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There's been a lot of buzz lately about concurrency. The reason for this is due mostly to major 

hardware vendors' plans to add more processor cores to both client and server machines, and 

also to the relatively unprepared state of today's software for such hardware. Many articles 

focus on how to make concurrency safe for your code, but they don't deal with how to get 

concurrency into your code in the first place. 

Both tasks are important and can be difficult for different reasons. Randomly creating new 

threads and sprinkling calls to ThreadPool.QueueUserWorkItem all over your codebase isn't 

going to lead to good results. You'll need to take a more structured approach. First, let's take 

quick stock of the situation. 

Over the course of the 90s, parallelism has grown to become a silent enabler of software 

scalability in newer installments of processor architectures. While most of us didn't even have 

to realize it was there, or even write code differently to take advantage of it, parallelism has 

nevertheless been used. Instruction-level parallelism (ILP) techniques are layered underneath 

existing sequential programming models, carried out at the granularity of an individual 

instruction stream, which employs branch prediction, speculation, and dataflow out-of-order 

execution. Pipelining, for example, can lead to 25-30 percent performance increases, 

depending on the depth of the pipeline and workload. Such techniques, when coupled with 

clock-speed increases, ensured that software continued to run faster with each generation of 

hardware while requiring minimal additional work of the software. 

While chip vendors still expect Moore's Law to continue (doubling the number of transistors 

in processors every 18 months or so), what engineers can do with those transistors has begun 

to shift. Increasing the clock speed of new chips at the same rate seen in the past is simply not 

possible, primarily because of the heat generated. However, it is possible to use the additional 

transistors to put more low-latency memory and, if the software can take it, more cores on the 

chip. Note the qualification. Much software today assumes a single-threaded view of the world, 

and this needs to change if you expect to make use of those extra cores. 

In some sense, a large chunk of the responsibility for making software go faster with the 

next generation of hardware has been handed off from hardware to software. That means in 

the medium-to-long term, if you want your code to get faster automatically, you'll have to 

start thinking about architecting and implementing things differently. This article is meant to 

explore these architectural issues from the bottom up, and aims to guide you through this new 
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world. In the long run, new programming models are likely to appear that will abstract away a 

lot of the challenges you will encounter. 

 

A Tale of Hardware Threads 

Symmetric multiprocessor (SMP) computers capable of running Windows® have been on the 

market for years, although typically found only in servers and high-end workstations. These 

machines contain one or more boards, each board typically containing multiple sockets, with 

each socket holding a complete CPU. Each CPU in this regard has its own on-die caches, 

interrupt controllers, volatile state (registers), and a processor core, including its own 

execution units. The Windows scheduler maps individual software threads to individual CPUs, 

which in this case are entirely independent. I'll call these CPUs single-threaded in the hardware 

thread sense. Because each unit is relatively isolated (aside from shared memory architecture, 

which I'll discuss shortly), you can improve execution throughput for each new CPU added to a 

machine if enough software threads are offered up for execution. 

Intel introduced Hyper-Threading (HT) for the Pentium 4 processor series. HT packs an extra 

set of interrupt controllers and volatile state onto a single physical CPU in a single socket, 

enabling multiple software threads to execute in parallel on distinct logical processors, 

although they share the same set of execution units. This approach is similar to that taken 

earlier by supercomputer companies such as Tera. Due to latencies associated with accessing 

memory, among other things, the instructions between the two logical CPUs threads can 

frequently interleave, leading to a parallel speedup. In this sense, HT-enabled CPUs are two-

threaded because the Windows scheduler can map two runnable threads to an HT processor 

simultaneously. In reality, HT is suitable for some workloads, and has been cited as leading to 

a 15-40 percent improvement on real-world programs. 

Multi-core technology, which is already readily available for client and server machines alike, 

replicates the per-CPU architecture on a single chip, enabling a single socket to contain 

multiple full CPUs. Dual-core is available now (two cores on a chip), with 4-core, 8-core, and 

beyond on the horizon. Unlike HT, multi-core CPUs have individual execution units, and 

therefore are generally capable of more substantial parallel speedups. Much like individual 

CPUs, each core is logically distinct aside from shared memory architecture. This means it's 

possible that twice as many cores doubles throughput. In this sense, the number of cores is 

the number of threads that can be running simultaneously. Of course, these technologies are 

not mutually exclusive. A 4-socket, 4-core HT computer amounts to 32 hardware threads. 

That's quite a bit of horsepower. 

 

Memory Hierarchies 

Memory interaction is often a substantial factor in the performance of modern software. Your 

typical computer contains a fairly complex memory system, consisting of multiple levels of 

cache between the processors and the actual DRAM banks. SMP machines traditionally have 
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consistent hierarchical designs, although more exotic architectures are available and could 

become more prevalent with the increasing availability of massively parallel machines. One 

such exotic architecture is Non-Uniform Memory Access (NUMA), where multiple main 

memories are dedicated to nodes of multiple CPUs. Cross-node communication is possible, 

although extremely expensive. Various parts of Windows and the CLR change strategy to 

account for NUMA. Intelligent parallel code often has to do the same. 

Cache-friendly concurrent software uses memory intelligently and efficiently, exploiting 

locality to reduce the total number of cycles required for a given computation. Locality comes 

in two major flavors. First is spatial locality: data close together in memory will be used close 

together in a program's operations. While bigger cache lines mean you may end up pulling 

more data than necessary into cache, a program with good spatial locality will take advantage 

of this by subsequently accessing other addresses that were already pulled into cache. The CLR 

garbage collector maximizes spatial locality by doing allocations contiguously, for example. 

Temporal locality is the concept that memory stays in cache for a reason: if it was recently 

accessed, you can expect that it might be accessed again soon. Modern caches use eviction 

policies that optimize using pseudo-least-recently-used (LRU) techniques. 

Well-written parallel software can even observe super-linear speedups occurring from 

keeping more data in cache and sharing less with other threads. That is, on an n-CPU machine, 

the software might run more than n times faster than on a single CPU machine. On the other 

hand, the cost of a "cache miss" is fairly expensive. This is illustrated further by the relative 

comparison of cache-access costs in Figure 1. As with all rules of thumb, take the numbers 

with a grain of salt and pay closer attention to the orders of difference. 
 

Figure 1 Logarithmic Graph of Comparative Access Costs 

Parallel software in particular needs to take notice of locality. Two threads that continually 

update data on intersecting cache lines can cause cache line ping-pong, where the processors 

spend an extraordinarily high amount of time acquiring exclusive access to a cache line, which 

involves invalidating other processors' copies. Some cache line interactions are obvious, since 

there is real data sharing at the application level. Other interactions are less obvious and result 

from data residing close together in memory, which unfortunately can't be easily determined 

simply by examining the algorithm. 
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Similarly, thread migration—which I'll discuss in more detail later—can cause a thread to 

move to another processor and subsequently have to acquire and invalidate all of the cache 

lines it once held on the original processor. This cache migration can cost on the order of 50 

times the cost of an on-die cache hit for each line access requiring migration. On NUMA 

machines this can be disastrous due to the cost of inter-node communication, though the 

migration problem can be partially avoided through clever usage of processor affinity. These 

are costs to be aware of when writing highly parallel code. The new 

GetLogicalProcessorInformation API in Windows Vista™ enables you to inquire about the 

machine architecture, including cache layout and NUMA information, which could be used 

dynamically during scheduling, for example. 

 

Units of Work 

To get your software to execute in parallel, clearly you need to somehow break up the 

problems encoded in your algorithms into sub-problems: smaller units of work that I will refer 

to as tasks. A task takes some input and produces some output, whether that output is a piece 

of data or an action. It can execute in isolation, although it may have subtle dependencies on 

state or ordering that might not be evident at first. 

Functions pretty much already do this, you might say. But unlike ordinary functions, which 

are defined statically as you write your code, to write software that scales given an arbitrary 

number of CPUs, the boundaries of a task must often be discovered dynamically. Or at least 

the tasks must be presented to an intelligent architecture that knows whether it is profitable to 

execute a task in parallel. And furthermore, to make a task execute in parallel, your code has 

to somehow arrange for it to be called in such a manner rather than simply calling it 

sequentially on the current thread. On Windows, this typically means running on a separate OS 

thread. On the CLR, it means perhaps queueing the work to execute on the ThreadPool. 

The physical unit of execution on Windows is a thread. Each process begins life with a single 

thread, but of course the code running in that process is free to introduce and later tear down 

additional threads as it sees fit. The Windows scheduler is responsible for assigning threads to 

hardware threads and allowing the code to execute. If there are more threads than there are 

hardware threads, the scheduler has to be a little more sophisticated; it picks the runnable 

thread of the highest priority (subject to clever anti-starvation algorithms), and lets it execute 

until a quantum has expired. Once the quantum expires, a context switch occurs and the same 

scheduling algorithm chooses the next thread to execute. The length of a quantum varies 

based on the OS type and configuration, but it will generally be around 20ms for client 

platforms and 120ms for server platforms. A thread can block as a result of performing I/O, 

attempting to acquire a contended lock, and so on. In this case, just as with a context switch, 

the scheduler will pick a new thread to execute. 

As mentioned earlier, it's crucial to performance of traditional SMP systems that as much 

data reside in cache as possible. "Data" in this sense refers to the code being executed, the 
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heap data being manipulated by the thread's algorithms, and the thread's stack. As threads 

are switched into and out of CPUs, Windows automatically employs so-called ideal processor 

affinity in an attempt to maximize cache efficiency. For example, a thread running on CPU 1 

that gets context switched out will prefer to run again on CPU 1 in the hope that some of its 

data will still reside in cache. But if CPU 1 is busy and CPU 2 is not, the thread could be 

scheduled on CPU 2 instead, with all the negative cache effects that implies. 

 

Know the Costs 

Threads aren't free. They incur CPU and memory costs, which you should keep in mind. If 

your goal is to use concurrency to increase the scalability of your algorithms, presumably you'll 

also be spending as much (if not more) time doing traditional performance profiling work. 

Running a sloppy algorithm in parallel will do nothing but make your sloppy algorithm use up 

more system resources. Ensuring that the most important hot sections of your code are as 

efficient as possible in the sequential case is crucial for taking advantage of parallel scaling. 

To determine what costs you can afford, there are some general rules of thumb. The cost of 

creating a Windows thread is approximately 200,000 cycles, whereas the cost of destroying 

one is about 100,000 cycles. So right there you know that if your intention is to spin up a new 

thread to execute 100,000 cycles' worth of work, you're paying a hefty overhead—and, if I had 

to guess, you won't observe any type of speedup either. 

The memory overhead varies based on configuration. But most managed threads will 

reserve 1MB of user stack space and will commit the entire amount, which means the memory 

must be backed physically either in real RAM or the page file. There is also a small set of 

kernel stack pages required, three pages on 32-bit systems and six pages on 64-bit systems. 

An additional 10-20KB of virtual memory is used by other data structures, but this is dwarfed 

by the memory required by the stack. GUI threads are slightly more expensive still, because 

they must set up additional data structures such as the message queue. 

Now, if you end up with too many threads of equal priority, you will have to context switch 

often. A context switch costs 2,000–8,000 cycles, depending on the system load and 

architecture, and involves saving the current volatile state, selecting the next thread to run, 

and restoring the next thread's volatile state. This may not sound like a lot, especially when 

compared to the duration of a quantum and the cost of subsequent cache misses, but it 

represents pure overhead that is taken away from executing application code. 

Given that you'd like to minimize the cost of introducing and destroying new OS threads and 

the negative consequences of accidentally introducing "too much" work, you should consider 

using the CLR's thread pool. It hides clever thread injection and retirement algorithms beneath 

a simple interface, amortizing the cost of creating and destroying threads over the life of your 

program. And using the ThreadPool class is simple. 

That said, even using the ThreadPool costs something. Invocations to QueueUserWorkItem 

incur a sequential cost to the caller, and the infrastructure that dispatches work from the 
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pending work item queue also imposes an overhead to parallel work that is being executed. 

For coarse-grained parallelism, these costs are so small that you're likely not to notice them. 

But for extremely fine-grained parallelism, these costs could become a significant scalability 

bottleneck. You might consider building your own lightweight ThreadPool out of lock-free data 

structures, avoiding some of the costs incurred by a general purpose ThreadPool, like ensuring 

fairness between AppDomains, capturing and restoring security information, and so forth. For 

most uses, however, the stock ThreadPool is up for the task. 

 

Defining Boundaries  

Figuring out how to split up your work is not a negligible activity. When dealing with CPU-

bound workloads, the job is focused more on avoiding performance overhead associated with 

concurrent execution. But most workloads are not CPU-bound; they combine various forms of 

I/O and synchronization among CPU work, either of which can lead to unpredictable blocking 

patterns. And thus, with most code, concurrent execution is more about orchestrating complex 

coordination patterns than it is about lower level performance. 

Perhaps the simplest way to partition work is to use the server model of concurrency. In 

servers like SQL Server™ or ASP.NET, each incoming request is considered an independent task 

and consequently runs on its own thread. The host software often throttles the number of real 

OS threads used so as not to over-introduce concurrency. Most workloads like this are 

composed of totally independent tasks that access disjoint sets of data and resources, leading 

to highly efficient parallel speedups. For client programs, however, few workloads fit into this 

model cleanly. Fielding and responding to peer-to-peer communication, for example, can be 

done via this model, but unless a large number of work-intensive incoming requests are 

expected, the ceiling on potential speedups here is fairly limited. 

An alternative is to carve out arbitrary sub-tasks in your code using a more logical and 

subjective definition of "significant task," which tends to be more conducive to client-side 

workloads. A complex software operation typically consists of multiple logical steps, for 

instance, perhaps represented in your program as independent function calls that themselves 

contain multiple steps, and so on. You might consider representing each function call as an 

independent task, at least those that are substantial enough. This is tricky in the sense that 

you must consider ordering dependencies, which adds substantial complexity to this idea. Most 

modern imperative programs are full of unstructured loops, accesses to data via opaque 

pointers that may not be close together in memory, and function calls, none of which 

document cleanly what dependencies exist. And of course there's hidden thread affinity that 

you might not know about. So this technique clearly requires a deep understanding of the 

problem your code is trying to solve, and some thought about the most efficient way to 

perform it in parallel, eliminating as many dependencies as possible. 

A common related pattern is fork/join parallelism, where a master task forks multiple child 

tasks (which themselves can also fork child tasks), and each master task subsequently joins 
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with its children at some well-defined point. As an example, consider a model of task-level 

parallelism called fork/join futures, which encapsulates this pattern based on function calls as 

the unit of task. This can be illustrated with some new type Future <T> (an implementation of 

Future <T> is available for download from the MSDN®Magazine Web site):  

 

int a() { /* some work */ } 

int b() { /* some work */ } 

int c() 

{ 

    Future<int> fa = a(); 

    Future<int> fb = b(); 

    // do some work 

    return fa.Value + fb.Value; 

} 

The meaning of this code is that the invocations of a and b can execute in parallel with the 

body of c, the decision for which is left to the implementation of the Future<int> engine. When 

c needs the results of those invocations, it accesses the Value property of the future. This has 

the effect of waiting for the work to complete or, if the work has not begun executing 

asynchronously yet, executing the function locally on the calling thread. This syntax maps 

closely to the existing IAsyncResult class, but has the added benefit of some more intelligence 

about how much concurrency to introduce into the program. While more clever 

implementations are easy to imagine, a straightforward translation of this code might look like 

this:  

 

int a() { /* some work */ } 

int b() { /* some work */ } 

delegate int Del(); 

int c() 

{ 

    Del da = a; IAsyncResult fa = da.BeginInvoke(null, null); 

    Del db = b; IAsyncResult fb = db.BeginInvoke(null, null); 

    // do some work 

    return da.EndInvoke(fa) + db.EndInvoke(fb); 
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} 

Other approaches are possible, such as using longer running sub-tasks rather than requiring 

that children never live longer than parents. This often requires more complex synchronization 

and rendezvous patterns. Fork/join is simple because the lifetime of individual workers is 

obvious.  

The previous discussion takes a code-centric view of parallelism. Another technique is often 

simpler: data parallelism. This is usually appropriate for problems and data structures that are 

data- and compute-intensive, or whose individual operations tend to access disjoint data 

frequently. 

One common data parallelism technique is called partitioning. Loop-based parallelism, for 

example, uses this approach to distribute computations over a range of elements. Say you had 

16 logical CPUs, an array of 100,000 elements, and a piece of work that can execute with 

little-to-no dependency and tends to block 20 percent of the time. You could split the array 

into 20 contiguous chunks (you'll see how I calculate this number later) of 5,000 elements 

apiece, fork off 19 threads (reusing the current thread for one partition), and arrange for each 

thread to do its calculations in parallel. Parallel query processing in databases like SQL Server 

uses a similar approach. This technique is illustrated in Figure 2. 

 
 

Figure 2 Partition-Based Parallelism 

The example shows a 100,000-element array distributed over four threads. Notice some 

amount of sequential overhead is paid for the split. In cases where a merge is necessary, 

additional cost is often paid to merge the results, including joining with outstanding threads. 

For-all loops have generally been a traditional way to express partition-based parallelism in 

programming languages. An example ForAll<T> API implementation can be found in Figure 3. 

Similar approaches could also be used to parallelize loops—for example, rather than taking an 

IList<T>, you could instead take an int from and int to set of parameters and then feed the 

loop iteration number into an Action<int> delegate. 

This code makes one major assumption that could be disastrous: the Action<T> delegate 

passed in is expected to be safe to execute in parallel. This means that if it refers to shared 

state, it needs to use proper synchronization to eliminate concurrency bugs. If it isn't, we can 

expect the correctness and reliability of our program to be quite poor. 

Another data-parallelism technique is pipelining, where multiple operations execute in 

parallel, streaming data between each other using a fast, shared buffer. This is akin to an 

assembly line, where each step in the process is given its chance to interact with some data 
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and then pass it on to the next step in line. This technique requires clever synchronization 

code to minimize time spent at the obvious bottleneck: the point where adjacent stages in the 

pipeline communicate through a shared buffer. 

 

How Many Tasks? 

Choosing the number of tasks to create is also a tricky equation. If throughput is the sole 

priority, you can use some theoretical target such as the following, where BP is the percentage 

of time tasks will block:  

 

NumThreads = NumCPUs / (1 – BP) 

That is, you'd like the number of threads to be equal to the ratio of CPUs to the percentage 

of time tasks are spent doing real work. This was illustrated in the ForAll example earlier. 

Unfortunately, while this is a good theoretical starting point, it won't get you a precise answer. 

It doesn't account for HT, for example, where high memory latencies permit computations to 

occur in parallel, but otherwise shouldn't account for a full processor. And it assumes—quite 

naively—that you could actually predict the value of BP, which I assure you is difficult, 

especially for a component trying to schedule heterogeneous work, much like the CLR's thread 

pool. When in doubt, it's better to rely on the thread pool for scheduling of tasks to OS threads, 

and tend towards over-expressing concurrency. 

There is a natural speedup curve for any algorithm. On this curve, there are two particularly 

interesting points to consider. First, what is the minimum number of tasks that see benefit 

from parallelizing the computation? For small computations, it may be that using a small 

number of tasks incurs too much overhead (thread creation and cache misses), but that using 

a larger number allows the execution to catch up to the sequential version and surpass it. 

Second, given an infinite number of hardware threads, what is the maximum number of tasks 

you can assign to a problem before beginning to see degradation in performance rather than a 

continued speedup? All problems reach this point of diminishing returns. As you continue to 

subdivide a problem, eventually you're going to reach the granularity of individual instructions. 

A linear speedup would mean that the time it takes to execute a problem with p processors 

is 1/p the time it takes to execute a problem with one processor. Amdahl's Law tends to limit 

the ability to achieve such speedups. It says, quite simply, that the maximum speedup is 

limited by the amount of sequential execution you have remaining after introducing parallelism. 

More formally, this law states that, if S is the percentage of the problem that must remain 

sequential (it cannot be parallelized) and p is the number of CPUs being used, then the 

approximate speedup you can expect can be represented as:  

 

1/(S + ((1 – S)/p)) 
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As the number of processors grows, this expression approaches 1/S. Therefore, if you can 

only parallelize (say) 85 percent of the problem, you will only be able to achieve a speedup of 

1/.15 or approximately 6.6. Any overhead associated with synchronization and introducing 

concurrency tends to contribute to S. In reality, however, there is good news: spreading work 

across multiple processors also carries benefits that are hard to quantify and measure, such as 

allowing concurrent threads to keep their (separate) caches warm. 

Any algorithm managing real resources also has to take into account cross-machine 

utilization. Software that makes entirely local decisions to maximize parallelism—especially in a 

server environment such as ASP.NET—can (and will!) lead to chaos as well as an increase in 

contention for resources, including CPUs. A ForAll-style loop, for example, might query the 

processor utilization before deciding the optimal number of tasks dynamically. Instead of the 

algorithm used in Figure 3, which depends on the System.Environment.ProcessorCount 

property, you might consider using the GetFreeProcessors function shown in Figure 4. 

 
Figure 3 Simplistic Parallel Implementation 
static void ForAll<T>(IList<T> data, Action<T> a) 

{ 

    ForAll<T>(data, a, 0.0f); 

} 

 

static void ForAll<T>(IList<T> data, Action<T> a, float blocking) 

{ 

    if (blocking < 0.0f || blocking >= 1.0f) 

        throw new ArgumentOutOfRangeException("blocking"); 

 

    int partitions = Math.Min(data.Count, (int)Math.Max(1.0f, 

        (float)Environment.ProcessorCount / (1 - blocking))); 

    int perCount = (int)Math.Ceiling((float)data.Count / partitions); 

 

    int done = partitions - 1; 

    ManualResetEvent mre = null; 

 

    if (partitions > 1) 

    { 

        mre = new ManualResetEvent(false); 

        // Queue a work item per-partition. This is the "fork" 

        // part of the work. 

        for (int i = 0; i < partitions - 1; i++) 

        { 

            int idx = i; 

            ThreadPool.QueueUserWorkItem(delegate 
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            { 

                for (int j = idx * perCount; 

                     j < (idx + 1) * perCount; 

                     j++) 

                { 

                    a(data[j]); 

                } 

                if (Interlocked.Decrement(ref done) == 0) 

                { 

                    mre.Set(); 

                } 

            }); 

        } 

    } 

 

    // Execute one partition’s worth of operations on the 

    // calling (current) thread. 

    for (int i = (partitions - 1) * perCount; i < data.Count; i++) 

        a(data[i]); 

 

    // If we queued async partitions, wait for them to finish. 

    // This is the "join" part of the work. 

    if (mre != null) { 

        mre.WaitOne(); 

        mre.Close(); 

    } 

} 

 
Figure 4 GetFreeProcessors 
private static List<PerformanceCounter> utilizationCounters; 

 

static void InitCounters() 

{ 

    // Initialize the list to a counter-per-processor: 

    utilizationCounters = new List<PerformanceCounter>(); 

    for (int i = 0; i < Environment.ProcessorCount; i++) 

    { 

        utilizationCounters.Add( 

            new PerformanceCounter("Processor", 

            "% Processor Time", i.ToString())); 

    } 

} 
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private static int GetFreeProcessors() 

{ 

    int freeCount = 0; 

    foreach (PerformanceCounter pc in utilizationCounters) 

    { 

        if (pc.NextValue() < 0.80f) 

            freeCount++; 

    } 

    return freeCount; 

} 

 

// ForAll<T> change... 

int partitions = Math.Min(data.Count, (int)Math.Max(1.0f, 

    (float)GetFreeProcessors() / (1 - blocking))); 

 

That algorithm isn't perfect. It's only a statistical snapshot of the machine state at the time 

it runs, and says nothing about what happens after it returns its result. It could be overly 

optimistic or pessimistic. And of course it doesn't account for the fact that one of the 

processors being queried is the one executing the GetFreeProcessors function itself, which 

would be a useful improvement. Another interesting statistical metric to look at is the 

System\Processor Queue Length performance counter, which tells you how many threads are 

in the scheduling queue waiting for a processor to become free. A large number here indicates 

that any new work you introduce will simply have to wait for the queue to drain (assuming all 

threads are of equivalent priority). 

There are some interesting reasons to create too much concurrency rather than too little. If 

you're considering heterogeneous tasks, the model of letting each task execute on a thread 

until it completes may lead to fairness problems. Task A, which takes substantially longer to 

run than task B, could lead to starvation of B if additional resources are not freed up. This is 

especially bad if A has decided to block and your algorithm didn't take that into account. 

Another reason to intentionally over-parallelize is for asynchronous I/O. Windows provides 

I/O completion ports for superior scalability, in which case outstanding I/O requests don't even 

need to utilize an OS thread. The I/O begins asynchronously and, once it is complete, Windows 

posts a completion packet to the underlying port. Typically an efficiently sized pool of threads 

is bound to the port—taken care of on the CLR by the thread pool—waiting to process 

completion packets once they become available. Assuming a sparse completion rate, creating a 

large number of I/O requests as fast as possible in parallel can lead to better scalability than if 

each task waited behind the other for its turn to initiate the asynchronous I/O. This applies to 

file, network, and memory-mapped I/O, although you should always be cognizant of the fact 

that there are a fixed number of shared resources on the machine; competing for them too 

heavily will only degrade scaling, not enhance it. 
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Shared State 

Any time you introduce concurrency, you need to worry about protecting shared state. This 

is crucial. I recommend you read Vance Morrison's article in the August 2005 issue of 

MSDN®Magazine (msdn.microsoft.com/msdnmag/issues/05/08/Concurrency) about why 

locking is important. Correctness should always take precedence over performance, and if 

you're using concurrency without considering locking, your code probably isn't correct. I'm not 

going to reiterate what Vance has already said quite nicely, but rather I am going to focus on 

the performance of such techniques. 

The most common techniques for synchronization are locking and low-lock operations. 

Locking uses primitives like the Win32® Mutex or CRITICAL_SECTION, or the CLR Monitor, 

ReaderWriterLock, or associated language keywords (for example, lock in C# and SyncLock in 

Visual Basic®) to achieve some degree of mutual exclusion. To achieve this exclusion, a call is 

made to an API; some internal algorithm ensures that no two pieces of code using the same 

lock can enter the protected region of code. So long as everybody abides by the protocol, code 

remains safe. 

Low-lock operations can be built using interlocked primitives, which are implemented via 

hardware support for atomic load-compare-store instructions. They ensure a single update to 

memory is atomic and can be used to build highly scalable code that uses optimistic 

concurrency. Such code is more difficult to write, but it tends not to block. (Locks, in case you 

are wondering, are written using such primitives.) 

But making these calls comes with a cost. Figure 5 shows a micro-benchmark of what 

acquisition of various types of locks costs in CPU cycles for cases without contention. 

 
 

Figure 5 Comparing the Cost of Various Locks 

While such measurements are interesting to understand the performance implications of 

locking (especially when dynamic decisions about parallel execution are made, in which case a 

larger amount of code "needs to be ready" than will actually be run in parallel), making certain 

that you synchronize at the right granularity can help to ensure costs such as this don't 
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dominate execution of your code. There are also costs I have not mentioned, such as the 

interaction between interlocked operations and the memory hierarchy. Regrettably, space 

doesn't permit that. Nevertheless, the more interesting part is the effect on scalability. 

Regrettably you often need to make tradeoffs between scalability and sequential straight-line 

execution performance. These tradeoffs should be informed by measurements. 

Nothing guarantees that a thread remains runnable while a lock is held, and therefore if its 

quantum expires, a subsequent thread may run and attempt to acquire this same lock. 

Moreover, a higher priority thread that becomes runnable can preempt a thread running under 

a lock. This can cause a phenomenon known as priority inversion, and can also lead to lock 

convoys if the arrival rate at a contended lock is extraordinarily high. Most locks react to 

contended acquisition attempts via some form of lightweight spinning on multi-CPU systems, in 

the hope that the thread holding the lock will soon release it. If that fails, because either the 

owner is holding it for longer than expected or perhaps because it was swapped out as a result 

of a context switch, it will block. For a highly concurrent system, the more blocking, the more 

threads are needed to keep CPUs busy, and the lower the probability that your system is going 

to scale nicely. 

Thus an important question to keep in the back of your mind is: how can I do the least 

amount of work while I'm holding a lock, in order to minimize the amount of locking required? 

Reader/writer locks can help with this, allowing multiple threads to read data while still 

ensuring mutual exclusion on writes. For most systems, the ratio of readers to writers is very 

high, and therefore the win to scalability can be huge. Jeffrey Richter's Concurrent Affairs 

column from the June 2006 issue of MSDN Magazine is a great starting point to learn more 

(see msdn.microsoft.com/msdnmag/issues/06/06/ConcurrentAffairs). 

With that said, if you can avoid sharing state in the first place, you needn't synchronize 

access at all. A common technique to increase scalability of algorithms that manipulate hot 

data structures—data that most threads must access—is to avoid the use of locks altogether. 

This can take three interesting forms, in increasing order of difficulty to implement: 

immutability, isolation, and lock freedom. 

Immutability means that an instance, once created, will not change—or at least won't 

change during a fixed and well known period of time. A CLR string, for example, is immutable 

and therefore doesn't require a lock around accesses to its individual characters. If state isn't 

in motion, you don't need to lock. This becomes difficult to achieve when there are multiple 

locations containing pointers to state that are supposed to be observed atomically. 

Isolation eliminates any concurrent access to data by maintaining separate copies. Many 

thread-safe C implementations of malloc and free operations, for example, maintain a per-

thread pool of available memory so that threads allocating don't contend for the pool (which is 

likely to be a hot spot in any C program). Similarly, the CLR's Server Garbage Collector (GC) 

uses a per-thread allocation context and per-CPU segment of memory to increase throughput 

of memory allocations. This typically requires periodic rendezvousing with a central copy of 
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data structures, and can sometimes require costs associated with copying and ensuring 

interesting bits of data doesn't become stale. 

Lock freedom is such a tricky technique that I will only mention it in passing. If you really 

understand the memory model of your target machine and are willing to write and maintain a 

whole lot more code, you can create clever data structures that scale nicely when accessed in 

parallel. More often than not, the resulting code is so difficult to test for correctness and to 

maintain that it isn't worth the effort. These techniques are worth investigating for those areas 

of your program that you've measured a scaling or performance problem associated with the 

use of locks. 

 

Tools for Profiling Parallelism 

Let's see how you might measure and improve the scalability of your code. Throughout this 

column, I've been rather fuzzy on techniques, approaches, and costs. Unfortunately there isn't 

one magic formula that works for all parallel problems. And similarly, there isn't an easy 

answer to the question of how to profile problems and/or identify better approaches to 

attaining a parallel speedup. It's entirely possible you will go through all of the work I outlined 

here (and then some—I haven't discussed debugging), and yet end up no better off than if you 

had stuck with a sequential algorithm. There are so-called embarrassingly parallel problems for 

which cookbook-like algorithms have been written and made available online and in textbooks. 

Unfortunately many real world programs aren't so straightforward. 

Here are some tips for profiling your parallel algorithms. All of these make use of the new 

Visual Studio® 2005 profiler. It is built in to the ordinary Visual Studio interface (under the 

Tools | Performance Tools | New Performance Session menu item), and also has a command-

line version located in the \Team Tools\PerformanceTools\ Visual Studio subdirectory, named 

VSPerfCmd.exe. (See msdn2.microsoft.com/ms182403.aspx for usage details about this tool.) 

This profiler creates VSP files that can piped through the VSPerfReport.exe command to create 

a CSV or XML file for further analysis. Here are a few items to look for. 

Ensure your CPUs are busy.  If you have low processor utilization, it's likely that one of two 

things is happening. Either you didn't use enough processors to keep your problem busy, or 

threads are getting backed up waiting for each other, most likely due to excessive 

synchronization at hot points in the code. Task Manager is typically sufficient for this, although 

the Processor\% Processor Time performance counter (via PerfMon.exe) can also be used. 

Make sure your program isn't faulting heavily. Especially for data-intensive applications, you 

need to ensure you don't overflow physical memory on a regular basis. In such a case, a 

system full of threads can continually thrash the disk while it constantly has to page in and 

page out data. (Remember how expensive disk access is from the chart earlier?) Task Manager 

can give you this data (you'll need to select it as a column), as can PerfMon.exe. VSPerfCmd 

can also report this data via ETW events with this command:  
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VSPerfCmd.exe /events:on,Pagefault /start:SAMPLE /output:<reportFile name> 

/launch:<exeFile name> 

Then use the following command once the program completes.  

VSPerfCmd.exe /shutdown 

You may also want to play around with the sampling interval.  

Identify where your program is spending most of its CPU time.  This is especially 

important if this CPU time occurs while locks are held. It could also be the case that the 

additional code required to create threads, perform synchronization, and anything associated 

with those two things is dominating the execution time. 

Examine the System\Context Switches/sec and System\Processor Queue Length 

performance counters.  This can help determine whether you have too many threads, 

causing time wasted in context switches and thread migration. If so, try tweaking the 

algorithm that determines how many tasks to use. 

Look for a memory hierarchy and cache problem.  If none of the previous suggestions 

work and it seems that you should be seeing a bigger speedup, you might have a memory 

hierarchy and cache problem. A lot of time spent in cache misses and invalidations can 

dramatically limit the ability to speed up your program. Partitioning data to be more cache-line 

friendly and using some of the approaches mentioned above, like isolation, can help to resolve 

this problem. Each CPU offers a set of performance counters that can be queried in Visual 

Studio's profiler, covering things like instructions retired and cache misses. A low instructions-

retired count indicates more time spent in high latency operations, such as cache misses, and 

the cache-specific counters can be used to determine where the misses are occurring and at 

what frequency. 

While the exact counters are processor-specific, the Visual Studio interface gives you a nice 

menu option for using them (see Figure 6), and you can also query these counters through 

the command:  

 

VSPerfCmd.exe /QueryCounters 
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Figure 6 Profiler Properties 

Conclusion 

 

Recommended Reading 

• Writing Faster Managed Code: Know What Things Cost," Jan Gray, MSDN, June 2003  

• Writing Scalable Applications for Windows NT," John Vert, MSDN, June 1995  

• Concurrency: What Every Dev Must Know About Multithreaded Apps," Vance Morrison, 

MSDN Magazine, August 2005 

Scalability via parallelism has historically been limited to server-side and high-end 

workstation environments. But as new hardware trends towards thread-level parallelism, 

namely multi-core architectures, mainstream client-side software will ultimately have to cope 

with and make efficient use of the resources available. This brings along with it a unique set of 

challenges. Clearly parallelism is not a replacement for highly efficient sequential code, but 

rather a technique for making already optimized sequential algorithms run even faster. 

This was a very fast-paced and high-level overview. You'll probably walk away saying it's 

way too hard, and you wouldn't be wrong. But these techniques will help you to begin 

architecting code that will scale nicely on newer multi-core processors as they become more 

ubiquitous over time. As infrastructure like the CLR thread-pool and tools like Visual Studio 

evolve to better support this style of programming, you can expect many of the difficulties to 

become more manageable.  

Send your questions and comments to  clrinout@microsoft.com.  
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