be used to remove the selected text. Use "Edit / Undo" command
to restore elements after a DEL command. The "Cut", "Copy", "Paste" commands
of the "Edit" menu are used to move or copy text in the program, or to insert pieces
of texts copied in the clipboard by other applications.

Find and replace
The "Edit / Find" and "Edit / Replace" menu commands are used to find and
replace texts in the program. Any character string can be found. Research can be
performed upward or backward, starting at the current location of the caret. It does
not "loops" when the limits of the program are reached.

Go to line
The "Edit / Go to line" command is used to move the caret to a specific line
number. This can be very useful to have access to a line with an error detected by
the ISaGRAF compiler in an ST or IL program, and referenced by a line number.

Insert symbol from dictionary
Use the "Edit / Insert variable" command to insert at the caret position the symbol
of a variable or object declared in the project dictionary. Symbol is selected through
the common variable selection box described in chapter "More about program
editors" in this document.

Insert file
The "Edit / Insert file" command inserts the whole contents of a file at the current
location of the caret. Note that only pure ASCII text files can be handled by this
command.

A.8.2 Options

The commands of the "Options" menu are used to display or hide editor toolbars,
and select the character font. The selected character font will be used for any text
editing in all ISaGRAF Workbench.

User's guide

A-66 CJ International

When used to enter the source code of an ST / IL program, the "Options / Show
keywords" command is used to show or hide a toolbox that groups the most
common keywords of ST or IL language. Click on a button in the toolbar to insert
the corresponding keyword or operator at the current location of the caret.

User's guide

CJ International A-67

A.9 More about program editors

This chapter contains useful information about editing features which are common
to all the ISaGRAF program editors. This mainly concerns links with other ISaGRAF
tools and common ISaGRAF dialog boxes.

A.9.1 Calling other ISaGRAF tools

Verify (compile) the program
The "File / Verify" command runs the ISaGRAF code generator to verify the
programming syntax of the currently edited program. In case of SFC language, both
level 1 and 2 are checked. When syntax verification is complete, the code generator
window must be closed to continue work on the program. If there is only one
program in the application (the edited one) the application code is generated if no
syntax error is detected. The "Options / Compiling options" command is used to
set compiling and optimising parameters. Refer to chapter "Using the code
generator" in this document for further information about compiling and code
generation.

 Simulate or debug the application
The "File / Simulate" and "File / Debug" commands run the ISaGRAF graphic
debugger either in simulation or real connected mode, and re-opens the edited SFC
program in debug mode. Used in debug mode, no modification can be entered in
the program.

Editing the dictionary of variables
The "File / Dictionary" command is used to edit the dictionary of variables for the
current application and the current program. It also contains the entry points to edit
the user-defined words. The local declarations or defined words relate to the
currently edited program.

A.9.2 Parameters of the program

When the edited program is a function, a function block or a sub-program, the "File
/ Parameters" command is used to define its calling and return parameters. This
command has no effect if the edited program is an SFC or top level program from
section Begin or End.

Sub-programs, functions or function blocks may have up to 32 parameters (input or
output). A function or sub-program always has one (and only one) return parameter,
which must have the same name as the function, in order to conform to ST
language writing conventions. The following dialog box is used to describe the
parameters of the sub program:

User's guide

A-68 CJ International

The list in the upper left side of the window shows the parameters, in the order of
the calling model: first the calling parameters, last the return parameters. The lower
part of the window shows the detailed description of the parameter currently
selected in the list. Any of the ISaGRAF data types may be used for a parameter.
The return parameters must be located after calling parameters in the list. Naming
parameters must conform to the following rules:
• the length of the name cannot exceed 16 characters
• the first character must be a letter
• the following characters must be letters, digits or underscore character
• naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the
return parameters are put at the end of the list.

A.9.3 Other commands of the "File" menu

The following commands are available in the "File" menu of all program editors:

Open another program
The "File / Open" command allows the user to close the currently edited program
and start editing another program of the current project with the same language.
This function cannot be used to edit a program written in another language. The
new selected program replaces the current one in the editing window.

Printing the program
The "File / Print" command outputs the edited program on printer. This command
automatically runs the ISaGRAF document generator to printout the edited program
and attached local variables.

User's guide

CJ International A-69

For some graphic programs (SFC, FBD and Quick LD) You can also use the "Edit /
Copy drawing" command to copy in the clipboard the drawing of the chart in
metafile format, so that it can be pasted in other applications such as word
processors. For SFC programs, only the level 1 information (chart, numbering and
level 1 comments) appears on the copied metafile.

A.9.4 Updating the program diary

The diary file attached to the edited program may be manually entered using the
"File / Diary" command. The diary file is automatically updated with syntax checking
output messages each time the program is compiled. Compiling outputs are
completed with the compiling date / time stamp.

If the "Update diary" mode is selected in the "Options" menu of program editors,
the following dialog box is opened each time the program is saved on disk.

If OK button is pressed, the entered text note is then stored at the end of the diary
file with current date / time stamp. This feature is very useful for maintenance of
complete programs, as it provides useful help about the program life cycle.

A.9.5 Selecting a variable from dictionary

When editing a text program (ST or IL) the "Edit / Insert variable" allows the
selection of a declared variable name to be inserted at the current position of the
caret. When editing LD or FBD programs, variable selection is required for the
description of contacts, coils, block I/O parameters or FBD variable boxes. In both
cases, the following dialog box is open to select a declared variable:

User's guide

A-70 CJ International

The "Scope" selection box is used to select between global and local variables. The
selection box on the right allows the selection of the data type. Small icons beside
the type selection box are buttons that can be used as shortcuts to select most
current data types:

...................... Boolean

...................... Integer / Real

...................... Timer

...................... Message

To select a variable, click on its name in the list. Its name and comment are then
displayed on the top of the list. Then press the "OK" button to confirm its selection.
It is also possible to directly enter a variable name in the edit control without using
the list.

A.9.6 The output window

The following commands are available in the Tools menu of all language editors.
They are used to display information in a small text list at the bottom of the editing
window, and use it for program browsing.

"Show compiler output" display in the output window the error
messages from the last compiling of the
edited program.

"Find in…" find occurrences of a text in the whole edited
program, and list them in the output window.
For SFC and FC languages, this command
searches in all level 2 programs.

User's guide

CJ International A-71

"Hide output window" close the output list window

When error messages or occurrences are displayed in the output window, double
click on a line to directly move selection to the corresponding location. For SFC and
FC languages, this command opens corresponding level 2 programming window.

User's guide

A-72 CJ International

A.10 Using the dictionary editor

The ISaGRAF dictionary is an editing tool for the declaration of the internal
variables, I/O variables, function block instances, and "defined words" of the
application. The dictionary groups together the declared variables and function
block instances of the application, and the words defined as constant strings.
Variables, function blocks and defined words must be declared in the dictionary
before using them in source code. Variables and defined words can be used with
any of the automation languages: SFC, FBD, LD, ST and IL. Function blocks used
in FBD language do not have to be declared, because the ISaGRAF FBD and Quick
LD editors automatically declare the instances of the used blocks.

Variables
The variables are sorted according to their range and type. Only variables of the
same type and the same range can be entered on the same input grid. These are
basic ranges for variables:

 GLOBAL can be used by any program of the current project
 LOCAL can be used by only one program

These are basic types of variables:

 BOOLEAN ... true/false binary values
 ANALOG real or integer values
 TIMER.......... time values
 MESSAGE ... character strings

A variable is identified by a name, a comment, an attribute, a network address and
other specific fields. Here are the basic variable attributes:

INTERNAL memory variable
INPUT variable linked to an input device
OUTPUT variable linked to an output device
CONSTANT read only internal variable (with initial value)

Note: Timers are always internal variables. Input and Output variables always have the
GLOBAL range.

Defined words
A defined word is an alias that can be used in any language to replace a text string.
The replaced text can be a variable name, a constant expression or a complex
expression. Defined words are sorted according to their range. Only defined words
of the same type and the same range can be entered on the same input grid. Here
are basic ranges:

User's guide

CJ International A-73

 COMMON can be used by any program of any project
 GLOBAL can be used by any program of the current project
 LOCAL can be used by only one program

A defined word is identified by a name, a well-defined block of ST text equivalence
and a free comment.

Function block instances
The instances of the function blocks used in the ST and IL languages must be
declared in the dictionary. Because a function block has internal "hidden" data, each
copy of a function block must be identified. The following example shows the
function block "R_TRIG" (rising edge detection) defined in the library, used for edge
detection on different variables. Each copy of the block must be identified by a
unique name. Naming the type of block and definition of its parameters is made by
using the library manager:

Block name: R_TRIG
Parameters: Input=CLK

Output=Q

Naming the instances is made by using the dictionary editor:

Instance name: TRIG_B1 Block name: R_TRIG
Instance name: TRIG_B2 Block name: R_TRIG

The declared instances may be used in ST programs:

TRIG_B1 (b1);
edge_b1 := TRIG_B1.Q; (* b1 variable edge detection *)
TRIG_B2 (b2);
edge_b2 := TRIG_B2.Q; (* b2 variable edge detection *)

Declared function block instances may be GLOBAL (known by any program in the
project), or LOCAL to one program. Function blocks used in FBD or LD languages
do not have to be declared, because the ISaGRAF FBD editor automatically
declares the instances of the used blocks.

(* the function blocks always have the name of the block defined in the library.
The ISaGRAF FBD and Quick LD editors automatically declare an instance
each time a block is inserted in the diagram *)

Function block instances automatically declared by the FBD and Quick LD editors
are always LOCAL to the edited program.

User's guide

A-74 CJ International

Network addresses
Network addresses are optional. A variable with a non-zero network address can
be spied by an external system (for example a process visualisation system) at run
time. More generally, the network address provides an identifying mechanism for
each run time communication system that cannot handle symbolic names. A
network address may be entered for each variable, during its complete description,
when the variable is created or modified.

A.10.1 The dictionary main window

The dictionary editing window shows a list of variables with same type and range.
The type and range of edited variables is always displayed in the title bar.

The editing window shows only main fields of variable description: name, attribute
and network address, and text comment. The full description of the selected
variable is always displayed in the status bar. Use the following buttons in the
toolbar to select the range of variable to be edited:

COMMONcan be used by any program of any project
GLOBALcan be used by any program of the current project
LOCAL......................can be used by only one program

Use the "Tab" control displayed with title bar to select the type of object to be
edited:

Use the text-input field on the left of the toolbar to search for a variable prefix name.
In this case, research is processed on the entire list, from the beginning, based on
the current selection. The "Edit / Find" command is also available to search a text
string in variable names and comments, and to move the selection to this variable.
Search is always case insensitive.

A.10.2 Managing variables

The available "Files" menu commands work on the entire selected class of
variables, function block instances or defined words. Use the "Other" command to
select the type and range of objects to be edited.

Printing variables
Use the "Files / Print" command to print the currently edited list of variables or
defined words, on a standard Windows™ printer device. Printing is made using the
ISaGRAF document generator. The printout includes the complete description of
each variable or defined word of the currently edited type.

User's guide

CJ International A-75

Creating new variables
The "Edit / New" command allows the user to create new variables, function block
instances or defined words for the selected range and type. New variables are
inserted just before the variable currently pointed to by the selection bar. When this
command is run, an input box is opened to enter the variable description. When the
description is complete, pressing the "Store" button puts it onto the list. The input
box is automatically re-opened, so the user can enter other variables with the same
"Edit" command. Pressing the "Cancel" button of the dialog box breaks the variable
creation process.

Modifying existing variables
The "Edit" command of the "Edit" menu allows the user to modify the description of
the variable currently pointed at by the selection bar. When this command is run, an
input box is opened to modify the variable description. When description is
complete, pressing the "Store" button enables modification. The user also can
press "Next" and "Previous" buttons to extend the modification command to
adjoining variables. Pressing the "Cancel" button closes the dialog box without
storing any modification.

 Cut and paste
The ISaGRAF dictionary editing tool enables multiple-line selection. Many
commands are available to work on the currently edited list of variables. Below are
available "Edit" menu commands:

COPY................. Copy the selected group of variables to the dictionary clipboard
CUT.................... Copy the selected group of variables and remove it from the

edited list
CLEAR............... Remove the selected group of variables from the edited list
PASTE Insert the dictionary clipboard before the selected variable

Copy/Cut/Paste functions can be used from one list of variables to another. They
cannot be used between list of different object types.

Sorting variables
The "Tools / Sort" command sorts the variables or defined words of the currently
edited list. The sorting order is given by the attributes of the variables:
• first the internal variables
• then the input variables
• finally the output variables
Variables with the same attribute are sorted into alphabetical order. Defined words
are always sorted into alphabetical order.

Setting network addresses
Network addresses are optional. A variable with a non-zero network address can
be spied by an external system (for example a process visualisation system) at run
time. A network address may be entered for each variable, during its complete
description, when the variable is created or modified. The "Tools / Renumber
addresses" command allows the user to set up network addresses of an entire

User's guide

A-76 CJ International

group of variables. When this command is run, it acts on the group of variables
currently selected on the list. Entering a hexadecimal basis address (address for
the first variable of the group) results in network addresses of the variables of the
group being set with consecutive addresses. Entering a null basis address resets
to zero the network address of all the selected variables.

Importing boolean "true/false" strings
When editing defined words, the "Tools / Import true/false definitions" allows the
user to automatically define as language keywords the strings attached to boolean
variables to represent TRUE and FALSE states. Such strings are normally defined
for debug formatting. They have to be specified as defined words if they are to be
used in programs. This command searches for boolean true/false strings in the
declarations with the same range as the one currently selected for the editing of the
defined words.

A.10.3 Description of objects

A complete description must be entered for each variable, function block instance,
or defined word. Description fields are different for each type of object. The
following fields are common for any type of variables:

NameName of the variable: first character must be a letter,
following characters must be letters, digits or '_'.

Network addressHexadecimal network address (optional). When this field
is non-zero, the variable can be spied by external systems
at run time.

CommentFree comment for variable description.
RetainThis option indicates that the variable must be saved on

backup memory.

These are other description fields for a boolean variable:

AttributeSpecifies an internal, constant, input or output variable.
"False" string.................String used for false value at debug time.
"True" stringString used for true value at debug time.
Set to true at initThe initial value is TRUE if this option is checked,

otherwise the initial value is FALSE.

These are other description fields for an integer or real variable:

AttributeSpecifies an internal, constant, input or output variable.
Format............................Specifies an integer or real (floating) variable. Display

format used during debug can be selected.
Unit stringString used to identify the physical unit at debug time.
ConversionName of the conversion table or conversion function

attached to the variable (for input or output variables only)
Initial valueInitial value of the variable (must have the same format as

the variable). If not specified, the initial value is 0.

User's guide

CJ International A-77

These are other description fields for a timer variable:

AttributeSpecifies an internal or constant variable.
Initial valueInitial value of the variable (time value). If not specified,

the initial value is time#0s.

These are other description fields for a message variable:

AttributeSpecifies an internal, constant, input or output variable.
Maximum Length...........Specifies the maximum number of characters that can be

stored in the message.
Initial valueInitial value of the variable (length cannot exceed the

capacity of the message). If not specified, the initial value
is the empty string.

These are the description fields for a defined word:

NameName used in ST source files: first character must be a
letter, following characters must be letters, digits or '_'.

DefineString according to ST syntax that replaces the defined
word during compiling. Example: Name = PI -
Equivalence = 3.14159

CommentFree comment for defined equivalence

These are the description fields for a function block instance:

NameName of the instance, used in ST source files: first
character must be a letter, following characters must be
letters, digits or '_'.

Type................................Name of the corresponding function block in the library.
CommentFree comment for the function block instance.

A.10.4 Quick declaration

The "Tools / Quick declaration" command enables you to declare several
variables at the same time. Variables created by quick declaration are named using
a numbering convention. For that, you have to define:
- the index (number) of the first and the last variables,
- the text to be added before and after the number in variable symbols
- the number of digits used to express the number in variable symbols.
Additionally, you can specify basic attributes of created variables (internal, input or
output...), plus some properties depending on the variable type ("Retain" attribute,
integer or real format, message string maximum length).

You always need to define a text to be inserted before variable number, as a
variable symbol cannot start with a digit. When the "number of digits" is set to
"Auto", ISaGRAF formats the variable number on the minimum needed number of
digits. When number of digits is specified, ISaGRAF formats all numbers to the
specified length by adding leading '0' characters. Setting a fixed number of digits for

User's guide

A-78 CJ International

variable numbers can be very useful to prevent bad lexicographic sorting. Below are
some examples.

Example: This setting for quick declaration:

will create the three following variables:

Var9xx Var10xx Var11xx

Example: This setting for quick declaration:

will create 100 variables with names from MyVar001 to MyVar100

A.10.5 Modbus SCADA addressing map

ISaGRAF "network addresses" are often used to establish a link between ISaGRAF
system and a SCADA based on Modbus communication. In that case, the SCADA
is a Modbus master and ISaGRAF target acts as a Modbus slave. Network
addresses are used to create a virtual Modbus map for all ISaGRAF variables that
must be controlled from the SCADA. The "Tools / Modbus SCADA addressing
map" is a powerful to quickly create a Modbus virtual map with variables of the
application.
The mapping tools shows two lists. The upper one is a segment (4096 locations) of
the Modbus map, showing mapped variables (the ones having a network address).
The lower list shows unmapped variables (without network address defined). The
"0" address cannot be used to map a variable.
Use the "Map" and "Remove" commands of the "Edit" menu to move a variable
from one list to another, and thus build the map. Same actions can be performed by
double clicking on a variable symbol in a list, to send it to the other list. At any

User's guide

CJ International A-79

moment, you can use the "Segment" drop down list to view another segment of the
map.
The commands of the "Options" menu can be used at any moment to display
addresses either in decimal or in hexadecimal.
The "Edit / Find" commands is used to search for a declared variable, whether it is
already mapped or not.

A.10.6 Exchanging information with other applications

The ISaGRAF dictionary editing tool offers import/export functions in order to
exchange information with other applications, such as word processors,
spreadsheets, data base managers... These commands are grouped in the "Edit"
menu. The "Export text" command builds a pure ASCII text description of the fields
describing a set of edited objects, and stores this text either in the Windows
clipboard or in a file. Such information is typically used by another application. The
"Import text" command imports variable declaration description fields, described in
pure ASCII text format, stored either in the Windows clipboard or in a file, and
updates the currently edited list with imported fields. Such information is typically
produced by another application.

Exporting data
The following dialog box appears when the "Export text" command is run. It
enables the user to control the export mechanism.

Checking the "Complete list" choice indicates that the complete edited list has to
be exported. The current selection is ignored in this case. Checking the "Selected
variables" choice indicates that only highlighted variables will be exported.
If the "Clipboard" option is checked, the exported information is stored, in pure
ASCII text format, in the Windows clipboard. The text is then available for "paste"
commands in other applications. If the "File" option is checked, the exported text is
stored in an ASCII file. The complete pathname of this file has to be entered. The
"Browse" command may be used to find an existing pathname.

User's guide

A-80 CJ International

Then the user chooses a format for the exported text. The available formats are
described in further sections. Pressing the "OK" button runs the export function.
Pressing the "Cancel" button closes the dialog box and escapes from the export
command.
All the fields of the selected objects are stored in the exported text, in the standard
declaration order. The first line of the exported text contains the name of the fields.
Each object is described on one line of text. The "end of line" separator is the
standard MS-DOS sequence "0d-0a". The names used to identify the fields in the
first exported line may be changed, by pressing the "Keyword" button. This
command is described in further sections.

Importing data
The following dialog box appears when the "Import text" command is run. It
enables the user to control the import mechanism.

If the "Clipboard" option is checked, the imported information is taken from the
Windows clipboard, in pure ASCII text format. If the "File" option is checked, the
exported text is read in an ASCII file. The complete pathname of this file has to be
entered. The "Browse" command may be used to find an existing pathname.
The import function automatically recognises the format (separators) used in the
imported text. The available formats are described in further sections. Pressing the
"OK" button runs the import function. Pressing the "Cancel" button closes the
dialog box and escapes from the import command. The names used to identify the
fields in the first imported line may be changed, by pressing the "Keyword" button.
This command is described in further sections.
The first line of the text must contain the name of the fields, according to the order
used in the following lines. Each object must be described on one line of text. The
"end of line" separator is the standard MS-DOS sequence "0d-0a". Fields can
appear in any order. If some fields are missing, they are automatically filled in the
imported object description by default values. If an imported object already exists in
the edited list, the user has to confirm that it will be overwritten. The object
description is then updated with imported fields. If some fields are missing, they are
not updated in the object description.

Available text formats
Below is the list of available formats for export command. The import command
automatically recognises these formats.

• tab separators

User's guide

CJ International A-81

Description: Fields are separated by tab characters.

Example: Name Attribute Comment
level internal internal calculated water level
alrm1 output main alarm output

• comma separators

Description: Fields are separated by commas.

Example: Name,Attribute,Comment
level,internal,internal calculated water level
alrm1,output,main alarm output

• semicolon separators

Description: Fields are separated by semicolons.

Example: Name;Attribute;Comment
level;internal;internal calculated water level
alrm1;output;main alarm output

• commas and quotes

Description: Fields are separated by commas.
Each field is written between quotes.

Example: "Name","Attribute","Comment"
"level","internal","internal calculated water level"
"alrm1","output","main alarm output"

Keywords
The names used to identify the fields in the first imported or exported line may be
changed, by pressing the "Keyword" button. This command opens the following
dialog box:

The window shows the list of object fields, and the associated keywords. To modify
a keyword, the user must select a field in the list and press the "Modify" button.

User's guide

A-82 CJ International

Pressing the "Default" button restores the original list of keywords. Naming the
keywords must conform to the following rules:
• the name cannot exceed 16 characters
• the first character must be a letter
• the following characters can be letters, digits or '_' character
• the same name cannot be used for different keywords

Below are the standard keywords found in ISaGRAF:

Object name...Name
Text comment ..Comment
Network addressAddress
Attributes (internal, input, output)..............Attribute
Boolean 'False' stringFalse
Boolean 'True' string.................................True
Analog format (real or integer)..................Format
Analog unit stringUnit
Analog conversion name..........................Conversion
Message maximum length........................MaxLength
Function block library type........................Library
Defined word equivalenceEquivalence
Internal attributeInternal
Input attribute ...Input
Output attribute ..Output
Constant attribute.....................................Constant
Real analog formatReal
Integer analog formatInteger

User's guide

CJ International A-83

A.11 Using I/O connection editor

The aim of the I/O connection operation is to establish a logical link between the I/O
variables of the application and the physical channels of the boards existing on the
target machine. To make this link the user has to identify and set-up all the boards
of the target machine, and place I/O variables on corresponding I/O channels.
The list on the left shows the rack of the target machine, with board slots. A slot
may be free, or used by one I/O board or complex equipment. Each slot is identified
by an order number. The rack may contain up to 255 boards. The list on the right
shows the board's parameters and the variables connected on the selected board.
A board may have up to 128 I/O channels. The total number of single I/O boards
(including single equipments and boards of complex equipments) cannot exceed
255.

Icons
The icons displayed on the front face indicate the type and attributes of variables
that may be connected to the board channels. The ISaGRAF system does not allow
the connection of variables of different types on the same board. This is the
meaning of the used icons:

....................... boolean type

....................... integer/real type (both types of variables may be connected)

....................... message type

....................... inputs - no channel connected

....................... outputs - no channel connected

....................... inputs - at least one channel connected

....................... outputs - at least one channel connected

Below are the icons used to show the type of I/O device installed on a slot:

...................... complex I/O equipment

...................... real I/O board

...................... virtual I/O board

Below are the icons used to draw a parameter or a channel:

.................... board parameter
....................... free channel
....................... connected channel

 Moving boards in list
Use these buttons in the toolbar or "Edit / Move board up/down" menu commands
to move the selected I/O board one line up or down in the main list. The "Edit /
Insert slot" command inserts an empty slot at the current position.

User's guide

A-84 CJ International

A.11.1 Defining I/O boards

The "Edit" menu contains basic commands to define the selected board (set-up its
parameters), and to connect I/O variables to its channels.

Selecting I/O board type
Before connecting I/O variables to a board, the board identification must be entered.
A library of pre-defined boards is available on the ISaGRAF workbench. This library
may have been compiled by one or more I/O device suppliers. The "Edit / Set
Board/Equipment" command is used to set-up board identification. This command
can be used to select either a single board, or complex I/O equipment from the
ISaGRAF library. It is also possible to double click on a slot to set the
corresponding board or equipment.
All the channels of a single board have the same type (boolean, integer/real or
message) and direction (input or output). Real and integer variables are not
distinguished during I/O connection. A complex I/O equipment represents an I/O
device with channels of different types or directions. A complex I/O equipment is
represented as a list of single I/O boards. It uses only one slot in the rack list.

Removing a board
The "Edit / Clear slot" command is used to remove the currently selected board or
I/O equipment. If variables are already connected to the corresponding channels,
they are automatically disconnected when clearing the slot.

Real boards and virtual boards
The "Edit / Real/virtual board" command sets the validity of the selected board or
complex I/O equipment. The following icons are displayed in the rack list to show
the validity of a board:

...................... real I/O board

...................... virtual I/O board

In Real Mode, I/O variables are directly linked to the corresponding I/O devices.
Input or output operations in the application program tie directly to corresponding
input or output conditions of the actual field I/O devices. In Virtual Mode, I/O
variables are processed exactly as internal variables. They can be read or updated
by the debugger, so that the user can simulate the I/O processing, but no real world
connection is made.

Technical notes
The "Tools / Technical note" command displays the on-line user's guide of the
selected board or complex equipment. The board technical note is written by the
hardware supplier of the I/O board. It contains all the information about I/O board
management. It also describes the meaning of its parameters.

Removing connected variables
The "Tools / Free board channels" command disconnects all the I/O variables
already connected on the selected board.

User's guide

CJ International A-85

Defining comments for free channels
The "Tools / Free board channels" command disconnects all the I/O variables
already connected on the selected board.

A.11.2 Setting board parameters

To set the value of a board parameter, the user has to double click on its name in
the list on the right. It is also possible to select (highlight) it and choose the "Set
channel/parameter" command of the "Edit" menu. Parameters are listed at the
beginning of the list. The following icon is used to represent them in the list:

.................... board parameter

The meaning and input format of the parameter are designed by the supplier of the
corresponding I/O board or equipment. Use the "Tools / Technical note" command
or refer to your hardware manual for more information about board parameters.

A.11.3 Connecting I/O channels

To set the connection of a channel, the user has to double click on its location in the
list on the right. It is also possible to select (highlight) it and run the "Edit / Set
channel/parameter" command. The following icons are used to represent channels
in the list:

....................... free channel

....................... connected channel

The list contains all the variables which match with the selected board type and
direction. Only variables which are not yet connected are listed here. The
"Connect" button connects the variable selected in the list to the selected channel.
The "Free" button removes (disconnects) the variable from the selected channel.
"Next" and "Previous" buttons are used to select another channel of the board. The
location of the selected channel is always displayed in the title of the dialog box.

A.11.4 Directly represented variables

Free channels are the ones which are not linked to a declared I/O variable.
ISaGRAF enables the use of directly represented variables in the source of the
programs to represent a free channel. The identifier of a directly represented
variable always begins with "%" character.

Below are the naming conventions of a directly represented variable for a channel of
a single board. "s" is the slot number of the board. "c" is the number of the channel.

%IXs.c free channel of a boolean input board
%IDs.c free channel of an integer input board
%ISs.c free channel of a message input board

User's guide

A-86 CJ International

%QXs.c free channel of a boolean output board
%QDs.c free channel of an integer output board
%QSs.c free channel of a message output board

Below are the naming conventions of a directly represented variable for a channel of
a complex equipment. "s" is the slot number of the equipment. "b" is the index of
the single board within the complex equipment. "c" is the number of the channel.

%IXs.b.c free channel of a boolean input board
%IDs.b.c free channel of an integer input board
%ISs.b.c free channel of a message input board
%QXs.b.c free channel of a boolean output board
%QDs.b.c free channel of an integer output board
%QSs.b.c free channel of a message output board

Below are examples:

%QX1.6 6th channel of the board #1 (boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.

A.11.5 Numbering

Use the "Options / Numbering" command to set numbering conventions. You can
specify the number used for the first slot and the number used for the first channel
of each board in the following dialog box:

As default, slot numbering starts at index "0", and channel numbering starts at
index "1".

Warning: be very careful while changing numbering conventions as it has effect on symbols
used for directly represented variables and may lead to compiling errors if directly
represented I/O variables are used in existing programs.

User's guide

CJ International A-87

A.11.6 Setting individual protections

The ISaGRAF workbench provides a complete data protection system based on
hierarchised passwords. I/O connection can be globally protected by a password.
Additionally, ISaGRAF enables you to set individual protection to any I/O channel.
This assumes that:
- passwords are already defined in the password definition system (use the "Project
/ Set password" command of the Project Management window) so that protection
levels are available for individual protection.
- you use protection levels with higher priority for individual protection compared to
global I/O protection.

When an I/O channel has individual protection, a small icon is draw close to its
name in the I/O connection window:

Use the "Set protection" and "Remove protection" commands of the "Edit" menu
to set or remove an individual protection for selected channel. Both commands ask
you to enter a valid password so that a protection level can be attached to the
channel. Then, each time you want to change connection to a channel having
individual protection you must enter a password with sufficient priority level.

Warning: If a channel is protected with a level, and the corresponding password is removed
from protection system, and if no higher level password is defined, connection to
the channel cannot be changed anymore unless a new password with sufficient
level is defined.

User's guide

A-88 CJ International

A.12 Creating conversion tables

The ISaGRAF workbench allows the user to create conversion tables. A conversion
table is a set of points used to define an analog conversion. A conversion table can
be attached to an analog input or output variable. A table creates a proportional
relationship between electrical values (read on input sensor or sent to the output
device) and physical values (used in application programming).
Conversion tables are edited through a dialog box run by the "Tools / conversion"
command in the ISaGRAF dictionary window
A defined conversion table can be used to filter values of any input or output analog
variable of the selected project. Attaching a conversion table to a variable is made
using commands of the ISaGRAF dictionary, the variable declaration editor. An
input or output analog variable must then be selected and its parameters edited. A
variable cannot be attached to a conversion table that is not already defined.

A.12.1 Main commands

The "Conversion tables" dialog box shows the list of defined conversion tables,
and contains push buttons for main commands, to edit an existing table (define its
points), to create a new table, and also to rename or delete a table. Press OK to
quit the "Conversion tables" dialog box and save them on disk.

Creating a new table
The "New" command allows the user to create a new conversion table. Up to 127
conversion tables can be created for each project. Only used tables (the ones
attached to analog variables) are inserted in the application executable code.
Naming a table must conform to the following rules:
• the name cannot exceed 16 characters
• the first character must be a letter
• the following characters can be letters, digits or '_' character
• the table name is case insensitive

Changing the contents of a table
The "Edit " command is used to enter the points of a table selected from the list. It
is also possible to double click on the name of the table. The "Edit" command is
automatically called when a new table is created. At least two points must be
entered for each table.

A.12.2 Entering points of a table

The "Edit" dialog box allows the user to define the points of a conversion table. The
box shows on the left side the list of points already defined. The lower right box
shows the defined table as a graphic curve. The points are entered by using the box
commands. The user must comply with the number rules for the definition of points,
described at the end of this chapter. The box on the left always contains the list of
existing points for the currently edited table. The column on the left shows the

User's guide

CJ International A-89

electrical (external) value of the points. The column on the right shows the physical
(internal) values. The user has to select a point on the list in order to modify its
values or to clear (remove) it. The last choice of the list ("... ...") is used to define a
new point. The box on the lower right shows the currently edited table as a graphical
curve. No axes or co-ordinates are shown, as this is a proportional representation of
the curve. This representation is useful as a quick check that the curve is properly
defined.

Defining a new point
When defining a new point, select the last entry ("... ...") on the list of points. This
is also the default mode when starting to define a new conversion table. The user
has to enter the electrical (external) and the physical (internal) values of each point.
Values are stored as simple precision floating point numbers. Remember that at
least two points have to be entered to define a curve. When both values are
entered, pressing the "Store" button adds the point to the table. A maximum of 32
points can be defined for each conversion table.

Modifying a point
To modify the values of an existing point, first select it from the list. The new
electrical (external) and the physical (internal) values of the point can then be
entered. Values are stored as simple precision floating point numbers. When both
values are entered, pressing the "Store" button updates the point in the table.

Clearing a point
An existing point is cleared by selecting it from the list and pressing the "Clear"
button. Remember that at least two points must be entered to define a table.

A.12.3 Rules and limits

The rules shown below must be followed when defining a conversion table. The
table can be used to convert both input and output analog variables:
• Two points cannot be defined with the same electrical value
• The curve must be continuously increasing or decreasing
• Two points cannot be defined with the same physical value

The following limits apply when defining conversion tables for a project:
• No more than 127 conversion tables can be defined in the same project
• No more than 32 points can be defined for the same conversion table.

User's guide

A-90 CJ International

A.13 Using the code generator

The code generation window is automatically opened by the "Verify" and "Make"
commands of the other ISaGRAF Workbench windows. The code generation
window is not automatically closed when the requested code generation operation
ends, so that the user still has access to all the code generation commands and
options from the window menu.

A.13.1 Main commands

The "Files" menu contains the commands for program syntax checking and code
generation.

Make application code
The "Make" command constructs the entire code of the project. Before generating
anything, this command checks the syntax of the declarations and programs. Any
error that cannot be detected during single program compiling is detected during
code generation. This applies to tables of conversion, I/O variable connections and
links with the libraries. The code generation halts the compiling of a program when
errors are detected. This program must be corrected before continuing the code
generation. Programs which have already been checked (with no error detected)
and that have not been modified since their last "Verify" operation are not re-
compiled. Variable declaration verification and application coherence checking are
always processed. During program checking, the "Make" operation can be aborted
by hitting the ESCAPE key.

Note: If the declaration of a local variable of a program has been modified, this program is
verified. If a global variable has been modified, all the programs are verified.

Program syntax checking
The "Verify program" command allows the user to verify only one program. The
selected program is compiled even if it has not been modified since its last
verification. The "Verify dictionary" command allows the user to verify the
declarations of all the variables of the project.
The "Verify all programs" checks the syntax of all the programs of the project,
even if some of them have not been modified. This command does not stop when
an error is detected in a program. It can be used to produce a complete listing of all
the errors remaining in programs of the project. This command may be aborted by
hitting the ESCAPE key.

Simulating a modification
The "Touch" command simulates a modification of all the project's programs, so
that they are all verified during the next "Make" operation. The "Open" command is
used to open the last verified program. This command is very useful to directly
access a program where syntax errors have been detected.

User's guide

CJ International A-91

A.13.2 Compiler options

The "Compiler options" command is used to set-up main parameters used by the
ISaGRAF Code Generator to build and optimise the target code. The aim of this
command is to select the type of code which has to be generated, according to
corresponding ISaGRAF targets, and to set-up the optimiser parameters according
to the expected compiling time and application run-time requirements.
The "Upload" button opens a second dialog box with other options that enable the
embedding of zipped source code to downloaded code, in order to enable the
"Upload" feature. Refer to "Upload" documentation for further explanations.

Selecting targets
The upper list shows the list of available target codes that can be produced. The
">>" sign is used to indicate the selected target(s). The ISaGRAF Code Generator
can produce up to 3 different codes in the same compiling operation. Use the
"Select" and "Unselect" buttons to set the list of required target codes, according to
your target hardware. Below are the standard ISaGRAF targets:

SIMULATE: This code is dedicated to the ISaGRAF Simulator on the
Workbench. The simulator cannot be run if this target is not
selected to produce the application code.

ISA86M: This is a TIC code (Target Independent Code) dedicated to
ISaGRAF kernels installed on Intel based processors. The
processor type only concerns byte ordering in the generated
code.

ISA68M: This is a TIC code (Target Independent Code) dedicated to
ISaGRAF kernels installed on Motorola based processors. The
processor type only concerns byte ordering in the generated
code.

SCC: Selecting this target leads ISaGRAF compiler to produce
structured "C" language source code to be compiled and linked
with ISaGRAF target kernel libraries to produce an embedded
executable code.

CC86M:.............. Selecting this target leads ISaGRAF compiler to produce non
structured "C" language source code to be compiled and linked
with ISaGRAF target kernel libraries to produce an embedded
executable code. This selection is provided for compatibility with
ISaGRAF versions before V3.23, when structured "C" code
generation and integration were not supported.

Refer to your hardware manual to know the type of ISaGRAF target kernel installed
on your PLC. Other target types (machine code, C source code...) may be
supported in future releases of the ISaGRAF Workbench.

SFC processing
Check the "Use embedded SFC engine" box to enable the use of the ISaGRAF
SFC engine. This mode should be preferred as it leads to higher run time
performances. However, the target engine may be missing on some particular
implementations of the ISaGRAF target, of more commonly on customised targets
based on ISaGRAF code post-processing. In this case you may have to remove this

User's guide

A-92 CJ International

option and let ISaGRAF compiler translate SFC charts into low level instructions.
Refer to your hardware documentation for more information about the use of this
option.

Optimiser options
Below are the parameters, used by the ISaGRAF Code Generator to optimise the
target code, that can be set from the "Compiler options" dialog box. The "Default"
button is used to remove all optimising options, in order to reduce the compiling
time.

When the "Run two optimiser passes" option is set, the ISaGRAF Code Optimiser
is run twice. Optimisations made during the second pass are generally less
significant than the ones made in the first pass.

When the "Evaluate constant expressions" option is set, constant expressions
are evaluated by the compiler. For example, the numerical expression "2 + 3" is
replaced by "5" in the target code. When this option is not set, constant expressions
are calculated at run-time.

When the "Suppress unused labels" option is set, the Optimiser simplifies the
system of jumps and labels of the programs, in order to suppress unused target
labels or null jumps.

When the "Optimise variable copying" option is set, the use of temporary
variables (used to store intermediate results) is optimised. This option is commonly
used with the "Optimise expressions" option. When this option is set, the
Optimiser re-uses the result of expressions and sub-expressions which are used
more than once in the program.

When the "Suppress unused code" option is set, the Optimiser suppresses the
code which is not significant. For example, if the following statements are
programmed: "var := 1; var := X;", the corresponding generated code is only: "var
:= X;".

When the "Optimise arithmetic operations" option is set, the Optimiser simplifies
arithmetic operations according to special operands. For example, the expression
"A + 0" will be replaced by the "A". When the "Optimise boolean operations"
option is set, the Optimiser simplifies boolean operations according to special
operands. For example, the boolean expression "A & A" will be replaced by "A".

When the "Build binary decision diagrams" option is set, the Optimiser replaces
the boolean equations (mixing AND, OR, XOR and NOT operators), by a reduced
list of conditional jump operations. The translation is operated only if the expected
execution time of the jump sequence is less than the one expected for the original
expression.

The following table summarises the expected optimisation and requested compiling
time corresponding to each parameter:

User's guide

CJ International A-93

gain (performances) compiling time
Run 2 passes xxxx ... (*)
Optimise constant expressions xxxxxxxxxxxx
Suppress unused labels xxxx ...xxxxxxxx
Optimise variable copying xxxx ...xxxxxxxx
Optimise expressions xxxx ...xxxxxxxx
Suppress unused code xxxx ...xxxxxxxx
Optimise arithmetic operations xxxxxxxxxxxx
Optimise boolean operations xxxxxxxxxxxx
Build binary decision diagrams xxxxxxxxxxxxxxxxxxxxxx

(*) The compiling time is also multiplied by 2.

A.13.3 Producing C source code

The ISaGRAF workbench enables the production of source code in "C" language. In
this case, the whole contents of the application, including SFC chart description,
data base definition and sequences of code are generated in "C" source code
format. There are two possibilities, proposed as two styles of generated code:

CC86M (C source code - V3.04) produces non-structured "C" source
code. This style should be selected if your target software is
based on ISaGRAF release previous to 3.23.

SCC (structured C source code) produces a structured "C" source
code. This style should be preferred if your target software is
based on ISaGRAF release 3.23 or later.

The following two files are created in the project directory:
APPLI.C common source code of the application
APPLI.H common "C" language definitions

In the case structured "C" source code generation, a ".C" source file and a ".H"
definition file are created for each program of the application, in addition to common
"APPLI.C" and "APPLI.H" files. These files must be compiled and linked to the
ISaGRAF target libraries in order to produce the final executable code. Refer to the
"ISaGRAF I/O development toolkit User's Guide" for further information about
recommended implementation techniques.

Note: Some debugging features such as application downloading, on line modification and
breakpoints are no more available when the ISaGRAF application is "C" compiled.

A.13.4 Viewing information

The "Edit" menu contains the commands for viewing the different text files built
during code generation or syntax checking operations on the code generator
window. The code generation window is a text area that contains messages during
code generation or syntax checking operations. All information is stored on the disk
so it can be examined using the "Edit" menu commands.

User's guide

A-94 CJ International

Editing commands
The "Clear Screen" command is used to clear the window text area. The window is
automatically cleared before each code generation or syntax checking operation.
The "Copy" command is used to copy the displayed text in the clipboard of
Windows, so it can be used by other applications such as ISaGRAF text editors.

Viewing compiler output messages
The "Execution messages" command shows all the messages displayed during
the last "Make" or "Verify" operation on the window text area. This applies to all the
error messages.

Other choices of the "Edit" menu allow the user to monitor auxiliary text files
created during syntax verification and code generation. These files are not usually
used for a common ISaGRAF project.

A.13.5 Defining resources

The "Resources" command of the "Options" menu allows the user to define
resources. A resource is any user-defined data (network configuration, hardware
setting...) of any format (file, list of values) which has to be merged with the
generated code, in order to be downloaded with it in the target PLC. Such data is
not directly operated by the ISaGRAF kernel, and is commonly dedicated to other
software installed on the target PLC. Refer to your hardware manual for further
information about available resources.

The resource definition file
The resources are defined in a "Resource definition file" stored with other files of
the ISaGRAF project. This is a pure ASCII text file, processed by the ISaGRAF
Resource Compiler. This compiler is automatically run when the application code is
built. This section explains the syntax of this file. The resource definition file uses
lexical rules of the ST language. Comments, beginning with "(*" and ending with "*)"
characters can be inserted anywhere in the text. Strings are delimited by single
apostrophes. Refer to the second part of this manual for more explanations about
the lexical formats used to enter numerical values.

Language reference
Below is the list of keywords and statements used in a resource definition file.

ULONGDATA

Meaning: Specifies a resource which is a list of integer values. Values are
stored in target code as unsigned 32 bit integers. Values are stored in
the order specified in the resource definition file. Values must be
separated by comas. The name of the resource cannot exceed 15
characters.

Syntax: ULONGDATA '<resource_name>'
BEGIN

User's guide

CJ International A-95

...target_selection...

...list of values...
END

Example: ULongData 'MYDATA'
Begin
...
0, -1, 100_000, (* decimal *)
16#A0B1, 2#1011_0101 (* hexadecimal, binary *)

End

VARLIST

Meaning: Specifies a resource which is a list of variable addresses. Variables
are identified by their name in the resource definition file. Variable
addresses are stored in target code as unsigned 16 bit integers.
Addresses are stored in the order specified in the resource definition
file. Variables must be separated by comas. The name of the
resource cannot exceed 15 characters.

Syntax: VARLIST '<resource_name>'
BEGIN
...target_selection...
...list of variable names...

END

Example: VarList 'LIST'
Begin
...
Var100, MyParameter, Command, Alarm

End

BINARYFILE

Meaning: Specifies a Binary File resource. The source data is stored in an MS-
DOS file. The target resource definition is completed with a target
pathname. End of line characters are not converted by the ISaGRAF
Resource Compiler. The name of the resource cannot exceed 15
characters.

Syntax: BINARYFILE '<resource_name>'
BEGIN
...target selection...
FROM '<source_pathname>'
TO '<destination_pathname>'

END

Example: BinaryFile 'MYFILE'
Begin
...
From 'c:\user\config.bin'
To '/dd/user/appl/config.dat'

End

User's guide

A-96 CJ International

TEXTFILE

Meaning: Specifies a Text File resource. The source data is stored in an ASCII
file. The target resource definition is completed with a target
pathname. End of line characters are converted by the ISaGRAF
Resource Compiler according to the target host system conventions.
The name of the resource cannot exceed 15 characters.

Syntax: TEXTFILE '<resource_name>'
BEGIN
...target selection...
FROM '<source_pathname>'
TO '<destination_pathname>'

END

Example: TextFile 'MYFILE'
Begin
...
From 'c:\user\config.bin'
To '/dd/user/appl/config.dat'

End

TARGET

Meaning: Specifies the name of a target code that has to include the resource.
Refer to the previous section (compiler options) for further information
about handled targets. The "Target" statement can appear more than
once in the same resource block, in order to select several targets.
This statement cannot be used if the "AnyTarget" statement is
specified.

Syntax: TARGET '<target_name>'

Example: BinaryFile 'MYFILE'
Begin
Target 'ISA86M'
Target 'ISA68M'
...

End

ANYTARGET

Meaning: Specifies that the resource must be merged to all the target codes
built by the Code Generator. The ISaGRAF Code Generator can
produce several target codes during the same "Make" command. This
statement cannot be used if one or several "Target" statements are
specified.

Syntax: ANYTARGET

Example: ULongData 'MYDATA'

User's guide

CJ International A-97

Begin
AnyTarget
...

End

FROM

Meaning: Specifies the source pathname (on the PC where the ISaGRAF
Workbench is installed) of a BinaryFile or TextFile resource. The
characters used to isolate the components of the pathname (drive,
directory, prefix, suffix) must conform to the MS-DOS system
conventions.

Syntax: FROM '<target pathname>'

Example: BinaryFile 'MYFILE'
Begin
...
From 'c:\user\config.dat'
To '/dd/user/appl/config.dat'

End

TO

Meaning: Specifies the destination pathname (on the target system) of a
BinaryFile or TextFile resource. The characters used to isolate the
components of the pathname (drive, directory, prefix, suffix) must
conform to the target host system conventions.

Syntax: TO '<target pathname>'

Example: TextFile 'MYFILE'
Begin
...
From 'c:\user\config.dat'
To '/dd/user/appl/config.dat'

End

Example
Below is a complete example of a resource definition file:

(* resource definition file *)

ULongData 'DATA1' (* list of values *)
Begin
 Target 'ISA86M' (* for this target only *)
 1, 0, 16#1A2B3C4D, +1, -1 (* numerical values *)
End

VarList 'VLIST1' (* list of variables *)
Begin
 Target 'ISA86M' (* for this target only *)
 Valve1, StateX, Command, Alrm1 (* variable names *)

User's guide

A-98 CJ International

End

BinaryFile 'FILE1' (* binary file resource *)
Begin
 AnyTarget (* dedicated to all targets *)
 From 'c:\user\updatef.bin'(* source file on PC *)
 To 'updatef.cfg' (* target file on PLC *)
End

TextFile 'FILE2' (* text file resource *)
Begin
 Target 'ISA68M'
 From 'c:\nw\nwbd.txt' (* source file on PC *)
 To '/nw/dat/nwbd' (* target file on PLC *)
End

Resource compiling
If resources have been entered in resource definition file, a dialog box appears at
the end of ISaGRAF code generation. Press the "Start compile" button to run
resource compiler. Output messages and errors will be displayed in the main
control. Press "Exit" to avoid resource compiling. In this case, resources will not be
added to the ISaGRAF code.

Implementation
The number of resources, the size of data rows and files are not limited by
ISaGRAF. Resources are stored at the end of the generated code, with a resource
directory. Below is the format (using C notations) of the resource directory format:

__RESOURCE:
{
 long nbres; /* number of defined resources */
 {
 char name[16]; /* resource name */
 long type; /* resource data type */
 long size; /* exact size of data block */
 uint32 data;
 uint32 path_offset; /* points to a string */
 } /*nb of records */
}

Below are the possible values of the "type" field:
• 1 = binary file
• 2 = text file
• 3 = ulong data (path_offset field is not used in this case)
• 4 = variable list (path_offset field is not used in this case)

For text files, end of line characters are translated by the resource compiler,
according to the target system conventions. All pointers are 32 bit offsets from the
address of the corresponding structure. All resource names and pathnames are
NULL terminated strings. Pathnames and data follow the resource directory.

User's guide

CJ International A-99

A.14 Cross References

The ISaGRAF workbench includes a cross-reference editor which provides user
with a total view of the declared variables in the project's programs, and where they
are used. The aim of the cross reference is to list all the variables declared in the
project, and to localise, at the source of each program the parts of source code
where those variables are used. The cross-references are very useful for a global
view of one variable life cycle. They help localise side effects, and reduce the time
to understand the project during the maintenance. The cross-references may also
be used for a global view of the complete dictionary of a project, so unused
variables are easily found and the complexity of the project measured.
The list on the left shows the declared objects of the project (programs, variables
and defined words), and the library elements (functions and function blocks)
referenced in the project. The list on the right shows the occurrences in the
programs of the object currently selected in the first list.
The description of an occurrence includes the program name, the number of the FC
or SFC step, transition or test, plus line number for text languages or co-ordinates
for LD or FBD diagrams. For quick LD diagrams, the description is completed with
the number of the rung. If the variable is used as an output (on a coil) the rung
number is followed by a star ("*") character.
Set the "Show unused variables" option from the "Options" menu to display also
in main list variables that are not used in the application programs.

Object type selection
Because a project can group a huge number of declared objects, the combo box in
the editor toolbar is used to select the type of objects which must be listed in the
window. This allows the user to have access to selected information.
Each time the cross-references are re-calculated, the selection is reset to "All
objects" in order to present the complete list.

Re-calculate cross-references
The "File / Re-calculate" command can be used at any time to update the cross
references according to the modifications entered in other ISaGRAF editing
windows.

Export cross-references
The "Tools / Export" command is used to write the complete listing of the cross-
references in an ASCII text file. This file can then be opened with other applications
such as Windows NotePad or word processors.

Dictionary errors
The "Edit / Dictionary errors" command displays in a dialog box the list of errors
detected when the project dictionary was loaded.

Statistics
The "Tools / Statistics" command displays in a dialog box the number of objects
and variables declared in the project, according to variable types and attributes. A

User's guide

A-100 CJ International

particular application of this command is to know the number of I/O variables
declared in the project, in order to ensure that it can be compiled, if a limited version
of the ISaGRAF Workbench is used.

Search in object list
The "Edit / Search" command allows the user to directly select an object in the
editor list. The searched object cannot be found if it is not actually listed (when
using a selected display). It is recommended, before searching for an object, to
activate the "All" selection in the toolbar.

Open program
The list on the right contains the occurrences of the selected object in the source
files and I/O connection of the open project. The "Edit / Open program" command
enables the user to directly open a program where the object appears. It is also
possible to double click the mouse on an occurrence (in the occurrence list) to open
the corresponding program.

User's guide

CJ International A-101

A.15 Using the graphic debugger

ISaGRAF includes a complete graphic and symbolic debugger. The "Debug"
command of the program management window runs the debugger to control the
application downloaded in the target PLC. In this mode, the debugger
communicates with the target system via hardware link. The "Simulate" command
of the program management window simultaneously runs the debugger and a
complete target simulator. This enables the user to test his application when the
target's I/O system is not yet complete. The debugger window contains the
commands to control the entire application.
When the debugger starts, and if the application in the target PLC is the same as
the one on the workbench, it automatically opens the program management
window, in debug mode. Commands of this window may be used to open other
ISaGRAF windows (graphic and text editors, dictionary, lists of variables, I/O
connection...). All windows opened during a debug session operate in "debug
mode", meaning that the editing command is disabled. Displayed program
components (steps, transitions, variables...) are shown with their current run time
status or value. Double clicking on an object changes its status or value in the
target application.
When running the debugger in simulation mode, communication with the
ISaGRAF target system is stopped. The debugger only communicates with the
simulator window. Because the target system does not exist in this mode, the
"download", "stop" or "activate" commands are not available on the debugger
menu.

A.15.1 The debugger window

The debugger window only contains information about the complete application
status. It is linked to other ISaGRAF windows creating a complete interactive debug
system. Detected run time errors are displayed in the bottom area of the debugger
window. Commands from the "Options" menu are used to hide, show or clear the
list of errors.

The control panel (area under the debugger menu) shows the global status of the
target application, and information about the execution cycle timing. The list of
possible target status is as follows:
Logging:.........................Debugger establishes communication with the target

system.
Disconnected:................Debugger cannot communicate with the target system.

Ensure connection cable and communication parameters
are valid.

No application:Connection is OK, but no ISaGRAF application currently
exists in the target system. Download an application.

Application active:.........Connection is OK and an active application exists in the
target system. Debugger is now establishing the
communications with this application, if it is the same as
the one on the Workbench.

RUN:Target application is in "Real Time" mode.

User's guide

A-102 CJ International

STOP:Target application is in "Cycle to Cycle" mode.
BreakPoint:Target application is in "Cycle to Cycle" mode, because a

breakpoint is encountered.
Fatal Error:Target application failed because a serious error

occurred.

Information on the run time cycle timing is as follows:
Allowed:programmed timing.
Current:exact timing of the last complete execution cycle.
Maximum:maximum timing detected since the application started.
Overflow:........................number of execution cycles detected with a timing greater

than the allowed timing.
All time values are given in milliseconds. Time values are not displayed when
debugger is used in simulation mode.

A.15.2 Controlling the application

The "File" and "Control" menus contain the commands for the installation and the
control of the currently edited ISaGRAF application on the ISaGRAF target system.

Note: Some of these commands are not available during simulation, because the
application processed by the simulator is automatically installed by the ISaGRAF
Workbench.

Stop the target application
The "File / Stop application" command stops the execution of the application
currently active in the ISaGRAF target system.

Activate the target application
The "File / Start application" command runs the application existing in the target
system. When an application is downloaded, it is automatically started, so that the
"Start" command does not have to be used. The "Start" command is typically used
after a "Stop" command.

Note: the target application must be stopped (inactive) before it is possible to download a
new application.

Download the application
The "File / Download" command is used to download the application code in the
target system. Select the type of code to be downloaded, according to the target
system processor and the application options.

Display version number
The "File / Get version number" command is used to display complete
identification of both Workbench and target applications. The Workbench
application is the one currently open on the ISaGRAF Workbench. The target
application is the one executed in the target ISaGRAF PLC. The following items are
displayed:

User's guide

CJ International A-103

VERSION:This is the version number of the application code. This
number has been calculated by the code generator.

DATE:This item shows the date and time when the code has
been built.

CRC:This is a checksum calculated with the contents of the
table of symbols. This number has been calculated by the
code generator. This value depends on the contents of
the dictionary of variables.

Note: The "Get version number" command is also available during simulation. In real
debug mode, this command cannot be used if the target PLC is not connected.

On line modification
The "File / Update application" command enables the user to achieve "on line
modification" of the running target application. This command is detailed in further
sections of this chapter. It is not available when the debugger is used in simulation
mode.

Real Time mode
The "Control / Real time" command is not available when no application is active.
It sets the target application in normal "real time" mode: Normal mode: the
execution cycles are triggered by the programmed cycle timing.

Cycle to Cycle mode
The "Control / Cycle to cycle" command is not available when no application is
active. It sets the target application in normal "cycle to cycle" mode: In this mode,
cycles are executed one by one, according to the "Execute one cycle" commands
made by the user from the debugger menu.

Execute one cycle
When target is in cycle to cycle mode, the "Control / Execute one cycle"
command runs the execution of one cycle.

The cycle timing
The "Control / Change cycle timing" command enables the user to modify the
programmed cycle timing. This time is titled as "Allowed" in the debugger control
bar window. The "Cycle to cycle" mode should be set before modifying the cycle
timing. The cycle timing is entered as an integer number in milliseconds.

Remove all breakpoints
The "Control / Clear all breakpoints" command removes all the breakpoints
currently installed (encountered or still active) in the whole application. Existing
breakpoints are not automatically removed when the debugger window is closed.

Unlock I/O variables
The "Control / Unlock all IO variables" command unlocks all the I/O variables
currently locked in the application. When an I/O variable is locked, no input or
output status change is made to the corresponding I/O device. Variables attached

User's guide

A-104 CJ International

to the I/O can still be written by the application or by the debugger. Currently locked
I/O variables are not automatically unlocked when the debugger window is closed.

A.15.3 Options

The "Options" menu contains the options to control the information displayed in the
debugger window.

The communication parameters
The communication timing parameters can be adjusted when the debugger is
active. Only communication time-outs can be set here. Other communication
parameters (baud rate, parity...) must be set from the "Debug" menu of the
Program Management window.
The "Communication time-out" is the time left for the target system to begin the
answer to one workbench request. The "Cyclic refresh duration" is the time period
required for the "read" requests to be sent by the debugger in order to refresh data
in the opened windows.
All the time values are displayed and entered as integer numbers in milliseconds.
The communication timing parameters cannot be set when the debugger is used in
simulation mode.

Display options
The "Show cycle timing" option enables the user to hide or show the cycle timing
values in the debugger control bar. When this option is set, all the cycle timing
components (allowed, current, maximum, overflows) are displayed and refreshed.
Disabling this option reduces the debugger communication burden.
When the "Show errors" option is set, detected run time errors are listed in the
bottom area of the debugger window. When this option is disabled, the error list is
closed. Removing this option reduces the debugger display and communication
burden. The "Options / Clear errors" command clears the list of run-time errors
currently displayed in the debugger window.
The "Options / minimise window" command reduces the size of the debugger
window so that it is shown as a small, always on top, panel containing only the
application status and graphic buttons for most commonly used commands.

A.15.4 "Write" commands

The ISaGRAF symbolic debugger offers many commands to change the value or
status of the application components. Selecting the component to be changed is
done by double clicking on its name or its drawing in an editing window, when the
debugger window is opened.

Variables
A variable status is changed by double clicking on its name in one of the following
windows:
• Dictionary
• Lists of variables or time diagrams
• LD or FBD Programs

User's guide

CJ International A-105

• I/O connection

The following commands are offered in the debug dialog box:
• Write the variable to a new value
• Lock the variable (for I/O variables only)
• Unlock the variable (for locked I/O variables only)
• Start or stop a timer variable (set automatic refresh mode)

Symbolic values used to represent boolean FALSE and TRUE values are the
strings defined for that specific boolean variable in the dictionary. The analog value
specified for a "Write" command must be entered in an integer or real format,
according to the variable definition in the dictionary. The string specified for a
"Write" command for a message cannot be longer than the message capacity
attached to that specific variable in the dictionary.

SFC objects
To observe a control operation on an SFC program while debugging the
application, commands of the "File" menu are used in the Program Management
window. The SFC program must be selected from the list of programs. The
following commands are available:

Start SFC program:Enables the selected program by putting an SFC token
into each of its initial step.

Kill SFC program:Kills the selected program by removing all its existing
tokens.

Freeze SFC program:Suspends the execution of the selected program.
Restart SFC program: ...Restarts a frozen (suspended) program.

For child programs, these commands correspond to the "GSTART", "GKILL",
"GFREEZE" and "GRST" functions in the programming language.

A control operation can be seen in an SFC step when debugging the application by
double clicking on its graphic representation in the SFC editing window. The
following commands are available in the debug dialog box:
• Install a breakpoint on the step activation
• Install a breakpoint on the step de-activation
• Clear breakpoint added to the step

Note: Activation and de-activation breakpoints cannot be added to the same step.

A control operation can be seen in an SFC transition when debugging the
application by double clicking on its graphic representation in the SFC editing
window. The following commands are proposed in a debug dialog box:
• Add a breakpoint on the transition clearing
• Clear a breakpoint added to the transition
• Manually clear the transition (move or add tokens)

Conditional clearing: a token is created on the steps following the transition. The
tokens existing in the preceding steps are removed. Unconditional clearing: a

User's guide

A-106 CJ International

token is created on the steps following the transition. The tokens existing in the
preceding steps are not removed.

A.15.5 On line modification

The "On line modification" feature enables the user to modify the application while
the process is running. This is sometimes necessary for chemical processes where
any interruption may jeopardise production or safety. This function should be used
very carefully. ISaGRAF may not be able to detect all possible conflicts generated
by user defined operations as a result of these on-line changes.

Code sequences
As ISaGRAF offers many possibilities for access to variables, programs or I/O
boards from the debugger, the "On line modification" function described here
applies only to the code sequences modification. A sequence of code is a complete
set of ST, IL, LD or FBD instructions executed in a row. In a "beginning of cycle" or
"end of cycle" program, a code sequence is the entire list of instructions written in
the program. In an SFC program, a code sequence is the Level 2 programming of
one step or transition. The "On line modification" consists of replacing one or more
code sequences, without stopping the PLC execution cycle. As the control of the
SFC tokens is very critical, it is not possible to modify an SFC structure, to add,
renumber or remove a step, a transition or an SFC program.

Variables
As the variable database is a very critical part of the application, it can be accessed
at any time by other processes (on multitasking PLC). It is also possible to modify
variable values from the debugger. Therefore, ISaGRAF does not allow the user
to add, rename or remove a variable on line. Anyway, it is possible to modify the
way a variable is used in the application. It is also possible to reserve "unused"
internal or I/O variables in the first version of the application, so that future
modifications can make use of them.
They are different styles of variables in ISaGRAF target database. Limitations act
on all of them:

- Declared variables

They are the ones declared using the ISaGRAF dictionary. They cannot be changed
and cannot be renamed for on line change. It is recommended that some extra
variables are declared and initialised in the application even if not used today. Such
extra variables will enable future modifications to work on without changing the
application data checksum.

- Instances of function blocks

Each instance of "C" or IEC written function block corresponds to data stored in
ISaGRAF target real-time database. When function block instances are added or
removed, On Line change is no more possible. So it is better to work in ST with FB
instances declared in dictionary, rather than adding blocks (that will correspond to
new automatically declared instances) in Quick LD or FBD diagrams. Also, any

User's guide

CJ International A-107

modification in the definition of available function blocks in the ISaGRAF library will
lead to an impossible On Line change.

- Steps

Each SFC step corresponds to a piece of data where are stored SFC step dynamic
attributes (its activity time and flag). Adding or removing SFC steps change the
application database and is denied for On Line change.

- Hidden variables allocated by compilers

The ISaGRAF Compiler generates "hidden" temporary variables to solve complex
expressions. In some case, the change of an expression may lead to a different set
of non-visible temporary variables, and that leads to an impossible On Line change.
To avoid this situation, you can add the following entries in ISA.INI file, in order to
force a minimum number of temporary variables to be allocated for each program,
even if not used for the compiling of the first application version. Values given here
are examples:

[DEBUG]
MNTVboo=8 ; for booleans
MNTVana=4 ; for integers and reals
MNTVtmr=4 ; for timers
MNTVmsg=2 ; for messages

When such a setting is written in ISA.INI, the compiler outputs a warning message if
a new compiling of the application leads to a greater number of allocated temporary
variables.

Inputs and outputs
As the ISaGRAF I/O system is very open, required modifications should be
implemented by the OEM, using specific features of the corresponding hardware.
The ISaGRAF system does not allow the user to add, connect or remove an I/O
variable, or to modify the description of an I/O board on line. Operations such
as modifying board parameters and locking I/O channels are available using
standard OEM features and the "OPERATE" function.

Run time operations
Modifying a running application consists of the following operations:
• modify the application source code on the workbench
• generate the new application code
• download the new application code using "update" command instead of
"download"
• switch from the old application to the new one, in between PLC execution cycles
using the "Realise update" command.

This procedure guarantees that the target PLC always has a complete and reliable
running application, and enables the user to control the timing of the sample
operations in a very safe and efficient way. It also enables the user to modify the
project as often as possible. Regardless to the process itself, the "On line
modification" is essentially the same as a normal "stop, start and download" set of

User's guide

A-108 CJ International

commands. The only differences are that no variable state is lost, and the switching
time is very short (usually 1 or 2 cycle duration). During the switch, no variable is
modified, and all internal, input or output variables keeps the same value
before and after the application modification. During the switch, no action is
performed, and SFC tokens are not moved.

Memory requirements
In order to support the "On line modification" capability, the target PLC must have
free memory space to enable the storage of the modified version of the application
code. Both versions of the application code have to be stored in PLC memory
during the switch operation.

Limitations
As described before, only modifications to code sequences are allowed. Variable
definition, application parameters and I/O connections cannot be modified. When
downloading a modified version of the application, ISaGRAF makes a comparison
between the modified application and the running one, in order to detect any unsafe
change. If the switch seems dangerous or impossible, a download error is
generated. One of the safeguards performed by ISaGRAF is to compare the symbol
table checksum, so that any variable, program, or SFC element name change is
detected. If a step is active when the switch occurs, its non-stored (N) actions are
lost. The new step activation actions are not executed. Actions executed at the de-
activation of the step are the ones carried over in the new application code. If a
transition is valid when the switch occurs, its receptivity equation is updated. The
new downloaded application code is not backed up on the PLC. The backup is the
version which was previously downloaded with standard download commands.

Operations
To update the code of a running application, the following operations have to be
performed:
• Before making any change on a running application, it is highly recommended to
make a copy of the current project under another name. The modifications may be
performed on the copies.
• Before editing any program, the user should check that the "update diary" option
of the editing tools is set, to ease future program maintenance.
• When one or more sequences have been modified (without modifying SFC
structures and program hierarchy), the code of the new application must be
generated on the workbench before downloading.
• Using the debugger, from within the old project, the user must connect the target
PLC and perform any operation which can make the application update faster or
more safety.
• Using the debugger, from inside the new project, the user must connect the target
PLC. If the application name is changed, the target database cannot be accessed.
The user must run the "File / Update" command.
• The modified application is downloaded by selecting the "update later" option.
This may slightly slow down the PLC during transfer.
• When download is complete, the user can run the "File / Realise update"
command to enable the switch at the most adequate moment. The switch will have
a 1 or 2 cycle duration.

User's guide

CJ International A-109

• When the switch has been correctly performed, the programs of the modified
running application are displayed. If not, the existing running application remains as
is.

A.15.6 DDE exchanges

The ISaGRAF debugger includes a DDE (Dynamic Data Exchange) server. An
advice loop can be installed between the ISaGRAF debugger and other
applications, in order to dynamically display the current value of variables in non-
ISaGRAF applications.
Only "advise" and "poke" transactions are supported by the ISaGRAF debugger
DDE server. You can use "request" transaction only for variables already spied in
an advice loop. Other DDE services such as "execute" are not available. When an
advice loop is established on a variable, the value of this variable is updated in the
client application each time it changes. Variables of any type can be spied. The
identification of the dynamic link includes the following names:

Service name: "ISaGRAF"
Topic name: Name of the ISaGRAF project
Item name: Name of the variable

If the variable is local to a program, its name must be followed by the name of its
father program, written between parentheses, with the following syntax:

variable_name(program_name)

The ISaGRAF debugger DDE server is dedicated to the ISaGRAF application
currently spied by the debugger. Up to 256 variables can be spied by the ISaGRAF
server. The DDE server may be used when the ISaGRAF debugger runs in either
connected or simulation mode. The refresh duration is the one established for
communication between the debugger and the ISaGRAF target system or
simulator.

User's guide

A-110 CJ International

A.16 Spying Lists of variables

The "Spy lists " command in the "Spy" menu of the Debugger window enables the
user to build non-contiguous lists of variables which are refreshed with their current
values. Lists are built when debugging the application. The lists can be stored on
the disk and opened again during other debug sessions. A list may contain up to 32
variables. Variables of different types may be mixed in the same list. Global and
local variables can be inserted in a list. A list of variables is dedicated to one
particular project. Lists of variables are very useful for the functional testing of an
application. They allow the user to watch the changes of a limited part of the
controlled process, independent of the corresponding source code in the application
programs. Lists of variables are also useful while debugging ST and IL text
programs. The user can easily group in a list the set of variables used in a program,
in order to control or monitor the execution of the programmed instructions.
For each variable of the list, ISaGRAF displays its name, its current value and its
comment text. Columns can be resized by dragging separation lines with mouse in
the list title bar.

Saving lists on hard disk
The commands of the "File" menu are used to create, open and save the lists of
variables. The number of lists for one project is not limited by ISaGRAF. While
naming the lists of variables to be saved on disk, the rules shown below have to be
followed:
• name cannot exceed 8 characters
• the first character must be a letter
• the following characters can be letters, digits or underscore character
• naming of lists is case insensitive

The list editor cannot display more that one list of variables at a time in the same
window. However, the list editor can be run more than once, in order to spy different
lists simultaneously.

Inserting variables in the list
The "Edit / Insert" command inserts another variable in the list. The variable name
is selected in the list of objects defined in the project dictionary. This way the user
does not have to manually enter the identifier. The variable is inserted before the
variable currently selected in the list. The list cannot contain more than 32 variables.
The same variable cannot appear more than once in the same list.

Changing the selected variable
The "Edit / Modify" command replaces the selected variable by another variable.
You can also use the "Cut" command to remove the selected variable from the list.

Dump display
At any time, you can swap viewing mode between list and "Dump" view. Press the
"zoom" button in toolbar or use "Options / Dump" command to swap viewing mode.

User's guide

CJ International A-111

In "Dump" mode, only one variable value is displayed. Its value is displayed in
numerical/symbolic format at the top of the window, and is also displayed in binary
"dump" format. This mode allows you to spy hexadecimal value of each byte in the
variable value.

"Dump" display is very useful for spying and understanding message strings
containing non-printable characters.

User's guide

A-112 CJ International

A.17 Debugging ST and IL programs

During simulation or On Line debugging of ST and IL program, no modification can
be entered in the program text.

IL For IL programs, instructions are formatted in a list view. Current value of a variable
used in an instruction is displayed on the same line. You can double click on an
instruction to change the value of the corresponding variable.

ST For ST programs, a Spy List window is embedded in the editor window. You can
resize views by dragging with the mouse the separation line between them.

For each variable of the list, ISaGRAF displays its name, its current value and its
comment text. Columns can be resized by dragging separation lines with mouse in
the list title bar.

Saving list on hard disk
The "File / Save list" command save the lists of variables on the disk, under the
same name as the edited program. This list will be automatically re-loaded each
time ST or IL program is open in debug mode. This list can also be freely open and
modified using the Spy List tool run by the "Spy / Spy list" command of the
debugger window.

Inserting variables in the list
The "Edit / Insert variable" command inserts another variable in the list. The
variable name is selected in the list of objects defined in the project dictionary. This
way the user does not have to manually enter the identifier. The variable is inserted
before the variable currently selected in the list. The list cannot contain more than
32 variables. The same variable cannot appear more than once in the same list.

When the name of a variable is highlighted in ST text, press this button in the
toolbar or run the "Edit / Spy selection" command to directly send the variable to
embedded spy list.

Changing the selected variable
The "Edit / Change variable" command replaces the selected variable by another
variable. You can also use the "Cut variable" command to remove the selected
variable from the list.

User's guide

CJ International A-113

A.18 Debugging with SpotLight

ISaGRAF SpotLight tool allows the user to define watch lists that can be displayed
either as graphic pictures or as lists during debug. Graphic items must be linked to
the variables of the ISaGRAF project. The graphic picture is both defined and
animated "on line".
To force the value of a variable, double click on the corresponding item from
graphic or list layout, or hit ENTER when it is selected.
You also can lock the document (deny any modification) using the "File / Lock"
command. When a document is locked, you still can force variables by double
clicking on their symbol.

A.18.1 Building the graphic layout

A chart is made of background pictures (bitmaps or metafiles), and a set of graphic
items that will be animated during debug. To enter the chart, the following
operations must be performed: Insert background pictures, insert graphic items, link
objects to the variables of the project

Background pictures
The background pictures are "bitmap" (.BMP) or “metafile” (.WMF) files. Numbers of
pictures included in the graphic layout is not limited. Pictures can be moved or
resized in graphic layout. They do not appear in list layout. Pictures are built with
other tools. SpotLight does not include a painting tool. The "Options / Background
colour" command is used to select a solid colour for empty space in graphic layout.

Note: Bitmaps consume a large amount of memory. It is highly recommended to correctly
size the picture, and limit the unused space inside the bitmap rectangle.

Single text display
A “single text” item is a text written in a rectangle. The text displayed is the value of
the attached variable. Thus, such item can be linked to message string variable.
The rectangle where text is displayed can be either filled with colour or transparent.
The character font used to display text is adjusted to fit the height of the rectangle
when item is resized.

 Unipolar and bipolar bar graphs
A bar graph is a rectangle with a coloured part that represents the numerical value
of the attached variable. Optionally, the rest of the rectangle can be filled with
colour. A bar graph can be either horizontal or vertical.
Unipolar bar graphs can grow in any direction: to the top, to the bottom, to the left or
to the right.
Bipolar bar graphs can grow either in positive or negative direction, according to the
value of attached variable. In case of a bipolar bar graph, the maximum allowed
value is the same for both negative and positive scales.

User's guide

A-114 CJ International

Curves
It is possible to insert a curve in a document. A curve shows the history of the
attached variable. Although it is not a precise measurement tool, it can give useful
debug information about synchronism between various variables.
A curve stores the 200 last values of a variable. The number of samples is not
changed when the curve item is resized in the graphic layout.

Boolean icons
A “boolean icon” item is used to display a binary state. One icon (.ICO) file is
defined for FALSE or 0 value. Another icon is defined for all other non zero values.
As SpotLight does not include an icon editor, icon files should be prepared with
another tool.

Bit fields
A “bit field” item shows in a graphic panel the 32 bits of an integer value. The less
significant bit is always displayed on the right. It is not recommended to use bit field
for other data types such as real analog values, as the displayed information can
lead to confusions.

Select, move or resize items

User's guide

CJ International A-115

Selecting graphic objects is needed for most of the editing commands. SpotLight
enables the selection of one or more existing objects in the chart area. To select
objects, the "select" (button with an arrow) choice must be checked in the editor
toolbar. To select one object, the user simply has to click on its symbol. To select a
list of objects, drag the mouse in the drawing area to select a rectangle area. All the
graphic objects that intersect the selection rectangle are marked as "selected". A
selected object is drawn with little black squares around its graphic symbol.
By making a new selection, any previously selected objects are unselected. To
remove the existing selection(s), simply click with the mouse on an empty area
outside of the rectangle which borders the selected objects.
To move objects, you first have to select them. Then place the mouse cursor on the
border of the selected item and drag it to other location.
To resize an object, you first have to select it. Then place the mouse cursor on one
of the small rectangles displayed in the selection border, and drag it in appropriate
direction to resize the object. Pictures can also be resize. In such case, the
corresponding bitmap or metafile is stretched to fit the new specified item rectangle.

 Group items / dissociate groups
You can group items together so that they are managed as one item. To make a
group, select items in graphic layout and run the “Edit / Group” command. The
“Edit / Dissociate” command is used to restore items of the selected group as
separated ones.
A group may contain a picture. A group may also contain another group.
When items are grouped, their style cannot be changed anymore. Items of the
group are still displayed, but cannot be used (with double click) to modify the value
of attached variables.
A group appears at just one line in the list layout.

A.18.2 The list layout

At any time, you can swap between graphic and list layout, by pressing this button.
You can also use the “Options / List - Graphic layout” command.
In the list layout, items are shown in a classical list box. The height of each item is
calculated according to its drawing style. Pictures (bitmaps and metafile) are not
visible from the list layout. A selection is available in list layout, and should be used
to set item style or change the value of a variable. Multiple selection and commands
using it are not available in this mode.

 You can re-order the items in the list using the “Edit / Move in list” commands. The
item to be moved should be selected in the list.

A.18.3 Defining the item style

The graphic style and settings of an existing item can be modified, by double
clicking on its symbol in the graphic area, or by running the “Edit / Set style”
command when item is selected in graphic or list layout. The “Style” dialog box is
also opened when a new item is added to the document. It groups the following
pieces of information to be selected by the user:

User's guide

A-116 CJ International

Graphic style and settings:
The display style (single text, bar graph, curve…) of an item can be changed
dynamically. When foreground and background colours are used, they can be
customised using the corresponding boxes. When style is “boolean icon”, the
pathname of corresponding .ICO files has to be specified. Use “…” buttons close to
these controls to browse icon files existing on the disk.

Scale:
This is the maximum value that can be displayed in bar graphs and curves. For
bipolar bar graphs and curves, the same absolute value is used for both positive
and negative axis.

Variable name:
When the "Name" field is the active field, pressing the "…" button close to edit
control enables the user to find the names of the variables already declared in the
project dictionary.

Caption:
A caption can be displayed closed to the graphic item in graphic layout. You can
customise the location of the caption text (top, bottom, left or right) and its contents.
Caption can be any combination of the variable name and its value formatted as
text. Caption customisation has no effect on list layout.

Command variable:
If the "Command variable" option is set, the user can modify the value of the linked
variable during debug by double clicking on the item graphic symbol.

A.18.4 Commands of the "File" menu

The "File" menu contains commands that allow the user to manage the complete
document.

The "New" command of the "File" menu starts the editing of a new document. The
number of documents defined for a project is not limited by ISaGRAF. Before
editing the new chart, the previously opened chart is closed. The SpotLight cannot
be used to edit several charts at once. However, multiple SpotLight windows can be
opened simultaneously with each used to edit a different document.

The "Open" command of the "File" menu allows the user to close the currently
edited document and to start editing another document of the current project. The
new selected document replaces the current one in the editing window. When
selecting the new document, the "Delete" button can be used to delete an existing
file, in order to clean up the project directory. Icon and bitmap files referenced in a
chart are not erased when the chart is deleted.

User's guide

CJ International A-117

The "Save" command of the "File" menu stores the currently edited document on
the disk. If it is a new untitled document, the user must give it a name before saving
it. Naming a document must conform to the following rules:
• The length of the name cannot exceed 8 characters
• The first character must be a letter
• The following ones must be letters, digits or underscore characters
• Naming is case insensitive
The "Save as" command of the "File" menu allows the user to store the currently
edited document under another name.

A.18.5 Note for ISaGRAF V3.2 users

Spotlight can read graphics and lists of time diagrams built with the tools of
ISaGRAF V3.0 or V3.2. Such files appear in the "Open" dialog box, with the
description of their origin. Files can be read and freely modified with SpotLight.
When opening an ISaGRAF V3.2 graphic, the document is automatically marked as
"Locked". Remove the "Lock" option from the "File" menu if you want to make
changes in the graphic.
When an ISaGRAF 3.2 graphic or list of time diagram is open, SpotLight always
proposes to save it in native SpotLight format. The "Save As" dialog box is
systematically open when closing such a document.

User's guide

A-118 CJ International

A.19 Uploading applications

ISaGRAF supports the uploading of the application stored in the target. The upload
procedure communicates with the target to load the embedded zipped source code
(EZS) and then restore the loaded project in the workbench environment.
The project running on the connected target system can be uploaded if the target
version is V3.22 or later, and if zipped source code have been embedded with the
application. Embedding source code for upload is an optional feature.

A.19.1 Uploading a project

The "Upload" dialog box is run from the "Files" command of the ISaGRAF Project
Manager. Upload does not refer to an existing project on the Workbench. The
currently selected project in project management list has no relationship with upload
mechanism. To upload the application running on the target you must:
1- ensure that the target is properly connected
2- set-up the communication parameters according to the connection link
3- press the "Run" button

Uploading embedded zipped source (EZS) and decompressing them may take few
seconds. Messages in the dialog box will inform you when upload is complete, or in
case of error.
The name used to create the ISaGRAF project is the one read in the target through
communication. If this name is already used for an existing project in the
workbench, you will be prompt to either overwrite it or select an unused name. You
cannot cancel the registration of loaded sources as a project when upload is
complete. The uploaded project is now ready and can be opened.

Possible errors
The following errors may occur when uploading a project. You are informed of the
error in the "Upload" dialog box.
- communication cannot be established with the target
- connected target is an ISaGRAF system before version 3.22
- there is no application running in the target
- there is no EZS embedded in the target

A.19.2 Communication settings

Pressing the "Set-up" button enables the user to define the parameters of the link
used for communication for upload between ISaGRAF workbench and the target
ISaGRAF system. You have to ensure that the configured parameters match to the
connected target before running upload.

User's guide

CJ International A-119

A.19.3 Preparing a project for upload

You have to inform the ISaGRAF Code Generator that zipped source code must be
embedded with the application code if you want to enable upload later. For this,
press the "Upload" button in the "Compiler options" dialog box. Another dialog box
enables you to check, as an option, the embedding of zipped source code. In this
case, only minimum required source files will be embedded. Use other check boxes
to embed also optional files.

Important note: Libraries are not downloaded with embedded source code. This
includes functions and function blocks and I/O boards and equipments.

Optional files
In addition to the minimum required source code, the following files can also be
embedded. They are options as their selection leads to extra memory requirement
on the target.

Project descriptor: If not embedded, the project descriptor after upload will just
indicate the upload date.

Password protection: Upload function is not protected by a password. If you want
the uploaded project protected, you have to embed its password protection system
with source code.

Comments for not connected I/O channels: ISaGRAF gives you the possibility to
enter description text for non-connected I/O channels. Do not check this option is
you work with connected I/Os only.

History of modifications: This is the global history of modifications for the project.

Diary files: Diary file of each program contains user written notes plus the history of
compiler output messages referring to the program. Embedding diary files may
consume a lot of memory in target.

Lists of variables and time diagrams: These are the files created during debug, and
containing lists of variable names for list or time diagram monitoring.

Graphics, icons and bitmaps: This includes ISaGRAF graphics, plus all attached
icon and bitmap files, if they are located in the project directory. Warning:
embedding diary files may consume a lot of memory in target.

A.19.4 How zipped source are stored in the target

Embedded zipped source (EZS) is stored in generated code with resources. The
generated resource is called "EZS". If source code embedding is selected, you
cannot choose this name for another resource. Embedding source code does not
imply any limitation in resource definition. The user written resource definition file is
not affected by source embedding.
Please refer to the ISaGRAF documentation about the Code Generator for further
details and information about resources.

User's guide

A-120 CJ International

A.19.5 Memory requirements on the target

Embedded zipped source (EZS) code requires extra memory to be stored with
application code in the target. A general rough estimation is that minimum EZS (no
extra option selected for source embedding) has one and a half the size of the
executable code. This means that the embedding of EZS will multiply the size of
downloaded code by 2.5.
Special limitation may appear on some target system based on segmented
memory. As EZS are stored as resources in generated code, they must be stored in
the same data segment as the application code.

A.19.6 About uploaded project

The uploaded project contains all the files and data required for re-compiling.
Depending on the options selected during its previous compiling, it may also contain
auxiliary files such as project descriptor and program diary files.
You have to compile (make) the project before debugging or monitoring it. Warning:
as ISaGRAF uses the compiling date stamp to compare applications, you will be
informed when opening the debugger that workbench and target applications have
different version codes.

Important note: Libraries are not downloaded with embedded source code. You
have to ensure that the appropriate library functions and function blocks are
installed with your ISaGRAF workbench before re-compiling the uploaded
application.

A.19.7 Compatibility issues

Upload is supported by ISaGRAF target and workbench version 3.22 or later.
Extensions have been made to the communication protocol to support upload.
There is no restriction in embedding zipped source code (EZS) in a target based on
ISaGRAF systems version 3.03 to 3.21, as EZS are stored in application code as
standard resources. But embedded information cannot be uploaded in this case, as
such target does not support required communication services.

User's guide

CJ International A-121

A.20 Using the Diagnosis tool

The "Diagnosis Tool" is a subset under the ISaGRAF debugger tool. It enables the
end user to work on a predefined set of variables, in order to examine and control
the process. The ISaGRAF debugger is a very powerful tool, which includes high
level functions. The Diagnosis Tool provides a safe way to control the target
application for final running operations or maintenance. The ISaGRAF Diagnosis
Tool is run directly from the ISaGRAF group in Program Manager, by double
clicking on the following icon:

The list of existing projects is displayed in a dialog box. It enables the user to run
the limited ISaGRAF debugger on an existing, already downloaded ISaGRAF
application. Pressing the "OK" button starts the limited debugger on the selected
project. Pressing the "Cancel" button closes the dialog box. The "Set-up" command
is used to set-up the communication link between the ISaGRAF Workbench and the
target PLC. Refer to the "Managing programs" chapter of this manual for more
information about this command.

Note: The ISaGRAF Diagnosis Tool (limited debugger) cannot be used to download, stop
or update the application running in the target PLC. No operation can be performed
if the project selected in the Diagnosis Tool dialog box is not the same as the one
installed and running in the PLC.

When the limited ISaGRAF debugger is run, and correctly connected to the target
application, the following commands are available:
• Spy lists of variables
• Spy graphic documents with SpotLight

User's guide

A-122 CJ International

A.21 Using the ISaGRAF simulator

The ISaGRAF Kernel simulator is started with the debugger when the "Simulate"
command of the "Debug" menu in the Program Management window is run. The
kernel simulator is a complete ISaGRAF target system supporting ISaGRAF
standard features and all the "C" functions and function blocks of the standard
library delivered by CJ International. The I/O boards are graphically simulated in a
window. Any type of I/O board can be simulated. The boards defined as "Virtual
boards" during the I/O connection also appear in the simulation window.

A.21.1 Links with the debugger

The kernel simulator supports full communication with the ISaGRAF debugger, so
any of the debug possibilities can be used during simulation. The kernel simulator
always works on the current ISaGRAF application. During simulation, the debugger
commands "Start", "Stop", "Download" or "Update" are no longer available. The
simulator cannot be used if the "SIMULATE" target was not selected in compiler
options before building the target code. Closing the simulator window implies that
the debugger window (and any ISaGRAF window opened during the debug session)
is also closed.

A.21.2 I/O simulation

I/O boards appear in the simulator window, titled by their name and slot number.
Any of the ISaGRAF standard types of I/Os (boolean, analog or message) are
handled. The channels of the input boards are displayed with special buttons and
fields. The channels of the output boards are displayed with graphic status lights
and data fields.

 Boolean inputs: A boolean input is represented by a square green button. The
number of the channel is displayed with the I/O button. The input value is TRUE
when the button is pressed. Clicking on the button changes the corresponding I/O
value. Use the right button of the mouse to set the input only when the button is
pressed.

 Boolean outputs: A boolean output is represented by a small circle. The number of
the channel is displayed with the I/O. The output value is TRUE when the graphic
symbol is highlighted.

 Analog inputs: An analog input channel is a simple numerical field, where the
value of the corresponding input can be entered. Clicking on the box displays the
caret. A new value for the channel can then be entered. It is not necessary to use
the ENTER key after input. Analog inputs can be entered in either decimal or
hexadecimal base. Use up/down buttons to increase or decrease the current value.

User's guide

CJ International A-123

 Analog outputs: An analog output channel is a numerical output field. The output
value can be displayed as either a decimal or hexadecimal number. No action can
be performed by the user on an output channel.

 Message inputs: A message input channel is a simple text field, where the value of
the corresponding input is entered. Clicking on the box displays the caret. A new
value for the channel can then be entered. It is not necessary to use the ENTER
key after input.

 Message outputs: A message output channel is a text output field No action can
be performed by the user on an output channel.

A.21.3 Library components

The ISaGRAF simulator fully supports the standard conversions, functions and
function blocks, delivered by CJ International. Below is the list of supported objects:

 Conversion functions:
bcd, scale

 Functions:
abs, acos, ArCreate, ArRead, ArWrite, ascii, asin, atan, char, cos, delete, expt, find,
insert, left, limit, log, max, mid, min, mlen, mod, mux4, mux8, odd, rand, replace,
right, rol, ror, sel, shl, shr, sin, sqrt, tan, trunc

 Function blocks:
average, blink, cmp, ctd, ctu, ctud, derivate, f_trig, hyster, integral, lim_alrm, r_trig,
rs, sema, sr, stackint, tof, ton, tp

User defined conversions, "C" functions and function blocks are commonly not
integrated with the ISaGRAF Simulator. Typically, such objects are designed to use
software and hardware resources of the target system. Such resources are
generally not available on the Windows system. The ISaGRAF Simulator provides
the following standard behaviour for any user defined conversion, function or
function block:
• When a new conversion is processed by the simulator, it is replaced by a "null"
conversion. This means that the physical value of the analog variables is always
equal to the electrical value (as entered or displayed on the Simulator panel).
• When a new "C" function or function block is run by the simulator, it does not
process any operation. The result value is not set.

A.21.4 Options

The commands of the "Options" menu enable the user to control the display of I/Os
in the simulator panel. The user can set or remove these options at any time during
debug.

User's guide

A-124 CJ International

When the "Colour display" option is set, I/O channels are displayed as colour
bitmaps. If colours cannot be distinguished on some LCD screens, the user should
remove this option, to get pure black and white input and output graphics for I/O
channels.
When the "Variable names" option is set, a sticker is displayed beside any I/O
channel, with the name of the connected I/O variable. Removing this option enables
the user to reduce the size of the simulator panel.
When the "Hexadecimal values" option is set, any input or output analog channel
is displayed or entered in hexadecimal format.
When the "Always on top" option is set, the simulator window is always visible,
even if the input focus is on another window.

A.21.5 Saving and restoring input states

Using the ISaGRAF simulator, input channels are forced through manual
operations, acting on toggle buttons and edit controls of the simulation panel. You
can at any time use the following commands of the "Tools" menu to save and
restore the state of all input channels:

Load input scheme Set values of input channels with values
stored in a file that has been created on disk
by "Save input scheme" command.

Save input scheme Save state of input channels in a file so that
they can be restored later using the "Load
input scheme" command. File is stored in the
project directory and thus is saved with other
project files by the ISaGRAF archive utility.

Note: Only named input channels (the ones having a variable connected) are saved on
disk.

A.21.6 The cycle profiler

The ISaGRAF Cycle Profiler is a powerful diagnostic tool that shows how cycle time
is distributed between various programs, functions and function blocks of an
application. This tool is very useful to have a quick diagnostic on the application
performances, and leads the programmer to the parts of code which may need
optimisations.
The Cycle Profiler is run by the "Tools / Cycle Profiler" command in the menus of
the ISaGRAF Simulator window. It displays, for each program, function or function
block, the percentage of the cycle time spent to execute it:

User's guide

CJ International A-125

When the "View / Average" option is set, displayed information is an average of
percentages calculated since the application has been started, or since the last time
the "View / Reset" command has been run.
If the "View / Average" option is not set, displayed information shows
measurements done during the execution of the last cycle. You can also use this
feature when the application is in "Cycle to Cycle" mode to have a set of
measurements depending on the application context.
Use the "View / Copy" command to copy program names and percentages to the
Windows Clipboard in ASCII format. Then, data can be pasted into text documents
or common SpreadSheets.

Important notes:
These are not precise measurements. Percentage calculation is based on TIC
instructions counting, taking into account various instruction execution times.
Calculation does not include the time spent in "C" functions and function blocks.
The value displayed for a function or a function block is the sum of all the "calling
times" from the application programs in the same cycle.
Time calculation is based on TIC code and does not provide reliable information if
the actual application code is generated in "C" language and built using a "C"
compiler.

A.21.7 Simulation scripts

ISaGRAF simulator includes a tool to build and run simulation script. A script is
described with an easy ST like text language, and is used to automate tests with the
ISaGRAF simulator.
The simulation script editor is run by the "Tools / Simulation scripts" command of
the Simulator window. Below is the frame of the script editor:

User's guide

A-126 CJ International

The upper window is a text editor where script instructions are entered. It is used as
other ISaGRAF text editors and includes high level features such as mouse
selection of a variable symbol. You can use commands of the "Options" menu to
set-up tab width and select a character font.
The lower window shows all the messages output when the script is run. The
separation line between windows can be freely dragged to resize windows. The
output window can be hidden during script editing, but is automatically open each
time a script is run.

Editing scripts
Use the commands of the "File" menu to manage script files:
New creates a new untitled script
Open.................. loads an existing script from file
Save................... saves script text and contents of output window to disk, in project

directory
Save as.............. saves script under another name

Two files are created in the ISaGRAF project directory for each script:
<scriptname>.SCC..........text of the script (instructions)
<scriptname>.SCO..........contents of the output window
where <scriptname> is the name of the script. Both files are standard text files and
can be open using any other text editor.
While editing a script, you can use the "Edit / Insert symbol" command to select a
declared variable name to be inserted at the caret position.

Running scripts
Script must be checked and compiled before running it. If necessary, syntax
checking is automatically performed on a "Run" command. Use the following
commands of the "Script" menu:
Checkcheck syntax and compile script

User's guide

CJ International A-127

Run Scriptstart execution of the script currently edited

In the case of a new untitled script, it must be saved (and a name must be entered
for it) before it is checked. In case of a named script, script is automatically saved to
disk before syntax checking.
When script is running, its contents cannot be changed. A message is displayed
when end of script is reached. You can also abort a running script using the
following command of the "Script" menu:
Abort Script..............terminates the running script

Script execution is performed between target cycles. In the case of an infinite loop
programmed in the cycle, ISaGRAF simulator ensures that this loop is always
broken so that ISaGRAF cycles are still executed and other ISaGRAF applications
are not blocked. The ISaGRAF script interpreter decides to break script execution if
the same "label" is encountered more than once in the same target cycle. Script
execution can also be normally broken by "Cycle" or "Wait" instructions.

Script description language
Script description language is a very simple text language similar to ST, but where
each instruction is entered on a separate text line, and does not need to be
terminated by a semicolon. Use the following button of the toolbar to know the list of
available instructions and to insert a keyword at the caret position:
insert instruction (keyword and help as comments)

There are various types of instructions. First is the assignment (forcing) of a
variable:
:= assignment

Other instructions allow the output of messages to the output window:
Print................... outputs a text string or a variable value
PrintTime outputs current time stamp

Other instructions are used to synchronise script instructions with ISaGRAF cycle:
Cycle.................. let ISaGRAF simulator execute one cycle
Wait waits during a specified time

Other instructions are used to control instruction flow in the script:
Labels................ can be placed anywhere in the script
Goto................... unconditional jump to a label
If goto conditional jump to a label
End terminates script

Script language is not case sensitive. Comments can be inserted at the end of any
text line. Comments can either be written according to ST conventions (between "(*"
and "*)" characters), or prefixed by a ";" character.

":=" Assignment

User's guide

A-128 CJ International

Meaning: Force the value of an ISaGRAF variable. It can be an internal
variable, an input channel or an output channel.

Syntax: <varname> := <constant_expression>
<varname> = <constant_expression>

Arguments: <varname> is a valid symbol of a declared application variable, or a
directly represented I/O variable using "%" writing conventions.

<constant_expression> is a valid constant expression that
matches the type of the specified variable. For booleans, "0" and "1"
can be used instead of "FALSE" and "TRUE". For timers, the "T#" or
"TIME#" prefix can be omitted.

Notes: Input variable forced by a script does not need to be locked. The
drawing of the corresponding input channel is updated when input
variable is forced by a script.

Warning: do not force input or output analog variable attached to a conversion,
as script execution does not support conversion functions or tables.

Example: MyBooVar := 1 (* same as TRUE *)
MyIntVar := 1234
MyRealVar := 1.2345
MyMsgVar := 'Hello'
MyTmrVar := t#12s

Print

Meaning: Writes a string or the value of a variable in the output window. Text is
output as one new line at the end of text already written in output
window.

Syntax: Print '<text>'
Print <varname>

Arguments: <text> is any text string expressed between single quotes

<varname> is the valid symbol of a declared application variable, or a
directly represented I/O variable using "%" writing conventions.

Notes: Output of variable values is always formatted according to IEC
conventions.

Example: Print 'Hello'
Print MyBooVar

Output: Hello
MyBoovar = TRUE

User's guide

CJ International A-129

PrintTime

Meaning: Writes the current time stamp in the output window. Text is output as
one new line at the end of text already written in output window.

Syntax: PrintTime

Notes: Time stamp is formatted according to current setting of Windows
System

Example: Print 'Time now is:'
PrintTime

Output: Time now is:
15:45:22

Cycle

Meaning: Suspends the execution of the script until the next ISaGRAF cycle is
performed.

Syntax: Cycle

Notes: Script instructions are executed at the beginning of an ISaGRAF
cycle. If the simulator is in "Cycle to Cycle" mode, the "cycle"
instruction is immediately followed by a cycle. The following
instructions of the script will be performed on the next "Execute one
cycle" command from the debugger.

Example: (* the ISaGRAF program copies A to B *)
A := 0
Cycle
Print B
A := 1
Print B (* no cycle performed / B not set to 1 *)
Cycle
Print B

Output: B = 0
B = 0
B = 1

Wait

Meaning: Suspends the execution of the script until a delay is elapsed

Syntax: Wait <delay>

User's guide

A-130 CJ International

Arguments: <delay> delay expressed according to IEC conventions for time
constant expression. The "T#" or "TIME#" prefix can be omitted.
Delay value must between 10 milliseconds and 1 hour.

Notes: Accuracy of the "Wait" instruction is not precise as it depends on the
host Windows system. Also, the delay should be considered with an
accuracy of plus or minus one ISaGRAF cycle. When a "Wait"
instruction is reached, ISaGRAF cycles are performed until the delay
is elapsed and before continuing the script execution.

Example: PrintTime
Wait 2s
PrintTime

Output: 15:45:27
15:45:29

Labels

Meaning: Labels can be placed anywhere in the script. They are used as a
destination by "Goto" instructions and allow flow control for script
instructions.

Syntax: <labelname>:

Arguments: <labelname> unique name according to ISaGRAF variable naming
conventions: limited to 16 characters, beginning with a letter, followed
by letters, digits or underscore characters. When defined, label name
should be followed by a ":" character.

Notes: No instruction should be placed on the line where a label is defined.
Label name should not be the same as a declared ISaGRAF variable
symbol

Example: (* example of a script with an infinite loop *)
loop:
PrintTime
Wait 1s
Goto loop

Goto

Meaning: Unconditional jump to a label

Syntax: Goto <labelname>

Arguments: <labelname> is the name of a label defined in the script.

User's guide

CJ International A-131

Notes: Backward jumps are allowed. In case of an infinite loop, script
execution is automatically broken on each loop in order to preserve
execution of ISaGRAF cycles.

Example: Print 'Before Jump'
Goto MyLabel
Print 'Within Jump' (*never performed *)
MyLabel:
Print 'After Jump'

Output: Before Jump
After Jump

If Goto

Meaning: Conditional jump to a label. The condition is either a comparison
between two ISaGRAF variables, or a comparison between a variable
and a constant expression.

Syntax: If <var1> test <var2> Goto <labelname>
If <var1> test <constant_expr> Goto <labelname>

Available comparison tests are:
= true if both members have same value
<> true if members have different values
< true if first member is less than second
<= true if first member is less than or equal to

second member
> true if first member is greater than second
>= true if first member is greater than or equal

to second member

Arguments: <var1> <var2> are valid symbols of declared application variables,
or directly represented I/O variables using "%" writing conventions.

<constant_expr> is a valid constant expression that matches the
type of specified variable. For booleans, "0" and "1" can be used
instead of "FALSE" and "TRUE". For timers, the "T#" or "TIME#"
prefix can be omitted.

<labelname> is the name of a label defined in the script.

Notes: Backward jumps are allowed. In case of an infinite loop, script
execution is automatically broken on each loop in order to preserve
execution of ISaGRAF cycles.

Example: (* This script loops until MyVar is TRUE *)
Loop:
If MyVar = TRUE Goto TheEnd

User's guide

A-132 CJ International

Print MyVar
Goto Loop
TheEnd:

End

Meaning: Terminates script

Syntax: End

Notes: It is not mandatory to place an "End" instruction on the last line of the
script

Example: (* This script loops until MyVar is TRUE *)
Loop:
If MyVar = FALSE Goto Continue
End
Continue:
Print MyVar
Goto Loop

User's guide

CJ International A-133

A.22 Using the Library Manager

The ISaGRAF libraries provide a standard interface between automation
development and the software or hardware capabilities of the ISaGRAF target
system. There is one library for each type of interface. The ISaGRAF Workbench
Library Manager is dedicated to the hardware supplier, or to the software engineer.
He uses the library manager to describe the ISaGRAF programming interface of the
objects he creates.
The ISaGRAF Workbench Library Manager shows the elements of one of the
ISaGRAF libraries. In the left area of the window is the list of the elements of the
selected library. In the right area is the technical note (user manual) of the element
currently selected on the element list. The menus of the library manager contain the
commands to create, define or modify elements of the active library. The "File /
Other library" command allows the selection of one of the ISaGRAF libraries. The
combo box on the left of the toolbar can also be used to select a library:

A.22.1 Managing library elements

Use the commands of the "File" menu to create elements and work on existing
ones in the open library

Creating a new element
The "New" command of the "File" menu creates a new element into the selected
library. The name of the new element is entered, based on the following naming
rules:
• the maximum length of a name is 8 characters
• the first character must be a letter
• the following characters must be letters, digits or '_' character
• the naming of a library element is case insensitive.

A text comment is associated to each library element. This comment is entered
while creating the element. When a new element is created, the following must be
entered:
• its definition for an I/O configuration,
• its parameters for an I/O board,

User's guide

A-134 CJ International

• its user interface for a function or function block.

When a "C" conversion, "C" function or "C" function block is created, a complete
frame of its source code is automatically generated.

Working on existing elements
The "File / Rename" command allows the user to change the name or the
comment of the element selected from the list of elements. The "File / Copy"
command allows the user to copy the element highlighted in the active library on
another element in the same library. If the destination element already exists, all its
contents are overwritten. If the destination element does not exist, it is automatically
created. The "File / Delete" command removes the currently selected element from
the active library. The following components of the element are handled by
"Rename", "Copy" and "Delete" commands:
• technical note
• complete definition for an I/O configuration
• parameters for an I/O board or complex equipment
• interface definition for a function or function block
• source code for function and function block written in IEC language
• source code for a C conversion, a function or a function block

If the element is a "C" conversion, "C" function or "C" function block, its name is not
automatically updated in the attached source code by a "Rename" or "Copy"
command.
If the element is a function written in IEC language, the return parameter name is
not changed by a "Rename" or "Copy" command.

Setting password protection
The "File / Set password" command enables the user to define password
protection for the selected element in the open library. Refer to the "Password
protection" section, at the end of the first part in this manual for further information
about password levels and data protection. Passwords are only relative to the
selected element. They have no influence on other elements of ISaGRAF libraries.

Compiling functions and function blocks
When the library of functions or function blocks written in IEC languages is
selected, the "Verify (compile)" command of the "File" menu is used to check the
syntax of the selected element and create its object code. Functions and blocks
written in IEC languages have to be compiled without errors before they can be
used in ISaGRAF projects. This command has no effect if another library is
selected.

Technical notes
The "Edit / Technical note" command allows the user to enter the technical note of
the element selected in the active library. The technical note is entered with the
ISaGRAF text editor. The technical note of an element is its user guide. It will be
consulted by the user of the element during its integration in an ISaGRAF project.
The technical note on how to use the element should contain the description of its

User's guide

CJ International A-135

main function, the detailed explanation of its programming interface and
parameters, and its context and limits.
The "Tools / Standard note format" command allows the user to define a standard
text format for all the elements of the currently selected library. When editing the
technical note for a new element, this format is used as a main frame. This allows
the user to optimise technical note editing.

Parameters
The parameters of an element describe the interface between the computer
operations provided by the element and the use of the element in an ISaGRAF
application. Parameters have a different meaning for each type of library element.
The parameters of an I/O configuration define the complete set of I/O boards of the
configuration, and default variable names used for I/O channels. The parameters of
an I/O board or complex equipment define the physical and logical configuration of
the board. The parameters of a function or function block define the interface of the
element, according to ST language function calling conventions. There is no
parameter for a conversion function because it uses a standard pre-defined
interface.

Source code
The ISaGRAF Workbench allows the programmer to manage the source code of a
library conversion, function or function block. The source code of a function or a
block written in IEC language is a text or a diagram described with the language
attached to the function. The source code of "C" components ("C" functions, "C"
function blocks and conversion functions) is divided in two separate files: a source
header that contains the exact definition of the interface, according to the
element's parameter definition and a source code file that contains the element's
operation implementation.
The ISaGRAF workbench generates the source code file when a new library
element is created. It also creates and updates the source header, based on the
parameter definition. The programmer can use the ISaGRAF text editor to complete
the source code file.

Archiving library elements
The "Tools / Archive" menu command runs the ISaGRAF archive manager to save
or restore library elements. You first need to select a library before running the
"Archive command". The archive manager shows list of elements for only one
library at a time.

A.22.2 I/O configuration

The ISaGRAF I/O configuration library provides an easy way to initialise new
ISaGRAF projects with pre-defined I/O configuration. An I/O configuration defines:
• a set of I/O boards
• default values for I/O boards parameters
• default names for I/O channels

When a new ISaGRAF project is created with a library I/O configuration, the
corresponding I/O connection is automatically set, and the I/O variables

User's guide

A-136 CJ International

corresponding to channel names are automatically declared in the project
dictionary.

The definition of an I/O configuration is made with the ISaGRAF I/O Connection tool
(the same tool used within a project). Refer to the "I/O Connection" section in this
manual for further information about how to use this tool. When inserting a new I/O
board in the configuration, all the channels of the new board are declared with
standard default names. The standard default name of an I/O channel has the
following format:

<direction><type><slot_number>_<channel_number>

The first character indicates the direction of the I/O channel:
"I" input channel
"Q" output channel

The second character indicates the type of the I/O channel:
"X"...................... boolean
"D"...................... analog
"M" message

Below are examples of a standard I/O channel names:
IX0_7.................. boolean input - board #0 - channel #7
QD2_4................ integer output - board #2 - channel #4

The "Connect I/O channels" command of the I/O Connection Editor is used to
modify the default name attached to an I/O channel.

A.22.3 I/O complex equipment

All the channels of a single board have the same type (boolean, analog or
message) and direction (input or output). A complex I/O equipment represents an
I/O device with channels of different types or directions. A complex I/O equipment is
represented as a list of single I/O boards. It uses only one slot in the I/O connection
rack list.

To define a complex I/O equipment, the user has to define the list of single boards
which define the I/O equipment. He also has to enter the detailed parameters of
each single board. The list of single I/O boards is entered through a dialog box.
Pressing the "Append" button allows the user to add a single board at the end of
the current list. The "Insert" button is used to insert a new single board before the
one currently selected in the list. The "Delete" button removes the selected single
board from the list. The "Rename" and "Parameters" button are used to change the
name and the parameters of the selected single board. Refer to the following
section for a complete explanation of single board parameters. A complex I/O
equipment can group up to 16 single I/O boards. The name of a single board (within
an I/O equipment) cannot exceed 8 characters.

User's guide

CJ International A-137

A.22.4 I/O board

The ISaGRAF I/O board library defines a standard interface between the application
variables and the target hardware. During the description of the application, all the
I/O variables are connected to the channels of the target I/O boards. An ISaGRAF
I/O board is defined by a name and an "OEM key code" that identifies its supplier.
Other I/O board parameters describe the I/O board topology (number of channels,
channel direction and type), and its hardware or software configuration.

I/O board parameters
There are two different types of parameters for an I/O board: common parameters
which are defined for any ISaGRAF library board, and OEM parameters which are
specific to the board implementation, provided by the hardware supplier. Common
parameters are entered in the upper part of the I/O board parameters definition box.
These parameters (plus the I/O board name) identify the ISaGRAF standard I/O
board interface.
The "OEM key code" is a simple number that defines the hardware supplier. All
the boards defined by the same supplier must have the same OEM key code. The
OEM key code is a 16 bit unsigned word, entered in a hexadecimal format. The
reserved OEM key code for CJ International is "1".
Main parameters define the topology of the I/O board. The number of channels
defines the number of available channels on the board. The type of the board is the
type of the variables that may be connected on the channels of the board. The
direction defines whether variables connected on the board are input or output
variables.

Note: I/O variables of different types or directions cannot be grouped on the same
ISaGRAF I/O board. This feature should require a complex I/O equipment.

The OEM parameters
The OEM parameters are entered in the lower part of the I/O board parameters
definition box. These parameters are defined by the I/O board hardware supplier
and are specific to the board. There are at most 16 OEM parameters for a board. A
board may have no OEM parameters. The ISaGRAF library manager allows the
hardware supplier to define the identification and the format of each parameter, and
the way the automation programmer enters it.
The box on the left contains the list of the OEM parameters. Each parameter is
identified by a name and a logical number, from 0 to 15. The area on the right
contains the detailed description of the parameter selected on the list. A parameter
is selected in the list in order to access to its complete description. Pressing the
"Clear" button resets the parameter description, and removes it from the parameter
list. Warning: this command cannot be "undone".

The name of a parameter is used to identify the corresponding input field during the
I/O board connection if the field must be defined by the automation operator. The
name of a parameter must conform to the following rules:
• the maximum length of a name is 16 characters
• the first character must be a letter
• the following characters must be letters, digits or '_' character

User's guide

A-138 CJ International

The type of a parameter defines the internal format of the parameter, and its input
format during application I/O connection. Below is the list of available internal
formats:
word unsigned 16 bit word
long unsigned 32 bit word
word hexa unsigned 16 bit word
long hexa unsigned 32 bit word
boolean unsigned 16 bit word (only lowest bit is used)
character unsigned 16 bit word (only lowest byte is used)
string array of 16 bytes containing a null-terminated string
float single precision 32 bit floating value

Below are available input formats:
word unsigned decimal word
long decimal long word
word hexa unsigned hexadecimal word
long hexa unsigned hexadecimal long word
boolean "true" or "false"
character single character
string ascii string (15 characters max)
float single precision floating value

The "access" box is used to define how the parameter can be accessed by the end
user. If the "User defined" option is set, the parameter is shown as an input field
during the I/O board connection. The OEM parameter default value is used as
default for the parameter editing. If the "Hidden" option is set, the parameter is a
constant and does not appear in the I/O board connection box. The OEM parameter
default value defines the value of the constant parameter. The "Read only" option
indicates that the parameter is visible for the user, but cannot be modified. Its
default value is used as a constant value.

A.22.5 Functions and blocks written in IEC languages

ISaGRAF handles a library of functions and function blocks written in IEC
languages. The available languages to describe such a function or block are FBD
(Function Block Diagram), LD (Ladder Diagram), ST (Structured Text) or IL
(Instruction list). Note that LD and FBD languages can be mixed in the same
diagram. SFC language (Sequential Function Chart) cannot be used to describe a
function or a block in library. The language attached to a library element is selected
when the function is created, and cannot be changed later.

Compiling
Functions and blocks defined in the library must be compiled (verified) before they
can be used within an ISaGRAF project. Nothing else has to be changed on the
Library side concerning functions and blocks. Elements of the library will
automatically appear in box selection menu when using the LD/FBD graphic editor
within a project.

User's guide

CJ International A-139

A function defined in the library can call other functions of the library. However, the
ISaGRAF system does not support recursive function calling. A function block
written in IEC language cannot call other function blocks (neither in IEC nor in "C"
language).

Entering source code
The source code of a library function or function block is entered using standard
ISaGRAF tools: graphic editor for LD or FBD programs, text editor for ST or IL
programs. Refer to the corresponding sections in this manual for more information
about these tools. The ISaGRAF Code Generator can be directly called from the
graphic or text-editing window, to compile the source code of a library function or
block.

Dictionary of local variables
A library function or function block can have local variables, and local defined
words. To access the variable declaration, the user must run the commands of the
"Dictionary" command of the "File" menu, in the editor window, while editing the
source code of the function.

A library function or function block cannot access a global variable or function block
instance. Local variables of a function should be initialised in the function body.

Local variables of a function block written in IEC language are copied (instanced)
each time the block is used in a project. Local variables of an instance keep their
values from one call to the other.

Defining the interface
Functions or function blocks may have up to 32 parameters (input or output). A
function always has one (and only one) return parameter, which must have the
same name as the function, in order to conform to ST language writing conventions.
The list in the upper left side of the window shows the parameters, in the order of
the calling model: first the calling parameters, last the return parameters. The lower
part of the window shows the detailed description of the parameter currently
selected in the list. Any of the ISaGRAF data types may be used for a parameter.
The return parameters must be located after calling parameters in the list. Naming
parameters must conform to the following rules:
• the length of the name cannot exceed 16 characters
• the first character must be a letter
• the following characters must be letters, digits or underscore character
• naming is case insensitive

The "Insert" command is used to insert a new parameter before the selected
parameter. The "Delete" command is used to erase the selected parameter. The
"Arrange" command automatically rearranges (sorts) the parameters, so that the
return parameters are put at the end of the list.

User's guide

A-140 CJ International

A.22.6 "C" Functions and function blocks

The "C" functions and function blocks are computer functions called from the
automation application, according to the ST language function calling interface.
Functions are synchronous processes. The ISaGRAF target application is
suspended during the function execution. Function blocks associate operations and
static hidden data. For example, a "counter" function block represents the counting
operation, as well as the counting result. Functions and function blocks may be
used to complete the standard automation language capabilities, or to access
system resources.

The parameters definition box is used to define the name and the type of each
calling or return parameter of the function or function block. The "Edit" menu
commands are used to define the parameters of the selected function or function
block. A function can have up to 31 calling parameters, and always has one return
parameter. A function block can have up to 32 parameters, with any mix of call and
return parameters. Below is the correspondence between ISaGRAF types and "C"
types:

BOOLEAN unsigned long unsigned 32 bit word: 1=true / 0=false
ANALOG long signed integer 32 bit word
REAL float single precision floating value
TIMER unsigned long unsigned integer 32 bit word (unit is 1 ms)
MESSAGE char * character string.

When a message value is passed onto a "C" function or function block, it cannot
contain null characters. The string passed to the "C" code is null-terminated.
Refer to the ISaGRAF Target User's Guide for further information on how to
manage the "C" source code of a function or a function block, and how to integrate
a new element in the ISaGRAF target system.

A.22.7 Conversion functions

A conversion function is a "C" function called by the ISaGRAF I/O manager each
time the analog variables using this conversion are input to or output from the
project.
The function creates the relationship between the electrical value of the variable
(read on the input sensor or sent to the output device) and its physical value (used
in the application expressions). The function is therefore divided into two parts: input
conversion and output conversion. The ISaGRAF library manager allows the user to
control the "C" source code of a conversion function.
A conversion can be used for an integer or real analog variable. This implies that
the conversion function interface is always defined by floating values. The interface
is the same for any conversion function. The "C" definition of this interface is made
in the "TACN0DEF.H" definition file.
Refer to the ISaGRAF Target User's Guide for further information on how to
manage the "C" source code of a conversion function, and how to integrate a new
element in the ISaGRAF target system.

User's guide

CJ International A-141

A.23 Using the Archive utility

The ISaGRAF archive utility enables the user to save the ISaGRAF projects and
libraries on diskettes or backup directory. The ISaGRAF archive manager is a
dialog box that can be called from ISaGRAF Project Management or Library
Management windows.
To create and maintain reliable archives, it is suggested that the following
guidelines be used:
• Write the name and description of the saved object on the disk sticker
• Do not save projects and libraries on the same diskette
• Do not save different projects on the same diskette

A.23.1 Calling the archive manager

The "Archive" dialog box can be called from the "Tools / Archive" menu of the
Project Management window, to save or restore either a project, or common data.
The "Archive" dialog box can also be run from the "Tools / Archive" command of
the ISaGRAF Library Manager, to save or restore elements of the library currently
selected in the Library Management window.

Projects
A project is always saved in its entire form. All the components of the project
(program source files, object code and application executable code) are saved
together in the same archive file. Selection of the "compression" option reduces
the size of the project archive.

Library elements
The elements of ISaGRAF libraries can be saved individually. All the components of
a library element (technical note, definition, interface, source code...) are saved
together in the same archive file.

Common data
The "Tool / Archive / Common data" command of the Project Management
window enables the user to backup or restore the "common range" data existing in
the ISaGRAF Workbench. This command does not act on the ISaGRAF libraries.
Below is the list of the files that can be copied with this command:
common.eqv common defined words
oem.bat user defined MS-DOS command file

These files are saved one by one on the archive disk, in their original form. The
corresponding archive files are never compressed.

User's guide

A-142 CJ International

A.23.2 Options

The path used for ISaGRAF archives is displayed at the bottom of the dialog box.
Press the "Browse" button to browse the disks and select another archive disk and
directory.

When the "Compression" option is set, all the archive files created during a
"Backup" procedure are compressed. This option is very useful to reduce the size
of a large project archive file, and save it on only one diskette. Archive compression
is generally not needed for library components. The ISaGRAF Archive Manager
automatically recognises the status of an archive file (compressed or not) when
restoring the archive. This implies that the "compression" option has no effect for a
"Restore" procedure.

A.23.3 Backup and restore

The "Workbench" list (on the left) shows the objects existing in the ISaGRAF
Workbench installed on the hard disk. The "Archive" list (on the right) shows the
objects saved on the specified archive disk and directory.

Backup
Saving an object on archive is achieved by selecting the object in the list on the left
(objects of the ISaGRAF workbench) and pressing the "Backup" button. More than
one object on the list can be selected. The "Backup" button is disabled when an
element is selected from the list on the right (restore mode).

Restore
Copying an object from the archive to the ISaGRAF Workbench is achieved by
selecting the object in the list on the right (archive objects) and pressing the
"Restore" button. More than one object on the list can be selected. The "Restore"
button is disabled when an element is selected from the list on the left (backup
mode).

A.23.4 Archive files

The ISaGRAF archive manager creates a unique archive file for each saved object.
The archive file has the same name as the object. Its file suffix indicates its type.
Below are the used suffixes:
.pia..................... project

User's guide

CJ International A-143

.bia..................... I/O board

.iia...................... function in IEC language

.aia function block in IEC language

.uia..................... C function

.fia...................... C function block

.cia C conversion function

.ria I/O configuration

.xia I/O equipment

User's guide

A-144 CJ International

A.24 Printing a complete document

The ISaGRAF Document Generator allows the user to build and print a complete
document for the selected project. It can be called by the "Project / Print"
commands of the Project Management or the Program windows to print a complete
document. The Document Generator is also run by the "Print" command of all other
ISaGRAF editors to print the contents of a single ISaGRAF document. However, the
Document Generator provides the same features in both cases.
The commands of the "Edit" menu are used to define the elements of the project
that must be inserted in the document. Doing this the user builds the "table of
contents" for the desired document. Any information about the project (programs,
variables, options, I/O connection...) may be inserted in the project document. No
information from another project or from ISaGRAF libraries may appear in this
document.

The "File / Print" command generates the document and send it to the printer,
according to the specified table of contents. The "Print" job may take few minutes to
build and format the document. It is highly recommended to wait until "Printing Job"
is done in the ISaGRAF Document Generator window, before running other
commands of the ISaGRAF Workbench. Building the whole document may require
a large space on the hard disk. An error message will be displayed if the disk is full.
In such a case, the user will have to either free up disk space by removing files, or
reduce the size of the print job. When the "Print" command is run, a dialog box
appears. It allows the user to enter a note describing the actual print command.
Those notes are stored in a history file, and will be printed on the first page of any
future document (including the present one).

A.24.1 Customising the table of contents

The "Edit" menu contains the commands to define the "Table of Contents" of the
document. A choice of commands allow the user to use a default table (with all the
components of the project), build a specific table (with only some components) or
move items in the table and modify it.

The default list
The "Default list" command of the "Edit" menu defines a standard table of contents
for the document, which includes all the components of the project. The standard
table consists of:
- Project descriptor
- Hierarchy tree (links between programs)
- Source code for any program
- Diary file for any program
- Common definitions
- Global definitions
- Local definitions for any program
- Global variables
- Local variables for any program

User's guide

CJ International A-145

- Application options
- I/O Connection
- Lists of variables
- Conversion tables
- Condensed cross references
- Detailed cross references
- Declaration summary
- Network addresses map
- History of modifications

The table of contents can be saved on disk using the "File / Save" command. This
command is greyed when document generator is run from an ISaGRAF editor to
print a single document.

 Cut and paste
Use "Edit / Cut" and "Edit / Paste" commands to move items in the list, in order to
customise the order of the table. The Document Generator allows multiple selection
so that a group of items may be cut and pasted.

Clearing the table
Use "Edit / Clear" command reset the table of contents, so that it can be totally
rebuilt using single item insertion.

Inserting items in the table
When the "Edit / Insert" command is run, the "Add item" dialog box appears. It
allows the user to insert items (components of the project) into the table of contents.
For an item relative to a program, use the "Program" combo box to select a
program name. Press the "Add" button to insert the selected item to the table of
contents. The same item can appear only once in the table.

A.24.2 Options

The commands of the "Options" menu are used to define and customise the format
of the generated document. Other options are directly available from buttons of the
Document Generator window:

When the "Font page" option is set, a header page is printed at the beginning of
the document, containing the project title and the history of printouts. When this
option is not set, the first item to be printed starts on the first page.
When the "Table of contents" option is set, a table of contents is printed at the end
of the generated document.
Both options are initially unchecked when the Document Generator is run from a
"Print" command of an ISaGRAF editor (program, dictionary...)

User's guide

A-146 CJ International

SFC charts
The "Separate SFC levels" option directs the system to print, for each SFC
program, first the level 1 of the SFC (chart and comments), and then the level 2
programming. When this option is not checked, levels 1 and 2 appear together on
the same printout.

Page format
The "Page format" command of the "Options" menu is used to define the main
parameters operated by the Document Generator when formatting a page. The
following parameters can be specified:
• Left margin: (1 or 2 centimeters, or no margin)
• Page border: When this option is selected, a border is drawn around any printed
page.

Page title template
The "Page Title" command of the "Options" menu is used to define the contents of
the title box printed at the bottom of any page. The standard layout of this box is as
follows:

ISaGRAF - Project 'PrName'

User defined title

date

page

Text1
Text2
Text3

The first line of the main title (with the name of the ISaGRAF project), the current
date and the page number are automatically generated by the Document Manager,
and cannot be changed.
The three lines of text on the left side of the box (text1, text2, text3) and the second
line of the main title are user-defined. The user also can change the logo printed in
the box on the left. To use another logo, the user has to specify the pathname of a
bitmap image file (.BMP). The image can have any dimension. It will be stretched or
shrunk, according to the exact dimensions of the printed page. Clicking on the logo
area, in the dialog box, shows the new specified image. The image file must be on
the disk (at the specified directory and with the specified filename) when the "Print"
command is run.

 Selecting character fonts
The "Text font" and "Title font" commands of the "Options" menu are used to
define the fonts of characters used when printing text, and titles for any item of the
document. The size and style of characters may also be selected for text and titles.
The selection of a font is made with the standard dialog box defined by Windows.
Any text (literal programs, names within diagrams...) will be printed with the selected
size, style and font of characters. Only titles will be printed with the font selected for
titles.
If the fonts of characters are not defined, the standard font of the printer will be used
for any text, with the following styles:
• "Normal" style for texts and names within diagrams
• "Bold" style for titles

User's guide

CJ International A-147

A.25 Password protection

The ISaGRAF Workbench includes a full data protection system, which enables the
user to protect with passwords projects and library elements. A library element can
be an I/O configuration, an I/O board or complex equipment, a function or function
block written in IEC languages, a "C" function, function block or conversion function.
A password protection database is dedicated to one project or library element, and
cannot be shared between several ones.

Protection levels
Within one project or library element, the user can define up to 16 access levels,
corresponding to different passwords. Access levels are sorted in a hierarchy
system. They are numbered from 0 to 15. The higher access level is numbered 0.
When a user knows a password, he can access all the items protected by the
corresponding access level, plus all the ones protected with lower levels. Each
elementary command or data of a project or library element can be separately
protected with an access level. For example, the "Make application code" command
from the ISaGRAF menus can be protected separately. Elementary data can be a
program, a list of options, the technical note of a library element, etc...

Defining password protection
The "Set password" command of the ISaGRAF menus is used to define the
passwords and access levels for one project or one library element. This command
is called from the menus of the ISaGRAF Project Manager (for a project), or the
ISaGRAF Library Manager (for a library element). No password is required when
first running this command. If passwords are already defined, the user must enter
the highest level password he knows, before accessing this command. Upper level
passwords and protected items then cannot be modified. The "Set password"
command enables the user to define the passwords corresponding to the different
access levels, and to protect elementary commands or data with the defined levels.
Passwords (corresponding to protection levels) are entered by double clicking on a
line of the upper list. The following box is used to enter a password.

The list in the lower area shows the different items (data or functions) which can be
protected, and current protection level attached to either "read access" or "full

User's guide

A-148 CJ International

access" permissions. Assigning a protection level to "read" permission enables you
to prevent users without sufficient permission even to open or print a document.
Double click on a line in the lower list to set permissions for the selected item or
data. The following box is open:

Both permissions can be set either to "free access", or to a protection level defined
by a password. Full access permission cannot be attached to a level with less
priority than the one selected for read access.
Note that for some documents, naturally visible when using ISaGRAF Workbench,
such as project descriptor, read access cannot be protected with a password.

Accessing protected data
No password or user's name is asked when the Workbench is started. Each time a
user wants to have access to a protected data or function, he must enter the
required password in a dialog box.
If the user enters the required password (or a password attached to a higher access
level), he can continue normally. Each time a password is entered by the user, it is
stored in memory, so the user will not have to enter it again later. Stored passwords
are held each time an ISaGRAF tool is run from another ISaGRAF tool (for
example, the Project Manager runs the Program Manager). Stored passwords are
lost when the last remaining ISaGRAF window is closed. Passwords entered during
project editing, or by using the Library Manager, or by using the Archive manager
cannot be shared. If the user enters a bad password, he cannot run the selected
function.

Links with the archive manager
When saving an object (project or library element) on archive disk, the data
protection item named "Backup on archive" is invoked. This corresponds to the
data protection system attached to the object in the Workbench (hard disk). No test
is performed on the data protection system of the object on the archive disk if it
already exists. The "Backup" command of the ISaGRAF Archive Manager saves
the data protection information with the object on the archive disk.
When restoring an object which already exists in the Workbench (hard disk), the
data protection item named "Overwrite with archive" is invoked. This corresponds
to the data protection system attached to the object in the Workbench (hard disk).
No test is performed on the data protection system of the object on the archive disk.
If this command is validated, the restored data protection information will then
replace the existing one on the hard disk.

User's guide

CJ International A-149

Setting individual protection for variables and I/O channels
The ISaGRAF workbench provides a complete data protection system based on
hierarchised passwords. Variable declaration and I/O connection can be globally
protected by a password. Additionally, ISaGRAF enables you to set individual
protection to any variable or I/O channel. This assumes that:
- passwords are already defined in the password definition system (use the "Project
/ Set password" command of the Project Management window) so that protection
levels are available for individual protection.
- you use protection levels with higher priority for individual protection compared to
global variable or I/O protection.

When a variable or an I/O channel has individual protection, a small icon is draw
close to its name in dictionary or I/O connection window.
Use the "Set protection" and "Remove protection" commands of the "Edit" menu
in dictionary or I/O connection windows to set or remove an individual protection for
selected variable or channel. Both commands ask you to enter a valid password so
that a protection level can be attached to the variable or channel. Then, each time
you want to change a variable or a connection to a channel having individual
protection you must enter a password with sufficient priority level.

Warning: if a variable or channel is protected with a level, and the corresponding password is
removed from protection system, and if no higher level password is defined,
variable or channel cannot be changed anymore unless a new password with
sufficient level is defined.

User's guide

A-150 CJ International

A.26 Advanced programming techniques

This chapter contains more information about the ISaGRAF Workbench and target
system. The user is advised to be familiar with the ISaGRAF tools and methods,
before reading this section.

A.26.1 More about ISaGRAF tools

When using the ISaGRAF editing tools, the user can press the right mouse button
to open a popup menu, which contains the main editing commands. The menu is
opened at the current position of the cursor. This is very useful to reduce mouse
operations during cut and paste commands.
The ISaGRAF tools support multiple execution. Although same tool cannot be
opened twice to edit the same document, it is possible to open different windows
with the same tool and edit different objects as parallel operations.
Other commands are available to find information about graphic buttons in toolbars.
Double click an empty area of a toolbar to display the contents of the toolbar as a
popup menu. Stay with the mouse cursor on a graphic button displays the
corresponding text command.

A.26.2 Locked I/Os and virtual I/Os

Defining an I/O board as virtual disconnects the processing of the physical I/O
channels. When a board is defined as virtual, the ISaGRAF kernel operations are
not changed. The only difference is that input sensors are not read and output
devices are not updated. In this mode, it is possible to use the ISaGRAF debugger
to modify the input values. The Virtual attribute applies to a complete board. It is
programmed during the I/O board definition, before the application code generation.
The virtual attribute is a static feature, and is stored when the application is
stopped and restarted.
Another possibility is the I/O variable locking. It consists of disconnecting one
physical device and the corresponding ISaGRAF I/O variable. Variable locking and
unlocking is performed through the debugger. Variable locking is a dynamic
operation, and is not memorised when the application restarts. The lock operation
applies to only one variable (one I/O channel) at a time. This is the summary of
main I/O controlling features:

Virtual Attribute Lock command
selection tool I/O board connection debugger
definition static dynamic
selection mode board variable
application validation and tests maintenance

The following chart explains the I/O data flow between the ISaGRAF tasks:

User's guide

CJ International A-151

Run time
Kernel
applicationI/O driver

User OEM

INPUTS
DATA
BASE

OUTPUTS
DATA
BASE

Debugger

I/O diver
User OEM

Input
devices

Output
devices

When an input variable is locked, the various accesses to the database are not
changed, but the input device is disconnected. Input values can be set with the
debugger and processed by the ISaGRAF kernel:

User OEM
(user oem key)

Not
locked

INPUTS
DATA
BASE

Input
devices

Run time
Kernel
application

Debugger

When an output variable is locked, the run-time kernel and the output driver are
disconnected. In this case, access is still possible to the output device, via the
output driver, with the ISaGRAF debugger:

Run time
Kernel
application

OUTPUTS
DATA
BASE

Debugger

User OEM
(user oem key)Not

locked

Output
devices

When setting the virtual attribute for an input the input database and the associated
input devices are disconnected. A virtual I/O driver replaces the real one.

User's guide

A-152 CJ International

Not
virtual

Virtual OEM
(oem key 0)

User OEM
(user oem key)

INPUTS
DATA
BASE

Input
devices

Run time
Kernel
application

Debugger

Setting the virtual attribute follows the same rules for an input board or an output
board. For output boards, the ISaGRAF kernel updates the output database. This
database and the associated output devices are, however, disconnected. A virtual
I/O driver replaces the real one.

Run time
Kernel
application

OUTPUTS
DATA
BASE

Debugger

Virtual OEM
(oem key 0)

User OEM
(user oem key)

Not
virtual Output

devices

To summarise all possibilities:

Not
virtual

Run time
Kernel
application

Virtual OEM
(oem key 0)

User OEM
(user oem key)

Not
locked

INPUTS
DATA
BASE

OUTPUTS
DATA
BASE

Debugger

Virtual OEM
(oem key 0)

User OEM
(user oem key)

Not
locked

Not
virtual

Input
devices

Output
devices

User's guide

CJ International A-153

A.26.3 PC-PLC link validation

Most of the problems related to poor communication between the ISaGRAF
workbench and the target PLC are represented in the debugger window by the
"disconnected" status message. Before any diagnostic tests are performed, the
communication should be validated when no application is active in the target
PLC. This way the serial communication link can be validated on its own, isolating it
from execution related effects.
The "C" language, used for description of the conversion functions and C functions,
allows direct access to the target system. A programming error in such a software
component may generate system errors or incorrect ISaGRAF system behaviour.
Such problems may occur when I/O drivers are developed with the ISaGRAF I/O
toolkit. System errors, for example, may be caused if an I/O board is connected on
an invalid bus address. The following table gives a synthetic summary of error
diagnostics:

status context Diagnostic
"disconnected"

(before
download)

- target is not running
- no cable / invalid cable
- invalid link parameters
- ISaGRAF target badly installed

"disconnected"
(after download)

cycle to cycle
starting mode

- invalid I/O configuration
- system crash

real time
starting mode

- invalid I/O configuration
- system crash (due of "C" programming)

"no application" - application not downloaded
- application not started
 (due of "C" programming)
- Intel/Motorola mismatch
- Invalid target version

A.26.4 ISaGRAF directories

The ISaGRAF Workbench works on a dedicated disk directory structure. The root
directory of this architecture is specified by the user during the installation of
ISaGRAF. The default name for the ISaGRAF root directory is ISAWIN. This is the
standard disk architecture created by the installation program:

User's guide

A-154 CJ International

\ISAWIN APL

COM

EXE

LIB

TMP

CREATION

PROJECT1

PROJECT2

OBJS

RELS

DATA

SRC

DEFS

RELS

DEV

FNC

FBL

IOC

These are the standard ISaGRAF sub-directories

DIRECTORY CONTENTS

APL root directory for the ISaGRAF projects
each project corresponds to one sub directory
which contains all the data of the project
other directories may exist for other project groups. ISaGRAF
installation program creates "SMP" directory where are stored
samples applications.

COM "common" range data
Data can be used by any project

EXE ISaGRAF programs and help files
LIB ISaGRAF libraries:

- lists of elements
- parameters or interface for each element
- technical notes

LIB\IOC source code for I/O configurations
LIB\FNC source code of functions written in IEC languages
LIB\FBL source code of function blocks written in IEC languages
LIB\SRC source code for conversions and C functions
LIB\DEFS source header for conversions and C functions
LIB\RELS Conversions and C functions object code
LIB\DEV command files for developing "C" libraries

makefiles, link lists, etc...
TMP Temporary files: sub-directories of TMP are reserved for the

ISaGRAF Code Generator and cannot be deleted.

The sub-directories can be moved to other disk locations. When the user has a non-
standard architecture, the pathnames of the sub-directories should be declared in
the WS001 section, in the ISA.ini initialisation file, in the EXE sub-directory of
ISaGRAF. Here are the entries of the WS001 section:

Isa root directory for ISaGRAF architecture
IsaExe root directory for ISaGRAF programs and help files

User's guide

CJ International A-155

IsaApl root directory for ISaGRAF projects
IsaTmp directory for temporary files
IsaSrc directory for library source code
IsaDefs directory for library source headers

Note that if you change the IsaTmp entry to another directory, you must create the
sub-directories OBJS, RELS and DATA in the new directory. The following example
uses the entries of the WS001 section to redefine the standard ISaGRAF disk
architecture:

;file c:\ISAWIN\EXE\ISA.ini

[WS001]
Isa=c:\isawin
IsaExe=c:\isawin\exe
IsaApl=c:\isawin\apl
IsaTmp=c:\isawin\tmp
IsaSrc=c:\isawin\lib\src
IsaDefs=c:\isawin\lib\defs

When you want to add "C" functions or function blocks to the ISaGRAF target, the
\ISAWIN\LIB\DEV directory is used to store development files: command files,
makefiles, maps, etc... The \ISAWIN\LIB\RELS directory is used to store the object
files generated during "C" compiling, and the ISaGRAF "C" libraries required for
LINK operations.

A.26.5 Application symbols

Each object of an ISaGRAF application is referenced by a name (entered during
variable declaration) and an internal virtual address, calculated by the code
generator. The virtual address of a variable is not its network address entered
during the declaration of the variable. Virtual addresses are used for communication
work, and special "C" applications using the OEM option. When the ISaGRAF code
generator is run, it makes an ASCII file with the logical correspondence between
names and virtual addresses for all the objects (variable, programs, steps...) of the
project. This file can be easily interrogated for information about the ISaGRAF static
database from any user's application. The file is named "APPLI.TST" and is located
in the directory of the ISaGRAF project: "\ISAWIN\APL\proname" (proname is the
name of the project). This section describes the detailed format of the "APPLI.TST"
file. The main notations used for the following descriptions, is shown below:

VA virtual address
ATTR attribute of a variable
USP "C" function

Possible values for the attributes of a variable are shown below. Such values occur
in the "attributes" fields:

+X internal variable
+C read-only internal variable
+I input variable

User's guide

A-156 CJ International

+O output variable

All the numbers, except virtual addresses, are expressed as decimal integers. The
virtual addresses (VA) are expressed as hexadecimal 4 digit numbers, and are
preceded by the character "!". For example:

123 this is a decimal number
!A003 this is an hexadecimal virtual address

The main structure of the file "APPLI.TST" is shown below. The file is structured as
a list of blocks. A block is a list of records. Each record is described on one line of
text. Each block begins with a header, put on one line of text.

Start block
description blocks
end block

The general syntax of one block is shown below:

@ <block_name> <arguments>
#record...
#record...
...

The structure of the first block, containing the main information about the
application, is shown below:

@ISA_SYMBOLS,<appli_crc>
#NAME,<appli_name>,<version>
#DATE,<creation_date>
#SIZE,G=<nbprg>,S=<nbstep>,T=<nbtra>,L=0,P=<nbpro>,V=<nbvar>
#COMMENT,cj international

appli_crc application symbols checksum
appli_name name of the application
version ISaGRAF workbench version number
creation_date application generation date
nbprg................. number of programs
nbstep number of SFC steps
nbtra number of SFC transitions
nbpro................. number of "C" functions used
nbvar total number of variables

The structure of the last block, which signals the end of the file, is shown below:

@END_SYMBOLS

The structure of the block used to describe the programs of the application, is
shown below:

@PROGRAMS,<nbprg>
#<va>,<name>

User's guide

CJ International A-157

#...

nbprg................. number of programs defined in this block
va virtual address of the program
name.................. program name

The structure of the block used to describe the SFC steps of the application is
shown below. Note that there is one virtual step defined for each non-SFC program:

@STEPS,<nbsteps>
#<va>,<name>,<father>
#...

nbsteps number of steps defined in this block
va virtual address of the step
name.................. step name
father virtual address of the father

The structure of the block used to describe the SFC transitions of the application, is
shown below:

@TRANSITIONS,<nbtrans>
#<va>,<name>,<father>
#...

nbtrans number of transitions defined in this block
va virtual address of the transition
name.................. transition name
father virtual address of the father

The structure of the block used to describe the boolean variables of the application,
is shown below:

@BOOLEANS,<nb_boo>
#<va>,<name>,<attr>,<program>,<eq_false>,<eq_true>
#...

and if variable number exceeds 4095:

X#(1.<varno>),<name>,<attr>,<program>,<eq_false>,<eq_true>

nb_boo number of variables in this block
va virtual address of the variable
varno range of the address (within boolean data type)
name.................. name of the variable
attr attribute of the variable
program virtual address of the parent program
........................... or "!0000" for a global variable
eq_false............. string used for false value
eq_true string used for true value

User's guide

A-158 CJ International

The structure of the block used to describe the analog variables of the application,
is shown below:

@ANALOGS,<nb_ana>
#<va>,<name>,<attr>,<program>,<format>,<unit>
#...

and if variable number exceeds 4095:

X#(2.<varno>),<name>,<attr>,<program>,<format>,<unit>

nb_ana number of variables in this block
va virtual address of the variable
varno range of the address (within analog data type)
name.................. name of the variable
attr attribute of the variable
program virtual address of the parent program
........................... or "!0000" for a global variable
format................ = "I" for an integer variable
........................... = "F" for a real variable
unit unit string

The structure of the block used to describe the timer variables of the application, is
shown below:

@TIMERS,<nb_tmr>
#<va>,<name>,<attr>,<program>
#...

and if variable number exceeds 4095:

X#(3.<varno>),<name>,<attr>,<program>

nb_tmr............... number of variables in this block
va virtual address of the variable
varno range of the address (within timer data type)
name.................. name of the variable
attr attribute of the variable (always +X: internal)
program virtual address of the parent program
........................... or "!0000" for a global variable

The structure of the block used to describe the message variables of the
application, is shown below:

@MESSAGES,<nb_msg>
#<va>,<name>,<attr>,<program>,<max_len>
#...

and if variable number exceeds 4095:

X#(4.<varno>),<name>,<attr>,<program>,<max_len>

User's guide

CJ International A-159

nb_msg number of variables in this block
va virtual address of the variable
varno range of the address (within message data type)
name.................. name of the variable
attr attribute of the variable
program virtual address of the parent program
........................... or "!0000" for a global variable
max_len............. maximum length (declared capacity)

The structure of the block used to describe the "C" functions used in the application,
is shown below:

@USP,<nb_usp>
#<va>,<name>
#...

nb_usp number of C functions in this block
va virtual address of the C function
name.................. name of the C function

The structure of the block used to describe the "C" function block instances used in
the application, is shown below:

@FBINSTANCES,<nb_fb>
#<va>,<inst_name>,<fb_name>
#...

nb_fb number of instances of a C function blocks in this block
va virtual address of the C function block instance
inst_name name of the C function block instance
fb_name name of the reference C function block

A.26.6 Limits of ISaGRAF "LARGE" (WDL) workbench

There are some limitations for the objects used in the ISaGRAF Workbench. Of
course, many other practical limits are due to the configuration of the computer
used (available memory and disk space), and the capabilities of the ISaGRAF
target system (available memory, available hardware and software resources...).
The following numbers absolute limits that cannot be exceeded.
For a project:

Object Maximum Notes
Programs 255 grouping main,

sub and child programs
Levels in the hierarchy 20

The number of projects installed on the Workbench is only limited by the available
space on the hard disk.

For names:

User's guide

A-160 CJ International

Name for: Maximum Notes
Project 8 char
Program 8 char
Variable 16 char + 60 characters for comment
Defined word label 16 char
Defined equivalence 255 char + 60 characters for comment
Conversion table 16 char
List of variables 16 char
function / f.block (lib) 8 char this applies to C functions,

C function blocks
or functions written in IEC languages

function parameter (lib) 16 char this applies to C functions,
C function blocks
or functions written in IEC languages

IO board 8 char
IO configuration 8 char
Board oem parameter 16 char
Conversion function 8 char

Editing (for one program):

Object Maximum Notes
SFC rows 600
SFC columns 20
SFC steps 4095 for the whole project, grouping steps,

initial steps,
beginning and ending steps

SFC transitions 4095 for the whole application
LD/FBD editing 200 cols

2000 rows this is the size of the editing area
in cell units.

Quick LD editing no limit limits are imposed by the PC capacity
IL labels 251 in the same IL program
Text editing 40KBytes or less according to

the system configuration

For the dictionary (for one project):

Object Maximum Notes
Boolean variables 65535
Analog variables 65535 grouping integer and real variables
Timers 65535
Message variables 65535
Defined words 4095 in the same list (same range)
Defined words 255 used in the same program
Conversion tables 127 used in the application
Points in one table 32 defined in the same conversion table

The limits given for maximum number of boolean, analog or message variables
group internal, input and output variables. It also includes all hidden temporary or

User's guide

CJ International A-161

variables allocated by compilers. The number of variables edited together (same
type, same scope), in the dictionary editor cannot exceed 16000. Depending on PC
configuration, the limit can be less than 16000. The application cannot run on an
ISaGRAF target version V3.21 or earlier if the total number of variable for one type
exceeds 4095. The standard "Modbus" link using network addresses does not
cannot be used if number of variables for one type exceeds 4095.

IO connections:

Object Maximum Notes
IO Boards 256 defined for the same application

(boards or complex equipments)

Number of I/O boards including single boards and items of complex equipments
cannot exceed 256.

IO channels 128 on the same board

For libraries:

Object Maximum Notes
Functions (IEC lang.) 255 installed together in the library
Function blocks
(IEC lang.) 255 installed together in the library
C functions 255 installed together in the library
C function blocks 255 installed together in the library
function blocks
instances 4095 for the same type of function block

in the same application
Function input parameters 31 this applies to C functions and

functions written in IEC languages
Function block parameters 32 freely distributed between input and

output parameters.
At least 1 output parameter
is required.

Conversion function 128 installed together in the library
IO configurations 255 installed together in the library
IO boards 255 installed together in the library
Complex IO equipt. 255 installed together in the library
Board oem parameters 16

User's guide

A-162 CJ International

Language reference

CJ International B-163

B. Language reference

Language reference

B-164 CJ International

B.1 Project architecture

An ISaGRAF project is divided into several programming units called programs. The
programs of the project are linked together in a tree-like architecture. Programs can be
described using any of SFC, FC (Flow Chart), FBD, LD, ST or IL graphic or literal languages.

B.1.1 Programs

A program is a logical programming unit, which describes operations between variables of
the process. Programs describe either sequential or cyclic operations. Cyclic programs are
executed at each target system cycle. The execution of sequential programs follows the
dynamic rules of either the SFC language or the FC language.

Programs are linked together in a hierarchy tree. Programs placed on the top of the hierarchy
are activated by the system. Sub-programs (lower level of the hierarchy) are activated by their
father. A program can be described with any of the available graphic or literal following
languages:

Sequential Function Chart (SFC) for high level programming
Flow Chart (FC) for high level programming
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Structured Text (ST) for any cyclic operations
Instruction List (IL) for low level operations

The same program cannot mix several languages, except LD and FBD can be combined in
one diagram.

B.1.2 Cyclic and sequential operations

The hierarchy of programs is divided into four main sections or groups:

Begin programs executed at the beginning of each target cycle
Sequential programs following SFC or FC dynamic rules
End programs executed at the end of each target cycle
Functions set of non-dedicated sub-programs

Programs of the 'Begin' or 'End' sections describe cyclic operations, and are not time
dependent. Programs of the 'Sequential' section describe sequential operations, where the
time variable explicitly synchronises basic operations. Main programs of the 'Begin' section
are systematically executed at the beginning of each run time cycle. Main programs of the
'End' section are systematically executed at the end of each run time cycle. Main programs of
the 'Sequential' section are executed according to either the SFC or the FC dynamic rules.

Programs of the "Functions" section are sub-programs that can be called by any other
program in the project. A program of the "Function" section can call another program of this
section.

Language reference

CJ International B-165

Main and child programs of the sequential section must be described with SFC or FC
language. Programs of cyclic sections (begin and end) cannot be described with SFC or FC
language. Any program of any section may own one or more sub-programs. Any program of
the sequential section may own one or more SFC or FC child programs (according to its own
programming language). Sub-programs cannot be described with SFC or FC language.

Programs of the Begin section are typically used to describe preliminary operations on input
devices to build high level filtered variables. Such variables are frequently used by the
programs of the Sequential section. Programs of the End section are typically used to
describe security operations on the variables operated on by the Sequential section, before
sending values to output devices.

B.1.3 Child SFC and FC programs

Any SFC program of the sequential section may control other SFC programs. Such low-level
programs are called child SFC programs. A child SFC program is a parallel program that
can be started, killed, frozen or restarted by its parent program. The parent program and child
program must both be described with the SFC language. A child SFC program may have local
variables and defined words.

When a parent program starts a child SFC program, it puts an SFC token (activates) into
each initial step of the child program. This command is described with the GSTART
statement. When a parent program kills a child SFC program, it clears all the tokens existing
in the steps of the child. Such a command is described with the GKILL statement.

When a parent program freezes a child SFC program, it suspends its execution. The
suspended program can then be restarted using the GRST statement.

Any FC program of the sequential section may control other FC sub-programs. An FC father
program is blocked (waits) during execution of an FC sub-program. It is not possible that
simultaneous operations are done in father FC program and one of its FC sub-programs.

B.1.4 Functions and sub-programs

A sub-program or a function execution is driven by its parent program. The execution of the
parent program is suspended until the sub-program or the function ends:

main sub-programs

Any program of any section may have one or more sub-programs. A sub-program is owned
by only one father program. A sub-program may have local variables and defines. Any
language but SFC or FC can be used to describe a sub-program. Programs of the
"Functions" section are sub-programs that can be called by any other program in the project.

Language reference

B-166 CJ International

Unlike other sub-programs, they are not dedicated to one father program. A program of the
"Function" section can call another program of this section. A function can be located in the
Library.

Warning: The ISaGRAF system does not support recursive function calls. A run time error
will occur if a program of the "Functions" section is called by itself or by one of its called sub-
program.
Warning: A function or sub-program does not "store" the local value of its local variables. A
function or sub-program is not instantiated and so can not call function blocks.

The interface of a sub-program must be explicitly defined, with a type and a unique name for
each of its calling or return parameter. In order to support the ST language convention, the
return parameter must have the same name as the sub-program.

The following table shows how to set the value of the return parameter in the body of a sub-
program, in the different languages:

ST: assign the return parameter using its name
(the same name as the sub-program):

 subprog_name := <expression>;

IL: the value of the current result (IL register)
at the end of the sequence is stored in the return parameter:

 LD 10
 ADD 20 (* return parameter value = 30 *)

FBD: set the return parameter using its name:

&
>=1

subprog_name

LD: use a coil symbol with the name of the return parameter:

subprog_name

B.1.5 Function blocks

Function blocks can use the languages: LD, FBD, ST or IL. Function blocks are instantiated.
It means local variables of a function block are copied for each instance. When calling a block
in a program, you actually call the instance of the block: the same code is called but the data
used are the one which have been allocated for the instance. Values of the variables of the
instance are stored from one cycle to the other.

Language reference

CJ International B-167

(* ST programming *)

(* FB1 is a declared instance
of the SAMPLE function block *)

FB1(high, value, low, 1.0);
high_alarm := FB1.QH;
low_alarm := FB1.QL;
any_alarm := FB1.Q;

Function Block
implementation

Code INSTANCE
DATA

Warnings:
- A function block written with one of the IEC languages can not call other function blocks: the
instantiation mechanism only manages the local variables of the block itself. Here is the list of
standard function blocks that you cannot use inside an IEC function block:
SR, RS, R_Trig, F_Trig, SEMA, CTU, CTD, CTUD, TON, TOF, TP, CMP, StackInt,
AVERAGE, HYSTER, LIM_ALRM, INTEGRAL, DERIVATE, BLINK, SIG_GEN

- For the same reason, you can not use Positive or Negative contact or coils, or Set and
Reset coils.

- TSTART and TSTOP functions to start and stop timers cannot be used in a function block
for 3.0x targets. It works since the 3.20 target.

- When you need loop in your function block, you must use local variable before doing the
loop. See the example below:

This will not work: This is OK:

>=

>=1
&

>=

>=1
& IntResult

B.1.6 Description language

A program can be described with any of the following graphic or literal languages:

Sequential Function Chart (SFC) for high level operations
Flow Chart (FC) for high level operations
Function Block Diagram (FBD) for cyclic complex operations
Ladder Diagram (LD) for boolean operations only
Structured Text (ST) for any cyclic operations
Instruction List (IL) for low level operations

Language reference

B-168 CJ International

The same program cannot mix several languages. The language used to describe a program
is chosen when the program is created, and cannot be changed later on. The exception is that
it is possible to combine FBD and LD in a single program.

B.1.7 Execution rules

ISaGRAF is a synchronous system. All the operations are triggered by a clock. The basic
duration of the clock is called the cycle timing:

Programmed Used Free
Cycle
timing :

Basic operations processed during a target cycle are:

Scan INPUT variables

ISaGRAF
target cycle

Process ‘Begin’ section programs

Process ‘Sequential’ section programs
according to SFC/FC evolution rules

Process ‘End’ section programs

Update OUTPUT devices

This system makes it possible to:

- guarantee that an input variable keeps the same value within a cycle,
- guarantee that an output device is not updated more than once in a cycle,
- work safely on the same global variable from different programs,
- estimate and control the response time of the complete application.

Language reference

CJ International B-169

B.2 Common objects

These are main features and common objects of the ISaGRAF programming database. Such
objects can be used in any program written with any of the SFC, FC, FBD, LD, ST or IL
languages.

B.2.1 Basic types

Any constant, expression or variable used in a program (written in any language) must be
characterised by a type. Type coherence must be followed in graphic operations and literal
statements. These are the available basic types for programming objects:

BOOLEAN: logic (true or false) value
ANALOG: integer or real (floating) continuous value
TIMER: time value
MESSAGE: character string

Note: Timers contain values less than one day and cannot be used to store dates.

B.2.2 Constant expressions

Constant expressions are relative to one type. The same notation cannot be used to
represent constant expressions of different types.

B.2.2.1 Boolean constant expressions

There are only two boolean constant expressions:

TRUE is equivalent to the integer value 1
FALSE is equivalent to the integer value 0

"True" and "False" keywords are case insensitive.

B.2.2.2 Integer analog constant expressions

Integer constant expressions represent signed long integer (32 bit) values: from -2147483647
to +2147483647. Integer analog constants may be expressed with one of the following bases.
Integer constants must begin with a prefix that identifies the bases used:

Base Prefix Example
DECIMAL (none) -908

HEXADECIMAL "16#" 16#1A2B3C4D
OCTAL "8#" 8#1756402
BINARY "2#" 2#1101_0001_0101_1101

Language reference

B-170 CJ International

The underscore character ('_') may be used to separate groups of digits. It has no particular
significance, and is used to increase constant expression readability.

B.2.2.3 Real analog constant expressions

Real analog constant expressions can be written with either decimal or scientific
representation. The decimal point ('.') separates the integer and decimal parts. The decimal
point must be used to differentiate a real constant expression from an integer one. The
scientific representation uses the 'E' or 'F' letter to separate the mantissa part and the
exponent. Exponent part of a real scientific expression must be a signed integer value from -
37 to +37. Below are examples of real analog constant expressions:

3.14159 -1.0E+12
+1.0 1.0F-15
-789.56 +1.0E-37

The expression "123" does not represent a real constant expression. Its correct real
representation is "123.0".

B.2.2.4 Timer constant expressions

Timer constant expressions represent time values from 0 second to 23h59m59s999ms. The
lowest allowed unit is a millisecond. Standard time units used in constant expressions are:

Hour The "h" letter must follow the number of hours
Minute The "m" letter must follow the number of minutes
Second The "s" letter must follow the number of seconds
Millisecond The "ms" letters must follow the number of milliseconds

The time constant expression must begin with "T#" or "TIME#" prefix. Prefixes and unit letters
are case insensitive. Some units may not appear. These are examples of timer constant
expressions:

T#1H450MS 1 hour, 450 milliseconds
time#1H3M 1 hour, 3 minutes

The expression "0" does not represent a time value, but an analog constant.

B.2.2.5 Message string constant expressions

String or message constant expressions represent character strings. Characters must be
preceded by a quote and followed by an apostrophe. For example:

'THIS IS A MESSAGE'

Warning: The apostrophe ''' character cannot be used within a string constant expression. A
string constant expression must be expressed on one line of the program source code. Its
length cannot exceed 255 characters, including spaces.

Language reference

CJ International B-171

Empty string constant expression is represented by two apostrophes, with no space or tab
character between them:

'' (* this is an empty string *)

The special character dollar ('$'), followed by other special characters, can be used in a string
constant expression to represent a non-printable character:

Sequence Meaning ASCII
(hexa)

Example

$$ '$' character 16#24 'I paid $$5 for this'
$' apostrophe 16#27 'Enter $'Y$' for YES'
$L line feed 16#0a 'next $L line'
$R carriage return 16#0d ' llo $R He'
$N new line 16#0d0a 'This is a line$N'
$P new page 16#0c 'lastline $P first line'
$T tabulation 16#09 'name$Tsize$Tdate'

$hh (*) any character 16#hh 'ABCD = $41$42$43$44'

(*) "hh" is the hexadecimal value of the ASCII code for the expressed character.

B.2.3 Variables

Variables can be LOCAL to one program, or GLOBAL. Local variables can be used by one
program only. Global variables can be used in any program of the project. Variable names
must conform to the following rules:

name cannot exceed 16 characters
first character must be a letter
following characters can be letters, digits or the underscore character

B.2.3.1 Reserved keywords

A list of the reserved keywords is shown below. Such identifiers cannot be used to name a
program, a variable or a "C" function or function block:

A ANA, ABS, ACOS, ADD, ANA, AND, AND_MASK, ANDN, ARRAY, ASIN, AT,
ATAN,

B BCD_TO_BOOL, BCD_TO_INT, BCD_TO_REAL, BCD_TO_STRING,
BCD_TO_TIME, BOO, BOOL, BOOL_TO_BCD, BOOL_TO_INT,
BOOL_TO_REAL, BOOL_TO_STRING, BOOL_TO_TIME, BY, BYTE,

C CAL, CALC, CALCN, CALN, CALNC, CASE, CONCAT, CONSTANT, COS,
D DATE, DATE_AND_TIME, DELETE, DINT, DIV, DO, DT, DWORD,
E ELSE, ELSIF, EN, END_CASE, END_FOR, END_FUNCTION, END_IF,

END_PROGRAM, END_REPEAT, END_RESSOURCE, END_STRUCT,
END_TYPE, END_VAR, END_WHILE, ENO, EQ, EXIT, EXP, EXPT,

F FALSE, FEDGE, FIND, FOR, FUNCTION,
G GE, GFREEZE, GKILL, GRST, GSTART, GSTATUS, GT,

Language reference

B-172 CJ International

I IF, INSERT, INT, INT_TO_BCD, INT_TO_BOOL, INT_TO_REAL,
INT_TO_STRING, INT_TO_TIME,

J JMP, JMPC, JMPCN, JMPN, JMPNC,
L LD, LDN, LE, LEFT, LEN, LIMIT, LINT, LN, LOG, LREAL, LT, LWORD,
M MAX, MID, MIN, MOD, MOVE, MSG, MUL, MUX,
N NE, NOT,
O OF, ON, OPERATE, OR, OR_MASK, ORN,
P PROGRAM
R R, REDGE, READ_ONLY, READ_WRITE, REAL, REAL_TO_BCD,

REAL_TO_BOOL, REAL_TO_INT, REAL_TO_STRING, REAL_TO_TIME,
REDGE, REPEAT, REPLACE, RESSOURCE, RET, RETAIN, RETC,
RETCN, RETN, RETNC, RETURN, RIGHT, ROL, ROR,

S S, SEL, SHL, SHR, SIN, SINT, SQRT, ST, STN, STRING,
STRING_TO_BCD, STRING_TO_BOOL, STRING_TO_INT,
STRING_TO_REAL, STRING_TO_TIME, STRUCT, SUB, SYS_ERR_READ,
SYS_ERR_TEST, SYS_INITALL, SYS_INITANA, SYS_INITBOO,
SYS_INITTMR, SYS_RESTALL, SYS_RESTANA, SYS_RESTBOO,
SYS_RESTTMR, SYS_SAVALL, SYS_SAVANA, SYS_SAVBOO,
SYS_SAVTMR, SYS_TALLOWED, SYS_TCURRENT, SYS_TMAXIMUM,
SYS_TOVERFLOW, SYS_TRESET, SYS_TWRITE, SYSTEM,

T TAN, TASK, THEN, TIME, TIME_OF_DAY, TIME_TO_BCD,
TIME_TO_BOOL, TIME_TO_INT, TIME_TO_REAL, TIME_TO_STRING,
TMR, TO, TOD, TRUE, TSTART, TSTOP, TYPE,

U UDINT, UINT, ULINT, UNTIL, USINT,
V VAR, VAR_ACCESS, VAR_EXTERNAL, VAR_GLOBAL, VAR_IN_OUT,

VAR_INPUT, ,VAR_OUTPUT,
W WHILE, WITH, WORD,
X XOR, XOR_MASK, XORN

All keywords beginning with an underscore ('_') character are internal keywords and must not
be used in textual instructions.

B.2.3.2 Directly represented variables

ISaGRAF enables the use of directly represented variables in the source of the programs to
represent a free channel. Free channels are the ones which are not linked to a declared I/O
variable. The identifier of a directly represented variable always begins with "%" character.

Below are the naming conventions of a directly represented variable for a channel of a single
board. "s" is the slot number of the board. "c" is the number of the channel.

%IXs.c free channel of a boolean input board
%IDs.c free channel of an integer input board
%ISs.c free channel of a message input board
%QXs.c free channel of a boolean output board
%QDs.c free channel of an integer output board
%QSs.c free channel of a message output board

Language reference

CJ International B-173

Below are the naming conventions of a directly represented variable for a channel of a
complex equipment. "s" is the slot number of the equipment. "b" is the index of the single
board within the complex equipment. "c" is the number of the channel.

%IXs.b.c free channel of a boolean input board
%IDs.b.c free channel of an integer input board
%ISs.b.c free channel of a message input board
%QXs.b.c free channel of a boolean output board
%QDs.b.c free channel of an integer output board
%QSs.b.c free channel of a message output board

Below are examples:

%QX1.6 6th channel of the board #1 (boolean output)
%ID2.1.7 7th channel of the board #1 in the equipment #2 (integer input)

A directly represented variable cannot have the "real" data type.

B.2.3.3 Boolean variables

Boolean means logic. Such variables can take one of the boolean values: TRUE or FALSE.
Boolean variables are typically used in boolean expressions. Boolean variables can have one
of the following attributes:

Internal: memory variable updated by the program
Constant: read-only memory variable with an initial value
Input: variable connected to an input device (refreshed by the system)
Output: variable connected to an output device

Warning: When declaring a boolean variable, strings can be defined to replace 'true' and
'false' values during debug. Those strings cannot be used in the programs unless entered as
'defined words' for the language.

B.2.3.4 Analog variables

Analog means continuous. Such variables have signed integer or real (floating) values.
Available formats for an analog variable are:

Integer 32 bit signed integer: from -2147483647 to +2147483647
Real standard IEEE 32 bit floating value (single precision)

1 sign bit + 23 mantissa bits + 8 exponent bits

REAL analog exponent value cannot be less than -37 or greater than +37. Analog variables
can have one of the following attributes:

Internal memory variable updated by the program
Constant: read-only memory variable with an initial value
Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

Language reference

B-174 CJ International

Note: When a real variable is connected to an I/O device, the corresponding I/O driver
operates the equivalent integer value.

Warning: Integer and real analog variables or constant expressions cannot be mixed in the
same analog expression.

B.2.3.5 Timer variables

Timer means clock or counter. Such variables have time values and are typically used in
time expressions. A timer value cannot exceed 23h59m59s999ms and cannot be negative.
Timer variables are stored in 32 bit words. The internal representation is a positive number of
milliseconds.
Timer variables can have one of the following attributes:

Internal memory variable managed by the program, refreshed by ISaGRAF system
Constant: read-only memory variable with an initial value

Warning: Timer variables cannot have the INPUT or OUTPUT attributes.

Timer variables can be automatically refreshed by the ISaGRAF system. When a timer is
active, its value is automatically increased according to the target system real time clock. The
following statements of the ST language can be used to control a timer:

TSTART starts automatic refresh of a timer
TSTOP stops automatic refresh of a timer

B.2.3.6 Message string variables

Message or string variables contain character strings. The length of the string can change
during process operations. The length of a message variable cannot exceed the capacity
(maximum length) specified when the variable is declared. Message capacity is limited to 255
characters. Message variables can have one of the following attributes:

Internal memory variable updated by the program
Constant: read-only memory variable with an initial value
Input variable connected to an input device (refreshed by the system)
Output variable connected to an output device

String variables can contain any character of the standard ASCII table (ASCII code from 0 to
255). The null character can exist in a character string. Some "C" functions of the standard
ISaGRAF library will not correctly operate messages which contain null (0) characters.

B.2.4 Comments

Comments may be freely inserted in literal languages such as ST and IL. A comment must
begin with the special characters "(*" and terminate with the characters "*)". Comments can
be inserted anywhere in a ST program, and can be written on more than one line.

Language reference

CJ International B-175

These are examples of comments:

counter := ivalue; (* assigns the main counter *)
(* this is a comment expressed
on two lines *)
c := counter (* you can put comments anywhere *) + base_value + 1;

Interleave comments cannot be used. This means that the "(*" characters cannot be used
within a comment.

Warning: The IL language only accepts comments as the last component of an instruction
line.

B.2.5 Defined words

The ISaGRAF system allows the re-definition of constant expressions, true and false boolean
expressions, keywords or complex ST expressions. To achieve this, an identifier name has
to be given to the corresponding expression. For example:

YES is TRUE
PI is 3.14159
OK is (auto_mode AND NOT (alarm))

When such equivalence is defined, its identifier can be used anywhere in an ST program to
replace the attached expression. This is an example of ST programming using defines:

If OK Then
 angle := PI / 2.0;
 isdone := YES;
End_if;

Defined words can be LOCAL to one program, GLOBAL, or COMMON.
Local defined words can be used by only one program.
Global defined words can be used in any program of the project.
Common defined words can be used in any program of any project.
Note that common defined can be stored separately with the Archive manager.

Warning: When the same identifier is defined twice with different ST equivalencies, the last
defined expression is used. For example:

Define: OPEN is FALSE
OPEN is TRUE

means: OPEN is TRUE

Naming defined words must conform to following rules:
- name cannot exceed 16 characters
- first character must be a letter
- following characters can be letters, digits or underscore ('_') character

Language reference

B-176 CJ International

Warning: A defined word can not use a defined word in its definition, for example, you can not
have:

PI is 3.14159
PI2 is PI*2

write the complete equivalence using constants or variables and operations:
PI2 is 6.28318

Language reference

CJ International B-177

B.3 SFC language

Sequential Function Chart (SFC) is a graphic language used to describe sequential
operations. The process is represented as a set of well-defined steps, linked by transitions.
A boolean condition is attached to each transition. Actions within the steps are detailed by
using other languages (ST, IL, LD and FDB).

B.3.1 SFC chart main format

An SFC program is a graphic set of steps and transitions, linked together by oriented links.
Multiple connection links are used to represent divergences and convergences. Some parts of
the complete program may be separated and represented in the main chart by a single
symbol, called macro steps. The basic graphic rules of the SFC are:
- A step cannot be followed by another step
- A transition cannot be followed by another transition

B.3.2 SFC basic components

The basic components (graphic symbols) of the SFC language are: steps and initial steps,
transitions, oriented links, and jumps to a step.

B.3.2.1 Steps and initial steps

A step is represented by a single square. Each step is referenced by a number, written in
the step square symbol. A main description of the step is written in a rectangle linked to the
step symbol. This description is a free comment (not part of the programming language). The
above information is called the Level 1 of the step:

102 Start motor 1

Reference number

Comment

At run time, a token indicates that the step is active:

Active step: Inactive step:

102 Start motor 1 214 Weighing

Language reference

B-178 CJ International

The initial situation of an SFC program is expressed with initial steps. An initial step has a
double-bordered graphic symbol. A token is automatically placed in each initial step when
the program is started.

Initial step:

Start motor 11

An SFC program must contain at least one initial step.

These are the attributes of a step. Such fields may be used in any of the other languages:
GSnnn.x...................... activity of the step (boolean value)
GSnnn.t....................... activation duration of the step (time value)
(where nnn is the reference number of the step)

B.3.2.2 Transitions

Transitions are represented by a small horizontal bar that crosses the connection link. Each
transition is referenced by a number, written next to the transition symbol. A main description
of the transition is written on the right side of the transition symbol. This description is a free
comment (not part of the programming language). The above information is called the Level
1 of the transition:

Weighing command

Reference number

Comment

102

B.3.2.3 Oriented links

Single lines are used to link steps and transitions. These are oriented links. When the
orientation is not explicitly given, the link is oriented from the top to the bottom.

100

Explicit orientation
from transition 11

to setp 100
Implicit orientation
from step 100 to
transition 10

101
10

11

Language reference

CJ International B-179

B.3.2.4 Jump to a step

Jump symbols may be used to indicate a connection link from a transition to a step, without
having to draw the connection line. The jump symbol must be referenced with the number of
the destination step:

Jump to step 102

102

A jump symbol cannot be used to represent a link from a step to a transition. Example of
jumps - the following charts are equivalent:

1

2

30 31

1

1

2

30 31

1

B.3.3 Divergences and convergences

Divergences are multiple connection links from one SFC symbol (step or transition) to
many other SFC symbols. Convergences are multiple connection links from more than one
SFC symbols to one other symbol. Divergences and convergences can be single or double.

B.3.3.1 single divergences

A single divergence is a multiple link from one step to many transitions. It allows the active
token to pass into one of a number of branches. A single convergence is a multiple link from
many transitions to the same step. A single convergence is generally used to group the SFC
branches which were started on a single divergence. Single divergences and convergences
are represented by single horizontal lines.

Language reference

B-180 CJ International

Single divergence

Single convergence

Warning: The conditions attached to the different transitions at the beginning of a single
divergence are not implicitly exclusive. The exclusivity has to be explicitly detailed in the
conditions of the transitions to ensure that only one token progresses in one branch of the
divergence at run time. Below is an example of single divergence and convergence:

(* SFC program with single divergence and convergence *)

1 Initialize

1
Run & not Error

101
Error

2 Start Motor M1 101 Alarm

2
M1 started

102
Acknowledge

3 Start timer

3
timer > t#3s

4 Stop motor M1

4
M1 stopped

1

B.3.3.2 Double divergences

A double divergence is a multiple link from one transition to many steps. It corresponds to
parallel operations of the process. A double convergence is a multiple link from many steps to
the same transition. A double convergence is generally used to group the SFC branches
started on a double divergence. Double divergences and convergences are represented by
double horizontal lines.

Language reference

CJ International B-181

Double divergence

Double convergence

Example of double divergence and convergence:

(* SFC program with double divergence and convergence *)

1 Initialize

1
Run

2 Process1 101 Process2

2
End of Process 1

101
End of Process 2

3 Wait for process 2 102 Wait for process 2

3
true

1

B.3.4 Macro steps

A macro step is a unique representation of a unique group of steps and transitions. The body
of the macro step is described separately, elsewhere in the same SFC program. It appears as
a single symbol in the main SFC chart. This is the symbol used for a macro step:

102 Process A

Reference number

Comment

Language reference

B-182 CJ International

The reference number written in the macro step symbol is the reference number of the first
step in the body of the macro step. The macro step body must begin with a beginning step
and terminate with an ending step. The chart must be self-contained. A beginning step has
no upper link (no backward transition). An ending step has no lower link (no forward
transition). A macro step symbol may be put in the body of another macro step.

Warning: Because macro step is a unique set of steps and transitions, the same macro step
cannot be used more than once in an SFC program.

Example of macro step:
(* SFC program with macro step *)
(* Main chart *) (* Body of the macro step *)

1 Initialize 201 Fill WUnit

201
unit full

1
Error

101
Run & not Error 202 Weigh

2 Alarm 201 Weighing
202

weighing done

2
Ack

102
true 203 Empty WUnit

203
unit empty

1
204 Store weight

B.3.5 Actions within the steps

The level 2 of an SFC step is the detailed description of the actions executed during the
step activity. This description is made by using SFC literal features, and other languages
such as Structured Text (ST). The basic types of actions are:
- Boolean actions
- Pulse actions programmed in ST
- Non-stored actions programmed in ST
- SFC actions

Several actions (with same or different types) can be described in the same step. The special
features that enable the use of any of the other languages are:
- Calling sub-programs
- Instruction List (IL) language convention

B.3.5.1 Boolean actions

Boolean actions assign a boolean variable with the activity of the step. The boolean variable
can be an output or an internal. It is assigned each time the step activity starts or stops. This
is the syntax of the basic boolean actions:

<boolean_variable> (N) ; assigns the step activity signal to the variable
<boolean_variable> ; same effect (N attribute is optional)

Language reference

CJ International B-183

/ <boolean_variable> ; assigns the negation of the step activity signal to
the variable

Other features are available to set or reset a boolean variable, when the step becomes active.
This is the syntax of set and reset boolean actions:

<boolean_variable> (S) ; sets the variable to TRUE when the step activity
signal becomes TRUE

<boolean_variable> (R) ; resets the variable to FALSE when the step
activity signal becomes TRUE

The boolean variable must be an OUTPUT or an INTERNAL. The following SFC programming
leads to the following behaviour:

Boolean actions

Bdirect(N) ;
/Binvert ;
Bset(S) ;
Breset(R) ;

10
GS10.X

(step activity)

Bdirect

Binvert

Bset

Breset

Example of boolean actions:

(* SFC program using BOOLEAN actions *)

1 led1(R); led4(S); group12(R);

1
2 led1 (N); group12 (S);

2
GS2.t > t#1s;

3 led2;

3
GS3.t > t#2s;

4 led3; group12 (R);

4
GS4.t > t#1s;

2

B.3.5.2 Pulse actions

A pulse action is a list of ST or IL instructions, which are executed only once at the activation
of the step. Instructions are written according to the following SFC syntax:

ACTION (P) :

Language reference

B-184 CJ International

(* ST statements *)
END_ACTION ;

The following shows the results of a pulse action:

Step activity

Execution

Example of pulse action:

1 Action (P):
 nb_edge := 0;
End_action;

4
Cmd;

5 Action (P);
 nb_edge := nb_edge + 1;
End_action;

B.3.5.3 Non-stored actions

A non-stored (normal) action is a list of ST or IL instructions which are executed at each
cycle during the whole active period of the step. Instructions are written according to the
following SFC syntax:

ACTION (N) :
(* ST statements *)

END_ACTION ;

The following is the results of a non-stored action:

Step activity

Execution

Example of non-stored action:

Language reference

CJ International B-185

1 Action (P):
 nb_edge := 0;
End_action;

4
Cmd;

5 Action (N):
 If (nb_egde < 10) then
 nb_edge := nb_edge + 1;
 End_if;
End_action;

B.3.5.4 SFC actions

An SFC action is a child SFC sequence, started or killed according to the change of the step
activity signal. An SFC action can have the N (Non stored), S (Set), or R (Reset) qualifier.
This is the syntax of the basic SFC actions:

<child_prog> (N); starts the child sequence when the step becomes active, and
kills the child sequence when the step becomes inactive

<child_prog> ; same effect (N attribute is optional)
<child_prog> (S); starts the child sequence when the step becomes active.

Nothing is done when the step becomes inactive
<child_prog> (R); kills the child sequence when the step becomes active. Nothing

is done when the step becomes inactive

The SFC sequence specified as an action must be a child SFC program of the program
currently being edited. Note that using the S (Set) or R (Reset) qualifiers for an SFC action
has exactly the same effect as the GSTART and GKILL statements, programmed in an ST
pulse action.
Below is an example of an SFC action. The main SFC program is named Father. It has two
SFC children, called SeqMlx and SeqPump. The SFC programming of the father SFC
program is:

(* SFC program using SFC actions *)

Language reference

B-186 CJ International

1

1
Start;

2 SeqMlx (N); 101 SeqPump (S);

101
Full;

102 SeqPump (R);

2

1

B.3.5.5 Calling function and function blocks from an action

Sub-programs, functions or function blocks (written in ST, IL, LD or FBD language) or "C"
functions and "C" function blocks, can be directly called from an SFC action block, based on
the following syntax:

For sub-programs, functions and "C" functions:
ACTION (P) :

result := sub_program () ;
END_ACTION;

or

ACTION (N) :
result := sub_program () ;

END_ACTION;

For function blocks in "C" or in ST, IL, LD, FBD:
ACTION (P) :

Fbinst(in1, in2);
result1 := Fbinst.out1;
result2 := Fbinst.out2;

END_ACTION;

or

ACTION (N) :
Fbinst(in1, in2);
result1 := Fbinst.out1;
result2 := Fbinst.out2;

END_ACTION;

Detailed syntax can be found in the ST language section.
Example of a sub-program call in action blocks:

Language reference

CJ International B-187

(* SFC program with a sub-program call in an action block *)

1 Action (P):
 init := SPInit ();
End_action;

Init = OK;

B.3.5.6 IL convention

Instruction List (IL) programming may be directly entered in an SFC action block, based on
the following syntax:

ACTION (P) : (* or N *)
#info=IL
 <instruction>
 <instruction>

#endinfo
END_ACTION;

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are
case sensitive. Space or tab characters cannot be inserted into, after or before the
keywords. Below is an example of an IL program in an action block:

(* SFC program with an IL sequence in an action block *)

1 Action (P):
#info=IL
 LD False
 ST Led1
 ST Led2
#endinfo
End_action;

B.3.6 Conditions attached to transitions

At each transition, a boolean expression is attached that conditions the clearing of the
transition. The condition is usually expressed with ST language or using the LD language
(Quick LD editor). This is the Level 2 of the transition. Other structures may, however, be
used:

- ST language convention
- LD language convention
- IL language convention
- Calling function from a transition

Language reference

B-188 CJ International

Warning: When no expression is attached to the transition, the default condition is TRUE.

B.3.6.1 ST convention

The Structured Text (ST) language can be used to describe the condition attached to a
transition. The complete expression must have boolean type and must be terminated by a
semicolon, according to the following syntax:

< boolean_expression > ;

The expression may be a TRUE or FALSE constant expression, a single input or an internal
boolean variable, or a combination of variables that leads to a boolean value. Below is an
example of ST programming for transitions:

(* SFC program with ST programming for transitions *)

1

Run & not Error;

B.3.6.2 LD convention

The Ladder Diagram (LD) language can be used to describe the condition attached to a
transition. The diagram is composed of only one rung with one coil. The coil value represents
the transition value. Below is an example of LD programming for transitions:

1 Run Error

B.3.6.3 IL convention

Instruction List (IL) programming may be directly used to describe an SFC transition,
according to the following syntax:

#info=IL
<instruction>
<instruction>
....

#endinfo
The value contained by the current result (IL register) at the end of the IL sequence causes
the resulting of the condition to be attached to the transition:

current result = 0 condition is FALSE
current result <> 0 condition is TRUE

Language reference

CJ International B-189

The special "#info=IL" and "#endinfo" keywords must be entered exactly this way, and are
case sensitive. Space or tab characters cannot be inserted into, after or before the
keywords. Below is an example of IL programming for transitions:

(* SFC program with an IL program for transitions *)
1

#info=IL
 LD Run
 &N Error
#endinfo

B.3.6.4 Calling functions from a transition

Any sub-program or a function (written in FBD, LD, ST or IL language), or a "C" function can
be called to evaluate the condition attached to a transition, according to the following syntax:

< sub_program > () ;

The value returned by the sub-program or the function must be boolean and yields the
resulting condition:

return value = FALSE condition is FALSE
return value = TRUE condition is TRUE

Example of a sub-program called in a transition:

(* SFC program with sub-program call for transitions *)

1

EvalCond ();

B.3.7 SFC dynamic rules

The five dynamic rules of the SFC language are:

 Initial situation
The initial situation is characterised by the initial steps which are, by definition, in
the active state at the beginning of the operation. At least one initial step must be
present in each SFC program.

 Clearing of a transition
A transition is either enabled or disabled. It is said to be enabled when all
immediately preceding steps linked to its corresponding transition symbol are
active, otherwise it is disabled. A transition cannot be cleared unless:
 - it is enabled, and
 - the associated transition condition is true.

Language reference

B-190 CJ International

 Changing of state of active steps
The clearing of a transition simultaneously leads to the active state of the
immediately following steps and to the inactive state of the immediately preceding
steps.

 Simultaneous clearing of transitions
Double lines may be used to indicate transitions which have to be cleared
simultaneously. If such transitions are shown separately, the activity state of
preceding steps (GSnnn.x) can be used to express their conditions.

 Simultaneous activation and deactivation of a step
If, during operation, a step is simultaneously activated and deactivated, priority is
given to the activation.

B.3.8 SFC program hierarchy

The ISaGRAF system enables the description of the vertical structure of SFC programs. SFC
programs are organised in a hierarchy tree. Each SFC program can control (start, kill...)
other SFC programs. Such programs are called children of the SFC program which controls
them. SFC programs are linked together into a main hierarchy tree, using a "father - child"
relation:

FATHER program

CHILD program

The basic rules implied by the hierarchy structure are:
- SFC programs which have no father are called "main" SFC programs
- Main SFC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program cannot have more than one father
- A child program can only be controlled by its father
- A program cannot control the children of one of its own children

The basic actions that a father SFC program can take to control its child program are:

Start (GSTART) Starts the child program: activates each of its initial steps.
Children of this child program are not automatically started.

Kill (GKILL) Kills the child program by deactivating each of its active steps.
All the children of the child program are also killed.

Freeze (GFREEZE) Suspends the execution of the program (deactivates actions
of each of the active steps and suspend transition calculation), and
memorises the status of the program steps so the program can be
restarted. All the children of the child program are also frozen.

Restart (GRST) Restarts a frozen SFC program by reactivating all the suspended
steps. Children of the program are not automatically restarted.

Get status (GSTATUS) Gets the current status (active, inactive or frozen) of a child
program.

Language reference

CJ International B-191

B.4 Flow Chart language

Flow Chart (FC) is a graphic language used to describe sequential operations. A Flow
Chart diagram is composed of Actions and Tests. Between Actions and test are oriented
links representing data flow. Multiple connection links are used to represents divergences
and convergences. Actions and Tests can be described with ST, LD or IL languages.
Functions and Function blocks of any language (except SFC) can be called from actions and
tests. A Flow Chart program can call another Flow Chart program. The called FC program is a
sub-program of the calling FC program.

B.4.1 FC components

Below are graphic components of the Flow Chart language:

Beginning of FC chart
A "begin" symbol must appear at the beginning of a Flow Chart program. It is unique and
cannot be omitted. It represents the initial state of the chart when it is activated. Below is the
drawing of a "begin" symbol:

Begin

The "Begin" symbol always has a connection (on the bottom) to the other objects of the chart.
A flow chart is not valid if no connection is drawn from "Begin" to another object.

Ending of FC chart
An "end" symbol must appear at the end of a Flow Chart program. It is unique and cannot be
omitted. It is possible that no connection is drawn to the "End" symbol (always looping chart),
but "End" symbol is still drawn anyway at the bottom of the chart. It represents the final state
of the chart, when its execution has been completed. Below is the drawing of an "end"
symbol:

End

The "End" symbol generally has a connection (on the top) to the other objects of the chart. A
flow chart may have no connection to the "End" object (always looping chart). The "End"
object is still visible at the bottom of the chart in this case.

FC flow links
A flow link is a line that represents a flow between two points of the diagram. A link is always
terminated by an arrow. Below is the drawing of a flow link:

Language reference

B-192 CJ International

Two links cannot start from the same source connection point.

FC actions
An action symbol represents actions to be performed. An action is identified by a number and
a name. Below is the drawing of an "action" symbol:

nn: Name

Two different objects of the same chart cannot have the same name or logical number.
Programming language for an action can be ST, LD or IL. An action is always connected with
links, one arriving to it, one starting from it.

FC conditions
A condition represents a boolean test. A condition is identified by a number and a name.
According to the evaluation of attached ST, LD or IL expression, the flow is directed to "YES"
or "NO" path. Below are the possible drawings for a condition symbol:

nn: Name NO

YES

nn: NameNO

YES

nn: Name YES

NO

nn: NameYES

NO

Two different objects of the same chart cannot have the same name or logical number. The
programming of a test is either
- an expression in ST, or
- a single rung in LD, with no symbol attached to the unique coil, or
- several instructions in IL. The IL register (or current result) is used to evaluate the condition.

When programmed in ST text, the expression may optionally be followed by a semicolon.
When programmed in LD, the unique coil represents the condition value. A condition equal to:
- 0 or FALSE directs the flow to NO
- 1 or TRUE directs the flow to YES

A test is always connected with an arriving link, and both forward connections must be
defined.

FC sub-program

Language reference

CJ International B-193

The system enables the description of the vertical structure of FC programs. FC programs are
organised in a hierarchy tree. Each FC program can call other FC programs. Such a program
is called a child program of the FC program which calls them. FC programs which call FC
sub-programs are called father program. FC programs are linked together into a main
hierarchy tree, using a "father - child" relation:

FATHER program

CHILD program

A sub-program symbol in a Flow Chart represents a call to a Flow Chart sub-program.
Execution of the calling FC program is suspended till the sub-program execution is complete.
A Flow Chart sub-program is identified by a number and a name, as other programs,
functions or function blocks. Below is the drawing of a "sub-program call" symbol:

nn: SpName

Two different objects of the same chart cannot have the same logical number. The basic rules
implied by the FC hierarchy structure are:
- FC programs which have no father are called main FC programs.
- Main FC programs are activated by the system when the application starts
- A program can have several child programs
- A child of a program cannot have more than one father
- A child program can be called only by its father
- A program cannot call the children of one of its own children

The same sub-program may appear several times in the father chart. A Flow Chart sub-
program call represents the complete execution of the sub chart. The father chart execution is
suspended during the child chart is performed. The sub-program calling blocks must follow
the same connection rules as the ones defined for action.

FC I/O specific action
An I/O specific action symbol represents actions to be performed. As other actions, an I/O
specific action is identified by a number and a name. The same semantic is used on standard
actions and I/O specific actions. The aim of I/O specific actions is only to make the chart
more readable and to give focus on non-portable parts of the chart. Using I/O specific actions
is an optional feature. Below is the drawing of an "I/O specific action" symbol:

nn: Name

I/O specific blocks have exactly the same behaviour as standard actions. This covers their
properties, ST, LD or IL programming, and connection rules.

FC connectors
Connectors are used to represent a link between two points of the diagram without drawing
it. A connector is represented as a circle and is connected to the source of the flow. The

Language reference

B-194 CJ International

drawing of the connector is completed, on the appropriate side (depending on the direction of
the data flow), by the identification of the target point (generally the name of the target
symbol). Below is the standard drawing of a connector:

 nn: Name

A connector always targets a defined Flow Chart symbol. The destination symbol is identified
by its logical number.

FC comments
A comment block contains text that has no sense for the semantic of the chart. It can be
inserted anywhere on an unused space of the Flow Chart document window, and is used to
document the program. Below is the drawing of a "comment" symbol:

comment text can
be on several lines...

B.4.2 FC complex structures

This section shows complex structure examples that can be defined in a Flow Chart
diagram. Such structures are combinations of basic objects linked together.

IF / THEN / ELSE

(1) place for "THEN" actions to be inserted
(2) place for "ELSE" actions to be inserted

REPEAT / UNTIL

(3) place for repeated actions to be inserted

Language reference

CJ International B-195

WHILE / DO

(3) place for repeated actions to be inserted

B.4.3 FC dynamic behaviour

The execution of a Flow Chart diagram can be explained as follows:

- The Begin symbol takes one target cycle
- The End symbol takes one target cycle and ends the execution of the chart. After this
symbol is reached, no more actions of the chart are executed.
- The flow is broken each time an item (action, decision) is encountered that has already been
reached in the same cycle. In such a case the flow will continue on the next cycle.

Note: Contrary to SFC, an action is not a stable state. There is no repetition of instructions
while the action symbol is highlighted.

B.4.4 FC checking

Apart of attached ST, LD or IL programming, some other syntactic rules apply to flow chart
itself. Below is the list of main rules:
- All "connection" points of all symbols must be wired. (connection to "End" symbol may be
omitted)
- All symbols must be linked together (no isolated part should appear)
- All connectors should have valid destination

Other minor syntax errors can be reported:
- Empty actions (no programming) are considered as steps during run time scheduling
- Empty tests (no programming) are considered as "always true"

Language reference

B-196 CJ International

B.5 FBD language

The Functional Block Diagram (FBD) is a graphic language. It allows the programmer to
build complex procedures by taking existing functions from the ISaGRAF library and wiring
them together in the graphic diagram area.

B.5.1 FBD diagram main format

FBD diagram describes a function between input variables and output variables. A function
is described as a set of elementary function blocks. Input and output variables are
connected to blocks by connection lines. An output of a function block may also be
connected to an input of another block.

{ }
Function

Inputs Outputs

An entire function operated by an FBD program is built with standard elementary function
blocks from the ISaGRAF library. Each function block has a fixed number of input
connection points and a fixed number of output connection points. A function block is
represented by a single rectangle. The inputs are connected on its left border. The outputs
are connected on its right border. An elementary function block performs a single function
between its inputs and its outputs. The name of the function to be performed by the block is
written in its rectangle symbol. Each input or output of a block has a well-defined type.

{ }Inputs Outputs&

Name of the function

Input variables of an FBD program must be connected to input connection points of function
blocks. The type of each variable must be the same as the type expected for the associated
input. An input for FBD diagram can be a constant expression, any internal or input
variable, or an output variable.

Output variables of an FBD program must be connected to output connection points of
function blocks. The type of each variable must be the same as the type expected for the
associated block output. An Output for FBD diagram can be any internal or output variable,
or the name of the program (for sub-programs only). When an output is the name of the
currently edited sub-program, it represents the assignment of the return value for the sub-
program (returned to the calling program).

Language reference

CJ International B-197

Input and output variables, inputs and outputs of the function blocks are wired together with
connection lines. Single lines may be used to connect two logical points of the diagram:
- An input variable and an input of a function block
- An output of a function block and an input of another block
- An output of a function block and an output variable

The connection is oriented, meaning that the line carries associated data from the left
extremity to the right extremity. The left and right extremities of the connection line must be of
the same type.

Multiple right connection can be used to broadcast an information from its left extremity to
each of its right extremities. All the extremities of the connection must be of the same type.

B.5.2 RETURN statement

The "<RETURN>" keyword may occur as a diagram output. It must be connected to a
boolean output connection point of a function block. The RETURN statement represents a
conditional end of the program: if the output of the box connected to the statement has the
boolean value TRUE, the end (remaining part) of the diagram is not executed.

(* Example of an FBD program using RETURN statement *)

auto_mode
alarm

>=1

RETURN

bi10
bi23

x_cmd

&
>=1

bo67

(* ST equivalence: *)
If auto_mode OR alarm Then

Return;
End_if;
bo67 := (bi10 AND bi23) OR x_cmd;

B.5.3 Jumps and labels

Labels and jumps are used to control the execution of the diagram. No other object may be
connected on the right of a jump or label symbol. The following notations are used:

>>LAB jump to a label (label name is "LAB")
LAB: definition of a label (label name is "LAB")

If the connection line on the left of the jump symbol has the boolean state TRUE, the
execution of the program directly jumps after the corresponding label symbol.

(* Example of an FBD program using labels and jumps *)

Language reference

B-198 CJ International

manual
b1

&

NOMODIF

input1
input2 result

NOMODIF:

result
valid cmd10

>=1

>=1

(* IL Equivalence: *)
ld manual
and b1
jmpc NOMODIF
ld input1
or input2
st result

NOMODIF: ld result
or valid
st cmd10

B.5.4 Boolean negation

A single connection line with its right extremity connected to an input of a function block can
be terminated by a boolean negation. The negation is represented by a small circle. When a
boolean negation is used, the left and right extremities of the connection line must have the
BOOLEAN type.

(* Example of an FBD program using a boolean negation *)

input1
input2 output1

&

(* ST equivalence: *)
output1 := input1 AND NOT (input2);

B.5.5 Calling function or function blocks from the FBD

The FBD language enables the calling of sub-programs, functions or function blocks. A sub-
program, or function or function block is represented by a function box. The name written in
the box is the name of the sub-program or function or function blocks.
In case of a sub-program or a function, the return value is the only output of the function box.
A function block can have more than one output.

Language reference

CJ International B-199

(* Example of an FBD program using SUB PROGRAM block *)

Weighing
mode

delta net_w

mode
delta

net_weight

=
IN1

IN2 Q0

+

tare_weight weight

RETURN

(* ST Equivalence *)
net_weight := Weighing (mode, delta); (* call sub-program *)
If (net_weight = 0) Then Return; End_if;
weight := net_weight + tare_weight;

Language reference

B-200 CJ International

B.6 LD language

Ladder Diagram (LD) is a graphic representation of boolean equations, combining contacts
(input arguments) with coils (output results). The LD language enables the description of
tests and modifications of boolean data by placing graphic symbols into the program chart.
LD graphic symbols are organized within the chart exactly as an electric contact diagram. LD
diagrams are connected on the left side and on the right side to vertical power rails. These
are basic graphic components of an LD diagram:

-------------------------- Left vertical power rail

-------------------------- Right vertical power rail

-------------------------- Horizontal connection line

-------------------------- Vertical connection line

-------------------------- Multiple connection lines (all connected together)

-------------------------- Contact associated with a variable

-------------------------- Coil associated to an output or to an internal variable

B.6.1 Power rails and connection lines

An LD diagram is limited on the left and right side by vertical lines, named left power rail and
right power rail respectively.

Right power rail
Left power rail

LD diagram graphic symbols are connected to power rails or to other symbols by connection
lines. Connection lines are horizontal or vertical.

Language reference

CJ International B-201

Horizontal connection lines

Vertical connection
with OR meaning

Vertical
connection line

Each line segment has a boolean state FALSE or TRUE. The boolean state is the same for
all the segments directly linked together. Any horizontal line connected to the left vertical
power rail has the TRUE state.

B.6.2 Multiple connection

The boolean state given to a single horizontal connection line is the same on the left and on
the right extremities of the line. Combining horizontal and vertical connection lines enables the
building of multiple connections. The boolean state of the extremities of a multiple
connection follows logic rules.

A multiple connection on the left combines more than one horizontal lines connected on
the left side of a vertical line, and one line connected on its right side. The boolean state of
the right extremity is the LOGICAL OR between all the left extremities.

(* Example of multiple LEFT connection *)

v1

v2

v3

(* right extremity state is (v1 OR v2 OR v3) *)

A multiple connection on the right combines one horizontal line connected on the left side
of a vertical line, and more than one line connected on its right side. The boolean state of
the left extremity is propagated into each of the right extremities.

(* Example of multiple RIGHT connection *)
input1 output1

output2

(* ST equivalence: *)
output1 := input1;
output2 := input1;

A multiple connection on the left and on the right combines more than one horizontal line
connected on the left side of a vertical line, and more than one line connected on its right
side. The boolean state of each of the right extremities is the LOGICAL OR between all the
left extremities

Language reference

B-202 CJ International

(* Example of multiple LEFT and RIGHT connection *)

input1

input2

output1

output2

output3

(* ST Equivalence: *)
output1 := input1 OR input2;
output2 := input1 OR input2;
output3 := input1 OR input2;

B.6.3 Basic LD contacts and coils

There are several symbols available for input contacts:
- Direct contact
- Inverted contact
- Contacts with edge detection

There are several symbols available for output coils:
- Direct coil
- Inverted coil
- SET coil
- RESET coil
- Coils with edge detection

The name of the variable is written above any of these graphic symbols:

Direct contact
A direct contact enables a boolean operation between a connection line state and a
boolean variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the value of the variable associated with the contact.

(* Example using DIRECT contacts *)

input1 input2 output1

(* ST Equivalence: *)
output1 := input1 AND input2;

Inverted contact

Language reference

CJ International B-203

An inverted contact enables a boolean operation between a connection line state and the
boolean negation of a boolean variable.

boo_variable

Left connection Right connection

The state of the connection line on the right of the contact is the LOGICAL AND between the
state of the left connection line and the boolean negation of the value of the variable
associated with the contact.

(* Example using INVERTED contacts *)

input1 input2 output1

(* ST Equivalence: *)
output1 := NOT (input1) AND NOT (input2);

Contact with rising edge detection
This contact (positive) enables a boolean operation between a connection line state and
the rising edge of a boolean variable.

boo_variable

Left connection Right connection
P

The state of the connection line on the right of the contact is set to TRUE when the state of
the connection line on the left is TRUE, and the state of the associated variable rises from
FALSE to TRUE. It is reset to FALSE in all other cases.

(* Example using RISING EDGE contacts *)

input1 input2 output1
P

(* ST Equivalence: *)
output1 := input1 AND (input2 AND NOT (input2prev));
(* input2prev is the value of input2 at the previous cycle *)

Contact with falling edge detection
This contact (negative) enables a boolean operation between a connection line state and
the falling edge of a boolean variable.

Language reference

B-204 CJ International

boo_variable

Left connection Right connection
N

The state of the connection line on the right of the contact is set to TRUE when the state of
the connection line on the left is TRUE, and the state of the associated variable falls from
TRUE to FALSE. It is reset to FALSE in all other cases.

(* Example using FALLING EDGE contacts *)

input1 input2 output1
N

(* ST Equivalence: *)
output1 := input1 AND (NOT (input2) AND input2prev);
(* input2prev is the value of input2 at the previous cycle *)

Direct coil
Direct coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean state of the left connection. The state
of the left connection is propagated into the right connection. The right connection may be
connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using DIRECT coils *)

input1 output1

output2

(* ST Equivalence: *)
output1 := input1;
output2 := input1;

Inverted coil
Inverted coils enable a boolean output according to the boolean negation of a connection
line state.

Language reference

CJ International B-205

boo_variable

Left connection Right connection

The associated variable is assigned with the boolean negation of the state of the left
connection. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.
The associated name can be the name of the program (for sub-programs only). This
corresponds to the assignment of the return value of the sub-program.

(* Example using INVERTED coils *)

input1 output1

output2

(* ST Equivalence: *)
output1 := NOT (input1);
output2 := input1;

SET coil
"Set" coils enable a boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
S

The associated variable is SET TO TRUE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a
"RESET" coil. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* ST Equivalence: *)
IF input1 THEN
 output1 := TRUE;
END_IF;

Language reference

B-206 CJ International

IF input2 THEN
 output1 := FALSE;
END_IF;

RESET coil
"Reset" coils enable boolean output of a connection line boolean state.

boo_variable

Left connection Right connection
R

The associated variable is RESET TO FALSE when the boolean state of the left connection
becomes TRUE. The output variable keeps this value until an inverse order is made by a
"SET" coil. The state of the left connection is propagated into the right connection. Right
connection may be connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using "SET" and "RESET" coils *)

input1

input2

output1
S

output1
R

(* ST Equivalence: *)
IF input1 THEN
 output1 := TRUE;
END_IF;
IF input2 THEN
 output1 := FALSE;
END_IF;

Coil with rising edge detection
"Positive" coils enable boolean output of a connection line boolean state. This type of coils
are only available using the Quick ladder editor.

boo_variable

Left connection Right connection
P

The associated variable is set to TRUE when the boolean state of the left connection rises
from FALSE to TRUE. The output variable resets to FALSE in all other cases. The state of
the left connection is propagated into the right connection. Right connection may be
connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

Language reference

CJ International B-207

(* Example using a "Positive" coil *)

input1 output1
P

(* ST Equivalence: *)
IF (input1 and NOT(input1prev)) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END_IF;
(* input1prev is the value of input1 at the previous cycle *)

Coil with falling edge detection
"Negative" coils enable boolean output of a connection line boolean state. This type of
coils are only available using the Quick ladder editor.

boo_variable

Left connection Right connection
N

The associated variable is set to TRUE when the boolean state of the left connection falls
from TRUE to FALSE. The output variable resets to FALSE in all other cases. The state of
the left connection is propagated into the right connection. Right connection may be
connected to the right vertical power rail.

The associated boolean variable must be OUTPUT or INTERNAL.

(* Example using a "Positive" coil *)

input1 output1
N

(* ST Equivalence: *)
IF (NOT(input1) and input1prev) THEN
 output1 := TRUE;
ELSE
 output1 := FALSE;
END_IF;
(* input1prev is the value of input1 at the previous cycle *)

B.6.4 RETURN statement

The RETURN label can be used as an output to represent a conditional end of the program.
No connection can be put on the right of a RETURN symbol.

RETURN

Language reference

B-208 CJ International

If the left connection line has the TRUE boolean state, the program ends without executing
the equations entered on the following lines of the diagram.
Note: When the LD program is a sub-program, its name has to be associated with an output
coil to set the return value (returned to the calling program).

(* Example using RETURN symbol *)

manual mode
RETURN

input1 input2

input3

result

(* ST Equivalence: *)
If Not (manual_mode) Then RETURN; End_if;
result := (input1 OR input3) AND input2;

B.6.5 Jumps and labels

Labels, conditional and unconditional JUMPS symbols, can be used to control the execution
of the diagram. No connection can be put on the right of the label and jump symbol. The
following notations are used:

>>LAB jump to label named "LAB"
LAB: definition of the label named "LAB"

If the connection on the left of the jump symbol has the TRUE boolean state, the program
execution is driven after the label symbol.

(* Example using JUMP and LABEL symbols *)

manual_mode

input1 result

OTHER

OTHER:
input2 result

END

END:

(* IL Equivalence: *)
ldn manual_mode
jmpc other
ld input1
st result
jmp END

Language reference

CJ International B-209

OTHER: ld input2
st result

END: (* end of program *)

B.6.6 Blocks in LD

Using the Quick LD editor, you connect function boxes to boolean lines. A function can
actually be an operator, a function block or a function. As all blocks do not have always a
boolean input and/or a boolean output, inserting blocks in an LD diagram leads to the addition
of new parameters EN, ENO to the block interface. The EN, ENO parameters are not added if
you use the FBD/LD editor as you can connect the variable with the required type.

The "EN" input
On some operators, functions or function blocks, the first input does not have boolean data
type. As the first input must always be connected to the rung, another input is automatically
inserted at the first position, called "EN". The block is executed only if the EN input is TRUE.
Below is the example of a comparison operator, and the equivalent code expressed in ST:

IF rung_state THEN
 q := (value1 > value 2);
ELSE
 q := FALSE;
END_IF;
(* continue rung with q state *)

The "ENO" output
On some operators, functions or function blocks, the first output does not have boolean data
type. As the first output must always be connected to the rung, another output is automatically
inserted at the first position, called "ENO". The ENO output always takes the same state as
the first input of the block. Below is an example with AVERAGE function block, and the
equivalent code expressed in ST:

AVERAGE(rung_state, Signal, 100);
OutSignal := AVERAGE.XOUT;
eno := rung_state;
(* continue rung with eno state *)

The "EN" and "ENO" parameters
On some cases, both EN and ENO are required. Below is an example with an arithmetic
operator, and the equivalent code expressed in ST:

IF rung_state THEN
 result := (value1 + value2);
END_IF;
eno := rung_state;
(* continue rung with eno state *)

Language reference

B-210 CJ International

B.7 ST language

ST (Structured Text) is a high level structured language designed for automation processes.
This language is mainly used to implement complex procedures that cannot be easily
expressed with graphic languages. ST is the default language for the description of the
actions within the steps and conditions attached to the transitions of the SFC language.

B.7.1 ST main syntax

An ST program is a list of ST statements. Each statement ends with a semi-colon (";")
separator. Names used in the source code (variable identifiers, constants, language
keywords...) are separated with inactive separators (space character, end of line or tab
stops) or by active separators, which have a well defined significance (for example, the ">"
separator indicates a "greater than" comparison. Comments may be freely inserted into the
text. A comment must begin with "(*" and ends with "*)". Each statement terminates with a
semi-colon (";") separator. These are basic types of ST statements:

- assignment statement (variable := expression;)
- sub-program or function call
- function block call
- selection statements (IF, THEN, ELSE, CASE...)
- iteration statements (FOR, WHILE, REPEAT...)
- control statements (RETURN, EXIT...)
- special statements for links with other languages such as SFC

Inactive separators may be freely entered between active separators, constant expressions
and identifiers. ST inactive separators are: Space (blank) character, Tabs and End of line
character. Unlike line-formatted languages such as IL, end of lines may be entered anywhere
in the program. The rules shown below should be followed when using inactive separators to
increase ST program readability:

- Do not write more than one statement on one line
- Use tabs to indent complex statements
- Insert comments to increase readability of lines or paragraphs

B.7.2 Expression and parentheses

ST expressions combine ST operators and variable or constant operands. For each single
expression (combining operands with one ST operator), the type of the operands must be the
same. This single expression has the same type as its operands, and can be used in a more
complex expression. For example :

(boo_var1 AND boo_var2) has BOO type
not (boo_var1) has BOO type
(sin (3.14) + 0.72) has REAL ANALOG type
(t#1s23 + 1.78) is an invalid expression

Language reference

CJ International B-211

Parentheses are used to isolate sub parts of the expression, and to explicitly order the priority
of the operations. When no parentheses are given for a complex expression, the operation
sequence is implicitly given by the default priority between ST operators. For example:

2 + 3 * 6 equals 2+18=20 because multiplication operator has a
higher priority

(2+3) * 6 equals 5*6=30 priority is given by parenthesis

Warning: A maximum number of 8 levels of parentheses can be nested within an expression.

B.7.3 Function or function block calls

Standard ST function calls may be used for each of following objects:
- Sub-programs
- Library functions and function blocks written in IEC languages
- "C" functions and function blocks
- Type conversion functions

Calling sub-programs or functions
Name: name of the called sub-program

or library function written in IEC language or in "C"
Meaning: calls a ST, IL, LD or FBD sub-program or function or a "C" function

and gets its return value
Syntax: <variable> := <subprog> (<par1>, ... <parN>);
Operands: The type of return value and calling parameters must follow

the interface defined for the sub-program.
Return value: value returned by the sub-program

Sub-program calls may be used in any expression. They also may be used in an SFC
transition.

Example1: Sub-program call

(* Main ST program *)
(* gets an analog value and converts it into a limited time value *)
ana_timeprog := SPlimit (tprog_cmd);
appl_timer := tmr (ana_timeprog * 100);

(* Called FBD program named 'SPlimit' *)

min_value

Input_value

max_value

min

IN1

IN2 Q

max

IN1

IN2 Q SPlimit

Example2: Function call

(* functions used in complex expressions: min, max, right, mlen and left are standard "C"
functions *)

Language reference

B-212 CJ International

limited_value := min (16, max (0, input_value));
rol_msg := right (message, mlen (message) - 1) + left (message, 1);

Calling function blocks
Name: name of the function block instance
Meaning: calls a function block from the ISaGRAF library or from the user's

library and accesses its return parameters
Syntax: (* call of the function block *)

<blockname> (<p1>, <p2> ...);
(gets its return parameters *)
<result> := <blockname>. <ret_param1>;
...
<result> := <blockname>. <ret_paramN>;

Operands: parameters are expressions which match the type
of the parameters specified for that function block

Return value: See Syntax to get the return parameters.

Consult the ISaGRAF library to find the meaning and type of each function block parameter.
The function block instance (name of the copy) must be declared in the dictionary

Example :

(* ST program calling a function block *)

(* declare the instance of the block in the dictionary: *)
(* trigb1 : block R_TRIG - rising edge detection *)

(* function block activation from ST language *)
trigb1 (b1);
(* return parameters access *)
If (trigb1.Q) Then nb_edge := nb_edge + 1; End_if;

B.7.4 ST specific boolean operators

The following boolean operators are specific to the ST language:
- REDGE rising edge detection
- FEDGE falling edge detection

Other standard boolean operators such as:
- NOT boolean negation
- AND (&) logical AND
- OR logical OR
- XOR logical exclusive OR
can be used. Their description is to be found in the section 'Standard operators, function
blocks and functions'.

"REDGE" operator
Name: REDGE
Meaning: evaluates the rising edge of a complete boolean expression
Syntax: <edge> := REDGE (<boo_expression>,<memo_variable>);

Language reference

CJ International B-213

Operands: first operand is any boolean variable or complex expression
second operand is an internal boolean variable used to store the last
state of the expression

Return value: TRUE when the expression changes from FALSE to TRUE
FALSE for all other cases

The rising edge of an expression cannot be detected more than once in the same execution
cycle, using the REDGE operator. This operator can be used to describe the condition
attached to an SFC transition.

Warning: The "memory" boolean variable used to store the last state of the expression cannot
be used as a trigger for edges of different expressions.

When the expression is a boolean variable named "xxx", a unique internal variable named
"EDGE_xxx" should be declared and used it in the REDGE expressions for this variable. This
method ensures that the memory variable is not overwritten during other REDGE evaluations.

Example:

(* ST program using REDGE operator *)

(* this program counts the rising edges of a boolean input *)
(* Bi120 is an input boolean variable *)
(* Edge_Bi120 is the memory of the Bi120 variable state *)

If REDGE (Bi120, Edge_Bi120) Then
Counter := Counter + 1;

End_if;

Note: this operator is not in the IEC1131-3 norm. You may prefer the use of R_TRIG standard
block. It has been kept for compatibility reasons.

"FEDGE" operator
Name: FEDGE
Meaning: evaluates the falling edge of a boolean expression
Syntax: <edge> := FEDGE (<boo_expression>, <memo_variable>);
Operands: first operand is any boolean variable or complex expression

second operand is an internal boolean variable used to store
the last state of the expression

Return value: TRUE when the expression changes from TRUE to FALSE
FALSE for all other cases

The falling edge of an expression cannot be detected more than once in the same execution
cycle, using the REDGE operator. The operator can be used to describe the condition
attached to an SFC transition.
Warning: The "memory" boolean variable used to store the last state of the expression cannot
be used as a trigger for edges of different expressions.

When the expression is a boolean variable named "xxx", a unique internal variable named
"EDGE_xxx" should be declared and used it in the FEDGE expressions for this variable. This
method ensures that the memory variable is not overwritten during other FEDGE evaluations.

Language reference

B-214 CJ International

Example:

(* ST program using FEDGE operator *)

(* this program counts the falling edges of a boolean input *)
(* Bi120 is an input boolean variable *)
(* Edge_Bi120 is the memory of the Bi120 variable state *)

If FEDGE (Bi120, Edge_Bi120) Then
Counter := Counter + 1;

End_if;

Note: this operator is not in the IEC1131-3 norm. You may prefer the use of F_TRIG standard
block. It has been kept for compatibility reasons.

B.7.5 ST basic statements

The basic statements of the ST language are:
- Assignment
- RETURN statement
- IF-THEN-ELSIF-ELSE structure
- CASE statement
- WHILE iteration statement
- REPEAT iteration statement
- FOR iteration statement
- EXIT statement

Assignment
Name: :=
Meaning: assigns a variable to an expression
Syntax: <variable> := <any_expression> ;
Operands: variable must be internal or output

variable and expression must have the same type

The expression can be a call to a sub-program or a function from the ISaGRAF library

Example:

(* ST program with assignments *)

(* variable <<= variable *)
bo23 := bo10;

(* variable <<= expression *)
bo56 := bx34 OR alrm100 & (level >= over_value);
result := (100 * input_value) / scale;

(* assignment with sub-program return value *)
rc := PSelect ();

Language reference

CJ International B-215

(* assignment with function call *)
limited_value := min (16, max (0, input_value));

RETURN statement
Name: RETURN
Meaning: terminates the execution of the current program
Syntax: RETURN ;
Operands: (none)

In an SFC action block, the RETURN statement indicates the end of the execution of that
block only.

Example:

(* FBD specification of the program: programmable counter *)

CU

RESET

PV

Q

CV

CTU

(* ST implementation of the program, using RETURN statement *)

If not (CU) then
Q := false;
CV := 0;
RETURN; (* terminates the program *)

end_if;

if R then
CV := 0;

else
if (CV < PV) then

CV := CV + 1;
end_if;

end_if;
Q := (CV >= PV);

IF-THEN-ELSIF-ELSE statement
Name: IF ... THEN ... ELSIF ... THEN ... ELSE ... END_IF
Meaning: executes one of two lists of ST statements

selection is made according to the value
of a boolean expression

Syntax: IF <boolean_expression> THEN
 <statement> ;
 <statement> ;
 ...
ELSIF <boolean_expression> THEN

Language reference

B-216 CJ International

 <statement> ;
 <statement> ;
 ...
ELSE
 <statement> ;
 <statement> ;
 ...
END_IF;

The ELSE and ELSIF statements are optional. If the ELSE statement is not written, no
instruction is executed when the condition is FALSE.

Example:

(* ST program using IF statement *)

IF manual AND not (alarm) THEN
level := manual_level;
bx126 := bi12 OR bi45;

ELSIF over_mode THEN
level := max_level;

ELSE
level := (lv16 * 100) / scale;

END_IF;

(* IF structure without ELSE *)
If overflow THEN

alarm_level := true;
END_IF;

CASE statement
Name: CASE ... OF ... ELSE ... END_CASE
Meaning: executes one of several lists of ST statements

selection is made according to an integer expression
Syntax: CASE <integer_expression> OF

 <value> : <statements> ;
 <value> , <value> : <statements> ;
 ...
ELSE
 <statements> ;
END_CASE;

Case values must be integer constant expressions. Several values, separated by comas, can
lead to the same list of statements. The ELSE statement is optional.

Example:

(* ST program using CASE statement *)

CASE error_code OF
255: err_msg := 'Division by zero';

Language reference

CJ International B-217

fatal_error := TRUE;
1: err_msg := 'Overflow';
2, 3: err_msg := 'Bad sign';

ELSE
err_msg := 'Unknown error';

END_CASE;

WHILE statement
Name: WHILE ... DO ... END_WHILE
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated BEFORE any iteration
Syntax: WHILE <boolean_expression> DO

 <statement> ;
 <statement> ;
 ...
END_WHILE ;

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed
during WHILE iterations. The change of state of an input variable cannot be used to describe
the condition of a WHILE statement.

Example:

(* ST program using WHILE statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;

WHILE ((nbchar < 16) & ComIsReady ()) DO
string := string + ComGetChar ();
nbchar := nbchar + 1;

END_WHILE;

REPEAT statement
Name: REPEAT ... UNTIL ... END_REPEAT
Meaning: iteration structure for a group of ST statements

the "continue" condition is evaluated AFTER any iteration
Syntax: REPEAT

 <statement> ;
 <statement> ;
 ...
UNTIL <boolean_condition>
END_REPEAT ;

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed
during REPEAT iterations. The change of state of an input variable cannot be used to
describe the ending condition of a REPEAT statement.

Language reference

B-218 CJ International

Example:

(* ST program using REPEAT statement *)

(* this program uses specific "C" functions to read characters *)
(* on a serial port *)

string := ''; (* empty string *)
nbchar := 0;
IF ComIsReady () THEN

REPEAT
string := string + ComGetChar ();
nbchar := nbchar + 1;

UNTIL ((nbchar >= 16) OR NOT (ComIsReady ()))
END_REPEAT;

END_IF;

FOR statement
Name: FOR ... TO ... BY ... DO ... END_FOR
Meaning: executes a limited number of iterations,

using an integer analog index variable
Syntax: FOR <index> := <mini> TO <maxi> BY <step> DO

 <statement> ;
 <statement> ;
END_FOR;

Operands: index: internal analog variable increased at any loop
mini: initial value for index (before first loop)
maxi: maximum allowed value for index
step: index increment at each loop

The [BY step] statement is optional. If not specified, the increment step is 1

Warning: Because ISaGRAF is a synchronous system, input variables are not refreshed
during FOR iterations.

This is the "while" equivalent of a FOR statement:

index := mini;
while (index <= maxi) do
 <statement> ;
 <statement> ;
 index := index + step;
end_while;

Example:

(* ST program using FOR statement *)
(* this program extracts the digit characters of a string *)

length := mlen (message);

Language reference

CJ International B-219

target := ''; (* empty string *)
FOR index := 1 TO length BY 1 DO

code := ascii (message, index);
IF (code >= 48) & (code <= 57) THEN

target := target + char (code);
END_IF;

END_FOR;

EXIT statement
Name: EXIT
Meaning: exit from a FOR, WHILE or REPEAT iteration statement
Syntax: EXIT;
Operands: (none)

The EXIT is commonly used within an IF statement, inside a FOR, WHILE or REPEAT block.

Example:

(* ST program using EXIT statement *)
(* this program searches for a character in a string *)

length := mlen (message);
found := NO;
FOR index := 1 TO length BY 1 DO

code := ascii (message, index);
IF (code = searched_char) THEN

found := YES;
EXIT;

END_IF;
END_FOR;

B.7.6 ST extensions

The following functions are extensions of the ST language:
- TSTART - TSTOP: timer control

The following statements and functions are available to control the execution of the SFC child
programs. They may be used inside ACTION(): ... END_ACTION; blocks in SFC steps.

- GSTART starts an SFC program
- GKILL kills an SFC program
- GFREEZE freezes an SFC program
- GRST restarts a frozen SFC program
- GSTATUS gets current status of an SFC program

Warning: These functions are not in the IEC 1131-3 norm.
Easy equivalent can be found for GSTART and GKILL using the following syntax in the SFC
step:

child_name(S); (* equivalent to GSTART(child_name); *)
child_name(R); (* equivalent to GKILL(child_name); *)

Language reference

B-220 CJ International

The following fields can be used to access the status of an SFC step:
GSnnn.x boolean value that represents the activity of the step
GSnnn.t time elapsed since the last activation of the step

("nnn" is the reference number of the SFC step)

It is also possible to test the activity of a step declared in another SFC program, by using the
following syntax:

GSnnn(progname).x

Warning: referencing a step of an other program, using this syntax is not in the IEC 1131-3
norm. An easy way to do the same respecting IEC rules, is to declare a global boolean
variable in the dictionary which will represent the step activity to be tested (for example
ref_step_X). Then you insert in the step, the variable with the N qualifier (ref_step_X(N);).
Then in the program which wants to test the activity of the step, you use the variable.
Prog program the other program which needs step activity of

Prog program
1

1
101

2 ref_step_X(N);
101

ref_step_X; (* = GS2(prog).X *)

2
102

TSTART statement
Name: TSTART
Meaning: starts the counting of a timer variable

timer value is not modified by the TSTART command, i.e. the
counting starts from the current value of the timer.

Syntax: TSTART (<timer_variable>);
Operands: any inactive timer variable
Return value: (none)

Example:

(* SFC program using TSTART and TSTOP statements *)

Language reference

CJ International B-221

11 ACTION(P):
 TSTOP(tm_ctrl);
 alarm := not(bi100);
END_ACTION;

10 ACTION(P):
 bo100 := TRUE; (* boolean output *)
 tm_ctrl := t#0s;
 TSTART(tm_ctrl);
END_ACTION;

bi100 OR (tm_ctrl > time_out);

Time diagram if bi100 is always FALSE:

GS10.X

GS11.X

tm ctrl
timeout

0

The timer keeps the same value during one cycle.

TSTOP statement
Name: TSTOP
Meaning: stops updating a timer variable

timer value is not modified by the TSTOP command
Syntax: TSTOP (<timer_variable>);
Operands: any active timer variable
Return value: (none)

Example: See TSTART (the function is described above)

GSTART statement
Name: GSTART
Meaning: starts a child SFC program by putting a token

into each of its initial steps
Syntax: GSTART (<child_program>);
Operands: the specified SFC program must be a child of the one

Language reference

B-222 CJ International

in which the statement is written
Return value: (none)

Children of the child program are not automatically started by the GSTART statement.
Note: As GSTART is not in the IEC 1131-3 norm, prefer the use of the S qualifier, with the
following syntax to start a child SFC:

Child_name(S);

Example: Use of GSTART and GKILL
(* Sequence 'Sfather' *) (* Sequence 'Schild' *)

1 1 Bo100;

1
Run_cmd;

1
GS1.t > t#2s;

2 ACTION(P):
 GSTART(Schild);
END_ACTION;

2 Bo101;

2
NOT (Run_cmd);

2
GS2.t > t#2s;

3 ACTION(P):
 GKILL(Schild);
END_ACTION;

1

3
Run_cmd;

1

GKILL statement
Name: GKILL
Meaning: kills a child SFC program by removing the tokens

currently existing in its steps
Syntax: GKILL (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically killed with the specified program.
Note: As GKILL is not in the IEC 1131-3 norm, prefer the use of the R qualifier, with the
following syntax to kill a child SFC:

Child_name(R);

Example: See GSTART (function described above)

GFREEZE statement
Name: GFREEZE
Meaning: Suspends the execution of a child SFC program.

Frozen program can be restarted by the GRST statement.
Syntax: GFREEZE (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Language reference

CJ International B-223

Children of the child program are automatically frozen along with the specified program.
Note: GFREEZE is not in the IEC 1131-3 norm.

Example:

1
Suspend_cmd;

2 ACTION(P):
 GFREEZE(Schild);
END_ACTION;

2
NOT (Suspend_cmd);

3 ACTION(P):
 GRST(Schild);
END_ACTION;

GRST statement
Name: GRST
Meaning: Restarts a child SFC program frozen by the GFREEZE statement.
Syntax: GRST (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: (none)

Children of the child program are automatically restarted by the GRST statement
Note: GRST is not in the IEC 1131-3 norm.

Example: See GFREEZE (function described above)

GSTATUS statement
Name: GSTATUS
Meaning: returns the current status of an SFC program
Syntax: <ana_var> := GSTATUS (<child_program>);
Operands: the specified SFC program must be a child of the one

in which the statement is written
Return value: 0 = program is inactive (killed)

1 = program is active (started)
2 = program is frozen

Note: GSTATUS is not in the IEC 1131-3 norm.

Example:

Language reference

B-224 CJ International

1

1
Run_cmd;

2 ACTION(P):
 GSTART(Schild);
END_ACTION;

201 ACTION(N):
 if GSTATUS(Schild) = 0 then
 Mstat := 'Stopped';
 else
 Mstat := 'Running';
 end_if;
END_ACTION;2

NOT(Run_cmd);

3 ACTION(P):
 GKILL(Schild);
END_ACTION;

3
Run_cmd;

2

Language reference

CJ International B-225

B.8 IL language

Instruction List, or IL is a low level language. Instructions always relate to the current result
(or IL register). The operator indicates the operation that must be made between the current
value and the operand. The result of the operation is stored again in the current result.

B.8.1 IL main syntax

An IL program is a list of instructions. Each instruction must begin on a new line, and must
contain an operator, completed with optional modifiers and, if necessary, for the specific
operation, one or more operands, separated with commas (','). A label followed by a colon
(':') may precede the instruction. If a comment is attached to the instruction, it must be the
last component of the line. Comments always begin with '(*' and ends with '*)'. Empty lines
may be entered between instructions. Comments may be put on empty lines. Below are
examples of instruction lines:

Label Operator Operand Comments
Start: LD IX1 (* push button *)

ANDN MX5 (* command is not forbidden *)
ST QX2 (* start motor *)

Labels
A label followed by a colon (':') may precede the instruction. A label can be put on an empty
line. Labels are used as operands for some operations such as jumps. Naming labels must
conform to the following rules:
- name cannot exceed 16 characters
- first character must be a letter
- following characters must be letters, digits or '_' character

The same name cannot be used for more than one label in the same IL program. A label can
have the same name as a variable.

Operator modifiers
The available operator modifiers are shown below. The modifier character must complete the
name of the operator, with no blank characters between them:

N boolean negation of the operand
(delayed operation
C conditional operation

The 'N' modifier indicates a boolean negation of the operand. For example, the instruction
ORN IX12 is interpreted as: result := result OR NOT (IX12).

The parenthesis '(' modifier indicates that the evaluation of the instruction must be delayed
until the closing parenthesis ')' operator is encountered.

Language reference

B-226 CJ International

The 'C' modifier indicates that the attached instruction must be executed only if the current
result has the boolean value TRUE (different than 0 for non-boolean values). The 'C' modifier
can be combined with the 'N' modifier to indicate that the instruction must be executed only if
the current result has the boolean value FALSE (or 0 for non-boolean values).

Delayed operations
Because there is only one IL register (current result), some operations may have to be
delayed, so that the execution order or the instructions can be changed. Parentheses are
used to indicate delayed operations:

'(' is a modifier indicates the operation to be delayed
')' is an operator executes the delayed operation

The opening parenthesis '(' modifier indicates that the evaluation of the instruction must be
delayed until the closing parenthesis ')' operator is encountered. For example, following
sequence:

AND(IX12
OR IX35
)

is interpreted as:

result := result AND (IX12 OR IX35)

B.8.2 IL operators

 The following table summarizes the standard operators of the IL language:

Operator Modifiers Operand Description
LD N Variable, constant Loads operand
ST N Variable Stores current result
S
R

BOO variable
BOO variable

Sets to TRUE
Resets to FALSE

AND
&

OR
XOR

N (
N (
N (
N (

BOO
BOO
BOO
BOO

boolean AND
boolean AND
boolean OR
exclusive OR

ADD
SUB
MUL
DIV

(
(
(
(

variable, constant
variable, constant
variable, constant
variable, constant

Addition
Subtraction

Multiplication
Division

GT
GE
EQ
LE
LT
NE

(
(
(
(
(
(

variable, constant
variable, constant
variable, constant
variable, constant
variable, constant
variable, constant

Test: >
Test: >=
Test: =
Test <=
Test <

Test <>

Language reference

CJ International B-227

CAL
JMP
RET

C N
C N
C N

Function block instance name
Label

Calls a function block
Jumps to label

Returns from sub-program
) Executes delayed operation

In the next section, only operators which are specific to the IL language are described, other
standard operators can be found in the section "standard operators, function blocks and
functions".

LD operator
Operation loads a value in the current result
Allowed modifiers N
Operand constant expression

internal, input or output variable

Example:

(* EXAMPLES OF LD OPERATIONS *)
LDex: LD false (* result := FALSE boolean constant *)

LD true (* result := TRUE boolean constant *)
LD 123 (* result := integer constant *)
LD 123.1 (* result := real constant *)
LD t#3ms (* result := time constant *)
LD boo_var1 (* result := boolean variable *)
LD ana_var1 (* result := analog variable *)
LD tmr_var1 (* result := timer variable *)
LDN boo_var2 (* result := NOT (boolean variable) *)

ST operator
Operation stores the current result in a variable

the current result is not modified by this operation
Allowed modifiers N
Operand internal or output variable

Example:

(* EXAMPLES OF ST OPERATIONS *)
STboo: LD false

ST boo_var1 (* boo_var1 := FALSE *)
STN boo_var2 (* boo_var2 := TRUE *)

STana: LD 123
ST ana_var1 (* ana_var1 := 123 *)

STtmr: LD t#12s
ST tmr_var1 (* tmr_var1 := t#12s *)

S operator
Operation: stores the boolean value TRUE in a boolean variable, if the current

result has the boolean value TRUE. No operation is processed if
current result is FALSE. The current result is not modified by this
operation

Language reference

B-228 CJ International

Allowed modifiers: (none)
Operand: output or internal boolean variable

Example:

(* EXAMPLES OF S OPERATIONS *)
SETex: LD true (* current result := TRUE *)

S boo_var1 (* boo_var1 := TRUE *)
(* current result is not modified *)

LD false (* current result := FALSE *)
S boo_var1 (* nothing done - boo_var1 unchanged *)

R operator
Operation stores the boolean value FALSE in a boolean variable, if the current

result has the boolean value TRUE. No operation is processed if
current result is FALSE. The current result is not modified by this
operation

Allowed modifiers (none)
Operand output or internal boolean variable

Example:

(* EXAMPLES OF R OPERATIONS *)
RESETex: LD true (* current result := TRUE *)

R boo_var1 (* boo_var1 := FALSE *)
(* current result is not modified *)

ST boo_var2 (* boo_var2 := TRUE *)
LD false (* current result := FALSE *)
R boo_var1 (* nothing done - boo_var1 unchanged *)

JMP operator
Operation jumps to the specified label
Allowed modifiers C N
Operand label defined in the same IL program

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2)
(* to set one from 3 output booleans. Test "is equal to 0" is made with
(* the JMPC operator *)

JMPex: LD selector (* selector is 0 or 1 or 2 *)
BOO (* conversion to boolean *)
JMPC test1 (* if selector = 0 then *)
LD true
ST bo0 (* bo0 := true *)
JMP JMPend (* end of the program *)

test1: LD selector
SUB 1 (* decrease selector: is now 0 or 1 *)
BOO (* conversion to boolean *)

Language reference

CJ International B-229

JMPC test2 (* if selector = 0 then *)
LD true
ST bo1 (* bo1 := true *)
JMP JMPend (* end of the program *)

test2: LD true (* last possibility *)
ST bo2 (* bo2 := true *)

JMPend: (* end of the IL program *)

RET operator
Operation ends the current instruction list. If the IL sequence is a sub-program,

the current result is returned to the calling program
Allowed modifiers C N
Operand (none)

Example:

(* the following example tests the value of an analog selector (0 or 1 or 2)
(* to set one from 3 output booleans. Test "is equal to 0" is made with
(* the JMPC operator

JMPex: LD selector (* selector is 0 or 1 or 2 *)
BOO (* conversion to boolean *)
JMPC test1 (* if selector = 0 then *)
LD true
ST bo0 (* bo0 := true *)
RET (* end - return 0 *)

(* decrease selector *)
test1: LD selector

SUB 1 (* selector is now 0 or 1 *)
BOO (* conversion to boolean *)
JMPC test2 (* if selector = 0 then *)
LD true
ST bo1 (* bo1 := true *)
LD 1 (* load real selector value *)
RET (* end - return 1 *)

(* last possibility *)
test2: RETNC (* returns if the selector has *)

(* an invalid value *)
LD true
ST bo2 (* bo2 := true *)
LD 2 (* load real selector value *)
 (* end - return 2 *)

")" operator
Operation executes a delayed operation. The delayed operation was notified by

'('
Allowed modifiers (none)
Operand (none)

Example:

Language reference

B-230 CJ International

(* The following program interleaves delayed operations: *)
(* res := a1 + (a2 * (a3 - a4) * a5) + a6; *)

Delayed: LD a1 (* result := a1; *)
ADD(a2 (* delayed ADD - result := a2; *)
MUL(a3 (* delayed MUL - result := a3; *)
SUB a4 (* result := a3 - a4; *)
) (* execute delayed MUL - result := a2 * (a3-a4); *)
MUL a5 (* result := a2 * (a3 - a4) * a5; *)
) (* execute delayed ADD *)

(* result := a1 + (a2 * (a3 - a4) * a5); *)
ADD a6 (* result := a1 + (a2 * (a3 - a4) * a5) + a6; *)
ST res (* store current result in variable res *)

Calling sub-programs or functions
A sub-program or a function (written in any of the IL, ST, LD, FBD or "C" language) is called
from the IL language, using its name as an operator.

Operation executes a sub-program or a function - the value returned by the sub-
program or function is stored into the IL current result

Allowed modifiers (none)
Operand The first calling parameter must be stored in the current result before

the call. The following ones are expressed in the operand field,
separated by comas.

Example:

(* Calling program : converts an analog value into a time value *)

Main: LD bi0
SUBPRO bi1,bi2 (* call sub-program to get analog value *)
ST result (* result := value returned by sub-program *)
GT vmax (* test value overflow *)
RETC (* return if overflow *)
LD result
MUL 1000 (* converts seconds in milliseconds *)
TMR (* converts to a timer *)
ST tmval (* stores converted value in a timer *)

(* Called sub-program named 'SUBPRO' : evaluates the analog value *)
(* given as a binary value on three boolean inputs: in0, in1, in2 are the three boolean input
parameters of the sub-program *)

LD in2
ANA (* result = ana (in2); *)
MUL 2 (* result := 2*ana (in2); *)
ST temporary (* temporary := result *)
LD in1
ANA
ADD temporary (* result := 2*ana (in2) + ana (in1); *)
MUL 2 (* result := 4*ana (in2) + 2*ana (in1); *)
ST temporary (* temporary := result *)

Language reference

CJ International B-231

LD in0
ANA
ADD temporary (* result := 4*ana (in2) + 2*ana (in1)+ana (in0); *)
ST SUBPRO (* return current result to calling program *)

Calling function blocks: CAL operator
Operation calls a function block
Allowed modifiers C N
Operand Name of the function block instance.

The input parameters of the blocks must be assigned before the call
using LD/ST operations sequence.
Output parameters are known if used.

Example1:

(* Calling function block SR : SR1 is an instance of SR *)
LD auto_mode
AND start_cmd
ST SR1.set1
LD stop_cmd
ST SR1.reset
CAL SR1
LD SR1.Q1
ST command

(* FBD equivalent : *)

SR
SET1

RESET Q1

auto_mode
start_cmd
stop_cmd command

&

Example 2
(*We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an instance of CTU
block*)
LD command
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTU1.cu
LDN auto_mode
ST CTU1.reset
LD 100
ST CTU1.pv
CAL CTU1
LD CTU1.Q
ST overflow
LD CTU1.cv
ST result

(* FBD equivalent: *)

Language reference

B-232 CJ International

CTU
CU

RESET

PV

Q

CV

command
auto_mode

100
overflow

result

r_trig
CLK Q

Language reference

CJ International B-233

B.9 Standard operators, function blocks and functions

B.9.1 Standard operators

The following are standard operators of the IEC languages.

Data manipulation.....................Assignment, Analog negation
Boolean operationsBoolean AND

Boolean OR
Boolean Exclusive OR

Arithmetic operationsAddition
Subtraction
Multiplication
Division

Logic operationsAnalog bit to bit AND mask
Analog bit to bit OR mask
Analog bit to bit Exclusive OR mask
Bit to bit negation

Comparison tests......................Less than
Less or equal to
Greater than
Greater or equal to
Is equal to
Is not equal to

Data conversion........................Convert to Boolean
Convert to Integer Analog
Convert to Real Analog
Convert to Timer
Convert to Message

Other ..Message concatenation
System access
Operate I/O channel

1 gain

1

IN Q

Arguments:
IN any type
Q any type

Description:
assignment of one variable into another one

Language reference

B-234 CJ International

This block is very useful to directly link a diagram input and a diagram output. It can also be
used (with a boolean negation line) to invert the state of a line connected to a diagram output.

(* FBD example with assignment Blocks *)

ai10

bi1
bi2

1
IN Q

&
1

IN Q bo100

ao23

(* ST equivalence: *)
ao23 := ai10;
bo100 := NOT (bi1 AND bi2);

(* IL equivalence: *)
LD ai10
ST ao23
LD bi1
AND bi2
STN bo100

NEG

Neg

IN Q

Arguments:
IN INT-REAL input and output must have same format
Q INT-REAL

Description:
Assignment of the negation of a variable.

(* FBD example with negation Blocks *)

ai10

ri1
ri2

Neg
IN Q

+
Neg

IN Q ro100

ao23

(* ST equivalence: *)
ao23 := - (ai10);
ro100 := - (ri1 + ri2);

(* IL equivalence: *)
LD ai10
MUL -1
ST ao23

Language reference

CJ International B-235

LD ri1
ADD ri2
MUL -1.0
ST ro100

& AND

&

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) BOOLEAN
output BOOLEAN boolean AND of the input terms

Description:
Boolean AND between two or more terms.

(* FBD example with "AND" Blocks *)

bi101
bi102

bi51
bi52
bi53

&

&

bo10

bo5

(* ST equivalence: *)
bo10 := bi101 AND NOT (bi102);
bo5 := (bi51 AND bi52) AND bi53;

(* IL equivalence *)
LD bi101 (* current result := bi101 *)
ANDN bi102 (* current result := bi101 AND not(bi102) *)
ST bo10 (* bo10 := current result *)
LD bi51 (* current result := bi51;
& bi52 (* current result := bi51 AND bi52 *)
& bi53 (* current result := (bi51 AND bi52) AND bi53 *)
ST bo5 (* bo5 := current result *)

>=1 OR

Language reference

B-236 CJ International

>=1

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) BOOLEAN
output BOOLEAN boolean OR of the input terms

Description:
Boolean OR of two or more terms.

(* FBD example with "OR" Blocks *)

bi101
bi102

bi51
bi52
bi53

>=1

>=1

bo10

bo5

(* ST equivalence: *)
bo10 := bi101 OR NOT (bi102);
bo5 := (bi51 OR bi52) OR bi53;

(* IL equivalence: *)
LD bi101
ORN bi102
ST bo10
LD bi51
OR bi52
OR bi53
ST bo5

=1 XOR

=1
IN1

IN2 Q

Arguments:
IN1 BOOLEAN
IN2 BOOLEAN
Q BOOLEAN boolean exclusive OR of the 2 input terms

Description:
Boolean exclusive OR between two terms.

Language reference

CJ International B-237

(* FBD example with "XOR" Blocks *)

bi101
bi102

bi51
bi52
bi53

=1
IN1

IN2 Q

=1
IN1

IN2 Q

bo10

bo5

=1
IN1

IN2 Q

(* ST equivalence: *)
bo10 := bi101 XOR NOT (bi102);
bo5 := (bi51 XOR bi52) XOR bi53;

(* IL equivalence: *)
LD bi101
XORN bi102
ST bo10
LD bi51
XOR bi52
XOR bi53
ST bo5

+

+

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) INT-REAL can be INTEGER or REAL

(all inputs must have the same format)
output INT-REAL signed addition of the input terms

Description:
Addition of two or more analog variables.

(* FBD example with Addition Blocks *)

ai101
ai102

ai51
ai52
ai53

+

+

ao10

ao5

(* ST equivalence: *)
ao10 := ai101 + ai102;

Language reference

B-238 CJ International

ao5 := (ai51 + ai52) + ai53;

(* IL equivalence: *)
LD ai101
ADD ai102
ST ao10
LD ai51
ADD ai52
ADD ai53
ST ao5

-

-
IN1

IN2 Q

Arguments:
IN1 INT-REAL can be INTEGER or REAL
IN2 INT-REAL (IN1 and IN2 must have the same format)
Q INT-REAL subtraction (first - second)

Description:
Subtraction of two analog variables (first - second).

(* FBD example with Subtraction Blocks *)

ai101
ai102

ai51
1

ai53

-
IN1

IN2 Q

-
IN1

IN2 Q

ao10

ao5

-
IN1

IN2 Q

 (* ST equivalence: *)
ao10 := ai101 - ai102;
ao5 := (ai51 - 1) - ai53;

(* IL equivalence: *)
LD ai101
SUB ai102
ST ao10
LD ai51
SUB 1
SUB ai53
ST ao5

*

Language reference

CJ International B-239

*

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) INT-REAL can be INTEGER or REAL

(all inputs must have the same format)
output INT-REAL signed multiplication of the input terms

Description:
Multiplication of two or more analog variables.

(* FBD example with Multiplication blocks *)

ai101
ai102

ai51
ai52
ai53

*

*

ao10

ao5

(* ST equivalence *)
ao10 := ai101 * ai102;
ao5 := (ai51 * ai52) * ai53;

(* IL equivalence: *)
LD ai101
MUL ai102
ST ao10
LD ai51
MUL ai52
MUL ai53
ST ao5

/

/
IN1

IN2 Q

Arguments:
IN1 INT-REAL can be INTEGER or REAL (operand)
IN2 INT-REAL non-zero analog value (divisor)

(IN1 and IN2 must have the same format)
Q INT-REAL signed integer or real division of IN1 by IN2

Language reference

B-240 CJ International

Description:
Division of two analog variables (the first divided by the second).

(* FBD example with Division blocks *)

ai101
ai102

ai51
2

ai53

/
IN1

IN2 Q

/
IN1

IN2 Q

ao10

ao5

/
IN1

IN2 Q

(* ST Equivalence: *)
ao10 := ai101 / ai102;
ao5 := (ai5 / 2) / ai53;

(* IL equivalence: *)
LD ai101
DIV ai102
ST ao10
LD ai51
DIV 2
DIV ai53
ST ao5

AND_MASK

and_mask
IN

MSK Q

Arguments:
IN INT must have integer format
MSK INT must have integer format
Q INT bit to bit logical AND between IN and MSK

Description:
Integer analog AND bit to bit mask.

(* FBD example with Analog AND_MASK blocks *)

xvalue
1

and_mask
IN

MSK Q parity

and_mask
IN

MSK Q

16#abc
16#f0f result

(* ST Equivalence: *)

Language reference

CJ International B-241

parity := AND_MASK (xvalue, 1); (* 1 if xvalue is odd *)
result := AND_MASK (16#abc, 16#f0f); (* equals 16#a0c *)

(* IL equivalence: *)
LD xvalue
AND_MASK 1
ST parity
LD 16#abc
AND_MASK 16#f0f
ST result

OR_MASK

or_mask
IN

MSK Q

Arguments:
IN INT must have integer format
MSK INT must have integer format
Q INT bit to bit logical OR between IN and MSK

Description:
Integer analog OR bit to bit mask.

(* FBD example with Analog OR_MASK blocks *)

xvalue
1

or_mask
IN

MSK Q parity

or_mask
IN

MSK Q

16#abc
16#f0f result

(* ST Equivalence: *)
is_odd := OR_MASK (xvalue, 1); (* makes value always odd *)
result := OR_MASK (16#abc, 16#f0f); (* equals 16#fbf *)

(* IL equivalence: *)
LD xvalue
OR_MASK 1
ST is_odd
LD 16#abc
OR_MASK 16#f0f
ST result

XOR_MASK

Language reference

B-242 CJ International

xor_mask
IN

MSK Q

Arguments:
IN INT must have integer format
MSK INT must have integer format
Q INT bit to bit logical Exclusive OR between IN and MSK

Description:
Integer analog exclusive OR bit to bit mask

(* FBD example with XOR_MASK blocks *)

prevcrc
nextc

xor_mask
IN

MSK Q crc32

16#012
16#011

xor_mask
IN

MSK Q result

(* ST Equivalence: *)
crc32 := XOR_MASK (prevcrc, nextc);
result := XOR_MASK (16#012, 16#011); (* equals 16#003 *)

(* IL equivalence: *)
LD prevcrc
XOR_MASK nextc
ST crc32
LD 16#012
XOR_MASK 16#011
ST result

NOT_MASK

not_mask
IN Q

Arguments :
IN INT must have integer format
Q INT bit to bit negation on 32 bits of IN

Description:
Integer analog bit to bit negation mask

(* FBD example with NOT_MASK blocks *)

16#1234
not_mask

IN Q result

(*ST equivalence: *)

Language reference

CJ International B-243

result := NOT_MASK (16#1234);
(* result is 16#FFFF_EDCB *)

(* IL equivalence: *)
LD 16#1234
NOT_MASK
ST result

<

<
IN1

IN2 Q

Arguments:
IN1 INT-REAL-

TMR-MSG
IN2 INT-REAL-

TMR-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 < IN2

Description:
Test if one value is LESS THAN another one (on analog, timer or messages)

(* FBD example with "Less than" blocks *)

10
25

'z'
'B'

aresult

mresult

<
IN1

IN2 Q

<
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 < 25); (* aresult is TRUE *)
mresult := ('z' < 'B'); (* mresult is FALSE *)

(* IL equivalence: *)
LD 10
LT 25
ST aresult
LD 'z'
LT 'B'
ST mresult

<=

Language reference

B-244 CJ International

<=
IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 <= IN2

Description:
Test if one value is LESS THAN or EQUAL TO another one (on analog, or messages)

(* FBD example with "Less or equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

<=
IN1

IN2 Q

<=
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 <= 25); (* aresult is TRUE *)
mresult := ('ab' <= 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
LE 25
ST aresult
LD 'ab'
LE 'ab'
ST mresult

>

>
IN1

IN2 Q

Arguments:
IN1 INT-REAL-

TMR-MSG
IN2 INT-REAL-

TMR-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 > IN2

Description:
Test if one value is GREATER THAN another one (on analog, timer or messages)

Language reference

CJ International B-245

(* FBD example with "Greater than" blocks *)

10
25

'ab'
'a'

aresult

mresult

>
IN1

IN2 Q

>
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 > 25); (* aresult is FALSE *)
mresult := ('ab' > 'a'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
GT 25
ST aresult
LD 'ab'
GT 'a'
ST mresult

>=

>=
IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 >= IN2

Description:
Test if one value is GREATER THAN or EQUAL TO another one (on analog, or
messages)

(* FBD example with "Greater or Equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

>=
IN1

IN2 Q

>=
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 >= 25); (* aresult is FALSE *)
mresult := ('ab' >= 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10

Language reference

B-246 CJ International

GE 25
ST aresult
LD 'ab'
GE 'ab'
ST mresult

=

=
IN1

IN2 Q

Arguments:
IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if IN1 = IN2

Description:
Test if one value is EQUAL TO another one (on analog, or messages)

(* FBD example with "Is Equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

=
IN1

IN2 Q

=
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 = 25); (* aresult is FALSE *)
mresult := ('ab' = 'ab'); (* mresult is TRUE *)

(* IL equivalence: *)
LD 10
EQ 25
ST aresult
LD 'ab'
EQ 'ab'
ST mresult

<>

<>
IN1

IN2 Q

Arguments:

Language reference

CJ International B-247

IN1 INT-REAL-MSG
IN2 INT-REAL-MSG both inputs must have the same type
Q BOOLEAN TRUE if first <> second

Description:
Test if one value is NOT EQUAL TO another one (on analog, or messages)

(* FBD example with "Is Not Equal to" blocks *)

10
25

'ab'
'ab'

aresult

mresult

<>
IN1

IN2 Q

<>
IN1

IN2 Q

(* ST Equivalence: *)
aresult := (10 <> 25); (* aresult is TRUE *)
mresult := ('ab' <> 'ab'); (* mresult is FALSE *)

(* IL equivalence: *)
LD 10
NE 25
ST aresult
LD 'ab'
NE 'ab'
ST mresult

BOO

Boo

IN Q

Arguments:
IN ANY any non-boolean value
Q BOO TRUE for non-zero numerical value

FALSE for zero numerical value
TRUE for 'TRUE' message
FALSE for 'FALSE' message

Description:
Convert any variable to a boolean one

(* FBD example with "Convert to Boolean" blocks *)

Language reference

B-248 CJ International

Boo
IN Q

Boo
IN Q

Boo
IN Q

10

t#0s

'false'

ares

tres

mres

(* ST Equivalence: *)
ares := BOO (10); (* ares is TRUE *)
tres := BOO (t#0s); (* tres is FALSE *)
mres := BOO ('false'); (* mres is FALSE *)

(* IL equivalence: *)
LD 10
BOO
ST ares
LD t#0s
BOO
ST tres
LD 'false'
BOO
ST mres

ANA

Ana

IN Q

Arguments:
IN ANY any non-integer analog value
Q INT 0 if IN is FALSE / 1 if IN is TRUE

number of milliseconds for a timer
integer part for real analog
decimal number represented by a string

Description:
Convert any variable to an integer one

(* FBD example with "Convert to Analog" blocks *)

true

t#1s46ms

'0198'

bres

tres

mres

Ana
IN Q

Ana
IN Q

Ana
IN Q

(* ST Equivalence: *)
bres := ANA (true); (* bres is 1 *)

Language reference

CJ International B-249

tres := ANA (t#1s46ms); (* tres is 1046 *)
mres := ANA ('0198'); (* mres is 198 *)

(* IL equivalence: *)
LD true
ANA
ST bres
LD t#1s46ms
ANA
ST tres
LD '0198'
ANA
ST mres

REAL

Real

IN Q

Arguments:
IN BOO-INT-

TMR any non-real analog value (no message)
Q REAL 0.0 if IN is FALSE / 1.0 if IN is TRUE

number of milliseconds for a timer
equivalent number for integer analog

Description:
Convert any variable to a real one

(* FBD example with "Convert to Real" blocks *)

true

t#1s46ms

198

bres

tres

ares

Real
IN Q

Real
IN Q

Real
IN Q

(* ST Equivalence: *)
bres := REAL (true); (* bres is 1.0 *)
tres := REAL (t#1s46ms); (* tres is 1046.0 *)
ares := REAL (198); (* ares is 198.0 *)

(* IL equivalence: *)
LD true
REAL
ST bres
LD t#1s46ms
REAL
ST tres

Language reference

B-250 CJ International

LD 198
REAL
ST ares

TMR

Tmr

IN Q

Arguments:
IN INT-REAL any non-timer value

IN (or integer part of IN if it is real)
is the number of milliseconds

Q TIMER time value represented by IN

Description:
Convert any analog variable to a timer one

(* FBD example with "Convert to Timer" blocks *)

Tmr
IN Q1256

1256.3
Tmr

IN Q

ares

rres

 (* ST Equivalence: *)
ares := TMR (1256); (* ares := t#1s256ms *)
rres := TMR (1256.3); (*rres := t#1s256ms *)

(* IL equivalence: *)
LD 1256
TMR
ST ares
LD 1256.3
TMR
ST rres

MSG

Msg

IN Q

Arguments:
IN BOO-

INT-REA any non-message value
Q MSG 'false' or 'true' if IN is a boolean

Language reference

CJ International B-251

decimal representation if IN is an analog

Description:
Convert any variable to a message one

(* FBD example with "Convert to Message" blocks *)
Msg

IN Qtrue

125
Msg

IN Q

bres

ares

(* ST Equivalence: *)
bres := MSG (true); (* bres is 'TRUE' *)
ares := MSG (125); (* ares is '125' *)

(* IL equivalence: *)
LD true
MSG
ST bres
LD 125
MSG
ST ares

CAT

CAT

Note: For this operator, the number of its inputs can be extended to more than two.

Arguments:
(inputs) MSG (addition of all message length must not exceed output

message capacity)
output MSG concatenation of the input messages

Description:
Concat several messages into one

(* FBD example with "Message Concatenation" blocks *)
CAT

'Mr'
' '

'Jones' myname

(* ST Equivalence: use the + operator *)
myname := ('Mr' + ' ') + 'Jones';
(* means: myname := 'Mr Jones' *)

Language reference

B-252 CJ International

(* IL equivalence: *)
LD 'Mr'
ADD ' '
ADD 'Jones'
ST myname

SYSTEM

System
Mode

Arg Param

Arguments:
Mode INT identifies the system parameter and the access mode
Arg INT-TMR new value for a "write" access
Param INT value of the accessed parameter

Description:
Access to the system parameters

The following is the list of available commands (pre-defined keywords) for the SYSTEM
function:

command meaning

SYS_TALLOWED read allowed cycle timing
SYS_TCURRENT read current cycle timing
SYS_TMAXIMUM read maximum cycle timing
SYS_TOVERFLOW read cycle timing overflows
SYS_TRESET reset timing counters
SYS_TWRITE change cycle timing
SYS_ERR_TEST check for run time errors
SYS_ERR_READ read oldest run time error

These are expected arguments for pre-defined functions of the SYSTEM function:

command argument return value

SYS_TALLOWED 0 allowed cycle timing
SYS_TCURRENT 0 current cycle timing
SYS_TMAXIMUM 0 maximum detected timing
SYS_TOVERFLOW 0 number of timing overflows
SYS_TRESET 0 0
SYS_TWRITE new allowed cycle timing written time
SYS_ERR_TEST 0 0 if no error detected
SYS_ERR_READ 0 oldest error code

(* FBD example with "System" blocks *)

Language reference

CJ International B-253

System
Mode

Arg Param

<>
IN1

IN2 Q alarm

alarm
RETURN

nb_err

+

1 nb_err

System
Mode

Arg Param

SYS_TOVERFLOW

SYS_TRESET
0

0

rc

(* ST Equivalence: *)
alarm := (SYSTEM (SYS_TOVERFLOW, 0) <> 0);
If (alarm) Then

nb_err := nb_err + 1;
rc := SYSTEM (SYS_TRESET, 0);

End_If;

OPERATE

Operate
IO

Funct

Arg Q

Arguments:
IO ANY input or output variable
Funct INT action to be operated
Arg INT argument for I/O action
Q INT return check

Description:
Access to an I/O channel

The meaning of OPERATE arguments depends on the I/O interface implementation. Refer to
your hardware manual or corresponding I/O board technical note to learn more about
OPERATE capabilities.

B.9.2 Standard function blocks

These are standard function blocks supported by the ISaGRAF system. Such function blocks
are pre-defined and do not have to be declared in the library.

Booleans...................................SR Set dominant bistable
RS Reset dominant bistable
R_Trig Rising edge detection

Language reference

B-254 CJ International

F_Trig Falling edge detection
SEMA Semaphore

CountingCTU Up counter
CTD Down counter
CTUD Up-down counter

TimersTON On-delay timing
TOF Off-delay timing
TP Pulse timing

Integer analogsCMP Full comparison function block
StackInt Stack of integer analogs

Real analogs.............................AVERAGE Running average over N samples
HYSTER Boolean hysteresis on difference of reals
LIM_ALRM High/low limit alarm with hysteresis
INTEGRAL Integration over time
DERIVATE Differentiation according to time

Signal generation......................BLINK Blinking boolean signal
SIG_GEN Signal generator

Note: When new "C" function blocks are created, they can be called from the FBD language.

SR

SR
SET1

RESET Q1

Arguments:
SET1 BOO if TRUE, sets Q1 to TRUE (dominant)
RESET BOO if TRUE, resets Q1 to FALSE
Q1 BOO boolean memory state

Description:
Set dominant bistable: See True table below:

Set1 Reset Q1 result Q1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

(* FBD program using "SR" block *)

SR
SET1

RESET Q1

auto_mode
start_cmd
stop_cmd command

&

(* ST Equivalence: We suppose SR1 is an instance of SR block *)

Language reference

CJ International B-255

SR1((auto_mode & start_cmd), stop_cmd);
command := SR1.Q1;

(* IL Equivalence: *)
LD auto_mode
AND start_cmd
ST SR1.set1
LD stop_cmd
ST SR1.reset
CAL SR1
LD SR1.Q1
ST command

RS

RS
SET

RESET1 Q1

Arguments:
SET BOO if TRUE, sets Q1 to TRUE
RESET1 BOO if TRUE, resets Q1 to FALSE (dominant)
Q1 BOO boolean memory state

Description:
Reset dominant bistable: See True table below:

Set Reset1 Q1 result Q1
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 0

(* FBD program using "RS" block *)
RS

SET

RESET Q1

alarm

start_cmd

stop_cmd
command>=1

(* ST Equivalence: We suppose RS1 is an instance of RS block *)
RS1(start_cmd, (stop_cmd OR alarm));
command := RS1.Q1;

(* IL Equivalence: *)
LD start_cmd
ST RS1.set

Language reference

B-256 CJ International

LD stop_cmd
OR alarm
ST RS1.reset1
CAL RS1
LD RS1.Q1
ST command

R_TRIG

r_trig

CLK Q

Arguments:
CLK BOO any boolean variable
Q BOO TRUE when CLK rises from FALSE to TRUE

FALSE if all other cases

Description:
Detects a rising edge of a boolean variable

(* FBD program using "R_TRIG" block *)
r_trig

CLK Qcmd
Ana

IN Q

+

nb_edge

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block *)
R_TRIG1(cmd);
nb_edge := ANA(R_TRIG1.Q) + nb_edge;

(* IL Equivalence: *)
LD cmd
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ANA
ADD nb_edge
ST nb_edge

F_TRIG

f_trig

CLK Q

Arguments:
CLK BOO any boolean variable
Q BOO TRUE when CLK changes from TRUE to FALSE

FALSE if all other cases

Language reference

CJ International B-257

Description:
Detects a falling edge of a boolean variable

(* FBD program using "F_TRIG" block *)
f_trig

CLK Qcmd
Ana

IN Q

+

nb_edge

(* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block *)
F_TRIG1(cmd);
nb_edge := ANA(F_TRIG1.Q) + nb_edge;

(* IL Equivalence: *)
LD cmd
ST F_TRIG1.clk
CAL F_TRIG1
LD F_TRIG1.Q
ANA
ADD nb_edge
ST nb_edge

SEMA

sema
CLAIM

RELEASE BUSY

Arguments:
CLAIM BOOLEAN "test and set" command
RELEASE BOOLEAN releases the semaphore
BUSY BOOLEAN state of the semaphore

Description:
(* "x" is a boolean variable initialized to FALSE *)
busy := x;
If claim Then

x := True;
Else

If release Then
busy := False;
x := False;

End_if;
End_if;

CTU

Language reference

B-258 CJ International

CTU
CU

RESET

PV

Q

CV

Arguments:
CU BOO counting input (counting when CU is TRUE)
RESET BOO reset command (dominant)
PV INT programmed maximum value
Q BOO overflow: TRUE when CV = PV
CV INT counter result

Warning: The CTU block does not detect the rising or falling edges of the counting input (CU).
It must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:
Count (integer) from 0 up to a given value 1 by 1

(* FBD program using "CTU" block *)
CTU

CU

RESET

PV

Q

CV

command
auto_mode

100
overflow

result

r_trig
CLK Q

(* ST Equivalence: We suppose R_TRIG1 is an instance of R_TRIG block and CTU1 is an
instance of CTU block*)
CTU1(R_TRIG1(command),NOT(auto_mode),100);
overflow := CTU1.Q;
result := CTU1.CV;

(* IL Equivalence: *)
LD command
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTU1.cu
LDN auto_mode
ST CTU1.reset
LD 100
ST CTU1.pv
CAL CTU1
LD CTU1.Q
ST overflow
LD CTU1.cv
ST result

CTD

Language reference

CJ International B-259

CTD
CD

LOAD

PV

Q

CV

Arguments:
CD BOO counting input

(down-counting when CD is TRUE)
LOAD BOO load command (dominant)

(CV = PV when LOAD is TRUE)
PV INT programmed initial value
Q BOO underflow: TRUE when CV = 0
CV INT counter result

Warning: The CTD block does not detect the rising or falling edges of the counting input (CD).
It must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse counter.

Description:
Count (integer) from a given value down to 0 1 by 1

(* FBD program using "CTD" block *)
CTD

CD

LOAD

PV

Q

CV

command
load_cmd

100
underflow

result

f_trig
CLK Q

 (* ST Equivalence: We suppose F_TRIG1 is an instance of F_TRIG block and CTD1 is an
instance of CTD block*)
CTD1(F_TRIG1(command),load_cmd,100);
underflow := CTD1.Q;
result := CTD1.CV;

(* IL Equivalence: *)
LD command
ST F_TRIG1.clk
CAL F_TRIG1
LD F_TRIG1.Q
ST CTD1.cd
LD load_cmd
ST CTD1.load
LD 100
ST CTD1.pv
CAL CTD1
LD CTD1.Q
ST underflow
LD CTD1.cv
ST result

CTUD

Language reference

B-260 CJ International

CTUD
CU

CD

RESET

LOAD

PV

QU

QD

CV

Arguments:
CU BOO up-counting (when CU is TRUE)
CD BOO down-counting (when CD is TRUE)
RESET BOO reset command (dominant)

(CV = 0 when RESET is TRUE)
LOAD BOO load command (CV = PV when LOAD is TRUE)
PV INT programmed maximum value
QU BOO overflow: TRUE when CV = PV
QD BOO underflow: TRUE when CV = 0
CV INT counter result

Warning: The CTUD block does not detect the rising or falling edges of the counting inputs
(CU and CD). It must be associated with an "R_TRIG" or "F_TRIG" block to create a pulse
counter.

Description:
Count (integer) from 0 up to a given value 1 by 1
or from a given value down to 0 1 by 1

(* FBD program using "CTUD" block *)

CTUD
CU

CD

RESET

LOAD

PV

QU

QD

CV

add_elt

sub_elt
reset_cmd
load_cmd

100

full
empty
nb_elt

r_trig
CLK Q

r_trig
CLK Q

(* ST Equivalence: We suppose R_TRIG1 and R_TRIG2 are two instances of R_TRIG block
and CTUD1 is an instance of CTUD block*)
CTUD1(R_TRIG1(add_elt), R_TRIG2(sub_elt), reset_cmd, load_cmd,100);
full := CTUD1.QU;
empty := CTUD1.QD;
nb_elt := CTUD1.CV;

(* IL Equivalence: *)
LD add_elt
ST R_TRIG1.clk
CAL R_TRIG1
LD R_TRIG1.Q
ST CTUD1.cu
LD sub_elt
ST R_TRIG2.clk
CAL R_TRIG2

Language reference

CJ International B-261

LD R_TRIG2.Q
ST CTUD1.cd
LD reset_cmd
ST CTUD1.reset
LD load_cmd
ST CTUD1.load
LD 100
ST CTUD1.pv
CAL CTUD1
LD CTUD1.QU
ST full
LD CTUD1.QD
ST empty
LD CTUD1.CV
ST nb_elt

TON

TON
IN

PT

Q

ET

Arguments: {XE "TON"} {XE "On-delay timing"}
IN BOO If Rising edge, starts increasing internal timer

If Falling Edge, stops and resets internal timer
PT TMR maximum programmed time
Q BOO If TRUE, programmed time is elapsed
ET TMR current elapsed time

Description:
Increase an internal timer up to a given value.

Timing diagram:

IN

Q

ET

PT

0

TOF

Language reference

B-262 CJ International

TOF
IN

PT

Q

ET

Arguments:
IN BOO If Falling edge, starts increasing internal timer

If Rising edge, stops and resets internal timer
PT TMR maximum programmed time
Q BOO If TRUE: total time is not elapsed
ET TMR current elapsed time

Description:
Increase an internal timer up to a given value.

Timing diagram:

IN

Q

ET

PT

0

TP

TP
IN

PT

Q

ET

Arguments:
IN BOO If Rising edge, starts increasing internal timer (if not

already increasing)
If FALSE and only if timer is elapsed, resets the internal
timer
Any change on IN during counting has no effect.

PT TMR maximum programmed time
Q BOO If TRUE: timer is counting
ET TMR current elapsed time

Description:
Increase an internal timer up to a given value.

Language reference

CJ International B-263

Timing diagram:

IN

Q

ET

PT

0

CMP

CMP

VAL1

VAL2

LT

EQ

GT

Arguments:
VAL1 INT any signed integer analog value
VAL2 INT any signed integer analog value
LT BOO TRUE if val1 is Less Than val2
EQ BOO TRUE if val1 is Equal to val2
GT BOO TRUE if val1 is Greater Than val2

Description:
Compare two values: tell if they are equal, or if the first is less or greater than the second
one.

(* FBD program using "CMP" block *)

level
max_level

pump_cmd

alarmmanual_mode

CMP

VAL1

VAL2

LT

EQ

GT

>=1

&

(* ST Equivalence: We suppose CMP1 is an instance of CMP block *)
CMP1(level, max_level);
pump_cmd := CMP1.LT OR CMP1.EQ;
alarm := CMP1.GT AND NOT(manual_mode);

(* IL Equivalence: *)
LD level
ST CMP1.val1
LD max_level

Language reference

B-264 CJ International

ST CMP1.val2
CAL CMP1
LD CMP1.LT
OR CMP1.EQ
ST pump_cmd
LD CMP1.GT
ANDN manual_mode
ST alarm

STACKINT

stackint
PUSH

POP

R1

IN

N

EMPTY

OFLO

OUT

Arguments:
PUSH BOO push command (on rising edge only)

add the IN value on the top of the stack
POP BOO pop command (on rising edge only)

delete in the stack the last value pushed (top of the stack)
R1 BOO resets the stack to its empty state
IN INT pushed value
N INT application defined stack size
EMPTY BOO TRUE if the stack is empty
OFLO BOO overflow: TRUE if the stack is full
OUT INT value at the top of the stack

Description:
Manage a stack of integer values.

The "STACKINT" function block includes a rising edge detection for both PUSH and POP
commands. The maximum size of the stack is 128. The application defined stack size N
cannot be less than 1 or greater than 128.

Note that OFLO value is valid only after a reset (R1 has been set to TRUE at least once and
back to FALSE).

(* FBD program using "STACKINT" block: error management *)

err_detect
acknoledge

manual_mode
err_code
max_err

stackint
PUSH

POP

R1

IN

N

EMPTY

OFLO

OUT

auto_mode

err_alarm
appli_alarm

last_error

&

(* ST Equivalence: We suppose STACKINT1 is an instance of STACKINT block *)

Language reference

CJ International B-265

STACKINT1(err_detect, acknoledge, manual_mode, err_code, max_err);
appli_alarm := auto_mode AND NOT(STACKINT1.EMPTY);
err_alarm := STACKINT1.OFLO;
last_error := STACKINT1.OUT;

(* IL Equivalence: *)
LD err_detect
ST STACKINT1.push
LD acknoledge
ST STACKINT1.pop
LD manual_mode
ST STACKINT1.r1
LD err_code
ST STACKINT1.IN
LD max_err
ST STACKINT1.N
CAL STACKINT1
LD auto_mode
ANDN STACKINT1.empty
ST appli_alarm
LD STACKINT1.OFLO
ST err_alarm
LD STACKINT1.OUT
ST last_error

AVERAGE

average
RUN

XIN

N XOUT

Arguments:
RUN BOO TRUE=run / FALSE=reset
XIN REAL any real analog variable
N INT application defined number of samples
XOUT REAL running average of XIN value

Description:
Stores a value at each cycle and calculates the average value of all already stored values.
Only the N last values are stored.

The number of samples N cannot exceed 128.
If the "RUN" command is FALSE (reset mode), the output value is equal to the input value.
When the maximum N of stored values is reached, the first stored value is erased by the last
one.

(* FBD program using "AVERAGE" block: *)

Language reference

B-266 CJ International

auto_mode
store_cmd

sensor_value
100 ave_value

&
average

RUN

XIN

N XOUT

(* ST Equivalence: AVERAGE1 instance of AVERAGE block *)
AVERAGE1((auto_mode & store_cmd), sensor_value, 100);
ave_value := AVERAGE1.XOUT;

(* IL Equivalence: *)
LD auto_mode
AND store_cmd
ST AVERAGE1.run
LD sensor_value
ST AVERAGE1.xin
LD 100
ST AVERAGE1.N
CAL AVERAGE1
LD AVERAGE1.XOUT
ST ave_value

HYSTER

hyster
XIN1

XIN2

EPS Q

Arguments:
XIN1 REAL any real analog value
XIN2 REAL to test if XIN1 has overpassed XIN2+EPS
EPS REAL hysteresis value (must be greater than zero)
Q BOO TRUE if XIN1 has overpassed XIN2+EPS and is not yet

below XIN2-EPS

Description:
Hysteresis on a real value for a high limit.

Example of timing diagram:

Q

XIN1

XIN2
XIN2+EPS

XIN2-EPS

Language reference

CJ International B-267

LIM_ALRM

lim_alrm
H

X

L

EPS

QH

Q

QL

Arguments:
H REAL high limit value
X REAL input: any real analog value
L REAL low limit value
EPS REAL hysteresis value (must be greater than zero)
QH BOO "high" alarm: TRUE if X above high limit H
Q BOO alarm output: TRUE if X out of limits
QL BOO "low" alarm: TRUE if X below low limit L

Description:
Hysteresis on a real value for high and low limits.

An hysteresis is applied on high and low limits. The hysteresis delta used for either high or
low limit is one half of the EPS parameter. Below is an example of timing diagram:

X
H - EPS

H

Q

L
L + EPS

QL

QH

INTEGRAL

integral
RUN

R1

XIN

X0

CYCLE

Q

XOUT

Arguments:
RUN BOO mode: TRUE=integrate / FALSE=hold
R1 BOO overriding reset
XIN REAL input: any real analog value

Language reference

B-268 CJ International

X0 REAL initial value
CYCLE TMR sampling period
Q BOO Not R1
XOUT REAL integrated output

Description:
Integration of a real value.

If the "CYCLE" parameter value is less than the cycle timing of the ISaGRAF application, the
sampling period is the cycle timing of the application.

(* FBD program using "INTEGRAL" block: *)

manual_mode

sensor_value
init_value
t#100ms controlled_value

integral
RUN

R1

XIN

X0

CYCLE

Q

XOUT

(* ST Equivalence: INTEGRAL1 instance of INTEGRAL block *)
INTEGRAL1(manual_mode, NOT(manual_mode), sensor_value, init_value, t#100ms);
controlled_value := INTEGRAL1.XOUT;

(* IL Equivalence: *)
LD manual_mode
ST INTEGRAL1.run
STN INTEGRAL1.R1
LD sensor_value
ST INTEGRAL1.XIN
LD init_value
ST INTEGRAL1.X0
LD t#100ms
ST INTEGRAL1.CYCLE
CAL INTEGRAL1
LD INTEGRAL1.XOUT
ST controlled_value

DERIVATE

derivate
RUN

XIN

CYCLE XOUT

Arguments:
RUN BOO mode: TRUE=normal / FALSE=reset
XIN REAL input: any real analog value
CYCLE TMR sampling period
XOUT REAL differentiated output

Language reference

CJ International B-269

Description:
Differentiation of a real value.

If the "CYCLE" parameter value is less than the cycle timing of the ISaGRAF application, the
sampling period is the cycle timing of the application.

(* FBD program using "DERIVATE" block: *)

manual_mode
sensor_value

t#100ms derivated_value

derivate
RUN

XIN

CYCLE XOUT

(* ST Equivalence: DERIVATE1 instance of DERIVATE block *)
DERIVATE1(manual_mode, sensor_value, t#100ms);
derivated_value := DERIVATE1.XOUT;

(* IL Equivalence: *)
LD manual_mode
ST DERIVATE1.run
LD sensor_value
ST DERIVATE1.XIN
LD t#100ms
ST DERIVATE1.CYCLE
CAL DERIVATE1
LD DERIVATE1.XOUT
ST derivated_value

BLINK

blink
RUN

CYCLE Q

Arguments:
RUN BOO mode: TRUE=blinking / FALSE=reset the output to false
CYCLE TMR blinking period
Q BOO output blinking signal

Description:
Generates a blinking signal.

Timing diagram:

RUN

CYCLE

Q

Language reference

B-270 CJ International

SIG_GEN

sig_gen

RUN

PERIOD

MAXIMUM

PULSE

UP

END

SINE

Arguments:
RUN BOO mode: TRUE=running / FALSE=reset to false
PERIOD TMR duration of one sample
MAXIMUM INT maximum counting value
PULSE BOO inverted after each sample
UP INT up-counter, increased on each sample
END BOO TRUE when up-counting ends
SINE REAL sine signal (period = counting duration)

Description:
Generates various signal: blink on a boolean, a integer counter-up, and real sine wave.

When counting reaches maximum value, it restarts from 0 (zero). So END keeps the TRUE
value only during 1 PERIOD.

Timing diagram:

SINE

END

UP

PULSE

RUN

MAXIMUM

PERIOD

B.9.3 Standard functions

These are standard functions supported by the ISaGRAF system. Such functions are pre-
defined and do not have to be declared in the library.

Math ...ABS Absolute value

Language reference

CJ International B-271

EXPT, POW Exponent, Power calculation
LOG Logarithm
SQRT Square root
TRUNC Truncate decimal part

Trigonometric............................ACOS, ASIN, Arc cosine, Arc sine,
ATAN Arc tangent
COS, SIN, Cosine, Sine,
TAN Tangent

Register control.........................ROL, ROR Rotate Left, Rotate Right
SHL, SHR Shift Left, Shift Right

Data manipulation.....................MIN, MAX, Minimum, Maximum,
LIMIT Limit
MOD Modulo
MUX4, MUX8 Multiplexer (4 or 8 entries),
SEL Binary selector
ODD Odd parity
RAND Random value

Data conversion........................ASCII Character ASCII code
CHAR ASCII code Character

String managementMLEN Get string length
DELETE Delete sub-string,
INSERT Insert string
FIND, Find sub-string,
REPLACE Replace sub-string
LEFT, MID Extract left, middle
RIGHT or right of a string
DAY_TIME Time of day

Array manipulation....................ARCREATE Create array of integer values
ARREAD Read /
ARWRITE Write array element

Binary file managementF_ROPEN Open a binary file in Read mode
F_WOPEN Open a binary file in Write mode
F_CLOSE Close a binary file
F_EOF Test the end of a binary file
FA_READ Read an analog value in a binary file
FA_WRITE Write an analog value to a binary file
FM_READ Read a message string in a binary file
FM_WRITE Write a message string to a binary file

ABS

abs

IN Q

Arguments:
IN REAL any signed real analog value
Q REAL absolute value (always positive)

Description:

Language reference

B-272 CJ International

Gives the absolute (positive) value of a real value.

(* FBD program using "ABS" block *)

delta
range over

abs
IN Q

>
IN1

IN2 Q

(* ST Equivalence: *)
over := (ABS (delta) > range);

(* IL Equivalence: *)
LD delta
ABS
GT range
ST over

EXPT

expt
IN

EXP Q

Arguments:
IN REAL any signed real analog value
EXP INT integer analog exponent
Q REAL (IN EXP)

Description:
Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one.

(* FBD program using "EXPT" block *)

2.0
range

expt
IN

EXP Q tb_size
Ana

IN Q

(* ST Equivalence: *)
tb_size := ANA (EXPT (2.0, range));

(* IL Equivalence: *)
LD 2.0
EXPT range
ANA
ST tb_size

LOG

Language reference

CJ International B-273

log

IN Q

Arguments:
IN REAL must be greater than zero
Q REAL logarithm (base 10) of the input value

Description:
Calculates the logarithm (base 10) of a real value.

(* FBD program using "LOG" block *)

xval xpos

xlog

abs
IN Q

log
IN Q

(* ST Equivalence: *)
xpos := ABS (xval);
xlog := LOG (xpos);

(* IL Equivalence: *)
LD xval
ABS
ST xpos
LOG
ST xlog

POW

pow
IN

EXP Q

Arguments:
IN REAL real analog number to be raised
EXP REAL power (exponent)
Q REAL (IN EXP)

1.0 if IN is not 0.0 and EXP is 0.0
0.0 if IN is 0.0 and EXP is negative
0.0 if both IN and EXP are 0.0
0.0 if IN is negative and Y does not correspond to an
integer

Description:
Gives the real result of the operation: (base exponent) 'base' being the first argument and
'exponent' the second one. The exponent is a real value.

Language reference

B-274 CJ International

(* FBD program using "POW" block *)

xval
power result

pow
IN

EXP Q

(* ST Equivalence: *)
result := POW (xval, power);

(* IL Equivalence: *)
LD xval
POW power
ST result

SQRT

sqrt

IN Q

Arguments:
IN REAL must be greater than or equal to zero
Q REAL square root of the input value

Description:
Calculates the square root of a real value.

(* FBD program using "SQRT" block *)

xval xpos

xroot

abs
IN Q

sqrt
IN Q

(* ST Equivalence: *)
xpos := ABS (xval);
xroot := SQRT (xpos);

(* IL Equivalence: *)
LD xval
ABS
ST xpos
SQRT
ST xrout

TRUNC

Language reference

CJ International B-275

trunc

IN Q

Arguments:
IN REAL any REAL analog value
Q REAL if IN>0, biggest integer less or equal to the input

if IN<0, least integer greater or equal to the input

Description:
Truncates a real value to have just the integer part

(* FBD program using "TRUNC" block *)

2.67

-2.0891

trunc
IN Q

trunc
IN Q

+

result

(* ST Equivalence: *)
result := TRUNC (+2.67) + TRUNC (-2.0891);
(* means: result := 2.0 + (-2.0) := 0.0; *)

(* IL Equivalence: *)
LD 2.67
TRUNC
ST temporary (* temporary result of first TRUNC *)
LD -2.0891
TRUNC
ADD temporary
ST result

ACOS

acos

IN Q

Arguments:
IN REAL must be in set [-1.0 .. +1.0]
Q REAL arc-cosine of the input value (in set [0.0 .. PI])

= 0.0 for invalid input

Description:
Calculates the Arc cosine of a real value.

(* FBD program using "COS" and "ACOS" blocks *)

Language reference

B-276 CJ International

angle
cos

IN Q cosine

acos
IN Q result

(* ST Equivalence: *)
cosine := COS (angle);
result := ACOS (cosine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
COS
ST cosine
ACOS
ST result

ASIN

asin

IN Q

Arguments: {XE "ASIN"} {XE "Arc sine"}
IN REAL must be in set [-1.0 .. +1.0]
Q REAL arc-sine of the input value (in set [-PI/2 .. +PI/2])

= 0.0 for invalid input

Description:
Calculates the Arc sine of a real value.

(* FBD program using "SIN" and "ASIN" blocks *)

angle
sin

IN Q sine

asin
IN Q result

(* ST Equivalence: *)
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
SIN
ST sine
ASIN
ST result

ATAN

Language reference

CJ International B-277

atan

IN Q

Arguments:
IN REAL any real analog value
Q REAL arc-tangent of the input value (in set [-PI/2 .. +PI/2])

= 0.0 for invalid input

Description:
Calculates the Arc tangent of a real value.

(* FBD program using "TAN" and "ATAN" block *)

angle
tan

IN Q tangent

atan
IN Q result

(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)

(* IL Equivalence: *)
LD angle
TAN
ST tangent
ATAN
ST result

COS

cos

IN Q

Arguments:
IN REAL any REAL analog value
Q REAL cosine of the input value (in set [-1.0 .. +1.0])

Description:
Calculates the Cosine of a real value.

(* FBD program using "COS" and "ACOS" blocks *)

angle
cos

IN Q cosine

acos
IN Q result

Language reference

B-278 CJ International

(* ST Equivalence: *)
cosine := COS (angle);
result := ACOS (cosine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
COS
ST cosine
ACOS
ST result

SIN

sin

IN Q

Arguments:
IN REAL any REAL analog value
Q REAL sine of the input value (in set [-1.0 .. +1.0])

Description:
Calculates the Sine of a real value.

(* FBD program using "SIN" and "ASIN" blocks *)

angle
sin

IN Q sine

asin
IN Q result

(* ST Equivalence: *)
sine := SIN (angle);
result := ASIN (sine); (* result is equal to angle *)

(* IL Equivalence: *)
LD angle
SIN
ST sine
ASIN
ST result

TAN

tan

IN Q

Language reference

CJ International B-279

Arguments:
IN REAL cannot be equal to PI/2 modulo PI
Q REAL tangent of the input value

= 1E+38 for invalid input

Description:
Calculates the Tangent of a real value.

(* FBD program using "TAN" and "ATAN" block *)

angle
tan

IN Q tangent

atan
IN Q result

(* ST Equivalence: *)
tangent := TAN (angle);
result := ATAN (tangent); (* result is equal to angle*)

(* IL Equivalence: *)
LD angle
TAN
ST tangent
ATAN
ST result

ROL

rol
IN

NbR Q

Arguments:
IN INT any integer analog value
NbR INT number of 1 bit rotations (in set [1..31])
Q INT left rotated value

no effect if NbR <= 0

Description:
Make the bits of an integer rotate to the left. Rotation is made on 32 bits:

31 0

(* FBD program using "ROL" block *)

register
1 result

rol
IN

NbR Q

Language reference

B-280 CJ International

(* ST Equivalence: *)
result := ROL (register, 1);
(* register = 2#0100_1101_0011_0101*)
(* result = 2#1001_1010_0110_1010*)

(* IL Equivalence: *)
LD register
ROL 1
ST result

ROR

ror
IN

NbR Q

Arguments:
IN INT any integer analog value
NbR INT number of 1 bit rotations (in set [1..31])
Q INT right rotated value

no effect if NbR <= 0

Description:
Make the bits of an integer rotate to the right. Rotation is made on 32 bits:

31 0

(* FBD program using "ROR" block *)

register
1 result

ror
IN

NbR Q

(* ST Equivalence: *)
result := ROR (register, 1);
(* register = 2#0100_1101_0011_0101 *)
(* result = 2#1010_0110_1001_1010 *)

(* IL Equivalence: *)
LD register
ROR 1
ST result

SHL

Language reference

CJ International B-281

shl
IN

NbS Q

Arguments:
IN INT any integer analog value
NbS INT number of 1 bit shifts (in set [1..31])
Q INT left shifted value

no effect if NbS <= 0
0 is used to replace lowest bit

Description:
Make the bits of an integer shift to the left. Shift is made on 32 bits:

0

(* FBD program using "SHL" block *)

register
1 result

shl
IN

NbS Q

(* ST Equivalence: *)
result := SHL (register,1);
(* register = 2#0100_1101_0011_0101 *)
(* result = 2#1001_1010_0110_1010 *)

(* IL Equivalence: *)
LD register
SHL 1
ST result

SHR

shr
IN

NbS Q

Arguments:
IN INT any integer analog value
NbS INT number of 1 bit shifts (in set [1..31])
Q INT right shifted value

no effect if NbS <= 0
highest bit is copied at each shift

Description:

Language reference

B-282 CJ International

Make the bits of an integer shift to the right. Shift is made on 32 bits:

031

(* FBD program using "SHR" block *)

register
1 result

shr
IN

NbS Q

(* ST Equivalence: *)
result := SHR (register,1);
(* register = 2#1100_1101_0011_0101 *)
(* result = 2#1110_0110_1001_1010 *)

(* IL Equivalence: *)
LD register
SHR 1
ST result

MIN

min
IN1

IN2 Q

Arguments:
IN1 INT any signed integer analog value
IN2 INT (cannot be REAL)
Q INT minimum of both input values

Description:
Gives the minimum of two integer values.

(* FBD program using "MIN" and "MAX" block *)

max_value
value

min_value

min
IN1

IN2 Q

max
IN1

IN2 Q new_value

(* ST Equivalence: *)
new_value := MAX (MIN (max_value, value), min_value);
(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)
LD max_value
MIN value
MAX min_value

Language reference

CJ International B-283

ST new_value

MAX

max
IN1

IN2 Q

Arguments:
IN1 INT any signed integer analog value
IN2 INT (cannot be REAL)
Q INT maximum of both input values

Description:
Gives the maximum of two integer values.

(* FBD program using "MIN" and "MAX" block *)

max_value
value

min_value

min
IN1

IN2 Q

max
IN1

IN2 Q new_value

(* ST Equivalence: *)
new_value := MAX (MIN (max_value, value), min_value);
(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)
LD max_value
MIN value
MAX min_value
ST new_value

LIMIT

limit
MIN

IN

MAX Q

Arguments:
MIN INT minimum allowed value
IN INT any signed integer analog value
MAX INT maximum allowed value
Q INT input value bounded to allowed range

Description:

Language reference

B-284 CJ International

Limits an integer value into a given interval. Whether it keeps its value if it is between
minimum and maximum, or it is changed to maximum if it is above, or it is changed to
minimum if it is below.

(* FBD program using "LIMIT" block *)

min_value
value

max_value new_value

limit
MIN

IN

MAX Q

(* ST Equivalence: *)
new_value := LIMIT (min_value, value, max_value);
(* bounds the value to the [min_value..max_value] set *)

(* IL Equivalence: *)
LD min_value
LIMIT value, max_value
ST new_value

MOD

mod
IN

Base Q

Arguments:
IN INT any signed INTEGER analog value
Base INT must be greater than zero
Q INT modulo calculation (input MOD base)

returns -1 if Base <= 0

Description:
Calculates the modulo of an integer value.

(* FBD program using "MOD" block *)

value
divider division_result

rest_of_division

/
IN1

IN2 Q

mod
IN

Base Q

(* ST Equivalence: *)
division_result := (value / divider); (* integer division *)
rest_of_division := MOD (value, divider); (* rest of the division *)

(* IL Equivalence: *)
LD value
DIV divider
ST division_result

Language reference

CJ International B-285

LD value
MOD divider
ST rest_of_division

MUX4

mux4
SEL

IN1

IN2

IN3

IN4 Q

Arguments:
SEL INT selector integer value (must be in set [0..3])
IN1..IN4 INT any integer analog values
Q INT = value1 if SEL = 0

= value2 if SEL = 1
= value3 if SEL = 2
= value4 if SEL = 3
= 0 for all other values of the selector

Description:
Multiplexer with 4 entries: selects a value between 4 integer values.

(* FBD program using "MUX4" block *)

choice
1

10
100

1000

mux4
SEL

IN1

IN2

IN3

IN4 Q range

(* ST Equivalence: *)
range := MUX4 (choice, 1, 10, 100, 1000);
(* select from 4 predefined ranges, for example, if choice is 1, range will be 10 *)

(* IL Equivalence: *)
LD choice
MUX4 1,10,100,1000
ST range

MUX8

Language reference

B-286 CJ International

mux8
SEL

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8 Q

Arguments:
SEL INT selector integer value (must be in set [0..7])
IN1..IN8 INT any integer analog values
Q INT = value1 if selector = 0

= value2 if selector = 1
...
= value8 if selector = 7
= 0 for all other values of the selector

Description:
Multiplexer with 8 entries: selects a value between 8 integer values.

(* FBD program using "MUX8" block *)

choice
1
5

10
50

100
500

1000
5000

mux8
SEL

IN1

IN2

IN3

IN4

IN5

IN6

IN7

IN8 Q range

(* ST Equivalence: *)
range := MUX8 (choice, 1, 5, 10, 50, 100, 500, 1000, 5000);
(* select from 8 predefined ranges, for example, if choice is 3, range will be 50 *)

(* IL Equivalence: *)
LD choice
MUX8 1,5,10,50,100,500,1000,5000
ST range

ODD

Language reference

CJ International B-287

odd

IN Q

Arguments:
IN INT any signed integer analog value
Q BOO TRUE if input value is odd

FALSE if input value is even

Description:
Tests the parity of an integer: result is odd or even.

(* FBD program using "ODD" block *)

value

1

odd
IN Q RETURN

+

value

(* ST Equivalence: *)
If Not (ODD (value)) Then Return; End_if;
value := value + 1;
(* makes value always even *)

(* IL Equivalence: *)
LD value
ODD
RETNC
LD value
ADD 1
ST value

RAND

rand

base Q

Arguments:
base INT defines the allowed set of number
Q INT random value in set [0..base-1]

Description:
Gives a random integer value in a given range.

(* FBD program using "RAND" block *)

Language reference

B-288 CJ International

4
1
4
8

16

rand
base Q

mux4
SEL

IN1

IN2

IN3

IN4 Q selected

(* ST Equivalence: *)
selected := MUX4 (RAND (4), 1, 4, 8, 16);
(*
random selection of 1 of 4 pre-defined values
the value issued of RAND call is in set [0..3],
so 'selected' issued from MUX4, will get 'randomly' the value
1 if 0 is issued from RAND,
or 4 if 1 is issued from RAND,
or 8 if 2 is issued from RAND,
or 16 if 3 is issued from RAND,
*)

(* IL Equivalence: *)
LD 4
RAND
MUX4 1,4,8,16
ST selected

SEL

sel
SEL

IN1

IN2 Q

Arguments:
SEL BOO indicates the chosen value
IN1, IN2 INT any integer analog values
Q INT = value1 if SEL is FALSE

= value2 if SEL is TRUE

Description:
Binary selector: selects a value between 2 integer values.

(* FBD program using "SEL" block *)

AutoMode
ManuCmd
InpCmd

sel
SEL

IN1

IN2 Q ProCmd

(* ST Equivalence: *)
ProCmd := SEL (AutoMode, ManuCmd, InpCmd);

Language reference

CJ International B-289

(* process command selection *)

(* IL Equivalence: *)
LD AutoMode
SEL ManuCmd,InpCmd
ST ProCmd

ASCII

ascii
IN

Pos Code

Arguments:
IN MSG any non-empty string
Pos INT position of the selected character

in set [1.. len] (len is the length of the IN message)
Code INT code of the selected character

(in set [0 .. 255])
returns 0 is Pos is out of the string

Description:
Gives the ASCII code of one character in a message string.

(* FBD program using "ASCII" block *)

message
1

ascii
IN

Pos Code FirstChr

(* ST Equivalence: *)
FirstChr := ASCII (message, 1);
(* FirstChr is the Ascii code of the first character of the string *)

(* IL Equivalence: *)
LD message
ASCII 1
ST FirstChr

CHAR

char

Code Q

Arguments:
Code INT code in set [0 .. 255]
Q MSG one character string

the character has the ASCII code given in input Code
(ASCII code is used modulo 256)

Language reference

B-290 CJ International

Description:
Gives a one character message string from a given ASCII code.

(* FBD program using "CHAR" block *)

value
48

char
Code Q

+

Display

(* ST Equivalence: *)
Display := CHAR (value + 48);
(* value is in set [0..9] *)
(* 48 is the ascii code of '0' *)
(* result is one character string from '0' to '9' *)

(* IL Equivalence: *)
LD value
ADD 48
CHAR
ST Display

DELETE

delete
IN

NbC

Pos Q

Arguments:
IN MSG any non-empty message
NbC INT number of characters to be deleted
Pos INT position of the first deleted character

(first character of the string has position 1)
Q MSG modified string

empty string if Pos < 1
initial string if Pos > IN string length
initial string if NbC <= 0

Description:
Deletes a part of a message string.

(* FBD program using "DELETE" block *)

Language reference

CJ International B-291

'ABCD'
'EFGH'

CAT

delete
IN

NbC

Pos Q

complete_string

sub_string
4
3

(* ST Equivalence: *)
complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)
sub_string := DELETE (complete_string, 4, 3); (* sub_string is 'ABGH' *)

(* IL Equivalence: *)
LD 'ABCD'
ADD 'EFGH'
ST complete_string
DELETE 4,3
ST sub_string

FIND

find
In

Pat Pos

Arguments:
In MSG any message string
Pat MSG any non-empty string (Pattern)
Pos INT = 0 if sub string Pat not found

= position of the first character of the first occurrence of
the sub-string Pat
(first position is 1)
this function is case sensitive

Description:
Finds a sub-string in a message string. Gives the position in the string of the sub-string.

(* FBD program using "FIND" block *)

'ABCD'
'EFGH'

CAT

find
In

Pat Pos

complete_string

'CDEF' found

(* ST Equivalence: *)
complete_string := 'ABCD' + 'EFGH'; (* complete_string is 'ABCDEFGH' *)
found := FIND (complete_string, 'CDEF'); (* found is 3 *)

Language reference

B-292 CJ International

(* IL Equivalence: *)
LD 'ABCD'
ADD 'EFGH'
ST complete_string
FIND 'CDEF'
ST found

INSERT

insert
IN

Str

Pos Q

Arguments:
IN MSG initial string
Str MSG string to be inserted
Pos INT position of the insertion

the insertion is done before the position
(first valid position is 1)

Q MSG modified string
empty string if Pos <= 0
concatenation of both strings if Pos is greater than the
length of the IN string

Description:
Inserts a sub-string in a message string at a given position.

(* FBD program using "INSERT" block *)

'Mr JONES'
'Franck '

4

insert
IN

Str

Pos Q MyName

(* ST Equivalence: *)
MyName := INSERT ('Mr JONES', 'Frank ', 4);
(* MyName is 'Mr Frank JONES' *)

(* IL Equivalence: *)
LD 'Mr JONES'
INSERT 'Frank ',4
ST MyName

LEFT

Language reference

CJ International B-293

left
IN

NbC Q

Arguments:
IN MSG any non-empty string
NbC INT Number of characters to be extracted

cannot be greater than the length of the IN string
Q MSG left part of the IN string (its length = NbC)

empty string if NbC <= 0
complete IN string if NbC >= IN string length

Description:
Extracts the left part of a message string. The number of characters to be extracted is
given.

(* FBD program using "LEFT" and "RIGHT" blocks *)

'12345678'
4

right
IN

NbC Q

left
IN

NbC Q

CAT

complete_string

(* ST Equivalence: *)
complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);
(* complete_string is '56781234'
the value issued from RIGHT call is '5678'
the value issued from LEFT call is '1234'
*)

(* IL Equivalence: First done is call to LEFT *)
LD '12345678'
LEFT 4
ST sub_string (* intermediate result *)
LD '12345678'
RIGHT 4
ADD sub_string
ST complete_string

MID

mid
IN

NbC

Pos Q

Language reference

B-294 CJ International

Arguments:
IN MSG any non-empty string
NbC INT number of characters to be extracted

cannot be greater than the length of the IN string
Pos INT position of the sub-string

the sub-string first character will be the one pointed to by
Pos
(first valid position is 1)

Q MSG middle part of the string (its length = NbC)
empty string if parameters are not valid

Description:
Extracts a part of a message string. The number of characters to be extracted and the
position of the first character are given.

(* FBD program using "MID" block *)

'abcdefgh'
2
4

mid
IN

NbC

Pos Q sub_string

(* ST Equivalence: *)
sub_string := MID ('abcdefgh', 2, 4);
(* sub_string is 'de' *)

(* IL Equivalence: *)
LD 'abcdefgh'
MID 2,4
ST sub_string

MLEN

mlen

IN NbC

Arguments:
IN MSG any string message
NbC INT number of characters in the IN string

Description:
Calculates the length of a message string.

(* FBD program using "MLEN" block *)

Language reference

CJ International B-295

complete_string
mlen

IN NbC nbchar

<
IN1

IN2 Q3

left
IN

NbC Q

RETURN

prefix

(* ST Equivalence: *)
nbchar := MLEN (complete_string);
If (nbchar < 3) Then Return; End_if;
prefix := LEFT (complete_string, 3);
(* this program extracts the 3 characters on the left of the string and put the result in the prefix
message variable
nothing is done if the string length is less than 3 characters *)

(* IL Equivalence: *)
LD complete_string
MLEN
ST nbchar
LT 3
RETC
LD complete_string
LEFT 3
ST prefix

REPLACE

replace
IN

Str

NbC

Pos Q

Arguments:
IN MSG any string
Str MSG string to be inserted (to replace NbC chars)
NbC INT number of characters to be deleted
Pos INT position of the first modified character

(first valid position is 1)
Q MSG modified string:

- NbC characters are deleted at position Pos
- then substring Str is inserted at this position
returns empty string if Pos <= 0
returns strings concatenation (IN+Str) if Pos is greater
than the length of the IN string
returns initial string IN if NbC <= 0

Language reference

B-296 CJ International

Description:
Replaces a part of a message string by a new set of characters.

(* FBD program using "REPLACE" block *)

'Mr X JONES'
'Frank'

1

replace
IN

Str

NbC

Pos Q MyName4

(* ST Equivalence: *)
MyName := REPLACE ('Mr X JONES, 'Frank', 1, 4);
(* MyName is 'Mr Frank JONES' *)

(* IL Equivalence: *)
LD 'Mr X JONES'
REPLACE 'Frank',1,4
ST MyName

RIGHT

right
IN

NbC Q

Arguments:
IN MSG any non-empty string
NbC INT cannot be greater than the length of the IN string
Q MSG right part of the string (length = NbC)

empty string if NbC <= 0
complete string if NbC >= string length

Description:
Extracts the right part of a message string. The number of characters to be extracted is
given.

(* FBD program using "LEFT" and "RIGHT" blocks *)

'12345678'
4

right
IN

NbC Q

left
IN

NbC Q

CAT

complete_string

(* ST Equivalence: *)
complete_string := RIGHT ('12345678', 4) + LEFT ('12345678', 4);
(* complete_string is '56781234'

Language reference

CJ International B-297

the value issued from RIGHT call is '5678'
the value issued from LEFT call is '1234'
*)

(* IL Equivalence: First done is call to LEFT *)
LD '12345678'
LEFT 4
ST sub_string (* intermediate result *)
LD '12345678'
RIGHT 4
ADD sub_string
ST complete_string

DAY_TIME

day_time

SEL Q

Arguments:
SEL INT output selection

0= get current date
1= get current time
2= get day of week

Q MSG time/date expressed on a character string
'YYYY/MM/DD' if SEL = 0
'HH:MM:SS' if SEL = 1
day name if SEL = 2 (ex: 'Monday')

Description:
Gives date or time of the day as a message string.

(* FBD program using "DAY_TIME" block *)

0

' ; '

1
Display

day_time
SEL Q

day_time
SEL Q

CAT

(* ST Equivalence: *)
Display := Day_Time (0) + ' ; ' + Day_Time (1);
(* Display text format is: 'YYYY/MM/DD ; HH:MM:SS' *)

(* IL Equivalence: First done is call to day_time(1) *)
LD 1
DAY_TIME
ST hour_str (* intermediate result *)
LD 0
DAY_TIME

Language reference

B-298 CJ International

ADD ' ; '
ADD hour_str
ST Display

ARCREATE

arcreate
ID

Size ok

Arguments:
ID INT identifier of the array (must be in set [0..15])
Size INT number of elements in the array
ok INT execution status :

1 = if array has been successfully created
2 = invalid array identifier or array already created
3 = invalid size
4 = not enough memory

Description:
Creation of an array of integers.

Warning: There are at most 16 arrays in an application. Arrays contain integer analog
values. As dynamic memory allocation is performed, this function may cause a system error if
the array size is too close to the size of the available memory.

(* FBD program creating an array of integers *)

ident
16

arcreate
ID

Size ok

<>
IN1

IN2 Q

1
array_error

(* ST Equivalence: *)
array_error := (ARCREATE (ident, 16) <> 1));

(* IL Equivalence: *)
LD ident
ARCREATE 16
NE 1
ST array_error

ARREAD

Language reference

CJ International B-299

arread
ID

Pos Q

Arguments:
ID INT identifier of the array (must be in set [0..15])
Pos INT position of the element in the array

must be in set [0 .. size-1]
value INT value of the element read

0 if the arguments are not valid

Description:
Reads an element in an array of integers.

(* FBD program using array management blocks *)
array_error

RETURN

ident
index

arread
ID

Pos Q read_value

(* ST Equivalence: *)
If (array_error) Then Return; End_if;
read_value := ARREAD (ident, index);
(* array_error comes from the ARCREATE call *)

(* IL Equivalence: *)
LD array_error
RETC
LD ident
ARREAD index
ST read_value

ARWRITE

arwrite
ID

Pos

IN ok

Arguments:
ID INT identifier of the array (must be in set [0..15])
Pos INT position of the element in the array

must be in set [0 .. size-1]
IN INT new value for the element
ok INT execution status

1 = writing has succeeded

Language reference

B-300 CJ International

2 = invalid array identifier
3 = invalid index

Description:
Stores (writes) a value in an array of integers.

(* FBD program using array management blocks *)
array_error

RETURN

ident
index

arwrite
ID

Pos

IN ok write_statusvalue

(* ST Equivalence: *)
If (array_error) Then Return; End_if;
write_status := ARWRITE (Ident, Index, value);
(* array_error comes from the ARCREATE call *)

(* IL Equivalence: *)
LD array_error
RETC
LD ident
ARWRITE index,value
ST write_status

F_ROPEN

F_ROPEN
Path ID

Arguments:
Path MSG file name

It may include the access path to the file using the \ or /
symbol to specify a directory. To ease application
portability, / or \ is equivalent.

ID INT file number
0 if an error occurs: file does not exists.

Description:
Opens a binary file in read mode. To be used with FX_READ and F_CLOSE.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

Language reference

CJ International B-301

'c:\data\data.bin'
F_ROPEN

Path ID file_id

file_id
0

=
IN1
IN2 Q error

(* ST Equivalence: *)
file_id := F_ROPEN('c:\data \data.bin');
error := (file_id=0);

(* IL Equivalence: *)
LD 'c:\data\data.bin'
F_ROPEN
ST file_id
EQ 0
ST error

F_WOPEN

F_WOPEN
Path ID

Arguments:
Path MSG file name

It may include the access path to the file using the \ or /
symbol to specify a directory. To ease application
portability, / or \ is equivalent.

ID INT file number
0 if an error occurs. If the file already exists, it is
overwritten.

Description:
Opens a binary file in write mode. To be used with FX_WRITE and F_CLOSE.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'c:\data\data.bin'
F_WOPEN

Path ID file_id

file_id
0

=
IN1
IN2 Q error

(* ST Equivalence: *)
file_id := F_WOPEN('c:\data \data.bin');
error := (file_id=0);

(* IL Equivalence: *)
LD 'c:\data\data.bin'
F_WOPEN

Language reference

B-302 CJ International

ST file_id
EQ 0
ST error

F_CLOSE

F_CLOSE
ID ok

Arguments:
ID INT file number: returned by F_ROPEN or F_WOPEN.
ok BOO return status

TRUE if file close is OK
FALSE if an error occurred

Description:
Closes a binary file open with functions F_ROPEN or F_WOPEN.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'data.bin'
F_ROPEN

Path ID file_id

F_CLOSE
ID okfile_id ok

(* ST Equivalence: *)
file_id := F_ROPEN('data.bin');
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'data.bin'
F_ROPEN
ST file_id
F_CLOSE (* file_id is already in the current IL result *)
ST ok

F_EOF

F_EOF
ID ok

Arguments:
ID INT file number: returned by F_ROPEN or F_WOPEN.
ok BOO end of file indicator

Language reference

CJ International B-303

TRUE if end of file has been reached at the last read or
write procedure call.
With FM_READ, the last message read from a file may
not be correct, if the last character is not a string
terminator.

Description:
Tests if end of file has been reached.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'data.bin'
F_ROPEN

Path ID file_id

not_eof:

file_id
FA_READ

ID Q VAL

F_EOF
ID okfile_id not_eof

'last val = '

VAL
Msg

IN Q

CAT

message

F_CLOSE
ID okfile_id ok

(* ST Equivalence: *)
file_id := F_ROPEN('data.bin');
WHILE not(F_EOF(file_id))

VAL := FA_READ(file_id);
END_WHILE;
MESSAGE := 'last val = ' + msg(VAL);
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'data.bin'
F_ROPEN
ST file_id
LD file_id
F_EOF
JMPC END_OF_FILE

NOT_EOF: LD file_id
FA_READ
ST VAL
LD file_id
F_EOF
JMPNC NOT_EOF (* if not eof, go on reading *)

END_OF_FILE:LD VAL
MSG
ST val_msg (* conversion of VAL into a message *)
LD 'last val = '

Language reference

B-304 CJ International

ADD val_msg
ST MESSAGE
LD file_id
F_CLOSE
ST ok

FA_READ

FA_READ
ID Q

Arguments:
ID INT file number: returned by F_ROPEN.
Q INT integer analog value read from file

Description:
Reads ANALOG variables from a binary file. To be used with F_ROPEN and F_CLOSE.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_ROPEN reads the first 4 bytes of the file,
each call pushes the reading pointer.
To check if the end of file is reached, use F_EOF.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

'voltramp'
F_ROPEN

Path ID file_id

file_id
FA_READ

ID Q vstart

file_id
FA_READ

ID Q vend

file_id
FA_READ

ID Q vinc

file_id
FA_READ

ID Q delat_tim
Tmr

IN Q

F_CLOSE
ID okfile_id ok

(* ST Equivalence: *)
file_id := F_ROPEN('voltramp.bin');
vstart := FA_READ(file_id);
vend := FA_READ(file_id);
vinc := FA_READ(file_id);
delta_tim := tmr(FA_READ(file_id));
ok := F_CLOSE(file_id);

(* IL Equivalence: *)

Language reference

CJ International B-305

LD 'voltramp.bin'
F_ROPEN
ST file_id
FA_READ (* read vstart *)
ST vstart
LD file_id
FA_READ (* read vend *)
ST vend
LD file_id
FA_READ (* read vinc *)
ST vinc
LD file_id
FA_READ (* read delta_tim *)
TMR (* conversion into a timer *)
ST delta_tim
LD file_id
F_CLOSE
ST ok

FA_WRITE

ID

IN ok

FA_WRITE

Arguments:
ID INT file number: returned by F_WOPEN.
IN INT integer analog value To be written in the file
OK BOO execution status: TRUE if ok

Description:
Writes ANALOG variables to a binary file.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_WOPEN writes the first 4 bytes of the file,
each call pushes the writing pointer.
This function is not included in the ISaGRAF simulator.

(* FBD program *)

Language reference

B-306 CJ International

FA_WRITE

ID

IN ok

F_WOPEN

Path ID'data.bin' file_id

0 nb_written

file_id
vstart

nb_written

Ana
IN Q

nb_written

+

FA_WRITE

ID

IN ok

file_id
vend

nb_written

Ana
IN Q

nb_written

+

FA_WRITE

ID

IN ok

file_id
vinc

nb_written

Ana
IN Q

nb_written

+

FA_WRITE

ID

IN ok

file_id

delta_tim nb_written

Ana
IN Q

nb_written

+
Ana

IN Q

F_CLOSE

ID okfile_id ok

nb_written
4

=
IN1

IN2 Q RETURN

NOERROR

ERR_FILE ERROR

(* ST Equivalence: *)
file_id := F_WOPEN('voltramp.bin');
nb_written := 0;
nb_written := nb_written + ana(FA_WRITE(file_id,vstart));
nb_written := nb_written + ana(FA_WRITE(file_id,vend));
nb_written := nb_written + ana(FA_WRITE(file_id,vinc));
nb_written := nb_written + ana(FA_WRITE(file_id,ana(delta_tim)));
ok := F_CLOSE(file_id);
IF (nb_written <> 4) THEN

ERROR := ERR_FILE;
END_IF;

(* IL Equivalence: *)
LD 'voltramp.bin'
F_ROPEN
ST file_id
LD 0

Language reference

CJ International B-307

ST nb_written
LD file_id (* write vstart *)
FA_WRITE vstart
ANA
ADD nb_written
ST nb_written
LD file_id (* write vend *)
FA_WRITE vend
ANA
ADD nb_written
ST nb_written
LD file_id (* write vinc *)
FA_WRITE vinc
ANA
ADD nb_written
LD (* write delta_tim *)
ANA (* convert it to an integer *)
ST ana_delta_tim
LD file_id
FA_WRITE ana_delta_tim
ANA
ADD nb_written
ST nb_written
F_CLOSE
ST ok
LD nb_written
EQ 4
RETC (* return if equal 4 *)
LD ERR_FILE (* else error *)
ST ERROR

FM_READ

FM_READ

ID Q

Arguments:
ID INT file number: returned by F_ROPEN.
Q MSG message value read from file

Description:
Reads MESSAGE variables from a binary file.
To be used with F_ROPEN and F_CLOSE.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_ROPEN reads the first string of the file,
each call pushes the reading pointer.
A string is a terminated by null (0), end of line ('\n') or return ('\r');
To check if the end of file is reached, use F_EOF.
This function is not included in the ISaGRAF simulator.

Language reference

B-308 CJ International

(* FBD program using file management blocks *)

'voltramp'
F_ROPEN

Path ID file_id

file_id
FM_READ

ID Q status1

file_id
FM_READ

ID Q status2

file_id

F_CLOSE
ID okfile_id ok

F_EOF
ID ok CLOSE_FILE

file_id
FM_READ

ID Q unused_eof_mes

CLOSE_FILE:

ERR_FILE ERROR

(* ST Equivalence: *)
file_id := F_ROPEN('voltramp.bin');
status1 := FM_READ(file_id);
status2 := FM_READ(file_id);
IF (F_EOF(file_id)) THEN

ERROR := ERR_FILE;
unused_eof_mes := FM_READ(file_id);

END_IF;
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'voltramp.bin'
F_ROPEN
ST file_id
FM_READ (* read status1 *)
ST status1
LD file_id
FM_READ (* read status2 *)
ST status2
LD file_id
F_EOF
JMPNC CLOSE_FILE (* if end of file jump not done *)
LD ERR_FILE
ST ERROR
LD file_id
FM_READ (* read unused_eof_mes *)
ST unused_eof_mes

CLOSE_FILE LD file_id
F_CLOSE

Language reference

CJ International B-309

ST ok

FM_WRITE

FM_WRITE

ID

IN ok

Arguments:
ID INT file number: returned by F_WOPEN.
IN MSG message value to be written in the file
ok BOO execution status

TRUE if succeeded

Description:
Writes MESSAGE variables to a binary file.
To be used with F_WOPEN and F_CLOSE.
A message is written in the file as a null terminated string.
This procedure makes a sequential access to the file, from the previous position.
The first call after F_WOPEN writes the first string to the file,
each call pushes the writing pointer.
This function is not included in the ISaGRAF simulator.

(* FBD program using file management blocks *)

FM_WRITE
ID

IN ok

F_WOPEN
Path ID'trace.txt' file_id

file_id
'First message' ok

F_CLOSE
ID okfile_id ok

FM_WRITE
ID

IN ok

file_id
'Last message' ok

(* ST Equivalence: *)
file_id := F_WOPEN('trace.txt');
ok := FM_WRITE(file_id,'First message');
ok := FM_WRITE(file_id,'Last message');
ok := F_CLOSE(file_id);

(* IL Equivalence: *)
LD 'trace.txt'
F_WOPEN
ST file_id
FM_WRITE'First message' (* write first msg *)

Language reference

B-310 CJ International

ST ok
LD file_id
FM_WRITE'Last message' (* write second msg *)
ST ok
LD file_id
F_CLOSE
ST ok

Target User's guide

CJ International C-311

C. Target User's guide

Target User's guide

C-312 CJ International

C.1 Introduction

The ISaGRAF target is a real time software running an ISaGRAF application on your
industrial computer system or board according to the following well known scheme:

Inputs Scan

Outputs Update

Execution
of Begin Programs

Execution
of Sequential Programs

Execution
of End Programs

ISaGRAF
Target Cycle

The target cycle consists in scanning the physical inputs of the process to drive, processing
application data according to the ISaGRAF workbench1 application programs and then
performing physical outputs update.

− First part of this section explains how getting started with a specific system target.
Respectively DOS, OS-9, VxWorks and NT target. For each one you will find first how to run
the ISaGRAF target. Afterwards you will get information on specific features such as: target
start up at power up, error management, general behavior, ...

− Second part deals with user’s C functions, function blocks and conversion functions
implementation method to enhance the ISaGRAF target.

− Third part provides information on Modbus and the ISaGRAF implementation. It describes
the frames format of the different function codes.

− Fourth part gives some tools for managing power fail and target restart.

1 This manual assumes the user is familiar with the ISaGRAF workbench

Target User's guide

CJ International C-313

C.2 Installation

The installation requires about 1 Mbyte of free space on your disk. The install.bat delivered
with the disk installs all needed files for a specified platform on your PC.

Example: a:\install a: c:\path
will install files from disk drive a: to c: on path directory.

The following directory architecture is used:

CMDS

LIB

DEFS

RELS

USER

ROOT

the ROOT directory contains some tools and readme files
the CMDS directory contains executable files
the DEFS directory contains header definition files
the LIB directory contains libraries
the RELS directory contains relocatable (object) files
the USER directory contains user’s ‘C’ procedures for C functions, function blocks and
conversion functions (source and header files)

Then just get started with the installed platform.

Target User's guide

C-314 CJ International

C.3 Getting started with ISaGRAF DOS target

C.3.1 Running ISaGRAF: ISA.EXE

In the MS-DOS implementation, the target runs as a single program: ISA.EXE.To get started
you can simply run the help command isa -? from CMDS directory
In such a system, operations can be critical. It is for instance recommended not to overload
the communication link to guarantee good performance.The target program does not prevent
the running of interrupt driven routines.

Communication link and configuration: -t Option
The ISaGRAF target uses a serial link for debugger communication. The name of the port is
specified with the -t option. As the communication interface is designed to be compatible with
any machine, ports COM1, COM2 or COM3 can be used, depending on the BIOS version.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

Communication using an Ethernet link is not available with DOS ISaGRAF target. Ask your
supplier for special implementation.

The communication parameters have to be set before starting ISaGRAF, so that the user is
totally free to use the parameters needed. When using the workbench debugger, make sure
the workbench communication parameters (see user’s guide: Managing programs) match with
the target ones.

Example:
MODE COM1:9600,N,8,1
Sets up communication parameters to the following values:

baud rate is 9600
no parity check
8 bits of data
1 stop bit

Note that on some BIOS versions, the default workbench setting with 19200 baud is not
authorized.
CJ provides the ISAMOD.EXE utility to set the workbench parameters:
ISAMOD COM1
Is equivalent to MODE COM1:19200,N,8,1

Slave number: -s Option
This option specifies the target slave number. It can be from 1 to 255 except number 13
($0D). This slave number is used through the communication link protocol. It is mainly
designed to distinguish slaves from each other when more than one target are connected
together. When using the workbench debugger, make sure the workbench slave parameter
(see user’s guide: Managing programs) matches with the target one.

Target User's guide

CJ International C-315

Default value: The default slave number is 1 (same as the workbench one)

Examples:
isamod COM1 Configure COM1 to 19200 baud, no parity, 8 data bits, 1 stop bit.
isa -t=COM1 Starts the ISaGRAF target with default slave number (1) and with

COM1 as the communication port.
isa -s=3 -t=COM1 Starts the ISaGRAF target with slave number 3 and with COM1 as the

communication port.

C.3.2 Specific features

ISaGRAF start up
When the target is started, the following algorithm is executed.

No available application on disk Application OK

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

• Definitions
The application code is the binary data base generated and downloaded by the workbench
and then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the
workbench. This table makes the link between symbol objects and internal target objects. It is
not required on target except for user’s specific symbols management. For more information
on symbol table see user’s guide: Advanced programming techniques.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved on the target current directory with the file name:

ISAx1 ISaGRAF application code backup file (where x is the slave number)

Target User's guide

C-316 CJ International

Furthermore if the application symbol table has been downloaded before, it is also saved on
the target current directory with the file name:

ISAx6 ISaGRAF application symbols backup file (where x is the slave number)

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory.
If no symbols file is available, then the target starts running the application code, with no
symbols loaded.
If no application code is available, then the target is waiting for an application to be
downloaded

In order to start the target with a specific application at power up, without using the debugger
link, these files can be directly copied to the target current directory disk from the same disk if
the workbench is on the same PC, or using a floppy disk. If there is no disk on your target
machine you may use a virtual disk.

If the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x8m
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst

Example:
From the directory where isa.exe is installed, if the following command is entered:

copy \ISAWIN\APL\MYPROJ\appli.x8m isa11
Then isa.exe will find and execute ‘myproj’ application.

All these commands can be grouped for instance into a batch file and then started from the
workbench tool menu (see user’s guide: Managing programs).

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the
warning error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If

not, the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the

default stdout output
− Error number and argument are pushed into a ring FIFO error buffer in order to be

retrieved at a later time. The error buffer size is set in the workbench Make options. When
the buffer is full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may

Target User's guide

CJ International C-317

display the name of the object (variable or program) where the error comes from, or the
argument error (decimal value) into brackets [x] which has a different meaning for each error.

A welcome message and error values are displayed on the default stdout output when the
target starts and when an error is detected. If the display is not wanted on the standard output
channel, a redirection command can be used such as:

isa -t=COM1 -s=1 >NUL

System clock
As the ISaGRAF target is designed to run on any system, the time reference used for both
cycle synchronization and timer variables refresh is the standard tick which is about 55
milliseconds.

Thus, it is not possible to have an accuracy on timer variables better than 55ms. For the
same reason, a specified cycle duration less or equal to 55 ms and different from zero will
generate an cycle duration overflow error (error 62) and no triggered cycles.

The advantage of not modifying the system tick is that any of the resident applications, or C
functions and function blocks integrated into the application will never be disturbed by the
ISaGRAF execution.

Ask your supplier for a special implementation if your application requires more accuracy.

Exit key
While testing an application in non-industrial conditions on a desktop PC, the user may wish
to stop ISaGRAF: this is done by pressing a complex combination of keys to prevent
unexpected stops. This key sequence is:

shift + ctrl + alt

Of course, if the industrial application should not be stopped when a key is hit, something
should be provided to disable these combinations.

One dangerous side effect of these fast exits, is that the IO board interface is not closed.
Thus the clean way for stopping your ISaGRAF target is:
- stop the application from the debugger (this will close the IO boards)
- stop ISaGRAF target from the keyboard

Application size
As the ISaGRAF MS-DOS target is designed for Intel real mode, the maximum size of a data
structure is 64K. Thus, the application code downloaded by the workbench should not exceed
this limit. In some very rare cases, internal structure allocated by ISaGRAF may also exceed
this limit and crash your application after download. Furthermore the whole available memory
is limited to the 640K of conventional memory.

Ask your supplier for a special implementation if your application require more memory
capacity.

Target User's guide

C-318 CJ International

C.4 Getting started with ISaGRAF OS9 target

First of all you need to transfer files (at least executable files from CMDS directory) to your
OS-9 target using any file transfer tool.
Then to get started you can simply run the help commands from your OS-9 system CMDS
directory:

isa -?
isaker -?
isatst -?
Isanet -?

C.4.1 Running the ISaGRAF single task: isa

The ISaGRAF target can be run as single task. But in such a configuration operations can be
critical. It is for instance recommended not to overload the communication link to guarantee
good performance. On the OS-9 multitasking system, different ISaGRAF single task targets
can be run on the same CPU as long as their slave number and communication port are
different.
This single task implementation has mainly been designed for poor hardware platform such
as low cost boards or MS-DOS PC’s or to make a first prototype when porting on a new
platform. Therefore the multitasking ISaGRAF target implementation should be preferred.
The ISaGRAF single task target does not prevent the running of background processes or
interrupt driven routines.

Communication link and configuration: -t Option
The ISaGRAF single task target uses a serial link for debugger communication. The name of
the descriptor is specified with the -t option.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

Communication using an Ethernet link is not available with the single task implementation.

The serial link device is opened in binary data transfer mode (no control characters, no
XON/XOFF). Other communication parameters have to be set before starting ISaGRAF, so
that the user is totally free to use the parameters needed. When using the workbench
debugger, make sure the workbench communication parameters (see user’s guide: Managing
programs) match with the target ones.
Example:
xmode /t0 baud=19200
Sets up communication baud rate to 19200 baud on /t0 device

Slave number: -s Option
This option specifies the target slave number. It can be from 1 to 255 except number 13
($0D). This slave number is used through the communication link protocol. It is needed to
distinguish slaves from each other when more than one target are running. When using the
workbench debugger, make sure the workbench slave parameter (see user’s guide: Managing
programs) matches with an existing target.

Target User's guide

CJ International C-319

Default value: The default slave number is 1 (same as the workbench one)

Examples:
isa -t=/t0 Starts an ISaGRAF single task target with default slave number (1) and with

/t0 as the communication port.
isa -s=3 -t=/t1 Starts an ISaGRAF single task target with slave number 3 and with /t1 as

the communication port.
isa -t=/t0 &
isa -s=3 -t=/t1 Starts two ISaGRAF single task targets. One with default slave number (1)

and with /t0 as the communication port. The other with slave number 3 and
with /t1 as the communication port.

C.4.2 Running the ISaGRAF multitasks: isaker, isatst, isanet

To improve the response time of the ISaGRAF target kernel and of the communication link,
the target is split into two tasks separating communication job (isatst or isanet communication
task) from application execution (isaker kernel task).
Such architecture is more flexible. It allows the user to run more than one communication task
linked with the same kernel task or to run up to 4 kernels with the same communication task.
This makes easy some integration such as a process visualization link and the workbench
debugger link on the same application or a single link up to 4 different applications through
the same physical port.

The kernel and communication tasks are independent and can be separately forked. The only
requirement is that the kernel task(s) has to be started first so that it initializes its system
environment and the communication task(s) can link it.

The ISaGRAF multitask target does not prevent the running of background processes or
interrupt driven routines

C.4.2.1 Running the kernel task: isaker

Slave number: -s Option
This option specifies the target kernel slave number. It can be from 1 to 255 except number
13 ($0D). This slave number is used through the communication link protocol and by the
communication task(s) linked to the kernel. It is needed to distinguish slaves from each other
when more than one target are running.

Default value: The default slave number is 1 (same as the workbench one)

C.4.2.2 Running the serial communication task: isatst

Communication link and configuration: -t Option
The target communication task isatst uses a serial link for debugger communication. The
name of the descriptor is specified with the -t option.

Target User's guide

C-320 CJ International

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

Communication using an Ethernet link is not available with isatst task implementation.

The serial link device is opened in binary data transfer mode (no control characters, no
XON/XOFF). Other communication parameters have to be set before starting ISaGRAF, so
that the user is totally free to use the parameters needed. When using the workbench
debugger, make sure the workbench communication parameters (see user’s guide: Managing
programs) match with the target ones
Example:
xmode /t0 baud=19200
Sets up communication baud rate to 19200 baud on /t0 device

Slave number: -s Option
This option specifies the target kernel slave number(s) the communication task is linked to. It
can be from 1 to 255 except number 13 ($0D). This option can be repeated up to 4 times to
link up to 4 different kernel slaves. This slave number is used through the communication link
protocol. It is needed to distinguish slaves from each other when more than one target are
running. When using the workbench debugger, make sure the workbench slave parameter
(see user’s guide: Managing programs) matches with an existing target (kernel and
communication tasks).

Default value: The default slave number is 1 (same as the workbench one)

Communication task logical number: -c Option
This option specifies the communication task logical number. It is used to manage more than
one communication task at a time. It can be from 1 to 255 and must be different for each
communication task.

Default value: The last -s specified option is used. The default value ensure compatibility
with previous (3.0) ISaGRAF versions.

C.4.2.3 Running the Ethernet communication task: isanet

Communication link and configuration: -t Option
The target communication task isanet uses a standard Ethernet link for debugger
communication. The port number is specified with the -t option.

No Default value: If this option is not used, no communication with the target is possible. In
such a case, error number 7 may be displayed.

When using the workbench debugger, make sure the workbench communication parameters
(see user’s guide: Managing programs) match with the target ones

For ISaGRAF, the OS-9 target is the server and the debugger is the client which connects the
specified port number.

Target User's guide

CJ International C-321

Before starting your first debug session on Ethernet, you should make sure your OS-9
Ethernet device is well configured. You may for instance send a ping to the OS-9 system

Slave number: -s Option
This option specifies the target kernel slave number(s) the communication task is linked to. It
can be from 1 to 255 except number 13 ($0D). This option can be repeated up to 4 times to
link up to 4 different kernel slaves. This slave number is used through the communication link
protocol. It is needed to distinguish slaves from each other when more than one target are
running. When using the workbench debugger, make sure the workbench slave parameter
(see user’s guide: Managing programs) matches with an existing target (kernel and
communication tasks).

Default value: The default slave number is 1 (same as the workbench one)

Communication task logical number: -c Option
This option specifies the communication task logical number. It is used to manage more than
one communication task at a time. It can be from 1 to 255 and must be different for each
communication task.

Default value: The last -s specified option is used. The default value ensure compatibility
with previous (3.0) ISaGRAF versions.

C.4.2.4 Examples:

isaker &
isatst -t=/t0

isaker
slave 1 /t0

isatst
logical Nb 1

Starts:
An ISaGRAF kernel task with default slave number (1).
An ISaGRAF serial communication task, on /t0 com Port, linked to default slave number (1),
and with default logical number (last specified slave number = default = 1).

isaker &
isanet -t=1100

isaker
slave 1 1100

isanet
logical Nb 1

Starts:

Target User's guide

C-322 CJ International

An ISaGRAF kernel task with default slave number (1).
An ISaGRAF Ethernet communication task, on Port number 1100, linked to default slave
number (1), and with default logical number (last specified slave number = default = 1).

isaker -s=2 &
isatst -t=/t0 -s=2 (respectively isanet -t=1100 -s=2)

isaker
slave 2 /t0

(1100)

Isatst
(isanet)

logical Nb 2

Starts:
An ISaGRAF kernel task with slave number 2.
An ISaGRAF serial (Ethernet) communication task, on /t0 com Port (Port number 1100),
linked to slave number 2, and with default logical number (last specified slave number = 2).

Isaker -s=1 &
isaker -s=2 &
isatst -t=/t0 -s=1 -s=2 (respectively isanet -t=1100 -s=1 -s=2)

isaker
slave 1

isaker
slave 2

/t0
(1100)

Isatst
(isanet)

logical Nb 2

Starts:
An ISaGRAF kernel task with slave number 1.
An ISaGRAF kernel task with slave number 2.
An ISaGRAF serial (Ethernet) communication task, on /t0 com Port (Port number 1100),
linked to slaves number 1 and 2, and with default logical number (last specified slave number
= 2).

Isaker -s=1 &
isatst -t=/t0 -s=1 -c=1 & (respectively isanet -t=1100 -s=1 -c=1 &)
isatst -t=/t1 -s=1 -c=2 (respectively isanet -t=1101 -s=1 -c=2)

isatst
(isanet)

logical Nb 1

/t0
(1100)

isaker
slave 1

isatst
(isanet)

logical Nb 2
/t1

(1101)

Starts:

Target User's guide

CJ International C-323

An ISaGRAF kernel task with slave number 1.
An ISaGRAF serial (Ethernet) communication task, on /t0 com Port (Port number 1100),
linked to slaves number 1, and with logical number 1.
An ISaGRAF serial (Ethernet) communication task, on /t1 com Port (Port number 1101),
linked to slaves number 1, and with logical number 2.
Note:
Serial and Ethernet communication tasks can be mixed.

C.4.3 Specific features

Communication link
As OS-9 Serial Character Manager is very flexible, almost any bi-directional physical device
supported by Microware may be used:

Example:
The serial link can be a network path to a physical port located on an another CPU.
Then the -t option would be used for example as following: -t=/nr/MASTER/t0
Where the communication link is deported on a CPU called MASTER on a ramnet network.
The physical port used is /t0.

ISaGRAF start up
When the target is started, the following algorithm is executed.

No available application on memory

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

Available application on memory

• Definitions
The application code is the binary data base generated and downloaded by the workbench
and then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the
workbench. This table makes the link between symbol objects and internal target objects. It is
not required on target except for user’s specific symbols management. For more information
on symbol table see user’s guide: Advanced programming techniques.

Target User's guide

C-324 CJ International

• ISaGRAF OS-9 objects and Multi-application
Every ISaGRAF public object name begins with 'ISAxn' where x is the kernel slave number
and n a space number with a specific meaning, except for ISAy3 where y is the
communication task logical number in the multitask implementation.
Different applications (kernels and communication tasks) can run at the same time on a CPU,
as far as they have respectively different slave numbers and different communication task
logical numbers. Nevertheless while running different applications, the user must take care of
some application objects shared access such as I/O boards. For instance different
applications (kernels) may use distinct physical boards unless some kind of I/O server or
semaphore is implemented through the I/O driver.

OS-9 object names:
Disk Files:

ISAx1 ISaGRAF application code backup file
ISAx6 ISaGRAF application symbol backup file

Memory Modules:
ISAx0 ISaGRAF kernel system data
ISAx1 ISaGRAF application code
ISAx2 ISaGRAF kernel real time data base
ISAy3 ISaGRAF communication data exchange buffer
ISAx4 ISaGRAF on line modification 1 application code
ISAx5 ISaGRAF on line modification 2 application code
ISAx6 ISaGRAF application symbol

Therefore the user must take care to not use the same object names.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved on the target current directory with the file name:

ISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on
the target current directory with the file name:

ISAx6 ISaGRAF application symbols backup file (where x is the slave number)

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory as data modules with same
names.

Then, if no symbols table is available on memory, the target starts running the application
code, with no symbols loaded.
If no application code is available on memory, then the target is waiting for an application to
be downloaded

In order to start the target with a specific application at power up, without using the debugger
link:

• A first way may consists in directly copying these files to the target current directory disk
from the PC host where the workbench is installed, using any file transfer tool. You can
use the workbench tool menu (see user’s guide: Managing programs) to ease these
manipulations.

Target User's guide

CJ International C-325

• A second way may consists in storing the application code (and if necessary the
application symbol table) in a non volatile memory (like a PROM or EPROM), from files
from the PC host where the workbench is installed, with your own tools.

Then at system power up, if required (for example because of faster access or breakpoint
management), you may load the application code (and if necessary the application
symbol table) from the PROM to the RAM as ISAx1 (and if necessary ISAx6) memory
data module(s), with your own tools.

WARNING:
The breakpoint management of the ISaGRAF debugger cannot run correctly if the
application code module is not accessible for writing. This is not a problem, as your
application has normally been fully tested before.

On the PC host, if the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x6m (corresponding to isax1 on the target).
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst (corresponding to isax6 on the target).

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the
warning error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If

not, the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the

default stdout output
− Error number and argument are pushed into a ring FIFO error buffer in order to be

retrieved at a later time. The error buffer size is set in the workbench Make options. When
the buffer is full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may
display the name of the object (variable or program) where the error comes from, or the
argument error (decimal value) into brackets [x] which has a different meaning for each error.

A welcome message and error values are displayed on the default stdout output when the
target starts and when an error is detected. If the display is not wanted on the standard output
channel, a redirection command can be used such as:

prog_name [options] >>>/nil

Cycle duration, task behaviors, and task priorities

Target User's guide

C-326 CJ International

− At the end of an ISaGRAF cycle, just before starting a new one, the following algorithm is
performed:

If a cycle timing is specified (from the workbench: see user’s guide: Managing
programs) then the CPU is relinquished for the remained time period (specified cycle
time - current application one). If this remained time period is negative an overflow is
generated and the CPU is relinquished for 1 tick to force the scheduling

If no cycle timing is specified, or if the remained time is less or equal than 1 tick or
equal to zero, then the CPU is relinquished for 1 tick to force the scheduling

The target timing accuracy correspond to the OS-9 system tick one.

A specified cycle timing is commonly used to trig cycles or to yield the CPU to other tasks
running on the OS-9 system.

− The communication task is in sleep status while there are no incoming data through the
communication link. When needed, this task gets information on the running application
through a question/answer protocol with the kernel task. The communication task asks for
a question to the kernel. At the end of the cycle (to have a synchronous application
image), the kernel gives the answer to the communication task.

The ISaGRAF tasks do no modify the priority they have been given. The user is free to adjust
these priorities according to ISaGRAF task behaviors described above and its whole
application requirements.
For instance, to make sure that ISaGRAF is not preempted by a low priority task, the OS-9
task management parameters such as MIN_AGE and MAX_AGE, can be modified.

Terminal mode
The target serial communication protocol recognizes a sequence of 3 carriage return
characters ($0D) and then starts an OS-9 shell task, if it is available, on the serial link device.
This allows to get an OS-9 shell prompt on any terminal, using the ISaGRAF target serial link.

Example:
From the host PC:
− Close the ISaGRAF debugger.
− Start a Windows Terminal session (accessories group) with the right communication

parameters
− Hit 3 carriage return

You are now logged on an OS-9 Shell
− Type logout to exit the terminal mode.

WARNING:
The terminal mode session must always be left in a clean way using logout and nothing else,
otherwise next connection with the workbench will be unsuccessful.

Target User's guide

CJ International C-327

C.5 Getting started with ISaGRAF VxWorks target

To run the ISaGRAF target(s), a few commands need to be executed on the VxWorks
system, in order to set the configuration environment and finally spawn the ISaGRAF
target(s). All these commands may be started from a script file. They are described in next
chapters.

C.5.1 The system resource manager: isassr.o

This module is always needed, in any configuration of the ISaGRAF target, and must be the
first of the ISaGRAF target loaded modules. It enables the system resource managing of multi
targets running.

C.5.2 Common features to isa.o, isakerse.o and isakeret.o

To run ISaGRAF, one of these modules may be loaded.
isa.o: enable to start ISaGRAF single task targets (serial communication link only).
Isakerse.o: enable to start ISaGRAF multitask targets (serial communication link only).
Isakeret.o: enable to start ISaGRAF multitask targets (serial or/and Ethernet

communication link)
These modules are detailed in next chapters

Serial communication link configuration
The ISaGRAF target basically uses a serial link for debugger communication. When opened,
no configuration are performed on the specified serial link device by the ISaGRAF target. So
that, the user is totally free to use the parameters needed. Nevertheless a binary data transfer
mode (RAW mode) is required. In that way the ISAMOD () subroutine is provided.

uchar ISAMOD
(
char *desc, /* Serial device name */
uint32 baudrate /* Baud rate */
)

Description:
Configure specified serial link device for binary data transfer with specified baud rate

return value:
0 if successful, BAD_RET if errors occur

When using the workbench debugger, make sure the workbench communication parameters
(see user’s guide: Managing programs) match with the target ones.

System clock rate
The global variable CLKRATE (uint32) needs to be initialized to the VxWorks system clock
rate. In that way you can use:

CLKRATE = sysClkRateGet ()
The default value of CLKRATE is 60Hz.

Target User's guide

C-328 CJ International

C.5.3 Running the ISaGRAF single task: isa.o

The ISaGRAF target can be run as single task. But in such a configuration operations can be
critical. It is for instance recommended not to overload the communication link to guarantee
good performance. On the VxWorks multitasking system, different ISaGRAF single task
targets can be run on the same CPU as long as their slave number and communication port
are different.
This single task implementation has mainly been designed for poor hardware platform such
as low cost boards or MS-DOS PC’s or to make a first prototype when porting on a new
platform. Therefore the multitasking ISaGRAF target implementation should be preferred.
The ISaGRAF single task target does not prevent the running of background processes or
interrupt driven routines.

Slave(s) registration
An ISaGRAF target is characterized by its slave number. Its value can be from 1 to 255
except number 13 ($0D). This slave number is used through the communication link protocol.
It is needed to distinguish slaves from each other when more than one target are running.
Therefore, before starting the ISaGRAF target(s) task, you need to register it (them). In that
way the isa_register_slave() subroutine is provided.

uchar isa_register_slave
(
uchar slave /* slave number */
)

Description:
Add a new slave registration to the multi targets management system

return value:
0 if succeeded, BAD_RET if errors occur

Application backup file storage unit
The global variable TSK_FUNIT (char *) can be initialized to a string containing the path unit
for application file backup. The ISaGRAF target simply uses the standard file management
routines fopen, fread, fwrite, fclose for application file backup.
The default value is an empty string ("") to specify that there are no storage unit.

Example:
TSK_FUNIT = "host name:/C:/ISaGRAF/target/apl/"
Specify ISaGRAF\target\apl\, on root of C: unit, on the host_name PC, as application file
backup directory. Be careful not to forget the last slash, otherwise the backup is done on
ISaGRAF\target\ directory with apl prefixed file names.

If needed, this variable can be set to different path units, for each target, before each spawn.
You will find more detailed information on application backup files, in the specific features;
application backup chapter.

End of Cycle control
The TSK_NBTCKSCHED (uint 32) variable can be set to a value specifying a delay in tick,
used by the ISaGRAF target at the end of the cycle.

Target User's guide

CJ International C-329

The default value is 0 (same priority task scheduling).
If needed, this variable can be set to different value, for each target to start, before each
spawn.
You will find more detailed information, in the specific features; Cycle duration, task behaviors
and task priorities chapter.

ISaGRAF target spawning
Once the configuration environment has been set, the last step consists in spawning the
ISaGRAF target(s): isa_main.

uchar isa_main
(
uchar slave, /* Slave number */
char *com /* Serial device name */
)

Description:
Starts an ISaGRAF target task.

return value:
return a value different from zero if errors occur.

The slave number is the same as discussed in the slave registration chapter.
More than one target can be started as long as their slave number and communication port
are different.
When using the workbench debugger, make sure the workbench slave parameter (see user’s
guide: Managing programs) matches with an existing target.

Example
This example shows how to start an ISaGRAF single task target with slave number 1 and with
/tyCo/1 device for the serial link.
The current host directory is the one where the target is installed.

load isassr.o module
ld < RELS/isassr.o

load isa.o module
ld < CMDS/isa.o

serial communication configuration
ISAMOD ("/tyCo/1", 19200)

System clock rate
CLKRATE = sysClkRateGet ()

slave registration
isa_register_slave (1)

File storage unit (could be skipped because default set)
TSK_FUNIT = ""

End of cycle control (could be skipped because default set)

Target User's guide

C-330 CJ International

TSK_NBTCKSCHED = 0

ISaGRAF target spawning
sp (isa_main, 1, "/tyCo/1")

C.5.4 Running the ISaGRAF multitasks: isakerse.o and isakeret.o

To improve the response time of the ISaGRAF target kernel and of the communication link,
the target is split into two tasks separating communication job (communication task) from
application execution (kernel task).
Such architecture is more flexible. It allows the user to run more than one communication task
linked with the same kernel task or to run up to 4 kernels with the same communication task.
This makes easy some integration such as a process visualization link and the workbench
debugger link on the same application or a single link up to 4 different applications through
the same physical port.

The kernel and communication tasks are independent and can be separately spawned. The
only requirement is that the kernel task(s) has to be started first so that it initializes its system
environment and the communication task(s) can link it.

The ISaGRAF multitask target does not prevent the running of background processes or
interrupt driven routines.

Two modules are proposed depending on communication hardware capabilities:
- Kernel and serial link: isakerse.o
This module enable to start the kernel task(s) and the serial communication task(s).
- Kernel and serial or/and Ethernet link: isakeret.o
This module enable to start the kernel task(s) and the serial or/and Ethernet communication
task(s).

The way of starting ISaGRAF is the same for isakerse.o and isakeret.o modules, except that
for isakeret.o, you can either specify a serial device name, or a port number for Ethernet link,
as communication device name parameter when starting the ISaGRAF communication
task(s): tst_main_ex (see below).

For ISaGRAF, the VxWorks target is the server and the debugger is the client which connects
the specified port number.

Kernel(s) registration
An ISaGRAF kernel is characterized by its slave number. Its value can be from 1 to 255
except number 13 ($0D). This slave number is used through the communication link protocol
and by the communication task(s) linked to the kernel. It is needed to distinguish slaves from
each other when more than one target are running. Therefore, before starting the ISaGRAF
kernel task(s), you need to registered it (them). In that way the isa_register_slave() subroutine
is provided.

uchar isa_register_slave
(
uchar slave /* slave number */
)

Target User's guide

CJ International C-331

Description:
Add a new kernel slave registration to the multi targets management system

return value:
0 if succeeded, BAD_RET if errors occur

Communication task(s) registration
An ISaGRAF communication task is characterized by its logical number. It is used to manage
more than one communication task at a time. It can be from 1 to 255 and must be different for
each communication task. Therefore, before starting the ISaGRAF communication task(s),
you need to registered it (them). In that way the isa_register_com() subroutine is provided.

uchar isa_register_com
(
uchar com_id /* com. task identifier */
)

Description:
Add a new communication task registration to the multi targets management system

return value:
0 if succeeded, BAD_RET if errors occur

Application backup file storage unit
The global variable TSK_FUNIT (char *) can be initialized to a string containing the path unit
for application file backup. The ISaGRAF target simply uses the standard file management
routines fopen, fread, fwrite, fclose for application file backup.
The default value is an empty string ("") to specify that there are no storage unit.

Example:
TSK_FUNIT = "host name:/C:/ISaGRAF/target/apl/"
Specify ISaGRAF\target\apl\, on root of C: unit, on the host_name PC, as application file
backup directory. Be careful not to forget the last slash, otherwise the backup is done on
ISaGRAF\target\ directory with apl prefixed file names.

If needed, this variable can be set to different path units, for each target to start, before each
kernel spawn.
You will find more detailed information on application backup files, in the specific features ;
application backup chapter.

End of Cycle control
The TSK_NBTCKSCHED (uint 32) variable can be set to a value specifying a delay in tick
used by the ISaGRAF target at the end of the cycle.
The default value is 0 (same priority task scheduling).
If needed, this variable can be set to different value, for each kernel, before each kernel
spawn.
You will find more detailed information, in the specific features; Cycle duration, task behaviors
and task priorities chapter.

Target User's guide

C-332 CJ International

ISaGRAF kernel spawning
Once the configuration environment has been set, one of the last steps consists in spawning
the ISaGRAF kernel(s): isa_main.

uchar isa_main
(
uchar slave, /* Slave number */
char *com /* NOT USED Empty string is OK */
)

Description:
Starts an ISaGRAF kernel task

return value:
return a value different from zero if errors occur.

The slave number is the same as discussed in the slave registration chapter.
More than one kernels can be started as long as their slave number are different.

ISaGRAF communication task spawning
Once the configuration environment has been set, one of the last steps consists in spawning
the ISaGRAF communication task(s): tst_main_ex.

uchar tst_main_ex
(
char *com, /* Communication device name */
uchar *slave, /* Location of a 4 Bytes field specifying kernel(s) slave

to link to */
uchar com_id /* communication task identifier */
)

Description:
Starts an ISaGRAF communication task

return value:
return a value different from zero if errors occur.

The 4 Bytes field specifies the kernel slave(s), the communication task is linked to. If less
than 4 kernel slaves are needed, the field must be completed with zero. Once the task has
started, this filed is not needed any more.
The communication device name corresponds to the serial device name to be used for the
communication link.
More than one communication tasks can be started as long as their task identifier are
different.
When using the workbench debugger, make sure the workbench communication link
parameters (see user’s guide: Managing programs) match with an existing target (kernel and
communication tasks).

Example:
This example shows how to start:
An ISaGRAF kernel task with slave number 1.

Target User's guide

CJ International C-333

An ISaGRAF communication task identified with number 1, linked to the kernel slave 1 and
with /tyCo/1 device for the serial link.
An ISaGRAF communication task identified with number 2, linked to the kernel slave 1 and
with 1100 port number for the Ethernet communication link.
The current host directory is the one where the target is installed.

load isassr.o module
ld < RELS/isassr.o

load isakeret.o module (You may load isakerse.o when no Ethernet communication link is
needed)
ld < CMDS/isakeret.o

serial communication configuration
ISAMOD ("/tyCo/1", 19200)

System clock rate
CLKRATE = sysClkRateGet ()

slave registration
isa_register_slave (1)

communication registration
isa_register_com (1)
isa_register_com (2)

File storage unit (could be skipped because default set)
TSK_FUNIT = ""

End of cycle control (could be skipped because default set)
TSK_NBTCKSCHED = 0

ISaGRAF kernel spawning
sp (isa_main, 1, "")

Communication task, slaves link
SlavesLink = 0x01000000

ISaGRAF communication tasks spawning
sp (tst_main_ex, "/tyCo/1", &SlavesLink, 1)
sp (tst_main_ex, "1100", &SlavesLink, 2)

This startup correspond to the following figure

Target User's guide

C-334 CJ International

Com task
logical Nb 1

/tyCo/1Kernel task
slave 1

Com task
logical Nb 2 1100

You also have the choice of the following basic configurations.

Kernel task
slave 1 /tyCo/1

(1100)

Com task
logical Nb 1

The most basic configuration consists in a kernel task associated to a communication task on
a serial (Ethernet) link.

Kernel task
slave 1

Kernel task
slave 2

/tyCo/1
(1100)

Com task
logical Nb 1

An another configuration consists in 2 kernel associated to a communication task on a serial
(Ethernet) link. In this case, SlavesLink = 0x01020000.

C.5.5 Specific features

ISaGRAF start up
When the target is started, the following algorithm is executed.

Target User's guide

CJ International C-335

No available application on memory

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

Available application on memory

• Definitions
The application code is the binary data base generated and downloaded by the workbench
and then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the
workbench. This table makes the link between symbol objects and internal target objects. It is
not required on target except for user’s specific symbols management. For more information
on symbol table see user’s guide: Advanced programming techniques.
The path to the disk file unit is specified at the ISaGRAF target startup using the global
variable TSK_FUNIT (default value = "" to specify there are no disk file unit)

• ISaGRAF Multi-applications
Different applications (kernels and communication tasks) can run at the same time on a CPU,
as far as they have respectively different slave numbers and different communication task
logical numbers. Nevertheless while running different application, the user must take care of
some application objects shared access such as I/O boards. For instance different application
(kernels) may use distinct physical boards unless some kind of I/O server or semaphore is
implemented through the I/O driver.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved (the target uses standard file management routines fopen,...) with
the file name:

pathISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on
the target current directory with the file name:

pathISAx6 ISaGRAF application symbols backup file (where x is the slave number)

The path is specified at the ISaGRAF target startup using the global variable TSK_FUNIT. An
empty string ("") will specify there are no disk file unit (default value).

Target User's guide

C-336 CJ International

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory.

Then, if no symbols table is available on memory, the target starts running the application
code, with no symbols loaded.
If no application code is available on memory, then the target is waiting for an application to
be downloaded

In order to start the target with a specific application at power up, without using the debugger
link:

• A first way may consists in directly copying these files to the application backup storage
unit from the PC host where the workbench is installed, using any file transfer tool. You
can use the workbench "Tools" menu (see user’s guide: Managing programs) to ease
these manipulations.

• A second way may consists in storing the application code (and if necessary the
application symbol table) in a non volatile memory (like a PROM or EPROM), from files
from the PC host where the workbench is installed, with your own tools.

Then at system power up, if required (for example because of faster access or breakpoint
management), you may load the application code (and if necessary the application
symbol table) from the PROM to the RAM, with your own tools.

Then at ISaGRAF startup (just before tasks spawning) you must specify the address(es)
where the application code (and if necessary the application symbol table) is located in
memory. In that way you need to initialize the SSR global variable as following:

SSR[x][1].space = address location of application code
And if necessary:

SSR[x][6].space = address location of application symbol table

In that way you may write a short procedure. The SSR global variable is declared as an
str_ssr structure type which is defined in tasy0ssr.h file.

WARNING:
The breakpoint management of the ISaGRAF debugger cannot run correctly if the
application code is not accessible for writing. This is not a problem, as your application
has normally been fully tested before.

On the PC host, if the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x6m (corresponding to isax1 on the target).
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst (corresponding to isax6 on the target).

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the
warning error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine

Target User's guide

CJ International C-337

− If the error detection flag is set in the workbench Make options, the error is processed. If
not, the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the

default stdout output
− Error number and argument are pushed into a ring FIFO error buffer in order to be

retrieved at a later time. The error buffer size is set in the workbench Make options. When
the buffer is full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may
display the name of the object (variable or program) where the error comes from, or the
argument error (decimal value) into brackets [x] which has a different meaning for each error.

On the target, when an error is detected, error values are displayed on the default stdout
output. Thus the display can be directed using VxWorks routines such as

ioGlobalStdSet()
or ioTaskStdSet()
In last case, not that either the kernel or the communication tasks can generate errors

Cycle duration, task behaviors, and task priorities
− At the end of an ISaGRAF cycle, just before starting a new one, the following algorithm is

performed:
If a cycle timing is specified (from the workbench: see user’s guide: Managing
programs) then the CPU is relinquished for the remained time period (specified cycle
time - current application one). If this remained time period is negative an overflow is
generated and the CPU is relinquished for TSK_NBTCKSCHED (variable set at
ISaGRAF startup) tick(s) to force the scheduling.

If no cycle timing is specified, or if the remained time is less than 1 tick or equal to zero,
then the CPU is relinquished for TSK_NBTCKSCHED tick(s) to force the scheduling.

The target timing accuracy correspond to the VxWorks system tick one.

a specified cycle timing is commonly used to trig cycles or to yield the CPU to other tasks
running on the VxWorks system.

− The communication task is in sleep status while there are no incoming data through the
communication link. When needed, this task gets information on the running application
through a question/answer protocol with the kernel task. The communication task asks for
a question to the kernel. At the end of the cycle (to have a synchronous application
image), the kernel gives the answer to the communication task.

The ISaGRAF tasks do no modify the priority they have been given. The user is free to adjust
these priorities according to ISaGRAF task behaviors described above and its whole
application requirements.

Target User's guide

C-338 CJ International

C.6 Getting started with ISaGRAF NT target

C.6.1 Running ISaGRAF

In the NT implementation, the target runs as a single program: WISAKER.EXE, which can be
launched several times. This allows to have as many as ISaGRAF NT target you want as
each instance has a separate slave number.

The target program does not prevent the running of interrupt driven routines.

The WISAKER software is designed to run under Windows NT 3.51 or later.

C.6.2 General information on options

Options are saved and retrieved according to the following diagram:

There is a slave number and
at least one other options in
the command line

There is at least one
option in the command
line but no slave number

The ISaGRAF NT target will use
the default set of options (the
ISaGRAF section of the
ISaGRAF.INI file) taking into
account the command line.

Init

The ISaGRAF NT target will
save the options into the
default set of options (the
ISaGRAF section of the
ISaGRAF.INI file)

The ISaGRAF NT target will use
the default set of options (the
ISaGRAF section of the
ISaGRAF.INI file)

Alt+F4 or Exit
application

There is no option
in the command line

The ISaGRAF NT target will not
save the options into the default
set of options (the ISaGRAF
section of the ISaGRAF.INI file)

Alt+F4 or Exit
application

The ISaGRAF NT target will use
the set of options associated with
the slave number (the ISaGRAFs
section of the ISaGRAF.INI file),
where ‘s’ is the slave number.

The ISaGRAF NT target will save
the options into the set of options
associated with the slave number
(the ISaGRAFs section of the
ISaGRAF.INI file)

Alt+F4 or Exit
application

Note that ISAGRAF.INI file is saved in the current working directory.

Target User's guide

CJ International C-339

Slave number: -s Option
This option specifies the target slave number. It can be from 1 to 255 except number 13
($0D). This slave number is used through the communication link protocol. It is mainly
designed to distinguish slaves from each other when more than one target are connected to
the same host workbench or when more than one target run on the same PC. When using the
workbench debugger, make sure the workbench slave setting (see user’s guide: Managing
programs) matches the target one.

Default value: The default slave number is 1 or the one in the ISaGRAF.INI file.

Example:
WISAKER.EXE -s=2

User interface: This window is display from the "Options/Slave" command of the main window
of ISaGRAF NT target.

Using the mouse or the arrows (Up and Down) it is possible to change the value of this option.
In order to use it, the ISaGRAF NT target should be restarted.

Communication link and configuration: -t Option
The ISaGRAF target can use a serial link or an Ethernet link for debugger communication.
The name of the port is specified with the -t option. As the communication interface is
designed to be compatible with any machine, ports COM1, COM2, COM3 or COM4 can be
used for serial communication, and port numbers starting from 1100 can be used for Ethernet
communication.

Default value: The default communication port is the 1100 for Ethernet and COM1 for serial
communication or the one in the ISaGRAF.INI file.

TO BE NOTED: The default communication link is the Ethernet.

Examples:
WISAKER -t=COM2
WISAKER -t=1101

Serial configuration:
Some options can only be used if the -t=COMx option is specified.

Those are configuration options for the serial link:

Target User's guide

C-340 CJ International

Option Values Meaning
baud 600

1200
2400
4800
9600
19200

Baud rate

parity n
e
o

No parity
Even
Odd

data 7 or 8 Number of bits
stop 1 or 2 Length of the stop bit
flow h

n
Hardware control
No control

The defaults values are 19200, no parity, 8 data bits, 1 stop, no flow control

Example:
WISAKER -t=COM1 baud=1200 data=8 parity=n stop=2

User interface: This window is displayed from the "Options/Communication" command of the
main window of ISaGRAF NT target.

Target User's guide

CJ International C-341

It is possible to choose the serial communication or the Ethernet communication. The
Ethernet communication gives the possibility to modify the port number. This port number
should be the same as in the workbench PC-PLC Link specification.

By choosing the serial communication, the configuration will appear. This configuration should
be the same as in the workbench PC-PLC Link specification.

Graphic simulation of virtual boards: -x Option
If this option is set, the boards declared virtual, in the I/O connection editor (See Part A), will
be simulated.
Possible values are 0 or 1, 0 means no simulation, and 1 means simulation on.

Default value: The default value is 0 or the one in the ISaGRAF.INI file.

Example:
WISAKER -x=1 will simulate virtual boards,

User interface: The menu item will be checked or unchecked reflecting the state of the option.
Simulated boards appear in a graphic panel.

Priority of the ISaGRAF NT target: -p Option

Target User's guide

C-342 CJ International

As the target is running under NT, it is very useful to specify a priority level. It is, for instance,
possible to have a time critical ISaGRAF application running within a target with the higher
priority and one or more targets running in background with lower priorities.

Possible values are 0, 1, 2 or 3. 0 is the highest priority, and 3 is the lowest priority.

Examples:
WISAKER -p=0
WISAKER -p=1

User interface: This window is displayed from the "Options/Priority" command of the main
window of ISaGRAF NT target.

The highest priority is the real time and the lowest is the idle priority.
0: Real time priority
1: High priority
2: Normal priority
3: Idle priority

Examples:
wisaker -t=COM1 Starts the ISaGRAF target with default slave number (1) and with

COM1 as the communication port.
wisaker -s=3 -t=COM1 Starts the ISaGRAF target with slave number 3 and with COM1 as the

communication port.

C.6.3 Specific features

ISaGRAF start up
When the target is started, the following algorithm is executed.

Target User's guide

CJ International C-343

No available application on disk Application OK

Wait for application download

Application OK

Look for application from disk
to load it into memory

Save application to disk

Stop application

Execute Application

• Definitions
The application code is the binary data base generated and downloaded by the workbench
and then, executed by the target. It may be completed by the symbol table.
The application symbol table is an ASCII data base generated and downloaded by the
workbench. This table makes the link between symbol objects and internal target objects. It is
not required on target except for user’s specific symbols management as for instance the
DDE feature or I/Os simulation with symbol names feature. For more information on symbol
table see user’s guide: Advanced programming techniques.

• ISaGRAF Multi-applications
Different applications can run at the same time on a CPU, as far as they have respectively
different slave numbers and different communication task logical numbers. Nevertheless
while running different application, the user must take care of some application objects shared
access such as I/O boards. For instance different application may use distinct physical boards
unless some kind of I/O server or semaphore is implemented through the I/O driver.

• Application backup
When a new application is downloaded from the workbench debugger into the target, the
application code is saved on the target current directory with the file name:

ISAx1 ISaGRAF application code backup file (where x is the slave number)

Furthermore if the application symbol table has been downloaded before, it is also saved on
the target current directory with the file name:

ISAx6 ISaGRAF application symbols backup file (where x is the slave number)

When the ISaGRAF target is started, these application code and application symbols files are
searched on the current directory and loaded into memory.
If no symbols file is available, then the target starts running the application code, with no
symbols loaded.

Target User's guide

C-344 CJ International

If no application code is available, then the target is waiting for an application to be
downloaded.

In order to start the target with a specific application at power up, without using the debugger
link, these files can be directly copied to the target current directory disk from the same disk if
the workbench is on the same PC, or using a floppy disk.

If the ISaGRAF workbench is installed on the standard \ISAWIN directory:
the application code file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.x8m
the application symbols file of the project MYPROJ is:

\ISAWIN\APL\MYPROJ\appli.tst

Example:
From the directory where WISAKER.EXE is installed, if the following command is entered:

copy \ISAWIN\APL\MYPROJ\appli.x8m isa11
Then WISAKER.EXE will find and execute ‘myproj’ application.

All these commands can be grouped for instance into a batch file and then started from the
workbench tool menu (see user’s guide: Managing programs)

DDE specification
The ISaGRAF NT target is a DDE server (Dynamic Data Exchange). Any software that can be
a client, can be connected with the target to exchange variables. For example, MSEXCEL can
animate graphics with values coming from ISaGRAF target via DDE.
The DDE feature requires on the target the application symbols table.
DDE subjects are defined as follows:

Note : ‘s’ is the slave number

TOPICS

SYSTEM

<VARIABLE NAME>

<VARIABLE NAME>

TOPICITEMLISTItems :

Topics :

Server name :

<APPLICATION NAME>

ISASRVs

« ISASRVs » is the name of the DDE server, ‘s’ is the slave number.
« SYSTEM » is a standard topic which gives access to the « TOPICS » item,
« TOPICS » gives the list of the topics currently defined: system and the name of the
application which is running into the ISaGRAF NT target.
« APPLICATION NAME » is the name of the application.
« TOPICITEMLIST » is the list of items available under the current topic, this gives the list of
the variables which can be accessed via DDE.
« VARIABLE NAME » is the name of a variable.

DDE advise loop rate for ISaGRAF NT target: -d Option
The DDE client generally polls the variables each time it needs them. This can take a large
amount of time if there are a lot of variables. There is another mode which is called advise

Target User's guide

CJ International C-345

mode (advise loop), in which the server itself will only send modified variables. So that
communications are minimized and efficient. In this mode the server periodically looks at the
variables marked as advised variables to know which should be sent. This period is called the
DDE advise loop rate.

With this option, it is possible to specify the rate (in ms) for the DDE advise loop.

Default value: The default value is 1000 ms or the one in the ISaGRAF.INI file

Example:
WISAKER -d=100

User interface: This window is displayed from the "Options/DDE" command of the main
window of ISaGRAF NT target.

Error management and output messages
The ISaGRAF target software integrates an error detection management. You will find the
warning error list and their description in appendix.

Error detection is processed as follows:
− An error is composed of an error and argument number sent to the ISaGRAF error routine
− If the error detection flag is set in the workbench Make options, the error is processed. If

not, the information is lost and the error management ends.

When processed:
− Error number (decimal value) and argument (hexadecimal value) are displayed on the

output (window of the WISAKER.EXE)
− Error number and argument are pushed into a ring FIFO error buffer in order to be

retrieved at a later time. The error buffer size is set in the workbench Make options. When
the buffer is full, at each new incoming error, the oldest one is lost.

− Errors can be pulled either from the debugger or from the running application using the
SYSTEM call (see user’s guide).

When the debugger detects an error, a message describing the error is displayed in the error
window. Depending on the context of the application (running or not) the debugger may
display the name of the object (variable or program) where the error comes from, or the
argument error (decimal value) into brackets [x] which has a different meaning for each error.

Target User's guide

C-346 CJ International

A welcome message is displayed on the output when the target starts. It is composed of the
slave number, the communication configuration and the DDE server name.

System clock
As the ISaGRAF NT target is designed to run on any system, the time reference used for both
cycle synchronization and timer variables refresh is the standard tick which is 10 milliseconds.

Thus, it is not possible to have an accuracy on timer variables better than 10ms. For the
same reason, a specified cycle duration less or equal to 10 ms and different from zero will
generate an cycle duration overflow error (error 62). See the following chapter for more
information.

Ask your supplier for a special implementation, if your application requires more accuracy.

Cycle duration and target behavior
At the end of an ISaGRAF cycle, just before starting a new one, the following algorithm is
performed:

If a cycle timing is specified (from the workbench: see user’s guide: Managing
programs) then the CPU is relinquished for the remained time period (specified cycle
time - current application one). If this remained time period is negative an overflow is
generated and the CPU is relinquished for 1 tick to force the scheduling

If no cycle timing is specified, or if the remained time is less or equal than 1 tick or
equal to zero, then the CPU is relinquished for 1 tick to force the scheduling

The target timing accuracy correspond to the Windows NT system tick one.

A specified cycle timing is commonly used to trig cycles or to yield the CPU to other
processes running on the Windows NT system.

Exit key
While testing an application in non-industrial conditions on a desktop PC, the user may wish
to stop ISaGRAF: this is done by pressing a combination of keys to prevent unexpected
stops. This key sequence is:

alt + F4

One dangerous side effect of this fast exit, is that the IO board interface is not closed. Thus
the clean way for stopping your ISaGRAF target is:
- stop the application from the debugger or from the Stop/Start push button (this will close the
IO boards)
- stop ISaGRAF target from the system menu.

C.6.4 User interface

This is the user interface of the ISaGRAF NT target:

Target User's guide

CJ International C-347

Status Icon
W indow’s title Menus

Errors and messages output

Status bar

Stop/Start push button

There are the main items:
a window title
a menu bar
a running status icon
a Start/Stop push button
an errors and messages output
and a status bar.

The window title contains « ISaGRAF - name_of_appli - target », where name_of_appli is the
name of the running application. It contains only « ISaGRAF - - Target » when there is no
running application.

ISaGRAF NT target menu bar:
The menu bar has four menus:

Options
Messages
View
Help

• "Options" menu
(see also first section on NT:General information on options)
The "Options" menu gives access to the running options. It proposes the following options:

Slave gives access to the slave number modification. The modified option will be
activated only after next start of the target. This feature isn’t available if the target has
been started with at least one option in the command line.

Target User's guide

C-348 CJ International

Communication gives access to the communication configuration. The modified
option will be activated only after next start of the target. This feature isn’t available if
the target has been started with at least one option different from -s option.

DDE gives access to the DDE advise loop rate modification. The modified option will
be activated only after next start of the target. This option isn’t available if the target
has been started with at least one option different from -s option.

Simulate I/O is checked or unchecked reflecting the state of the option. The modified
option will be activated only after next Stop/Start of the application.

Priority gives access to the priority modification. The modified option is activated
immediately.

Default Options retrieves the default running options for the following only:
- Communication
- DDE
- coordinates of the window on the screen
The modified options will be activated only after next start of the target. This feature
isn’t available if the target has been started with at least one option different from -s
option.

• "Messages" menu
The "Messages" menu is the management of the output. It contains the two following
commands:

Acknowledge stops the red blink in case of errors or messages.

Clear totally erases the output.

ISaGRAF NT target icon:
The icon reflects the states of the target:

− application is running, then the icon turns
− no application (or application stopped), then the icon is stopped
− errors or messages are present in the output window. The center of the icon

blinks red. To stop the blink, it possible to choose the « Acknowledge » item of
the « Messages » menu or the « Clear » item of the same menu (beware that this
item will completely erase the output window). You will find more information on
errors, in the error management and output massages chapter.

Target User's guide

CJ International C-349

The different states are sum up in the following table:

no error errors or messages
(the center is red)

running
application

no application

ISaGRAF NT target Start/Stop push button:
The Start/Stop push button is strictly identical to the start/stop function of the debugger. The
text in the push button will reflect the running state of the application. If the application is
running, the text will be « Stop », if the application is stopped (or if there is no application), the
text will be « Start » (please note that if there is no application, and the start action is
requested, the push button will toggle into the Stop mode and then it will come back to the
Start mode).

ISaGRAF NT target, general information
With the "View / Information" command, the following dialog box gives general information on
the target configuration and on the running application:

Target User's guide

C-350 CJ International

There are three topics:
a) General setup:

 The slave number
 the communication configuration (If the communication link is the Ethernet

one, in addition to the port number, the list of available IP address on the
current NT system is displayed)

b) DDE setup
 the advise loop rate
 the DDE server name
 the DDE topics and items name. This is a general information, this doesn’t

reflect the real values. In fact the fields between < > should be replaced by
the real values.

c) Application
 The application status which is its name when there is a running application,

and is the string ‘No application’ when there is no running application
 The running mode of application, which indicates if the application is

running through the software processor. It contains in this case the string:
« Software processed ». Or if the application had been compiled with a C
compiler. It contains in this case the string: « C compiled ». If there is no
running application, it contains the string: « No application ».

 The code size in bytes. If the running mode is « C compiled », this field is
zero.

 The data size in bytes. This is the sum of the runtime internal data and the
variables database.

ISaGRAF NT target simulation of virtual boards:
When the option « Simulate I/O » is selected, at the next application start the following
window will appear:

Target User's guide

CJ International C-351

Depending on your I/O connection configuration, there will be more or less boards (and
different) and more or less variables (and different). The numbers « s:b »at the top of each
board represent the slot identifier (s) and the board identifier (b). The count starts at zero, and
it isn’t possible to modify it.
The ‘32bits Boards Simulator’ window works with the Start/Stop application state. So if there
is a running application which has virtual boards (or uses simulator boards) and the
« Simulate I/O » flag is checked, this window will appear. On the contrary as soon as the Stop
push button is depressed, it will be closed. This window works along with the I/O calls.

The "Options" menu proposes two items:

Variable names will show the names of the variables if and only if the symbols table
has been downloaded prior to the tic code.

Hexadecimal values will show each integer in hexadecimal format instead of default
decimal format

The variable names will look as follows:

Target User's guide

C-352 CJ International

C.7 "C" programming

C.7.1 Overview

This manual is aimed at the user already having experience in ISaGRAF concepts and
Workbench tools. After developing pure automation applications using conversion
functions, "C" functions and function blocks from the CJ International standard libraries, it
is possible to develop "user defined" conversion functions, "C" functions and function blocks.
This allows the user to enhance the ISaGRAF target PLC by creating new libraries, and to get
the maximum out of the workstation flexibility and hardware platform.

With a "C" development system, and with some previous experience in "C" programming, this
manual will enable the user to customize his ISaGRAF target PLC for the best possible
control. Such developments improve the target PLC performance as well as the comfort and
quality of development with the ISaGRAF Workbench for the automation programmer.

Information contained in this document is not dedicated to one special target system. Some
features, however, (such as multitasking capabilities) cannot be applied to some monotasking
systems.

Standard ISaGRAF workbench features
The ISaGRAF Workbench offers many functions to manage the "C" component libraries on
the automation development side. For the automation programming, a "C" conversion,
function or function block is a "black box", completely defined by its interface.

The ISaGRAF Library Manager is used to add components to the existing libraries and define
the interface between the "C" implementation and the use of these components in the
ST/FBD programming. The ISaGRAF Library Manager also provides an automatic generation
of the frame of the "C" source code for conversions, functions and function blocks, and
includes tools for editing such "C" source files. Refer to the ISaGRAF User's Guide for further
information about the functions of the Library Manager.

"C" language development
The ISaGRAF Workbench does not include any "C" compiler or cross compiler tool. The user
must own a "C" compiler, dedicated to the ISaGRAF target system, to integrate his "C"
components to the ISaGRAF kernel.

When using a cross compiler, the ISaGRAF Workbench offers the user entry points for
running a user defined MS-DOS command file (.bat), in a DOS window. The cross compiler
used must run in a DOS emulation window. If not, Windows must be closed before running
the compilers and linkers in a pure MS-DOS context.

Technical notes
The ISaGRAF Library Manager allows the user to write a text description for each of the
library components. This technical note is the user's guide of the "C" component developed,

Target User's guide

CJ International C-353

and is for the benefit of the automation programmer, to describe the corresponding
conversions, functions or function blocks in ISaGRAF applications.

The conversion, "C" function or function block must be precisely defined in the technical note,
so that the automation programmer can really use it as a packaged ISaGRAF function. For a
"C" function, the technical note must describe:

 the detailed function processed by the function
 the complete description of its calling parameters
 the meaning of its return value
 the detailed typing of its calling parameters and return value
 the application context

For a "C" function block, the technical note must describe:

 the detailed function processed by the block activation function
 the complete description of its calling parameters
 the meaning of its return parameters
 the detailed typing of its calling and return parameters
 the application context

For a conversion function, the technical note must describe:

 the exact meaning of the conversion when used with an input variable
 the exact meaning of the conversion when used with an output variable
 the limits of the values the conversion can process

Technical notes may also contain information about:

 the complete identification of the conversion, function or function block
 any information about its maintenance and updates
 the supported target system
 the special multitasking features
 the required system services, memory, drivers...

C.7.2 "C" Conversion functions

The ISaGRAF Workbench includes a linear conversion utility to carry out simple analog I/O
conversion at run time on the ISaGRAF target PLC. This utility does not require any "C"
development, as it is limited to strictly increasing or decreasing continuous functions. Refer to
the ISaGRAF User's Guide for a complete description of these tools.

Conversion functions enable the user to apply any complex conversion, with specific
operations described in the "C" language. Basically, a conversion function is defined for both
inputs and outputs. Even if one direction is not used, implementation and tests have to be
made before integrating the conversion to the ISaGRAF kernel, to prevent any system crash
due to a wrong call.

Conversion functions are written in "C" language, compiled and linked with the ISaGRAF
kernel. The increased kernel must be installed on the ISaGRAF target PLC before using new
conversion functions in ISaGRAF projects. New conversion functions cannot be integrated in

Target User's guide

C-354 CJ International

the ISaGRAF Simulator. The ISaGRAF applications have to be simulated before inserting the
non standard conversion functions.

The "C" source code of the standard conversions written by CJ International are installed with
the ISaGRAF Workbench. They can be used as examples for creating new functions. It is
recommended not to modify the standard functions so they can be used in any ISaGRAF
application. The standard conversions delivered with the ISaGRAF Workbench are supported
by the ISaGRAF simulator.

Warning: Conversion functions are synchronous operations, activated at run time by the
ISaGRAF I/O manager, during the input or output phases of the application cycle. Time spent
for the execution of a conversion function is included in the ISaGRAF application cycle
timing. The user has to ensure than no "wait operation" is programmed in a conversion
function, so that the ISaGRAF cycle processing is not unnecessarily extended.

Adding a function to the ISaGRAF library
The ISaGRAF Library Manager must be used to add a new conversion function to the
ISaGRAF library, on the Workbench side. The "New" command of the "Files" menu is used,
when the conversion function library is selected. No parameter has to be defined on the
Workbench, because conversion functions use a standard predefined interface.

When a new conversion function has been created, its technical note must be written. The
frame of the "C" source code for the new conversion function is automatically generated by
the ISaGRAF Library Manager.

Using a conversion in an ISaGRAF project
Defined conversion functions can be used to filter values of any input or output analog
variable of the selected project. To attach a conversion function to a variable, the variables
declaration editor is run, an input or output analog variable selected and then its parameters
edited. The "conversion" field of the analog declaration dialog box is used to setup the
conversion function attached to an analog I/O variable:

Both conversion functions and tables appear in the list. This implies that the same name
cannot be used for a function and a table. A variable cannot be attached to a conversion
function that has yet to be defined or integrated into the ISaGRAF kernel.

Standard "C" interface
The interface of a conversion function always has the same format. Calling and return
parameters are passed through a structure. This structure is defined in the "TACN0DEF.h"
file:

/*
 Name: tacn0def.h

Target User's guide

CJ International C-355

 Target conversions definition file
*/

#define DIR_INPUT 0 /* direction = input conversion */
#define DIR_OUTPUT 1 /* direction = output conversion */

typedef int32 T_ANA; /* integer ANA type */
typedef float T_REAL; /* real ANA type */

typedef struct { /* conversion structure */
 uint16 number; /* conversion number (reserved) */
 uint16 direction; /* conversion direction */
 T_REAL *before; /* value before conversion */
 T_REAL *after; /* value after conversion */
 } str_cnv;

#define ARG_BEFORE (*(arg->before))
#define ARG_AFTER (*(arg->after))
#define DIRECTION (arg->direction)

/* eof */

The "str_cnv" structure completely describes the interface. The only parameter of a "C"
conversion function is a pointer to such a structure. The "number" field is the logical number
of the conversion function (location in the ISaGRAF library) and does not have to be used in
the programming.

The "direction" field indicates whether the conversion must be applied on an input variable or
an output variable. It contains the DIR_INPUT value for an input conversion, or the
DIR_OUTPUT value for an output conversion.

The "before" field points to the value before the conversion. This field has a different meaning
for an input or an output conversion. It represents the electrical value (read on the input
device) for an input conversion, when the direction field takes the DIR_INPUT value. It
represents the physical value (used in the programmed equations) for an output conversion,
when the direction field takes the DIR_OUTPUT value.

The "after" field points to the value after the conversion. This field has a different meaning for
an input or an output conversion. It represents the physical value (used in the programmed
equations) for an input conversion, when the direction field takes the DIR_INPUT value. It
represents the electrical value (sent to the output device) for an output conversion, when the
direction field takes the DIR_OUTPUT value.

The programmer can use the "ARG_BEFORE" and "ARG_AFTER" definitions to directly
access the before and after field of the structure passed to the "C" conversion function.

Target User's guide

C-356 CJ International

Processed values are single precision floating values. The result is converted to a long
integer when the conversion is applied to an integer analog variable. This means that the
same conversion can be used for both real or integer analog I/O variables.

Source code
Because the conversion function can be used for both input and output analog variables, the
"C" source code of the function is divided into two main parts: the input conversion, and the
output conversion. The direction field of the interface structure is used to select the
conversion to be applied. The ISaGRAF Library Manager automatically generates the
complete frame of the function, when the conversion function has been created. This includes
the main selecting "IF" structure. Below is the standard frame of a conversion function:

/*
 conversion function
 name: sample
*/

#include <tasy0def.h>
#include <tacn0def.h>

void CNV_sample (str_cnv *arg)
{

if (DIRECTION == DIR_INPUT) { /*INPUT CONV*/

}
else { /*OUTPUT CONV*/

}
}

/* The following function shows the link with the ISaGRAF I/O manager, using the
name of the conversion. This function is completely generated by the ISaGRAF
Library Manager. */

UFP cnvdef_sample (char *name)
{

sys_strcpy (name, "SAMPLE"); /* gives the name of the conversion */
return (CNV_sample); /* returns the implementation function */

}

The best way to complete the specific part of the function is to write two separate local
functions for input conversion and output conversion. These functions will be called by the
main algorithm, as shown in comments in the previous example, in the main IF structure.

Target User's guide

CJ International C-357

The "TASY0DEF.H" include file from the ISaGRAF kernel is required for system dependent
definitions. It also contains the definition of the UFP type, which represents a pointer to a void
function, and is used for the declaration function.

Links between projects and "C" implementation
The logical link between the implementation of a conversion function and the use of the
conversion in an ISaGRAF project is made with the name of the conversion. A "declaration"
function is added to the "C" source code of the conversion function. This function is called
only one time when the application starts, and indicates to the ISaGRAF I/O manager the
conversion name which corresponds to the function to be implemented. This is the standard
format of such a declaration function:

UFP cnvdef_xxx (char *name)
{

strcpy (name, "XXX"); /* gives the name of the conversion */
return (CNV_xxx); /* returns the implementation function */

}
/* (xxx is the name of the conversion) */

The name of the function, used for the strcpy statement must be written in uppercase. It
must be written in lowercase in the name of the conversion implementation function and in the
name of declaration function.

Using the "CNV_" and "cnvdef_" prefixes for implementation function and definition function
enables the user to name a conversion with a reserved keyword of the "C" language, or the
name of an existing function of the "C" ISaGRAF libraries.

Other statements can be added to the declaration function to realize any specific initialization
operation relative to this conversion. The ISaGRAF system ensures the user that this function
is called only one time when the application starts.

The declaration function is called for any integrated conversion function, even if it is not used
in the ISaGRAF application. The ISaGRAF kernel fails in a fatal error if a conversion used in
the application is not integrated to the kernel.

Before linking new functions with the kernel, the user must write another "C" source file,
named "GRCN0LIB.C", and insert it (with the retained conversion functions) in the list of files
for the linker. The "GRCN0LIB.C" only contains an array of declaration functions. This array is
read during application initializations, to make a dynamic link with the conversion functions
written in "C". This is an example of such a file:

/* File "GRCN0LIB.c" - Example with conversions of standard library */

#include <tasy0def.h> /* required for types definition */

extern UFP cnvdef_scale (char *name); /* decl. function for SCALE conv */
extern UFP cnvdef_bcd (char *name); /* decl. function for BCD conv */

Target User's guide

C-358 CJ International

UFP_LIST CNVDEF[] = { /* array of declaration functions for */
/* integrated conversion functions */
cnvdef_scale,
cnvdef_bcd,

NULL };

/* end of file */

The CNVDEF array must be terminated by a NULL pointer. Some clashes may occur when
this condition is not met. Unresolved references will occur when linking the new ISaGRAF
kernel if the CNVDEF array is not defined.

By writing this file, a new kernel can be built, including all the existing conversions. A kernel
can also be built customized for one project, by inserting in the CNVDEF array only the
conversions used in the project. The "GRCN0LIB.C" file is automatically generated by the
ISaGRAF Code Generator, when the code of an application is built. The file is placed in the
ISaGRAF project directory, and groups only the conversions used in the project.

Limits
The ISaGRAF library may contain up to 128 conversion functions. Any type of operation may
be processed in a conversion function. It should be noted that the functions are called in the
ISaGRAF cycle in a synchronous way, so that the execution of the function has direct effect
on the cycle timing.

C.7.3 "C" Functions

"C" functions are used to increase standard capabilities of ST and FBD languages. They can
be used to realize any specific calculations, system calls, communications, or to install a set
of services for dialog between an ISaGRAF application and other tasks. Functions are written
in "C" language, compiled and linked with the ISaGRAF kernel. The increased kernel must be
installed on the ISaGRAF target PLC before using new functions in ISaGRAF projects.

New functions cannot be integrated in the ISaGRAF Simulator. The ISaGRAF applications
have to be simulated before using the non standard functions.

Warning: Functions are synchronous operations, activated at run time by the ISaGRAF
kernel, during the application cycle. Time spent for the execution of a function is included in
the ISaGRAF application cycle timing. The user has to ensure that no "wait operation" is
programmed in a function, so that the ISaGRAF cycle processing is not unnecessarily
extended.

Adding a function to the ISaGRAF library
The ISaGRAF Library Manager must be used to add a new "C" function to the ISaGRAF
library, on the Workbench side. The "New" command of the "Files" menu is used, when the

Target User's guide

CJ International C-359

"C" functions library is selected. When a new function has been created, its technical note
must be written. The frame of the "C" source code for the new function is automatically
generated by the ISaGRAF Library Manager.

The "Parameters" command of the "Edit" menu is used to define the call and return
parameters of the new function.

Using a "C" function in an ISaGRAF project
Any integrated "C" function can be used as a standard function in the programs of an
ISaGRAF project. "C" functions can be called from ST and FBD languages, and from special
statements of the SFC language.

Calling a "C" function from the ST language follows the function call conventions of the
language. The call parameters of the function are written after the name of the function,
between parentheses, and separated by commas. The expression represents the value
returned by the function. A "C" function call may be inserted into any assignment statement or
complex expression. This is an example of a "C" function call in an assignment statement:

result := ProcName (par1, par2, ... parN);

An FBD program can call any "C" function. A function is used as a standard function box. Its
call parameters are connected to the left hand side of the function box. The return parameter
is connected to the right hand side of the box. Here is the standard aspect of such a function
box:

Calling
parameters

XXX

Name of the function

return
parameter

A "C" function can be called from any SFC action block, or in any boolean condition attached
to a transition.

Defining the interface of a "C" function
The "Parameters" command of the "Edit" menu is used to define the call and return
parameters of a new function. A function can have up to 31 call parameters, and always has
one return parameter.

The list in the upper side of the window shows the parameters of the "C" function, according
to the order of the function calling prototype: first the calling parameters, lastly the return
parameter. The lower part of the window shows the detailed description of the parameter
currently selected in the list:
- the name of the parameter
- the direction (call/return) of the parameter
- the type of the parameter

Any of the ISaGRAF data types may be used for a parameter: Boolean, Integer analog, Real
analog, Timer or Message. Integer and real analogs must be distinguished.
Below is the correspondence between ISaGRAF types and "C" types:

Target User's guide

C-360 CJ International

BOOLEAN unsigned long unsigned 32 bit word: 1=true / 0=false
ANALOG long signed integer 32 bit word
REAL float single precision floating value
TIMER unsigned long unsigned integer 32 bit word (unit is 1 millisecond)
MESSAGE char * character string.

When a message value is passed onto a "C" function, it cannot contain null characters. The
string passed to the "C" code is null-terminated. Do not forget that the return parameter must
be the last one in the list. The rules shown below must be followed while naming parameters:
- the length of the name cannot exceed 16 characters
- the first character must be a letter
- the following characters must be letters, digits or underscore character
- naming is case insensitive

The same name cannot be used for more than one parameter of the function. A call
parameter cannot have the same name as the return parameter. The same name can be
used for parameters of different functions. The default name for return parameter is "Q". This
name can be freely modified. The name of a parameter is used to identify the parameter in
the "C" source code.

The "Insert" command is used to insert a new parameter before the selected parameter. The
"Delete" command is used to erase the selected parameter. The "Arrange" command
automatically rearranges (sorts) the parameters, so that the return parameter is put at the end
of the list. Pressing the "OK" button stores the definition of the function interface and closes
the dialog box. Pressing the "Cancel" button closes the dialog box, without changing the
definition of the function interface.

Function "C" interface
The interface of a function depends on the definition of its parameters. Calling and return
parameters are passed through a structure. This structure is defined in the "GRUS0nnn.H"
file, where "nnn" is the logical number of the function in the ISaGRAF library. This is an
example of the "C" interface, for the "SIN" function (sines calculation):

/* File: GRUS0255.h - function "sample" */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

typedef struct {
/* CALL */ T_REAL _param1;
/* RETURN */ T_REAL _param2;

} str_arg;

Target User's guide

CJ International C-361

#define PARAM1 (arg->_param1)
#define PARAM2 (arg->_param2)

/* end of file */

The relationship between ISaGRAF types and "C" types is shown below. The ISaGRAF types
are defined as "C" types in the definition file of the function.

boolean T_BOO long (32 bits)
Integer analog T_ANA long
Real analog T_REAL float (32 bits - single precision)
timer T_TMR long
message T_MSG char * (32 bits - char pointer)

Each field of the "str_arg" structure corresponds to one parameter of the function. The return
parameter is the last in the structure. The calling parameters appear in the structure with the
same order than the one established for the function definition. An uppercase identifier is
defined to directly have access to one parameter of the structure passed to the "C"
implementation of the function. Names of the identifiers are the ones entered during the
definition of the function with the ISaGRAF Library Manager.

The "C" definition file is updated each time the interface of the function is changed by using
the ISaGRAF Library Manager. This ensures a complete match between the implementation
of the function and its use in the programs of the ISaGRAF applications.

Source code
Below is the standard frame of a "C" function implementation:

/* Example of user function - Number is "255" - Name is "SAMPLE" */

#include "tasy0def.h" /* ISaGRAF kernel common definitions */
#include "grus0255.h" /* interface definition for function 255 */

void USP_sample (str_arg *arg)
{

/* body of the function */
}

/* The following function is used for the initialization of the function and the
declaration of its implementation. It realizes the link with the ISaGRAF kernel,
using the name of the function. This function is completely generated by the
ISaGRAF Library Manager. */

UFP uspdef_sample (char *name)
{

Target User's guide

C-362 CJ International

strcpy (name, "SAMPLE"); /* gives the name of the function */
return (USP_sample); /* returns the implementation function */

}

/* end of file */

The "TASY0DEF.H" include file from the ISaGRAF kernel is required for system dependent
definitions. It also contains the definition of the UFP type, which represents a pointer to a void
function, and is used for the declaration function.

Links between projects and "C" implementation
The logical link between the implementation of a "C" function and its use in the programs of
an ISaGRAF project is made with the name of the function. A "declaration" function is added
to the "C" source code of the function. This function is called only once when the application
starts, and indicates to the ISaGRAF kernel the "C" function name which corresponds to the
implemented function. This is the standard format of such a declaration function:

UFP uspdef_xxx (char *name)
{

strcpy (name, "XXX"); /* gives the name of the function */
return (USP_xxx); /* returns the implementation function */

}
/* (xxx is the name of the function) */

The name of the "C" function, used for strcpy statement must be written in uppercase. It
must be written in lowercase in the name of the implementation function and in the name of
the declaration function. Using the "USP_" and "uspdef_" prefixes for implementation function
and definition function enables the user to name a function with a reserved keyword of the "C"
language, or the name of an existing function of the "C" ISaGRAF libraries.

Other statements can be added to the declaration function to create any specific initialization
operation relative to this function. The ISaGRAF system ensures the user that this function is
called only once when the application starts. The declaration function is called for any
integrated "C" function, even if it is not used in the programs of the ISaGRAF application. The
ISaGRAF kernel fails in a fatal error if a "C" function used in the application is not integrated
to the kernel.

Before linking new functions with the kernel, the user must write another "C" source file,
named "GRUS0LIB.C", and insert it (with the retained functions) in the list of files for the link.
The "GRUS0LIB.C" only contains an array of declaration functions. This array is read during
application initialization, to establish a dynamic link with the functions written in "C". This is an
example of such a file:

/* File "GRUS0LIB.c" - Example using trigonometric functions */

#include <tasy0def.h> /* required for types definition */

Target User's guide

CJ International C-363

extern UFP uspdef_fc1 (char *name); /* declaration functions */
extern UFP uspdef_fc2 (char *name);
extern UFP uspdef_fc3 (char *name);
extern UFP uspdef_fc4 (char *name);

UFP_LIST USPDEF[] = { /* array of declaration functions */
/* for integrated functions */
uspdef_fc1,
uspdef_fc2,
uspdef_fc3,
uspdef_fc4,

NULL };

/* end of file */

The USPDEF array must be terminated by a NULL pointer. Some clashes may occur when
this condition is not met. Unresolved references will occur when linking the new ISaGRAF
kernel if the USPDEF array is not defined. By writing this file, a new kernel can be built,
including all the existing functions. A kernel dedicated to one project can also be built, by
inserting in the USPDEF array only the functions used in the project. The "GRUS0LIB.C" file
is automatically generated by the ISaGRAF Code Generator when the code of an application
is built. The file is placed in the ISaGRAF project directory, and groups only the functions
used in the project.

Limits
The ISaGRAF library may contain up to 255 "C" functions. Any type of operation may be
processed in a function. It should be remembered that the functions are called in the
ISaGRAF cycle synchronously, so that the execution of the function has a direct effect on
the cycle timing.

Complete example
Below is the complete programming of a "sample" function, which just performs an addition.
Below is the technical note of the function:

name: SAMPLE
description: just performs an integer analog addition

creation date: 1st July 1992
author: CJ International

call: par1, par2: integer operands
return: integer sum

prototype: sum := sample (par1, par2);

Target User's guide

C-364 CJ International

Below is the interface of the function:

Below is the "C" source header of the function:

/* File: GRUS0255.h - user C function definitions - Name: sample */

/* definition of standard ISaGRAF data types */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

/* definition of the calling and return parameter structure */

typedef struct {
T_ANA _par1; /* calling parameter #1 */
T_ANA _par2; /* calling parameter #2 */
T_ANA _sum; /* return parameter */

} str_arg;

/* identifiers used to access call and return parameters */

#define PAR1 (arg->_par1)
#define PAR2 (arg->_par2)
#define SUM (arg->_sum)

/* end of file */

Below is the "C" source code of the function. Only the lines printed with bold characters were
manually entered by the C programmer.

/* File: GRUS0255.c - user C function - Name: SAMPLE */

#include "tasy0def.h" /* required for types definition */
#include "grus0255.h" /* C function source header */

Target User's guide

CJ International C-365

/* C main service: calculates the addition */

void USP_sample (str_arg *arg)
{

SUM = PAR1 + PAR2;
}

/* declaration service required for dynamic link with ISaGRAF kernel */

UFP uspdef_sample (char *name)
{

strcpy (name, "SAMPLE");
return (USP_sample);

}
/* end of file */

C.7.4 "C" FUNCTION BLOCKS

"C" function blocks associate operations and static data. They complete the set of "C"
functions, by allowing the processing of static objects. They are commonly used to increase
standard capabilities of ST and FBD languages. Unlike functions, which process values,
function blocks can process static data. This means that a function block algorithm can
manage the variations of data over time.

Function blocks are written in "C" language, compiled and linked with the ISaGRAF kernel.
The increased kernel must be installed on the ISaGRAF target PLC before using new function
blocks in ISaGRAF projects. New function blocks cannot be integrated in the ISaGRAF
Simulator. The ISaGRAF applications have to be simulated before using the non standard
functions.

Warning: Function block calls are synchronous operations, activated at run time by the
ISaGRAF kernel, during the application cycle. Time spent for the execution of a function block
activation or read service is included in the ISaGRAF application cycle timing. The user has
to ensure that no "wait operation" is programmed in a function block, so that the ISaGRAF
cycle processing time does not exceed the max time allowed.

Declaring function block instances
A function block is an object which combines operations and static data. Below is the example
of the "R_TRIG" function block which detects the rising edge of a boolean expression. Here is
the functional description of the block:

Target User's guide

C-366 CJ International

Algorithm:
rising_edge = boolean_value and
not(previous_state);
previous_state = boolean_value;

Hidden data:
previous_state

boolean_value rising_edge
Input parameters: Output parameters:

R_TRIG

The hidden static variable "previous_state" is needed for the calculation of the edge. This
variable must be different for each use of the function block " TRIG" in the application. The
instances of the function blocks used in the ST language must be declared in the dictionary.
Because a function block has internal hidden data, each copy (instance) of a function block
must be identified by a unique name. Naming the type of block is made by using the library
manager. Naming the instances is made by using the dictionary editor.

Function blocks used in FBD language do not have to be declared, because the ISaGRAF
FBD editor automatically declares the instances of the used blocks. Function block instances
automatically declared by the FBD editor are always LOCAL to the edited program.

Adding a function block to the ISaGRAF library
The ISaGRAF Library Manager must be used to add a new "C" function block to the ISaGRAF
library in the Workbench. The "New" command of the "Files" menu is used, when the "C"
function blocks library is selected. When a new function block has been created, its technical
note must be written. The frame of the "C" source code for the new function block is
automatically generated by the ISaGRAF Library Manager. The "Parameters" command of
the "Edit" menu is used to define the calling and return parameters of the new function block.

Using a "C" function block in an ISaGRAF project
Any integrated "C" function block can be used in the programs of an ISaGRAF project. "C"
function blocks can be called from ST and FBD languages.

Calling a "C" function block from the ST language follows the function block calling
conventions of the language. The calling parameters of the block are written after the name of
the function, between parentheses, and separated by commas. The return parameters are
accessed one by one. Each return parameter is represented by a name, combining the name
of the block instance, and the name of the parameters. The components of the name are
separated by a dot. For example, the name:

FBINSTNAME.parname

is used to represent the return parameter named "parname", of the function block instance
named "FBINSTNAME".

Target User's guide

CJ International C-367

The instances of the function blocks used in the ST language must be declared in the
dictionary. Each copy (instance) of a function block must be identified by a unique name.
Below is an example of instance declaration in the ISaGRAF dictionary:

instance: TRIG1 type: R_TRIG
TRIG2 R_TRIG

And below is an example using these declared instances in an ST program:

TRIG1 (boo_input1);
TRIG2 (boo_input2);
Command := (TRIG1.Q & TRIG2.Q);

An FBD program can call any "C" function block. A function block is used as a standard
function box. Its calling parameters are connected to the left hand side of the function box. Its
return parameters are connected to the right hand side of the box. A standard format for a
function box appears as follows:

{ }Calling
parameters

Return
parameters

XXX

Name of the function block

Function blocks used in FBD language do not have to be declared, because the ISaGRAF
FBD editor automatically declares the instances of the used blocks. Function block instances
automatically declared by the FBD editor are always LOCAL to the edited program. Below is
the previous example, programmed in FBD language:

boo_input1

boo_input2

r_trig

CLK Q

r_trig

CLK Q

&

Command

Defining the interface of a "C" function block
The "Parameters" command of the "Edit" menu is used to define the calling and return
parameters of a new function block. A function block can have up to 32 parameters, freely
arranged as calling or return parameters. Unlike a "C" function, a function block may have
several return parameters.

The list in the upper side of the window shows the parameters of the "C" function block, based
on the order of the function calling prototype: first the calling parameters, then return
parameters. The lower part of the window shows the detailed description of the parameter
currently selected in the list:
- the name of the parameter
- the direction (call/return) of the parameter
- the type of the parameter

Target User's guide

C-368 CJ International

Any of the ISaGRAF data types may be used for a parameter: Boolean, Integer analog, Real
analog, Timer or Message. Integer and real analogs must be distinguished. Below is the
relationship between ISaGRAF types and "C" types:

BOOLEAN unsigned long unsigned 32 bit word: 1=true / 0=false
ANALOG long signed integer 32 bit word
REAL float single precision floating value
TIMER unsigned long unsigned integer 32 bit word (unit is 1 millisecond)
MESSAGE char * character string.

When a message value is passed onto a "C" function, it cannot contain null characters. The
string passed to the "C" code is null-terminated. Do not forget that return parameters must be
the last ones in the list. The rules shown below must be followed while naming parameters:
- the length of the name cannot exceed 16 characters
- the first character must be a letter
- the following characters must be letters, digits or '_' character
- naming is case insensitive

The same name cannot be used for more than one parameter of the function block. A calling
parameter cannot have the same name as a return parameter. The same name can be used
for parameters of different function blocks. The name of a parameter is used to identify the
parameter in the "C" source code.

The "Insert" command is used to insert a new parameter before the selected parameter. The
"Delete" command is used to erase the selected parameter. The "Arrange" command
automatically rearranges (sorts) the parameters, so that the return parameters are put at the
end of the list. Pressing the "OK" button stores the definition of the function block interface
and closes the dialog box. Pressing the "Cancel" button closes the dialog box, without
changing the definition of the function block.

Function block "C" interface
The interface of a function block depends on the definition of its parameters. Calling
parameters are passed through a structure. This structure is defined in the "GRFB0nnn.H"
file, where "nnn" is the logical number of the function block in the ISaGRAF library. Return
parameters are represented by logical numbers, which are also defined in the "GRFB0nnn.h"
file. This is an example of the "C" interface, for the "LIM_ALRM" function block (alarm on
limits):

/* function block interface - name: sample */

/* standard ISaGRAF data types */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

Target User's guide

CJ International C-369

/* structure of calling parameters */

typedef struct {
/* CALL */ T_BOO _par1;
/* CALL */ T_BOO _par2;

} str_arg;

/* access to fields of str_arg structure */

#define PAR1 (arg->_par1)
#define PAR2 (arg->_par2)

/* return parameter logical numbers */

#define FBLPNO_Q1 0
#define FBLPNO_Q2 1

/* end of file */

The relationship between ISaGRAF types and "C" types is shown below. The ISaGRAF types
are defined as "C" types in the definition file of the function.

boolean T_BOO long (32 bits)
analog T_ANA long
real T_REAL float (32 bits - single precision)
timer T_TMR long
message T_MSG char * (32 bits - char pointer)

Each field of the "str_arg" structure corresponds to one calling parameter of the function
block. The parameters appear in the structure in the same order than the one established for
the function block definition. An uppercase identifier is defined to directly have access to one
parameter of the structure passed to the "C" implementation of the function block activation
service. Names of the identifiers are the ones entered during the definition of the function
block with the ISaGRAF Library Manager.

The order used for return parameters numbering is the one established for the function block
definition. The logical number of the first return parameter is always 0.

Defined identifiers should be used instead of numerical value to represent the return
parameters in the "C" source programming. This ensures that the source file can be easily re-
compiled after a modification of the interface definition.

The "C" definition file is updated each time the interface of the function block is changed by
using the ISaGRAF Library Manager. This ensures a complete coherence between the
implementation of the function block and its use in the programs of the ISaGRAF applications.

Target User's guide

C-370 CJ International

Source code
The "C" language implementation of a function block is divided into three different entry
points:

 initialization service
 activation service - processing of the calling parameters
 return parameters read service

The same code is used for each instance of a same function block, and is not duplicated. A
static data structure is associated to each instance. Such data cannot be accessed directly by
the ISaGRAF programming, and contain the function block instance "hidden variables".

The "activation service" is called once for each instance of each used block, on each target
cycle. It processes the calling parameters, and updates the associated data. It represents the
"main algorithm" of the function block.

The "read service" is called by the ISaGRAF kernel to read the current value of one return
parameter for one instance. No special calculation has to be performed in such a service. It
only operates transfer between hidden data and the ISaGRAF application.

Functional diagram:

activate

Hidden data:

Calling
parameters

Return
parameters

Function block implementation

read

Initialize
(Allocate)

• Function block static data
A function block associates operations and static data. A data structure is associated to each
instance of a same function block. Each time a function block is used in ST or FBD
programming, it corresponds to one instance, and one data structure. The following example
shows the correspondence between "C" data structures and the function block instances used
in an FBD program:

Target User's guide

CJ International C-371

R_TRIG

R_TRIG

GATE

R_TRIG "C" code

GATE "C" code

R_TRIG "C" data
instance 1

R_TRIG "C" data
instance 2

GATE "C" data
instance 1

"C" implementationFBD program

The memory needed for data structure of each instance is allocated by the ISaGRAF system,
when the application starts. A pointer to the associated instance data structure is passed to
the "activate" and "read" services.

The ISaGRAF Library Manager automatically generates the frame of the "C" source code for
data structure type definition. The type of the data structure is always called "str_data". The
programmer should not change this name, to ensure compatibility with service headers. The
hidden data generally groups internal variables with an image of the return parameters. The
function block "read" service is only used to access the return parameter, and should not be
used to perform other operations.

• The initialization service
The "initialize" service of a function block is called by the ISaGRAF kernel when the
application starts. It allows the "C" programmer to ask the system to allocate memory for an
instance. Below is the standard programming of the initialization service:

uint16 FBINIT_xxx (uint16 hinstance)
/* "xxx" is the name of the f. block */
{
 return (sizeof (str_data));
}

The "hinstance" argument is the logical number of the instance. It is reserved for ISaGRAF
internal operations, and should not be used in the programming of the service. The
initialization service returns the number of memory bytes required for the data of one
instance. The amount of required memory (return value) cannot exceed 64 Kbytes. No other
operation should be performed in this service. The "C" source code of this service is
automatically generated by the ISaGRAF Library Manager when the function block is created.

• The activation service
The "activation" service is called on each target cycle, for each function block instance used
in the application. This service processes the calling parameters and runs the main function
block algorithm, in order to update the hidden static data and the value of return parameters.
Below is the standard frame of the activation service:

void FBACT_xxx (

Target User's guide

C-372 CJ International

uint16 hinstance, /* "xxx" is the name of the function block */
/* logical number of the instance */

str_data *data, /* data: pointer to the instance data structure */
str_arg *arg /* pointer to the calling parameters structure */
)
{
}

The "hinstance" argument is the logical number of the instance. It is reserved for ISaGRAF
internal operations, and should not be used in the programming of the service. The "data"
argument is a far pointer to the data structure associated to the instance. The "arg" argument
is a far pointer to the structure which contains the value of the calling parameters. The
programmer should use the identifiers defined in the function block "C" header to have access
to the fields of the "arg" structure.

The "activation" algorithm processes the calling parameters (stored in "arg" structure), and
updates the fields of the "data" structure. The following

example shows the "activation" service of the TRIG (rising edge detection) function block:

/* definitions stored in the function block "C" header */

typedef struct { /* calling parameters */
T_BOO _clk; /* trigger input */

} str_arg;

#define CLK (arg->_clk)

/* function block instance data structure */

typedef struct {
T_BOO prev_state; /* previous state of the trigger input */
T_BOO edge_detect; /* edge value: image of return param */

} str_data;

/* activation service */

void FBACT_trig (uint16 hinstance, str_data *data, str_arg *arg)
{

data->edge_detect = (T_BOO)(CLK && !data->prev_state);
data->prev_state = CLK; /* calling parameter */

}

Target User's guide

CJ International C-373

The "C" source code frame of this service is automatically generated by the ISaGRAF Library
Manager when the function block is created.

• Reading the return parameters
The "read" service is called each time a return parameter of a function block instance is
referenced in an ST or FBD program. It is used to get the value of one return parameter. The
following example shows the "read" calls executed while running an ST program:

(* ST programming *)

(* FB1 is a declared instance
of the SAMPLE function block *)

FB1(high, value, low, 1.0);

high_alarm := FB1.QH;
low_alarm := FB1.QL;
any_alarm := FB1.Q;

"C" implementation

ACTIVATE
service

READ
service

INSTANCE
DATA

Because the "read" service can be called more than once in the same cycle, for the same
return parameter or the same function block instance, no special calculation has to be
performed in such a service. It only operates transfer between hidden data and the ISaGRAF
application. Below is the standard frame of the read service:

/* cast operation used to copy the value of a return parameter */

#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

/* return parameters read service: called for each return parameter */

void FBREAD_xxx (/* "xxx" is the name of the function block */
uint16 hinstance, /* logical number of the instance */
str_data *data, /* pointer to the instance data structure */
uint16 parno, /* logical number of read parameter */
void *value) /* buffer where to copy the value of the param
*/
{

switch (parno) {
 case FBLPNO_XX: /* ... */ break;

 case FBLPNO_YY: /* ... */ break;

Target User's guide

C-374 CJ International

 /* */
}

}

The "hinstance" argument is the logical number of the instance. It is reserved for ISaGRAF
internal operations, and should not be used in the programming of the service. The "data"
argument is a far pointer to the data structure associated to the instance.

The "parno" argument is the logical number of the return parameter which value is required.
Use the identifiers defined in the function block "C" header to identify return parameters. Such
identifiers begin with the "FBLPNO_" prefix. The "value" argument is a far pointer to the
buffer where to copy the current value of the accessed return parameter. The type of data
pointed to by this argument depends on the ISaGRAF type of the return parameter. The
following table gives the relationship between ISaGRAF types and buffer "C" data type:

boolean long 32 bit unsigned word (0=false / 1=true)
analog long 32 bit signed word
real float 32 bit single precision floating value
timer long 32 bit unsigned word (unit is 1ms)
message char * array of characters

The following macros are used to have access to the copy buffer, according to the type of the
accessed return parameter:

#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

These are commonly used programmed operations to copy the value or the parameter to the
ISaGRAF buffer:

/* for a boolean parameter: */
 *BOO_VALUE = parameter_value;
/* for an integer analog parameter: */
 *ANA_VALUE = parameter_value;
/* for a real integer parameter: */
 *REAL_VALUE = parameter_value;
/* for a time parameter: */
 *TMR_VALUE = parameter_value;
/* for a string parameter: */
 strcpy (*MSG_VALUE, parameter_value);

The "C" source code frame of this service is automatically generated by the ISaGRAF Library
Manager when the function block is created.

Target User's guide

CJ International C-375

• Example of "C" source file
Below is the standard frame of a "C" function block implementation:

/* function block (xxx is the name of the function block) */

#include <tasy0def.h>
#include <grfb0nnn.h> /* nnn is the number of the f.block in library */

/* structure of hidden data for each instance of the block */
typedef struct {

/* fields definition */
} str_data;

/* initialization service: returns the size of needed hidden data */
word FBINIT_xxx (uint16 hinstance)
{

return (sizeof (str_data));
}

/* activation service: processes the calling parameters */
void FBACT_xxx (uint16 hinstance, str_data *data, str_arg *arg)
{

/* ... */
}

/* cast operation used to copy the value of a return parameter */
#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

/* return parameters read service: called for each return parameter */
void FBREAD_xxx (uint16 hinstance, str_data *data, uint16 parno, void *value)
{

switch(parno)
{
 case FBLPNO_XX: *???_VALUE = ...; break;
 case FBLPNO_YY: *???_VALUE = ...; break;
....

Target User's guide

C-376 CJ International

}

/* The following function is used for the initialization of the function block and the
declaration of its implementation. It realizes the link with the ISaGRAF kernel,
using the name of the function block. This service is completely generated by the
ISaGRAF Library Manager. */

ABP fbldef_xxx (char *name, IBP *initproc, RBP *readproc)
{

strcpy (name, "XXX");
*initproc = (IBP)FBINIT_xxx;
*readproc = (RBP)FBREAD_xxx;
return ((ABP)FBACT_xxx);

}

/* end of file */

The "TASY0DEF.H" include file from the ISaGRAF kernel is required for system dependent
definitions. It also contains the definition of data types representing far pointers to the
implemented services.

Links between projects and "C" implementation
The logical link between the implementation of a "C" function block and its use in the
programs of an ISaGRAF project is accomplished by using the name of the function. A
"declaration" service is added to the "C" source code of the function block. This service is
called only once when the application starts, and indicates to the ISaGRAF kernel the "C"
function block name which corresponds to the implemented services. This is the standard
format of such a declaration service:

ABP fbldef_xxx (char *name, IBP *initproc, RBP *readproc)
{

strcpy (name, "XXX"); /* name of the f.block */
initproc = (IBP)FBINIT_xxx; / initialization service */
readproc = (RBP)FBREAD_xxx; / read service */
return ((ABP)FBACT_xxx); /* activation service */

}
/* xxx is the name of the function block */

The name of the function block, used for strcpy statement must be written in uppercase.
Lowercase must be used for the name of the implemented services and in the name of the
declaration service.

Using the "FBACT_", "FBINIT_", "FBREAD_" and "fbldef_" prefixes for implemented
services and definition service enables the user to name a function block with a reserved

Target User's guide

CJ International C-377

keyword of the "C" language, or the name of an existing function of the "C" ISaGRAF libraries.
No other statement should be added to the declaration service.

The declaration service is called for any integrated "C" function block, even if it is not used in
the programs of the ISaGRAF application. The ISaGRAF kernel will detect a fatal error if a "C"
function block used in the application is not integrated to the kernel.

Before linking new function blocks with the kernel, the user must write another "C" source file,
named "GRFB0LIB.C", and insert it (with the retained function blocks) in the list of files for the
link. The "GRFB0LIB.C" only contains an array of declaration services. This array is read
during application initializations, to create a dynamic link with the "C" written function blocks.
This is an example of such a file:

/* File: grfb0lib.c - implemented function blocks */

#include <tasy0def.h>

extern ABP fbldef_fb1(char *name, IBP *init, RBP *read);
extern ABP fbldef_fb2(char *name, IBP *init, RBP *read);

FBL_LIST FBLDEF[] = {
fbldef_fb1,
fbldef_fb2,

NULL };

/* end of file */

The FBLDEF array must be terminated by a NULL pointer. Some clashes may occur when
this condition is not met. Unresolved references will occur when linking the new ISaGRAF
kernel if the FBLDEF array is not defined.

By writing this file, a new kernel can be built, including all the existing function blocks. A
kernel dedicated to one project can also be built, by inserting in the FBLDEF array only the
function blocks used in the project. The "GRFB0LIB.C" file is automatically generated by the
ISaGRAF Code Generator, when the code of an application is built. The file is placed in the
ISaGRAF project directory, and groups only the function blocks used in the project.

Limits
The ISaGRAF library may contain up to 255 "C" function blocks. Any type of operation may be
processed in a function. Each type of function block may be copied (instanced) up to 255
times in the same project.

It should be remembered that the function block services are called in the ISaGRAF cycle,
synchronously, so that the execution of the function block has a direct effect on the cycle
timing.

Target User's guide

C-378 CJ International

Complete example
Below is the complete programming of a "sample" function block, which is an up-counter.

Below is the technical note of the function block:

name: SAMPLE
description: Up counter

creation date: 01 February 1994
author: CJ international

call: CU : counting input
R : reset command
PV : maximum programmed value

return: Q : max detection
CV : counting result

prototype: SAMPLE (count, reset_command, maximum_value);
max_detect := SAMPLE.Q;
count_result := SAMPLE.CV;

Below is the interface of the function block:

Below is the "C" source header of the function block:

/* function block interface - name: SAMPLE */

/* definition of standard ISaGRAF data types */

typedef long T_BOO;
typedef long T_ANA;
typedef float T_REAL;
typedef long T_TMR;
typedef char *T_MSG;

/* definition of the calling parameters structure */

typedef struct {
 T_BOO _cu;

Target User's guide

CJ International C-379

 T_BOO _r;
 T_ANA _pv;
} str_arg;

/* identifiers used to access the calling parameters */

#define CU (arg->_cu)
#define R (arg->_r)
#define PV (arg->_pv)

/* return parameters logical numbering */

#define FBLPNO_Q 0
#define FBLPNO_CV 1

/* end of file */

Below is the "C" source code of the function block. Only the lines printed with bold characters
were manually entered by the C programmer.

/* function block - name: SAMPLE */

#include <tasy0def.h> /* required for data types definition */
#include <grfb0255.h> /* function block C source header */

/* definition of the structure which contains the data for one instance */

typedef struct {
T_BOO overflow; /* true:counting value >= programmed value */
T_ANA value; /* counting current value */

} str_data;

/* initialization service: requires memory for instance data */

word FBINIT_sample (uint16 hinstance)
{

return (sizeof (str_data));
}

/* activation service: up-counting algorithm */

Target User's guide

C-380 CJ International

void FBACT_sample (uint16 hinstance, str_data *data, str_arg *arg)
{

if (R) data->value = 0;
else if (CU && data->value < PV) (data->value)++;
data->overflow = (data->value >= PV) ? (T_BOO)1 : (T_BOO)0;

}

/* cast operation required to copy parameters to ISaGRAF buffer */

#define BOO_VALUE ((T_BOO *)value)
#define ANA_VALUE ((T_ANA *)value)
#define REAL_VALUE ((T_REAL *)value)
#define TMR_VALUE ((T_TMR *)value)
#define MSG_VALUE ((T_MSG *)value)

/* read service: get the value of one return parameter */

void FBREAD_sample (uint16 hinstance, str_data *data, uint16 parno, void
*value)
{

switch (parno) {
 case FBLPNO_Q : *BOO_VALUE = data->overflow; break;
 case FBLPNO_CV : *ANA_VALUE = data->value; break;
}

}

/* declaration service used for dynamic link with the ISaGRAF kernel */

ABP fbldef_sample (char *name, IBP *initproc, RBP *readproc)
{

strcpy (name, "SAMPLE");
*initproc = (IBP)FBINIT_sample;
*readproc = (RBP)FBREAD_sample;
return ((ABP)FBACT_sample);

}

/* end of file */

Target User's guide

CJ International C-381

C.7.5 Compiling and linking techniques

The ISaGRAF Workbench does not include any "C" compiler or linker. However this chapter
explains the main techniques which can be applied to easily use the files created by the
ISaGRAF Library Manager, and pass them to other tools such as compilers and linkers.

"C" source files
The "C" source files of conversions, functions and function blocks are put by the ISaGRAF
Library Manager into the ISAWIN\LIB\DEFS and ISAWIN\LIB\SRC directories. The name of a
source file is built with the number of the corresponding conversion, function or function block
in the ISaGRAF library. These are the used filenames:

\isawin\lib\defs\TACN0DEF.H definition file for any conversion functions
\isawin\lib\src\GRCN0nnn.H source file of a conversion function
\isawin\lib\defs\GRUS0nnn.H definition file of a function
\isawin\lib\src\GRUS0nnn.C source file of a function
\isawin\lib\defs\GRFB0nnn.H definition file of a function block
\isawin\lib\src\GRFB0nnn.C source file of a function block
(nnn is the number of the conversion, function or function block)

Warning: When renaming or copying library elements, its text and programming lines are not
updated by the ISaGRAF Library Manager, according to new element name and logical
number. They must be manually updated in the "C" source file.

The file \ISAWIN\LIB\USPNUMS gives the relationship between names and logical numbers
for the "C" functions existing in the ISaGRAF library. This is, as an example of such a file:

1 funct_A
10 funct_B
16 funct_C

The file \ISAWIN\LIB\FBLNUMS gives the relationship between names and logical numbers
for the "C" function blocks existing in the ISaGRAF library. This is as an example, of such a
file:

0 fbl_A
1 fbl_B
2 fbl_C

The file \ISAWIN\LIB\CNVNUMS gives the relationship between names and logical numbers
for the conversion functions existing in the ISaGRAF library. This is, as an example, the
content of this file for the conversions of the standard library:

0 SCALE
1 BCD

These files are automatically updated by the ISaGRAF Library Manager each time a
conversion, function or function block is created, renamed, copied or deleted. The ISaGRAF
Code Generator automatically generates the following files when an application is built:

Target User's guide

C-382 CJ International

\isawin\apl\ppp\GRCN0LIB.C Declaration as an array of all the
conversion functions used in the project.

\isawin\apl\ppp\GRUS0LIB.C Declaration as an array of all the functions
used in the project.

\isawin\apl\ppp\GRFB0LIB.C Declaration as an array of all the function
blocks used in the project.

(ppp is the name of the ISaGRAF project)

These files can be used during link operations to build a new ISaGRAF kernel dedicated to
the project, which contains only the conversions, functions and function blocks used in the
project.

Downloading source files to a native system
The "C" source and definition files created by the ISaGRAF Library Manager may be
downloaded to the target ISaGRAF system, if it supports a native compiling tool. To do that,
the standard TERMINAL tool delivered with Windows can be used.

When source files are managed on the target system, definition files have to be updated with
a new download operation each time a function interface is modified with the ISaGRAF
Library Manager.

Commands lines to download files can be grouped for instance into a batch file and then
started from the workbench tool menu (see user’s guide: Managing programs)

Using a cross compiler
Source files can also be managed directly on your PC, if the target is a PC, or a cross
compiler is available, running on the PC and generating code for the target system.

In this case, the user can run the ISaGRAF Library Manager to complete and modify the
sources of conversions, functions or function blocks.
Commands lines for running the compiler and the linker can be grouped for instance into a
batch file and then started from the workbench tool menu (see user’s guide: Managing
programs)

When conversions, functions and function blocks are compiled on the PC, the user simply
has to download the new generated ISaGRAF kernel (linked with new components) to the
target system before running applications. If the target is another PC, the new generated
ISaGRAF kernel can be loaded into the target machine by using a diskette or through a
network.

Linking with the ISaGRAF kernel libraries
Warning:
The following are general information which may not exactly correspond to your target
system.
In any case you may consult the readme and .TXT files delivered on the target disk.

The ISaGRAF target diskette contains many utility files to compile and link the conversions,
functions and function blocks with the ISaGRAF kernel libraries.

Target User's guide

CJ International C-383

Two implementations exists:
- single task ISaGRAF: all functions are performed in the same program
- multitask ISaGRAF: a separate task (or thread) is dedicated to communication

In either case, the "C" components are grouped in the same libraries: for the "C" programmer,
no difference is made for single task or multitask. For a single task version, the user "C"
libraries are linked to the single task (generally called isa), whereas for the multitask version
the libraries are linked to the kernel task (generally called isaker).

Development Target
system system

WORKBENCH KERNEL

USER "C"

SYSTEM

OEMCOM

The inner part of ISaGRAF software is independent of the hardware. It executes the IEC
languages and has its own variable data base.

The first step, when making the link with the kernel, is to build libraries of all the conversions,
functions and function blocks needed for the specific project:

Library content
ISAUSP - GRUS0LIB object file (array of declared functions)

- object file of each integrated function
ISAFBL - GRFB0LIB object file (array of declared function blocks)

- object file of each integrated function block
ISACNV - GRCN0LIB object file (array of declared conversions)

- object file of each integrated conversion function

Then the programmer has to link these new libraries with other object files and libraries of the
ISaGRAF kernel. The different phases of a user "C" development integration are outlined in
the following diagram:

Target User's guide

C-384 CJ International

grcn0lib.C grus0lib.C grfb0lib.C

grcn0nnn.C grus0nnn.C grfb0nnn.C

Library utility Library utility Library utility

isacnv isausp isafbl Other libraries

Link utility

isaker isa

This is the exact list of object modules and libraries which have to be joined during the link:

To build isaker:

Object Module: tast0mai
Object Module: tats0com

Kernel library: isaker
Kernel library: isaoem

User library: isausp user defined functions
User library: isafbl user defined function blocks
User library: isacnv user defined conversion functions

Kernel library: isasys

System libraries: (refer to your "C" compiler manual)

To build isa:

Object Module: tast0mai
Object Module: tast0com

Kernel library: isaker
Kernel library: isatst
Kernel library: isaoem

User library: isausp user defined functions
User library: isafbl user defined function blocks
User library: isacnv user defined conversion functions

Target User's guide

CJ International C-385

Kernel library: isasys

System libraries: (refer to your "C" compiler manual)

The programmer may have to follow the exact order of object modules and libraries shown in
the preceding figures. Object modules and libraries have standard extensions (".lib", ".obj",
".l", ".r"...) according to the target system.

Required compiling and linking options
Convenient options can be selected during compiling and linking. They depend on the type of
operations processed in conversions, functions and function blocks. Some operations require
other system libraries (math, graphics...) during link.

All the "C" source files of the ISaGRAF Kernel have been compiled with the LARGE memory
model. The programmer must use the same model for compiling conversions, functions and
function blocks.

A special constant has to be defined for compiling "C" library components. It indicates the
type of target system and processors, so that the source of conversions, functions and
function blocks can be system independent. Below are the names of these constant values:

DOS.................for DOS based systems (INTEL processor)
ISAWNTfor Windows-NT based systems (INTEL processor)
OS9for OS9 system (MOTOROLA processor)
VxWorksfor VxWorks system (MOTOROLA processor)

The utility command files (to compile and link) delivered with the ISaGRAF target software
show how to define the convenient constant value in the compiler command line.

Supported compiler
The following compilers are supported for the development of conversions, functions and
function blocks, and the link with the ISaGRAF Kernel:

Microsoft MSC 7.00 compiler for DOS based targets
Microsoft MSVC 4.00 compiler for Windows-NT based targets
Microware ULTRA-C compiler for OS-9 targets
Tornado 1.0; GNU Toolkit 2.6 for VxWorks targets

Contact CJ International for using other compilers.

Summary
Below is the summary of the operations which have to be performed when developing a new
conversion, function or function block.

1. With the ISaGRAF Library Manager, create the new element: give it a name and
a comment text. The frame of the "C" source file is automatically generated.

Target User's guide

C-386 CJ International

2. With the ISaGRAF Library Manager, describe the interface (call and return
parameters), if the element is a function or a function block. The "C" source
header file is automatically generated.

3. With the ISaGRAF Library Manager, enter the text of the detailed technical note
(user's guide) of the element.

4. With the ISaGRAF Library Manager, complete the "C" source file, by entering the
"C" programming of the conversion, function or function block algorithm. The
source code of the element is now complete. Note that another editor may be
used.

5. Select the "Show logical number" option of the Library Manager to know what
logical number is attached to the new element. This number is used in the
pathnames of the corresponding ".C" and ".H" source files.

6. Copy / Download the .C and .H files to your target (if native compiler) or to the
corresponding environment (if cross compiler) where the ISaGRAF target libraries
and tasks have been installed.

7. Run the "C" compiler on the new source file, and correct syntax errors if any.

8. Insert the name of the new element declaration service in the "GR??0LIB.C"
source file which defines the array of inserted elements.

9. Run the "C" compiler to compile the "GR??0LIB.C" file.

10. Insert the name of the object module in the list of object files used to build the
corresponding library.

11. Run the "C" library builder. Run the "C" linker to build the new kernel.

12. Install the new created kernel on your target machine.

13. Write a sample ISaGRAF application which tests the activation and the interface
of the new element.

Target User's guide

CJ International C-387

C.8 Modbus link

Once the application is completely developed and tested, you may connect it to a process
visualization system.

ISaGRAF is an open system offering a large variety of networking possibilities.
The simplest industrial network is the MODBUS/MODICON standard protocol, which is
available on almost every process visualization system and which only requires a serial link
(RS232, RS485, Current Loop).

ISaGRAF communication debugger protocol is MODBUS compatible to enable variable
read/write access from a Modbus master.

C.8.1 MODBUS network and protocol

A Modbus network is composed of one master station only (usually a process visualization
system) and one or more slave stations (usually PLCs).

Master

Slave Slave Slave Slave

The master sends one request at a time to one slave (using its slave number) and waits for
the slave to answer before sending the next question. Other non concerned slaves do not
answer.

Each frame contains a slave number, a request number and corresponding data, and a 16 bit
checksum (CRC).

If no answer is received after a time-out duration, the question can be repeated a certain
number of times before the master declares the slave 'disconnected'.
The time-out value and the number of retries have to be adjusted on the master station to fit
the slave requirements (depending on the application, etc...).

If an error occurs in a request processing, the slave may issue an error message instead of
sending the expected answer frame.

Modbus is a Modicon protocol but not an international standard, there are many different
implementations of 'Modbus' compatible protocols, with many possible differences, such as:

Target User's guide

C-388 CJ International

− List of implemented function codes
− Address mapping
− RTU (binary codes) or ASCII protocol
etc...

C.8.2 ISaGRAF implementation

Application Variables access
The ISaGRAF communication link recognizes five Modbus function codes:

1 read N bits
3 read N words
5 write 1 bit
6 write 1 word
16 write N words

ISaGRAF application variables can be accessed through their 'network address', if, of course,
they have been defined in the workbench dictionary. These variables can be:
− Boolean or Analog variables
− inputs, outputs or internal variables
− local or global variables.

To write a Boolean variable, either function 5, 6 or 16 may be used. A TRUE value for writing
is any non zero value.

To read a Boolean variable, either function 1 or 3 may be used. With the function 1, values
are retrieved in a bit field, with function 3, they are retrieved in Bytes (a TRUE value
correspond to 0xFFFF).

To write an analog variable, either function 6 or 16 may be used. The value is a 16 bits integer
ranging from -32768 up to +32767 (ISaGRAF target variable are 32 bits).

To read an Analog variable, function 3 should be used. The read value is a 16 bits integer
ranging from -32768 up to +32767. On the target side, Analog variables are 32 bits, therefore
a value, on the target, over the 16 bits range (positive or negative) will be read with the
maximum 16 bits range value (positive or negative).

Real variables cannot be accessed with a Modbus request.

Warning:
The ISaGRAF implementation does not manage the error codes such as ‘unknown modbus
address’.

Notations:

slv slave number
nbw number of words

Target User's guide

CJ International C-389

nbb number of bytes
nbi number of bits
addH network address (High

Byte)
addL network address (Low Byte)
vH value (High Byte)
vL value (Low Byte)
V Byte Value
bfd Bit field (nbb Bytes)
crcH checksum (High Byte)
crcL checksum (Low byte)

FUNCTION 1: read N bits

Read nbi bits (Booleans) starting from network address addH/addL

Question slv 01 addH addL 00 nbi crcH crcL

Answer slv 01 nbb bfd ... crcH crcL
Byte 1 Byte nbb

bfd is a bit field of nbb Bytes with the following format:

Bit 1

Bit 9

Bit 8

Bit nbi

Byte 1

Byte 2

Byte nbb

Bit 1 correspond to the value of the variable at addH/addL network address.
Bit nbi correspond to the value of the variable at addH/addL + nbi -1 network address.
X means undefined value.

FUNCTION 3: read N words

Read nbw words starting from network address addH/addL

Question slv 03 addH addL 00 nbw crcH crcL

Answer slv 03 nbb vH vL ... crcH crcL

nbb corresponds to the number of vH, vL bytes

Target User's guide

C-390 CJ International

FUNCTION 5: write 1 bit

Write a bit (Boolean) at network address addH/addL

Question slv 05 addH addL vH 00 crcH crcL

Answer slv 05 addH addL vH 00 crcH crcL

FUNCTION 6: write 1 word

Write a word at network address addH/addL

Question slv 06 addH addL vH vL crcH crcL

Answer slv 06 addH addL vH vL crcH crcL

FUNCTION 16: write N words

Write nbw words starting from network address addH/addL (nbb = 2nbw)

Question slv 10 addH addL 00 nbw nbb vH vL ... crcH crcL

Answer slv 10 addH addL 00 nbw crcH crcL

Examples:

− Function 1: read 15 bits starting from network address 0x1020, on slave 1

Question 01 01 10 20 00 0F 79 04

Answer 01 01 02 00 12 39 F1

The value read is 0x0012, which gives 00000000 00010010 as a bit field.
In this example, variables 0x1029 and 0x102C are TRUE, all others are FALSE.

− Function 16: write 2 words at address 0x2100 on slave 1, values written are 0x1234 and
0x5678.

Question 01 10 21 00 00 02 04 12 34 56 78 1C CA

Answer 01 10 21 00 00 02 4B F4

File transfer
Compared to modern field buses, Modbus protocol offers very poor services if it is not
extended by specific manufacturers functions codes.

In our situation, running ISaGRAF on a powerful and flexible computer base, there are two
restrictions to the Modbus protocol:

Target User's guide

CJ International C-391

− It is only possible to access ISaGRAF variables
− It is difficult to execute fast transfer of a large amount of data

These are the reasons why ISaGRAF offers a set of file transfer ‘Modbus like’ requests, or a
‘remote file management’ protocol. These features have been implemented to enable:
− Binary or ASCII file download
− Binary or ASCII file upload
− Dynamic data exchange through virtual or physical shared file

Thus, with the ISaGRAF communication link, any application « independent from ISaGRAF »
can easily communicate with a remote target.

The protocol is based on the following concepts:
− The file on the ISaGRAF target side is called remote file
− The file on the master computer is called local file
− Each byte in a file is accessed with a 32 bit base address plus a 16 bit byte address

There are requests to select the remote file name, to select the base address, to read or write
data of the remote file using the 16 bits byte address.

FUNCTION 17: write data

nbb correspond to the number of vH, vL bytes

Question slv 11 addH addL 00 nbb nbb vH vL ... crcH crcL

Answer slv 11 addH addL 00 nbb crcH crcL

The meaning of this request differs according to the address range addH/addL:

− 0xF000: Initialize remote file name
nbb correspond to the number of characters for the file name, specified in the vH vL fields
(in that case High and Low is not meaningful) and including \0 for end of string.
If the file does not exist, it is created with writable + readable + executable attributes.

− 0xF002: Change base address to the specified value
nbb should be equal to 4.The first vH/vL byte correspond to the High word of the specified
value. Any 32 bit value is accepted.
All future read or write requests will use this base address. When this request is not used
the default base address value is zero.

− 0xF004: Delete file
nbb should be equal to zero.
The file will be deleted if it exists and if it is possible.

− Greater than 0xF004: Reserved

− Less than 0xF000: Write bytes
The specified address where to write bytes is specified in addH/addL. It must be less than
F000. The specified bytes (nbb bytes specified in vH vL fields where High and Low may

Target User's guide

C-392 CJ International

be no more meaningful) are written, in the order given (from left to right), to the previously
selected remote file name. The start address written to, is the specified address added to
the previously selected base address. If the resulting addresses access exceed the
current file size, the file is extended. You cannot reduce the file size.

FUNCTION 18: read data

Question slv 12 addH addL 00 nbb crcH crcL

Answer slv 12 nbb V V ... crcH crcL

The specified address where to read bytes is specified in addH/addL. It must be less than
F000. Read the specified (nbb) number of bytes, from the previously selected remote file
name, starting from specified address (addH/addL with any 16 bits value) added to the
previously selected base address.
The Values are retrieved (V fields from left to right) in the order they are read in the file.

Example:

Select remote file name: 'target.fil'.

Question 01 11 F0 00 00 0B 0B 74 ... 00 25 9F

Answer 01 11 F0 00 00 0B 8F 0E

Select base address: 0x10000.

Question 01 11 F0 02 00 04 04 00 01 00 00 76 11

Answer 01 11 F0 02 00 04 6E CA

Write 4 bytes: absolute address 0x107D0, values 01,02,03,04.

Question 01 11 07 D0 00 04 04 01 02 03 04 28 6F

Answer 01 11 07 D0 00 04 FC 87

Read 4 bytes: absolute address 0x107D0.

Question 01 12 07 D0 00 04 B8 87

Answer 01 12 04 01 02 03 04 58 7D

Target User's guide

CJ International C-393

C.9 Power fail management

C.9.1 Basics

Managing a power failure is something very critical in an application, for three reasons:
− It depends on the process specifications
− It depends on the hardware capabilities
− It depends on the programming methods

Thus, the ISaGRAF answer to the power failure management is not a complete and absolute
universal method, but a set of principles, methods and tools that have to be combined in a
specific way for each application, or at least hardware.

To enable a process control system to restart correctly after a power failure, 3 problems must
be solved:

ISaGRAF
Kernel

+
Data base

Backed up
memory

Back up

Restore

− Making a data backup
− Detecting that a power failure has occurred when starting
− Restoring the backed up data

The second problem cannot have a standard software solution, but the system supplier may
provide the necessary tools to have access to the hardware status from the ISaGRAF
application or from a C program.

Furthermore, the important thing is to decide what data have to be stored and retrieved. Let‘s
define 2 kinds of data:
− Application variables:

Such as process variables like number of items processed, date of the power failure, values
of application parameters, etc. ...
Such as program variables like counters, timers, intermediate values and flags.

− Program state:
Such as reference of active steps, status of each C program, etc. ...

These 2 cases are studied in the following chapters to see how ISaGRAF can answer.

Target User's guide

C-394 CJ International

C.9.2 Application variables backup

Retained variables
The workbench variable editor offers the possibility to select the ‘retain’ attribute for each
internal variable (non IO variable).

At the end of each target cycle, values of retained variables are copied to the specified
memory location. This memory location is generally a battery backed up RAM.

At start-up, if at least one variable has the "retained" attribute, ISaGRAF looks for the retained
variables:
− If the same application has run before, ISaGRAF recognizes the stored values and assigns

them to every ‘retained’ variables.
− If the previous application was a different one, or if no application has run before, ISaGRAF

recognizes that the ‘retained’ values are not valid, and resets all the ‘retained’ variables to
null.

The specification of the memory area used to store the different types of variables is specified
in the workbench, in the Make menu: Application run time option ; retained variables.
The specified string must have the following format:

 boo_add , boo_size , ana_add , ana_size , tmr_add , tmr_size , msg_add , msg_size

with:
boo_add: Hexadecimal address used to store boolean variables. Need to be always

different from zero.
boo_size: Hexadecimal size, in bytes, available at this address. One byte per boolean

variable to store is required.

ana_add: Hexadecimal address used to store analog variables. Need to be always different
from zero.

ana_size: Hexadecimal size, in bytes, available at this address. Minimum of four bytes
always required plus four bytes per analog variable to store.

tmr_add: Hexadecimal address used to store timer variables. Need to be always different
from zero.

tmr_size: Hexadecimal size, in bytes, available at this address. Five bytes per timer variable
to store is required.

msg_add: Hexadecimal address used to store message variables. Need to be always
different from zero.

msg_size: Hexadecimal size, in bytes, available at this address. 256 bytes per message
variable to store is required.

Requirements:
− All fields of all types need to be specified even if you may not need to make a backup of all

types of variables. In such a case you need to specify a size of zero (except for analogs for
which you need to specify a size of four bytes) and any address different from zero, for the
non required type(s) of variables.

Target User's guide

CJ International C-395

Example:
Let’s suppose that we need to make a backup of:

20 Booleans variables
0 Analog variable
0 Timer variable
3 Message variables

The backed up memory is located at Hexadecimal address 0xA2F200.
Let’s suppose that:

Booleans will be stored at address 0xA2F200 with the exact required size of 20 bytes.
Analogs minimum required size of 4 bytes will be stored at address 0xA2F214.
Timers dummy address will be 0xA2F200 and specified with a size of zero.
Messages will be stored at address 0x A2F218 with the exact required size of 256*3 bytes.

Then the workbench entered string should be:

A2F200,14,A2F214,4,A2F200,0,A2F218,300

SYSTEM function call
If most of the application variables need to be stored, then the facilities of the SYSTEM
function should be used to deal with a complete set of variables (for more information on the
SYSTEM function see the user’s guide). Note that here, the backup and the restoration are
managed by the programmer at application level.

First of all you need to define the memory backup location for a specified type of variable or
all types of variables:

<new_address> := SYSTEM(SYS_INITxxx,<address>);

where:
− <address> is the memory backup address location (16# value for Hexadecimal format). It

must be an even address, otherwise the operation fails.
− SYS_INITxxx can be:

∗ SYS_INITBOO to define memory backup location for all boolean variables.
∗ SYS_INITANA to define memory backup location for all analog variables.
∗ SYS_INITTMR to define memory backup location for all timer variables.
∗ SYS_INITALL to define memory backup location for all boolean, analog and timer

variables.
− <new_address> gets the next free address, that is to say <address> + backed up variables

size (in bytes) according to SYS_INITxxx. This enable to check the required memory
backup size. If the operation has failed <new_address> gets zero.

Then you may ask for a backup. This procedure can be called at any time in the application,
the backup will be done at the end of the current cycle and once only. If the hardware delivers
a boolean input, or a C function to inform the user when the power fail arrives, and allows at
least one ISaGRAF cycle delay before crash down, the backup might only be made when the
power fail is detected:

<error> :=SYSTEM(SYS_SAVxxx,0);

where:

Target User's guide

C-396 CJ International

− SYS_SAVxxx can be:
∗ SYS_SAVBOO to ask for all boolean variables backup.
∗ SYS_SAVANA to ask for all analog variables backup.
∗ SYS_SAVTMR to ask for all timer variables backup.
∗ SYS_SAVALL to ask for all boolean, analog and timer variables backup.

− <error> gets an error status different from zero when operation has failed (SYS_INITxxx has
not been called).

Finally you may want to restore variables. This procedure can be called at any time in the
application, the restoration will be done at the end of the current cycle and once only. To
ensure the data backed up are valid, an analog variable should be set to a constant value
used as a signature:

<error> := SYSTEM(SYS_RESTxxx,0);
where:
− SYS_RESTxxx can be:

∗ SYS_RESTBOO to restore all boolean variables.
∗ SYS_RESTANA to restore all analog variables.
∗ SYS_RESTTMR to restore all timer variables.
∗ SYS_RESTALL to restore all boolean, analog and timer variables.

− <error> gets an error status different from zero when operation has failed (SYS_INITxxx has
not been done).

The following is a sum up of commands of the SYSTEM function to manage backup
variables:

command Meaning
pre-defined keyword Value
SYS_INITBOO 16#20 init boolean back up
SYS_SAVBOO 16#21 save booleans
SYS_RESTBOO 16#22 restore booleans
SYS_INITANA 16#24 init analog back up
SYS_SAVANA 16#25 save analogs
SYS_RESTANA 16#26 restore analogs
SYS_INITTMR 16#28 init timer back up
SYS_SAVTMR 16#29 save timers
SYS_RESTTMR 16#2A restore timers
SYS_INITALL 16#2C init all types back up
SYS_SAVALL 16#2D save all types
SYS_RESTALL 16#2E restore all types

command (pre-defined keyword) Argument Return value
SYS_INITxxx memory address next free address
SYS_SAVxxx 0 zero if OK
SYS_RESTxxx 0 zero if OK

Customized implementation

Target User's guide

CJ International C-397

Finally, using C functions or function blocks, you may develop specific user’s procedures to
have access to a battery backed up memory, to store and restore variables at any moment in
the application.

Examples:
1) Procedure dedicated to an application:

backup, restore_temp, restore_date, restore_cpt would be C user’s procedures.

backup(temperature, date, cnt); store 3 critical data

temperature := restore_temp(); restore temperature
date := restore_date(); restore date
cnt := restore_cnt(); restore counter

2) General purpose procedures:
backup_init, backup, backup_link, restore would be C user’s procedures.

save_id := backup_init(address, size); allocate a memory backed up array.
backup(save_id, cpt1, 3); save cpt1 as the 3rd element.

rest_id := backup_link(address, size) link backed up memory.
cpt1 := restore(rest_id, 3); restore backed up value of cpt1.

C.9.3 Program state backup

It could be possible to store every state of every application program, but it seems dangerous
to restore every program in the state it was at the last backup, for at least 3 reasons:

− Some processes require specific operations before restarting
− Dealing with every status of a complete application is tedious
− Some external resources such as C programs, peripherals, etc. cannot be automatically

restarted

The best solution seems to backup analog or boolean variables to describe the status of the
process when the programmer thinks the restart stages will be able to use these information.
Then it should be possible from an uncompleted but intelligent 'image' of the process to start,
kill or freeze SFC programs and to initialize variables to put the application in the adequate
state. But no automatic start up procedure can be provided by ISaGRAF.

Example:

Target User's guide

C-398 CJ International

restore specified data

status = yy

init backup

power fail = false

save status

save all

power fail = true

restore only status

restore all

status = xx

Target User's guide

CJ International C-399

C.10 Appendix: Error list and description

Error list:

Code Message Type
1 cannot allocate memory for run time data base system
2 incorrect application data base (Motorola/Intel) application
3 cannot allocate communication mailbox system
4 cannot link kernel data base system
5 time-out sending question to kernel system
6 time-out waiting answer from kernel system
7 cannot init communication system
8 cannot allocate memory for retained variables application
9 application stopped application
10 too many simultaneous N or P actions application
11 too many simultaneous setting actions application
12 too many simultaneous resetting actions application
13 unknown TIC instruction application
16 cannot answer read data request system
17 cannot answer write data request system
18 cannot answer debugger session request system
19 cannot answer modbus request system
20 cannot answer debugger application request system
21 cannot answer debugger system
23 unknown request code system
24 Ethernet communication error system
25 communication synchro error system
28 cannot allocate memory for application system
29 cannot allocate memory for application update system
30 unknown OEM key code application
31 cannot init boolean input board application
32 cannot init analog input board application
33 cannot init message input board application
34 cannot init boolean output board application
35 cannot init analog output board application
36 cannot init message output board application
37 cannot input boolean board application
38 cannot input analog board application
39 cannot input message board application
40 cannot output boolean output variable application
41 cannot output analog output variable application
42 cannot output message output variable application
43 cannot operate boolean variable application
44 cannot operate analog variable application
45 cannot operate message variable application
46 cannot open board application

Target User's guide

C-400 CJ International

47 cannot close board application
50 cannot overwrite boolean output variable program
51 cannot overwrite analog output variable program
52 cannot overwrite message output variable program
61 unknown system request code program
62 sampling period overflow program
63 user function not implemented application
64 integer divided by zero program
65 conversion function not implemented application
66 function block not implemented application
67 standard function not implemented application
68 real divided by zero program
69 invalid operate parameters application
72 application symbols cannot be modified application
73 cannot update: different set of boolean variables application
74 cannot update: different set of analog variables application
75 cannot update: different set of timer variables application
76 cannot update: different set of message variables application
77 cannot update: cannot find new application application

> 100 specific OEM error code, ask your supplier for more
details

The 3 error types correspond to the different sources of trouble:

−−−− System errors:
Such problems are probably due to target software or hardware, not to application setting or
to program execution.
Try a hard reset (power off) of your target, and try to run other applications.
These errors should be reported to your ISaGRAF support.

−−−− Application errors:
Such problems are due to application parameters, size or content.
These errors should disappear when loading a known and previously validated application. If
the problem still appears, it becomes a system error as listed above.

−−−− Program errors:
Such problems are due to a particular sequence of program.
These kind of error should disappear when the application is started in cycle by cycle mode,
or when the critical program is stopped.

Errors description:

1. cannot allocate memory for run time data base system

No memory available. Check the hardware.

2. incorrect application data base (Motorola/Intel) application

Target User's guide

CJ International C-401

The application file, downloaded or backed up is not correct. This error appears if the
application is generated for INTEL and downloaded on MOTOROLA (and reverse) or if the file
has been altered.

3. cannot allocate communication mailbox system

This error is produced by the communication task if it cannot allocate space 3 for inter task
communication.

4. cannot link kernel data base system

This error is produced by the communication task if it cannot find a kernel running with the
slave number specified in its command line.

5. time-out sending question to kernel system

The communication task cannot send a request to the kernel. The kernel is probably not
running or busy.

6. time-out waiting answer from kernel system

The communication task cannot receive an answer from the kernel. The kernel is probably not
running or busy.

7. cannot init communication system

This warning is produced when the communication layer cannot initialize the physical link.
This warning is also displayed if no communication path is specified. This does not prevent
the target from running correctly, but it cannot communicate.

8. cannot allocate memory for retained variables application

ISaGRAF cannot manage retained variables. There may be two reasons for such a problem:
- the string passed as a parameter to the host target is not syntactically correct
- the size of memory specified for each block is not sufficient
You have to verify the syntax of your ‘retain variable’ parameter, and you can try with a
reduced number of retained variables.

9. application stopped application

This warning is produced every time the application is stopped from the debugger.

10. too many simultaneous N or P actions application

This error occurs if one of the target cycles has to execute too many non stored, pulse actions
or cyclic blocks. It is possible to locate the trouble in CC mode. The maximum number of
simultaneous actions is 2 + 4 per SFC program.

Target User's guide

C-402 CJ International

11. too many simultaneous setting actions application

This error occurs if one of the target cycles has to execute too many setting actions (executed
when a step becomes active). Proceed as mentioned above.

12. too many simultaneous resetting actions application

This error occurs if one of the target cycles has to execute too many resetting actions
(executed when a step is de-activated). Proceed as mentioned above.

13. unknown TIC instruction application

The kernel has detected something wrong in the application code (called Target Independent
Code), in a program. There are two possible explanations:
- an external program is probably writing into application code. Try to locate the crash in CC
mode and make sure no IO interface has wrong parameters.
- your target has a reduced set of instructions, and your application uses a non authorized
instruction or variable type.

16. cannot answer read data request system

A communication error is detected answering specific ISaGRAF Modbus request function
code 18 (file read). Check connection and system configuration on both target and master
sides.

17. cannot answer write data request system

A communication error is detected answering specific ISaGRAF Modbus request function
code 17 (file write). Check connection and system configuration on both target and master
sides.

18. cannot answer debugger session request system

A communication error is detected answering a debugger request. Check connection and
system configuration on both target and master sides.

19. cannot answer modbus request system

A communication error is detected answering a Modbus request. Check connection and
system configuration on both target and master sides.

20. cannot answer debugger application request system

A communication error is detected answering a debugger request. Check connection and
system configuration on both target and master sides.

21. cannot answer debugger system

Target User's guide

CJ International C-403

A communication error is detected answering a debugger request. Check connection and
system configuration on both target and master sides.

23. unknown request code system

A debugger request makes no sense.

24. Ethernet communication error system

This appears each time the connection is closed when the debugger is closed: the system is
working OK. Otherwise it means that an Ethernet communication error is detected. Check
connection and system configuration on both target and master sides.
A second field is given, it can be:
1: error while sending or receiving
2: error while creating the socket
3: error while binding or listening the socket
4: error while accepting a new client

25. communication synchro error system

Bad synchronization between the communication task on the target and the master. Check
connection and system configuration (communication parameters) on both target and master
sides.

28. cannot allocate memory for application system

No memory available. Check the hardware, according to the size of the application.

29. cannot allocate memory for application update system

No memory available. Check the hardware, according to the size of the application.

30. unknown OEM key code application

The application is using a board which manufacturer code is not recognized by the target.
Check the I/O connection in the workbench and use 'VIRTUAL' attribute to locate the incorrect
board. Your workbench library may not correspond to your target version.

31. cannot init boolean input board application

A boolean input board init has failed. Check the I/O connection in the workbench and the
parameters of your boolean input boards.

32. cannot init analog input board application

An analog input board init has failed. Check the I/O connection in the workbench and the
parameters of your analog input boards.

Target User's guide

C-404 CJ International

33. cannot init message input board application

A message input board init has failed. Check the I/O connection in the workbench and the
parameters of your message input boards.

34. cannot init boolean output board application

A boolean output board init has failed. Check the I/O connection in the workbench and the
parameters of your boolean output boards.

35. cannot init analog output board application

An analog output board init has failed. Check the I/O connection in the workbench and the
parameters of your analog output boards.

36. cannot init message output board application

A message output board init has failed. Check the I/O connection in the workbench and the
parameters of your message output boards.

37. cannot input boolean board application

An error has been detected while refreshing a boolean input board. Check the I/O connection
in the workbench and board parameters.

38. cannot input analog board application

An error has been detected while refreshing an analog input board. Check the I/O connection
in the workbench as well as board parameters.

39. cannot input message board application

An error has been detected while refreshing a message input board. Check the I/O
connection in the workbench and board parameters.

40. cannot output boolean output variable application

An error has been detected while updating an output boolean variable. Check the I/O
connection in the workbench and board parameters.

41. cannot output analog output variable application

An error has been detected while updating an output analog variable. Check the I/O
connection in the workbench and board parameters.

42. cannot output message output variable application

Target User's guide

CJ International C-405

An error has been detected while updating an output message variable. Check the I/O
connection in the workbench and board parameters.

43. cannot operate boolean variable application

An error has been detected executing an OPERATE call to a boolean variable. Verify your
OPERATE parameters and board user's note.

44. cannot operate analog variable application

An error has been detected executing an OPERATE call to a analog variable. Verify your
OPERATE parameters and board user's note.

45. cannot operate message variable application

An error has been detected executing an OPERATE call to a message variable. Verify your
OPERATE parameters and board user's note.

46. cannot open board application

The application is using a board reference which is unknown in the target. Check the I/O
connection in the workbench. Your workbench library may not correspond to your target
version.

47. cannot close board application

The application is using a board reference which is unknown in the target. Check the I/O
connection in the workbench.

50. cannot overwrite boolean output variable program

Two SFC sequences are writing the same boolean output variable in the same target cycle.
This should be avoided to prevent hazardous behavior of the I/Os. In case of such a conflict,
the priority is given to the highest program in the hierarchy. If the two SFC programs are
located at the same level, the result is unpredictable.

51. cannot overwrite analog output variable program

Two SFC programs are writing the same analog output variable in the same target cycle. See
above comment.

52. cannot overwrite message output variable program

Two SFC programs are writing the same message output variable in the same target cycle.
See above comment.

61. unknown system request code program

Target User's guide

C-406 CJ International

A program is using the SYSTEM call with an invalid code.

62. sampling period overflow program

The target cycle period is longer than specified in the workbench menu.
On a multitasking system, this means that there is not enough CPU time to execute a cycle,
even if the ‘current cycle duration’ is less than the specified period.
On a single task system, this always means that there are too many operations in one of the
target cycle.

There are many possible ways to remove this warning:
− reduce the number of operations performed at the instant where the warning is detected.
− reduce number of tokens, of valid transitions, optimize complex processing, etc.
− reduce other tasks CPU load to give more time to ISaGRAF.
− reduce communication traffic to give more time to ISaGRAF.
− use dynamic cycle duration modification to adapt the cycle duration to different process

stages.
− set cycle duration to zero to let the ISaGRAF kernel run as fast as possible, without any

overflow checking.

63. user function not implemented application

A program is using a C function which is unknown in the target. Your workbench library may
not correspond to your target version.

64. integer divided by zero program

A program tries to divide an integer analog by zero. Your application should prevent such an
event which may have unpredictable effects.
When this occurs, ISaGRAF places the maximum analog value as the result.
When the operand is negative, the result is inverted.

65. conversion function not implemented application

A program is using a C conversion function which is unknown in the target. Your workbench
library may not correspond to your target version.
When this occurs, ISaGRAF does not convert the value.

66. function block not implemented application

A program is using a C function block which is unknown in the target. Your workbench library
may not correspond to your target version.

67. standard function not implemented application

A program is using a function block which is unknown in the target, although it is supposed to
be available on most targets. Ask your supplier.

68. real divided by zero program

Target User's guide

CJ International C-407

A program tries to divide a real analog by zero. Your application should prevent such an event
which may have unpredictable effects.
When this occurs, ISaGRAF places the maximum real analog value as the result.
When the operand is negative, the result is inverted.

69. invalid operate parameters application

Your application uses an OPERATE call with wrong parameters. This is normally filtered by
the compiler. It could be a timer parameter, or a variable which is not an input or output.

72. application symbols cannot be modified application

Trying to make an application update, the modified application cannot be started because the
symbols are different. One or more variables or instances of function blocks may have been
added, removed or modified, compared to the current application.

73. cannot update: different set of boolean variables application

The modified application cannot be started because some boolean variables have been
added or removed, compared to the current application.

74. cannot update: different set of analog variables application

The modified application cannot be started because some analog variables have been added
or removed, compared to the current application.

75. cannot update: different set of timer variables application

The modified application cannot be started because some timer variables have been added or
removed, compared to the current application.

76. cannot update: different set of message variables application

The modified application cannot be started because some message variables have been
added or removed, compared to the current application.

77. cannot update: cannot find new application application

The modified application cannot be found in memory, something wrong may have happened
during the download.

Target User's guide

C-408 CJ International

Glossary

CJ International D-409

D. Glossary
Action List of statements or assignments executed when a step of an SFC program is

active.

Action (FC) Symbol of a Flow Chart diagram. An action represents a list of instructions to
be performed when the dynamic flow encounters the action symbol.

Activity of a
step

Attribute of a step which is marked by an SFC token. The actions attached to
the step are executed according to its activity.

Analog Type of variables. These are continuous integer or real variables.

Attribute Class of variables. Available variable attributes are internal, input or output.

Begin
section

Group of cyclic programs executed at the beginning of each target cycle.

Beginning
step

First step of the body of a macro step. A beginning step is not linked to any
preceding transition.

Boolean Type of variables. Such variables con only take true or false values.

Boolean
action

SFC action: a boolean variable is assigned with the activity signal of a step.

Breakpoint Mark placed by the user at debug time, on an SFC step or transition. The target
system stops when an SFC token is moved on a breakpoint.

C function Function written with the "C" language, called from the ISaGRAF programs
(written with other languages), in a synchronous way. C functions are delivered
by CJ International, or developed by the user.

C language High level literal language used to describe the computer operations, such as C
functions and conversion functions.

C source
code

Text file which contains the "C" source code of a function or a conversion
function.

C source
header

Text file which contains the "C" definitions and types required for the
programming of a C function or a conversion function.

Cell Elementary area of the graphic matrix for graphic languages such as SFC, FBD
or LD.

Child SFC
program

SFC program controlled by another SFC program, called its father.

Glossary

D-410 CJ International

Clearing a
transition

Run time operation: all the tokens existing in the preceding steps are removed.
A token is created into each of the following steps.

Coil Graphic component of an LD program, used to represent the assignment of an
output variable.

Comment Text included in a program, having no impact on the execution of the program.

Comment
(SFC)

Text attached to an SFC step or transition, having no impact on the execution
of the program.

Common Range of defined words. Such objects can be used in any program of any
project.

Condition
(for a
transition)

Boolean expression attached to an SFC transition. The transition cannot be
cleared when its condition is false.

Connector
(FC)

FC graphic component, which represents a link, from a point of the flow chart to
a FC action or test. The graphic symbol of a jump is an small circle, numbered
with the reference of the destination element.

Constant
expression

Literal expression used to describe a constant value. A constant expression is
dedicated to one type.

Contact Graphic component of an LD program. It represents the status of an input
variable.

Conversion Filter attached to an input or output analog variable. The conversion is
automatically applied each time the variable is input or output.

Conversion
function

"C" written function which describes a conversion. Such a conversion can be
attached to any input or output analog variable.

Conversion
table

Set of points which defines a linear (by segment) conversion. Such a
conversion can be applied to any input or output analog variable.

Cross
references

Information calculated by the ISaGRAF workbench about the dictionary of
variables, and where those variables are used in a project.

Current
result (IL)

Result of an instruction in an IL program. The current result can be modified by
an instruction, or used to set a variable.

Cycle
timing

Duration of the target execution cycle.

Cycle to
cycle mode

Execution mode: in this mode, cycles are executed one by one, according to
the orders given by the user of the debugger.

Cyclic Attribute of a program which is always executed.

Glossary

CJ International D-411

Decision
(FC)

(Also called test) Flow chart symbol attached to a boolean expression. The flow
is directed to either YES or NO symbol output depending on the state of the
expression.

Defined
word

Unique identifier used to replace any expression in a program.

Delayed
operation
(IL)

Operation of an IL program, executed when the "(" instruction occurs, later in
the program.

Diary Text file which contains all the notes about the changes made to one program.
Each note is completed with its editing date.

Dictionary Set of internal, input or output variables, and defined words, used in the
programs of one project.

Edge Change of a boolean variable. A rising edge means a change from false to true.
A falling edge means a change from true to false.

End section Group of cyclic programs executed at the end of each target cycle.

Ending step Last step of the body of an SFC macro step. An ending step is not linked to any
following transition.

Expression Set of operators and identifiers which represents the evaluation of a value.

Father SFC
program

SFC program which controls other SFC programs, called its children.

FBD Functional Block Diagram language.

FC Stand for "Flow Chart".

Flow Chart Graphical language used to design a flow. The chart consists in action to be
performed and decision allowing the selection between various paths in the
flow. The Flow Chart language enables the drawing of loops to be executed on
consecutive cycles

Function
block

Graphic component of the FBD language, which represents a standard
elementary function from the ISaGRAF libraries.

Functional
Block
Diagram

Graphic language: the equations are built with standard elementary blocks from
the ISaGRAF library, linked together in the diagram.

Global Range of variables or defined words. Such objects can be used in any program
of one project.

Hierarchy Architecture of a project, divided into several programs. The hierarchy tree
represents the links between father programs and children programs.

Glossary

D-412 CJ International

I/O board Hardware resource. An I/O board is characterized by a type and a direction
(input or output). The parameters of an I/O board are described into the
ISaGRAF library.

I/O channel Single connection point of an I/O board. An I/O channel may receive one I/O
variable.

I/O
connection

Definition of the links between the variables of the application and the channels
of the boards existing on the target system.

I/O variable Variable connected to an input or output device. An I/O variable must be
connected on a channel of an I/O board.

Identifier Unique word used to represent a variable or a constant expression in the
programming.

IL Instruction List language.

Initial
situation

Set of the initial steps of an SFC program, which represents the context of the
program when it is started.

Initial step Special step of an SFC program, which is activated when the program starts.

Input Attribute of a variable. Such variables are linked to an input device.

Instruction Elementary operation of an IL program, entered on one line of text.

Instruction
List

Low level literal language, entered as a sequential list of elementary operations.

Integer Class of analog variables, stored in a signed integer 32 bit format.

Internal Attribute of a variable, which is not linked to an input or output device.

Jump to a
step

SFC graphic component, which represents a link, from a transition to a step.
The graphic symbol of a jump is an arrow, numbered with the reference of the
destination step.

Keyword Reserved word of the language.

Label (IL) Identifier put at the beginning of an IL instruction line, which identifies the
instruction, and can be used as an operand for the JMP operations.

Ladder
Diagram

Graphic language mixing contacts and coils, for the design of boolean
equations.

LD Ladder Diagram language.

Level 1 of
the SFC

Main description of an SFC program. Level 1 groups the chart (steps and
transitions), and the attached comments.

Level 2 of Detailed description of an SFC program. It is the description of the actions

Glossary

CJ International D-413

the SFC within the steps, and the boolean conditions attached to the transitions.

Library Set of hardware or software resources, which can be directly inserted in any
application.

Local Range of variables or defined words. Such objects can be used in only one
program of one project.

Locked I/O Input or output variable, disconnected logically from the corresponding I/O
device, by a "Lock" command sent by the user from the debugger.

Macro step SFC graphic component. A macro step is a unique group of steps and
transitions, represented as a unique symbol in the main chart, and described
separately.

Matrix Logical division of the editing area into rectangular cells, while editing a graphic
language program.

Message Type of variable. Such variables contains variable-length character strings.

Modbus Master-Slave protocol. An ISaGRAF target system can be a Modbus slave for
the link with an external system (such as supervisory systems) in a complete
architecture.

Modifier
(IL)

Single character put at the end of an IL operation keyword, which modifies the
meaning of the operation.

Network
address

Optional hexadecimal address freely defined for each variable. This address is
used by the Modbus protocol when the target system is connected to an
external system.

Non-stored
action

SFC action: it is a list of statements, executed at each target cycle, when the
corresponding step is active.

OEM key
code (I/O
board)

Hexadecimal 16 bit code defined for each I/O board of the ISaGRAF library.
The OEM code identifies the supplier of the board.

OEM
parameter
(I/O board)

I/O board parameter, defined by the designer of the board. It can be a constant,
or a variable parameter entered by the user during the I/O connection.

Operand
(IL)

Variable or constant expression processed by an elementary IL instruction.

Operation
(IL)

Basic instruction of the IL language. An operation is generally associated to an
operand in an instruction.

Output Attribute of a variable. Such variables are linked to an output device of the
target machine.

Glossary

D-414 CJ International

Parameter
(C function)

Value given as an input to a "C" function. A parameter is characterized by a
type.

Parameter
(I/O board)

User defined or constant parameter of a standard I/O board. A user defined
parameter is entered by the programmer during the I/O connection.

Parent
program

Program written in any language, which controls (calls) another non-SFC
program, called its sub-program.

Power rail Main left and right vertical rails at the extremities of an ladder diagram.

Program Basic programming unit in a project. A program is described with one language,
and is placed in the hierarchy architecture of the project.

Project Programming area, which groups all the information (programs, variables,
target code...) for one ISaGRAF application.

Pulse
action

SFC action: it is a list of statements executed only once when the
corresponding step is activated.

Range Set of programs that can use an object. Pre defined ISaGRAF ranges are
common, global and local.

Real Class of analog variables, stored in a floating IEEE single precision 32 bit
format.

Real board I/O board physically connected to an I/O device on the target machine.

Real time
mode

Run time normal execution mode: the target cycles are triggered by the
programmed cycle timing.

Reference
number
(SFC)

Decimal number (from 1 to 65535) which identifies an SFC step or transition in
an SFC program.

Register
(IL)

Current result of an IL sequence.

Return
value
of a sub-
program

Value returned by a sub-program at the end of its execution. The return value is
used in the operations of the owner program.

Run time
error

Application error detected by the ISaGRAF target system at run time.

Section Group of programs executed with the same dynamic rules.

Separator Special character (or group of characters) used to separate the identifiers in a
literal language. A separator may represent an operation.

Glossary

CJ International D-415

Sequential
Function
Chart

Graphic language: the process is described as a set of steps, linked by
transitions. Actions are attached to the steps. Transitions are detailed as
boolean conditions.

Sequential
section

Group of the programs of a project. The execution of those programs follows
the dynamic rules of the SFC language.

SFC Sequential Function Chart language.

ST Structured Text language.

Statement Basic ST complete operation.

Step Basic graphic component of the SFC language. A step represents a steady
situation of the process, and is drawn as a square. A step is referenced by a
number. The activity of a step is used to control the execution of the
corresponding actions.

String Set of characters stored in a message variable.

Structured
Text

High level structured literal language, combining assignments, high level
structures such as If/Then/Else, and function calls.

Sub-
program

Program written with any language but SFC, and called by another program,
called its owner program.

Target ISaGRAF target machine, which supports the ISaGRAF kernel software.

Target
cycle

Set of the operations executed each time the ISaGRAF target system is
activated. The cycles are triggered with programmable cycle timing.

Technical
note

User's guide for an element of the ISaGRAF libraries (C function or function
block, conversion function or I/O board). The technical note is written by the
designer of the element.

Test (FC) (Also called decision) Flow chart symbol attached to a boolean expression. The
flow is directed to either YES or NO symbol output depending on the state of
the expression.

Timer Type of variables. Such variables contain time values, and can be automatically
refreshed by the ISaGRAF system at run time.

Token
(SFC)

Graphical marker used to show the active steps of an SFC program.

Toolbox Small child window of an graphic editing tool window, which groups the main
buttons for the selection of the graphic components.

Top level
program

Program put at the top of the hierarchy tree. A top level program is activated by
the system.

Transition Basic graphic SFC component. A transition represents the condition between

Glossary

D-416 CJ International

different SFC steps. A transition is referenced by a number. A boolean
condition is attached to each transition.

Type Class of variables which have the same format. Basic types are boolean,
analog, timer and message.

Validity of a
transition

Attribute of a transition. A transition is validated when all the preceding steps
are actives.

Variable Unique representation of elementary data which is processed in the programs
of project.

Virtual
board

I/O board which is not physically connected to an I/O device of the target
machine.

General index

CJ International E-417

E. General index
-, B-238
$ sequence, B-171
%, A-85, B-172
&, B-235
) operation (IL), B-229
*, B-239
/, B-239
:=, A-127
:= (ST assignment), B-214
+, B-237
<, B-243
<=, B-244
<>, B-246
=, B-246
=1, B-236
>, B-244
>=, B-245
>=1, B-236
1 gain, B-233

A
ABS, B-271
Absolute value, B-271
Access right, A-147
ACOS, B-275
Action, A-42, A-46, B-182, B-187, B-

192, B-193, D-409
Activate, A-102
Activity duration, B-178, B-220
Activity of a step, B-177, B-178, B-190,

B-220, D-409
Addition, B-237
Addition of messages, B-251
Alias, A-55
ANA, B-248
Analog, B-169, B-170, B-173, C-353, C-

354, D-409
AND, B-235
AND_MASK, B-240

AnyTarget, A-96
appli.tst, C-316, C-325, C-336, C-344
appli.x6m, C-325, C-336
appli.x8m, C-316, C-344
Application size, C-350
Application size limit, C-317
Arc cosine, B-275
Arc tangent, B-277
Archive, A-22, A-135, A-141, A-148
Archive drive, A-142
Archive file, A-142
ARCREATE, B-298
Argument, A-139
Array creation, B-298
Array reading, B-299
Array writing, B-299
ARREAD, B-299
ARWRITE, B-299
ASCII, B-289
Assignment, B-233
Assignment (in ST,

=), B-214
ATAN, B-277
Attribute, D-409
AVERAGE, B-265

B
Background picture, A-113
Backup, A-22, A-135, A-141, A-142, A-

148
Backup file unit (VxWorks), C-328, C-

331
Bargraph, A-113
Base, B-169
Baud rate, A-31
Begin, A-23, B-191
Begin section, D-409
Beginning step, A-34, A-36, B-182, D-

409

General index

E-418 CJ International

Binary selector, B-288
BinaryFile, A-95
Bit field, A-114
Bitmap, A-113
BLINK, B-269
Board, A-83, A-84
Board parameter, A-85, A-137
Board type, A-84
Body of a macro step, B-182
BOO, B-247
Boolean, A-76, B-173, D-409
Boolean action, A-39, B-182, D-409
Breakpoint, A-103, A-105, D-409
BY, B-218

C
C code, A-93, A-135
C compiler, C-352, C-381
C function, A-140, C-352, C-358, D-409
C function block, A-140, C-352
C language, C-352, C-354, C-356, C-

360, C-368, C-370, C-381, D-409
C source code, C-356, C-361, C-370, C-

381, D-409
C source header, C-354, C-360, C-368,

C-381, D-409
CAL operator (IL), B-231
CASE, B-216
Cat, B-251
Cell, D-409
Channel, A-84, A-85, A-86, A-137, A-

149
Channel comment, A-85
CHAR, B-289
Child, A-24, B-165
Child SFC program, B-190, D-409
Clearing a transition, B-189, D-410
CLKRATE, C-327
CMP, B-263
Code generation, A-28, A-90
Coil, A-49, A-58, B-202, D-410
Coil direct, B-204
Coil inverted, B-204
Coil negative, B-207

Coil positive, B-206
Coil reset, B-206
Coil set, B-205
Coil type, A-53
Comment, B-174, B-194, B-210, B-225,

D-410
Comment (SFC), B-177, B-178, D-410
Common, A-141, D-410
Communication, A-31, A-104, A-118,

A-153, C-314, C-318, C-319, C-320,
C-323, C-327, C-332, C-339, C-348,
C-350

Communication logical number, C-320,
C-321, C-331

Comparison, B-263
Compile, A-28, A-90, A-134, A-138
Compiler message, A-93
Compiler option, A-28, A-119
Compiler options, A-91
Compression, A-142
Condition, B-192
Condition (for a transition), B-187, B-

188, D-410
Connection, A-59, A-60
Connector, A-44, B-193, D-410
Constant expression, B-169, D-410
Contact, A-49, A-58, B-202, D-410
Contact direct, B-202
Contact inverted, B-203
Contact negative edge, B-203
Contact Positive edge, B-203
Contact type, A-53
Control panel, A-101
Convergence, A-33, A-35, B-179
Conversion, A-88, D-410
Conversion ASCII -> character, B-289
Conversion character -> ASCII, B-289
Conversion function, A-140, C-352, C-

353, D-410
Conversion table, A-88, A-89, D-410
Convert to boolean, B-247
Convert to integer, B-248
Convert to message, B-250
Convert to real, B-249
Convert to timer, B-250

General index

CJ International E-419

Copy FBD, A-61
Copy FC, A-46
Copy LD, A-54
Copy library, A-134
Copy program, A-27
Copy SFC, A-36
Copy text, A-65
Copy variable, A-75
Corner, A-59
COS, B-277
Cosine, B-277
Counter down, B-259
Counter up, B-258
Counter up/down, B-260
Cross reference, A-99
Cross references, A-29, D-410
CTD, B-259
CTU, B-258
CTUD, B-260
Current result (IL), B-225, B-226, D-410
Curve, A-113, A-114, A-117
Cut FBD, A-61
Cut FC, A-46
Cut LD, A-54
Cut SFC, A-36
Cut text, A-65
Cut variable, A-75
Cycle, A-129, B-164, B-168, C-312
Cycle profiler, A-124
Cycle time, C-317, C-326, C-337, C-346
Cycle timing, A-28, A-103, A-124, B-

252, C-354, C-358, C-365, D-410
Cycle to cycle, A-28, A-103
Cycle to cycle mode, D-410
Cyclic, B-164, D-410

D
DAY_TIME, B-297
DDE, A-109
DDE (NT target), C-344, C-348, C-350
Debug, A-30
Debug workspace, A-30
Debugger, A-101, A-121
Decimal, B-170

Decision, A-42, A-45, A-46, B-192, D-
411

Declaration, A-26, A-72
Defined word, A-72, A-76, B-175, D-

411
Delayed operation (IL), B-226, B-229,

D-411
DELETE, B-290
Delete board, A-84
Delete FBD, A-61
Delete FC, A-46
Delete LD, A-54
Delete library, A-134
Delete program, A-27
Delete SFC, A-36
Delete text, A-65
Deleted style, A-63
DERIVATE, B-268
Descriptor, A-19, A-29
Diagnosis, A-121
Diary, A-26, D-411
Dictionary, A-26, A-67, A-72, A-99, A-

139, C-354, C-365, D-411
Differentiation, B-268
Direct coil, B-204
Direct contact, B-202
Directly represented variable, A-85, B-

172
Directory, A-153
Disabled transition, B-189
Disk, A-12
Dissociate, A-115
Divergence, A-33, A-35, B-179
Divergence (FBD), B-197
Division, B-239
DO, B-217, B-218
Document, A-20, A-29, A-144
Download, A-102
Dump, A-110

E
Edge, D-411
Edge contact, B-203
Edit project descriptor, A-20

General index

E-420 CJ International

ELSE, B-215, B-216
ELSIF, B-215
Embedded source code, A-119
EN, A-50
Enabled transition, B-189
End, A-23, A-132, B-191
End of cycle control (VxWorks), C-328,

C-331
End section, D-411
END_CASE, B-216
END_FOR, B-218
END_IF, B-215
END_REPEAT, B-217
END_WHILE, B-217
Ending step, A-36, B-182, D-411
ENO, A-50
EPROM, C-325, C-336
EQ operator (IL), B-246
Error, A-93
Error message, A-70
Ethernet, A-31
Execute one cycle, A-103
Execution order, A-61
EXIT, B-219
Exit key (NT target), C-346
Exit key (on target), C-317
Exponent, B-272
Export, A-79
Export function, A-28
Export function block, A-28
Expression, D-411
EXPT, B-272

F
F_CLOSE, B-302
F_EOF, B-302
F_ROPEN, B-300
F_TRIG, B-256
F_WOPEN, B-301
FA_READ, B-304
FA_WRITE, B-305
FALSE, A-76, B-169
Father SFC program, B-190, D-411

FBD, A-57, B-196, C-359, C-367, D-
411

FBD comment, A-59
FBD editor, A-57, A-67
FC, A-42, B-191, D-411
FC comment, A-44
FC connector, A-44
FC editor, A-42
FC link, A-44
FC sub-program, A-24, B-193
FEDGE, B-213
File

end of file detection, B-302
File close, B-302
File open, B-300, B-301
File read, B-304, B-307
File write, B-305, B-309
Find, A-37, A-46, A-54, A-61, A-65, A-

70
FIND, B-291
Flow, A-44, B-191, B-193, B-195
Flow Chart, A-42, B-191, D-411
Flow Chart editor, A-42
FM_READ, B-307
FM_WRITE, B-309
Font, A-146
FOR, B-218
From, A-97
Function, A-23, A-26, A-134, A-138, B-

165
function block, B-212
Function block, A-23, A-26, A-50, A-58,

A-62, A-73, A-76, A-134, B-166, B-
196, C-365, D-411

Function block call in IL, B-231
Function block instance, C-365
Function call (ST), B-211
Function call in IL, B-230
Functional Block Diagram, B-196, D-

411

G
gain 1, B-233
Gallery, A-41

General index

CJ International E-421

GE operator (IL), B-245
GFREEZE, B-190, B-222
GKILL, B-190, B-222
Global, B-171, D-411
Go to, A-37, A-46, A-65
Goto, A-130
Graphic, A-113, A-117
Greater or equal, B-245
Greater than, B-244
Grid, A-51
Group, A-13, A-21, A-115
GRST, B-190, B-223
GSTART, B-190, B-221
GSTATUS, B-190, B-223
GT operator (IL), B-244

H
Hierarchy, A-23, A-26, B-164, B-190,

D-411
History, A-20, A-29
HYSTER, B-266
Hysteresis, B-266, B-267

I
I/O, A-29, A-83, A-84, A-85, A-99, A-

103, A-122, A-135, A-136, A-137, A-
149, A-150

I/O board, A-137, D-412
I/O channel, D-412
I/O channel OPERATE, B-253
I/O complex equipment, A-136
I/O configuration, A-19, A-135
I/O connection, A-83, D-412
I/O specific, B-192, B-193
I/O variable, D-412
I/O wiring, A-29
Icon, A-114
Icons, A-13
Identifier, D-412
If, A-131
IF, B-194, B-215
IL, A-65, A-112, B-187, B-188, B-225,

D-412

IL editor, A-67
Import, A-79
Import function, A-27
Import function block, A-27
Initial situation, B-178, B-189, D-412
Initial step, B-178, B-189, D-412
Input, A-83, A-99, A-122, A-124, A-

137, B-168, D-412
INSERT, B-292
Insert coil, A-52
Insert contact, A-52
Insert FBD, A-62
Insert FBD element, A-59
Insert FC element, A-43
Insert file, A-65
Insert rung, A-53
Insert slot, A-83
Insert variable, A-38
Installation, A-12
Instance, A-73, A-76
Instruction, B-225, D-412
Instruction List, B-225, D-412
Integer, A-76, B-169, D-412
INTEGRAL, B-267
Interface, A-26, A-139
Internal, D-412
Inverted coil, B-204
Inverted contact, B-203
IO variable, C-353, C-354
Is equal, B-246
Is not equal, B-246
ISA task (OS9), C-318
ISA.EXE, C-314
ISA.O (VxWorks), C-327, C-328
isa_main, C-329, C-332
isa_register_slave, C-328
ISAGRAF.INI (NT target), C-338
ISAKER task (OS9), C-319
ISAKERET.O (VxWorks), C-327, C-

330
ISAKERSE.O (VxWorks), C-327, C-

330
ISAMOD (VxWorks), C-327
ISAMOD.EXE, C-314
ISANET task (OS9), C-320

General index

E-422 CJ International

ISASSR.O (VxWorks), C-327
ISATST task (OS9), C-319
ISAx0, C-324
ISAx1, C-315, C-324
ISAx1 (NT target), C-343
ISAx1 ·(VxWorks), C-335
ISAx2, C-324
ISAx3, C-324
ISAx4, C-324
ISAx5, C-324
ISAx6, C-316, C-324
ISAx6 (NT target), C-343
ISAx6 (VxWorks), C-335

J
JMP operator (IL), B-228
Jump, A-50, A-58, B-197, B-208
Jump to a step, A-34, B-179, D-412

K
Keyword, B-171, B-226, D-412

L
Label, A-58, A-130, B-197, B-208
Label (IL), B-225, D-412
Ladder Diagram, B-200, D-412
Language, A-24, B-167
LD, A-40, A-47, A-49, A-57, B-200, D-

412
LD editor, A-49
LD operator (IL), B-227
LE operator (IL), B-244
LEFT, B-293
Less or equal, B-244
Less than, B-243
Level 1 of the SFC, B-177, B-178, D-

412
Level 2, A-37, A-46
Level 2 of the SFC, B-182, D-413
Level of protection, A-147
Library, A-22, A-27, A-28, A-84, A-99,

A-123, A-133, A-141, C-352, D-413

Library manager, A-133, C-352, C-354,
C-358, C-366

LIM_ALRM, B-267
LIMIT, B-283
Link, A-31, A-59, A-60, A-104, A-118,

A-153, B-191, B-193, B-195
Link (FBD), B-197
Link (LD), B-200
Link (SFC), B-178
List of variables, A-110, A-112, A-115
Local, A-139, B-171, D-413
Lock, A-103, A-150
Locked I/O, D-413
LOG, B-273
Logarithm, B-273
LT operator (IL), B-243

M
Macro step, A-34, A-36, B-181, D-413
Make, A-28, A-90
Mask on integer bits (and), B-240
Mask on integer bits (not), B-242
Mask on integer bits (or), B-241
Mask on integer bits (xor), B-242
Matrix, D-413
MAX, B-283
Maximum, B-283
Memory, A-12
Message, A-76, A-110, B-170, B-174,

D-413
Message concatenation, B-251
Message length, B-294
Metafile, A-113
MID, B-294
MIN, B-282
Minimum, B-282
MLEN, B-294
MOD, B-284
Modbus, D-413
MODBUS, A-78, C-387
Modification tracking, A-63
Modified style, A-63
Modifier (IL), B-225, B-226, D-413
Modify variable, A-75

General index

CJ International E-423

Modulo, B-284
Move board, A-83
Move FBD, A-60
Move FC, A-45
Move program, A-26
Move project, A-19
Move SFC, A-36
Move SpotLight, A-115
MSG, B-250
Multi-applications, C-324, C-335, C-343
Multiplexer with 4 entries, B-285
Multiplexer with 8 entries, B-286
Multiplication, B-239
MUX4, B-285
MUX8, B-286

N
N qualifier, A-38
NE operator (IL), B-246
NEG, B-234
Negated link, A-59, A-60
Negation, B-234
Negation (FBD), B-198
Negative coil, B-207
Negative contact, B-203
Network address, A-74, A-75, A-78, D-

413
New function, A-25
New function block, A-25
New library element, A-133
New program, A-25
New project, A-19
New rung, A-51
New variable, A-75
Non stored, A-38
Non-stored action, B-184, D-413
Normal style, A-63
NOT, A-59, A-60
NOT_MASK, B-242
NT (protection key), A-14

O
ODD, B-287

OEM key code, A-137, D-413
OEM parameter, A-137
OEM parameter (I/O board), D-413
OF, B-216
Off-delay timing, B-262
On Line, A-30, A-101
On line modification, A-103, A-106
Open program, A-25, A-100
Open project, A-20
Operand (IL), B-225, B-226, D-413
OPERATE I/O channel, B-253
Operation (IL), B-225, B-226, D-413
Optimiser, A-92
OR, A-57, B-236
OR_MASK, B-241
OS-9 shell, C-326
Other program, A-68
Output, A-83, A-99, A-122, A-137, B-

168, D-413
Output window, A-70

P
P qualifier, A-38
P0 qualifier, A-39
P1 qualifier, A-39
Page, A-146
Parameter, A-26, A-139
Parameter (C function), C-359, D-414
Parameter (function block), C-367
Parameter (I/O board), D-414
Parent program, D-414
Parenthesis, B-211, B-225, B-226
Parity, A-31
Parity test odd/even, B-287
Password, A-20, A-87, A-134, A-147
Paste FBD, A-61
Paste FC, A-46
Paste LD, A-54
Paste SFC, A-36
Paste text, A-65
Paste variable, A-75
Point, A-88, A-89
Positive coil, B-206
Positive contact, B-203

General index

E-424 CJ International

POW, B-273
Power calculation, B-273
Power rail, A-49, A-50, A-57, B-200, D-

414
Print, A-20, A-29, A-74, A-128, A-144,

A-146
Print program, A-68
PrintTime, A-129
Priority, C-348
Priority level (NT target), C-342
Program, A-23, A-67, A-124, B-164, D-

414
Program comment, A-25
Program manager, A-23
Program syntax, A-67
Project, A-19, A-141, D-414
Project descriptor, A-20, A-29
Project document, A-20, A-29, A-144
Project group, A-21
Project list, A-19, A-21
Project manager, A-19
Project separators, A-19
PROM, C-325, C-336
Protection, A-20, A-87, A-134, A-147
Protection key, A-14
Protection level, A-147
Pulse, A-38
Pulse action, B-183, D-414
Pulse timing, B-262

Q
Quick LD, A-40, A-47, A-49
Quick LD editor, A-67

R
R (reset) operator (IL), B-228
R_TRIG, B-256
RAND, B-287
Random number, B-287
Range, A-72, A-74, D-414
Real, A-76, B-170, D-414
REAL, B-249
Real board, A-84, D-414

Real time, A-28, A-103
Real time mode, D-414
REDGE, B-212
Reference number, B-177, B-178, B-

179, B-182, D-414
Register (IL), B-225, D-414
Rename library, A-134
Renumber, A-37, A-46
REPEAT, B-194, B-217
Replace, A-37, A-46, A-54, A-61, A-65
REPLACE, B-295
Resize FC, A-45
Resize SpotLight, A-115
Resource, A-29, A-94
Resource definition file, A-94
Restore, A-22, A-135, A-141, A-142, A-

148
RET operator (IL), B-229
Retain, C-394
Return, A-50, A-58
RETURN, B-197, B-207, B-215
Return value, D-414
RIGHT, B-296
ROL, B-279
ROR, B-280
Rotation left, B-279
Rotation right, B-280
RS, B-255
Run time error, B-252, D-414
Rung, A-49, A-50, A-54, A-60
Rung comment, A-51, A-55
Rung label, A-52
Run-time, A-28
Run-time error, A-28, A-104

S
S (set) operator (IL), B-227
Save list, A-110
Scientific, B-170
Script, A-125, A-127
Section, A-23, D-414
SEL, B-288
Select FBD element, A-59
Select FC element, A-44

General index

CJ International E-425

Select SpotLight, A-115
SEMA, B-257
SEMAPHORE, B-257
Separator, B-210, D-414
Sequential, A-23, B-164, B-177
Sequential Function Chart, B-177, D-

415
Sequential section, D-415
Serial link, A-31
Set coil, B-205
SFC, A-32, A-91, A-105, A-146, B-177,

C-359, D-415
SFC child, A-24, A-39, B-165
SFC editor, A-32, A-67
SFC evolution rules, B-189
SFC gallery, A-41
Shift left, B-281
Shift right, B-281
SHL, B-281
SHR, B-281
SIG_GEN, B-270
Signal generator, B-270
Simulator, A-30, A-122, A-124, A-125,

C-353, C-358, C-365
SIN, B-278
Sine, B-278
Slave number, A-31, C-314, C-318, C-

319, C-320, C-321, C-328, C-330, C-
339, C-347, C-350

SlavesLink, C-333
Slot, A-84, A-86
Sort, A-75
Source code, A-135
SpotLight, A-113
Spy, A-110, A-112, A-113
Spy variable, A-110
SQRT, B-274
Square root, B-274
SR, B-254
SSR[x][1].space, C-336
ST, A-40, A-65, A-112, B-210, C-359,

C-366, D-415
ST editor, A-67
ST operator (IL), B-227
Stack of integer analogs, B-264

STACKINT, B-264
Start, A-102
Statement, B-210, D-415
Step, A-32, A-37, A-105, B-177, D-415
Stop, A-102
String, B-170, D-415
String length, B-294
Structured Text, B-210, D-415
Style, A-63, A-115
Sub-program, A-24, B-165, B-186, B-

189, B-198, D-415
Sub-Program, B-193
Sub-program call (ST), B-211
Sub-program call in IL, B-230
Sub-string delete, B-290
Sub-string extraction (left), B-293
Sub-string extraction (middle), B-294
Sub-string extraction (right), B-296
Sub-string find, B-291
Sub-string insert, B-292
Sub-string replace, B-295
Subtraction, B-238
Symbol table, A-155
Symbols (application symbols), C-316
SYSTEM, B-252
System clock rate (VxWorks), C-327
SYSTEM function, C-395

T
Table of contents, A-144
TAN, B-279
Tangent, B-279
Target, A-91, A-96, D-415
Target architecture, C-313
Target cycle, D-415
Technical note, A-84, A-134, C-352, C-

354, C-359, C-366, D-415
Terminal mode, C-326
Test, A-42, A-45, A-46, A-101, A-122,

B-192, D-415
Text display, A-113
Text editor, A-65
TextFile, A-96
THEN, B-215

General index

E-426 CJ International

Time unit, B-170
Time-out, A-31
Timer, A-76, B-170, B-174, D-415
TMR, B-250
To, A-97
TO, B-218
TOF, B-262
Token (SFC), B-177, D-415
Toolbox, D-415
Tools menu, A-29
Top level, A-23
Top level program, D-415
Touch, A-28, A-90
TP, B-262
Transition, A-32, A-37, A-105, B-178,

D-415
TRUE, A-76, B-169
TRUNC, B-275
Truncate decimal part, B-275
TSK_FUNIT, C-328, C-331
TSK_NBTCKSCHED, C-328, C-331,

C-337
tst_main_ex, C-332
TSTART, B-220
TSTOP, B-221
Type, A-72, A-74, A-83, A-99, A-137,

B-169, D-416

U
ULongData, A-94
Unlock, A-103
UNTIL, B-217
Update, A-103
Upload, A-118

Upload (options), A-119
Upload (prepare), A-119

V
Validity of a transition, D-416
Variable, A-26, A-38, A-53, A-59, A-61,

A-65, A-72, A-99, A-104, A-139, A-
149, B-171, B-196, D-416

Variable name, B-171
VarList, A-95
Verify, A-28, A-90, A-138
Version number, A-102
Virtual board, A-84, A-150, D-416
Virtual boards (simulation with NT

target), C-348, C-350
Virtual boards (simulation with NT), C-

341

W
Wait, A-129
WHILE, B-194, B-217
WISAKER.EXE (NT), C-338

X
XOR, B-236
XOR_MASK, B-242

Z
Zoom, A-48, A-55, A-62

General index

CJ International E-427

General index

E-428 CJ International

	User's guide
	Getting started
	Installing ISaGRAF
	Using on-line information
	A sample application

	Managing projects
	Creating and working with projects
	Working with several groups of projects
	Options
	Tools

	Managing programs
	The components of a project
	Working with programs
	Running the code generation tools
	Other ISaGRAF tools
	Adding commands to the Tools menu
	Simulating and debugging the application

	Using the SFC editor
	SFC language main topics
	Entering an SFC chart
	Working on an existing SFC chart
	Entering the level 2 programming
	Using the SFC gallery

	Using the Flow Chart editor
	Basics of the FC language
	Entering a Flow Chart
	Working on an existing chart
	Entering level 2 programs
	Programming level 2 with Quick LD
	Display options

	Using the Quick LD editor
	Basics of the LD language
	Entering an LD diagram
	Working on an existing diagram
	Display options

	Using the FBD/LD editor
	Basics of the FBD/LD languages
	Entering an FBD diagram
	Working on an existing diagram
	Display options
	Styles and modification tracking

	Using the text editor
	Editing commands
	Options

	More about program editors
	Calling other ISaGRAF tools
	Parameters of the program
	Other commands of the "File" menu
	Updating the program diary
	Selecting a variable from dictionary
	The output window

	Using the dictionary editor
	The dictionary main window
	Managing variables
	Description of objects
	Quick declaration
	Modbus SCADA addressing map
	Exchanging information with other applications

	Using I/O connection editor
	Defining I/O boards
	Setting board parameters
	Connecting I/O channels
	Directly represented variables
	Numbering
	Setting individual protections

	Creating conversion tables
	Main commands
	Entering points of a table
	Rules and limits

	Using the code generator
	Main commands
	Compiler options
	Producing C source code
	Viewing information
	Defining resources

	Cross References
	Using the graphic debugger
	The debugger window
	Controlling the application
	Options
	"Write" commands
	On line modification
	DDE exchanges

	Spying Lists of variables
	Debugging ST and IL programs
	Debugging with SpotLight
	Building the graphic layout
	The list layout
	Defining the item style
	Commands of the "File" menu
	Note for ISaGRAF V3.2 users

	Uploading applications
	Uploading a project
	Communication settings
	Preparing a project for upload
	How zipped source are stored in the target
	Memory requirements on the target
	About uploaded project
	Compatibility issues

	Using the Diagnosis tool
	Using the ISaGRAF simulator
	Links with the debugger
	I/O simulation
	Library components
	Options
	Saving and restoring input states
	The cycle profiler
	Simulation scripts

	Using the Library Manager
	Managing library elements
	I/O configuration
	I/O complex equipment
	I/O board
	Functions and blocks written in IEC languages
	"C" Functions and function blocks
	Conversion functions

	Using the Archive utility
	Calling the archive manager
	Options
	Backup and restore
	Archive files

	Printing a complete document
	Customising the table of contents
	Options

	Password protection
	Advanced programming techniques
	More about ISaGRAF tools
	Locked I/Os and virtual I/Os
	PC-PLC link validation
	ISaGRAF directories
	Application symbols
	Limits of ISaGRAF "LARGE" (WDL) workbench

	Language reference
	Project architecture
	Programs
	Cyclic and sequential operations
	Child SFC and FC programs
	Functions and sub-programs
	Function blocks
	Description language
	Execution rules

	Common objects
	Basic types
	Constant expressions
	Boolean constant expressions
	Integer analog constant expressions
	Real analog constant expressions
	Timer constant expressions
	Message string constant expressions

	Variables
	Reserved keywords
	Directly represented variables
	Boolean variables
	Analog variables
	Timer variables
	Message string variables

	Comments
	Defined words

	SFC language
	SFC chart main format
	SFC basic components
	Steps and initial steps
	Transitions
	Oriented links
	Jump to a step

	Divergences and convergences
	single divergences
	Double divergences

	Macro steps
	Actions within the steps
	Boolean actions
	Pulse actions
	Non-stored actions
	SFC actions
	Calling function and function blocks from an action
	IL convention

	Conditions attached to transitions
	ST convention
	LD convention
	IL convention
	Calling functions from a transition

	SFC dynamic rules
	SFC program hierarchy

	Flow Chart language
	FC components
	FC complex structures
	FC dynamic behaviour
	FC checking

	FBD language
	FBD diagram main format
	RETURN statement
	Jumps and labels
	Boolean negation
	Calling function or function blocks from the FBD

	LD language
	Power rails and connection lines
	Multiple connection
	Basic LD contacts and coils
	RETURN statement
	Jumps and labels
	Blocks in LD

	ST language
	ST main syntax
	Expression and parentheses
	Function or function block calls
	ST specific boolean operators
	ST basic statements
	ST extensions
	GSnnn(progname).x

	IL language
	IL main syntax
	IL operators

	Standard operators, function blocks and functions
	Standard operators
	Standard function blocks
	Standard functions

	Target User's guide
	Introduction
	Installation
	Getting started with ISaGRAF DOS target
	Running ISaGRAF: ISA.EXE
	Specific features

	Getting started with ISaGRAF OS9 target
	Running the ISaGRAF single task: isa
	Running the ISaGRAF multitasks: isaker, isatst, isanet
	Running the kernel task: isaker
	Running the serial communication task: isatst
	Running the Ethernet communication task: isanet
	Examples:

	Specific features

	Getting started with ISaGRAF VxWorks target
	The system resource manager: isassr.o
	Common features to isa.o, isakerse.o and isakeret.o
	Running the ISaGRAF single task: isa.o
	Running the ISaGRAF multitasks: isakerse.o and isakeret.o
	Specific features

	Getting started with ISaGRAF NT target
	Running ISaGRAF
	General information on options
	Specific features
	User interface

	"C" programming
	Overview
	"C" Conversion functions
	"C" Functions
	"C" FUNCTION BLOCKS
	Compiling and linking techniques

	Modbus link
	MODBUS network and protocol
	ISaGRAF implementation

	Power fail management
	Basics
	Application variables backup
	Program state backup

	Appendix: Error list and description

	Glossary
	General index
	Table of contents

