
 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 1 

 
 
Analysis of Data Storage Technologies for the Management of 
Real-Time Process Manufacturing Data 
 
 
Overview 
 
This Information Technology white paper describes fundamental issues that are important 
to the design and implementation of a modern information management system for the 
manufacturing enterprise. It compares the use of traditional data storage techniques, 
relational database management systems (RDBMSs), and modern process data historians 
for the capture, management, and use of real-time process manufacturing data. Appendix 
A describes how to evaluate the features and performance of a process data historian. 
 
 
Why Collect Process Data? 
 
Operations personnel, process engineers, laboratory technicians, and management all 
have a need to examine not only what is taking place in the manufacturing process in real 
time but also what happened in the past. 

 
These users need access to actual process data, not just summary data, to analyze process 
operations and make effective decisions. 

 
In addition, many "near real-time" applications such as supervisory control, advanced 
control, statistical process control, data reconciliation, expert systems, neural networks, 
batch and recipe management, and other manufacturing execution system (MES) 
functions require plant historical data. Again, the need is to process and analyze actual 
data, not just summarized data, over a long period of time. This set of requirements led 
to the development of the process data historian. 
 
Of course, the historian can also record summary data (for example: what was produced, 
how much was produced, and how much raw material and energy were consumed in the 
making of the product) for use in accounting and planning and by other business 
(transactional) applications. But the true "acid test" is the acquisition and long-term 
maintenance of the large volumes of actual process data generated by most 
manufacturing facilities. 
 
 
 
 
 
 
 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 2 

Sources of Data 
 
Most real-time manufacturing process data consists of continuous analog data 
representing parameters such as temperature, flow, pressure, weight, composition, etc., 
plus discrete or digital data, "event data" expressed as time-stamped text strings, and 
laboratory data in either analog or text form. Typical data sources include distributed 
control systems (DCSs), programmable logic controllers (PLCs), remote terminal units 
(RTUs), laboratory information systems (LIMS), and manual data entry. 
 
 
Data Acquisition 
 
Two factors are important in the acquisition of the data: 
 

1. The sampling rate, which is the frequency at which the data is scanned 
and read, usually at least once per minute and often as fast as once per second 
 

2. The resolution of the time stamp attached to each data value, usually to the nearest 
second (though resolutions of up to one microsecond are available) 
 
More often than not, the communication capabilities of the data source are the limiting 
factor in the data's acquisition rate. The clock function of the host computer's operating 
system, together with the design of the particular application, sets the limit on time-
stamp resolution. 
 
 
Data Storage Methods 
 
There are three basic approaches to data storage and management (a discussion of each 
follows): 
 

• "Traditional" data storage techniques developed in the first process computer 
applications 

• Relational database management systems 
• Process data historians using data compression 

 
 
 
 
 
 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 3 

Traditional Data Storage Techniques 
 
Traditional data storage techniques are those that originated in the early days of process 
monitoring whereby raw analog data values were stored upon each acquisition scan 
cycle and placed in flat- file databases. Storage technologies of the 1950s through the 
early 1970s relied on a mix of either slow-speed, high-volume media like magnetic tape, 
or high-speed, low- volume media like magnetic core memory or dynamic memory. 
Acquisition of the process data was limited by the access speed of the equipment and the 
resolution of the signal conditioning circuitry (e.g., 8-bit AIDs). Thus, the acquisition 
and storage of large amounts of data was often technically limited as well as 
cumbersome and expensive to maintain. 
 
Several approaches were developed to deal with this situation, the simplest being to 
acquire the data less often, meaning a slower sample rate of, say, once every minute or 
every several minutes. As a result, less total data is acquired and more time is recorded 
per unit capacity of storage media. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Exception Reporting 
 
But, unfortunately, accuracy also is sacrificed, since not all the data is recorded. Faster 
data acquisition combined with storage of only the calculated averages also is a way to 
attempt to represent the actual data accurately yet still avoid storing each piece of raw 
data. 
 

 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 4 

Both of the above approaches fall short in that they can miss recording key data values 
or misrepresent significant changes in the data. Upon reviewing the recorded data, the 
user often cannot tell precisely what occurred because of missing data or because 
averaged data either exaggerates or mitigates what actually happened. Neither method 
can reproduce the "true path" or trajectory of the actual raw data well, especially if the 
data is highly variable, as is often the case in industrial processes. 
 
A third approach is to filter or exception report the data, that is, to record only those data 
values that exceed a prespecified data tolerance level or dead band, expressed as a 
percent of span (range) or as a fixed tolerance. 
 
(For example, ±:2 psig for a 0 to 400-psig-pressure range). This method does a better job 
of "following" or tracking the actual raw data. However, it also has shortcomings, as will 
be discussed later. 
 
 
Relational Database Management Systems (RDBMSs) 
 
Most database packages in use today are based on a relational model. There are many 
popular suppliers of RDBMS software in the market, including Oracle, Informix, 
Sybase, IBM, Microsoft, etc., but all share common characteristics. These characteristics 
form the basis for the following discussion. 
 
 
The relational model, based on the work of E. F. Codd in the early 1970s, has three 
major components: structures, operations, and integrity rules. Structures are well-defined 
objects that define how to store the data of a database. RDBMS systems have both a 
logical and physical structure. The physical structure is determined by the operating 
system files that constitute the database. 
 
The logical structure is determined by the table spaces and the database's schema 
objects, which include the tables, views, indices, clusters, sequences, and stored 
procedures. Typically, one or more data files on the physical disks of the computer are 
explicitly created for each table to physically store the table's data. 
 
The logical structure of the RDBMS defines names, rows, and columns for each table. 
The columns generally have data types such as character, variable length character, 
number, date and time, long, raw, long raw, row ID, etc. Once the table name and 
columns have been defined, data (rows) can be inserted into the database. The table's 
rows can then be queried, deleted, or updated. Note that all rows and columns of data are 
equally important, which makes it easy to ask queries like "How many apples were sold 
on Tuesday?" Neither the number of apples sold nor the date/time takes precedence. 
 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 5 

Data is retrieved from the tables using Structured Query Language (SQL). SQL 
statements query the database by searching the table directories for the logical columns 
and rows that contain the specific data of interest and then returning the results. A 
procedure is a set of SQL statements grouped together as an executable unit to perform a 
specific task, for example, to retrieve a set of data with common characteristics. Stored 
procedures are predefined sets of SQL statements that can be executed together. 

Indices are optional structures used to increase the performance of data retrieval. Just as 
an index in an instruction manual helps one locate specific information faster than if 
there were no index, a database index provides a faster access path to table data. Indices 
are logically and physically independent of the data. Procedures and indices can be 
combined to speed up the access, particularly when the most recent portions of the 
database are stored in a computer's RAM. 
 
 
Historians and Data Compression 
 
The development of data-compression techniques that record points at un- equally 
spaced time intervals stemmed from three factors. First, the need to access ever-
increasing amounts of data by various users created the demand. Second, the advances in 
minicomputer technology provided the processing power to enable collection of the data. 
Finally, the recognition that there are long periods of operation in which variables are 
either constant or moving in a predictable path inspired the solution. The first 
commercial use of the data compression technique was based on what is known as the 
"boxcar with backward slope" compression method, first published in 1981 by Dupont's 
John Hale and Harold Sellars and subsequently offered in a commercial data historian by 
Aspentech (IP 21). 
 
 
 
 
 
 
 
 
 
 
 
Figure 2 : Dynamic Slope Envelope of Data Compression 
 
 
In this method, the raw analog data is read and combined with a user- specified tolerance 
value to produce a rectangular box-like shape or "dynamic slope envelope" around the 

 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 6 

actual data, as shown in Figure 2. Mathematically, a set of algorithms is used to calculate 
the slope, taking into account the raw data value, the tolerance specified, the previously 
recorded data values, and the time. This "envelope" is projected ahead and used to 
determine which points are to be archived, resulting in a time- series-based mathematical 
representation of the actual data. When data is recalled, the algorithms' times and slopes 
are used to quickly access the compressed data and accurately interpolate it, producing a 
data trend over the desired time span that represents the original behavior within the 
accuracy specified by the tolerance. 

Data compression is thus a storage methodology that uses the predicted behavior of a 
process parameter to reduce the actual raw data values to a data subset, which can then 
be later expanded and interpolated ("decompressed") to produce a representation of the 
original data accurate to within the data tolerance level specified. A historian based on 
this technique can store data over long time periods using the minimum storage space. 
 
 
Comparison of Technologies 
 
When capturing and managing real-time data, four factors are important:  

1) The data storage efficiency, or how much disk space is used to store 
the captured data 
 

2) The precision of the captured data and the ability to accurately recreate the raw input 
data 
 
3) The speed at which the data can be written to the database 
 
4) The speed of access to the data 
 
The relatively inexpensive hard drives available today make storage efficiency appear 
less critical. However, the movement toward digital instrumentation and Field bus 
communications will result in a significant increase in the volume of data available to 
control and information systems for processing. Hard drives may indeed be inexpensive, 
but they are not free -and they still require a commitment of precious staff resources for 
data management and hardware maintenance. 
 
Base Case: Data Compression 
 
As mentioned above, a historian based on data compression can store data over long 
time periods using the minimum storage space. Accuracy is ensured because the 
compression algorithm selects only those points for storage that are necessary to 
reproduce the actual data within the tolerance specified. No further data reduction or file 
compression techniques are necessary to reduce the storage space. Accurate statistics on 
the data (averages, standard deviations, accumulated totals, minimums, maximums, etc.) 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 7 

within a specified time span can be readily generated using proven mathematical 
techniques for time series data. "Gaps" in the data can be easily identified and 
highlighted. 
 
Data Compression Metrics 
 
There are two methods of measuring the efficiency of data compression. The first, the 
compression ratio (CR), is defined as the number of values processed at equal time 
intervals that result in a single recorded value. The second, the mean time to record 
(MTTR), is the average length of time between recorded values 
 
For a system processing variables at one-minute intervals, a 30: 1 data compression ratio 
means that each variable is being recorded once each half-hour on the average. Therefore, 
the MTTR is one half hour. Note that the Compression Ratio can be increased for a given 
variable without improving storage efficiency by simply increasing the processing rate, 
while the MTTR is insensitive to this factor. Hence, the MTTR is the better comparison 
metric. 
 
Performance of Traditional Storage Techniques 
versus Data Compression 
 
Data values stored sequentially in one-dimensional flat-file databases have extremely 
slow access rates for historical values; the older the data is, the longer it takes to go back 
from the present time and retrieve it. Further- more, once the file is full, it becomes 
"locked" and cannot be altered with new data or corrected values. The net results are 
huge media storage requirements and substantial inflexibility in handling the recorded 
data. Amazingly, many existing human machine interfaces (HMIs) and supervisory 
control and data acquisition (SCADA) systems still rely on flat-file storage. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3- Exception Reporting Errors 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 8 

How does the addition of data filtering, more commonly known as exception reporting 
(which is actually a primitive form of data compression), affect the performance for a 
traditional flat-file approach? Attempting to restore the exception-reported values and 
represent the actual data means relying on linear or step interpolation between the 
recorded points. Figure 3 shows that a simple linear interpolation between the recorded 
points produces errors that often exceed the tolerance level originally specified. A step 
interpolation will also lead to errors. Now the compression ratio or MTTR varies with 
the tolerance specified and the variability of the data as well as the method used to 
record the data. Exception reporting can produce compression ratios of up to 20: 1 for 
moderately variable process industry data. A ratio of 10: 1 is typical. 
 
 
Performance of RDBMSs Versus Data Compression 
 
RDBMSs address data storage by creating a relationship between the data and its 
associated time stamp such that the search for the data is easier to make and faster than 
sequential searches. RDBMSs do allow for much more complex relationships to be 
maintained and queried because of the cross-referencing of the tables and rows, 
combined with indices, procedures, and other advanced SQL querying and data 
manipulation techniques. 
 
Thus, RDBMSs are highly desirable for analyzing non-time-critical data such as the 
aforementioned production summary data and batch and recipe analysis, where non-time 
relationships between variables are of key inter- est. They are obviously superior to flat-
file databases. As a result, many HMIs and SCADA systems are migrating to RDBMSs 
for data storage. Exception reporting is the predominant method of data compression 
used combined with recording averages. 
 
However, RDBMSs have several important disadvantages compared to modem data 
compression-based historians: 
 

• The RDBMSs carry substantially more overhead due to their multiple- row and 
table record structures. The use of indices, clusters, and procedures adds even 
more overhead by slowing down the performance considerably. 

 
• All RDBMS records are equally important; they are not optimized for time 

 
• RDBMSs have no inherent data compression method; they are usually combined 

with exception reporting and averaging techniques, which may result in data loss 
and inaccurately, reproduced data. 

 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 9 

• The speed of writing to RDBMSs is quite slow compared to data compression-
based historians. RDBMSs often talk of very high transactions per second (TPS). 
This refers to actions taken on the data once it is already in the database, not to 
the speed at which it is written to the database nor the speed of data retrieval. F 
or example, one popular HMI vendor states that it can make 3.5 writes per 
second to Microsoft Access and 18 writes per second to Microsoft SQL Server 
using ODBC. Those rates are extremely slow compared to the modem data 
compression-based historian ' s ability to write literally thousands of points per 
second to its database 

 
• Data statistics are not automatically calculated by the RDBMS. (SQL 

mathematics is limited to sums, minimums, maximums, and averages.) 

• RDBMSs are typically limited to a one-second-time resolution, which is 
problematic for handling high burst quantities of data with sub second time 
stamps. 

 
• RDBMS retrieval speed, although faster than that of flat files, is much slower 

than that of a data compression-based historian, which accesses data extremely 
fast- nearly instantaneously -and can calculate the statistics for a given time span 
"on the fly" without any SQL programming. 

 
 In order for the RDBMS to minimize storage space, the exception reporting dead band 
must be widened and/or the data capture rate must be slowed down and/or only averages 
stored. Widening the dead band, slowing the data capture rate, and/or only storing 
averages all result in discarding information about the manufacturing process. The data ' 
s variation, especially fast "spikes," are not captured, and so the corresponding ability to 
troubleshoot and optimize the manufacturing process is lost. 
 
New Developments in Historian Technologies 
The data historians of the 1970s and 1980s typically operated on relatively expensive 
minicomputer platforms using operating systems that required skilled engineers and 
programmers to use. The advent of personal computing (PC) technology in the 1980s, 
combined with more powerful, less costly microprocessors and client/server computing 
architectures, plus Microsoft's dominance in the PC software industry, has led to an 
evolution of the modern data historian. 
This evolution has resulted in two approaches to date that attempt to offer improvements 
in data historian technology 
 

1. The first approach offers a combination of either interval processing or the 
exception reporting data compression method, combined with file compression, 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 10 

married to modem PC-based client/server RDBMS technology. This approach is 
referred to in this paper as the Hybrid RDBMS 

 
2. The second approach builds on improvements to the original boxcar- back slope 

algorithm, combining it with object-oriented technology, true distributed 
computing, and other client/server technologies. This method is used in the 
Aspentech's IP21 RTDB. 

 
 

Both approaches are designed to take advantage of Microsoft's 32-bitWindows 95 and 
NT operating systems and associated technologies. 
 
Hybrid RDBMS 
 
The Hybrid RDBMS approach consists of the addition of virtual table ex- tensions to the 
Microsoft SQL Server relational database for the handling of discrete and analog data, 
combined with standard relational tables for events, text, and summary data. The data is 
acquired by scanning the data source, then transferring the data locally or across a 
network to the Hybrid SQL Server. Exception reporting processes discrete data, while 
analog data either may be sampled at fixed intervals (also called cyclical) or processed 
by exception reporting. Millisecond time stamp resolution is supported, although 
RDBMSs normally are time-stamp limited to the nearest second. The virtual tables are 
stored in RAM for fast processing. 
 
With fixed-interval sampling, every analog data point at the sampling frequency is 
stored, so there is no data compression. But no time stamp need be stored since the 
interval is fixed and the time stamp at each interval is easily calculated based on the 
interval specified and retrieval time span. Exception reporting, with a specifiable dead 
band, results in analog data compression with a compression ratio or MTTR of the same 
magnitude as previously discussed. Again note that the compression ratio varies with the 
sampling frequency. 

The virtual tables for both analog and digital data typically contain only 24 hours of data 
prior to being either overwritten or stored to hard disk. When storing to disk, there is an 
option for compressing the data file. Interval processing and storage without the time 
stamp saves considerable storage space. With optional file compression even more space 
is saved. The combination of exception reporting (with the time stamp) and file 
compression also results in reduced data storage requirements. The maximum space 
reduction reported is a factor of 50 less than a standard relational database. 
 
Stored data is accessed by means of standard SQL language calls and pre- defined 
storage procedures, which allow a wide variety of applications to acquire the data easily. 
Decompression and file expansion are handled at the server. Retrieval speed of SQL 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 11 

varies but is not known to be exceedingly fast. Again overall performance is a function 
of a variety of factors. 
 
Aspentech’s RTDB IP 21  
Aspentech further modified its original algorithm to improve upon the boxcar-back slope 
method and named the new algorithm "adaptive compression," because the slope 
envelope (refer to above description of boxcar with back slope) is adaptively modified 
based on the statistical behavior of the variable. The result is even faster data recalls, 
higher accuracy, and lower overhead.  
 
Aspentech also added event-driven processing, data compression at the source with 
"store-and-forward" technology, millisecond time-stamp resolution, and decompression 
at the client. Processing on event means data points are no longer scanned and processed 
on a fixed periodic basis (unless forced to scan) but, instead, only when they change. 
Compression takes place at the acquiring, minimizing the loading on the server node. 
Some applications, such as sequence of events and machinery monitoring, require an 
ultra fine resolution time stamp; the millisecond time stamp resolution meets this need. 
Finally, data is decompressed at the requesting client CPU, thus lowering the network 
load. 
 
 
Performance Comparison 
 
Hybrid RDBMS 
The Hybrid RDBMS performance is very dependent on how the system is configured to 
handle the data in addition to the data variation and dead band specification itself. The 
system is inherently more complicated due to the multiple file structure and data types 
that must be given consideration when implementing the system. 

Disk space is indeed saved in using the time internal option, because a time stamp is not 
stored. However, this savings is offset by storage of the data at every interval, even when 
the data does not change. This is not true data compression, unless the file is later 
compressed. 

As previously pointed out, accuracy problems are associated with exception reporting. 
Its M1TR will not be nearly as high compared to that obtained by the boxcar back slope 
or adaptive compression algorithms. 
 
The use of file compression with short file time spans (e.g., 24 hours) means that 
numerous files will have to be accessed, expanded, and searched in order to assemble 
data for long time spans. This means that for short-term history and low data volumes, 
the Hybrid RDBMS approach will yield good results. If longer file times are used, fewer 
files will have to be opened but at the price of longer search times within each file. In 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 12 

either case, the larger the amount of data and the longer the time frame, the worse the 
performance will become. True, the data storage volume can be reduced by a factor of 
50 compared to a standard relational database, but data storage reduction alone is not the 
issue. The Hybrid RDBMS is simply not designed for managing high-volume process 
data where guaranteed data accuracy, minimum storage space, and high performance are 
all paramount 
 
The performance of Aspentech's adaptive data-compression algorithm builds on proven 
concepts by allowing access to years-old data just as quickly as to data only 15 minutes 
old, because data within each month can be accessed without decompressing the entire 
month. And, further- more, the monthly files can be seamlessly spanned without the  
need to join the data from adjacent or disparate months. Aspentech test results yield 
write speeds to the Historian that exceed thousands of values per sub second, while data 
reads can be as high as several thousand values per sub-second across a network. 
Compression ratios have been measured to range from 10: 1 to as high as 100: 1 
depending on the variability of the incoming raw data. Typical ratios are 40: 1. Such 
performance permits the amount of physical storage space needed to be minimized yet 
enables the data to be delivered when and where it is needed amazingly quickly. 
To provide maximum flexibility to the user, IP 21 database provides access to the time-
series data via OLE Automation, DDE, ODBC/SQL), containing application 
programming interfaces (APIs). Calls to the time-series data- base are answered in the 
format in which they are called; for example, SQL calls to populate an Oracle table with 
production summary results are answered as if the IP 21 RTDB were an RDBMS. 
 
Conclusion 
It is not unusual for large manufacturing enterprises to be capturing, man- aging, and 
providing access to tens of thousands of process and related data values that are acquired 
at rates from milliseconds to a few minutes, yet stored online for two to three years. The 
modem adaptive compression-based process data historian is specifically designed to 
excel at that task, while using minimum storage space and providing open connectivity. 
Competing technologies, including both standard and hybrid relational databases, have 
improved but still are not up to the task because of inherent limitations in their structure 
and data handling. While the use of exception reporting results in a savings in storage 
space, it cannot provide the same efficiency or accuracy as the more modem data-
compression techniques. 
 
 
Notes: 

I. Nyquist's Theorem states that in order to accurately reproduce a given frequency, it must be sampled at least twice as fast. 

2. The RDBMS discussion is based on information provided by Oracle@ Corporation and the Oracle 7 Server Concepts Manual. 
 
 
 



 

  Analysis of Information Management 
 

Aspentech * 1901 South Bascom Suite 200 * Campbell, CA 95008 * (408) 879-4191 13 

 
Appendix A: Evaluating a Process Data Historian 
 
 
Overview 
Appendix A provides a guide to evaluating a process data historian to determine the best 
fit for a manufacturing information management system. A "data warehouse" historian 
should fit easily into any computing architecture and excel in functionality and 
performance. The following checklist and testing outline serves as a guide to selection. 
 
Architectural Considerations 
The real power of modem computing technology is unleashed by software designed to be 
distributed across a network, using the client-server model to create a division of labor 
among the various modules. When evaluating this aspect of a historian, the following 
questions should be asked: 
 
Is the architecture truly client/server, i.e., is the data stored in a server that can be 
physically separate from all client modules (viewers, gate- ways, applications)? 
 
Can multiple servers be seamlessly integrated into the network? 

Can servers or data sources (gateways) be moved from node to node without requiring 
changes to existing applications? 

Are network communication issues handled internally in such a way as to shield the user 
from having to worry about them? 

Are standards-based (OLE, ODBC, etc.) means of accessing the data in the server 
provided, and are these access tools implemented with distributed architectures in mind? 
 
Does the design take into account multiple operating systems within the network and the 
potential for communication between applications running under different operating 
systems? 
 
Is the potential for network downtime allowed for in the design such that the potential 
for loss of data is minimized or eliminated? More specifically, does the design provide 
for server redundancy as a configurable feature and for client store-and-forward 
capabilities through the provided software development kit (SDK)? 
 
Is the server database truly open, i.e., can any application store to or retrieve from the 
server in a straightforward manner (subject to security restrictions), either through an 
SDK or a standards-based bridge component? 


