
http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 1

Introduction to Multithreading, 
Superthreading and Hyperthreading 

Introduction 

Back in the dual-Celeron days, when symmetric multiprocessing (SMP) first became 
cheap enough to come within reach of the average PC user, many hardware enthusiasts 
eager to get in on the SMP craze were asking what exactly (besides winning them the 
admiration and envy of their peers) a dual-processing rig could do for them. It was in 
this context that the PC crowd started seriously talking about the advantages of 
multithreading. Years later when Apple brought dual-processing to its PowerMac line, 
SMP was officially mainstream, and with it multithreading became a concern for the 
mainstream user as the ensuing round of benchmarks brought out the fact you really 
needed multithreaded applications to get the full benefits of two processors.   

Even though the PC enthusiast SMP craze has long since died down and, in an odd twist 
of fate, Mac users are now many times more likely to be sporting an SMP rig than their 
x86-using peers, multithreading is once again about to increase in importance for PC 
users. Intel's next major IA-32 processor release, codenamed Prescott, will include a 
feature called simultaneous multithreading (SMT), also known as hyper-threading. 
To take full advantage of SMT, applications will need to be multithreaded; and just like 
with SMP, the higher the degree of multithreading the more performance an application 
can wring out of Prescott's hardware.   

Intel actually already uses SMT in a shipping design: the Pentium 4 Xeon. Near the end 
of this article we'll take a look at the way the Xeon implements hyper-threading; this 
analysis should give us a pretty good idea of what's in store for Prescott. Also, it's 
rumored that the current crop of Pentium 4's actually has SMT hardware built-in, it's 
just disabled. (If you add this to the rumor about x86-64 support being present but 
disabled as well, then you can get some idea of just how cautious Intel is when it 
comes to introducing new features. I'd kill to get my hands on a 2.8 GHz P4 with both 
SMT and x86-64 support turned on.)  

SMT, in a nutshell, allows the CPU to do what most users think it's doing anyway: run 
more than one program at the same time. This might sound odd, so in order to 
understand how it works this article will first look at how the current crop of CPUs 
handles multitasking. Then, we'll discuss a technique called superthreading before 
finally moving on to explain hyper-threading in the last section. So if you're looking to 
understand more about multithreading, symmetric multiprocessing systems, and hyper-
threading then this article is for you.  

As always, if you've read some of my previous tech articles you'll be well equipped to 
understand the discussion that follows. From here on out, I'll assume you know the 
basics of pipelined execution and are familiar with the general architectural division 
between a processor's front end and its execution core. If these terms are mysterious 
to you, then you might want to reach way back and check out my "Into the K7" article, 
as well as some of my other work on the P4 and G4e. 

Conventional multithreading 

Quite a bit of what a CPU does is illusion. For instance, modern out-of-order processor 
architectures don't actually execute code sequentially in the order in which it was 
written. I've covered the topic of out-of-order execution (OOE) in previous articles, so I 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 2

won't rehash all that here. I'll just note that an OOE architecture takes code that was 
written and compiled to be executed in a specific order, reschedules the sequence of 
instructions (if possible) so that they make maximum use of the processor resources, 
executes them, and then arranges them back in their original order so that the results 
can be written out to memory. To the programmer and the user, it looks as if an 
ordered, sequential stream of instructions went into the CPU and identically ordered, 
sequential stream of computational results emerged. Only the CPU knows in what order 
the program's instructions were actually executed, and in that respect the processor is 
like a black box to both the programmer and the user.  

The same kind of sleight-of-hand happens when you run multiple programs at once, 
except this time the operating system is also involved in the scam. To the end user, it 
appears as if the processor is "running" more than one program at the same time, and 
indeed, there actually are multiple programs loaded into memory. But the CPU can 
execute only one of these programs at a time. The OS maintains the illusion of 
concurrency by rapidly switching between running programs at a fixed interval, called a 
time slice. The time slice has to be small enough that the user doesn't notice any 
degradation in the usability and performance of the running programs, and it has to be 
large enough that each program has a sufficient amount of CPU time in which to get 
useful work done. Most modern operating systems include a way to change the size of 
an individual program's time slice. So a program with a larger time slice gets more 
actual execution time on the CPU relative to its lower priority peers, and hence it runs 
faster. (On a related note, this brings to mind one of my favorite .sig file quotes: "A 
message from the system administrator: 'I've upped my priority. Now up yours.'")  

Clarification of terms: "running" vs. "executing," and "front 
end" vs. "execution core."  

For our purposes in this article, "running" does not equal "executing." I want to set up 
this terminological distinction near the outset of the article for clarity's sake. So for the 
remainder of this article, we'll say that a program has been launched and is "running" 
when its code (or some portion of its code) is loaded into main memory, but it isn't 
actually executing until that code has been loaded into the processor. Another way to 
think of this would be to say that the OS runs programs, and the processor executes 
them.  

The other thing that I should clarify before proceeding is that the way that I divide up 
the processor in this and other articles differs from the way that Intel's literature 
divides it. Intel will describe its processors as having an "in-order front end" and an 
"out-of-order execution engine." This is because for Intel, the front-end consists mainly 
of the instruction fetcher and decoder, while all of the register rename logic, out-of-
order scheduling logic, and so on is considered to be part of the "back end" or 
"execution core." The way that I and many others draw the line between front-end and 
back-end places all of the out-of-order and register rename logic in the front end, with 
the "back end"/"execution core" containing only the execution units themselves and the 
retire logic. So in this article, the front end is the place where instructions are fetched, 
decoded, and re-ordered, and the execution core is where they're actually executed and 
retired.  

Preemptive multitasking vs. Cooperative multitasking 

While I'm on this topic, I'll go ahead and take a brief moment to explain preemptive 
multitasking versus cooperative multitasking. Back in the bad old days, which wasn't so 
long ago for Mac users, the OS relied on each program to give up voluntarily the CPU 
after its time slice was up. This scheme was called "cooperative multitasking" because it 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 3

relied on the running programs to cooperate with each other and with the OS in order 
to share the CPU among themselves in a fair and equitable manner. Sure, there was a 
designated time slice in which each program was supposed to execute, and but the 
rules weren't strictly enforced by the OS. In the end, we all know what happens when 
you rely on people and industries to regulate themselves--you wind up with a small 
number of ill-behaved parties who don't play by the rules and who make things 
miserable for everyone else. In cooperative multitasking systems, some programs 
would monopolize the CPU and not let it go, with the result that the whole system 
would grind to a halt.  

Preemptive multi-tasking, in contrast, strictly enforces the rules and kicks each 
program off the CPU once its time slice is up. Coupled with preemptive multi-tasking is 
memory protection, which means that the OS also makes sure that each program 
uses the memory space allocated to it and it alone. In a modern, preemptively multi-
tasked and protected memory OS each program is walled off from the others so that it 
believes it's the only program on the system.  

Each program has a mind of its own 

The OS and system hardware not only cooperate to fool the user about the true 
mechanics of multi-tasking, but they cooperate to fool each running program as well. 
While the user thinks that all of the currently running programs are being executed 
simultaneously, each of those programs thinks that it has a monopoly on the CPU and 
memory. As far as a running program is concerned, it's the only program loaded in RAM 
and the only program executing on the CPU. The program believes that it has complete 
use of the machine's entire memory address space and that the CPU is executing it 
continuously and without interruption. Of course, none of this is true. The program 
actually shares RAM with all of the other currently running programs, and it has to wait 
its turn for a slice of CPU time in order to execute, just like all of the other programs on 
the system.  

 

Single-threaded CPU  

In the above diagram, the different colored boxes in RAM represent instructions for four 
different running programs. As you can see, only the instructions for the red program 
are actually being executed right now, while the rest patiently wait their turn in 
memory until the CPU can briefly turn its attention to them.   



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 4

Also, be sure and notice those empty white boxes in the pipelines of each of the 
execution core's functional units. Those empty pipeline stages, or pipeline bubbles, 
represent missed opportunities for useful work; they're execution slots where, for 
whatever reason, the CPU couldn't schedule any useful code to run, so they propagate 
down the pipeline empty.  

Related to the empty white boxes are the blank spots in above CPU's front end. This 
CPU can issue up to four instructions per clock cycle to the execution core, but as you 
can see it never actually reaches this four-instruction limit. On most cycles it issues two 
instructions, and on one cycle it issues three.   

A few terms: process, context, and thread 

Before continuing our discussion of multiprocessing, let's take a moment to unpack the 
term "program" a bit more. In most modern operating systems, what users normally 
call a program would be more technically termed a process. Associated with each 
process is a context, "context" being just a catch-all term that encompasses all the 
information that completely describes the process's current state of execution (e.g. the 
contents of the CPU registers, the program counter, the flags, etc.).  

Processes are made up of threads, and each process consists of at least one thread: 
the main thread of execution. Processes can be made up of multiple threads, and each 
of these threads can have its own local context in addition to the process's context, 
which is shared by all the threads in a process. In reality, a thread is just a specific type 
of stripped-down process, a "lightweight process," and because of this throughout the 
rest of this article I'll use the terms "process" and "thread" pretty much 
interchangeably. 

Even though threads are bundled together into processes, they still have a certain 
amount of independence. This independence, when combined with their lightweight 
nature, gives them both speed and flexibility. In an SMP system like the ones we'll 
discuss in a moment, not only can different processes run on different processors, but 
different threads from the same process can run on different processors. This is why 
applications that make use of multiple threads see performance gains on SMP systems 
that single-threaded applications don't. 

Fooling the processes: context switches 

It takes a decent amount of work to fool a process into thinking that it's the only game 
going. First and foremost, you have to ensure that when the currently executing 
process's time slice is up, its context is saved to memory so that when the process's 
time slice comes around again it can be restored to the exact same state that it was in 
when its execution was halted and it was flushed from the CPU to make room for the 
next process. When the process begins executing again and its context has been 
restored exactly as it was when it left off last, it has no idea that it ever left the CPU.  

This business of saving the currently executing process's context, flushing the CPU, and 
loading the next process's context, is called a context switch. A context switch for a 
full-fledged, multithreaded process will obviously take a lot longer than a context switch 
for an individual thread within a process. So depending on the amount of hardware 
support for context switching and the type of context switch (i.e. a process switch or a 
thread switch), a context switch can take a decent amount of time, thereby wasting a 
number of CPU cycles. Cutting back on context switches improves execution efficiency 
and reduces waste, as does the extensive use of multithreading since thread switches 
are usually faster than full-sized process switches. 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 5

SMP to the rescue? 

One way to not only cut down on the number of context switches but also to provide 
more CPU execution time to each process is to build a system that can actually execute 
more than one process at the same time. The conventional way of doing this on the PC 
is to add a second CPU. In an SMP system, the OS can schedule two processes for 
execution at the exact same time, with each process executing on a different CPU. Of 
course, no process is allowed to monopolize either CPU (in most desktop operating 
systems) so what winds up happening is that each running process still has to wait its 
turn for a time slice. But since there are now two CPUs serving up time slices the 
process doesn't have to wait nearly as long for its chance to execute. The end result is 
that there is more total execution time available to the system so that within a given 
time interval each running process spends more time actually executing and less time 
waiting around in memory for a time slice to open up.  

 

Single-threaded SMP 

In the above diagram, the red program and the yellow process both happen to be 
executing simultaneously, one on each processor. Once their respective time slices are 
up, their contexts will be saved, their code and data will be flushed from the CPU, and 
two new processes will be prepared for execution.  

One other thing that you might notice about the preceding diagram is that not only is 
the number of processes that can simultaneously execute doubled, but the number of 
empty execution slots (the white boxes) is doubled as well. So in an SMP system, 
there's twice as much execution time available to the running programs, but since SMP 
doesn't do anything to make those individual programs more efficient in the way that 
they use their time slice there's about twice as much wasted execution time, as well.  

So while SMP can improve performance by throwing transistors at the problem of 
execution time, the overall lack of increase in the execution efficiency of the whole 
system means that SMP can be quite wasteful.  

   



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 6

Superthreading with a multithreaded 
processor 

One of the ways that ultra-high-performance computers eliminate the waste associated 
with the kind of single-threaded SMP described above is to use a technique called time-
slice multithreading, or superthreading. A processor that uses this technique is 
called a multithreaded processor, and such processors are capable of executing 
more than one thread at a time. If you've followed the discussion so far, then this 
diagram should give you a quick and easy idea of how superthreading works:  

 

Superthreaded CPU  

You'll notice that there are fewer wasted execution slots because the processor is 
executing instructions from both threads simultaneously. I've added in those small 
arrows on the left to show you that the processor is limited in how it can mix the 
instructions from the two threads. In a multithreaded CPU, each processor pipeline 
stage can contain instructions for one and only one thread, so that the instructions from 
each thread move in lockstep through the CPU.  

To visualize how this works, take a look at the front end of the CPU in the preceding 
diagram. In this diagram, the front end can issue four instructions per clock to any four 
of the seven functional unit pipelines that make up the execution core. However, all 
four instructions must come from the same thread. In effect, then, each executing 
thread is still confined to a single "time slice," but that time slice is now one CPU clock 
cycle. So instead of system memory containing multiple running threads that the OS 
swaps in and out of the CPU each time slice, the CPU's front end now contains multiple 
executing threads and its issuing logic switches back and forth between them on each 
clock cycle as it sends instructions into the execution core.  

Multithreaded processors can help alleviate some of the latency problems brought on by 
DRAM memory's slowness relative to the CPU. For instance, consider the case of a 
multithreaded processor executing two threads, red and yellow. If the red thread 
requests data from main memory and this data isn't present in the cache, then this 
thread could stall for many CPU cycles while waiting for the data to arrive. In the 
meantime, however, the processor could execute the yellow thread while the red one is 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 7

stalled, thereby keeping the pipeline full and getting useful work out of what would 
otherwise be dead cycles.  

While superthreading can help immensely in hiding memory access latencies, it does 
not, however, address the waste associated with poor instruction-level parallelism 
within individual threads. If the scheduler can find only two instructions in the red 
thread to issue in parallel to the execution unit on a given cycle, then the other two 
issue slots will simply go unused.  

Hyper-threading: the next step 

Simultaneous multithreading (SMT), a.k.a. hyper-threading, takes superthreading 
to the next level. Hyper-threading is simply superthreading without the restriction that 
all the instructions issued by the front end on each clock be from the same thread. The 
following diagram will illustrate the point:  

 

Hyper-threaded CPU  

Now, to really get a feel for what's happening here, let's go back and look at the single-
threaded SMP diagram.  

 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 8

Single-threaded SMP  

If you look closely, you can see what I've done in the hyper-threading diagram is to 
take the execution patterns for both the red and the yellow threads in the SMP diagram 
and combine them so that they fit together on the single hyper-threaded processor like 
pieces from a puzzle. I rigged the two threads' execution patterns so that they 
complemented each other perfectly (real life isn't so neat) in order to make this point: 
the hyper-threaded processor, in effect, acts like two CPUs in one.  

From an OS and user perspective, a simultaneously multithreaded processor is split into 
two or more logical processors, and threads can be scheduled to execute on any of 
the logical processors just as they would on either processor of an SMP system. We'll 
talk more about logical processors in a moment, though, when we discuss hyper-
threading's implementation issues.  

Hyper-threading's strength is that it allows the scheduling logic maximum flexibility to 
fill execution slots, thereby making more efficient use of available execution resources 
by keeping the execution core busier. If you compare the SMP diagram with the hyper-
threading diagram, you can see that the same amount of work gets done in both 
systems, but the hyper-threaded system uses a fraction of the resources and has a 
fraction of the waste of the SMP system; note the scarcity of empty execution slots in 
the hyper-threaded machine versus the SMP machine.  

To get a better idea of how hyper-threading actually looks in practice, consider the 
following example: Let's say that the OOE logic in our diagram above has extracted all 
of the instruction-level parallelism (ILP) it can from the red thread, with the result that 
it will be able to issue two instructions in parallel from that thread in an upcoming 
cycle. Note that this is an exceedingly common scenario, since research has shown the 
average ILP that can be extracted from most code to be about 2.5 instructions per 
cycle. (Incidentally, this is why the Pentium 4, like many other processors, is equipped 
to issue at most 3 instructions per cycle to the execution core.) Since the OOE logic in 
our example processor knows that it can theoretically issue up to four instructions per 
cycle to the execution core, it would like to find two more instructions to fill those two 
empty slots so that none of the issue bandwidth is wasted. In either a single-threaded 
or multithreaded processor design, the two leftover slots would just have to go unused 
for the reasons outlined above. But in the hyper-threaded design, those two slots can 
be filled with instructions from another thread. Hyper-threading, then, removes the 
issue bottleneck that has plagued previous processor designs.  

Implementing hyper-threading 

Although hyper-threading might seem like a pretty large departure from the kind of 
conventional, process-switching multithreading done on a single-threaded CPU, it 
actually doesn't add too much complexity to the hardware. Intel reports that adding 
hyper-threading to their Xeon processor added only %5 to its die area. To understand 
just how hyper-threading affects the Pentium 4 Xeon's microarchitecture and 
performance, let's briefly look in a bit more detail at the Xeon's SMT implementation.   

Intel's Xeon is capable of executing at most two threads in parallel on two logical 
processors. In order to present two logical processors to both the OS and the user, the 
Xeon must be able to maintain information for two distinct and independent thread 
contexts. This is done by dividing up the processor's microarchitectural resources into 
three types: replicated, partitioned, and shared. Let's take a look at which resources fall 
into which categories:  



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 9

Replicated 

•  Register renaming logic  
•  Instruction Pointer  
•  ITLB  
•  Return stack predictor  
•  Various other architectural registers  

Partitioned 

•  Re-order buffers (ROBs)  
•  Load/Store buffers  
•  Various queues, like the scheduling queues, uop queue, 

etc.  

Shared 

•  Caches: trace cache, L1, L2, L3  
•  Microarchitectural registers  
•  Execution Units  

Replicated resources  

There are some resources that you just can't get around replicating if you want to 
maintain two fully independent contexts on each logical processor. The most obvious of 
these is the instruction pointer (IP), which is the pointer that helps the processor keep 
track of its place in the instruction stream by pointing to the next instruction to be 
fetched. In order to run more than one process on the CPU, you need as many IPs as 
there are instruction streams keep track of. Or, equivalently, you could say that you 
need one IP for each logical processor. In the Xeon's case, the maximum number of 
instruction streams (or logical processors) that it will ever have to worry about is 2, so 
it has 2 IPs.   

Similarly, the Xeon has two register allocation tables (RATs), each of which handles the 
mapping of one logical processor's eight architectural integer registers and eight 
architectural floating-point registers onto a shared pool of 128 GPRs (general purpose 
registers) and 128 FPRs (floating-point registers). So the RAT is a replicated resource 
that manages a shared resource (the microarchitectural register file).   

Partitioned resources  

The Xeon's partitioned resources are mostly to be found in the form of queues that 
decouple the major stages of the pipeline from one another. These queues are of a type 
that I would call "statically partitioned." By this, I mean that each queue is split in half, 
with half of its entries designated for the sole use of one logical processor and the other 
half designated for the sole use of the other. These statically partitioned queues look as 
follows:  



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 10

 

Statically Partitioned Queue 

The Xeon's fscheduling queue is partitioned in a way that I would call "dynamically 
partitioned." In a scheduling queue with 12 entries, instead of assigning entries 0 
through 5 to logical processor 0 and entries 6 through 11 to logical processor 1, the 
queue allows any logical processor to use any entry but it places a limit on the number 
of entries that any one logical processor can use. So in the case of a 12-entry 
scheduling queue, each logical processor can use no more than six of the entries.   

 

Dynamically Partitioned Queue  

Be aware that the above diagram shows only one of the Xeon's three scheduling 
queues.  

From the point of view of each logical processor and thread, this kind of dynamic 
partitioning has the same effect as fixed partitioning: it confines each LP to half of 
queue. However, from the point of view of the physical processor, there's a crucial 
difference between the two types of partitioning. See, the scheduling logic, like the 
register file and the execution units, is a shared resource, a part of the Xeon's 
microarchitecture that is SMT-unaware. The scheduler has no idea that it's scheduling 
code from multiple threads. It simply looks at each instruction in the scheduling queue 
on a case-by-case basis, evaluates the instruction's dependencies, compares the 
instruction's needs to the physical processor's currently available execution resources, 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 11

and then schedules the instruction for execution. To return to the example from our 
hyper-threading diagram, the scheduler may issue one red instruction and two yellow 
to the execution core on one cycle, and then three red and one yellow on the next 
cycle. So while the scheduling queue is itself aware of the differences between 
instructions from one thread and the other, the scheduler in pulling instructions from 
the queue sees the entire queue as holding a single instruction stream.  

The Xeon's scheduling queues are dynamically partitioned in order to keep one logical 
processor from monopolizing them. If each scheduling queue didn't enforce a limit on 
the number of entries that each logical processor can use, then instructions from one 
logical processor might fill up the queue to the point where instructions from the other 
logical processor would go unscheduled and unexecuted.   

One final bit of information that should be included in a discussion of partitioned 
resources is the fact that when the Xeon is executing only one thread, all of its 
partitioned resources can be combined so that the single thread can use them for 
maximum performance. When the Xeon is operating in single-threaded mode, the 
dynamically partitioned queues stop enforcing any limits on the number of entries that 
can belong to one thread, and the statically partitioned queues stop enforcing their 
boundaries as well.   

Shared resources are at the heart of hyper-threading; they're what makes the 
technique worthwhile. The more resources that can be shared between logical 
processors, the more efficient hyper-threading can be at squeezing the maximum 
amount of computing power out of the minimum amount of die space. One primary 
class of shared resources consists of the execution units: the integer units, floating-
point units, and load-store unit. These units are not SMT-aware, meaning that when 
they execute instructions they don't know the difference between one thread and the 
next. An instruction is just an instruction to the execution units, regardless of which 
thread/logical processor it belongs to.   

The same can be said for the register file, another crucial shared resource. The Xeon's 
128 microarchitectural general purpose registers (GPRs) and 128 microarchitectural 
floating-point registers (FPRs) have no idea that the data they're holding belongs to 
more than one thread--it's all just data to them, and they, like the execution units, 
remain unchanged from previous iterations of the Xeon core.   

Hyper-threading's greatest strength--shared resources--also turns out to be its greatest 
weakness, as well. Problems arise when one thread monopolizes a crucial resource, like 
the floating-point unit, and in doing so starves the other thread and causes it to stall. 
The problem here is the exact same problem that we discussed with cooperative multi-
tasking: one resource hog can ruin things for everyone else. Like a cooperative 
multitasking OS, the Xeon for the most part depends on each thread to play nicely and 
to refrain from monopolizing any of its shared resources.   

For example, if two floating-point intensive threads are trying to execute a long series 
of complex, multi-cycle floating-point instructions on the same physical processor, then 
depending on the activity of the scheduler and the composition of the scheduling queue 
one of the threads could potentially tie up the floating-point unit while the other thread 
stalls until one of its instructions can make it out of the scheduling queue. On a non-
SMT processor, each thread would get only its fair share of execution time because at 
the end of its time-slice it would be swapped off the CPU and the other thread would be 
swapped onto it. Similarly, with a time-slice multithreaded CPU no one thread can tie 
up an execution unit for multiple consecutive pipeline stages. The SMT processor, on 
the other hand, would see a significant decline in performance as each thread contends 
for valuable but limited execution resources. In such cases, an SMP solution would be 



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 12

far superior, and in the worst of such cases a non-SMT solution would even give better 
performance.  

The shared resource for which these kinds of contention problems can have the most 
serious impact on performance is the caching subsystem.   

Caching and SMT  

For a simultaneously multithreaded processor, the cache coherency problems 
associated with SMP all but disappear. Both logical processors on an SMT system share 
the same caches as well as the data in those caches. So if a thread from logical 
processor 0 wants to read some data that's cached by logical processor 1, it can grab 
that data directly from the cache without having to snoop another cache located some 
distance away in order to ensure that it has the most current copy.  

However, since both logical processors share the same cache, the prospect of cache 
conflicts increase. This potential increase in cache conflicts has the potential to degrade 
performance seriously. 

Cache conflicts 

You might think since the Xeon's two logical processors share a single cache, this 
means that the cache size is effectively halved for each logical processor. If you 
thought this, though, you'd be wrong: it's both much better and much worse. Let me 
explain. 

Each of the Xeon's caches--the trace cache, L1, L2, and L3--is SMT-unaware, and each 
treats all loads and stores the same regardless of which logical processor issued the 
request. So none of the caches know the difference between one logical processor and 
another, or between code from one thread or another. This means that one executing 
thread can monopolize virtually the entire cache if it wants to, and the cache, unlike the 
processor's scheduling queue, has no way of forcing that thread to cooperate 
intelligently with the other executing thread. The processor itself will continue trying to 
run both threads, though, issuing fetches from each one. This means that, in a worst-
case scenario where the two running threads have two completely different memory 
reference patterns (i.e. they're accessing two completely different areas of memory and 
sharing no data at all) the cache will begin thrashing as data for each thread is 
alternately swapped in and out and bus and cache bandwidth are maxed out.  

It's my suspicion that this kind of cache contention is behind the recent round of 
benchmarks which show that for some applications SMT performs significantly worse 
than either SMP or non-SMT implementations within the same processor family. For 
instance, these benchmarks show the SMT Xeon at a significant disadvantage in the 
memory-intensive portion of the reviewer's benchmarking suite, which according to our 
discussion above is to be expected if the benchmarks weren't written explicitly with 
SMT in mind.   

In sum, resource contention is definitely one of the major pitfalls of SMT, and it's the 
reason why only certain types of applications and certain mixes of applications truly 
benefit from the technique. With the wrong mix of code, hyper-threading decreases 
performance, just like it can increase performance with the right mix of code.  



http://arstechnica.com/articles/paedia/cpu/hyperthreading.ars/1 13

Conclusions 

Now that you understand the basic theory behind hyper-threading, in a future article on 
Prescott we'll be able to delve deeper into the specific modifications that Intel made to 
the Pentium 4's architecture in order to accommodate this new technique. In the 
meantime, I'll be watching the launch and the subsequent round of benchmarking very 
closely to see just how much real-world performance hyper-threading is able to bring to 
the PC. As with SMP, this will ultimately depend on the applications themselves, since 
multithreaded apps will benefit more from hyper-threading than single-threaded ones. 
Of course, unlike with SMP there will be an added twist in that real-world performance 
won't just depend on the applications but on the specific mix of applications being used. 
This makes it especially hard to predict performance from just looking at the 
microarchitecture.  

The fact that Intel until now has made use of hyper-threading only in its SMP Xeon line 
is telling. With hyper-threading's pitfalls, it's perhaps better seen as a compliment to 
SMP than as a replacement for it. An SMT-aware OS running on an SMP system knows 
how to schedule processes at least semi-intelligently between both processors so that 
resource contention is minimized. In such a system SMT functions to alleviate some of 
the waste of a single-threaded SMP solution by improving the overall execution 
efficiency of both processors. In the end, I expect SMT to shine mostly in SMP 
configurations, while those who use it in a single-CPU system will see very mixed, very 
application-specific results.     

Bibliography  

•  Susan Eggers, Hank Levy, Steve Gribble. Simultaneous Multithreading Project. 
University of Washington  

•  Susan Eggers, Joel Emer, Henry Levy, Jack Lo, Rebecca Stamm, and Dean 
Tullsen. "Simultaneous Multithreading: A Platform for Next-generation 
Processors." IEEE Micro, September/October 1997, pages 12-18.  

•  Jack Lo, Susan Eggers, Joel Emer, Henry Levy, Rebecca Stamm, and Dean 
Tullsen. "Converting Thread-Level Parallelism Into Instruction-Level Parallelism 
via Simultaneous Multithreading." ACM Transactions on Computer Systems, 
August 1997, pages 322-354.  

•  "Hyper-Threading Technology." Intel.  
•  Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, David A. Koufaty, J. 

Alan Miller, Michael Upton. "Hyper-Threading Technology Architecture and 
Microarchitecture." Intel.    

 


