
ibm.com/redbooks

IBM® WebSphere® Front cover

Building Smarter Planet
Solutions with MQTT and IBM
WebSphere MQ Telemetry

Valerie Lampkin
Weng Tat Leong

Leonardo Olivera
Sweta Rawat

Nagesh Subrahmanyam
Rong Xiang

Introduces MQTT and includes scenarios
that demonstrate its capabilities

Provides a quick guide to getting
started with MQTT

Includes typical usage patterns
and guidance on scaling a solution

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

Building Smarter Planet Solutions with MQTT and IBM
WebSphere MQ Telemetry

September 2012

SG24-8054-00

© Copyright International Business Machines Corporation 2012. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

First Edition (September 2012)

This edition applies to Version 7, Release 1 of WebSphere MQ.

Note: Before using this information and the product it supports, read the information in “Notices” on
page vii.

Contents

Notices . vii
Trademarks . viii

Preface . ix
The team who wrote this book . ix

Primary authors. ix
Additional authors .x
Additional contributors . xi

Now you can become a published author, too! . xi
Comments welcome. xii
Stay connected to IBM Redbooks publications . xii

Chapter 1. Overview of MQTT . 1
1.1 Building a Smarter Planet . 2

1.1.1 Internet of Things . 2
1.1.2 Smarter Planet . 3
1.1.3 Telemetry and the Internet . 4

1.2 MQTT and WebSphere MQ Telemetry . 4
1.2.1 MQ Telemetry Transport . 4
1.2.2 WebSphere MQ Telemetry . 5
1.2.3 Basic concepts of MQTT. 6
1.2.4 Comparison between MQTT and HTTP . 7
1.2.5 MQTT and Eclipse Paho. 8
1.2.6 MQTT and open source . 10

1.3 Benefits of using MQTT . 12
1.4 Where to use MQTT . 14

1.4.1 Example implementations of MQTT . 14
1.4.2 Machine-to-machine . 17
1.4.3 MQTT and sensors . 18

Chapter 2. Getting started with MQTT. 21
2.1 Clients and brokers used in this book . 22

2.1.1 MQTT clients. 22
2.1.2 MQTT brokers . 23

2.2 Scenario used in this book . 24
2.2.1 Business challenge . 24
2.2.2 MQTT-enabled solution . 25

2.3 MQTT concepts. 26
2.3.1 MQTT messaging . 26
2.3.2 Client programming. 27

2.4 MQTT brokers . 28
2.4.1 Really Small Message Broker . 29
2.4.2 Mosquitto . 30
2.4.3 WMQTT Utility. 33

2.5 Building a sample MQTT application with freely available software 35
2.5.1 Preparation . 35
2.5.2 Building the sample MQTT application . 36
2.5.3 Publisher and subscriber in Java . 37
2.5.4 Publisher and subscriber in C . 45
© Copyright IBM Corp. 2012. All rights reserved. iii

Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry . 55
3.1 Installing, configuring, and managing WebSphere MQ Telemetry 56

3.1.1 Before you begin. 56
3.1.2 Installing WebSphere MQ . 57
3.1.3 Verifying the installation of WebSphere MQ Telemetry . 59
3.1.4 Configuring a queue manager for WebSphere MQ Telemetry 65
3.1.5 Authorizing MQTT clients to access WebSphere MQ. 72
3.1.6 Enabling the security features of WebSphere MQ for telemetry channels 74
3.1.7 Configuring WebSphere MQ to send messages to MQTT clients 76
3.1.8 Performance considerations for WebSphere MQ Telemetry 77

3.2 Building a simple solution using WebSphere MQ Telemetry . 80
3.2.1 Solution overview . 80
3.2.2 Solution implementation . 81

3.3 WebSphere MQ classes for Java Message Service . 98
3.3.1 Sample applications . 99
3.3.2 Troubleshooting . 105

3.4 WebSphere MQ Telemetry daemon for devices . 105
3.4.1 Installing and configuring the WebSphere MQ Telemetry daemon for devices . 107
3.4.2 WebSphere MQ Telemetry daemon for devices bridges 107
3.4.3 Sample implementations of WebSphere MQ Telemetry daemon for devices. . . 109

3.5 Troubleshooting WebSphere MQ Telemetry. 122
3.5.1 Location of logs and error files . 123
3.5.2 Tracing the telemetry service . 124

Chapter 4. Integrating MQTT . 127
4.1 Integrate MQTT with IBM WebSphere Message Broker . 128

4.1.1 IBM WebSphere Message Broker versions . 128
4.1.2 Example 1: MQInput node . 129
4.1.3 Example 2: JMSInput node. 133

4.2 Integrate MQTT with IBM WebSphere Application Server . 136
4.2.1 Assumptions . 137
4.2.2 Integration . 137

4.3 Integrate MQTT with IBM WebSphere Operational Decision Management 141
4.3.1 Using Event Designer . 142
4.3.2 Deploying the solution. 144

4.4 Integrate MQTT with IBM Intelligent Operations Center . 144
4.4.1 The Common Alert Protocol format. 146
4.4.2 Integration points of the IBM Intelligent Operations Center 147

4.5 Integrate MQTT with IBM Lotus Expeditor integrator . 147
4.5.1 Messaging in Expeditor integrator. 148
4.5.2 Example 1: Local integration of established devices and protocols through

messaging . 150
4.5.3 Example 2: Messaging-based back-end integration of devices

and protocols . 154

Chapter 5. Typical topologies and patterns of use . 159
5.1 Typical topology . 160

5.1.1 Pattern 1: Client to enterprise server . 160
5.1.2 Pattern 2: Client to edge server to enterprise server . 161
5.1.3 Pattern 2A: Client to edge server (proxy) to enterprise server 162
5.1.4 Pattern 2B: Client to edge server (with adapter) to enterprise server 163
5.1.5 Pattern 2 extended: Multiple edge servers connected to each other 163
5.1.6 Selection criteria for the main pattern . 164

5.2 Client to enterprise server . 164
iv Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

5.2.1 The topology . 165
5.2.2 The architecture . 167
5.2.3 Sample using the client to enterprise server connectivity pattern 168

5.3 Client to edge server to enterprise server . 170
5.3.1 The topology . 170
5.3.2 The architecture . 171

5.4 Using the client to edge server to enterprise server connectivity pattern 172
5.4.1 Retail industry . 172
5.4.2 Energy and utilities industry . 175
5.4.3 Industry example with decentralized application logic . 177

Chapter 6. Scaling a system . 181
6.1 Scaling overview . 182

6.1.1 Types of scaling . 182
6.1.2 Scalability patterns . 182

6.2 Provisioning first-time connections (PROV pattern) . 182
6.2.1 Applicability . 183
6.2.2 Architecture. 184
6.2.3 Communication sequence . 185

6.3 Pushing messages to a large number of devices (LSPN pattern). 185
6.3.1 Applicability . 185
6.3.2 Architecture. 186
6.3.3 Communication sequence . 187

6.4 Pushing messages from a large number of devices (LSSP, LSSP2 patterns) 187
6.4.1 LSSP applicability . 187
6.4.2 LSSP architecture . 189
6.4.3 LSSP communication sequence . 190
6.4.4 LSSP2 applicability . 190
6.4.5 LSSP2 architecture . 191
6.4.6 LSSP2 communication sequence . 192

Appendix A. MQTT and devices. 193
A.1 MQTT and Arduino devices . 194

A.1.1 Introducing Arduino . 194
A.1.2 Simple Arduino circuit . 194
A.1.3 MQTT support in Arduino . 195
A.1.4 Arduino and MQTT with a publish scenario . 195
A.1.5 Arduino and MQTT with a subscribe scenario . 198

A.2 MQTT and mobile communication devices. 202
A.2.1 Worklight. 203
A.2.2 Android . 205

Appendix B. The MQTT protocol . 211
B.1 MQTT concepts . 212

B.1.1 Quality of service levels and flows . 212
B.1.2 QoS determination . 215
B.1.3 QoS impact on performance. 215
B.1.4 MQTT client identifier . 215
B.1.5 Durable and non-durable subscribers with MQTT . 216
B.1.6 Understanding MQTT persistence . 216
B.1.7 MQTT message overhead . 217
B.1.8 MQTT keep alive handling . 217
B.1.9 Retry message delivery . 218
B.1.10 Last will and testament . 218
 Contents v

B.1.11 Retained flag on messages . 219
B.1.12 TCP/IP overhead . 219
B.1.13 WebSphere MQ Telemetry Transport message format 220

Set up for tracing . 222
B.1.14 Wireshark . 222
B.1.15 WMQTT Utility: IA92 SupportPac . 223

B.2 Connect to the MQTT server . 224
B.2.1 The CONNECT message . 225
B.2.2 The CONNACK message. 228

B.3 Publishing with QoS 0. 229
B.4 Publishing with QoS 1. 231

B.4.1 The PUBLISH message . 233
B.4.2 The PUBACK message . 234

B.5 Publishing with QoS 2. 235
B.5.1 The PUBLISH message . 235
B.5.2 The PUBREC message . 236
B.5.3 The PUBREL message . 238
B.5.4 The PUBCOMP message. 239

B.6 Subscribing . 241
B.6.1 The SUBSCRIBE message . 242
B.6.2 The SUBACK message . 244
B.6.3 Subscribed message . 245

Appendix C. Additional material . 247
Locating the Web material . 247

Downloading and extracting the Web material . 247

Related publications . 249
References. 249
Help from IBM . 249
vi Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service may be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right may be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this document. The
furnishing of this document does not grant you any license to these patents. You can send license inquiries, in
writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time
without notice.

Any references in this information to non-IBM websites are provided for convenience only and do not in any
manner serve as an endorsement of those websites. The materials at those websites are not part of the
materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring
any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results
obtained in other operating environments may vary significantly. Some measurements may have been made
on development-level systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2012. All rights reserved. vii

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both. These and other IBM trademarked terms are
marked on their first occurrence in this information with the appropriate symbol (® or ™), indicating US
registered or common law trademarks owned by IBM at the time this information was published. Such
trademarks may also be registered or common law trademarks in other countries. A current list of IBM
trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
CICS®
DB2®
developerWorks®
FFST™
IA®

IBM®
LotusScript®
Lotus®
Rational®
Redbooks®
Redbooks (logo) ®

RETAIN®
Smarter Planet™
WebSphere®
z/OS®

The following terms are trademarks of other companies:

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Windows, and the Windows logo are trademarks of Microsoft Corporation in the United States, other
countries, or both.

Java, and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its
affiliates.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.
viii Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.ibm.com/legal/copytrade.shtml

Preface

MQ Telemetry Transport (MQTT) is a messaging protocol that is lightweight enough to be
supported by the smallest devices, yet robust enough to ensure that important messages get
to their destinations every time. With MQTT devices such as smart energy meters, cars,
trains, satellite receivers, and personal health care devices can communicate with each other
and with other systems or applications.

This IBM® Redbooks® publication introduces MQTT and takes a scenario-based approach to
demonstrate its capabilities. It provides a quick guide to getting started and then shows how
to grow to an enterprise scale MQTT server using IBM WebSphere® MQ Telemetry.
Scenarios demonstrate how to integrate MQTT with other IBM products, including
WebSphere Message Broker. This book also provides typical usage patterns and guidance
on scaling a solution.

The intended audience for this book ranges from new users of MQTT and telemetry to those
readers who are looking for in-depth knowledge and advanced topics.

The team who wrote this book

This book was produced by a team of specialists from around the world working at the
International Technical Support Organization, Raleigh Center.

Primary authors

The following people are the primary authors for this project.

Valerie Lampkin is a Middleware Technical Resolution Specialist in the USA. She has 13
years of experience supporting WebSphere MQ, previously as part of IBM Global Services
and now with the Application and Integration Middleware Division of IBM Software Group.
She holds a B.S. degree from Florida State University. She is a regular contributor to the
WebSphere and IBM CICS® Support blog on IBM developerWorks®.

Weng Tat Leong is a Software Engineer in Beijing, China. He has over three years of
experience in enterprise connectivity and integration. He holds a Master's degree in Control
Engineering from Tsinghua University. His areas of expertise include mobile development,
web development, cloud computing and enterprise integration. He has contributed a couple of
articles on the IBM developerWorks website about enterprise integration and MQTT.

Leonardo Olivera is an IT Specialist at IBM Global Services, Uruguay. He has 17 years of
experience in application development and systems integration. He holds a degree in
Computer Science Engineering from Universidad Católica del Uruguay. His areas of expertise
include Java Enterprise Edition architecture, WebSphere Portal software and Sensor and
Actuators solutions. The last few years he has been working on mobile solutions for the
healthcare industry.

Sweta Rawat is a software engineer in Bangalore, India. She has over five years of
experience in the WebSphere MQ field. She holds a B.E degree in Electronics and
Communication Engineering from Maharishi Dayanand University, India. Her areas of
expertise include testing, configuring, tuning WebSphere MQ on distributed platforms with
cross product enablement including IBM DB2® and Oracle. She has contributed to an IBM
© Copyright IBM Corp. 2012. All rights reserved. ix

developerWorks article on configuring domain controller and setup of a multi-instance queue
manager.

Nagesh Subrahmanyam is an IT Specialist in India. He has over 10 years of experience in
the field spanning IBM z/OS®, WebSphere MQ, WebSphere Message Broker and XML
technologies. He holds a Bachelor's degree in Mechanical Engineering from National Institute
of Technology, Jamshedpur. His areas of expertise include Java and lately the Arduino
platform. He has contributed a couple of articles on the IBM developerWorks website, and
co-authored IBM Redbooks publications about XML and z/OS. He has also submitted a
WebSphere MQ SupportPac.

Rong Xiang is a Staff Software Engineer in IBM Software Development Lab, China. He has
four years of experience in Enterprise Integration under the JCA infrastructure and MQTT
field. He holds a Master’s degree in Computer Science and Technology from Xidian
University, China. His areas of expertise include enterprise integration, distributed computing
and M2M integration. He has contributed articles on the IBM developerWorks web site.

Figure 1 Left-to-right: Nagesh, Shawn, Leonardo, Sweta, Martin, Rong, Valerie, and Weng Tat

Additional authors

The following people contributed additional content to this project:

Gerald Kallas is working as Software IT Architect in retail space for national and international
clients. He has executed a large number of successful projects in the business integration
area for retail customers. Within the last couple of years he led the design of a solution called
“Store Expeditor”, based on requirements of a large retail enterprise. This solution has
become today’s IBM Lotus® Expeditor integrator, an IBM Software Group product that's
especially designed for lightweight integration at remote locations.

Neeraj Krishna is a Senior Staff Software Engineer in India. He has six years of experience
in the WebSphere MQ field. He holds a degree in Computer Science and Engineering from
Visvesvaraya Technological University. His areas of expertise include development and
support of MQTT technologies such as micro broker, MQTT clients and WebSphere MQ
Classes for Java/JMS. He has written extensively on messaging.

https://www.ibm.com/developerworks/mydeveloperworks/blogs/messaging/?lang=en
x Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

https://www.ibm.com/developerworks/mydeveloperworks/blogs/messaging/?lang=en

Stefan Fassmann is an Open Group certified IT Architect from IBM Software Group's Lab
Services in Boeblingen, Germany. With his degree in Electrical Engineering, he started
working for IBM in 1996. For the last 10 years, he has been engaged in various mobile and
embedded solution customer projects using IBM WebSphere and Lotus software technology.
Besides his engagements in retail and E&U industry projects, Stefan works as development
lead for IBM Lotus Expeditor integrator.

Additional contributors

This project was led by:

Martin Keen is a Redbooks Project Leader in the Raleigh Center. He primarily leads projects
about WebSphere products and service-oriented architecture (SOA). Before joining the ITSO,
Martin worked in the EMEA WebSphere Lab Services team in Hursley, U.K. He holds a
Bachelor’s degree in Computer Studies from Southampton Institute of Higher Education.

Dave Locke is a Software Engineer who works in the IBM Hursley development lab in the
United Kingdom. He has worked for IBM for 25 years starting as a developer on the
mainframe-based CICS transaction processing system, working his way down through a
variety of projects on mid-range and desktop, and now focuses on small footprint pervasive
systems. His main role is on messaging protocols and technologies that help connect the
physical world of sensors, actuators and controllers to the more traditional digital world.

Thanks to the following people for their contributions to this project:

� Andy Piper
� T Rob
� Graham Churchill
� Matthew R Ganis
� Dougie G Lawson
� Paul J Lacy
� James Caffrey
� Andrew Banks
� Gualberto Ferrer
� Nicholas O’Leary

Thanks to the following people for supporting this project:

� Shawn Tooley, IBM Redbooks Technical Writer
� Debbie Willmschen, IBM Redbooks Technical Writer
� Alfred Schwab, IBM Redbooks Technical Editor

Now you can become a published author, too!

Here’s an opportunity to spotlight your skills, grow your career, and become a published
author—all at the same time! Join an ITSO residency project and help write a book in your
area of expertise, while honing your experience using leading-edge technologies. Your efforts
will help to increase product acceptance and customer satisfaction, as you expand your
network of technical contacts and relationships. Residencies run from two to six weeks in
length, and you can participate either in person or as a remote resident working from your
home base.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html
 Preface xi

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html

Comments welcome

Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks publications in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an email to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400

Stay connected to IBM Redbooks publications

� Find us on Facebook:

http://www.facebook.com/IBMRedbooks

� Follow us on Twitter:

http://twitter.com/ibmredbooks

� Look for us on LinkedIn:

http://www.linkedin.com/groups?home=&gid=2130806

� Explore new Redbooks publications, residencies, and workshops with the IBM Redbooks
weekly newsletter:

https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm

� Stay current on recent Redbooks publications with RSS Feeds:

http://www.redbooks.ibm.com/rss.html
xii Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html
http://www.facebook.com/IBMRedbooks
http://twitter.com/ibmredbooks
http://www.linkedin.com/groups?home=&gid=2130806
https://www.redbooks.ibm.com/Redbooks.nsf/subscribe?OpenForm
http://www.redbooks.ibm.com/rss.html

 THIS PAGE INTENTIONALLY LEFT BLANK

sponsorship promotion

http://www.ibm.com/software/support/acceleratedvalue

 THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1. Overview of MQTT

In this chapter we present an introduction to the MQ Telemetry Transport (MQTT) protocol
and how it can be used to tie together the various types of remote smart devices and
applications that are measuring, monitoring, and in some cases controlling the world today.
We also introduce WebSphere MQ Telemetry, the IBM implementation of the open source
MQTT protocol, which provides the software components (messaging server, MQTT clients,
and so on) needed to create a complete MQTT-based messaging system.

This chapter includes the following topics:

� Building a Smarter Planet
� MQTT and WebSphere MQ Telemetry
� Benefits of using MQTT
� Where to use MQTT

1

© Copyright IBM Corp. 2012. All rights reserved. 1

1.1 Building a Smarter Planet

The emerging concept of an Internet of Things is a critical foundation on which the vision for a
Smarter Planet will be realized. In addition, supporting the Internet of Things are new, more
advanced approaches to telemetry that make it possible to connect all kinds of devices,
wherever they might be, to each other, to the Internet, and to the business enterprise.

One of these advancements is the MQTT messaging protocol. It is so lightweight that it can
be supported by some of the smallest measuring and monitoring devices, and transmit data
over far-flung, sometimes intermittent networks. It is also open source, which makes it easy to
adapt to a variety of messaging and communication needs.

Before getting into the details of MQTT, it is wise to take a brief look at the evolving world that
developers using MQTT are working to connect.

1.1.1 Internet of Things

Anyone who has pointed a web browser at a search engine or social media site knows the
power of the Internet to connect people to information or to other people. Yet, with the rise of
various smart devices, the Internet will evolve to include what some are calling an Internet of
Things (Figure 1-1): Billions of interconnected smart devices measuring, moving, and acting
upon, sometimes independently, all the bits of data that make up daily life.

Figure 1-1 The Internet of Things

Billions of smart devices
instrument our world
today

Interconnecting these smart
devices creates a kind of global
central nervous system
2 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

To imagine what the Internet of Things might bring in 10 or 20 years, think about the
remarkable things we already can do remotely:

� A doctor can examine a patient in a distant city and see real-time health status
information, such as blood pressure, heart rate, and so on.

� An energy company can monitor oil or gas pipelines that are hundreds of miles long and
remotely cut off the flow if problems are detected.

� A homeowner can view his house on a web page, complete with the status of interior
devices such as the security alarm, heating system, and more.

The Internet of Things will go beyond even these examples, not just people interacting with
devices but devices interacting with each other, creating what might eventually become
something of a global central nervous system.

1.1.2 Smarter Planet

The IBM concept of a Smarter Planet is built on the following set of pillars called the Three Is,
as illustrated in Figure 1-2:

� Instrumented: Information is captured wherever it exists, such as through the use of
remote sensors.

� Interconnected: Information is moved from the collection point to wherever it can be
usefully consumed.

� Intelligent: Information is processed, analyzed, and acted upon to derive maximum value
and knowledge.

Figure 1-2 The three pillars of the Smarter Planet

The world is already increasingly instrumented, with examples ranging from tiny sensors and
RFID tags in stand-alone products, through smartphones and location-aware GPS devices to
notebook PCs and embedded systems. These devices typically have enough computing
power to gather and transmit data, and some have enough to respond to requests to modify
their behavior.

These devices also are nearly all connected to some extent. Most have, or will have, an
Internet address of their own, with which they can communicate directly across local networks
or indirectly by way of clouds. So the concept of the Internet of Things is already starting to
emerge.

The next steps, then, are gathering all of the data that is collected by these small, medium, or
even large devices, routing that data to where it is best interpreted, and using the world’s vast
computational resources to understand what is happening and respond as necessary to
make life better.

+ + =
Instrumented Interconnected Intelligent Smarter Planet
Chapter 1. Overview of MQTT 3

1.1.3 Telemetry and the Internet

Telemetry technology allows things to be measured or monitored from a distance. In addition,
today, improvements in telemetry technology make it possible to interconnect measuring and
monitoring devices at different locations and to reduce the cost of building applications that
can run on these smart devices to make them even more useful.

People, businesses, and governments are increasingly turning to smart devices and
telemetry to interact more smartly with the world. A man shopping for groceries wants to know
what is currently in his pantry at home. A woman heading to Barcelona wants to know if flights
into that city are currently delayed by weather. A motorist driving across town wants to know if
the main highway to get there is still blocked by the car crash that was reported on the
morning news. A doctor with a patient due to arrive in the office at 3 p.m. wants to know, in the
morning, whether the patient’s blood pressure is stable enough to make the trip safely.

Information to help with each of these decisions can come, or could someday come, from a
variety of smart meters and devices.

Yet challenges lie in getting the information from the devices to the people and applications
that want to use it, in time for them to use it effectively and, ideally, with the added ability for
them to reply to the devices with new instructions or requests. If the devices are widely
distributed geographically, or if they have limited storage or computational abilities, the
challenges increase considerably, as do costs.

Fortunately, these challenges are being overcome through the use of improved telemetry
technologies and communication protocols that are making it possible to send and receive
this information reliably over the Internet, even if the network is unsteady or the monitoring
device has little processing power.

MQTT provides telemetry technology to meet the information challenges of today’s Internet
users.

1.2 MQTT and WebSphere MQ Telemetry

IBM WebSphere MQ has long served as a reliable, universal messaging backbone enabling
any-to-any connectivity. It runs on wide variety of platforms, has a number of language
bindings, and a stable, backward-compatible API. It has become the accepted method of
gluing disparate applications together.

The piece that has been missing until recently is the ability to reliably connect the edges, the
frontiers of the data network. Systems already exist that understand what actions to take
based on the status of remote devices. However, communicating that status to the system
has been a challenge, particularly if the network is constrained or if the device lacks the
computational power required for traditional messaging.

With MQTT, smart energy meters, industrial control systems, satellite receivers, healthcare
monitoring devices, and sensors on everything from planes to trains to automobiles can
communicate with each other and with other systems or applications.

1.2.1 MQ Telemetry Transport

MQTT is an extremely simple and lightweight messaging protocol. Its publish/subscribe
architecture is designed to be open and easy to implement, with up to thousands of remote
clients capable of being supported by a single server. These characteristics make MQTT
4 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

ideal for use in constrained environments where network bandwidth is low or where there is
high latency and with remote devices that might have limited processing capabilities and
memory.

The MQTT protocol includes the following benefits:

� Extends connectivity beyond enterprise boundaries to smart devices.
� Offers connectivity options optimized for sensors and remote devices.
� Delivers relevant data to any intelligent, decision-making asset that can use it.
� Enables massive scalability of deployment and management of solutions.

MQTT minimizes network bandwidth and device resource requirements while attempting to
ensure reliability and delivery. This approach makes the MQTT protocol particularly
well-suited for connecting machine to machine (M2M), which is a critical aspect of the
emerging concept of an Internet of Things.

The MQTT protocol includes the following highlights:

� Open and royalty-free for easy adoption

MQTT is open to make it easy to adopt and adapt for the wide variety of devices,
platforms, and operating systems that are used at the edge of a network.

� A publish/subscribe messaging model that facilitates one-to-many distribution

Sending applications or devices do not need to know anything about the receiver, not even
its address.

� Ideal for constrained networks (low bandwidth, high latency, data limits, and fragile
connections)

MQTT message headers are kept as small as possible. The fixed header is just two bytes,
and its on demand, push-style message distribution keeps network utilization low.

� Multiple service levels allow flexibility in handling different types of messages

Developers can designate that messages will be delivered at most once, at least once, or
exactly once.

� Designed specifically for remote devices with little memory or processing power

Minimal headers, a small client footprint, and limited reliance on libraries make MQTT
ideal for constrained devices.

� Easy to use and implement with a simple set of command messages

Many applications of MQTT can be accomplished using just CONNECT, PUBLISH,
SUBSCRIBE, and DISCONNECT.

� Built-in support for loss of contact between client and server

The server is informed when a client connection breaks abnormally, allowing the message
to be re-sent or preserved for later delivery.

1.2.2 WebSphere MQ Telemetry

WebSphere MQ Telemetry is a feature of WebSphere MQ that extends the universal
messaging backbone with the MQTT protocol to a wide range of remote sensors, actuators
and telemetry devices. It enables instrumented devices that are located virtually anywhere in
the world to connect to each other, and to enterprise applications and web services, with
WebSphere MQ. The use of MQTT extends WebSphere MQ to remote devices and enables
massive scalability. A WebSphere MQ Server can handle up to 100,000 concurrent MQTT
connections.
Chapter 1. Overview of MQTT 5

WebSphere MQ Telemetry includes the following key components:

� The MQ Telemetry service that runs on the WebSphere MQ server
� MQ Telemetry clients that are distributed to remote devices and applications

MQ Telemetry uses the MQTT protocol to send and receive messages between devices or
applications and the WebSphere MQ queue manager. From the WebSphere MQ queue
manager, the messages can be exchanged with other messaging applications, such as
similar telemetry applications, MQI, JMS, or enterprise messaging applications.

1.2.3 Basic concepts of MQTT

The MQTT protocol is built upon several basic concepts, all aimed at assuring message
delivery while keeping the messages themselves as lightweight as possible.

Publish/subscribe
The MQTT protocol is based on the principle of publishing messages and subscribing to
topics, which is typically referred to as a publish/subscribe model. Clients can subscribe to
topics that pertain to them and thereby receive whatever messages are published to those
topics. Alternatively, clients can publish messages to topics, thus making them available to all
subscribers to those topics.

Topics and subscriptions
Messages in MQTT are published to topics, which can be thought of as subject areas. Clients,
in turn, sign up to receive particular messages by subscribing to a topic. Subscriptions can be
explicit, which limits the messages that are received to the specific topic at hand or can use
wildcard designators, such as a number sign (#) to receive messages for a variety of related
topics.

Quality of service levels
MQTT defines three quality of service (QoS) levels for message delivery, with each level
designating a higher level of effort by the server to ensure that the message gets delivered.
Higher QoS levels ensure more reliable message delivery but might consume more network
bandwidth or subject the message to delays due to issues such as latency.

Retained messages
With MQTT, the server keeps the message even after sending it to all current subscribers. If a
new subscription is submitted for the same topic, any retained messages are then sent to the
new subscribing client.

Clean sessions and durable connections
When an MQTT client connects to the server, it sets the clean session flag. If the flag is set to
true, all of the client’s subscriptions are removed when it disconnects from the server. If the
flag is set to false, the connection is treated as durable, and the client’s subscriptions remain
in effect after any disconnection. In this event, subsequent messages that arrive carrying a
high QoS designation are stored for delivery after the connection is reestablished. Using the
clean session flag is optional.

MQ Telemetry version note: MQ Telemetry was added as an installable feature of
WebSphere MQ 7.0.1 before being fully integrated into WebSphere MQ V7.1.
6 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Wills
When a client connects to a server, it can inform the server that it has a will, or a message,
that should be published to a specific topic or topics in the event of an unexpected
disconnection. A will is particularly useful in alarm or security settings where system
managers must know immediately when a remote sensor has lost contact with the network.

1.2.4 Comparison between MQTT and HTTP

Although comparison is often made between MQTT and other common protocols, the most
useful comparison is with HTTP, for the following reasons:

� HTTP is the most widely used and available protocol. Almost all computing devices with a
TCP/IP stack have it. In addition, because HTTP and MQTT are both based on TCP/IP,
developers need to choose between them.

� The HTTP protocol uses a request/response model, which is currently the most common
message exchange protocol. MQTT uses a publish/subscribe pattern. Developers need to
understand the relative advantages of each type of model.

Quick comparison
Table 1-1 provides a quick comparison to help developers choose the most suitable
messaging protocol for applications.

Table 1-1 Quick comparison of MQTT and HTTP

Detailed comparison
Here is a fuller explanation of the critical differences between the MQTT and HTTP protocols
for devices:

� Design orientation

– MQTT is data-centric. It transfers data content as byte array. It does not care about
content.

– HTTP is document-centric. It supports the MIME standard to define content type, but
constrained devices usually do not need this advanced feature.

� Messaging pattern

– MQTT uses a publish/subscribe messaging pattern that has loose coupling. Clients do
not need to be aware of the existence of other devices. They just need to care about
the content to be delivered or received.

 MQTT HTTP

Design orientation Data centric Document centric

Pattern Publish/subscribe Request/response

Complexity Simple More complex

Message size Small, with a compact binary header
just two bytes in size

Larger, partly because status detail
is text-based

Service levels Three quality of service settings All messages get the same level of
service

Extra libraries Libraries for C (30 KB) and Java
(100 KB)

Depends on the application (JSON,
XML), but typically not small

Data distribution Supports 1 to zero, 1 to 1, and 1 to n 1 to 1 only
Chapter 1. Overview of MQTT 7

– HTTP uses a request/response messaging model. It is a basic and powerful
messaging exchange pattern, but the client needs to know the address of all devices to
which it connects.

� Complexity of protocol

– The MQTT specification is short. It has few message types and only the CONNECT,
PUBLISH, SUBSCRIBE, UNSUBSCRIBE, and DISCONNECT types are important for
developers.

– HTTP is a more complex protocol, with a specification that is more than 160 pages
long. It uses many return codes and methods (such as POST, PUT, GET, DELETE,
HEAD, TRACE, CONNECT, and so on). It works well for hypermedia information
systems, but constrained devices typically do not need all of its features.

� Message size

– MQTT is designed specifically for constrained devices. It includes only the features that
are necessary to support them. The message header in MQTT is short, and the
smallest packet size for a message is 2 bytes.

– HTTP uses a text format, not a binary format, which allows for lengthy headers and
messages. The text format is readable by humans, which makes the HTTP protocol
easy to troubleshoot and has contributed to its popularity. However, this format is more
than is needed, or desirable, for constrained devices with limited computational
resources in low-bandwidth network environments.

� Quality of Service levels

– MQTT supports three QoS levels in message publication. Developers do not have to
implement additional, complex features to ensure message delivery.

– HTTP has no retry ability or QoS features. If developers need guaranteed message
delivery, they have to implement it themselves.

� Extra libraries

– MQTT works well on devices with limited memory due, in part, to its small library
requirement, only about 30 KB for the C client and 100 KB for the Java client.

– HTTP does not require any libraries by itself, but additional libraries of parsers for
JSON or XML are required if using SOAP- or RESTful-style web services.

� Data distribution

– MQTT includes a built-in distribution mechanism, supporting the 1 to 0, 1 to 1, and 1 to
many distribution models.

– HTTP is point-to-point and has no built-in distribution feature. Developers must create
their own distribution mechanism or adapt common techniques, such as long-polling or
Comet.

1.2.5 MQTT and Eclipse Paho

With the rapid expansion of sensors, monitors, and other forms of remote instrumentation, the
need to integrate these smart devices into enterprise and web-based systems becomes more
important. To date, the typical integration approach has been to combine, to the extent
possible, industry-standard communications models with whatever private or non-standard
messaging protocols might be resident on the devices or already in use within the enterprise.

However, such integrations often are based on point-to-point standards that require tight
coupling between the sending and receiving devices or applications, and the limitations of
protocols, such as SOAP or HTTP, make programming requirements quite strict. Additional
8 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

challenges lie in implementing solutions for constrained devices with minimal storage and
calculating capabilities or on unstable, low-performing data networks.

Open source messaging is needed that can exchange data and events between devices in
the physical world and the virtual world of the enterprise or web-based systems. It should
support the open messaging models that are increasingly prevalent and also cater to the
special needs of constrained devices and networks. Open source messaging enables a shift
from strict, 1-to-1-style existing protocols to more loosely coupled models and bridges the
new middleware architectures with the embedded and wireless device architectures that are
associated with machine-to-machine (M2M) communication. See Figure 1-3.

Figure 1-3 Machine-to-machine connectivity

IBM and Eurotech joined Sierra Wireless and the Eclipse Foundation to provide open source
tools and protocols to the Eclipse Paho project to simplify development of M2M solutions. The
Eclipse Paho project is aimed at developing open source, scalable, and standard messaging
protocols of the type needed for improved M2M communication and integration with web,
enterprise middleware, and applications. It includes the following major goals:

� Bidirectional messaging
� Determinable delivery of messages
� Loose coupling
� Constrained-platform usability

The scope of the Eclipse Paho project includes client software for use on remote devices
along with corresponding server support. The Eclipse Paho project focuses on the

Sensors
Power meters, weather data
SCADA sensors, pressure,
volume, RFID readers, Motion
detectors…

Actuators
Tag printers, status lights,
Load generation, HVAC and
lighting, Valves, switches
and pumps…

Embedded Controllers
Filtering of duplicate read events,
Store-based HVAC and lighting
controls, Industrial Network
Gateways (SCADA)

Intelligent

Edge Gateways
Device hubs/controllers that
act as hubs/concentrators
for connecting devices.

Connectivity for:
• Devices
• Applications

Instrumented

Enterprise
Application
Enterprise
Application

MobileMobile

Web AppWeb App

Remote Systems and DevicesRemote Systems and DevicesWeb Application Enterprise
Application

Interconnected
Chapter 1. Overview of MQTT 9

framework, best practice samples, and plug-in tools for developers to integrate and test the
end-to-end connectivity of messaging components.

IBM contributed Java and C client-side code implementations of the MQTT protocol, and
Eurotech contributed the framework implementation and sample applications for developers
to use when integrating and testing Paho messaging components. The Java MQTT client
libraries run on many variations of Java, including Connected Device Configuration
(CDC)/Foundation, Java Platform, Standard Edition (J2SE), and Java Platform, Enterprise
Edition (J2EE). The C reference implementation, together with prebuilt native clients for the
Windows and Linux operating systems, enables MQTT to be ported to a wide range of
devices and platforms.

The Eclipse tools facilitate designing and developing connectivity solutions between devices
and applications, thereby enabling and encouraging more innovative M2M integration. Users
can write their own API to interface with the MQTT protocol in their preferred programming
language on their preferred platform.

To simplify writing MQTT client applications, developers can use the WebSphere MQ
Telemetry client libraries and the development software development kit (SDK). The client
libraries and the development SDK can be imported into a development environment (for
example, WebSphere Eclipse Platform). After relevant applications are developed, the
applications and client libraries can then be deployed together to the appropriate system. The
SDK includes the WebSphere MQ Telemetry C and Java client libraries that encapsulate the
MQTT V3 protocol for a number of platforms.

You can find more information about the Eclipse Paho project at:

http://www.eclipse.org/paho/

Information is also available about the MQTT V3 Java and C clients that IBM contributed to
the project, which you can download from the following web pages:

http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.java.git/
http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.c.git/

1.2.6 MQTT and open source

As an open source protocol, MQTT is an important component in numerous connectivity
solutions. Table 1-2 shows the various clients that are provided with servers and brokers.

Table 1-2 MQTT brokers and the clients that come with them

Server/Broker Client or clients provided Notes

IBM WebSphere MQ Telemetry � C client API
� Java client API
� Simple Asynchronous Messaging

(SAM)
� WebSphere MQTT client (Perl)

WebSphere MQ Telemetry is a
component of WebSphere MQ V7.1
and later. It was included in
WebSphere MQ V7.0.1 as an
additional installation.

IBM WebSphere Message Broker � C client (part of SupportPac IA93)
� Java client (part of SupportPac

IA92)
� WebSphere-MQTT client (Perl)

The Supervisory Control and Data
Acquisition (SCADA) input and output
nodes in WebSphere Message
Broker V6.0 are replaced by JMS
input and output in V7.0.

IBM Lotus Expeditor micro broker � Java client (including JMS)
� C client
� C# client

Lotus Expeditor micro broker is a
small Java implementation of an
MQTT server.
10 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.eclipse.org/paho/
http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.java.git/
http://git.eclipse.org/c/paho/org.eclipse.paho.mqtt.c.git/

Table 1-3 lists common programming languages and the compatible client libraries that are
available.

Table 1-3 Programming languages and compatible MQTT client libraries

Really Small Message Broker � C client API Really Small Message Broker is a
small server that uses MQTT (V3 and
V3.1).

Mosquitto � C client library (libmosquitto)
� C++ client library

(libmosquittocpp)
� Python client module

(python-mosquitto)

Mosquitto is an open source MQTT
server that supports MQTT version
3.1.

Eurotech Everyware Device Cloud
(EDC)

� Java client
� C client
� C# client
� Other options available

EDC is a cloud-based service that
supports MQTT as a communication
protocol.

MQTT.js � JavaScript client API used for
client creation

This script is an MQTT server with
server/client creation API written in
JavaScript.

m2m.io � C client API
� C# client API
� Java client API
� Ruby client API

This API provides a cloud messaging
service.

mqtt4erl � Erlang client This client provides an open-source
broker/client that supports MQTT.

ELWIX � C library (libaitmqtt) A UNIX variant broker that uses
MQTT for communication.

Server/Broker Client or clients provided Notes

Language Compatible client or clients Notes

C � liblwmqtt A lightweight C client.

Delphi � TMQTTClient The library is a Delphi client library for
MQTT.

Erlang � erlmqtt
� my-mqtt4erl

erlmqtt is a library for MQTT.

my-mqtt4erl is a more recent fork of
mqtt4erl

Java � MeQanTT
� mqtt-client

Mqtt-client is a Fusesource Java MQTT
client with a variety of API styles.

JavaScript � Node.js MQTT Client A simple MQTT client that runs on
node.js.

IBM LotusScript® � LotusScript Library Wraps other classes into LotusScript
classes for MQTT calls.

Lua � Lua MQTT Client Library Implements MQTT V3.1.
Chapter 1. Overview of MQTT 11

1.3 Benefits of using MQTT

Using the MQTT protocol extends WebSphere MQ to tiny sensors and other remote telemetry
devices that might otherwise be unable to communicate with a central system or that might be
reached only through the use of expensive, dedicated networks. Network limitations can
include limited bandwidth, high latency, volume restrictions, fragile connections, or prohibitive
costs. Device issues can include limited memory or processing capabilities, or restrictions on
the use of third-party communication software. In addition, some devices are
battery-powered, which puts additional restrictions on their use for telemetry messaging.

MQTT was designed to overcome these limitations and issues and includes the following
underlying principles:

� Simplicity: The protocol was made open so that it can be integrated easily into other
solutions.

� Use of a publish/subscribe model: The sender and the receiver are decoupled. Thus,
publishers do not need to know who or what is subscribing to messages and vice versa.

� Minimal maintenance: Features, such as automated message storage and retransmission,
minimize the need for on-the-fly administration.

.NET � MQTTDotNet
� nMQTT

MQTTDotNet is a client implementation
of MQTT version 3.

nMQTT is an implementation of MQTT
v3 for the .Net and Mono platforms.

Perl � net-mqtt-perl
� anyevent-mqtt-perl

net-mqtt-perl is a Perl module to
represent MQTT messages.

AnyEvent-mqtt-perl is an AnyEvent
module for an MQTT client.

Python � MQTT-For-Twisted-Python A Python MQTT protocol client.

REXX � REXXMQTT A Regina REXX with an add-on Rxsock
library for MQTT clients.

Ruby � ruby-mqtt
� ruby-em-mqtt

ruby-mqtt is an MQTT client
implemented in Ruby gem.

ruby-em-mqtt provides MQTT support to
EventMachine

Device-specific � Arduino client for MQTT
� mbed client for MQTT
� Nanode MQTT
� Netduino MQTT

Arduino client for MQTT supports MQTT
V3

mbed client for MQTT is a simple MQTT
client that runs on the mbed platform

Nanode MQTT is an MQTT
implementation for Nanode.

Netduino MQTT is a simple MQTT client
used by Netduino.

Language Compatible client or clients Notes
12 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

� Limited on-the-wire footprint: The protocol keeps data overhead to a minimum on every
message.

� Continuous session awareness: By being aware of when sessions have terminated, the
protocol can take action accordingly, thanks in part to a will feature.

� Local message processing: The protocol assumes that remote devices have limited
processing capabilities.

� Message persistence: Through the designation of specific QoS, the publisher can ensure
delivery of the most important messages.

� Agnostic regarding data types: The protocol does not require that the content of messages
be in any particular format.

Table 1-4 lists potential scenarios where WebSphere MQ and the MQTT protocol might be
used to improve communication to and from remote devices or applications.

Table 1-4 Scenarios where WebSphere MQ and MQTT can be used

Scenario Key industries Examples

Automated metering � Chemical and Petroleum
� Energy and Utilities

� A homeowner uses smart
metering to obtain a more
accurate view of how each
household appliance consumes
electricity and to make changes.

� A utility company remotely
monitors water heaters in
customers’ homes and turns off
the water heaters at times when
they are not typically used.

Distribution supply chain and
logistics

� Retailers
� Distributors
� Consumer products
� Transportation

� A shipping company gains
customer loyalty by providing
up-to-the-moment, detailed
tracking information for cargo.

� A trucking company cuts costs
using remote fleet monitoring,
which enables more efficient use
of each truck’s capacity on every
run.

Industrial tracking and visibility � Automotive
� Industrial manufacturing
� Aerospace
� Defense

� A manufacturing company
automates inventory checking to
improve management of stock
and to optimize production rates.

� An automobile company uses
RFID tracking to obtain
up-to-the-minute details about
the current stage of assembly of
each new vehicle as it moves
through the assembly line.
Chapter 1. Overview of MQTT 13

1.4 Where to use MQTT

The MQTT messaging protocol is designed for devices in constrained environments, such as
embedded systems with limited processing ability and memory or systems that are connected
to unreliable networks. It provides the robust messaging features that are needed to
communicate with remote systems and devices while consuming just a small portion of
network bandwidth.

1.4.1 Example implementations of MQTT

Before discussing, generally, the kinds of communication that MQTT can make more efficient,
here is a brief look at scenarios where MQTT is already being used successfully.

Healthcare
A medical organization wanted to create an at-home, cardiac pacemaker monitoring solution.
The solution needed to address the following aspects of patient care:

� Monitoring cardiac patients after they leave the hospital
� Improving the efficiency of later checkups
� Meeting new industry data-capture standards

Healthcare quality and resource
tracking

� Pharmaceutical companies
� Medical research
� Hospitals
� Nursing Homes

� A medical clinic remotely tracks
the vital signs of at-risk patients
to help prevent sudden crises that
might arise after a patient goes
home.

� A research team monitors
chemical reactions in a remote
laboratory and alerts the chemist
when a particular result or stage
of development is achieved.

Location awareness and safety � Chemical and Petroleum
� Energy and Utilities
� Homeland Defense

� A gas company improves pipeline
monitoring by tripling the number
of remote control devices along
the route from 4,000 to 12,000.

� A government agency improves
its early-warning system by
placing remote sensors on dams
and elsewhere in flood-prone
regions.

Executive alerts � Insurance
� Banking

� A bank retains more customers
by monitoring all account-closing
inquiries and having a manager
call customers who are thinking
of leaving.

� An insurance company sends
claims adjusters to collect
damage reports at disaster sites
and collects the data in its central
servers.

Scenario Key industries Examples
14 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The company worked with IBM to create a solution (illustrated in Figure 1-4) in which an
MQTT client is embedded in a home monitoring appliance that collects diagnostics whenever
the patient is in close proximity to a base unit. The base unit sends the diagnostic data over
the Internet to the central messaging server, where it is handed off to an application that
analyzes the readings and alerts the medical staff if there are signs the patient might be
having difficulty.

Figure 1-4 Home pacemaker monitoring solution with MQTT

The solution allows the organization to provide a higher level of post-hospital patient care and
early diagnosis of followup issues. It also saves money for both the organization and its
patients, because there is less need for travel by either party and because patients who are
doing well might be allowed to come in for checkups less often.

Energy and utilities
A utility company was faced with both rising costs to produce electricity and increasing
demand for power from its customer base, which was unable, generally, to pay
ever-increasing rates. So rather than immediately passing on production costs that its
customers likely could not pay, the company first sought a solution to reduce overall demand
for electricity by placing smart meters in customers’ homes to remotely control the use of
certain power-consuming devices. However, the solution needed to minimize use of the
available data network, for which the company paid according to the volume of data
transmitted.

The solution was to create a virtual power plant (VPP) that sits between the company’s
generating sources and its customers. In-home smart meters collect usage data for the
various appliances that are used there. Then, home gateway monitors, equipped with an
advanced MQTT client, publish the usage data to the VPP at regular intervals over the local
mobile telephone network.

As illustrated in Figure 1-5 on page 16, the VPP monitors energy consumption in real time,
predicts upcoming consumption needs, and when necessary lowers overall demand by taking
control of electricity-using devices in customers’ homes. When instructions are sent to
electricity-using devices in a home, the commands are pushed to the home gateway box
using MQTT.

Instrumented Interconnected Intelligent

Patient
at home

Home
monitoring
appliance
with MQTT

Internet Message
server

Analytical
application

Doctor
Chapter 1. Overview of MQTT 15

Figure 1-5 The virtual power plant using MQTT

Social networking
A social networking company experienced latency problems when sending messages. The
method the company used to send messages was reliable but slow, and solutions were
limited if it continued to use the same or similar technology. A new mechanism was needed
that could maintain a persistent connection with the messaging servers without consuming
too much battery power, which is critical to users of the company’s social networking site
because so many of them use the service on battery-powered mobile devices.

The company’s developers solved the problem using the MQTT protocol. By maintaining an
MQTT connection and routing messages through its chat pipeline, the company was able to
achieve message delivery at speeds of just a few hundred milliseconds, rather than multiple
seconds.

Other areas where MQTT has been used
MQTT is also applicable across the following additional industries and sectors:

� Point-of-sale solutions that send sales information and receive price updates over slow
networks

� Gambling devices, such as slot machines, that are distributed around a casino but must
regularly communicate with a central server

� Preventive maintenance of automobiles by means of automated collection of real time
diagnostic information from critical vehicle components

� Environmental monitoring, such as through the use of remote sensors along sensitive
areas such as riverbanks

� Healthcare and safety solutions that rely on immediate analysis of real-time data that is
collected from patients in various locations

IntelligentInterconnected

Wireless
Cellphone

Tower

IP
backhand

Virtual
Power Plant

Transmission
substation

MQ Telemetry
Transport

Tivoli
Monitoring

and
Management

Virtual
Power Plant
Application

WebSphere
Application

Server

WebSphere
MQ

DB2

Monitor: Energy, Temp, Humidity
Appliances

Control, Temp (HVAC), Appliances

Instrumented
16 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

1.4.2 Machine-to-machine

When most people think of the Internet, they think of individuals using a web browser to
gather information from search engines, to communicate with others using social media, or to
connect to viewing devices, such as web cameras. Yet as technology evolves, it is
increasingly common for devices to be connected to each other. This type of connection has
created a need for efficient, machine-to-machine (M2M) communication protocols.

The MQTT protocol is ideal for use in M2M communication. It enables connectivity that
extends beyond smart devices to some of the smallest remote devices and sensors, including
devices with limited processing or network abilities. This extension makes MQTT a critical
component in self-managing M2M networks and a key part of realizing the Smarter Planet
vision. In addition, because MQTT is highly scalable, it is possible to create systems that
involve hundreds or even thousands of remote sensors or devices.

Figure 1-6 illustrates how the MQTT protocol can improve M2M communication.

Figure 1-6 Example of M2M communication enabled or improved by the MQTT protocol

The MQTT for Sensors (MQTT-S) protocol enables the inclusion of machines that typically
would not be able to use MQTT due to a lack of TCP/IP network abilities. MQTT-S extends the
MQTT protocol to low-cost, battery-operated sensor and actuator devices existing on
non-TCP/IP networks. It can function on any network that allows bidirectional data transfer.

MQTT-S is ideal for wireless sensor networks (WSN) of spatially distributed autonomous
sensors. WSNs are attractive due to their simplicity, low cost and ease of deployment.

Oil rig

Vehicle

Sensor
(e.g., RFID)

Retail
store

Pervasive
device

Energy monitoring
equipment

Smartphones

Medical

Enterprise
Chapter 1. Overview of MQTT 17

MQTT-S clients connect to a gateway that performs the protocol translation between MQTT
and MSTT-S. The MQTT-S clients are often used to monitor physical or environmental
conditions such as temperature, sound, vibration, pressure, or motion.

1.4.3 MQTT and sensors

The MQTT protocol has special applicability when used with remote sensing devices.

Sensors
Sensors measure or otherwise determine, or sense, particular parameters of a device or
system and report it in a manner that is understandable to humans or other devices or
systems. The simplest examples might be an old-style clinical thermometer, which senses
human body heat and reports it with the rising or falling column of mercury, or a pressure
gauge that reports the interior air pressure of a tire through the movement of a needle across
a scaled dial. Modern sensors can report their status in more advanced ways, such as on
digital panels or, with the help of messaging protocols, such as MQTT, by transmitting their
information over a data network.

Sensors of a device or system
One sensor can measure a particular parameter on a particular device or system. Or multiple
sensors can be positioned to report on several parameters, providing a complete view of the
current operating conditions of the device or system. This view can be critical to a supervisor
because it allows him or her to determine, for example, if everything is operating within safety
limits.

Consider a system for moving pressurized gas at a chemical factory. The supervisor needs to
know, among other things, the operating status of the compressors, the rates of flow at inlet
and outlet, the temperature of the gas and the pressure of the gas inside the system. So it is
critical that all of these factors be measured by properly calibrated sensors that are placed in
the correct locations and are capable of reporting their status reliably and in real time.

Sensors of an enterprise
When applied to an entire enterprise, the nature of an interrelated group of sensors grows
even more complicated, and more critical. Take the example above of the chemical factory.
There might be other compressors or machinery which are interdependent, such as when
compressed gas is fed into a reaction chamber. So in addition to the sensors reporting on the
pressurized gas system, other sensors are measuring activity within the reaction chamber.
Each individual sensor is reporting its particular parameter, but together, they provide an
end-to-end status of the whole operation.

Another aspect of an enterprise is the interface between departments. The production
department might be primarily interested in the sensors that report on the compressors and
reaction chamber, while the shipping department is mostly interested in how much of the
product will need to be shipped out to customers. The amount of the product to be shipped on
a given day is dependent on the performance of the compressors and reaction chamber. So,
the sensors individually are important, and their ability to communicate current readings is
vitally important also.

Actuators
Actuators are a special type of device that take an action based on system behavior.
Whereas a sensor reports the status of a particular parameter of a system, an actuator can
act to influence that parameter or other parts of the system. A simplified analogy is that of file
input-output operations. The work of a sensor can be seen as similar to that of a file reading
operation; the work of an actuator can be seen as similar to a file writing operation.
18 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Another example is a flow valve attached to a pipeline, which can alter the rate of flow based
on certain parameters that are sensed. Yet another actuator might be set to track a set of
parameters and then trigger an alarm if certain thresholds are reached.

Transmitting sensor data with MQTT
Further requirements of a sensor, such as transmitting its readings over a network or raising
an alert, are generally not in the scope of the sensor itself. These types of requirements fall
outside the scope of the sensor because a sensor is typically a small, specialized piece of
hardware that is not designed to contain the computational power that is needed for more
advanced functions.

Some sensors come equipped with communications abilities, or additional hardware devices
can be added to them to enable this capability. However, these options are generally limited
because they still cannot provide the computational power that is required for traditional data
transmission protocols.

The MQTT publish/subscribe messaging model can help provide the capabilities to transmit
sensor data.
Chapter 1. Overview of MQTT 19

20 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Chapter 2. Getting started with MQTT

In this chapter we introduce the concepts behind the MQTT protocol. We describe a
transportation logistics scenario that will be used throughout the book to demonstrate critical
messaging and programming concepts, and provide an example of how to build an initial
publish/subscribe program using available MQTT clients and brokers.

This chapter contains the following sections:

� Clients and brokers used in this book
� Scenario used in this book
� MQTT concepts
� MQTT brokers
� Building a sample MQTT application with freely available software

2

© Copyright IBM Corp. 2012. All rights reserved. 21

2.1 Clients and brokers used in this book

Several different clients and brokers can be used to build the initial publish/subscribe program
that is created later in this chapter. Each is relatively easy to use and can be obtained from
sources across the Internet. Additional options exist (refer to 1.2.6, “MQTT and open source”
on page 10), but the ones listed here are considered to be among the most mature.

2.1.1 MQTT clients

An MQTT client (also called a client application) collects information from a telemetry device,
connects to a messaging server, and uses a topic string to publish the information in a way
that allows other clients or applications to retrieve it. An MQTT client also can subscribe to
topics, receive publications associated with those topics, and issue commands to control the
telemetry device.

Client libraries can simplify the process of writing MQTT client applications. For example,
WebSphere MQ Telemetry provides C and Java client libraries that can be used to enable the
MQTT V3 protocol for use on a number of platforms. When these libraries are incorporated
into MQTT applications, a fully functional MQTT client can be created with just a few lines of
code.

WebSphere MQ Telemetry clients
IBM WebSphere MQ ships with a set of fully-supported, precompiled MQTT clients. Use one
of these if it is available for your platform.

At the time of writing, MQTT clients are supplied with WebSphere MQ for the following target
applications:

� Java applications running on a range of Java Standard Edition (JSE) and Java Micro
Edition (JME) virtual machines

� C applications running on Linux operating systems with x8664 and ARM hardware

� C applications running on Windows operating systems with x86 and x8664 hardware

These clients contain mature, high performing implementations of the MQTT V3.1 protocol.
They can be found in the WebSphere MQ installation directory or they can be downloaded as
a stand-alone package of WebSphere MQ V7.1 clients from this website:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24031412

Full details of the supported environments for these precompiled clients are available here:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg27023057

Eclipse Paho clients
The Eclipse Paho project provides scalable, open-source messaging models for
machine-to-machine (M2M) communication, starting with C- and Java-based client
implementations of MQTT. These provide good options for the clients that come with
WebSphere MQ Telemetry; developers can compile them on operating systems or hardware
on which the WebSphere MQ Telemetry clients are not supported.

The Eclipse Paho MQTT clients can be downloaded from:

http://www.eclipse.org/paho/download.php
22 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24031412
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg27023057
http://www.eclipse.org/paho/download.php

2.1.2 MQTT brokers

An MQTT broker is a server that implements the MQTT protocol. It mediates communication
between MQTT client applications, such as those running in remote sensors and other
devices, and the enterprise integration layer.

WebSphere MQ
WebSphere MQ began including built-in support for MQTT, through the WebSphere MQ
Telemetry component, starting with versions 7.0.1 and 7.1. The WebSphere MQ Telemetry
component is implemented by the WebSphere MQ Extended Reach (MQXR) service. This
MQXR service includes a Java-based broker, which enables delivery of MQTT messages by
connecting MQTT clients to MQ queue managers.

Refer to Chapter 3, “Using MQTT with IBM WebSphere MQ Telemetry” on page 55 for an
in-depth review of using WebSphere MQ as your message broker. An evaluation version of
WebSphere MQ can be found at:

http://www.ibm.com/developerworks/downloads/ws/wmq/

Really Small Message Broker and MQ Telemetry daemon for devices
Really Small Message Broker (RSMB) is a small, freely available C implementation of an
MQTT broker. It also is an advanced MQTT V3 client application. Developers usually use it as
a hub to store and forward messages from MQTT clients to a backend MQTT broker. RSMB,
which was first released in 2003, can be downloaded as a stand-alone client here:

https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=AW-0U9&S_PKG=
0U9

The MQ Telemetry daemon for devices is the latest version of RSMB. It is provided with
WebSphere MQ V7.0.1 and V7.1, in the MQ /mqxr/SDK/advanced/DeviceDaemon installation
directory.

Mosquitto
Mosquitto is a small, no-cost, open source implementation of an MQTT broker that supports
the MQTT V3.1 protocol. Mosquitto replicates the functionality of Really Small Message
Broker.

For more information about Mosquitto or to download the Mosquitto broker, refer to this
website:

http://mosquitto.org/

Micro broker in IBM Lotus Expeditor integrator
Micro broker is a Java-based MQTT broker that IBM is already using in software products
such as IBM Lotus Expeditor integrator. It runs on a wide range of standard devices including
PDAs, notebook and desktop systems, and more. Micro broker provides multiple ways to
interact with messaging system components, including the following:

� A JMS API for accessing queues and establishing messaging communication

� Micro broker clients (buffering and non-buffering) for sensors and devices using MQTT to
communicate with the micro broker itself

� Messaging client plug-ins to communicate with other messaging providers (for example,
WebSphere MQ)

The IBM Lotus Expeditor integrator software complements an enterprise service bus by
acting as a local concentrator and integration hub for transactional messaging at remote
Chapter 2. Getting started with MQTT 23

http://www.ibm.com/developerworks/downloads/ws/wmq/
https://www14.software.ibm.com/webapp/iwm/web/reg/download.do?source=AW-0U9&S_PKG=0U9
http://mosquitto.org/

locations. Its object is to provide lightweight, reliable and secure data exchange with the
central system while minimizing maintenance. An evaluation version of IBM Lotus Expeditor
v6.2.2, including the micro broker, can be downloaded from:

http://www.ibm.com/developerworks/downloads/ls/lxpd/

2.2 Scenario used in this book

The sample MQTT-related programs and applications demonstrated in this book are based,
whenever possible, on a scenario involving Transportation Company B, a fictitious logistics
company that transports materials to, from and among its customers. The need for the
company to regularly monitor the location of its vehicles, and the status of the cargo within
each vehicle, makes it ideal for illustrating the kinds of solutions that MQTT-based messaging
can provide.

2.2.1 Business challenge

Transportation Company B wants to upgrade its truck monitoring system.

Under the current architecture (refer to Figure 2-1), each of the company's trucks uses
wireless technology to regularly inform division headquarters about the load it is carrying, its
current position (location, speed, available fuel, and so on), and the status of its HVAC
systems (heating, ventilation, and air conditioning). Each division uses this data to monitor its
trucks, and sometimes messages containing new travel routes or other instructions are sent
back to the trucks. In addition, selected data is sent on to company headquarters for
additional analysis.

Figure 2-1 Current messaging architecture of Transportation Company B

The current messaging architecture is inadequate to meet the company’s needs for the
following reasons:

� The high cost of using multiple, different protocols to communicate with trucks in the fleet,
which often have different messaging capabilities and requirements.

� Limited available bandwidth, which makes it essential that every message to or from a
truck be as small as possible.

� Frequent network disruptions that cause messages to be lost or garbled in transmission.

Divisions

Headquarters

Trucks
24 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.ibm.com/developerworks/downloads/ls/lxpd/

� The lack of effective message distribution mechanisms, which limits communication
between trucks and forces the use of separate, centralized distribution systems.

� Too wide a variety of on-board telemetry messaging devices, each with different
processing capabilities and memory resources.

� The need for customized code to integrate with the messaging requirements of different
backend systems used for monitoring, analysis and processing.

2.2.2 MQTT-enabled solution

To eliminate the disadvantages of the current architecture, Transportation Company B plans
to use the MQTT protocol and related messaging products to create a more universally
compatible system that puts fewer demands on the network and can work with the telemetry
devices already present on many of its trucks.

Figure 2-2 shows the new messaging architecture.

Figure 2-2 Future messaging architecture of Transportation Company B

The new messaging architecture uses Smarter Planet concepts to solve many of the
challenges facing Transportation Company B:

� Instrumented

Information is captured where it exists: in the trucks themselves. Using the lightweight but
powerful MQTT protocol helps overcome the fact that many of the devices on the trucks
have limited memory or processing power, or connect by means of unreliable networks.

� Interconnected

Information is sent where it is needed: to the company's division offices and central
headquarters, and, when necessary, back to the trucks. By connecting MQTT clients on
the trucks to a series of MQTT-enabled message brokers, the critical telemetry information
from the trucks is sent where it needs to go quickly and efficiently, with greatly reduced
infrastructure costs and architectural challenges.

MQTT brokers
(MQ network)

HeadquartersTrucks

Interconnected

Intelligent

Instrumented

Divisions

Position,
Speed,

Fuel

Integration,
web hosting,

event monitoring,
data mining
Chapter 2. Getting started with MQTT 25

� Intelligent

Information is analyzed and decisions are made in real time. All messages are sent to the
company's division and central headquarters using the common MQTT format, enabling a
single backend system to be used for monitoring, analysis and processing.

2.3 MQTT concepts

This section describes the MQTT publish/subscribe messaging model and introduces the
critical concepts involved in MQTT client programming.

2.3.1 MQTT messaging

The popularity of MQTT-based messaging stems from the simple way it allows information to
be published or subscribed to, without the need to know who or what is sending or receiving
the information. This simplicity allows each message to be very small in size, thereby
reducing demands on the network and on the remote monitoring devices from which many
MQTT messages emanate.

Publish/subscribe pattern
MQTT uses a publish/subscribe messaging pattern that enables a loose coupling between
the information provider, called the publisher, and consumers of the information, called
subscribers. This is achieved by introducing a message broker between the publisher and the
subscribers (Figure 2-3).

Compared with the traditional point-to-point pattern, the advantage of the publish/subscribe
model is that the publishing device or application does not need to know anything about the
subscribing one, and vice versa. The publisher simply sends the message with an identifier
that denotes its topic, or subject area. The broker then distributes the message to all
applications or devices that have chosen to subscribe to that topic. In this way, the
publish/subscribe pattern turns traditional point-to-point messaging into a multicast of
content-based communications.

Figure 2-3 Two examples of publish/subscribe configurations

The left side of Figure 2-3 shows a simple publish/subscribe configuration. Each publisher
and subscriber focuses only on sending and receiving the information they care about, while

Subscriber Subscriber Subscriber SubscriberSubscriber

Publisher Publisher Publisher Publisher Publisher

Subscribe:
truck/telematics/

location

Publish:
truck/telematics/

location

Publish:
truck/telematics/

location

Publish:
truck/contents/rfid

Subscribe:
truck/contents/rfid

Subscribe:
truck/telematics/

location

Subscribe:
truck/telematics/

location

Publish:
truck/telematics/

speed

Publish:
truck/telematics/

speed

Subscribe:
truck/telematics/#

Simple Extended

Bridge
Broker Broker1 Broker2
26 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

the broker sits between them and routes each message in the proper direction based on its
topic designation.

On the right side of the figure, the advanced configuration shows two brokers that exchange
information internally by way of a bridge. This allows topic subscribers that are linked to one
broker to get messages that are published to that topic through another broker. In this way,
the publish/subscribe model simplifies system maintenance and message distribution, which
leads to better scalability than the traditional point-to-point pattern. For more information
about publish/subscribe topologies and scalability, see Chapter 5, “Typical topologies and
patterns of use” on page 159 and Chapter 6, “Scaling a system” on page 181.

Topics, trees, and strings
Message distribution in MQTT-based systems depends on the designation of specific topics,
topic trees, and topic strings.

Topics
Publishers are responsible for classifying their message subjects into topics. A topic defines
the content of a message or the subject area under which the message can be categorized.
In our scenario, the simplest example of a topic is the single word truck. Topics are important
because while messages in point-to-point systems are sent to specific destination addresses,
messages in publish/subscribe systems such as MQTT are distributed based on each
subscriber’s choice of topics. By subscribing to a particular topic, the subscriber is signing up
to receive every message published to that topic from any publisher.

Topic trees
Typically, topics are organized hierarchically into topic trees, using the '/' character to create
subtopics in the topic string. In our scenario, an example of a simple topic tree is
truck/contents.

Topic strings
A topic string is a character string that identifies the topic of a publish/subscribe message.
Topic strings can contain either of two wildcard schemes to allow subscribers to match
patterns within strings defined by message publishers:

� Multilevel: The wildcard character number sign (#) is used to match any number of levels
within a topic. For example, subscribers to truck/contents/# receive all messages that are
designated for the topics truck/contents and truck/contents/rfid.

� Single level: The wildcard character plus sign (+) is used to match just one topic level. For
example, truck/+ matches truck/contents but not truck/contents/rfid.

2.3.2 Client programming

Some key concepts for MQTT client programming are provided here. But the information is
very general. For additional details, refer to the following websites:

� Java client

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt6030
0_.htm

� C client

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt6060
0_.htm
Chapter 2. Getting started with MQTT 27

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60300_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60600_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60600_.htm

Client identifier
The client identifier is a 23-byte string that identifies an MQTT client. Each identifier must be
unique to only one connected client at a time. In order to keep the identifier short and unique,
developers typically introduce an identifier generation mechanism, such as creating it from
the 48-bit device MAC address. If transmission size is not a critical issue, you may use the
remaining 17 bytes to make the address easier to administer, such as by inserting some
human-readable text in the identifier.

Retained publications
Publications (messages) for a given topic can be retained and delivered when new
subscribers sign up for the topic. Publishers must set a retention attribute for each message;
a setting of true retains the message while a setting of false establishes that the message
should not be retained for future delivery. When a publication to be retained is created or
updated, it should be given a quality of service (QoS) designation of at least once (QoS=1) or
exactly once (QoS=2). If a publication is sent with a QoS setting of at most once (QoS=0), a
nonpersistent retained publication is automatically created and the publication is not retained
if the queue manager stops.

Use retained publications to record the latest value of a measurement. New subscribers to
the retained topic immediately receive the most recent value of the measurement. If no new
measurements have been taken since the subscriber last subscribed to the publication topic,
the subscriber still receives the most recent retained publication on the topic the next time the
subscriber connects.

Stateless and stateful sessions (cleanSession)
When you connect to an MQTT client application, the client identifies the connection using the
client identifier and the address of the server. The server checks whether session information
has been saved from a previous connection to the server. The cleanSession parameter in the
connection options indicates whether the connection should be stateless or stateful. If a
previous session still exists, and cleanSession=true, then the previous session information at
the client and server is cleared. If cleanSession=false, the previous session is resumed. If no
previous session exists, a new session is started. The default value of cleanSession is true.

For publications, the clean session setting only has effect on publications sent with
designations of QoS=1 and QoS=2. Using cleanSession=true might result in losing a
publication, because it drops all publications that have not been received.

For subscriptions, if cleanSession=true, any old subscriptions for the client are removed
when the client connects. Any new subscriptions the client makes during the session are
removed when it disconnects.

Last will and testament
In case an MQTT client connection ends unexpectedly, you can configure a last will and
testament publication to a topic. You must predefine the content of the publication, and the
topic to send the publication to. The last will and testament is a connection property that must
be set before connecting to the client.

2.4 MQTT brokers

This section describes how to install and run two MQTT brokers: Really Small Message
Broker and Mosquitto. It provides numerous command line options for publishing and
subscribing to MQTT topics, and describes the use of a GUI client, the WMQTT Utility
28 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

(available in SupportPac IA92), which can make the publishing and subscribing processes
even easier.

To download the RSMB and Mosquitto brokers, refer to 2.1, “Clients and brokers used in this
book” on page 22. To download the SupportPac IA92 and WMQTT Utility, go to this website:

http://www-01.ibm.com/support/docview.wss?uid=swg24006006

2.4.1 Really Small Message Broker

IBM Really Small Message Broker (RSMB) is an MQTT broker supporting versions 3 and 3.1
of the MQTT protocol. It is available for multiple operating systems, although this book is
limited to describing its use under Linux.

Installation
Follow these steps to install RSMB on the 64-bit Linux platform:

1. Extract the downloaded file to a location such as /home/mqttUser.

2. Navigate to the linuxia64 folder. The broker command, which brings up the broker, can be
found in this folder.

Starting and stopping the broker
To run the broker unattended, enter this command:

nohup ./broker >> /dev/null &

To run the broker with the path to a specified library, use the command shown here.

LDLIBRARYPATH=/path/to/lib ./broker

If this server is to be run on a port other than the default one, 1883, then use a configuration
file. The next example shows a sample configuration file named port2883.cfg, with the port
number set to 2883.

#Sample configuration file to start broker on another port, 2883
port 2883

To start the broker with the configuration file referenced in the previous example, enter this
command.

./broker port2883.cfg

This configuration file can be used to configure additional parameters. For a list of these
additional options, refer to the README file in the RSMB download.

To shut down the RSMB broker, type Ctrl+C on the Linux command line, or kill the process
that is running the broker.

Publishing to an MQTT topic
With the MQTT server (RSMB) now running, you can test the act of publishing messages to a
topic.

To publish a message using RSMB, use the stdinpub command as shown in the next
example. This example assumes that the client and the server are on the same machine. The
message is published to the samples/topic01 topic. The actual message to be published
would be typed once the connection is established. When the Enter key is pressed, the
message is delivered.
Chapter 2. Getting started with MQTT 29

http://www-01.ibm.com/support/docview.wss?uid=swg24006006

./stdinpub samples/topic01

To publish to a broker on another machine and port (and, optionally, specify a client ID), use
the command string shown here:

./stdinpub samples/topic01 --host mqtt.host --port 1650 --clientid localGhost

Additional options are available to control the publishing process under RSMB. The command
shown in Example 2-1 displays a list of these publishing options.

Example 2-1 Publishing options using RSMB

nsubrahm@nsubrahm:~$./stdinpub
MQTT stdin publisher
Usage: stdinpub topicname <options>, where options are:
 --host <hostname> (default is localhost)
 --port <port> (default is 1883)
 --qos <qos> (default is 0)
 --retained (default is off)
 --delimiter <delim> (default is)

--clientid <clientid> (default is hostname+timestamp) --maxdatalen 100
 --username none
 --password none

Subscribing to an MQTT topic
To subscribe to a message using RSMB, use the stdoutsub command as shown in the next
example. The example assumes the client and the server are on the same machine. The
subscription is to the topic samples/topic01. The actual message is displayed on the console.

./stdoutsub samples/topic01

Just as with publishing, RSMB provides additional options related to the subscription process.
The command shown in Example 2-2 displays a list of these subscription options.

Example 2-2 Subscription options using RSMB

nsubrahm@nsubrahm:$./stdoutsub
MQTT stdout subscriber
Usage: stdoutsub topicname <options>, where options are:
--host <hostname> (default is localhost)
--port <port> (default is 1883)
--qos <qos> (default is 2)
--delimiter <delim> (default is
) --clientid <clientid> (default is hostname+timestamp)
--username none
--password none
--showtopics <on or off> (default is on if the topic has a wildcard, else off)

2.4.2 Mosquitto

Mosquitto is an open-source MQTT broker that supports the MQTT V3.1 protocol. It is
available for multiple operating systems, although this book is limited to describing its use
under Linux.

Installation
Download and follow instructions for installation of the Mosquitto binary from this website:
30 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://mosquitto.org

Starting and stopping the broker
To run the Mosquitto broker, run the mosquitto command using the syntax shown here.

mosquitto

You can also use a configuration file to specify values such as a port number, or a maximum
number of connections, as shown in this example:

#Sample configuration file to be used when starting up mosquitto
#port number
port 2885
The maximum number of client connections to allow.
max_connections 20

To shut down the Mosquitto broker, type Ctrl+C on the Linux command line, or kill the process
that is running the broker.

Publishing to an MQTT topic
To publish a message to a topic using Mosquitto, use the mosquittopub command as shown
in the next example. The example assumes that the client and the server are on the same
machine. The message is published to the samples/topic01 topic. The actual message to be
published would be typed after the connection is established. The message is then delivered
by pressing the Enter key.

mosquitto_pub -t samples/topic01 -l

To publish to a broker on another machine and port (and, optionally, a different client ID), use
the command shown here.

mosquitto_pub -h fake.mqtt.server -t samples/topic01 -i localGhost -l

As with RSMB, Mosquitto provides additional options to control the publishing process.
Example 2-3 displays a list of these publishing options.

Example 2-3 Publishing options using Mosquitto

nsubrahm@nsubrahm:~$ mosquitto_pub
mosquitto_pub is a simple mqtt client that will publish a message on a single topic and exit.

Usage: mosquitto_pub [-h host] [-p port] [-q qos] [-r] {-f file | -l | -n | -m message} -t topic
 [-i id] [-I id_prefix]
 [-d] [--quiet]
 [-u username [-P password]]
 [--will-topic [--will-payload payload] [--will-qos qos] [--will-retain]]

 -d : enable debug messages.
 -f : send the contents of a file as the message.
 -h : mqtt host to connect to. Defaults to localhost.
 -i : id to use for this client. Defaults to mosquitto_pub_ appended with the process id.
 -I : define the client id as id_prefix appended with the process id. Useful for when the
 broker is using the clientid_prefixes option.
 -l : read messages from stdin, sending a separate message for each line.
 -m : message payload to send.
 -n : send a null (zero length) message.
 -p : network port to connect to. Defaults to 1883.
 -q : quality of service level to use for all messages. Defaults to 0.
Chapter 2. Getting started with MQTT 31

http://mosquitto.org

 -r : message should be retained.
 -s : read message from stdin, sending the entire input as a message.
 -t : mqtt topic to publish to.
 -u : provide a username (requires MQTT 3.1 broker)
 -P : provide a password (requires MQTT 3.1 broker)
 --quiet : don't print error messages.
 --will-payload : payload for the client Will, which is sent by the broker in case of
 unexpected disconnection. If not given and will-topic is set, a zero
 length message will be sent.
 --will-qos : QoS level for the client Will.
 --will-retain : if given, make the client Will retained.
 --will-topic : the topic on which to publish the client Will.

See http://mosquitto.org/ for more information.

Subscribing to an MQTT topic
To subscribe to a topic, use the mosquitto_sub command as shown in the next example. The
example assumes that the client and the server are on the same machine. The topic being
subscribed to is samples/topic01. The actual message appears in the console.

mosquitto_sub -t samples/topic01

To subscribe to a Mosquitto broker on another machine and port, use the command shown
here:

mosquitto_sub -h fake.mqtt.server -t samples/topic01

As with publishing using Mosquitto, there are additional options related to the subscription
process. The command shown in Example 2-4 displays a list of these subscription options.

Example 2-4 Subscription options using Mosquitto

nsubrahm@nsubrahm:~$ mosquitto_sub
mosquitto_sub is a simple mqtt client that will subscribe to a single topic and print all
messages it receives.

Usage: mosquitto_sub [-c] [-h host] [-k keepalive] [-p port] [-q qos] [-v] -t topic ...
 [-i id] [-I id_prefix]
 [-d] [--quiet]
 [-u username [-P password]]
 [--will-topic [--will-payload payload] [--will-qos qos] [--will-retain]]

 -c : disable 'clean session' (store subscription and pending messages when client disconnects).
 -d : enable debug messages.
 -h : mqtt host to connect to. Defaults to localhost.
 -i : id to use for this client. Defaults to mosquitto_sub_ appended with the process id.
 -I : define the client id as id_prefix appended with the process id. Useful for when the
 broker is using the clientid_prefixes option.
 -k : keep alive in seconds for this client. Defaults to 60.
 -p : network port to connect to. Defaults to 1883.
 -q : quality of service level to use for the subscription. Defaults to 0.
 -t : mqtt topic to subscribe to. May be repeated multiple times.
 -u : provide a username (requires MQTT 3.1 broker)
 -v : print published messages verbosely.
 -P : provide a password (requires MQTT 3.1 broker)
 --quiet : don't print error messages.
32 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

 --will-payload : payload for the client Will, which is sent by the broker in case of
 unexpected disconnection. If not given and will-topic is set, a zero
 length message will be sent.
 --will-qos : QoS level for the client Will.
 --will-retain : if given, make the client Will retained.
 --will-topic : the topic on which to publish the client Will.

See http://mosquitto.org/ for more information.

2.4.3 WMQTT Utility

In addition to the command line options listed previously, a GUI client called the WMQTT
Utility can be used to control the publishing and subscribing processes. Some developers find
using the utility to be a simpler and easier method.

Installation and start-up
Start by downloading SupportPac IA92 as described at the top of this section. SupportPac
IA92 is a Java implementation (Java VM 1.3 or above) of the WebSphere MQTT protocol. As
this is a Java implementation, the downloaded package is a set of Java JAR files and
therefore is independent of the platform. There is no installation procedure except for
unzipping the downloaded file.

To start the WMQTT Utility, begin by navigating to the folder where the SupportPac was
downloaded. Then run the JAR file by issuing the java command from the command line, as
shown here:

java -jar wmqttSample.jar

Using the WMQTT Utility
The WMQTT Utility panel has two tabs:

� The WMQTT tab
� The Options tab

The WMQTT tab, shown in Figure 2-4 on page 34, covers the basic publishing and
subscribing operations. The numbers here correspond to the numbers shown in the figure.

1. The WMQTT tab includes the remaining items in this list.

2. Broker TCP/IP address: Enter the IP address for the message broker being used or the
host name along with the port number (if not using the default port setting 1883).

3. Connection status: The color of the circle indicates the connection status. A red circle
indicates a disconnected state, an amber circle indicates a connection is being attempted,
and a green circle indicates a connected state.

4. Connect/Disconnect buttons: Click these buttons to initiate or discontinue a connection.

5. Subscribe To Topics: Enter the topic to which you are subscribing. After you enter a topic
in the field, the Subscribe button becomes active. Click the Subscribe button to make the
subscription take effect.

Important: For the Connect and Disconnect buttons to work, the IP address and port
number must be entered.
Chapter 2. Getting started with MQTT 33

6. Publish Messages—text display: Enter the topic to which the message will be published
here. After you enter the topic in the field, the nearby Publish button becomes active. Click
the Publish button to publish the message.

7. Received Topic: After a subscription to a topic is made, the message that is received is
displayed in this field.

8. Published Topic: Enter the text of the message that will be published to the designated
topic.

Figure 2-4 The WMQTT tab on the WMQTT Utility panel

1 2
3 4

5

6

7

8

34 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The Options tab provides additional settings and opens with the following default settings
already selected (see Figure 2-5):

1. Client Identifier field: Enter the client identifier here.

2. User persistence check box and Directory field: Turn on persistence by selecting Use
persistence and specifying the directory in which persistent messages are stored.

Figure 2-5 The Options tab on the WMQTT Utility panel

2.5 Building a sample MQTT application with freely available
software

In this section we demonstrate how to build an initial MQTT-based messaging application.
Instructions for both Java- and C-based systems are provided. These examples use the
no-cost MQTT clients that have been made available as part of the Eclipse Paho project. For
information about downloading these clients, see 2.1, “Clients and brokers used in this book”
on page 22.

2.5.1 Preparation

The Java and C clients from the Eclipse Paho project are distributed as source code. Thus,
developers need to compile these clients on their own. The Eclipse Paho client source code is
in a Git repository, and Git must be installed on the system before the compiling process is
begun.

If WebSphere MQ V7.1 is used or if a stand-alone package of WebSphere MQ V7.1 clients
has been downloaded, those clients can be used and you can skip to 2.5.2, “Building the

1

2

Chapter 2. Getting started with MQTT 35

sample MQTT application” on page 36. The APIs of the Eclipse Paho clients are basically
identical to those in WebSphere MQ.

Preparing the Java client
The build script of the Eclipse Paho Java client requires the Apache Ant automated software
build tool:

1. First, download Apache Ant from:

http://ant.apache.org/

2. Start at the console and enter the following command to get the source code from the Git
repository.

git clone git://git.eclipse.org/gitroot/paho/org.eclipse.paho.mqtt.java.git

3. Next, initiate the ant command as shown here.

cd org.eclipse.paho.mqtt.java.git
ant

After entering the commands just shown, you will see the messages shown in Example 2-5.
The location of the compiled .jar file is listed here as the /tmp/out/ship directory.

Example 2-5 Messages received upon initiating the ant command

....
package:
 [jar] Building jar: /tmp/out/ship/org.eclipse.paho.client.mqttv3.jar
clean:
 [delete] Deleting directory /tmp/out/micro-client-v3
full:
BUILD SUCCESSFUL
Total time: 9 seconds

Preparing the C client
Building the Eclipse Paho C client requires make tools, including the GCC compiler, the
Doxygen documentation system, and Graphviz graph visualization software. If you use the
Debian or Ubuntu Linux distribution, you can install these make tools with the following
command:

sudo apt-get install build-essentials doxygen graphviz

Next, download the source code from the Git repository, as shown here:

git clone git://git.eclipse.org/gitroot/paho/org.eclipse.paho.mqtt.c.git

Finally, switch to the src folder and build the client and documentation using these
commands:

cd org.eclipse.paho.mqtt.c.git/src
make -f ../build/Makefile all
doxygen ../doc/DoxyfileV3ClientAPI

2.5.2 Building the sample MQTT application

Trucks are the basic transportation units of Transportation Company B and carry goods from
one city to another. While making each trip, the trucks send their location information (latitude
and longitude) to their division office for monitoring and central control. They also have a
36 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://ant.apache.org/

channel to receive messages (instructions) from the division office. Division supervisors
analyze the location information received from the trucks and then reply with any schedule or
route changes that might be needed.

This use case is a classic publish/subscribe application, as illustrated in Figure 2-6.

Figure 2-6 Simple publish/subscribe messaging

The next two sections describe how to build an MQTT client application that can publish and
subscribe to topics. Examples are provided for Java and C.

The following general steps are performed when creating the applications:

1. Create an instance of an MQTT client.

2. Prepare connection options and connect to the MQTT broker using these options.

3. Publish messages to topics, and subscribe to topics.

4. Disconnect from the MQTT broker (and remember to release resources on platforms
without automatic memory management).

2.5.3 Publisher and subscriber in Java

This section describes how to use Java to build an MQTT client application to publish and
subscribe to topics. An Eclipse runtime is used to build this client.

Publisher application
This sample publisher application uses the following Java classes:

� Example.java: This class defines parameters such as the address of the broker, the
message topic (for publishing and subscribing), and other connection settings. It is used
by both the publisher and subscriber Java classes. Refer to Example 2-6.

Example 2-6 Example.java with parameters defined

package org.mqtt.redbooks.ch2;

public final class Example {
 public static final String TCPAddress =
 System.getProperty("TCPAddress", "tcp://localhost:1883");
 public static String clientId = "Truck01";
 public static final String pubTopicString =

Subscribe:
commands/{id}

Publish:
routes/{id}

Truck:
MQTT Client

Division:
MQTT
Broker
Chapter 2. Getting started with MQTT 37

 System.getProperty("pubTopicString", "routes/" + clientId);
 public static final String subTopicString =
 System.getProperty("subTopicString", "commands/" + clientId);
 public static final String publication =
 System.getProperty("publication", System.currentTimeMillis()
 + ",35.918,-78.231,B");
 public static final int sleepTimeout =
 Integer.parseInt(System.getProperty("timeout", "10000"));
 public static final boolean cleanSession =
 Boolean.parseBoolean(System.getProperty("cleanSession", "false"));
 public static final int keepAliveInterval =
 Integer.parseInt(System.getProperty("keepAliveInteral", "20"));
 public static final int QoS =
 Integer.parseInt(System.getProperty("QoS", "1"));
 public static final boolean retained =
 Boolean.parseBoolean(System.getProperty("retained", "false"));
}

� PubSync.java: This class is used to connect to an MQTT broker, publish a message to a
topic, and disconnect from the broker. Refer to Example 2-7.

Example 2-7 PubSync.java

package org.mqtt.redbooks.ch2;

import org.eclipse.paho.client.mqttv3.*;

public class PubSync {
 public static void main(String[] args) {
 try {
 //a. Create an instance of MQTT client
 MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);

 //b. Prepare connection options
 //Use default connection options in this sample.

 //c. Connect to broker with the connection options
 client.connect();

 //d. Publish message to topics
 MqttTopic topic = client.getTopic(Example.pubTopicString);
 MqttMessage message = new MqttMessage(Example.publication.getBytes());
 message.setQos(Example.QoS);
 System.out.println("Waiting for up to " + Example.sleepTimeout / 1000
 + " seconds for publication of \"" + message.toString()
 + "\" with QoS = " + message.getQos());
 System.out.println("On topic \"" + topic.getName()
 + "\" for client instance: \"" + client.getClientId()
 + "\" on address " + client.getServerURI() + "\"");
 MqttDeliveryToken token = topic.publish(message);
 token.waitForCompletion(Example.sleepTimeout);
 System.out.println("Delivery token \"" + token.hashCode()
 + "\" has been received: " + token.isComplete());

 //e. Disconnect to broker
 client.disconnect();
38 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

PubSync.java details
Parts of the PubSync.java code require additional explanation.

1. Create a try-catch block, as shown here, to handle any checked exceptions
(MqttException or its subclasses MqttPersistenceException and
MqttSecurityException) that are thrown by the MQTT client.

try { ...
 } catch (Exception e) {
 e.printStackTrace();
 }

2. Create a new MqttClient instance using the following command:

MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId)

The default WebSphere MQ TCP/IP port for MQTT is 1883. In this example, the default
address, Example.TCPAddress, is set to tcp://localhost:1883.

The client identifier, Example.clientId, must be unique across all clients connecting to a
server. For more information, see the explanation of MQTT client identifier in 2.3, “MQTT
concepts” on page 26.

3. Optionally, you can provide an implementation of the MqttClientPersistence interface to
replace the default implementation. The default implementation stores messages that are
awaiting delivery (such as ones with QoS designations of 1 or 2) as files in the current
directory. If you want to change the directory where the files are stored, you can create an
MqttDefaultFilePersistence instance and provide it as third parameter for the
constructor MqttClient.

The MqttDefaultFilePersistence class needs to be configured as shown here and used
while creating the MQTT client instance optionally. It stores messages in the local
directory that is specified in the constructor.

MqttClientPersistence clientPersistence = new
MqttDefaultFilePersistence("C:/MQTTPublisher/clientdir");
client = new MqttClient("tcp://localhost:1883", "SampleClient",
clientPersistence);

A subdirectory prefixed with the client ID is created in the specified directory and is used
while sending and receiving QoS 1 and QoS 2 messages.

4. Connect the client to the broker. If done as shown here, the default settings are used: A
small message will be sent every 15 seconds to prevent the TCP/IP connection from being
closed; the cleanSession variable is equal to true; the session is started without checking
for the completion of previous publications, and no last will and testament message is
created for the connection.

client.connect();

5. Create a topic to which to publish a message. In the code shown here,
Example.pubTopicString could be replaced with an actual topic string such as
routes/Truck01.

MqttTopic topic = client.getTopic(Example.pubTopicString);
Chapter 2. Getting started with MQTT 39

6. Create a message for publication, as shown here. The message in this sample,
Example.publication, will display the current time, the current location information for a
particular truck, and its status. For simplicity, the location data shown here is fixed.

MqttMessage message = new MqttMessage(Example.publication.getBytes());
message.setQos(Example.QoS);

Since an MQTT message requires a byte array as input, Example.publication is converted
to a byte array using the getBytes method, and the encoding is set to UTF-8. The QoS
designation, which is set to 1 here, determines how reliably the message is transferred to
the MQTT client and then between the MQTT client and the broker.

7. Publish the message to the broker, as shown here.

MqttDeliveryToken token = topic.publish(message);

When the publish method returns, the message has been safely transferred to the MQTT
client, but not yet transferred to the broker. If the message has a QoS designation of 1 or
2, then the message is stored locally, in case the client fails before delivery is completed. A
delivery token is returned and used to check whether an acknowledgment has been
received from the server yet. MQTT delivery tokens are unique to the WebSphere MQ
Telemetry client and enable users to monitor delivery of a published message.

8. Wait for an acknowledgment from the server confirming that the message has been
delivered. The example provided here shows a timeout, without which the client would wait
indefinitely. If using an asynchronous API for publishing, the program does not need to be
blocked until it gets the acknowledgment from the server. The callback function will be
called after successful message delivery.

token.waitForCompletion(Example.timeout);

9. Disconnect the client from the server, as shown here. The client disconnects from the
server and waits for any MqttCallback methods that are running to finish. The client then
waits for up to 30 seconds to finish any remaining work. You can specify a timeout as an
additional parameter.

client.disconnect();

Compilation and execution
Begin by starting the MQTT broker (refer to 2.4, “MQTT brokers” on page 28 for more
information). Then compile and run the program:

1. Compile the Java code using the following command.

javac -cp jardir\org.eclipse.paho.client.mqttv3.jar
org.mqtt.redbooks.ch2.PubSync.java
org.mqtt.redbooks.ch2.Example.java

2. Run PubSync:

java -cp jardir\org.eclipse.paho.client.mqttv3.jar
org.mqtt.redbooks.ch2.PubSync

You can also run the program through Eclipse. Eclipse does the compilation automatically,
after which you right-click the PubSync.java file, and then select Run As Java
Application.

After starting your PubSync application, you should see a message in the console window
similar to the messages shown in Example 2-8 on page 41, which means that the message
was delivered to the broker successfully.
40 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Example 2-8 Message delivered successfully

Waiting for up to 10 seconds for publication of "1332854539607,35.918,-78.231,B"
with QoS = 1
On topic "routes/Truck01" for client instance: "Truck01" on address
tcp://localhost:1883"
Delivery token "368076985" has been received: true

Subscriber
This sample subscriber application uses the following Java classes:

� Example.java: This class is the same as the one shown for the publisher application in the
previous subsection. It defines parameters such as the address of the broker, the
message topic (for publishing and subscribing), and other connection settings.

� Callback.java: This class implements the MqttCallback interface and is set to work with
an MQTT client. Refer to Example 2-9. Message arrival acknowledgments are received in
a callback function that is defined in the MqttCallback interface.

Example 2-9 Callback.java

package org.mqtt.redbooks.ch2;

import com.ibm.micro.client.mqttv3.*;

public class Callback implements MqttCallback {
 private String instanceData = "";
 public Callback(String instance) {
 instanceData = instance;
 }

 public void messageArrived(MqttTopic topic, MqttMessage message) {
 try {
 System.out.println("Message arrived: \"" + message.toString()
 + "\" on topic \"" + topic.toString() + "\" for instance \""
 + instanceData + "\"");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }

 public void connectionLost(Throwable cause) {
 System.out.println("Connection lost on instance \"" + instanceData
 + "\" with cause \"" + cause.getMessage() + "\" Reason code "
 + ((MqttException)cause).getReasonCode() + "\" Cause \""
 + ((MqttException)cause).getCause() + "\"");
 cause.printStackTrace();
 }

 public void deliveryComplete(MqttDeliveryToken token) {
 try {
 System.out.println("Delivery token \"" + token.hashCode()
 + "\" received by instance \"" + instanceData + "\"");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
Chapter 2. Getting started with MQTT 41

}

� Subscribe.java: This class creates the subscription and waits for matching publications.
Refer to Example 2-10. The handling of the actual message is delegated to the Callback
class, which is defined in Callback.java. Subscribe.java uses an asynchronous
programming model, which means it does not need to wait for a message to arrive and
block the execution of the program.

Example 2-10 Subscribe.java

package org.mqtt.redbooks.ch2;

import java.util.Scanner;

import com.ibm.micro.client.mqttv3.*;

public class Subscribe {
 public static void main(String[] args) {
 try {
 //a. Create an instance of MQTT client
 MqttClient client = new MqttClient(Example.TCPAddress, Example.clientId);

 //b. Prepare connection options
 Callback callback = new Callback(Example.clientId);
 client.setCallback(callback);
 MqttConnectOptions conOptions = new MqttConnectOptions();
 conOptions.setCleanSession(Example.cleanSession);
 conOptions.setKeepAliveInterval(Example.keepAliveInterval);

 //c. Connect to broker with the connection options
 client.connect(conOptions);
 System.out.println("Subscribing to topic \"" + Example.subTopicString
 + "\" for client instance \"" + client.getClientId()
 + "\" using QoS " + Example.QoS + ". Clean session is "
 + Example.cleanSession);

 //d. Subscribe interested topics.
 client.subscribe(Example.subTopicString, Example.QoS);
 System.out.format("Subscribing to topic %s\nfor client %s using
QoS%d\n\n"
 + "Press Q<Enter> to quit\n\n", Example.subTopicString,
 Example.clientId, Example.QoS);
 Scanner scanner = new Scanner(System.in);
 for(String input=""; !input.equalsIgnoreCase("q");
 input = scanner.nextLine());

 //e. Disconnect to broker
 client.disconnect();
 System.out.println("Finished");
 } catch (Exception e) {
 e.printStackTrace();
 }
 }
}

42 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Subscribe.java details
Parts of the Subscribe.java code require additional explanation.

� Create an instance of Callback class as shown here and set it to the MQTT client that was
declared in the publishing application. The Callback class implements the MqttCallback
interface. One callback instance per client identifier is required. In this example, the
constructor passes the client identifier to save as instance data.

Callback callback = new Callback(Example.clientId);
client.setCallback(callback);

The Callback interface includes the following methods:

– public void messageArrived(MqttTopic topic, MqttMessage message): Receives a
publication that has been subscribed to.

– public void connectionLost(Throwable cause): Called when the connection is lost.

– public void deliveryComplete(MqttDeliveryToken token): Called when a delivery
token is received for a published message carrying a QoS designation of 1 or 2

The Callback class in Callback.java implements these three methods. When a message
is delivered to the topic to which the program subscribes, it writes the message to the
standard output device (typically the console).

� Create an MqttConnectOptions object to configure the connection properties of the MQTT
client. In this example, the cleanSession and keepAliveInterval attributes are set.

MqttConnectOptions conOptions = new MqttConnectOptions();
conOptions.setCleanSession(Example.cleanSession);
conOptions.setKeepAliveInterval(Example.keepAliveInterval);

If you use the default MqttConnectOptions, or set MqttConnectOptions.cleanSession to
true before connecting the client, any old subscriptions for the client are removed when
the client connects. Any new subscriptions the client makes during the session are
removed when it disconnects.

If you set MqttConnectOptions.cleanSession to false before connecting, any
subscriptions the client creates are added to all the subscriptions that existed for the client
before it connected. All the subscriptions remain active when the client disconnects.

Set the cleanSession mode before connecting. The mode lasts for the whole session. To
change this setting, disconnect and reconnect the client. If you change modes from using
cleanSession=false to cleanSession=true, all previous subscriptions for the client, and
any publications that have not been received are discarded.

Additional connection options are available, including MQTT connect timeout. With this
option, when the client connects to the server it can set a connection timeout. This is
important because in certain networks and operating systems, when a connection is
attempted on a socket that is not reachable, the ensuing errors are not returned
immediately. Using the method setConnectionTimeout() allows the developer to specify
how long the client can wait before it decides that the server is not reachable.

� Create a subscription and set its QoS level. The example shown here uses an
MqttClient.subscribe method that passes one topic string with a QoS option:

client.subscribe(Example.subTopicString, Example.QoS);

Each time you run Subscribe.java, it creates a subscription. So unless
Example.topicString is changed each time, the same subscription will be recreated over
and over again. In this example, the subscription topic is commands/Truck01 by default.
Chapter 2. Getting started with MQTT 43

� Wait for publications to arrive or, if you do not wish to wait, type q or Q on the command line
to disconnect the client and exit the application, as shown here:

Scanner scanner = new Scanner(System.in);
for(String input=""; !input.equalsIgnoreCase("q");
input = scanner.nextLine());

Compilation and execution
Begin by starting the MQTT broker (refer to 2.4, “MQTT brokers” on page 28 for more
information). Then compile and run the program:

1. Compile the Java code using the command shown here:

javac -cp jardir\org.eclipse.paho.client.mqttv3.jar
org.mqtt.redbooks.ch2.Subscribe.java
org.mqtt.redbooks.ch2.Example.java

2. Run Subscribe.java:

java -cp jardir\org.eclipse.paho.client.mqttv3.jar
org.mqtt.redbooks.ch2.Subscribe

You can also run the program through Eclipse. Eclipse does the compilation automatically,
after which you right-click the Subscribe.java file, and then select Run As Java
Application.

After starting your Subscribe application, you should see a logging message in the console
window similar to the message shown in Example 2-11, which means that the application has
started successfully.

Example 2-11 Application started successfully

Subscribing to topic "commands/Truck01" for client instance "Truck01" using QoS 1.
Clean session is false
Subscribing to topic commands/Truck01
for client Truck01 using QoS1

Press Q<Enter> to quit
44 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Now that the Subscribe application is started, a message can be published. To do this, start
the WMQTT Utility (the GUI interface supplied in SupportPac IBM IA-92) and publish a
message to the commands/Truck01 topic, as shown in Figure 2-7.

Figure 2-7 Publishing a message to the commands/Truck01 topic

After publishing a message with the WMQTT Utility, the Subscribe application subscribes to
the topic commands/Truck01. The application receives the message and displays it on the
console.

2.5.4 Publisher and subscriber in C

In this section we describe how to use the C programming language to build an MQTT client
application similar to the Java one built in the previous section.

The biggest difference between the Java and C clients is that for the C client, you have to
handle some memory management tasks manually, because C does not have an automatic
memory management runtime. So here, you need to release memory resources and then
dynamically allocate them in the program. Otherwise, it leads to a memory leak. Resources
that need to be released include the MQTT client instance and message instance.

Publisher
The sample C publisher, pubsync.c, is shown in Example 2-12. It is built in synchronous
mode, both for the sake of simplicity and because for this demonstration there is no need to
track the status of delivered messages.

Example 2-12 Sample C publishing program, pubsync.c

#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "MQTTClient.h"
Chapter 2. Getting started with MQTT 45

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "Truck01"
#define TOPIC "routes/Truck01"
#define PAYLOAD "1332450705462,35.918,-78.231,B"
#define QOS 1
#define TIMEOUT 10000L

int main(int argc, char* argv[])
{
 MQTTClient client;
 MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
 MQTTClient_message pubmsg = MQTTClient_message_initializer;
 MQTTClient_deliveryToken token;
 int rc;
 //a. Create an instance of MQTT client
 MQTTClient_create(&client, ADDRESS, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE,
NULL);
 //b. Prepare connection options
 conn_opts.keepAliveInterval = 20;
 conn_opts.cleansession = 1;
 //c. Connect to broker with the connection options
 if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
 {
 printf("Failed to connect, return code %d\n", rc);
 exit(-1);
 }
 //d. Publish message to topics
 pubmsg.payload = PAYLOAD;
 pubmsg.payloadlen = strlen(PAYLOAD);
 pubmsg.qos = QOS;
 pubmsg.retained = 0;
 MQTTClient_publishMessage(client, TOPIC, &pubmsg, &token);
 printf("Waiting for up to %d seconds for publication of %s\n"
 "on topic %s for client with ClientID: %s\n",
 (int)(TIMEOUT/1000), PAYLOAD, TOPIC, CLIENTID);
 rc = MQTTClient_waitForCompletion(client, token, TIMEOUT);
 printf("Message with delivery token %d delivered\n", token);
 //e. Disconnect to broker
 MQTTClient_disconnect(client, 10000);
 //f. Release resources
 MQTTClient_destroy(&client);
 return rc;
}

The pubsync.c program details
Each piece of the pubsync.c program is critical to its success. Each part of the code performs
the following steps:

1. Include the necessary header files, as shown here. MQTTClient.h has the definitions for
MQTT functions and constants.

#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "MQTTClient.h"
46 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

2. Define the following additional constants:

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "Truck01"
#define TOPIC "routes/Truck01"
#define PAYLOAD "1332450705462,35.918,-78.231,B"
#define QOS 1
#define TIMEOUT 10000L

The following additional constants are defined for this sample program:

ADDRESS The address and port of the message broker.

CLIENTID The unique identifier for the truck.

TOPIC The subject of the message, used for publishing and subscribing.
In this case, it defines the message as conveying route information
for the truck identified as 01.

PAYLOAD The message being transmitted. In this case, it includes a time
stamp (presented in milliseconds since a fixed date in the past), the
current longitude and latitude of the truck (presented as decimal
values), and the status of the truck (presented as letters
representing (B)egin, (T)ransit, (P)ark and (E)nd). The message is
shown in text format as a way of keeping this sample code simple
and easy to debug.

QOS The QoS designation for the message. In this case, it is set to 1,
meaning the message will be sent at least once.

TIMEOUT A built-in delay to await any responses from the server before the
program assumes the network is down.

3. Define the necessary local variables, as shown here.
MQTTClientconnectOptionsinitializer and MQTTClientmessageinitializer are macros
which are defined in MQTTClient.h and can help a developer avoid having to memorize
the meaning of every option.

MQTTClient client;
MQTTClientconnectOptions connopts = MQTTClientconnectOptionsinitializer;
MQTTClientmessage pubmsg = MQTTClientmessageinitializer;
MQTTClientdeliveryToken token;

4. Create a client instance, as shown in the following example:

MQTTClientcreate(&client, ADDRESS, CLIENTID, MQTTCLIENTPERSISTENCENONE, NULL);
connopts.keepAliveInterval = 20;
connopts.cleansession = 1;

Client creation involves these parameters:

&client A pointer to a handle for the newly created client. When this function
returns with a 0 return code, it contains a handle to the new client.

ADDRESS The URI of the MQTT port that the broker for incoming client connection
requests.

CLIENTID The name used to identify the client to the broker. Each active client must
have a unique name. If you duplicate a client identifier in two running
clients, an exception is thrown in both clients, and one client terminates.

MQTTCLIENT_PERSISTENCE_NONE
A specification that the client state is held in memory and will therefore be
lost if a system failure occurs. The setting in this case is NULL.
One option here would be MQTTCLIENT_PERSISTENCE_DEFAULT, which
Chapter 2. Getting started with MQTT 47

specifies file system-based persistence and provides some protection
against failures. For more specialized applications,
MQTTCLIENT_PERSISTENCE_USER provides an interface for you to implement
your own persistence mechanism. Additional details about persistence for
C clients is provided in the API documentation for
MQTTClientPersistence.h.

5. Configure the connection options that are required by the MQTTClient_connect function. In
the code shown here, the connopts variable is already assigned a value through use of the
MQTTClient_connectOptions_initializer macro.

conn_opts.keepAliveInterval = 20;
conn_opts.cleansession = 1;

6. Connect the client to the broker as shown here. After the application connects, you can
start publishing and subscribing to topics.

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {
 printf("Failed to connect, return code %d\n", rc);
 exit(-1);
}

Certain aspects of the broker connection process deserve further explanation, as follows:

– The MQTTClientconnect function is called, passing the client handle and a pointer to
the connection options as arguments.

– The return code from the MQTTClientconnect call is tested to make sure that the
connection request is successful. If the MQTTClientconnect call fails, the program ends
with an error code of -1.

– A small keep-alive message is sent every 20 seconds to prevent the TCP/IP
connection from being closed. This option is set by conn_opts.keepAliveInterval.

– The session is started without checking for the completion of any inflight messages
remaining from a previous connection. This is because conn_opts.cleansession is set
to true. For more details, see 2.3.2, “Client programming” on page 27.

– No last will and testament message is created for the connection.

7. Populate the MQTTClientmessage structure, including the data necessary to define the
message payload and its attributes. The example shown here uses a string payload but
MQTT payloads are byte arrays. The string length is required to specify the payload size.
The example publishes a message with a QoS designation of 1. The retained attribute is
set to false (0) because the message is not to be retained.

pubmsg.payload = PAYLOAD;
pubmsg.payloadlen = strlen(PAYLOAD);
pubmsg.qos = QOS;
pubmsg.retained = 0;

8. Publish the message to the broker, as shown here. Upon completing this step, the
message is safely transferred to the MQTT client, but is not yet transferred to the daemon.
If the message has a QoS designation of 1 or 2, then the message is stored locally in case
the client fails before delivery is completed.

MQTTClientpublishMessage(client, TOPIC, &pubmsg, &token);

Portions of the message publishing process warrant further explanation, as follows:

– The publish function specifies the client, the topic, and the payload to be sent to the
broker.

– The function is also passed a pointer to an MQTT client delivery token. When the
function returns, the pointer is populated with a token representing the message.
48 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

– This function returns an error code that you can test for correct completion in
production code.

9. Wait for an acknowledgment from the server, as shown here. Because synchronous mode
is used to publish here, for messages with QoS designations of 1 and 2, the program will
be blocked until it gets the returned information from the broker.

rc = MQTTClientwaitForCompletion(client, token, TIMEOUT);

10.Disconnect the client from the broker. The second argument shown here specifies a
timeout in milliseconds; the program waits for up to 10 seconds to finish any other work it
must do before disconnecting.

MQTTClientdisconnect(client, 10000);

11.Free up the memory used by the client and end the program, as shown here:

MQTTClientdestroy(&client);

Compiling and verifying pubsync.c
To compile and verify the pubsync.c program, perform these steps:

1. Compile the program in gcc using the command syntax shown here. You need to provide
the source code directory of the Eclipse Paho C client and the library to the command.

gcc -I<source code directory of C client> -L< library directory of C client>
pubsync.c -lmqttv3c -pthread -o pubsync

For example, if the Paho project is in the directory org.eclipse.paho.mqtt.c, the following
command would initiate the compilation.

gcc -Iorg.eclipse.paho.mqtt.c/src -Lorg.eclipse.paho.mqtt.c/build pubsync.c
-lmqttv3c -pthread -o pubsync

2. Start the MQTT message broker as described in 2.4, “MQTT brokers” on page 28, and
then use the following command to publish the message:

LDLIBRARYPATH=org.eclipse.paho.mqtt.c/build ./pubsync

After the message is published, a statement such as the following displays, indicating that
the message was delivered to the broker successfully:

Waiting for up to 10 seconds for publication of 1332450705462,35.918,-78.231,B
on topic routes/Truck01 for client with ClientID: Truck01
Message with delivery token 1 delivered

If you check the output message from the broker, a message similar to the following
displays. This method is another way to verify that the message has arrived at the broker.

20120323 051433.570 CWNAN0033I Connection attempt to listener 1883 received
from client Truck01 on address 127.0.0.1:54267
20120323 051433.671 CWNAN0038I Disconnection request received from client
Truck01

Subscriber
Example 2-13 shows the sample C subscriber, subasync.c. It subscribes to the
commands/Truck01 topic and receives any messages that are published to that topic, such as
when new instructions are issued from the trucking company’s central headquarters. The
message handling logic is contained in the callback.h file.

Example 2-13 Sample C subscriber program, subasync.c

#include "stdio.h"
#include "stdlib.h"
#include "string.h"
Chapter 2. Getting started with MQTT 49

#include "MQTTClient.h"
#include "callback.h

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "Truck01"
#define TOPIC "commands/Truck01"
#define QOS 1
int main(int argc, char* argv[])
{
 MQTTClient client;
 MQTTClient_connectOptions conn_opts = MQTTClient_connectOptions_initializer;
 int rc;
 int ch;
 //a. Create an instance of MQTT client
 MQTTClient_create(&client, ADDRESS, CLIENTID,
 MQTTCLIENT_PERSISTENCE_NONE, NULL);
 //b. Prepare connection options
 conn_opts.keepAliveInterval = 20;
 conn_opts.cleansession = 1;
 MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered);
 //c. Connect to broker with the connection options
 if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
 {
 printf("Failed to connect, return code %d\n", rc);
 exit(-1);
 }
 //d. Subscribe interested topics.
 printf("Subscribing to topic %s\nfor client %s using QoS%d\n\n"
 "Press Q<Enter> to quit\n\n", TOPIC, CLIENTID, QOS);

 MQTTClient_subscribe(client, TOPIC, QOS);

 do
 {
 ch = getchar();
 } while(ch!='Q' && ch != 'q');
 //e. Disconnect to broker
 MQTTClient_disconnect(client, 10000);
 //f. Release resources
 MQTTClient_destroy(&client);
 return rc;
}

The subasync.c program details
The subscriber program uses the asynchronous programming model, so it does not need to
block execution while waiting for messages to arrive. Message arrival acknowledgments are
received in a callback function, which follows the MQTTClientmessageArrived template.

Each part of the code performs the following steps. If a particular piece of code has already
been explained as part of pubsync.c, no additional details are provided here.

1. Include the necessary header files, as shown here. MQTTClient.h has the definitions for
MQTT functions and constants.

#include "stdio.h"
#include "stdlib.h"
50 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

#include "string.h"
#include "MQTTClient.h"
#include "callback.h"

2. Define certain additional constants, as shown here. Note that the topic is
commands/Truck01, which means the subscription is intended only to obtain any new
commands that are published for the truck identified as 01.

#define ADDRESS "tcp://localhost:1883"
#define CLIENTID "Truck01"
#define TOPIC "commands/Truck01"
#define QOS 1

3. Immediately prior to the MQTTClientconnect function call, set the callback methods for the
client, as shown here. The second argument here would allow you to pass contextual
information to the callback functions, but since this function is not applicable to this sample
program, it is set to NULL.]

MQTTClientsetCallbacks(client, NULL, connlost, msgarrvd, delivered);

The connlost, msgarrd, and delivered functions implement the callback functions. They
are defined in the callback.h header file.

– connlost is a pointer of type MQTTClientconnectionLost and is called when the client
loses its connection to the server.

– msgarrvd is a pointer of type MQTTClientmessageArrived and is called when a message
is sent to the client with a matching subscription. It returns a value of true when the
message has been successfully received by the client application. A return value of
false indicates to the client that the application had a problem receiving the message.

– delivered is a pointer of type MQTTClientdeliveryComplete. It is for publishing
messages only and is called for messages with QoS designations of 1 and 2. The
MQTT client must be disconnected when this function is called.

4. Subscribe to the desired topic, as shown here. Use the MQTTClientsubscribe function to
subscribe the client application to the selected topic.

MQTTClientsubscribe(client, TOPIC, QOS);

5. Wait in a loop until the user instructs the program to quit (by typing q or Q). Until the quit
command is issued, the program waits for messages to arrive. Message handling takes
place in the callback function MQTTClientmessageArrived.

do
 {
 ch = getchar();
} while(ch!='Q' && ch != 'q');Receiving messages

Example 2-14 shows the callback.h header file. It defines all callback functions. The file
also implements the three callback functions described previously.

Example 2-14 Sample header file, callback.h

#include "MQTTClient.h"

volatile MQTTClient_deliveryToken deliveredtoken;

void delivered(void *context, MQTTClient_deliveryToken dt) {
 printf("Message with token value %d delivery confirmed\n", dt);
 deliveredtoken = dt;
}

Chapter 2. Getting started with MQTT 51

int msgarrvd(void *context, char *topicName, int topicLen, MQTTClient_message
*message) {
 int i;
 char* payloadptr;

 printf("Message arrived\n");
 printf(" topic: %s\n", topicName);
 printf(" message: ");

 payloadptr = message->payload;
 for(i=0; i<message->payloadlen; i++) {
 putchar(*payloadptr++);
 }
 putchar('\n');
 MQTTClient_freeMessage(&message);
 free(topicName);
 return 1;
}
void connlost(void *context, char *cause) {
 printf("\nConnection lost\n");
 printf(" cause: %s\n", cause);
}

Procedure for msgarrvd in callback.h
There are three callback functions defined in callback.h. The delivered and connlost
functions contain only logging messages; a line of logging information is written to the
console if a message arrives at the broker or if the connection is lost. When messages arrive
from the server, the msgarrvd function is started.

To use the msgarrvd function, follow these steps:

1. Start the definition of the callback function, as shown here. This definition must match the
MQTTClientmessageArrived function template.

int msgarrvd(void context, char topicName, int topicLen, MQTTClientmessage
message) {

where:

– context provides access to the context passed to the client library when the
MQTTClientsetCallbacks function was called. This function is not used in this example
program.

– topicName is a pointer to the topic to which the received message is published. If you
have subscribed using wildcard characters, this parameter identifies the specific topic
used for the message.

– topicLen is the length of the topic string. This option is provided for clients who must
embed NULL characters in topic strings.

– message is a pointer to the MQTTClientmessage structure containing the message
payload and attributes.

2. Define the local variables to be used, as shown here. These variables are used in the
example program to print out the message payload by iterating over it.

int i;
char* payloadptr;\
52 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

3. Print out a message as shown here, displaying the topic and the payload of the message.
The sample program simplifies the received payload, which is a sequence of printable
characters. Otherwise, it involves simply parsing code to interpret the meaning of a string
with the format time,latitude,longitude,tripStatus.

printf("Message arrived\n");
printf(" topic: %s\n",topicName);
printf(" message: ");
payloadptr = message->payload;
for(i=0; i<message->payloadlen; i++){
 putchar(*payloadptr++);
 }
putchar('\n');\

4. Free the memory used to store the message, as shown here. As mentioned previously,
when processing is complete, the main program must free the memory used by the
message.

MQTTClientfreeMessage(&message);
free(topicName);

When performing this step, keep these things in mind:

– Ensure that the callback functions are short, and return control to its calling thread as
soon as possible.

– The message pointer is passed for handling in the main part of the program.

– MQTTClientfreeMessage() is a convenience function that returns the two memory
blocks used to hold the MQTTClientmessage structure and the message payload back to
the system.

– The memory allocated to the topicName must be freed separately as shown.

5. Return a true value, as shown here, when the callback has successfully handled the
message

return 1;
}

When performing this step, keep these things in mind:

– Returning a true value indicates that the client library can treat the message as
successfully delivered.

– If the callback function cannot properly process the message, a false value is returned.
For example, if the callback is putting messages onto a queue for the main program to
process and the queue is full, returning false would be appropriate.

– For QoS 1 and 2 messages, returning a false value indicates that the message was not
delivered and further attempts to deliver it are made.

Compiling and verifying subasync.c
To compile and verify the subasync.c program, perform these steps:

1. Compile the program in gcc using the command syntax shown here. You need to provide
the source code directory of the Eclipse Paho C client and the library to the command.

gcc -I<source code directory of C client> -L< library directory of C client>
subasync -lmqttv3c -pthread -o subasync

For example, if the Paho project is in the directory org.eclipse.paho.mqtt.c, then the
following command would initiate the compilation of subasync.c.

gcc -Iorg.eclipse.paho.mqtt.c/src -Lorg.eclipse.paho.mqtt.c/build subasync.c
-lmqttv3c -pthread -o subasync
Chapter 2. Getting started with MQTT 53

2. Start the MQTT message broker as described in 2.4, “MQTT brokers” on page 28, then
use the command shown here to publish the message.

LDLIBRARYPATH=org.eclipse.paho.mqtt.c/build ./subasync

3. Start the WMQTT Utility (available in SupportPac IA-92) and publish a message to the
command/Truck01 topic string. Refer to Figure 2-8.

Figure 2-8 Publishing a message with the WMQTT Utility

After publishing the message, you should receive a command console notification such as
the message shown in Example 2-15, which means that you successfully subscribed to
the commands/Truck01 topic and received the test message that you just published.

Example 2-15 Successfully subscribed

Subscribing to topic commands/Truck01
for client Truck01 using QoS1
Press Q<Enter> to quit

Message arrived
 topic: commands/Truck01

 message: 1332450705462,35.918,-78.231,B
54 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Chapter 3. Using MQTT with IBM
WebSphere MQ Telemetry

WebSphere MQ Telemetry provides reliable, secure messaging features that can be scaled to
include thousands of clients and that can interface with other technology within the enterprise,
such as WebSphere Message Broker and WebSphere Application Server. WebSphere MQ
Telemetry extends the reach of WebSphere MQ to connect the smallest and most remote
devices and sensors to the enterprise messaging network.

This chapter describes a simple MQTT solution using WebSphere MQ and the interoperability
capabilities of MQTT with JMS messaging clients. For the examples shown in this chapter
and throughout this book (unless otherwise noted), the WebSphere MQ software is installed
and configured on a Linux 64-bit system.

This chapter contains the following sections:

� Installing, configuring, and managing WebSphere MQ Telemetry
� Building a simple solution using WebSphere MQ Telemetry
� WebSphere MQ classes for Java Message Service
� WebSphere MQ Telemetry daemon for devices
� Troubleshooting WebSphere MQ Telemetry

3

© Copyright IBM Corp. 2012. All rights reserved. 55

3.1 Installing, configuring, and managing WebSphere MQ
Telemetry

At the time of writing, IBM offers both WebSphere MQ V7.0.1, in which MQTT protocol
support is provided as an additional installation, and WebSphere MQ V7.1, in which
WebSphere MQ Telemetry support is included as part of the product installation. For the
purposes of this analysis, in this section we explain how to install and verify, configure, and
manage MQ Telemetry as part of WebSphere MQ V7.1.

3.1.1 Before you begin

With WebSphere MQ V7.1, the MQ Telemetry component is available either as a server or a
client feature.

Tip: You can download a no-cost WebSphere MQ client as SupportPac MQC71 from the MQ
SupportPacs website at:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24031412

SupportPac MQC71 includes the telemetry MQSeriesXRClients-7.1.0-0.x8664.rpm
component for Linux or mqm.xr.client component for IBM AIX®. Java and C MQTT client
samples are located in the <MQ Installation path>\mqxr\SDK directory.

Prerequisites: Before you install the WebSphere MQ server, review the hardware and
software requirements located at:

https://www-304.ibm.com/support/docview.wss?rs=171&uid=swg27006467

Prior to installing WebSphere MQ, consider the following recommended first steps:

� Create an mqm group and an mqm ID. Be sure the primary group of the mqm ID is the
mqm group that was created. Do not add the mqm ID to other groups such as staff or
users.

� Create a file system for the product code (example: /opt/mqm/ on Linux) and the working
data (example: /var/mqm).

� Set system kernel tuning parameters as outlined in the WebSphere MQ Quick Beginnings
Guide at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amq1ac.doc
/lq10120_.htm

The mqconfig script can be downloaded and run on the system to verify that the kernel
tuning parameters are set to meet the minimum recommendation for WebSphere MQ.
Find it at:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg21271236

� On a Windows operating system, the WebSphere MQ Telemetry components will be
installed unless you choose the option to not install the WebSphere MQ Telemetry
libraries, provided you have the prerequisites on your system. If you do not have the
prerequisites, the components cannot be installed. On Linux, the MQ Telemetry feature is
installed by specifying the telemetry component specifically or choosing to install all MQ
components.

Information about the prerequisites for installing WebSphere MQ Telemetry is available at:

http://www-01.ibm.com/software/integration/wmqfamily/telemetry/requirements/
56 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amq1ac.doc/lq10120_.htm
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg21271236
http://www-01.ibm.com/software/integration/wmqfamily/telemetry/requirements/
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24031412
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24031412
https://www-304.ibm.com/support/docview.wss?rs=171&uid=swg27006467
http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg21271236

3.1.2 Installing WebSphere MQ

The steps outlined here are for WebSphere MQ V7.1 on a 64-bit Linux system. Details and
installation instructions for other platforms are available in the WebSphere MQ V7.1
Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zi00010_.
htm

To install WebSphere MQ server software with the MQ Telemetry feature:

1. Log in as root, or switch to the superuser by using the su command.

2. Set your current directory to the location of the installation file. The location might be the
mount point of the server CD, a network share, or a local file system directory.

3. Accept the software license:

a. To view and accept the license, run the script ./mqlicense.sh.
b. To just view the license, run ./mqlicense.sh -textonly.
c. To accept the license without it being displayed, run ./mqlicense.sh -accept.

4. Install WebSphere MQ. For the purposes of this project, the defaults are installed,
including the telemetry service and telemetry clients. The components and package
names are listed in the WebSphere MQ Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zi0092
0_.htm

To install selected components to the default location, /opt/mqm, enter the following
command and specify the components you want to install:

rpm -ivh

To install all components to the default location, as shown in Figure 3-1 on page 58, enter
the following command:

rpm -ivh MQSeries.rpm

Important: At the time of writing, the WebSphere MQ software for a 32-bit Linux
system does not contain the MQSeriesXRService and MQSeriesXRClients components
for MQTT.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 57

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zi00010_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/zi00920_.htm

Figure 3-1 Installing WebSphere MQ components

5. If you have chosen this installation to be the primary installation on the system, declare it
to be the primary installation, as shown in Figure 3-2, by entering the following command
at the command prompt:

MQINSTALLATIONPATH/bin/setmqinst -i -p MQINSTALLATIONPATH

Figure 3-2 Setting MQ instance as primary
58 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

6. After installation, you can use the dspmqver command to show the WebSphere MQ
version, as depicted in Figure 3-3, which shows WebSphere MQ Version 7.1.

Figure 3-3 Displaying MQ version

3.1.3 Verifying the installation of WebSphere MQ Telemetry

After you install the WebSphere MQ software, you can verify the installation of WebSphere
MQ Telemetry using the define sample configuration wizard and the MQTT client utility in
WebSphere MQ Explorer. WebSphere MQ Explorer is a GUI interface that is included with
WebSphere MQ. It can also be downloaded at no cost in SupportPac MS0T at:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041

For this example, we are creating a queue manager called MQTTVerification to test the
configuration of WebSphere MQ Telemetry. WebSphere MQ also includes a sample script
(SampleMQM.sh) that can be used to manually create an MQTT-enabled queue manager for
verification. For more information about a queue manager using the sample script, refer to
3.1.4, “Configuring a queue manager for WebSphere MQ Telemetry” on page 65.

Remember: You can have only one primary installation on a system. If there is already
a primary installation on the system, you must unset it before you can set another
installation as the primary installation. Use the setmqinst command to set or unset an
installation as the primary one.

If an installation of WebSphere MQ V7.1 or later is coexisting with an installation of
WebSphere MQ V7.0.1, the WebSphere MQ V7.0.1 installation must be the primary. It
is flagged as primary when the WebSphere MQ V7.1 or later version is installed, and
the WebSphere MQ V7.1 or later installation cannot be made primary.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 59

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg24021041

Using WebSphere MQ Explorer
To verify the installation of WebSphere MQ Telemetry using WebSphere MQ Explorer:

1. Start WebSphere MQ Explorer (illustrated in Figure 3-4). On Windows and Linux operating
systems, you can start WebSphere MQ Explorer using the system menu, the MQExplorer
executable file, the mqexplorer command, or the strmqcfg command.

Figure 3-4 The MQ Explorer GUI

2. Create a new queue manager:

a. Right-click Queue Managers in MQ Explorer Navigator, and select New Queue
Manager.

b. Type MQTTVerification as the Queue manager name.

c. Click Next Next Next.

d. Confirm the port that is listed in the “listen on port number” field. If the port listed there
is already in use by another queue manager, you will need to change it.

e. Click Finish.

3. Configure a new queue manager:

a. In MQ Explorer Navigator select IBM WebSphere MQ Queue Managers
MQTTVerification.

b. Open the Telemetry folder to open the Welcome to MQ Telemetry content window (as
shown in Figure 3-5 on page 61). The queue manager must be running for the
Telemetry folder to be viewable.
60 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 3-5 MQ Telemetry Welcome panel

c. Click Define sample configuration to open a page that lists steps that will be
performed automatically as part of the sample configuration (illustrated in Figure 3-6 on
page 62). If you do not want to accept these default steps, you can use the sample
SampleMQM.sh configuration file.

For more information about manual configuration, see 3.1.4, “Configuring a queue
manager for WebSphere MQ Telemetry” on page 65.

If the Define sample configuration link is not present and if instead you see the
message the sample configuration has been set up for this queue manager,
telemetry is already configured. If this is the case, you can launch the MQ Client Utility
panel from the Welcome panel and continue to step 4.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 61

Figure 3-6 Using WebSphere MQ Explorer to define a sample configuration

d. Confirm whether you want to automatically launch the MQTT Client Utility panel when
you are finished setting up the configuration. The MQTT Client Utility panel can be
used to subscribe and publish test messages. The Launch MQTT Client Utility check
box is selected by default. If you clear it but later want to open the panel, you can do so
using a direct link located on the Welcome to MQ Telemetry panel (as shown in
Figure 3-5 on page 61).

e. Click Finish. This completes the configuration of WebSphere MQ Telemetry.

Tip: The default authorization setting on Linux for full access to MQ resources
(using either the sample telemetry script or the sample telemetry setup wizard in
MQ Explorer) is nobody. By giving access to user nobody, you are effectively giving all
users the same authority.

Important: The queue manager being created here is just to verify that telemetry is
working. To eventually test telemetry, you will need to create a different queue
manager that does not carry the default authorization setting of nobody.

You can edit the SampleMQM.sh script manually to remove or alter the setmqaut
commands. This sample script can be found in the /opt/mqm/mqxr/samples
directory. More information about security is provided in 3.1.5, “Authorizing MQTT
clients to access WebSphere MQ” on page 72 and in 3.1.6, “Enabling the security
features of WebSphere MQ for telemetry channels” on page 74.
62 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

4. Verify that WebSphere MQ Telemetry is installed using the MQTT Client Utility to perform
a test:

a. Confirm that the host and port names shown on the MQTT Client Utility panel are
correct.

b. Click Connect. A connected event displays under client history.

c. Click Subscribe. A subscribed displays under client history (see Figure 3-7).

Figure 3-7 Testing a subscription using the MQTT Client Utility
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 63

d. Click Publish. Both a published and a received event displays under client history (see
Figure 3-8).

Figure 3-8 Testing publication using the MQTT Client Utility

The WebSphere MQ Telemetry installation is verified if the publish/subscribe processes
complete successfully and the client history portion of the MQTT Client Utility panel shows
that the test publication message was received.

If you encounter problems during the installation process, you can view the error log at the
following locations:

� On a Windows operating system, <WebSphere MQ data directory>\qmgrs\qMgrName\mqxr
� On AIX and Linux systems, /var/mqm/qmgrs/qMgrName/mqxr/

Using the WebSphere MQ Telemetry client samples
WebSphere MQ Telemetry client samples can be used for additional testing or application
design guidance.

Telemetry client code is provided in the mqxr\SDK\clients folder in the WebSphere MQ
installation. The C and Java client implementations are based on the MQTT V3.1 protocol
and can be used to develop applications with any server that supports V3.1 of the MQTT
specification.

The Javadoc information for the WebSphere MQ Telemetry Java client is available in
mqxr\SDK\clients\java\doc\javadoc. The index.html file contains some basic examples of
how to use Java classes to design application code for connecting to a server that implements
the MQTT V3 protocol. You can find more details about how to develop applications that use
WebSphere MQ Telemetry at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=%2Fcom.ibm.mq.
doc%2Ftt60000_.htm
64 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=%2Fcom.ibm.mq.doc%2Ftt60000_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=%2Fcom.ibm.mq.doc%2Ftt60000_.htm

3.1.4 Configuring a queue manager for WebSphere MQ Telemetry

In this section we describe how to manually configure a queue manager to run WebSphere
MQ Telemetry. Configuring a queue manager manually allows you to customize settings for
testing and production scenarios.

You can also use the sample configuration wizard in WebSphere MQ Explorer, as described
in 3.1.3, “Verifying the installation of WebSphere MQ Telemetry” on page 59, or the sample
SampleMQM.sh script that is provided with WebSphere MQ. The sample script is located in the
/opt/mqm/mqxr/samples directory on a Linux server or the C:\Program Files\IBM\WebSphere
MQ\mqxr\samples directory in a Windows operating system. You can edit the script to alter the
queue manager name, channel parameters, and authority settings.

Create and start the queue manager
To begin the manual configuration process, create and start a queue manager using the
crtmqm and strmqm commands. The queue manager name here is MQTTQMGR. The following
commands are how they are exactly entered:

crtmqm MQTTQMGR
strmqm MQTTQMGR

Figure 3-9 shows the full command sequence and responses.

Figure 3-9 Creating and starting a WebSphere MQ Telemetry queue manager

Configure the queue manager
After you create and start the queue manager, you can manually configure it to run
WebSphere MQ Telemetry support using runmqsc commands to define the objects.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 65

To configure the queue manager using runmqsc, perform these steps:

1. Open a command window at the telemetry samples directory. The telemetry samples
directory on Linux is /opt/mqm/mqxr/samples.

2. Create the telemetry transmission queue using the following runmqsc command.

DEFINE QLOCAL('SYSTEM.MQTT.TRANSMIT.QUEUE') USAGE(XMITQ) MAXDEPTH(100000)

You receive the following confirmation message:

AMQ8006: WebSphere MQ queue created

3. Set the default transmission queue to the one you just created by using the runmqsc
command:

ALTER QMGR DEFXMITQ('SYSTEM.MQTT.TRANSMIT.QUEUE')

The reason for altering the queue manager to set the default transmission queue to
SYSTEM.MQTT.TRANSMIT.QUEUE is to make sending messages directly to MQTT clients
easier. Unless the default transmission queue is changed, you will have to add a remote
queue for every client that receives WebSphere MQ messages. For more information
about sending a message to a client directly using remote queues, see:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt4015
0_.htm

Important: The runmqsc command is a scripting language for WebSphere MQ. It accepts
commands from the command-line interface from which it is executed. To start an
interactive session against a queue manager, use the following syntax:

runmqsc QueueManagerName

When finished configuring the queue manager, type end to exit the runmqsc session. If a set
of MQSC commands has been saved in a file, the contents of this file can be passed into
the runmqsc program using the following syntax:

runmqsc QueueManagerName <filename>

Remember: Altering the default transmission queue might interfere with your existing
configuration.
66 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt40150_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt40150_.htm

4. Install the telemetry service by reading the installMQXRServiceunix.mqsc script into
runmqsc. To do this, enter the runmqsc < installMQXRServiceunix.mqsc command to read
the commands in the installMQXRServiceunix.mqsc file into the runmqsc program to
define the telemetry service (SYSTEM.MQXR.SERVICE), as shown in Figure 3-10.

Figure 3-10 Creating the telemetry service using the installMQXRService script

5. Start the service using the START SERVICE(SYSTEM.MQXR.SERVICE) runmqsc
command as shown in Figure 3-11.

Figure 3-11 Starting the telemetry service

Configure the telemetry channels
After you configure the queue manager with the WebSphere MQ Telemetry service, you can
use the WebSphere MQ Explorer GUI to configure its telemetry channels. These channels
are used by the MQTT clients to connect to the queue manager. In this example, the channel
is configured with the mqttuser ID, which requires the mqttuser ID to have been previously
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 67

created on the server by the administrator. For purposes of this example, the mqttuser ID was
created as part of a user group called mqtt.

To create the WebSphere MQ Telemetry channels using WebSphere MQ Explorer:

1. Open the Telemetry folder in MQ Explorer Navigator and right-click Channel. Then select
New Telemetry Channel as shown in Figure 3-12.

Figure 3-12 Creating a new telemetry channel
68 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

2. Next, specify the channel name and select the port number, and then click Next as shown
in Figure 3-13.

Figure 3-13 Specifying the name of a telemetry channel

Note: Port 1883 is the default for WebSphere MQ Telemetry channels, but you have the
option to change it. More secure options and configurations are possible. For more
information, see the information center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt4
0200_.htm
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 69

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt40200_.htm

3. Declare if you will be using the Java Authentication and Authorization Service (JAAS) to
authenticate client-supplied user names and passwords, and then click Next, as shown in
Figure 3-14.

Figure 3-14 Choosing the authentication method for a channel

4. Use the Client authorization panel to declare how WebSphere MQ will authorize clients to
send or receive messages, and then click Next. Select one of the following choices, as
shown in Figure 3-15 on page 71:

– Fixed user ID: With this option, you designate a User ID that you want to be assigned
to all clients connecting to this channel. This option creates the channel with the
specified ID as the MCAUSER.

– Username provided by client: If this option is selected, the client must supply a user
name, or it will not be allowed to connect to WebSphere MQ.

– MQTT Client ID: If this option is selected, connection authentication is performed
against the actual ID of each individual client.
70 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 3-15 Specifying the User ID for a telemetry channel

5. Select whether you want to launch the MQTT Client Utility, and then click Finish to
complete creation of the telemetry channel, as shown in Figure 3-16.

Figure 3-16 The final step in creating a telemetry channel
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 71

6. You can use the MQTT Client Utility to test connectivity by publishing and subscribing to
test messages, as described in 3.1.3, “Verifying the installation of WebSphere MQ
Telemetry” on page 59.

3.1.5 Authorizing MQTT clients to access WebSphere MQ

WebSphere MQ allows you to grant access to MQTT V3 clients using an authorization
service called the object authority manager (OAM). But before describing this in detail, a
quick review of client identities and methods of authorization is required.

MQTT clients are recognized and given access based on an identity that is presented when
they connect to a telemetry channel, as described in 3.1.4, “Configuring a queue manager for
WebSphere MQ Telemetry” on page 65. The administrator determines how this access will be
done when configuring the channel and has the following options:

� The administrator can designate a specific user ID in the channel configuration so that
every client that connects to the channel gets that ID. The ID acts as an mcauser attribute,
and every client that connects to the channel gets the level of authority that is associated
with that ID.

� The administrator can require the client to pass a user name for authentication when it
connects. The user name is an attribute of the MqttConnectOptions class and must be set
by the MQTT client application before it connects to WebSphere MQ. This option can
simplify administration, because multiple clients can be assigned the same user name and
still get controlled access to the server.

� A final option is to have WebSphere MQ check the ClientID for authorization. One benefit
of this approach is the ability to grant fine-grained levels of authority to specific clients,
because ClientIDs can be generated based on things such as a device’s serial number or
other uniquely identifying characteristics.

If one of the final two options is chosen, the user ID or ClientID that is presented must be
defined to WebSphere MQ as a principal. A principal is a user ID that can belong to one or
more user groups on the server.

The OAM learns the authorities that are granted to each ID by validating the ID and groups
against the local operating system. Thus, the ID must be defined to the local operating system
in order for the authorization to succeed. Although the authorization can be set at either the
principal ID or the group ID level, when WebSphere MQ grants authorization to a principal,
that authority is applied to all users in the same group.

Role-based access control
Rather than managing tens of thousands of IDs unique to each client, many administrators
employ role-based access control. In a role-based model, IDs and groups are created for each
security role. Individual clients are then mapped to the appropriate role by selecting which
channel to use based on the channel's ID configuration. By grouping client connections to a
particular channel that has the identity configured for a given role, each of the clients gets
access based on the single ID that is associated with the channel. More complex role and
authorization mapping can be done, but that discussion is outside the scope of this book.

Restart to apply the changes: When you edit the attributes of a telemetry channel, you
must restart the channel to apply the changes.
72 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The OAM allows you to combine MQTT clients into the following common identities:

� Define multiple telemetry channels and align them each with a specific user ID. Then, give
every client that connects to a given channel the specific user ID that is aligned with that
channel. In this way, every user that connects to a channel will have the same authority,
based on the common user ID that is assigned to them upon connecting.

� Define a single telemetry channel but have each client submit a predefined user name and
password that is assigned to it, or pick from a group of predefined user names and
passwords that were given to the client when it was provisioned. This design requires
authentication by the OAM of the different user names that are submitted.

Full details about OAM are available in the WebSphere MQ Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/fa13160_.
htm

Access control patterns
You can choose from among the approaches described in the following sections to tailor
access control patterns to your specific requirements. In these examples, the identity used by
clients connecting to the telemetry channel is mqttuser. If collections of clients need different
identities, use multiple user IDs, one for each group.

No access control
In this pattern, MQTT clients are given WebSphere MQ administrative authority and therefore
can perform any action on any object. An ID such as mqttuser is added to the mqm group,
thereby giving it authority to access all MQ objects. The mqm ID and all users in the mqm
group are automatically privileged users with full administrative authority for WebSphere MQ.

Coarse-grained access control
With coarse-grained access control, MQTT clients have authority to publish and subscribe,
and to send messages to MQTT clients. They do not have authority to perform other actions,
or to access other objects. Granting course-grained access involves using setmqaut
commands to grant authority to the group containing the User ID of the MQTT clients (the
mqttuser ID is a member of the mqtt group).

The following commands grant authority to publish and subscribe to all topics and to send
publications to MQTT clients:

setmqaut -m MQTTQMGR -t topic -n SYSTEM.BASE.TOPIC -g mqtt -all pub sub
setmqaut -m MQTTQMGR -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -g mqtt -all put

Medium-grained access control
With medium-grained access control, MQTT clients are divided into different groups to
publish and subscribe to different sets of topics and to send messages to MQTT clients. For
this level of access, multiple user IDs must be created and segregated into different groups
(such as mqtt1, mqtt2, and so on). Multiple administrative topics in the publish/subscribe topic
tree are also defined, and the different user IDs are authorized to different topics.

The following examples can be used for medium-grained access control:

setmqaut -m MQTTQMGR -t topic -n topic1 -g mqtt1 -all pub sub
setmqaut -m MQTTQMGR -t topic -n topic2 -g mqtt2 -all pub sub

These commands allow IDs in the mqtt1 group to have publish/subscribe access to topic1 but
not to topic2. Similarly, users in the mqtt2 group get publish/subscribe access to topic2 but not
to topic1.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 73

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/fa13160_.htm

The system administrator creates a user group called mqtt, and adds the various mqttuser
IDs to the group. All users in the mqtt group can then be authorized to send messages to
MQTT clients by granting put authority to the transmit queue. You can use this command:

setmqaut -m MQTTQMGR -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -g mqtt -all put

Fine-grained access control
In this pattern, MQTT clients are incorporated into an existing system of access control that
authorizes groups to perform actions on objects. This model is used when WebSphere MQ
applications are publishing and subscribing to the same topic as MQTT clients.

Here, a user ID is assigned to one or more operating system groups depending on the
authorizations it requires. The groups in this example are PublishX, SubscribeY, and mqtt,
and carry the following authorizations:

� PublishX: Members of the PublishX group can publish to topicX.
� SubscribeY: Members of the SubscribeY group can subscribe to topicY.
� mqtt: Members of the mqtt group can send publications to MQTT clients.

To implement fine-grained access control, follow these steps:

1. Create the groups PublishX and SubscribeY and allocate them to multiple administrative
topics in the publish/subscribe topic tree.

2. Create the group mqtt.

3. Create multiple user IDs (mqttusr1, mqttusr2, and so on), and add the users to the groups
based on what they must be authorized to do.

4. Authorize different PublishX and SubscribeX groups to different topics, and authorize the
mqtt group to send messages to MQTT clients. The following commands can be used:

setmqaut -m MQTTQMGR -t topic -n topic1 -g PublishX -all pub
setmqaut -m MQTTQMGR -t topic -n topic1 -g SubscribeX -all pub sub
setmqaut -m MQTTQMGR -t q -n SYSTEM.MQTT.TRANSMIT.QUEUE -g mqtt -all put

Refreshing the security if changes are made
WebSphere MQ queries OS group memberships upon startup and builds an internal cache. If
the group membership of an ID changes, the queue manager does not recognize the change
until the refresh security command is issued, as shown in Figure 3-17. A queue manager
recycle refreshes the security, or if necessary you can issue a runmqsc command. The
refresh security command dumps the cache, and is required only after the group
membership of an ID changes.

Figure 3-17 The refresh security command

The WebSphere MQ Information Center has detailed information about managing security
using the Explorer GUI:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.explorer.doc/
o_oam.htm

3.1.6 Enabling the security features of WebSphere MQ for telemetry channels

Security is a broad subject and involves much more than can be presented in this book.
However, some particular methods of security involving MQTT and WebSphere MQ deserve
74 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.explorer.doc/o_oam.htm

special mention here, each of which can be introduced by the administrator at the telemetry
channel level.

One option is to check the ClientID when the channel connection is made, but this option has
limitations. A more secure option is to use the Java Authentication and Authorization Service
(JAAS) to authenticate a client’s user name and password. In addition, you can strengthen the
security of both of these options by using an encrypted TLS/SSL certificate to pass the
client's identifying information and authorization back and forth with the server.

The administrator can require a client to present its identity using the following methods:

� User ID: All connections to a particular channel are designated (during channel
configuration) as having the same user ID and, therefore, the same level of access,
regardless of the clients’ individual identities.

� Username: When connecting to a channel, the client passes a predefined user name and
password ID for verification and gets the level of access that is designated for that user
name.

� ClientID: Each connection is authenticated based on a unique identifier, or ClientID, that is
associated with each particular client, with access granted accordingly.

Authorization using ClientID
One of the options for WebSphere MQ channel configuration is to perform client authorization
during channel connection using the ClientID, as explained in 3.1.5, “Authorizing MQTT
clients to access WebSphere MQ” on page 72. However, the use of ClientID to resolve an
identity is not true authentication. The ClientID that is presented is accepted at face value,
with no additional confirming passwords or other information required. However, this method
can still be useful, particularly in the case of an application with many thousands or even
millions of clients. To speed things up, in this situation, the client application typically uses
some globally unique element of the device, such as its MAC address, as the ClientID.

Authentication using a password
Another method is to authenticate a client user name and password using JAAS. This is
particularly useful when the client application is driven by a human user, such as is the case
with a cell phone, where the application can present a dialog to collect the password from the
user. Typically in such systems, the application also provides methods for the user to update
their password on demand, for server-side password management and for ID revocation.
JAAS authentication can also be used without user interaction in situations where the
credentials can be stored in a configuration file or elsewhere on the device.

Authentication using TLS/SSL
TLS/SSL provides encryption but can also provide authentication if the client is provided with
a private, signed digital certificate (X.509). The encryption features of TLS/SSL are normally
used to protect credentials, such as a user ID and password. However, a client that has a
proper certificate can present it for the server to authenticate and map to a particular
server-side identity. For added security, certificate-based authentication can be combined
with the other forms of authorization listed in this section.

Additional details about implementing security for MQTT clients are available in the
WebSphere MQ Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqtat.doc/tt
60312_.htm
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 75

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqtat.doc/tt60312_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0/topic/com.ibm.mq.amqtat.doc/tt60312_.htm

3.1.7 Configuring WebSphere MQ to send messages to MQTT clients

A WebSphere MQ application can send a message to an MQTT V3 client using one of the
following methods:

� Publish the message to a topic (the publish/subscribe model)
� Send the message to the client directly (the point-to-point model)

Whichever method is used, the message is placed by the queue manager onto
SYSTEM.MQTT.TRANSMIT.QUEUE and sent to the client by the WebSphere MQ telemetry service.

Publishing to a topic
One way to understand publishing a message to a topic is to discuss the subscription process
first. When a telemetry client creates a subscription to a topic, the WebSphere MQ telemetry
service creates a proxy subscription on the queue manager on behalf of the MQTT client.
With the subscription in place, the client becomes an automatic destination for any messages
that are published to that topic.

To route messages to clients with subscriptions, the queue manager puts the messages onto
SYSTEM.MQTT.TRANSMIT.QUEUE. It then uses the ClientID of the subscribing clients as the key to
getting each topic-specific message to the correct client subscribers.

To enable MQTT client subscribers and publishers to connect using different queue
managers, the clustering features of WebSphere MQ can be implemented as shown in
Figure 3-18. When an administrative topic is created in a cluster with the attribute CLUSTER
(clusterName), any application in the cluster can publish to the client. The subscribers and
publishers can be part of the same cluster or can be connected by a publish/subscribe
hierarchy.

Figure 3-18 Publishers and subscribers connecting to queue managers within a cluster

Publish/Subscribe
MQTT Protocol

WebSphere MQ Server

CLUSTERED
TOPIC Q

u
eu

e
M

an
ag

er
MQ

Telemetry
Service

WebSphere MQ Server

CLUSTERED
TOPIC Q

u
eu

e
M

an
ag

er

MQ
Telemetry
Service

CLUSTER
channels

MQ Cluster

Subscriber

Publisher
76 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Sending a message to a client directly
As an alternative to the publish/subscribe approach, a WebSphere MQ application has the
capability to send an unsolicited message to an MQTT V3 client directly. This method can be
accomplished by putting the message onto the SYSTEM.MQTT.TRANSMIT.QUEUE, specifying the
ClientID as the queue manager and designating the topic as a queue. The message goes
directly to the client because the ClientID (ClientIdentifier) is specified in the code through the
creation of an object descriptor, with the client as the ObjectQmgrName in the WebSphere MQ
application.

The following syntax is an example of that process:

MQOD.ObjectQmgrName = ClientIdentifier;
MQOD.ObjectName = name;

If the application is written using Java Messaging Service (JMS), a point-to-point destination
must be created to specify the ClientID and designate the topic name as a queue. The
following syntax exemplifies the process:

javax.jms.Destination jmsDestination =
(javax.jms.Destination)jmsFactory.createQueue
("queue://ClientIdentifier/name");

Another method of sending a message directly to a client is to use an MQPUT command to
place the message to a remote queue, which is basically a pointer to the transmit queue. The
definition of the remote queue must have the remote queue manager name attribute
(RQMNAME) set as the ClientID of the client for which the message is intended. This method
allows the WebSphere MQ telemetry service to route the messages that were put to the
remote queue to the appropriate MQTT client. The transmit queue must resolve to
SYSTEM.MQTT.TRANSMIT.QUEUE. The remote queue name (RNAME) attribute can be anything
because it is sent to the client as a topic string.

Regardless of which approach is used, the message goes directly to the MQTT client,
provided it is connected. If the client is not connected, the queue manager can continue to
receive publications on its behalf so long as the client created a stateful session with the
queue manager. The messages are stored in SYSTEM.MQTT.TRANSMIT.QUEUE, then forwarded
to the client when it reconnects. See 2.3, “MQTT concepts” on page 26 for more information
about stateful sessions.

If WebSphere MQ sends a persistent message directly to a client, it is sent by default with a
quality of service (QoS) designation of 2 (exactly once). If WebSphere MQ sends a
non-persistent message, it is sent with a QoS designation of 0 (deliver once, at most). The
client might not be able to support all qualities of service. In such cases, the client can set the
maximum QoS it can support by making a subscription to the topic DEFAULT.QoS to lower the
QoS it accepts for messages sent directly.

For more information about how to configure a queue manager to send messages to MQTT
clients visit the WebSphere MQ Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt40150_.
htm

3.1.8 Performance considerations for WebSphere MQ Telemetry

WebSphere MQ Telemetry enables up to hundreds of thousands of MQTT V3 clients to
connect to WebSphere MQ queue managers. However, when managing so many clients,
several factors must be considered to ensure adequate messaging performance and make
scalability manageable.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 77

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt40150_.htm

Minimize the cost of connections
There are numerous costs involved with client-queue manager connections:

� Processor usage and set-up time to create the connection
� Network usage and maintenance to enable messages to flow
� Memory used when keeping a connection open but not using it

There is an extra load incurred when clients stay connected, both in terms of frequent checks
to confirm that the network is active and memory used on the server for each open
connection. So if you are sending messages at a rate greater than one per minute, keep your
connection open to avoid the cost of initiating a new connection each time. However, if you
are sending messages at intervals of less than one every 10-15 minutes, consider dropping
the connection to avoid the cost of keeping it open between messages. TLS/SSL connections
might be kept open, but idle, for longer periods because of the extra expense of establishing
secure connections.

Additionally, consider the capability of the client and the purpose of your application. If there is
a store-and-forward facility on the client, you can batch up and send multiple messages at the
same time, then drop the connection until it is needed again. However, if the client is
disconnected, it is not possible for it to receive any potential replies, such as error messages,
from the server.

Maximize throughput
If your system has one client sending many messages (for example, file transfers), do not wait
for a server response to every message. Instead, send all of the messages and check at the
end to confirm they were all received. This verification can also be accomplished by giving the
messages specific QoS levels, ranging from 0 for unimportant messages to 2 for critically
important messages. Overall message throughput can be around twice as high with a QoS
designation of 0 compared to a designation of 2.

The length of topic names affects the number of bytes that flow across the network. So
another option to limit throughput is to limit the number of characters in each topic name.
Because small message size is one of the advantages of MQTT, it is best not to append a
large ClientID and topic string to each message.

Improve scalability
When an MQTT client subscribes to a topic, a proxy subscription is created by the telemetry
service in WebSphere MQ. Publications for the client are then routed onto
SYSTEM.MQTT.TRANSMIT.QUEUE. The remote queue manager name in the transmission header
of each publication is set to the ClientIdentifier of the MQTT client that made the subscription.
If there are many clients, each making their own subscriptions, this results in many proxy
subscriptions being maintained throughout the WebSphere MQ publish/subscribe cluster or
hierarchy.

For situations requiring distribution of messages to many clients (airline schedule updates,
weather alerts, and so on), it might be best to use subscriptions. However, if possible, use
point-to-point messaging for individual clients, such as actuators, that typically only receive
information pertaining to them specifically. For information about sending messages to clients
directly, see 3.1.6, “Enabling the security features of WebSphere MQ for telemetry channels”
on page 74.

Manage large numbers of clients
To support many concurrently connected clients, increase the memory available for the
telemetry service by setting the Java virtual machine (JVM) parameters -Xms and -Xmx by
updating the java.properties file in the telemetry service configuration directory
78 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

(/var/mqm/qmgrs/qMgrName/mqxr on Linux). The file includes directions to uncomment certain
lines of code to set the heap to 1 gigabyte (as shown in Figure 3-19). Other settings, as well,
can be added to the file to pass to the JVM running the telemetry service.

Figure 3-19 Example of the java.properties file

The system administrator also needs to configure the operating system where the queue
manager resides to enable it to handle a large number of sockets. Each socket requires one
file descriptor. The telemetry service requires some additional file descriptors, so this number
must be larger than the number of open sockets required.

To increase the number of open file descriptors allowed, add the following lines to the
/etc/security/limits.conf file:

@mqm soft nofile 65000
@mqm hard nofile 65000

For these settings to take effect, the user must log out and log back in to the server.

If there are a large number of client connections, similar settings for the ClientID must be
added to the /etc/security/limits.conf file.

The queue manager uses an object handle for each nondurable subscription. To support
many active, nondurable subscriptions, increase the maximum number of active handles in
the queue manager by using the runmqsc command ALTER QMGR
MAXHANDS(999999999) as shown in Figure 3-20.

Figure 3-20 Example of altering the maximum number of handles
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 79

As the number of clients increases, another consideration is the time required to restart the
system. The planned downtime for this might have implications in the number of messages
that queue up to be processed. So configure the system so that the messages can be
successfully processed in an acceptable time. In particular, review the disk storage, memory,
and processing capacity.

With some client applications, it might be possible to discard stored messages when the client
reconnects and thereby reduce overhead associated with delivery of outdated or
unnecessary messages. To discard messages, set MqttConnectOptions.cleanSession in the
client connection parameters. Alternatively, publish and subscribe using a QoS level of 0
(deliver once, at most). If the information is not mission-critical, consider using non-persistent
messages when sending messages from WebSphere MQ. Non-persistent messages are not
recovered when the queue manager restarts.

Performance reports
For information about performance reports for WebSphere MQ Telemetry, review the
WebSphere MQ Telemetry Performance Evaluations at:

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg27007150

At the time of this publication, the available Telemetry Performance Evaluation is for
WebSphere MQ V7.0.1 (SupportPac MP0A), but the website is expected to be updated as
more evaluations become available.

3.2 Building a simple solution using WebSphere MQ Telemetry

WebSphere MQ Telemetry, a component of WebSphere MQ, can be used to build a simple
solution for the transportation logistics scenario being used throughout this book.

3.2.1 Solution overview

The example solutions presented here assume that the number of trucks in Transportation
Company B’s fleet is not too large, and that the sensor and communication hardware in the
trucks can support embedded third-party software. Based on this, an appropriate messaging
system topology becomes clear. The trucks will connect to company headquarters directly
with no edge server in between. This approach will keep things simple and flexible.

The flow of data in the scenario is as follows:

� Each truck regularly sends to headquarters a series of reports, or messages, containing
its logistical data (facts such as current position, speed and fuel consumption) and the
current condition of its cargo and cargo area (things such as interior temperature and
ventilation). The example solution being created here will generate a message that
transmits the temperature of the truck’s cargo area.

� The system at company headquarters receives the data from each truck, analyzes it, and
if necessary sends messages containing commands back to the truck or to the fleet as a
whole.

With WebSphere MQ Telemetry, MQTT client libraries can be embedded into the sensor and
communications hardware on the trucks, messages can be transmitted to and from the trucks
using the lightweight MQTT protocol, and the message traffic can be managed using an
MQTT-based message broker on the enterprise server at company headquarters.
80 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www-01.ibm.com/support/docview.wss?rs=171&uid=swg27007150

Here is how the pieces fit together:

� WebSphere MQ Telemetry: A lightweight implementation of a publish/subscribe
messaging model for communicating with devices at the edge of a network. In this
example, it will act as the server to which the devices on the trucks will connect.

� MQTT client libraries: Used for building client messaging applications on remote devices.
WebSphere MQ Telemetry provides reference implementations of MQTT client libraries in
C and Java.

� WebSphere MQ: A universal messaging backbone. In this example, the server will use
WebSphere MQ to interact with the devices on the trucks.

3.2.2 Solution implementation

Implementation of these sample solutions starts with designing the message topic hierarchy
and message format. Then the C and Java MQTT client libraries are used to develop client
messaging applications that will run on the devices on the trucks. Then WebSphere MQ
Telemetry is configured as an MQTT message server, and finally the necessary server-side
applications are built to manage the incoming and outgoing messages and commands.

Topic hierarchy
The example solutions use the following topics:

� temperature, to which the trucks will publish their reports on the temperature of the interior
cargo space

� command, to which the system at company headquarters will publish any instructions for
the trucks

In turn, the headquarters system will subscribe to the temperature topic, and the trucks will
subscribe to the command topic.

To provide as much flexibility as possible, MQTT supports hierarchical topic names that
enable application designers to organize topics in a way that simplifies their management.
Levels in the hierarchy are delimited by the forward slash (/) character, as in the example
SENSOR/1/HUMIDITY.

In this example solution, the first and second level topic is reserved by the system:

� The first level is defined for vehicle type. So all trucks can subscribe to the topic Truck to
receive messages from headquarters. In addition, the applications in headquarters can
publish messages to this topic so all trucks can receive them.

� The second level identifies a specific vehicle. So the truck identified as number 00001
subscribes to the topic Truck/00001 to receive messages intended just for it, and the
applications at headquarters can send commands specific to the truck by publishing a
message to the same topic.

� Additional topic levels can be used for specific business purposes. For example, a topic for
collecting the temperature data of the truck’s cargo area can be Truck/00001/Temp.

Because the topic string is transmitted along with the message (also called the payload),
developers of topic strings are advised to use abbreviations where possible to cut down
network overhead. So in the sample solutions presented here, temperature is shortened to
temp, command is shortened to comm, and so on.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 81

Message format
The message format in the sample solutions presented here will follow specific standards, as
shown in Table 3-1.

Table 3-1 Topic hierarchy and message formats

Client development
The MQTT client messaging applications on the trucks are developed using the WebSphere
MQTT Java and C client libraries. These are explained in 2.1, “Clients and brokers used in
this book” on page 22.

Begin by copying the following libraries to an appropriate project folder:

� WebSphere MQTT C libraries

– MQTTClient.h
– MQTTClientPersistence.h
– libmqttv3c.so

� WebSphere MQTT Java libraries

– com.ibm.micro.client.mqttv3.jar

The steps to develop the application differ based on whether the Java client or the C client is
chosen. Tools are available to help with the development process; this sample application
was built using Eclipse.

Java application
To create the sample MQTT client application in Java:

1. Create a new project in Eclipse.

2. Configure the WebSphere MQTT Java libraries as the dependency libraries in the project’s
Java build path.

3. Develop the publish/subscribe application, PubSubAsync.java, as shown in Example 3-1
on page 83. This sample application is asynchronous, in that it does not wait for a reply

Hierarchy Topic string Structure Message format Note

1st Truck Truck From truck to
headquarters:
(Reserved)
From headquarters
to truck: String
(Broadcast)

The type of vehicle,
such as a truck or
car.

2nd xxxxx Truck\xxxxx From truck to
headquarters: String
From headquarters
to truck: String

A unique identifier for
each truck.

3rd Temp Truck\xxxxx\Temp From truck to
headquarters:
temperature values
From headquarters
to truck: (Reserved)

The specific subject
area of the message,
in this case, the
temperature of the
interior cargo space.

3rd Comm Truck\xxxxx\Comm From truck to
headquarters:
(Reserved)
From headquarters
to truck: String

A command sent
from company
headquarters to a
truck or trucks.
82 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

message before moving on to another task. Instead it invokes the MqttCallback callback
method to await any replies or new messages.

Example 3-1 PubSubAsync.java

package com.ibm.redbooks.mqtt.ch3.client.PubSub;

import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.util.Random;

import com.ibm.micro.client.mqttv3.MqttCallback;
import com.ibm.micro.client.mqttv3.MqttClient;
import com.ibm.micro.client.mqttv3.MqttDeliveryToken;
import com.ibm.micro.client.mqttv3.MqttException;
import com.ibm.micro.client.mqttv3.MqttMessage;
import com.ibm.micro.client.mqttv3.MqttTopic;

public class PubSubAsync implements MqttCallback {

private MqttClient client = null;
private String mqttURI = null;
String ip = "";
String def_ip = "localhost";
String port = "";
String message = "";
String topic = "";
String lis_topic = "";

public static String clientId = "00001";
public static String user = "mqttuser";
public static final String subTopicString = System.getProperty(

"subTopicString", "Truck/" + clientId + "/Comm");
public static final String pubTopicString = System.getProperty(

"pubTopicString", "Truck/" + clientId + "/Temp");
public static final String broadcastTopicString = System.getProperty(

"broadcastTopicString", "Truck");

class Truck extends Thread {

String topic = "";
MqttClient client;

public Truck(MqttClient client, String stopic)
{

this.client = client;
this.topic = stopic;

}

public void run() {
try {

while(true)
{

Random random = new Random(System.currentTimeMillis());
int temperature = random.nextInt(35);
MqttMessage message = new MqttMessage();
message.setQos(2);
message.setPayload(String.valueOf(temperature).getBytes());
MqttTopic topic = this.client.getTopic(this.topic);
MqttDeliveryToken token = topic.publish(message);
token.waitForCompletion();
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 83

Thread.sleep(60000);
}

} catch (MqttException e) {
// TODO Auto-generated catch block
e.printStackTrace();

} catch (InterruptedException e) {
// TODO Auto-generated catch block

e.printStackTrace();
}

}
}

public PubSubAsync(String mqttURI) {
this.mqttURI = mqttURI;
this.lis_topic = subTopicString;
this.topic = subTopicString;

}

public PubSubAsync(String sip, String sport, String stopic, String l_topic) {
this.ip = sip;
this.port = sport;
this.topic = subTopicString;
this.lis_topic = subTopicString;

}

public void start() throws MqttException {
if(mqttURI == null || mqttURI.equalsIgnoreCase(""))

{
mqttURI = "tcp://"+this.ip+":"+this.port;

}
client = new MqttClient(mqttURI, user);
client.setCallback(this);
client.connect();
if(this.lis_topic != null && !this.lis_topic.equalsIgnoreCase(""))
{

client.subscribe(this.lis_topic);
}else
{

client.subscribe(subTopicString, 2);
}

Truck truck = new Truck(client,pubTopicString);
truck.start();

System.out.println("Connected and subscribed to "+mqttURI);
}

public void stop() throws MqttException {
if (client != null) {

client.disconnect();
}
System.out.println("Disconnect from "+mqttURI);

}

public void connectionLost(Throwable arg0) {
// In a production system, we would decide what we want to do in the event the
// connection drops. In our case we're expecting that not to happen so simply
// write a message to standard error.
84 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

System.err.println("The connection to WMQ was lost. Closing down the
connection.");

}

public void deliveryComplete(MqttDeliveryToken arg0) {
// We're just subscribing in this example.

}

public void messageArrived(MqttTopic topic, MqttMessage message)
throws Exception {

// Message received, simply write it onto the console.
String tex = "";
ByteArrayInputStream bais = new ByteArrayInputStream(message.getPayload());
DataInputStream dis = new DataInputStream(bais);
// Use the Java input streams to do the type conversion for us.
tex = dis.readLine();
dis.close();
bais.close();
System.out.println("Message " + tex);

}

public static void main(String[] args) {
PubSubAsync sub = null;

if(args != null && args.length == 1)
{

sub = new PubSubAsync(args[0]);
}else if(args != null && args.length == 4)
{

sub = new PubSubAsync(args[0],args[1],args[2],args[3]);
}

try {
sub.start();

} catch (MqttException ex) {
System.err.println("Could not connect to WMQ: "+ex);

}
}

}

C application
Follow these steps to create the sample MQTT client applications in C:

1. Create a new project in Eclipse.

2. Configure the WebSphere MQTT C libraries as the dependency libraries in the project’s
GCC C linker path.

3. Develop the publisher application, Pubasync.c, shown in Example 3-2, and the subscriber
application, Subasync.c, shown in Example 3-3 on page 87. Like the Java application
presented in the previous section, these sample C applications are asynchronous.
Pubasync.c uses the void delivered (void context, MQTTClientdeliveryToken dt method) to
confirm that messages with QoS designations of 1 or 2 have been delivered and
acknowledged by the server.

Example 3-2 Pubasync.c

#include "stdio.h"
#include "stdlib.h"
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 85

#include "string.h"
#include "MQTTClient.h"

#define ADDRESS "tcp://192.168.0.11:1883"
#define CLIENTID "Truck_00001_Pub"
#define TOPIC_Command "Truck/00001/Comm"
#define TOPIC_Temperature "Truck/00001/Temp"
#define QOS 2
#define TIMEOUT 10000L

volatile MQTTClient_deliveryToken deliveredtoken;

void delivered(void *context, MQTTClient_deliveryToken dt)
{
 printf("Message with token value %d delivery confirmed\n", dt);
 deliveredtoken = dt;
}

void connlost(void *context, char *cause)
{
 printf("\nConnection lost\n");
 printf(" cause: %s\n", cause);

}

int main(int argc, char* argv[])
 {

MQTTClient client;
MQTTClient_connectOptions conn_opts;
MQTTClient_message pubmsg;
MQTTClient_deliveryToken token;
int rc;

MQTTClient_create(&client, ADDRESS, CLIENTID,
MQTTCLIENT_PERSISTENCE_NONE, NULL);

memset(&conn_opts, '\0', sizeof(conn_opts));
conn_opts.keepAliveInterval = 200;
conn_opts.cleansession = 1;

MQTTClient_setCallbacks(client, NULL, connlost, NULL, delivered);

if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS) {
printf("Failed to connect, return code %d\n", rc);

exit(-1);
}

pubmsg.payload = argv[1];
pubmsg.payloadlen = strlen(argv[1]);
pubmsg.qos = QOS;
pubmsg.retained = 0;
deliveredtoken = 0;
printf("Waiting for publication of %s on topic %s for client with ClientID:

%s\n",
 argv[1], TOPIC_Temperature, CLIENTID);
MQTTClient_publishMessage(client, TOPIC_Temperature, &pubmsg, &token);
86 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

while(deliveredtoken != token);
MQTTClient_disconnect(client, 10000);
MQTTClient_destroy(&client);
return -1;

}

Example 3-3 Subasync.c

#include "stdio.h"
#include "stdlib.h"
#include "string.h"
#include "MQTTClient.h"

#define ADDRESS "tcp://192.168.0.11:1883"
#define CLIENTID "Truck_00001"
#define TOPIC_Command "Truck/00001/Comm"
#define TOPIC_Temperature "Truck/00001/Temp"
#define QOS 2
#define TIMEOUT 10000L

volatile MQTTClient_deliveryToken deliveredtoken;

void delivered(void *context, MQTTClient_deliveryToken dt)
{
 printf("Message with token value %d delivery confirmed\n", dt);
 deliveredtoken = dt;
}

int msgarrvd(void *context, char *topicName, int topicLen, MQTTClient_message *message)
{
 int i;
 char* payloadptr;
 int temp;

 printf("Message arrived\n");
 printf(" Topic: %s", topicName);
 printf(" Command message: %s ", message->payload);

 putchar('\n');
 MQTTClient_freeMessage(&message);
 return 1;
}

void connlost(void *context, char *cause)
{
 printf("\nConnection lost\n");
 printf(" cause: %s\n", cause);
}

int main(int argc, char* argv[])
{
 MQTTClient client;
 MQTTClient_connectOptions conn_opts;
 int rc;
 int ch;

 MQTTClient_create(&client, ADDRESS, CLIENTID,
 MQTTCLIENT_PERSISTENCE_NONE, NULL);
 memset(&conn_opts, '\0', sizeof(conn_opts));
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 87

 conn_opts.keepAliveInterval = 20;
 conn_opts.cleansession = 1;

 MQTTClient_setCallbacks(client, NULL, connlost, msgarrvd, delivered);

 if ((rc = MQTTClient_connect(client, &conn_opts)) != MQTTCLIENT_SUCCESS)
 {
 printf("Failed to connect, return code %d\n", rc);
 exit(-1);
 }
 printf("Subscribing to topic %s\nfor client %s using QoS%d\n\n"
 "Press Q<Enter> to quit\n\n", TOPIC_Command, CLIENTID, QOS);
 MQTTClient_subscribe(client, TOPIC_Command, QOS);

 do
 {
 ch = getchar();
 } while(ch!='Q' && ch != 'q');

 MQTTClient_disconnect(client, 10000);
 MQTTClient_destroy(&client);
}

Server setup and application development
On the server side, the data from the trucks can be received using the following methods:

� Through a publish/subscribe model in which the server subscribes to a particular
truck-related topic and receives any messages sent with that topic

� Through a point-to-point model in which the data is received in a message from a queue

To set up the server to receive messages from the MQTT-enabled clients on the trucks:

1. Configure WebSphere MQ Telemetry. For details about this process and the other setup
procedures listed here, see 3.1, “Installing, configuring, and managing WebSphere MQ
Telemetry” on page 56.

2. Start a queue manager and its telemetry service.

3. Create the telemetry channel by using the following example. Make sure that the TCP/IP
address and port that are defined for it match the values that are established in the MQTT
client application.

DEFINE CHANNEL('Truckchannel') CHLTYPE(MQTT) PORT(1885) MCAUSER('mqttuser')

4. Create a subscription topic and run it using the runmqsc command.

The syntax differs depending on whether you are using a publish/subscribe or
point-to-point message model.

– For a point-to-point model, use the following command:

DEFINE TOPIC('Temperatertopic') TOPICSTR('Truck/#/Temp') REPLACE

For point-to-point models only: Configure the channel and local queue. In the following
code, the queue TemperatureQueue is defined to store all temperature messages from
the truck. Then, a subscription to the temperature topic is created, and its destination is
set to the queue that was just defined. Finally, the channel TEST is created so the
Message Queue Interface (MQI) program can connect to it.

DEFINE QLOCAL('TemperatureQueue') REPLACE
DEFINE SUB('Temperatersub') DEST('TemperatureQueue')
TOPICOBJ('Temperatertopic') REPLACE
88 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

DEFINE CHANNEL('TEST') CHLTYPE(SVRCONN) REPLACE

– For a publish/subscribe model, use the following command:

DEFINE TOPIC('Temptopic00001') TOPICSTR('Truck/00001/Temp') REPLACE

For publish/subscribe models only: Create a publishing topic for sending commands to
the trucks using the following code.

DEFINE TOPIC('Truck00001Command') TOPICSTR('Truck/00001/Comm') REPLACE

The server-side application monitors the temperature data that it receives and, when
necessary, replies to the truck with new commands.

For this scenario, the truck’s cargo space is supposed to be maintained at 20 degrees
Celsius. So if a truck sends a temperature reading below this level, a command is sent to
lower the amount of cool air that is pushed into the cargo space. If a temperature reading
above this level is received, the command is to increase the amount of cooling. If a reading of
exactly 20 degrees C is received, no command is sent. Temperature readings above 30
degrees C indicate a problem, and a command is sent that orders the truck to transfer its
cargo to another vehicle.

The server-side application can be built in using the MQTT Java libraries or using the
WebSphere MQ Message Queue Interface (MQI).

Example 3-4 shows a Java application, ServerHandler.java, that is built using the MQTT
Java libraries. It subscribes to the appropriate topic, receives any messages from the truck,
analyzes the temperature data and, when necessary, calls out to a second library-built Java
application, MsgSender.java (see Example 3-5 on page 93), to send commands back to the
truck.

Example 3-4 ServerHandler.java

package com.ibm.redbooks.mqtt.ch3;

import java.io.ByteArrayInputStream;
import java.io.DataInputStream;

import com.ibm.micro.client.mqttv3.MqttCallback;
import com.ibm.micro.client.mqttv3.MqttClient;
import com.ibm.micro.client.mqttv3.MqttDeliveryToken;
import com.ibm.micro.client.mqttv3.MqttException;
import com.ibm.micro.client.mqttv3.MqttMessage;
import com.ibm.micro.client.mqttv3.MqttTopic;

public class ServerHandler implements MqttCallback {

private MqttClient client = null;
private String mqttURI = null;
String ip = "";

String def_ip = "localhost";
String port = "";
String message = "";
String topic = "";
String lis_topic = "";

public static String clientId = "00001";
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 89

public static final String subTopicString = System.getProperty(
"subTopicString", "Truck/" + clientId + "/Temp");

public static final String pubTopicString = System.getProperty(
"pubTopicString", "Truck/" + clientId + "/Comm");

public static final String broadcastTopicString = System.getProperty(
"broadcastTopicString", "Truck");

public static final String publication = System.getProperty("publication",
System.currentTimeMillis() + ",35.918,-78.231" + ",21C");

private static final String MQTT_TRACKSIDE_TOPIC = "Test";

String mesage1 = "Warning! The temperature is above 20'C! Please cooling! ";
String mesage2 = "Warning! The temperature is below 20'C! Please heating up!";
String mesage3 = "Info ! The temperature is 20'C!";
String mesage4 = "Alarm! The temperature is above 30'C! Find the closest division to transfer

the goods!";
String mesage5 = "Alarm! The temperature is below 10'C! Find the closest division to transfer

the goods!";

public ServerHandler(String mqttURI) {
this.mqttURI = mqttURI;

}

public ServerHandler(String sip, String sport, String stopic, String l_topic) {
this.ip = sip;
this.port = sport;
this.topic = subTopicString;
this.lis_topic = subTopicString;

}

public void start() throws MqttException {
if(mqttURI == null || mqttURI.equalsIgnoreCase(""))
{

mqttURI = "tcp://"+this.ip+":"+this.port;
}
client = new MqttClient(mqttURI, "ServerHandler1");
client.setCallback(this);
client.connect();
if(this.lis_topic != null && !this.lis_topic.equalsIgnoreCase(""))
{

client.subscribe(this.lis_topic);
}else
{

client.subscribe(MQTT_TRACKSIDE_TOPIC, 2);
}

System.out.println("Connected and subscribed to "+mqttURI);
}

public void stop() throws MqttException {
if (client != null) {

client.disconnect();
}

90 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

System.out.println("Disconnect from "+mqttURI);
}

public void connectionLost(Throwable arg0) {
// In a production system, we would decide what we want to do in the event the
// connection drops. In our case we're expecting that not to happen so simply
// write a message to standard error.
System.err.println("The connection to WMQ was lost. Closing down the connection.");

}

public void deliveryComplete(MqttDeliveryToken arg0) {
// We're just subscribing in this example.

}

public void messageArrived(MqttTopic topic, MqttMessage message)
throws Exception {

// Message received, simply write it onto the console.

String tex = "";
ByteArrayInputStream bais = new ByteArrayInputStream(message.getPayload());
DataInputStream dis = new DataInputStream(bais);

// Use the Java input streams to do the type conversion for us.
tex = dis.readLine();

dis.close();
bais.close();

System.out.println("Message " + tex);
//String Truck_no = getTruckNo(topic.getName()); // The Truck number could be used to

construct the topic
String tep = getTemperature(tex);

int temperature = Integer.valueOf(tep).intValue();

MsgSender sender = new MsgSender(this.ip,this.port,pubTopicString);

if(temperature > 30)
{

sender.send(this.mesage4);
}else if(temperature > 20)
{

sender.send(this.mesage1);
}else if (temperature < 10)
{

sender.send(this.mesage5);
}else if (temperature < 20)
{

sender.send(this.mesage2);
}if (temperature == 20)
{

Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 91

//sender.send(this.mesage3);
}

}

public String getTruckNo(String topic)
{

if (topic == null) return "00001";
String[] tps = topic.split("/");
if(tps.length > 1)
{

return tps[1];
}
{

return "";
}

}

public String getTemperature(String message)
{

if (message == null) return "15";
String[] tps = message.split(",");
if(tps.length > 2)
{

String temp = tps[3].substring(0, tps[3].length()-1);
return temp;

}
{

return "0";
}

}

public static void main(String[] args) {
ServerHandler sub = null;

if(args != null && args.length == 1)
{

sub = new ServerHandler(args[0]);
}else if(args != null && args.length == 4)
{

sub = new ServerHandler(args[0],args[1],args[2],args[3]);
}

try {
sub.start();

} catch (MqttException ex) {
System.err.println("Could not connect to WMQ: "+ex);

}
}

}

92 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

If the ServerHandler.java needs to send commands back to the truck, it calls out to a second
library-built Java application, MsgSender.java (see Example 3-5).

Example 3-5 MsgSender.java

package com.ibm.redbooks.mqtt.ch3;

import java.util.Random;

import com.ibm.micro.client.mqttv3.MqttClient;
import com.ibm.micro.client.mqttv3.MqttConnectOptions;
import com.ibm.micro.client.mqttv3.MqttDeliveryToken;
import com.ibm.micro.client.mqttv3.MqttException;
import com.ibm.micro.client.mqttv3.MqttMessage;
import com.ibm.micro.client.mqttv3.MqttTopic;

public class MsgSender {
String ip = "";
String port = "";
String message = "";
String topic = "";

public MsgSender(String sip, String sport, String stopic)
{

this.ip = sip;
this.port = sport;
this.topic = stopic;

}

public MsgSender(String sip, String sport, String smessage ,String stopic)
{

this.ip = sip;
this.port = sport;
this.message = smessage;
this.topic = stopic;

}

public String getMessage() {
return message;

}

public void setMessage(String message) {
this.message = message;

}

public void send(String msg)
{

try {
Random random = new Random(System.currentTimeMillis());
int address = random.nextInt(1000);
String clientid = "MQTTClient" + address;
String iddead = clientid + " is drop!";
MqttClient mqttClient = new MqttClient("tcp://"+ip+":"+port,clientid);

 MqttTopic iotopic = mqttClient.getTopic("Dead");

MqttConnectOptions connectOptions = new MqttConnectOptions();
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 93

connectOptions.setCleanSession(true);
connectOptions.setWill(iotopic, iddead.getBytes(), 2, true);
mqttClient.connect(connectOptions);

MqttMessage message = new MqttMessage();
message.setQos(2);
message.setPayload(msg.getBytes());

MqttTopic topic = mqttClient.getTopic(this.topic);
if(msg == null || msg.equalsIgnoreCase(""))
{

msg = this.message;
}
MqttDeliveryToken token = topic.publish(message);

token.waitForCompletion();

mqttClient.disconnect();

} catch (MqttException e) {
// TODO Auto-generated catch block
e.printStackTrace();

}
}
public static void main(String[] args)
{

}

}

Example 3-6 shows a different Java application, MQIServerHandler.java. It uses the
Message Queue Interface (MQI) of WebSphere MQ to connect to the queue manager. As
with the library-built application described previously, this one also calls out to a second
application, MQIPubSender.java (see Example 3-7 on page 97), to handle any commands that
need to be sent back out to the truck.

Example 3-6 MQIServerHandler.java

package com.ibm.redbooks.mqtt.ch3.server.mqi;

import java.io.IOException;

import com.ibm.mq.MQC;
import com.ibm.mq.MQEnvironment;
import com.ibm.mq.MQException;
import com.ibm.mq.MQGetMessageOptions;
import com.ibm.mq.MQMessage;
import com.ibm.mq.MQQueue;
import com.ibm.mq.MQQueueManager;
import com.ibm.mq.constants.MQConstants;
import com.ibm.mq.headers.MQDataException;
import com.ibm.mq.headers.MQHeader;
import com.ibm.mq.headers.MQHeaderIterator;
94 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

public class MQIServerHandler implements Runnable {
private static final String MQ_MANAGER = "mqtt_qm";
private static final String MQ_HOST_NAME = "localhost";
private static final String MQ_CHANNEL = "TEST";
private static final String MQ_QUEUE_NAME = "TemperatureQueue";
private static final int MQ_PROT = 1414;
private static final String fix_test_topic = "Truck_00001_Command";
String mesage1 = "Warning! The temperature is above 20'C! Please cooling! ";
String mesage2 = "Warning! The temperature is below 20'C! Please heating up!";
String mesage3 = "Info ! The temperature is 20'C!";

String mesage4 = "Alarm! The temperature is above 30'C! Find the closest division to transfer
the goods!";

String mesage5 = "Alarm! The temperature is below 10'C! Find the closest division to transfer
the goods!";

public void run() {
MQQueueManager mqQueueManager = null;
MQQueue mqQueue = null;
try {

MQEnvironment.addConnectionPoolToken();
MQEnvironment.hostname = MQ_HOST_NAME;
MQEnvironment.channel = MQ_CHANNEL;
MQEnvironment.port = MQ_PROT;
// MQEnvironment.userID = "GUEST";
MQEnvironment.properties.put(MQC.TRANSPORT_PROPERTY,

MQC.TRANSPORT_MQSERIES);
// MQEnvironment.CCSID = MQ_CCSID;
mqQueueManager = new MQQueueManager(MQ_MANAGER);
int receiveOptions = MQC.MQOO_INPUT_SHARED

| MQC.MQOO_FAIL_IF_QUIESCING;

int openOptions = MQConstants.MQOO_INPUT_AS_Q_DEF
| MQConstants.MQOO_OUTPUT;

mqQueue = mqQueueManager.accessQueue(MQ_QUEUE_NAME, openOptions);
MQGetMessageOptions mqGetMessageOptions = new MQGetMessageOptions();
mqGetMessageOptions.options = mqGetMessageOptions.options

+ MQC.MQGMO_SYNCPOINT + MQC.MQGMO_WAIT
+ MQC.MQGMO_FAIL_IF_QUIESCING;

mqGetMessageOptions.waitInterval = MQC.MQWI_UNLIMITED; //
mqGetMessageOptions.waitInterval

// = 1000 * 10;
while (true) {

MQMessage mqMessage = new MQMessage();
mqQueue.get(mqMessage, mqGetMessageOptions);
// String topic = mqMessage.getStringProperty("mqps.Top");//
// Could be used to analyze the client id, and rebuild the topic
// string
String msg = getMQMessage(mqMessage);
int temperature = Integer.valueOf(getTemperature(msg))

.intValue();
MQIPubSender sender = new MQIPubSender(mqQueueManager,

fix_test_topic);
if (temperature > 30) {
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 95

sender.send(this.mesage4);
} else if (temperature > 20) {

sender.send(this.mesage1);
} else if (temperature < 10) {

sender.send(this.mesage5);
} else if (temperature < 20) {

sender.send(this.mesage2);
}
if (temperature == 20) {

//sender.send(this.mesage3);
}
mqQueueManager.commit();

}
} catch (MQException e) {

e.printStackTrace();
} catch (Exception e1) {

e1.printStackTrace();
} finally {

if (mqQueue != null) {
try {

mqQueue.close();
} catch (MQException e) {

e.printStackTrace();
}

}
if (mqQueueManager != null) {

try {
mqQueueManager.close();

} catch (MQException e) {
e.printStackTrace();

}
}

}
}

private String getMQMessage(MQMessage mqMsg) throws MQDataException,
IOException {

System.out.println("Retrieved message header:\n");
MQHeaderIterator headerIterator = new MQHeaderIterator(mqMsg);
while (headerIterator.hasNext()) {

MQHeader header = headerIterator.nextHeader();
System.out.println("Header " + header.type() + " : " + header);

}
String msgText = mqMsg.readLine();
System.out.println("Retrieved message body: \n" + msgText);
return msgText;

}

public String getTruckNo(String topic) {
if (topic == null)

return "00001";
String[] tps = topic.split("/");
if (tps.length > 1) {

return tps[1];
96 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

}
{

return "";
}

}

public String getTemperature(String message) {
if (message == null)

return "15";
String[] tps = message.split(",");
if (tps.length > 2) {

String temp = tps[3].substring(0, tps[3].length() - 1);
return temp;

}
{

return "0";
}

}

public static void main(String arg[])

{
MQIServerHandler client = new MQIServerHandler();
Thread mqClientThread = new Thread(client);
mqClientThread.start();

}
}

To handle any commands that need to be sent back out to the truck, MQIServerHandler.java
calls out to a second application, MQIPubSender.java (Example 3-7).

Example 3-7 MQIPubSender.java

package com.ibm.redbooks.mqtt.ch3.server.mqi;
import java.io.IOException;

import com.ibm.mq.MQException;
import com.ibm.mq.MQMessage;
import com.ibm.mq.MQQueueManager;
import com.ibm.mq.constants.CMQC;

public class MQIPubSender {

 private String topicObject;
 MQQueueManager queueManager;

 MQIPubSender(MQQueueManager queueManager, String topicString) {
 topicObject = System.getProperty("com.ibm.mq.pubSubSample.topicObject", topicString);
 this.queueManager = queueManager;
 return;
 }

 public static void main(String[] arg) {
 return;
 }
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 97

 public void send(String msg) throws MQException, IOException {
 int destinationType = CMQC.MQOT_TOPIC;
 /* Do the publish */
 MQMessage messageForPut = new MQMessage();
 System.out.println("***Publishing ***");
 messageForPut.writeString(msg);
 queueManager.put(destinationType, topicObject, messageForPut);
 return;
 }

}

3.3 WebSphere MQ classes for Java Message Service

WebSphere MQ classes for Java Message Service (JMS) is a JMS provider that is supplied
with WebSphere MQ. This section focuses on understanding the interoperability between
MQTT and JMS clients, including how a message sent from an MQTT client can be
consumed by a JMS client and vice-versa.

First, it is important to understand the differences between the MQTT protocol and the JMS
Application Programming Interface (API):

� JMS is a Java API, whereas MQTT is a wire-level protocol.

� JMS is an API that is used by application developers to write programs, whereas MQTT is
a protocol used by the client and server to communicate.

� The JMS API is implemented by a JMS provider such as WebSphere MQ, which can use
a proprietary protocol internally to communicate with the messaging server. The MQTT
protocol enables an MQTT-enabled client to communicate with an MQTT-enabled server.

Although JMS and MQTT are fundamentally different, they must be able to work together,
such as when messages from an MQTT client need to be received by a JMS client or the
other way around.

For example, a temperature sensor might use MQTT to send its readings to the WebSphere
MQ server, but the temperature monitoring application that ultimately receives and interprets
those readings might use the JMS API. In such a scenario, the WebSphere MQ queue
manager would convert the MQTT messages to a type that can be parsed by the JMS client
program. The messages from the MQTT client to the WebSphere MQ queue manager would
use an RFH header internally to identify certain properties of the MQTT message. The JMS
client would then request the message, which would be sent with the RFH header. The JMS
client would then parse the properties and convert the message to a JMSBytesMessage.

For more details about JMS, refer to these websites:

� Java Message Service Tutorial:

http://docs.oracle.com/javaee/1.3/jms/tutorial/

� J2EE pathfinder: Enterprise messaging with JMS:

http://www.ibm.com/developerworks/java/library/j-pj2ee5/
98 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://docs.oracle.com/javaee/1.3/jms/tutorial/
http://www.ibm.com/developerworks/java/library/j-pj2ee5/

3.3.1 Sample applications

Many implementations of the JMS API are available. The sample applications presented here
use the one provided with WebSphere MQ.

The first sample here is a publish/subscribe application using an MQTT-based client as the
publisher and a JMS client using WebSphere MQ Classes for JMS as the subscriber. A
different sample application using JMS as the publisher and a WebSphere MQ Telemetry
client as the subscriber is provided later in this section.

MQTT publisher to JMS subscriber
To build the MQTT-to-JMS application, you will need the following items set up:

� A WebSphere MQ Telemetry listener running at port 1883
� The Eclipse development environment to develop applications

MQTT publisher
For the publisher, follow the instructions provided in 2.5.3, “Publisher and subscriber in Java”
on page 37 to import the sample MQTT publisher into your workspace.

JMS subscriber
Follow these steps to build an asynchronous subscriber application that uses WebSphere MQ
Classes for JMS:

1. In Eclipse, create a new Java project, such as JMSSubscriber.

2. In the src folder, create the class JMSSubscriber with the package name test.

3. Add the jars <MQINSTALLPATH>\java\lib\com.ibm.mqjms.jar and
<MQINSTALLPATH>\java\lib\jms.jar to the build path.

4. Copy the code from Example 3-8 into JMSSubscriber.java. The sample code was
developed for a WebSphere MQ V7.0.1.7 client and Java V6.

Example 3-8 JMSSubscriber.java

package test;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.MessageConsumer;
import javax.jms.MessageListener;
import javax.jms.Session;

import com.ibm.mq.jms.MQConnectionFactory;

public class JMSSubscriber implements MessageListener {

 private Connection conn;
 private Session sess;
 private MessageConsumer consumer;

 public static void main(String\[\] args) {
 JMSSubscriber jmssub = new JMSSubscriber();
 jmssub.createSubscriber();
 try {
 Thread.sleep(1000*60*20); // Run for 20 minutes
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 99

 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 jmssub.closeSubscriber();
 }

 private void closeSubscriber() {
 try {
 conn.stop();
 consumer.close();
 sess.close();
 conn.close();
 System.out.println("JMS Subscriber closed");
 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() \!= null) {
 e.getLinkedException().printStackTrace();
 }
 }

 }

 private void createSubscriber() {
 MQConnectionFactory connFact = new MQConnectionFactory();
 try {
 //We are connecting to queue manager using client mode
 connFact.setQueueManager("MQQM");
 connFact.setHostName("127.0.0.1");
 connFact.setPort(1414);

 conn = connFact.createConnection();
 sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 consumer = sess.createConsumer(sess.createTopic("routes/Truck01"));
 consumer.setMessageListener(this);
 System.out.println("JMS Subscriber started and subscribed to topic
routes/Truck01");
 //Now we are ready to start receiving the messages. Hence start the
connection
 conn.start();
 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() \!= null) {
 e.getLinkedException().printStackTrace();
 }
 }

 }

 @Override
 public void onMessage(Message message) {
 System.out.println(message);

 }
}

100 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

JMS subscriber output
Run the JMSSubscriber program, and then start the MQTT publisher program. Be sure that
the WebSphere MQ queue manager is configured for telemetry, as described in 3.1.4,
“Configuring a queue manager for WebSphere MQ Telemetry” on page 65.

The output message is shown in Example 3-9.

Example 3-9 JMSSubscriber output

JMSMessage class: jms_bytes
 JMSType: null
 JMSDeliveryMode: 1
 JMSExpiration: 0
 JMSPriority: 0
 JMSMessageID: ID:414d51204d51514d20202020202020207e98614f20002601
 JMSTimestamp: 1331796336760
 JMSCorrelationID: ID:414d51204d51514d20202020202020207e98614f20002504
 JMSDestination: topic://routes/Truck01
 JMSReplyTo: null
 JMSRedelivered: false
 JMSXAppID: MQQM
 JMSXDeliveryCount: 1
 JMSXUserID: neekrish
 JMS_IBM_Encoding: 0
 JMS_IBM_Format:
 JMS_IBM_MsgType: 8
 JMS_IBM_PutApplType: 26
 JMS_IBM_PutDate: 20120315
 JMS_IBM_PutTime: 07253676
48656c6c6f20776f726c64

The message received by the client will be a JMSBytesMessage. Example 3-10 shows the
code that is required to read the JMSBytesMessage and display it as a string. This code
might be useful in cases when the message sent is a text message and needs to be used for
further processing as a string rather than bytes.

Example 3-10 Displaying the JMSBytesMessage as a string

public void onMessage(Message message) {
 System.out.println(message);
 BytesMessage bytesMessage = (BytesMessage)message;
 try {
 long bodyLength = bytesMessage.getBodyLength();
 if (bodyLength > Integer.MAX_VALUE) {
 // array is too large
 return;
 }
 byte[] msgBytes = new byte[(int)bodyLength];
 String messageData = new String();

 while(bytesMessage.readBytes(msgBytes) != -1) {
 String tmpStr = new String(msgBytes);
 messageData += tmpStr;
 }

 System.out.println("The message received is " + messageData);
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 101

 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() != null) {
 e.getLinkedException().printStackTrace();
 }
 }
}

The code in Example 3-10 shows that the length of the message body is determined using
the BytesMessage.getBodyLength() method, after which space is allocated for the message
in the byte array. Then the BytesMessage.readBytes() method is used to read the bytes. The
string constructor is then used to convert the message from a byte array to a string.

JMS publisher to WebSphere MQ Telemetry subscriber
Another message path is from a JMS client publisher to a WebSphere MQ Telemetry
subscriber.

WebSphere MQ Telemetry subscriber
See 2.5.3, “Publisher and subscriber in Java” on page 37 for a WebSphere MQ Telemetry
subscriber program.

JMS publisher
Then create a JMS publisher program as shown in Example 3-11.

Example 3-11 JMSPublisher.java

package test;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Session;

import com.ibm.mq.jms.MQConnectionFactory;

public class JMSPublisher {
 private Connection conn;
 private Session sess;
 private MessageProducer publisher;

 public static void main(String\[\] args) {
 JMSPublisher jmspub = new JMSPublisher();
 jmspub.createPublisher();
 jmspub.closePublisher();
 }

 private void closePublisher() {
 try {
 publisher.close();
 sess.close();
 conn.close();
 System.out.println("JMS Publisher closed");
 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() \!= null) {
102 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

 e.getLinkedException().printStackTrace();
 }
 }

 }

 private void createPublisher() {
 MQConnectionFactory connFact = new MQConnectionFactory();
 try {
 //We are connecting to queue manager using client mode
 connFact.setQueueManager("MQQM");
 connFact.setHostName("127.0.0.1");
 connFact.setPort(1414);

 conn = connFact.createConnection();
 sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 publisher = sess.createProducer(sess.createTopic("routes/Truck01"));
 publisher.send(sess.createTextMessage("Hello World"));
 System.out.println("JMS Publisher started and published message to
topic routes/Truck01");

 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() \!= null) {
 e.getLinkedException().printStackTrace();
 }
 }

 }
}

Certain fields of the JMS message can be set by the MQTT client. The JMS delivery mode
field is used by JMS clients to mark a message as persistent or nonpersistent. A persistent
message will not be lost on transit to the destination. So messages with an MQTT QoS level
of 0 are equivalent to JMS nonpersistent messages, whereas MQTT QoS 1 and 2 messages
are equivalent to JMS persistent messages.

Point-to-point JMS applications and MQTT
MQTT is a publish/subscribe-based protocol. But there might be situations where a JMS
client is designed to be a point-to-point application, such as when it intends to send a
message to only one client.

Example 3-12 is a program that will send a message to the same MQTT subscriber built
earlier in this section.

Example 3-12 JMSSender.java

package test;

import javax.jms.Connection;
import javax.jms.JMSException;
import javax.jms.MessageProducer;
import javax.jms.Session;

import com.ibm.mq.jms.MQConnectionFactory;
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 103

public class JMSSender {
 private Connection conn;
 private Session sess;
 private MessageProducer sender;

 public static void main(String[] args) {
 JMSSender jmsSender = new JMSSender();
 jmsSender.createSender();
 jmsSender.closeSender();
 }

 private void closeSender() {
 try {
 sender.close();
 sess.close();
 conn.close();
 System.out.println("JMS Sender closed");
 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() != null) {
 e.getLinkedException().printStackTrace();
 }
 }

 }

 private void createSender() {
 MQConnectionFactory connFact = new MQConnectionFactory();
 try {
 //We are connecting to queue manager using client mode
 connFact.setQueueManager("MQQM");
 connFact.setHostName("127.0.0.1");
 connFact.setPort(1414);

 conn = connFact.createConnection();
 sess = conn.createSession(false, Session.AUTO_ACKNOWLEDGE);
 sender =
sess.createProducer(sess.createQueue("queue://Truck01/routes/Truck01"));
 sender.send(sess.createTextMessage("Hello World"));
 System.out.println("JMS Sender started and published message to topic
routes/Truck01");

 } catch (JMSException e) {
 e.printStackTrace();
 if(e.getLinkedException() != null) {
 e.getLinkedException().printStackTrace();
 }
 }

 }
}

104 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

3.3.2 Troubleshooting

If the exception shown in Example 3-13 is thrown by the JMS client, ensure that the queue
manager is started and the listener is running.

Example 3-13 Example of exception thrown by JMS client

com.ibm.msg.client.jms.DetailedIllegalStateException: JMSWMQ0018: Failed to
connect to queue manager 'MQQM' with connection mode 'Bindings' and host name
'127.0.0.1(1414)'. Check the queue manager is started and if running in client
mode, check there is a listener running. Please see the linked exception for more
information. com.ibm.mq.MQException: JMSCMQ0001: WebSphere MQ call failed with
compcode '2' ('MQCC_FAILED') reason '2059' ('MQRC_Q_MGR_NOT_AVAILABLE').

If the following shown in Example 3-14 is returned by the MQTT client, ensure that the queue
manager is running and the MQTT listener is created and running on the queue manager.

Example 3-14 Example of exception thrown by MQTT client

Unable to connect to server (32103)
at
com.ibm.micro.client.mqttv3.internal.ExceptionHelper.createMqttException(Exception
Helper.java:33)
at
com.ibm.micro.client.mqttv3.internal.TCPNetworkModule.start(TCPNetworkModule.java:
64)
at com.ibm.micro.client.mqttv3.internal.ClientComms.connect(ClientComms.java:140)
at com.ibm.micro.client.mqttv3.MqttClient.connect(MqttClient.java:344)
at com.ibm.micro.client.mqttv3.MqttClient.connect(MqttClient.java:313)
at test.MQTTPubTest.main(MQTTPubTest.java:14)

3.4 WebSphere MQ Telemetry daemon for devices

The WebSphere MQ Telemetry daemon for devices is an advanced MQTT V3 client that can
act as a concentrator to connect telemetry channels to a queue manager, shown in
Figure 3-21 on page 106. This connection makes it possible to minimize the number of
concurrent channel connections on a WebSphere MQ queue manager.

The daemon can also be used to store and forward messages from other MQTT clients. It
connects to WebSphere MQ like an MQTT client but can also have other MQTT clients
connected to it. You can even connect it to other telemetry daemons to create a complex
network of remote devices.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 105

Figure 3-21 Typical system architecture with the WebSphere MQ Telemetry daemon for devices

The WebSphere MQ Telemetry daemon for devices has the following primary functions:

� It connects MQTT clients in a publish/subscribe messaging network. For example, the
sensor and actuator of a device can be connected to the daemon as separate MQTT
clients. The sensor publishes its readings while the actuator subscribes to the readings
and modifies its behavior based on their values.

� It manages which subscriptions and messages are published to the queue manager and
to the device. For example, the daemon can forward to the queue manager a subscription
request created by the actuator on a remote client.

� It combines multiple MQTT client data streams onto a single TCP/IP telemetry channel
connection. Rather than each device connecting separately to the telemetry server, the
daemon transmits publications and subscriptions by way of a single TCP/IP connection.
This reduces the number of TCP/IP connections by making just one connection to the
queue manager on behalf of all the clients that need to communicate with it.

� It stores messages from devices and forwards them to the queue manager. This helps to
insulate the messaging system from short-term connection failures or other issues by
making it possible to store messages in a buffer for later delivery. For example, some
devices can publish a message only once, regardless of whether it is ever received. This
makes messaging unreliable if the connection to the queue manager is only available
intermittently, or is subject to sudden disruption. However, by attaching the device to the
daemon using a local connection that is always available, the daemon, when necessary,
can buffer any messages received when the network is down and send them on to the
queue manager when it comes back up.

WebSphere
MQ

MQ Telemetry
Daemon for

Devices

Backend Server

Advanced
Telemetry Client

Basic Telemetry
Client
106 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

3.4.1 Installing and configuring the WebSphere MQ Telemetry daemon for
devices

Installation, configuration, and control of the WebSphere MQ Telemetry daemon for devices is
file-based. The daemon is installed by copying the Software Development Kit (SDK) to the
device where you are going to run the daemon. On Linux (64-bit), the directory path
containing the daemon is /opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linuxia64.

To start the daemon with its default configuration, execute the amqtdd script. The default
configuration file is named amqtdd.cfg and is located in the same directory as the daemon
executable program. Type the following syntax to start the daemon with its default
configuration:

./amqtdd

Operation of the daemon can be modified with entries in its configuration file. The
configuration file can specify listener ports, topics, retained persistence and other
parameters. For details, refer to the WebSphere MQ Information Center telemetry reference
section at this location:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60912_.
htm

To start the daemon with a different configuration file, pass the new path and file name as a
single parameter, using the configuration file name testdaemon.cfg. To execute this process
type the following syntax:

./amqtdd testdaemon.cfg

When started in this manner, the daemon checks for the existence of the designated
configuration file. If the file does not exist, the daemon runs with its default settings.

You can also change some of the configuration options while the daemon is running. To
control a running daemon, create entries in a new temporary daemon command file named
amqtdd.upd. The daemon reads this file every five seconds, runs the commands, and then
deletes the file.

3.4.2 WebSphere MQ Telemetry daemon for devices bridges

The WebSphere MQ Telemetry daemon for devices supports one or more simultaneous
connections to other brokers through the use of bridges, illustrated in Figure 3-22 on
page 108. These bridges are defined by setting bridge parameters within the daemon
configuration file.

A bridge connects two publish/subscribe brokers that are using the MQTT protocol. It
propagates publications from one broker to the other, in either direction, by designating in,
out, or both in the configuration file.

Typically, the local broker is the WebSphere MQ Telemetry daemon for devices. The remote
broker can be any publish/subscribe broker that supports the MQTT V3 protocol, such as

Important: The daemon can buffer the messages that flow to and from the queue
manager in its memory. However, it does not have persistent storage for in-flight
messages interrupted during transmission.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 107

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60912_.htm

another instance of the daemon or WebSphere MQ. MQTT V3 support is required because
the daemon itself is an MQTT V3 client.

Figure 3-22 Example of using a bridge to connect the daemon to WebSphere MQ

Multiple bridges can be configured to connect a network of daemons that can exchange
messages, as shown in 3.4.3, “Sample implementations of WebSphere MQ Telemetry
daemon for devices” on page 109. Each bridge can route messages to topics at its local
daemon, to topics at another daemon, to a WebSphere MQ publish/subscribe broker, or to
any other MQTT V3 broker to which it is connected.

Advantages of using bridges
The following list is composed of several reasons a developer might choose to bridge
daemons to WebSphere MQ:

� Fewer MQTT client connections to the WebSphere MQ queue manager. Using a hierarchy
of daemons, you can effectively connect more clients to WebSphere MQ than can be
connected using a single queue manager because the clients come together at the
daemon and are then connected to the queue manager by way of a single channel.

� Messages can be stored and forwarded between MQTT clients and WebSphere MQ. This
can help avoid the need to maintain continuous network connections for devices that do
not have their own storage.

� It enables filtering of publications exchanged between MQTT clients and WebSphere MQ.
A common example of filtering at the daemon level is to divide publications into messages
that are processed locally (such as control flows between sensors and actuators) and
messages that involve other applications (such as requests for readings, status, and
configuration commands).

� Topic spacing can be modified to avoid situations where strings from clients attached to
different listener ports collide with each other. An example is using the daemon to label the
readings coming from different trucks. For more details about using the topic parameter to

Pub/Sub
Broker

MQTT v3 clients

Pub/Sub
Broker

WebSphere MQ daemon for devices

Bridge connection
entries specified

in config file

MQTT v3
protocol

Connect via
telemetry
channels

WebSphere MQ
Applications

WebSphere MQ
Connect via listener
108 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

configure the bridge, refer to the bridges section of the WebSphere MQ Information Center
at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt6091
6_.htm

Security for daemons and bridges
For this publication, sample bridge daemons were run with a unique ID, mqttuser00. For the
client to have the necessary authorizations to publish data to the queue manager, this ID had
to be defined on the Linux server where the queue manager existed. So the mqttuser00 ID
was added to the mqtt user group and granted publishing authority using the setmqaut
command. This is shown in the following syntax and explained in greater detail in 3.1.5,
“Authorizing MQTT clients to access WebSphere MQ” on page 72.

setmqaut -m MQTTQMGR -t topic -n SYSTEM.BASE.TOPIC -g mqtt -all +pub +sub

Additionally, bridge connection security can be controlled by setting a username and
password for each bridge connection. This is done by entering a username and password as
bridge connection parameters in the daemon configuration file, or by creating a password file
as a global parameter.

For more information about this security for daemons and bridges, refer to the product
information center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60524_.
htm

3.4.3 Sample implementations of WebSphere MQ Telemetry daemon for
devices

In this section we provide sample implementations of the WebSphere MQ Telemetry daemon
for devices. First, multiple daemons are connected to each other using a bridge. Then, a
daemon is connected to a WebSphere MQ queue manager, also using a bridge. The bridge
feature can also be used to connect a daemon, which is an MQTT V3 client, to any MQTT
V3-compliant broker.

The sample code shown here extends the transportation logistics scenario used throughout
this book and builds upon the example code provided in earlier chapters.

Assumptions
Transportation Company B divides its fleet into two broad categories, North and South, based
on the general destination of each truck. Within these categories, some trucks travel weekly
but others travel daily, and all trucks must undergo routine maintenance at scheduled
intervals.

Each truck publishes information using the MQTT protocol, so each truck can be considered
an individual MQTT client. And although trucks can publish a wide variety of information,
these examples relate only to transmitting the truck’s current location, presented in terms of a
time stamp and coordinates for longitude and latitude obtained by an on-board GPS device,
and the status of the trip. The status reading is obtained from an on-board unit which the
driver uses to designate the current status of the trip, either B(egin), T(ransit), P(ark), or
E(nd).

Topic strings
The topic string for publication of each message is based on each truck's trip frequency and
direction. Thus, for northbound daily trucks, the topic would be routes/north/daily/Truck01,
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 109

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60916_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60524_.htm

where 01 is the ID assigned to a specific truck. Table 3-2 shows the topic strings that are used
in these examples, with nn representing the two-digit truck ID numbers. For maximum clarity,
the range of IDs for trucks in each category is provided.

Table 3-2 Topic strings

Message frequency and format
The trucks are expected to publish messages once every two minutes to a topic that is
specific for each truck. The messages must be in comma-delimited format, as in
ddmmyyyyhhmmss,latitude,longitude,tripStatus.

Daemon topologies
Three typical daemon topologies, ranging from simple to complex, will be addressed here.
The first topology simply connects clients to daemons. The second connects daemons to
other daemons using bridges. The third uses bridges to connect daemons to WebSphere MQ
queue managers.

Connecting clients to daemons
To handle the publications for all trucks, one daemon is assigned for each of the truck
categories and its associated topic string. Figure 3-23 shows a simple messaging topology
with daemons and MQTT clients (trucks) only.

Figure 3-23 Correlation of daemons with topic strings in a simple messaging topology

The daemon configuration file names, port numbers and corresponding topic strings are
shown in Table 3-3.

Table 3-3 Daemon configuration information for simple messaging topology

Topic String Trucks IDs

routes/north/daily/Trucknn North-bound, daily 01 to 09

routes/north/weekly/Trucknn North-bound, weekly 10 to 19

routes/south/daily/Trucknn South-bound, daily 20 to 29

routes/south/weekly/Trucknn South-bound, weekly 30 to 39

Daemons

MQTT Clients

routes/north/daily/Trucknn

Truck01

Truck04

Truck07

Truck02

Truck05

Truck08

Truck03

Truck06

Truck09

Daemon-0
Port : 1900

routes/north/weekly/Trucknn

Truck11

Truck14

Truck17

Truck12

Truck15

Truck18

Truck13

Truck16

Truck19

Daemon-1
Port : 1901

routes/south/daily/Trucknn

Truck21

Truck24

Truck27

Truck22

Truck25

Truck28

Truck23

Truck26

Truck29

Daemon-2
Port : 1902

routes/south/weekly/Trucknn

Truck31

Truck34

Truck37

Truck32

Truck35

Truck38

Truck33

Truck36

Truck39

Daemon-3
Port : 1903

Topic String Daemon Configuration file Port number

routes/north/daily/Trucknn Daemon-0.cfg 1900

routes/north/weekly/Trucknn Daemon-1.cfg 1901

routes/south/daily/Trucknn Daemon-2.cfg 1902

routes/south/weekly/Trucknn Daemon-3.cfg 1903
110 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

For example, Truck25 would publish its information to the topic routes/south/daily/Truck25 on
the daemon running at port 1902, and so on. Truck25 is forced to publish to the daemon
running on port 1902 using the clientidprefixes global parameter in the configuration file.
Example 3-15 shows the daemon configuration file for connecting to port 1902.

Example 3-15 Daemon configuration file for Daemon-2 on port 1902

Configuration file for Daemon-2
#
Only trucks with client ID from Truck20 to Truck29 will publish to this daemon.
#
Topic : routes/south/daily/Truck2n
#
Global parameters only
#
port 1902
clientid_prefixes Truck2 BridgeDaemon

More information about global parameters in the daemon configuration file is available at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60914_.
htm

Connecting daemons using bridges
You create bridges between daemons so that messages can be transferred not only among
the clients and brokers attached to one daemon, but with clients and brokers attached to
other daemons, too. This expands the potential communications network significantly. In
addition, it has implications for the messaging system being developed by Transportation
Company B.

Figure 3-23 on page 110 shows clients split among daemons for daily northbound trucks,
daily southbound trucks, weekly northbound trucks and weekly southbound trucks. However,
what if the company wanted to process messages from all northbound trucks, regardless of
whether they travel daily or weekly?

The solution is to add a bridge between the daemons, as shown in Figure 3-24 on page 112.
On one end will be Daemon-0 publishing to the topic routes/north/daily/# and Daemon-1
publishing to the topic routes/north/weekly/#. On the other end will be another daemon,
BridgeDaemon-0, which will make publications for both of these topics available to other
clients and brokers that are not directly connected to either Daemon-0 or Daemon-1.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 111

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60914_.htm

Figure 3-24 Correlation of daemons with topic strings in a topology using bridges

The bridge daemon configuration file names, port numbers and corresponding topic strings
are shown in Table 3-4.

Table 3-4 Daemon configuration information for topology using bridges

To start BridgeDaemon-0 on port 2000, including the bridges to Daemon-0 and Daemon-1,
prepare the configuration file as shown in Example 3-16 on page 113.

Here is a breakdown of what the code in Example 3-16 on page 113 accomplishes:

1. First bridge configuration:

a. With the connection name set as NorthDailyTrucks, the BridgeDaemon-0 connects to
Daemon-0 as denoted by the address parameter.

b. The bridge considers BridgeDaemon-0 as local.

c. The bridge considers Daemon-0 running on port number 1900 as remote.

d. The publications of Daemon-0 are considered as inputs to the bridge.

e. For incoming publications, the bridge:

i. Checks if the topic strings of publications match routes/north/daily/#

ii. Delivers the publications to the topic North/daily/#

2. Second bridge configuration:

a. With the connection name set as NorthWeeklyTrucks, BridgeDaemon-0 connects to
Daemon-1 as denoted by the address parameter.

Daemons

MQTT Clients

routes/north/daily/Trucknn

Truck01

Truck04

Truck07

Truck02

Truck05

Truck08

Truck03

Truck06

Truck09

routes/north/weekly/Trucknn

Truck11

Truck14

Truck17

Truck12

Truck15

Truck18

Truck13

Truck16

Truck19

routes/south/daily/Trucknn

Truck21

Truck24

Truck27

Truck22

Truck25

Truck28

Truck23

Truck26

Truck29

routes/south/weekly/Trucknn

Truck31

Truck34

Truck37

Truck32

Truck35

Truck38

Truck33

Truck36

Truck39

Bridges

Daemon-0
Port : 1900

Daemon-1
Port : 1901

Daemon-2
Port : 1902

Daemon-3
Port : 1903

routes/north/daily/# IN IN routes/north/weekly/#

BridgeDaemon-0
Port : 2000Daemons

Bridge-0

North/daily North/weekly

routes/south/daily/# IN IN routes/south/weekly/#

BridgeDaemon-1
Port : 2001

Bridge-1

South/daily South/weekly

Local

Remote

Topic String Daemon Configuration file Port number

North/daily/# Bridge-Daemon-0.cfg 2000

North/weekly/# Bridge-Daemon-0.cfg 2000

South/daily/# Bridge-Daemon-1.cfg 2001

South/weekly/# Bridge-Daemon-1.cfg 2001
112 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

b. The bridge considers BridgeDaemon-0 as local. Note the blue boundary in the figure
marking it as local.

c. The bridge considers Daemon-1 running on port 1901 as remote. Note the red
boundary in the figure marking it as remote.

d. The publications of Daemon-1 are considered as inputs to the bridge.

e. For the incoming publications, the bridge

i. Checks if the topics of publications match routes/north/weekly/#.

ii. Delivers the publications to a topic string North/weekly/#.

Example 3-16 Daemon configuration file for BridgeDaemon-0 on port 2000

Configuration file for BridgeDaemon-0
#
Collect North daily and weekly truck messages into North daily and weekly
topics
#
Topics (From Remote)
routes/north/daily/Truck0n
routes/north/weekly/Truck1n
#
Topics (To Local)
North/daily
North/weekly
#
Global parameters
#
port 2000
#
Bridge parameters
#
connection NorthDailyTrucks
clientid BridgeDaemon01
address 9.42.170.179:1900
topic daily/# in North/ routes/north/
#
Bridge parameters
#
connection NorthWeeklyTrucks
clientid BridgeDaemon02
address 9.42.170.179:1901
topic weekly/# in North/ routes/north/

Connecting daemons to WebSphere MQ queue managers
Figure 3-24 on page 112 showed a bridge between different daemons. But what if the
enterprise applications at company headquarters need to get messages from all of the clients
attached to all of the daemons?

One solution is to connect the daemons to WebSphere MQ queue managers, which can then
act as the publication source for any applications that require data from the MQTT clients on
the trucks, as shown in Figure 3-25 on page 114.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 113

Figure 3-25 Correlation of daemons with topic strings in a topology connecting to WebSphere MQ
queue managers

Table 3-5 on page 115 shows the daily and weekly bridge daemons and their port numbers.

Daemons

MQTT Clients

routes/north/daily/Trucknn

Truck01

Truck04

Truck07

Truck02

Truck05

Truck08

Truck03

Truck06

Truck09

routes/north/weekly/Trucknn

Truck11

Truck14

Truck17

Truck12

Truck15

Truck18

Truck13

Truck16

Truck19

routes/south/daily/Trucknn

Truck21

Truck24

Truck27

Truck22

Truck25

Truck28

Truck23

Truck26

Truck29

routes/south/weekly/Trucknn

Truck31

Truck34

Truck37

Truck32

Truck35

Truck38

Truck33

Truck36

Truck39

Bridges

Daemon-0
Port : 1900

Daemon-1
Port : 1901

Daemon-2
Port : 1902

Daemon-3
Port : 1903

routes/north/daily/# IN IN routes/north/weekly/#

Daemons

Bridge-0

North/daily North/weekly

routes/south/daily/# IN IN routes/south/weekly/#

Bridge-1

South/daily South/weekly

Local

Remote

Bridges

North/daily

Daemons

OUT

Company/Daily

ININ

South/daily

Local

Remote

BridgeDaemon-0
Port : 2000

BridgeDaemon-1
Port : 2001

North/weekly

ININ

South/weekly

OUT

Company/Weekly

WebSphere Queue Manager v7.1

BridgeDaemon-2
Port : 3000

BridgeDaemon-3
Port : 3001

Bridge-2 Bridge-3

Company/Daily Company/Weekly
114 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Table 3-5 Daemon configuration information for connecting to WebSphere MQ queue managers

To start BridgeDaemon-2 on port 3000, including the bridges to BridgeDaemon-0,
BridgeDaemon-1 and the WebSphere MQ queue manager, prepare the configuration file as
shown in Example 3-17.

Here is a breakdown of what the code in Example 3-17 on page 116 accomplishes:

1. First bridge configuration:

a. With the connection name as NorthDaily, the bridge connects to BridgeDaemon-0 as
denoted by the address parameter.

b. The bridge considers BridgeDaemon-2 as local. Note the blue boundary in the figure
marking it as local.

c. The bridge considers BridgeDaemon-0 on port number 2000 as remote. Note the red
boundary in the figure marking it as remote.

d. The publications of BridgeDaemon-0 are considered inputs to the bridge.

e. For incoming publications, the bridge

i. Checks if the topics of publications match North/daily/#.

ii. Delivers the publications to Company/daily/#.

f. With the connection name as SouthDaily, the bridge connects to BridgeDaemon-1 as
denoted by the address parameter.

g. The bridge considers BridgeDaemon-2 as local. Note the blue boundary in the figure
marking it as local.

h. The bridge considers BridgeDaemon-1 on port 2001 as remote. Note the red boundary
in the figure marking it as remote.

2. Second bridge configuration:

a. The publications of BridgeDaemon-1 are considered inputs to the bridge.

b. For incoming publications, the bridge

i. Checks if the topics of publications match South/daily/#.

ii. Delivers the publications to Company/ daily/#.

c. With the connection name as Daily, the bridge connects to the queue manager as
denoted by the address parameter.

3. Third bridge configuration:

a. The bridge considers BridgeDaemon-2 as local.

b. The bridge considers the queue manager on port 1883 as remote.

c. The publications of BridgeDaemon-2 are considered outputs to the bridge.

d. For incoming subscriptions, the bridge

i. Checks if the topics of subscriptions match Company/daily/#.

ii. Delivers the subscriptions to Company/daily/#.

Topic String Daemon Configuration file Port number

Company/daily/# Bridge-Daemon-2.cfg 3000

Company/weekly/#}{color Bridge-Daemon-3.cfg}{color 3001
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 115

Example 3-17 Daemon configuration file for BridgeDaemon-2 on port 3000

Configuration file for BridgeDaemon-2
#
Collect North and South daily messages into Daily topic
#
Topics (From Remote)
North/daily
South/daily
#
Topics (To Local)
Company/daily
#
Global parameters
#
port 3000
#
Bridge parameters
#
connection NorthDaily
clientid BridgeDaemon21
address 9.42.170.179:2000
topic daily/# in Company/ North/
#
Bridge parameters
#
connection SouthDaily
clientid BridgeDaemon22
address 9.42.170.179:2001
topic daily/# in Company/ South/
#
Bridge parameters
#
connection Daily
clientid BridgeDaemon23
address 9.42.170.179:1883
topic Company/daily/# out

Sample implementations
The previous subsection described three possible messaging topologies using daemons and
bridges, and included numerous sample configuration files. The next step is to use the most
complex topology, the one extending all the way to a WebSphere MQ queue manager, to
show how everything works together.

There are three parts to this process:

1. Starting the daemons
2. Publishing and subscribing to test messages
3. Creating the necessary WebSphere MQ objects

Starting the daemons
To start the daemons, run the amqtdd command for each daemon in the chain. The
configuration files for the daemons, for which some examples were provided in the previous
subsection, must be in place before the command to start the daemons is issued.
116 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

For more information about starting the daemons, refer to 3.4.2, “WebSphere MQ Telemetry
daemon for devices bridges” on page 107.

The output of the daemon startup process, including the process IDs of the running daemons,
can be redirected to the /tmp/daemons/daemonname.out file, as shown in Example 3-18.

Example 3-18 The daemonname.out file

mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Daemon-0.cfg >
/tmp/daemons/Daemon-0.out &
[1] 20335
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Daemon-1.cfg >
/tmp/daemons/Daemon-1.out &
[2] 20336
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Daemon-2.cfg >
/tmp/daemons/Daemon-2.out &
[3] 20355
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Daemon-3.cfg >
/tmp/daemons/Daemon-3.out &
[4] 20357
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Bridge-Daemon-0.cfg >
/tmp/daemons/Bridge-Daemon-0.out &
[5] 20359
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Bridge-Daemon-1.cfg >
/tmp/daemons/Bridge-Daemon-1.out &
[6] 20380
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Bridge-Daemon-2.cfg >
/tmp/daemons/Bridge-Daemon-2.out &
[7] 20382
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ./amqtdd Bridge-Daemon-3.cfg >
/tmp/daemons/Bridge-Daemon-3.out &
[8] 20383
mqtt1:/opt/mqm/mqxr/SDK/advanced/DeviceDaemon/linux_ia64 # ps -ef | grep amqtdd
root 20335 2691 0 09:41 pts/0 00:00:00 ./amqtdd Daemon-0.cfg
root 20336 2691 0 09:41 pts/0 00:00:00 ./amqtdd Daemon-1.cfg
root 20355 2691 0 09:41 pts/0 00:00:00 ./amqtdd Daemon-2.cfg
root 20357 2691 0 09:41 pts/0 00:00:00 ./amqtdd Daemon-3.cfg
root 20359 2691 0 09:41 pts/0 00:00:00 ./amqtdd Bridge-Daemon-0.cfg
root 20380 2691 0 09:41 pts/0 00:00:00 ./amqtdd Bridge-Daemon-1.cfg
root 20382 2691 0 09:41 pts/0 00:00:00 ./amqtdd Bridge-Daemon-2.cfg
root 20383 2691 0 09:42 pts/0 00:00:00 ./amqtdd Bridge-Daemon-3.cfg
root 20390 2691 0 09:42 pts/0 00:00:00 grep amqtdd

Example 3-19 shows the Daemon-0.out file with the details of the running daemon. The final
line shows that a client with the ID BridgeDaemon01 is trying to connect to the daemon.

Example 3-19 Output of the running daemon Daemon-0

mqtt1:/tmp/daemons # more Daemon-0.out
20120322 094106.431 CWNAN9999I MQ Telemetry Daemon for Devices
20120322 094106.431 CWNAN9997I Licensed Materials - Property of IBM
20120322 094106.431 CWNAN9996I Copyright IBM Corp. 2007, 2011 All Rights Reserved
20120322 094106.431 CWNAN9995I US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
20120322 094106.431 CWNAN0049I Configuration file name is Daemon-0.cfg
20120322 094106.432 CWNAN0053I Version 1.2.0.5, Oct 10 2011 22:48:55
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 117

20120322 094106.432 CWNAN0054I Features included: bridge MQTTMP
20120322 094106.432 CWNAN0014I MQTT protocol starting, listening on port 1900
20120322 094145.893 CWNAN0033I Connection attempt to listener 1900 received from client
BridgeDaemon01 on address 9.42.170.179:45070

Example 3-20 shows the configuration file for BridgeDaemon-0 on port 2000. It shows that
the clientID is set to BridgeDaemon02.

Example 3-20 Configuration file for BridgeDaemon-0 on port 2000

Configuration file for BridgeDaemon-0
#
Collect North daily and weekly truck messages into North daily and weekly topics
#
Topics (From Remote)
routes/north/daily/Truck0n
routes/north/weekly/Truck1n
#
Topics (To Local)
North/daily
North/weekly
#
Global parameters
#
port 2000
#
Bridge parameters
#
connection NorthDailyTrucks
clientid BridgeDaemon01
address 9.42.170.179:1900
topic daily/# in North/ routes/north/
#
Bridge parameters
#
connection NorthWeeklyTrucks
clientid BridgeDaemon02
address 9.42.170.179:1901
topic weekly/# in North/ routes/north

Example 3-21 shows the output of the running daemon Daemon-1. The final line shows that a
client with the ID BridgeDaemon02 is trying to connect to the daemon.

Example 3-21 Output of the running daemon Daemon-1

mqtt1:/tmp/daemons # more Daemon-1.out
20120322 094111.397 CWNAN9999I MQ Telemetry Daemon for Devices
20120322 094111.397 CWNAN9997I Licensed Materials - Property of IBM
20120322 094111.397 CWNAN9996I Copyright IBM Corp. 2007, 2011 All Rights Reserved
20120322 094111.397 CWNAN9995I US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
20120322 094111.397 CWNAN0049I Configuration file name is Daemon-1.cfg
20120322 094111.397 CWNAN0053I Version 1.2.0.5, Oct 10 2011 22:48:55
20120322 094111.397 CWNAN0054I Features included: bridge MQTTMP
20120322 094111.397 CWNAN0014I MQTT protocol starting, listening on port 1901
118 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

20120322 094145.893 CWNAN0033I Connection attempt to listener 1901 received from client
BridgeDaemon02 on address 9.42.170.179:59802

Example 3-22 shows the output of the running daemon that is connected to the WebSphere
MQ queue manager. When the bridge tries to establish a connection, it checks whether the
connection at the other end is also a WebSphere MQ Telemetry daemon for devices. If not,
the socket error appears. This error does not cause a problem, but it does add the extra line in
the log. This extra line can be avoided by using the tryprivate false parameter in the bridge
configuration. A list of bridge configuration parameters is available at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60918_.
htm

Example 3-22 Output of the running daemon connected to the WebSphere MQ queue manager

mqtt1:/tmp/daemons # more Bridge-Daemon-2.out
20120322 094154.901 CWNAN9999I MQ Telemetry Daemon for Devices
20120322 094154.901 CWNAN9997I Licensed Materials - Property of IBM
20120322 094154.901 CWNAN9996I Copyright IBM Corp. 2007, 2011 All Rights Reserved
20120322 094154.901 CWNAN9995I US Government Users Restricted Rights - Use, duplication or
disclosure restricted by GSA ADP Schedule Contract with IBM Corp.
20120322 094154.901 CWNAN0049I Configuration file name is Bridge-Daemon-2.cfg
20120322 094154.901 CWNAN0053I Version 1.2.0.5, Oct 10 2011 22:48:55
20120322 094154.901 CWNAN0054I Features included: bridge MQTTMP
20120322 094154.902 CWNAN0014I MQTT protocol starting, listening on port 3000
20120322 094155.901 CWNAN0124I Starting bridge connection NorthDaily
20120322 094155.901 CWNAN0124I Starting bridge connection SouthDaily
20120322 094155.901 CWNAN0124I Starting bridge connection Daily
20120322 094156.902 CWNAN0133I Bridge connection NorthDaily to 9.42.170.179:2000 now established
20120322 094156.902 CWNAN0133I Bridge connection SouthDaily to 9.42.170.179:2001 now established
20120322 094156.902 CWNAN0018W Socket error for client identifier BridgeDaemon23, socket 6, peer
address 9.42.170.179:1883; ending connection
20120322 094156.902 CWNAN0099I Trying bridge connection Daily address 9.42.170.179:1883 again,
without private protocol
20120322 094156.961 CWNAN0133I Bridge connection Daily to 9.42.170.179:1883 now established

Publishing and subscribing to test messages
With the network of daemons running, the act of subscribing to topics and publishing
messages to those topics can be tested. The procedures shown here are effectively manual
simulations of the activities that occur automatically in a fully implemented publish/subscribe
messaging system.

Start by publishing a message or messages to which you will later subscribe. To simulate
trucks in all daemon categories, messages are to be published concerning Truck05, Truck12,
Truck29, and Truck38.

Important: When connecting to a WebSphere MQ queue manager, the client ID must
conform to WebSphere MQ naming rules. The information center has more details
available at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=/com.ibm.mq
.doc/fa10390_.htm
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 119

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt60918_.htm
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/index.jsp?topic=/com.ibm.mq.doc/fa10390_.htm

To publish a message, you can use any of the following methods:

� Mosquitto (mosquitto_pub command)

mosquittopub -h ipAddressDaeomon0 -p 1900 -t routes/north/daily/Truck05 -i
Truck05 -l

The command establishes the connection to the daemon, after which it waits for you to
input the text of the message. In this scenario, the message must follow the format
ddmmyyyyhhmmss,latitude,longitude,tripStatus.

The following syntax is an example:

†21032012173800,35.5999,-78.40001,T

� Really Small Message Broker (stdinpub command)

LDLIBRARYPATH=. ./stdinpub routes/north/weekly/Truck12 --host ipAddressDaeomon1
--port 1901 --clientid Truck12

The command establishes the connection to the daemon, after which it waits for you to
input the text of the message.

� WMQTT Utility (GUI interface)

On the WMQTT tab, enter the topic string for publication (in this case routes/south/daily)
and the TCP/IP address value to connect to the daemon on port 1902. On the Options tab,
provide the Client Identifier as Truck29. Note that the Client Identifier prefixes parameter in
the configuration file requires the Client Identifier to begin with Truck2.

Next, set up subscriptions to BridgeDaemon-0, BridgeDaemon-1, BridgeDaemon-2, and
BridgeDaemon-3. These subscriptions must end with a \# so that, regardless of the truck ID,
the messages are received. So, when connecting to BridgeDaemon-1, set up the subscription
to say South/daily/#.

Next, create a subscription to a topic into which all the messages you just published will flow,
in this case South/daily/#.

To create a subscription any of the following methods can be used:

� Mosquito

mosquittosub -h ipAddressBridgeDaeomon0 -p 2000 -t South/daily/# -v

� Really Small Message Broker

LDLIBRARYPATH=. ./stdoutsub South/daily --host ipAddressBridgeDaeomon1 --port
2001

� WMQTT Utility

After the subscription is made, the message arrives.

Subscription results from Bridge-Daemon-0:

mosquittosub -h 9.42.170.179 -p 2000 -t North/daily/# -t North/weekly/# -v
North/daily/Truck05 21032012173800,35.5999,-78.40001,T
North/weekly/Truck12 21032012173800,35.5999,-78.40001,T

Tip: The command line options for testing subscriptions are typically the better ones to
choose because the WMQTT Utility shows only the most recently received message, not a
list of all recent messages.
120 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Subscription results from Bridge-Daemon-1:

mosquittosub -h 9.42.170.179 -p 2001 -t South/daily/# -t South/weekly/# -v
South/daily/Truck29 21032012173800,35.5999,-78.40001,T
South/weekly/Truck38 21032012173800,35.5999,-78.40001,T

Subscription results from Bridge-Daemon-2:

mosquittosub -h 9.42.170.179 -p 3000 -t Company/daily/# -v
Company/daily/Truck05 21032012173800,35.5999,-78.40001,T
Company/daily/Truck29 21032012173800,35.5999,-78.40001,T

Subscription results from Bridge-Daemon-3:

mosquittosub -h 9.42.170.179 -p 3001 -t Company/weekly/# -v
Company/weekly/Truck12 21032012173800,35.5999,-78.40001,T
Company/weekly/Truck38 21032012173800,35.5999,-78.40001,T

Creating the necessary WebSphere MQ objects
For the final two bridges (Bridge-Daemon-2.cfg and Bridge-Daemon-3.cfg) to connect to the
WebSphere MQ queue manager, objects must be created on the queue manager.

Start by defining two subscriptions, SUBS.FLEET.DAILY (see Example 3-23) and
SUBS.FLEET.WEEKLY (see Example 3-24), with corresponding topic strings Company/daily
and Company/weekly. These subscriptions must have the local queue as their destination.

Example 3-23 Subscription definition for daily trucks

DEFINE SUB(SUBS.FLEET.DAILY) TOPICSTR(Company/daily/#) +
 DEST(QLOCAL.FLEET.DAILY) +
 DESTQMGR(MQTT_QMGR) +
 PUBACCT(013006) +
 DESTCORL(414D51204D5154545F514D4752202020D8675E4F0E0B1220) +
 DESTCLAS(PROVIDED) EXPIRY(UNLIMITED) PSPROP(MSGPROP) +
 PUBPRTY(ASPUB) REQONLY(NO) SUBSCOPE(ALL) SUBLEVEL(1) +
 VARUSER(ANY) WSCHEMA(TOPIC) SUBUSER('root')

Example 3-24 Subscription information for weekly trucks

DEFINE SUB(SUBS.FLEET.WEEKLY) TOPICSTR(Company/weekly/#) +
 DEST(QLOCAL.FLEET.WEEKLY) +
 DESTQMGR(MQTT_QMGR) +
 PUBACCT(013006) +
 DESTCORL(414D51204D5154545F514D4752202020D8675E4F7A0B1220) +
 DESTCLAS(PROVIDED) EXPIRY(UNLIMITED) PSPROP(MSGPROP) +
 PUBPRTY(ASPUB) REQONLY(NO) SUBSCOPE(ALL) SUBLEVEL(1) +
 VARUSER(ANY) WSCHEMA(TOPIC) SUBUSER('root')

Next, define two local queues, QLOCAL.FLEET.DAILY and QLOCAL.FLEET.WEEKLY. These
queues are set as destinations for the subscriptions created in the previous two examples.

The local queues are populated as shown by their queue depths in the MQ Explorer view of
the queues, illustrated in Figure 3-26 on page 122.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 121

Figure 3-26 Queue depth of the local queues receiving the publications

The data of one of the queues is shown in the MQ Explorer view of the queues, and depicted
in Figure 3-27.

Figure 3-27 Message in the local queue

3.5 Troubleshooting WebSphere MQ Telemetry

In this section we provide guidance on locating WebSphere MQ Telemetry logs and error
files, and tracing.
122 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

3.5.1 Location of logs and error files

The WebSphere MQ Telemetry service writes informational and error messages to the
WebSphere MQ queue manager error log, and creates IBM FFST error files (ending in. FDC)
in the WebSphere MQ error directory.

The logs and FDC error files are located in different areas based on the operating system.
The following information provides the location of the files based on a specific system:

� On a Windows operating system

– WMQ data directory\Qmgrs\qMgrName\errors\AMQERR01.LOG
– WMQ data directory\errors\AMQnnn.n.FDC

� On Linux:

– /var/mqm/qmgrs/QMGRNAME/errors/AMQERR01.LOG
– /var/mqm/qmgrs/QMGRNAME/errors/AMQnnn.n.FDC

Figure 3-28 shows a typical WebSphere MQ Telemetry error log entry.

Figure 3-28 WebSphere MQ Telemetry error log

The WebSphere MQ telemetry service also writes to a log that displays the properties that
were invoked when the telemetry service was started, plus any errors it might have found
while acting as a proxy for WebSphere MQ. The following list represents the log paths based
on the operating system:

� On a Windows operating system: WMQ data directory\Qmgrs\qMgrName\errors\mqxr.log
� On Lynx: /var/mqm/qmgrs/QMGRNAME/errors/mqxr.log

Figure 3-29 shows some typical error messages written to the mqxr log file.

Figure 3-29 WebSphere MQ Telemetry mqxr log messages

When WebSphere MQ Explorer is used to create the WebSphere MQ Telemetry sample
configuration, it starts the telemetry service using the runMQXRService command from the
WebSphere MQ Telemetry install directory \bin and writes messages to the following log
files:

� On a Windows operating system:

– WMQ data directory\Qmgrs\qMgrName\mqxr.stdout
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 123

– WMQ data directory\Qmgrs\qMgrName\mqxr.stderr

� On Linux:

– /var/mqm/qmgrs/QMGRNAME/mqxr.stdout
– /var/mqm/qmgrs/QMGRNAME/mqxr.stderr

Figure 3-30 provides examples of error messages written to the mqxr.stderr file when the
telemetry service is started.

Figure 3-30 Errors written to the mqxr.stderr file

3.5.2 Tracing the telemetry service

WebSphere MQ Telemetry traces can be captured in multiple ways. Traces can be useful for
troubleshooting if you are experiencing failures or unexpected results.

To start and stop a full WebSphere MQ trace, including telemetry, use the standard
WebSphere MQ trace commands strmqtrc and endmqtrc. Or you can use the
controlMQXRChannel script to initiate WebSphere MQ telemetry tracing only. Use of this script
is detailed later in this section.

When using the strmqtrc command, there is a brief delay (up to 2-3 seconds) before
telemetry service tracing begins.

To control the amount of detail and size of the trace, you can set trace options in the
mqxrtrace.properties and trace.config files located in the /qmgrs/QMGRNAME/mqxr
subdirectory of the WebSphere MQ directory. Illustrated in Figure 3-31 on page 125 are
examples of the properties users can configure in the mqxrtrace.properties file, which can
apply to traces started either by command or by script.
124 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 3-31 The mqxrtrace.properties file

To start MQ Telemetry tracing without using the standard commands, run the script
controlMQXRChannel.sh to start a SYSTEM.MQXR.SERVICE trace. The generic syntax for
doing this is shown in Figure 3-32.

Figure 3-32 Generic syntax for initiating tracing using controlMQXRChannel.sh

When using controlMQXRChannel.sh, two mandatory tracing parameters must be specified:

� qmgr=qmgrName: Sets qmgrName to the queue manager name.
� mode=starttrace\|stoptrace: Sets starttrace to begin tracing or stoptrace to end tracing.
Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry 125

The following parameter is an optional tracing parameter:

� clientid=ClientIdentifier: Sets ClientIdentifier to the ClientID of a single client. This
reduces the trace to just the single client, so if this parameter is set, the trace command
must be run multiple times to trace multiple clients.

The specific commands that follow are for starting and stopping a trace using
controlMQXRChannel.sh:

/opt/mqm/mqxr/bin/controlMQXRChannel.sh -qmgr=QM1 -mode=starttrace
/opt/mqm/mqxr/bin/controlMQXRChannel.sh -qmgr=QM1 -mode=stoptrace

To view the trace output, go to the following directory:

� On a Windows operating system: \trace (in the WebSphere MQ data directory)
� On Linux: /var/mqm/trace

You will find trace files named using the format mqxr####.trc, where #### is the process ID,
as shown in Figure 3-33.

Figure 3-33 Example of WebSphere MQ Trace files

For more information about troubleshooting WebSphere MQ Telemetry, visit the WebSphere
MQ Information Center at:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt80000_.
htm
126 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r1/topic/com.ibm.mq.doc/tt80000_.htm

Chapter 4. Integrating MQTT

In this chapter we describe the integration of IBM products with applications and devices that
communicate using the MQTT protocol. The examples are based on the transportation
logistics scenario first outlined in 2.2, “Scenario used in this book” on page 24.

This chapter contains the following sections:

� Integrate MQTT with IBM WebSphere Message Broker
� Integrate MQTT with IBM WebSphere Application Server
� Integrate MQTT with IBM WebSphere Operational Decision Management
� Integrate MQTT with IBM Intelligent Operations Center
� Integrate MQTT with IBM Lotus Expeditor integrator

4

© Copyright IBM Corp. 2012. All rights reserved. 127

4.1 Integrate MQTT with IBM WebSphere Message Broker

In this section we address the integration of MQTT-based applications and devices with IBM
WebSphere Message Broker, an enterprise service bus (ESB) that uses IBM WebSphere MQ
as the backbone for message routing.

4.1.1 IBM WebSphere Message Broker versions

The specifics of integration differ based on which version of WebSphere Message Broker is
being used.

WebSphere Message Broker V6.1
WebSphere Message Broker V6.1 was the first version to allow connections with telemetry
devices, which it accomplished using the supervisory control and data acquisition (SCADA)
nodes:

� The SCADAInput node was used to receive MQTT messages from clients. After an MQTT
client published a message, the SCADAInput node initiated the flow in which the message
was transformed and consumed by other clients or applications.

� The SCADAOutput node was used to deliver MQTT messages to clients. It ended the
message flow, and the transformed message was delivered to the consuming clients or
applications.

For more information about designing telemetry applications with WebSphere Message
Broker V6.1, including the use of the SCADA nodes, see:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/topic/com.ibm.etools.mft.d
oc/ac23500_.htm

WebSphere Message Broker V7.0
Beginning with WebSphere Message Broker V7.0, the SCADA nodes are no longer available.
Instead, support for the MQTT protocol is included in WebSphere MQ V7.0 with the
introduction of telemetry channels, in which messages from MQTT clients were either made
available using JMS topic destinations or routed to standard WebSphere MQ message
queues.

Due to this change, starting with WebSphere Message Broker V7.0, communication using
MQTT is accomplished using the MQInput, Publication, JMSInput, and JMSOutput nodes of
WebSphere Message Broker.

For more information about WebSphere Message Broker V7.0, see:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/index.jsp

WebSphere Message Broker V8.0
WebSphere Message Broker V8.0 continues to process MQTT messages using the MQInput,
Publication, JMSInput, and JMSOutput nodes. However, WebSphere MQ V7.1 is not
compatible with WebSphere Message Broker V8.0. Thus, to use WebSphere Message
Broker V8.0, you must have WebSphere MQ V7.0. For more information about WebSphere
Message Broker V8.0, see:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp
128 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/topic/com.ibm.etools.mft.doc/ac23500_.htm
http://publib.boulder.ibm.com/infocenter/wmbhelp/v7r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v8r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r1m0/topic/com.ibm.etools.mft.doc/ac23500_.htm

The following sections include sample applications that show MQTT integration with
WebSphere Message Broker.

4.1.2 Example 1: MQInput node

This is a sample WebSphere Message Broker V8.0 application that communicates with the
MQTT clients (trucks) in the transportation logistics scenario.

The company wants to track the location of its trucks based on human-readable addresses
rather than just the latitude and longitude values reported by the trucks’ MQTT-enabled
devices. So, this sample application subscribes to the raw location information that is
published by each truck, converts those values to human-readable addresses using a reverse
geo-coding API, and then publishes the formatted address information. Personnel or
applications at company headquarters can then subscribe to these messages to obtain the
current location of each truck in the new, easy-to-understand format.

This sample illustrates one method of implementing the solution using the MQInput node of
WebSphere Message Broker to parse and process the incoming publication and using
WebSphere MQ to route the publications to a local queue using a subscription object.

As mentioned previously, starting with WebSphere Message Broker V7.0, support for MQTT
is through WebSphere MQ. So in this sample, all publications sent by the MQTT clients (the
devices on the trucks) are directed to message queues using a WebSphere MQ subscription
object. This subscription object ensures that the message queue receives all messages
pertaining to truck locations by using a wildcard character in the topic string to which it
subscribes. The message in the message queue is parsed in the message flow using an
MQInput. Similarly, when publishing the formatted address from the message flow, this
sample uses a publication node.

This sample solution is ideal for situations where Java Message Service (JMS) is not widely
used. A sample solution using JMS is presented in 4.1.3, “Example 2: JMSInput node” on
page 133.

The sample presented here subscribes to the Company/daily/# topic. It takes the latitude and
longitude values in the message and invokes a reverse geo-coding API. It retrieves the
response (an XML document), parses it for the formatted address, and publishes it to another
topic (truck or position). Another MQTT client then subscribes to this topic to track the vehicle
based on the formatted address.

Reverse geo-coding API
To help design the message flow, first consider how the invocation of the GeoNames API
works outside of WebSphere Message Broker. The following information can be obtained
from the API documentation:

� Invocation API URL

http://api.geonames.org/findNearbyPlaceName

This URL returns a response in XML.

MQInput node: When using the MQInput node, the original topic string as published by
the MQTT client (the device on a truck) is no longer available when the message arrives at
the node, because the subscription object routes the published message only to the local
queue with the topic string discarded. This concept is an important point for this sample,
because the WebSphere MQ subscription object uses a wildcard character in the topic
string to qualify all trucks.
Chapter 4. Integrating MQTT 129

http://api.geonames.org/findNearbyPlaceName

� Query parameters

lat A latitude value in decimal format (not in degrees, minutes, and seconds)
separated by a comma. Positive values indicate northern latitudes and
negative values indicate southern latitudes.

lng A longitude value, also in decimal format, separated by a comma. Eastern
longitudes are given positive values and western longitudes are given
negative ones.

username A user name registered on the GeoNames website.

� Query response

An XML document containing the place name (not necessarily an established city) that is
closest to the provided coordinates, and it is a measurement of the distance between the
named place and the precise coordinates that were provided.

To learn more about the GeoNames API, visit the company website at:

http://www.geonames.org/export/web-services.html

Invoking the API
Example 4-1 is a sample invocation of the API.

Example 4-1 An API invocation

http://api.geonames.org/findNearbyPlaceName?lat=12.966666667&lng=77.566666667&user
name=teamitso

The URL asks the web service to locate the populated area closest to the supplied latitude
and longitude values (the lat and long query parameters, respectively). The eastern
longitudes and northern latitudes are provided as positive real numbers. The western
longitudes and southern longitudes are provided as negative real numbers. The username
parameter is required by the GeoNames website so that only registered users can use the
API.

API response
Example 4-2 is a sample of the API response in XML.

Example 4-2 API response in XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<geonames>
<geoname>
<toponymName>Binny Mills</toponymName>
<name>Binny Mills</name>
<lat>12.96954</lat>
<lng>77.56695</lng>
<geonameId>6692887</geonameId>
<countryCode>IN</countryCode>
<countryName>India</countryName>
<fcl>P</fcl>
<fcode>PPL</fcode>
<distance>0.32049</distance>
</geoname>
</geonames>
130 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.geonames.org/export/web-services.html

The response comes in the form of an XML document that lists a populated location that is
closest to the provided latitude and longitude values. Among the items returned are the name
of the location (in this case, Binny Mills), its latitude and longitude values, its country code, the
name of the country, and the distance (in kilometers) from the named location to the precise
spot indicated by the latitude and longitude values that were submitted originally.

Message flow
The previous section described how to invoke the web service and then parse its response.
The next step is to do the same thing within a WebSphere Message Broker message flow. It
has already been established that publications from the clients (the devices on the trucks) are
routed to local message queues using a WebSphere MQ subscription object. So the following
steps describe how to implement the solution from the point of the MQInput node onward.

The message flow, starting with the MQInput node, works as follows:

1. Parse the incoming comma-delimited message (from the MQTT-enabled device on a
truck) in the MQInput node.

2. Parse the latitude and longitude values in the Compute node.

3. Use the latitude and longitude values to create the HTTP URL with the query parameters
in the Compute node.

4. Invoke the API in the HTTPRequest node

5. Parse the API response, also in the HTTPRequest node.

6. Extract the formatted address from the XML document in another Compute node.

7. Route the formatted address information to an MQTT topic using the Publication node.

Sample application
Publications from the trucks (the MQTT clients) are routed to local message queues for
reverse geocoding, which provide a formatted address instead of the original latitude and
longitude values. The message queues serve as an input to the message flow.

WebSphere MQ
The following steps are required to set up WebSphere MQ objects to run the WebSphere
Message Broker message flow:

1. Define a queue manager as MQTT.QMGR00. This name must match the queue manager
name in the MQInput node of the message flow.

2. Define a local queue as QLOCAL.FLEET.DAILY. This name must match the queue name in
the MQInput node of the message flow.

3. Define a subscription to the Company/daily/# topic pointing to the local queue defined in
step 1.

Local queue definition
Define a local queue where the publications from the MQTT clients (the devices on the trucks)
are routed using the subscription object. Example 4-3 shows the process of defining a local
queue.

Example 4-3 Defining a local queue

DEFINE QL(QLOCAL.FLEET.DAILY) +
DESCR('GPS co-ordinates of trucks') +
DISTL(NO) GET(ENABLED) MAXDEPTH(500) MAXMSGL(100) MONQ(QMGR) +
TRIGMPRI(0) TRIGTYPE(FIRST) USAGE(NORMAL)
Chapter 4. Integrating MQTT 131

Subscription definition
A defined subscription object that routes the publications from the MQTT clients to the local
queue was shown in Example 4-3. Example 4-4 shows the process of defining that
subscription object.

Example 4-4 Defining a subscription object

TOPICSTR('Company/daily/#') +
DEST(QLOCAL.FLEET.DAILY) +
DESTQMGR(MQTT.QMGR00) +

WebSphere Message Broker
The following steps describe the installation of the message flow project:

1. Open the GeoNamesSample.zip file supplied in the additional materials of this book.

2. Import the file into the WebSphere Message Broker Toolkit.

3. Ensure that the queue name in MQInput node is set to QLOCAL.FLEET.DAILY.

4. Build and create a geoNamesSample.bar file. Then, deploy the file to an execution group.

WMQTT Utility setup
The following steps simulate the publisher (the devices on the trucks) and the subscriber
(applications or personnel at company headquarters). WMQTT Utility instances are designed
as the publisher and subscriber.

1. Start an instance of the WMQTT Utility. This instance will be the publisher.

2. Enter the IP address for the queue manager (MQTT.QMGR00).

3. Enter the client ID, such as Truck01.

4. Click Connect. The publisher is now connected to the broker.

5. Enter the topic for publication, such as Company/daily/Truck01. Do not publish yet,
because the subscriber instance is not yet set up.

6. Start another instance of the WMQTT Utility. This instance will be the subscriber.

7. Enter the IP address for the queue manager (MQTT.QMGR00).

8. Enter the client ID as TruckPosition.

9. Click Connect. The subscriber is now connected to the broker.

10.Enter the topic to which you are subscribing, as in truck/position.

11.Click Subscribe. You are now subscribing to the truck/position topic.

Running the sample
To run the application to view the formatted address of the trucks, use the following steps.

1. Enter a message similar to 26032012093000,35.818888889,-78.644722222,B in the
Truck01 instance of the WMQTT utility.

2. Click Publish to send the message.

3. Check the TruckPosition instance of WMQTT Utility. The formatted address is visible at
this point.

Figure 4-1 on page 133 illustrates the outcome of this process.
132 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 4-1 The publisher (a truck) sends its GPS coordinates; the subscriber (at company headquarters) sees the
corresponding formatted address

4.1.3 Example 2: JMSInput node

This example is similar to the previous example, except that it uses the JMSInput node. With
the JMSInput node, the topics of publications are received as JMS topic destinations.

The benefit of this approach is the ability to identify the exact topic string from where the
message originated. The topic string has the Truck ID in it, so using the JMSInput node allows
the company to identify the specific truck that sent a message. This is a clear advantage over
the MQInput node sample, where it was not possible to determine the exact topic string.

In this sample, the subscription is to the topic Company/daily/#. The sample takes the latitude
and longitude values in the message and invokes a reverse geo-coding API to convert them
into a more easily understood street address. The response (an XML document) is retrieved,
parsed for the formatted address and then published to another topic, truck/position, to which
other clients or applications can subscribe. After they have subscribed, they can track the
vehicle based on the formatted address.

Reverse geo-coding API
To help design the message flow, first consider how the invocation of the Geonames API
works outside of WebSphere Message Broker. The following information can be learned from
the API documentation:

� Invocation API at:

http://api.geonames.org/findNearbyPlaceName

This address returns a response in XML.

� Query parameters

lat Latitude value in decimal format (not in degrees, minutes, and seconds)
separated by a comma. Positive values indicate northern latitudes and
negative values indicate southern latitudes.

Publisher instance of WMQTT utility Subscriber instance of WMQTT utility
Chapter 4. Integrating MQTT 133

http://api.geonames.org/findNearbyPlaceName

lng Longitude value, also in decimal format, separated by a comma. Eastern
longitudes are given positive values and western longitudes are given
negative ones.

username A user name registered on the GeoNames website.

� Query response

XML document. The API returns the place name (not necessarily an established city) that
is closest to the provided coordinates, and it is a measurement of how far it is from those
coordinates.

To learn more about the GeoNames API, visit the company website at:

http://www.geonames.org/export/web-services.html

Invoking the API
Example 4-5 is a sample invocation of the API.

Example 4-5 API invocation

http://api.geonames.org/findNearbyPlaceName?lat=12.966666667&lng=77.566666667&user
name=teamitso

This asks the web service to locate the populated area closest to the supplied latitude and
longitude values. These values are provided by the lat and long query parameters,
respectively. The eastern longitudes and northern latitudes are provided as positive real
numbers; the western longitudes and southern longitudes are provided as negative real
numbers. The username parameter is required by the Geonames website so that only
registered users can use the API.

API response
Example 4-6 is a sample of the API response in XML.

Example 4-6 API response in XML

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<geonames>
<geoname>
<toponymName>Binny Mills</toponymName>
<name>Binny Mills</name>
<lat>12.96954</lat>
<lng>77.56695</lng>
<geonameId>6692887</geonameId>
<countryCode>IN</countryCode>
<countryName>India</countryName>
<fcl>P</fcl>
<fcode>PPL</fcode>
<distance>0.32049</distance>
</geoname>
</geonames>

The response comes in the form of an XML document that lists a populated location that is
closest to the provided latitude and longitude values. Among the items returned are the name
of the location (in this case Binny Mills), its latitude and longitude values, its country code, the
name of the country, and the distance (in kilometers) from the named location to the precise
spot indicated by the latitude and longitude values that were submitted originally.
134 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.geonames.org/export/web-services.html

Message flow
The next step is to do the same thing within a WebSphere Message Broker message flow. It
has already been established that publications from the clients (the devices on the trucks) will
be routed to local message queues using a WebSphere MQ subscription object. So the
following steps describe how to implement the solution from the point of the JMSInput node
onward.

The message flow, starting with the JMSInput node, works as follows:

1. Parse the incoming comma-delimited message (from the MQTT client or the truck) in the
JMSInput node.

2. Parse the latitude and longitude values in the Compute node.

3. Use the latitude and longitude values to create the HTTP address with the query
parameters in the Compute node.

4. Invoke the API in the HTTPRequest node.

5. Parse the API response also in the HTTPRequest node.

6. Extract the formatted address from the XML document in another Compute node.

7. Route the formatted address information to an MQTT topic using the JMSOutput node.

Sample application
As discussed earlier, publications from the trucks (the MQTT clients) are routed to local
message queues for reverse geocoding, which will provide a formatted address instead of the
original latitude and longitude values. The message queues serve as an input to the message
flow.

WebSphere MQ JMS objects
The following JMS object definitions are required for the sample:

� A topic connection factory.

� A topic name, DAILY.TRUCKS, with a topic string of Company/daily/#. This topic name will
be provided for subscription in the JMSInput node.

� A topic name, DAILY.TRUCKS.POSITION, with topic string of truck/address. This topic name
will be provided for subscription in JMSOutput node.

WebSphere Message Broker
The following steps describe the installation of the message flow project:

1. Open the GeoNamesJMSSample.zip file in the additional materials supplied with this book.

2. Import the file into the WebSphere Message Broker Toolkit.

3. Ensure that the JMS objects match the JMS input and output nodes.

4. Build and create a geoNamesJMSSample.bar file. Deploy the file to an execution group.

WMQTT Utility setup
The following steps simulate the publisher (the devices on the trucks) and the subscriber
(applications or personnel at company headquarters):

1. Start an instance of the WMQTT Utility. This instance will be the publisher.

2. Enter the IP address for the queue manager (MQTT.QMGR00).

3. Enter a client ID, in this case, Truck13.

4. Click Connect. The publisher is now connected to the broker.
Chapter 4. Integrating MQTT 135

5. Enter a topic for publication, such as Company/daily/Truck13. Do not publish yet, because
the subscriber instance is not yet set up.

6. Start another instance of the WMQTT Utility. This instance will be the subscriber.

7. Enter the IP address for the queue manager (MQTT.QMGR00).

8. Enter a client ID, in this case, TruckPosition.

9. Click Connect. The subscriber is now connected to the broker.

10.Enter the topic to which you are subscribing, as in Truck/address.

11.Click Subscribe. You are now subscribing to the truck/position topic.

Running the sample
To run the application to view the formatted address of the trucks, use the following steps.

1. Enter a message similar to 26032012093000,35.818888889,-78.644722222,B in the
Truck13 instance of WMQTT utility.

2. Click Publish to send the message.

3. Check the TruckPosition instance of WMQTT Utility.

4. The formatted address for Truck13 is visible.

Figure 4-2 shows what the subscriber sees returned from the publisher.

Figure 4-2 The publisher (a truck) sends its GPS coordinates and the subscriber (at company headquarters) sees the
corresponding formatted address

4.2 Integrate MQTT with IBM WebSphere Application Server

In this section we describe how to integrate MQTT-based applications with WebSphere
Application Server. This makes it possible to publish messages to topics in WebSphere MQ
and have them be consumed by applications running in WebSphere Application Server, and
vice versa.

The WebSphere MQ JMS Resource Adapter is used for the interaction between WebSphere
Application Server and WebSphere MQ. This resource adapter allows JMS applications and

Publisher instance of WMQTT utility Subscriber instance of WMQTT utility
136 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

message-driven beans that are running in the application server to access the resources of a
WebSphere MQ queue manager. The resource adapter supports both point-to-point and
publish/subscribe messaging.

The transportation logistics scenario used throughout this book is extended now to
demonstrate the following applications:

� Developing a simple application to store the trucks’ current location data in a database

� Developing a web application for sending information to the trucks about their next
destination

4.2.1 Assumptions

As described previously, the logistics scenario involves the following roles:

� Individual trucks with attached smart devices that monitor each vehicle’s current location
and use MQTT messages to send the data to the enterprise back end at company
headquarters.

� Applications (or people) at company headquarters that receive the information from each
truck, analyze it, and send updates to the truck, such as when a destination needs to be
changed.

Two applications are required:

� The smart device on the truck that uses MQTT to send messages to headquarters
� A browser-based application to send destination changes to the trucks

To implement this combined solution, the following components are needed:

� On the devices on the trucks:

– The Java MQTT client library from the WebSphere MQ Telemetry software
– An MQTT-based messaging application developed using the Java API

� At headquarters:

– A messaging server, in this case WebSphere MQ 7.1 with WebSphere MQ Telemetry

– An application server, in this case WebSphere Application Server V8.0, located on the
same machine as WebSphere MQ

– A message-driven bean (MDB), hosted on the application server, to process the
incoming messages and update a database

– A web application, hosted on the application server, that can be used to fetch the
database records and to send messages

4.2.2 Integration

In this solution, shown in Figure 4-3 on page 138, logistical information from a truck is
collected by an on-board sensor and sent by a smart device as an MQTT message to a
specific topic on the WebSphere MQ Telemetry server at company headquarters. There, an
analytical application residing on WebSphere Application Server subscribes to the topic to
obtain the truck's latest logistical information. After the information is analyzed by the
application, the truck's next destination is determined and the information is published to a

MDB note: An MDB is a consumer of messages from a JMS provider and is invoked
upon arrival of a message at the destination or endpoint that the MDB services.
Chapter 4. Integrating MQTT 137

different topic on the WebSphere MQ Telemetry server. The smart device on the truck, which
is a subscriber to the topic, then receives the message containing the new destination.

Figure 4-3 High-level topology of the sample solution

The WebSphere MQ Telemetry server in this scenario is a telemetry service hosted on a
WebSphere MQ queue manager. WebSphere Application Server connects to the WebSphere
MQ queue manager using the WebSphere MQ JMS resource adapter. A message-driven
bean running in the application server picks up the messages and saves the data as records
in a database. The MDB will be invoked after the message is available on the topic
destination.

To begin the process of integrating with WebSphere Application Server, perform the following
first steps:

� Install WebSphere MQ V7.1 as the messaging server.
� Install WebSphere Application Server V8.0.0.2 (the PM40967 Fix is required).
� Install IBM Rational® Application Developer 8.0.4.

When connecting from WebSphere Application Server to WebSphere MQ, WebSphere MQ
classes for JMS will be used. WebSphere MQ classes for JMS is the JMS provider that is
supplied with WebSphere MQ. The WebSphere MQ resource adapter containing
implementation of WebSphere MQ classes for JMS, which adheres to J2EE connector
architecture, is packaged with WebSphere Application Server as a resource adapter.

There are two ways a WebSphere MQ client can connect to WebSphere Application Server.
In the client mode, WebSphere MQ classes for JMS connects to the queue manager using
TCP/IP. In the bindings mode, it uses the Java Native Interface (JNI) to call directly into the
queue manager API rather than communicating through the network. We use the client mode
in this example. The WebSphere MQ and WebSphere Application Server instances can be on
different machines.

Setting up WebSphere MQ
The following steps set up the WebSphere MQ queue manager and the telemetry service:

1. Create and configure a queue manager in WebSphere MQ using the steps given in
Chapter 3, “Using MQTT with IBM WebSphere MQ Telemetry” on page 55, although here
we name it MQQM.

WebSphere MQ Telemetry

WebSphere MQ

WebSphere MQ JMS Resource Adapter

WebSphere Application Server

Applications on WAS

Sensor

MQTT
138 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

2. Create a TCP/IP listener on port 1414 that enables WebSphere Application Server to
connect using the client mode.

Setting up outbound communication from WebSphere Application
Server

Outbound communication from WebSphere Application Server is required to send messages
from the web application to WebSphere MQ queues and topics. You need to create the
following JMS resources using the WebSphere Application Server administrative console (or
the Integrated Solutions Console).

First, create the required connection factories as follows:

1. Under the Resources/JMS section, click Connection Factories. Then, click New to create
a new connection factory.

2. In the next window, ensure that WebSphere MQ Messaging Provider is selected.

3. In the ensuing tabs, designate the following properties:

Name: cf

JNDI name: jms/cf

Queue manager: MQQM

Transport: Client

Hostname: 127.0.0.1
(or the machine IP address where the WebSphere MQ queue
manager MQQM was created and is running)

Port: 1414

Next, create the required topic as follows:

1. Under the Resources/JMS section, click Topics. Then, click New to create a new topic
reference.

2. In the next window, ensure that WebSphere MQ Messaging Provider is selected.

3. In the ensuing tabs, designate the following properties:

Name: truckinfo
JNDI name: jms/truckinfo
WebSphere MQ topic name: truck/

(serves as a wildcard)

Developing applications using Rational Application Developer
You need to develop two applications using Rational Application Developer:

� A web application that accepts input from a browser (in this case, the next destination for
the truck) and sends that information to a remote device

� A message-driven bean (MDB) that receives the current location as a message and saves
the information in a database

The code of the browser-based application is provided in the application material supplied
with this book. It can be imported into the Rational Application Developer workspace and run
from there.

The other part of the application is the outbound communication that is used to send the
messages to the truck.
Chapter 4. Integrating MQTT 139

Inbound communication
The first part of the application is the inbound communication that contains the data sent from
the trucks. This is done using an MDB that watches for messages that arrive with the topic
truck/+ with the plus sign (+) referring to the unique client identifier of the truck. The
message content is the location of the truck.

To keep the example simple, the message received is displayed only on the console and is
not stored in a database. In a real scenario, the database is updated. The updated data can
be read by a servlet or a JSP and can be displayed on a browser.

Outbound communication
A JSP is used to interact with the user. The input is processed by a servlet and invokes a
session bean that publishes the message to a topic. The message is the next location the
truck has to go to. The message is published to the destination/truckname topic, where
truckname is the unique client identifier of the truck. The truck subscribed to this topic will
receive the message.

Example 4-7 shows the session bean code that publishes the message to the topic.

Example 4-7 Session bean code that publishes the message to the topic

public void sendLocationData(String location, String truckid) {
try {
Connection conn = cf.createConnection();
Session sess = conn.createSession(false, Session.AUTOACKNOWLEDGE);
MessageProducer prod = sess.createProducer(sess.createTopic("truck/" + truckid));
prod.send(sess.createTextMessage(location));
prod.close();
sess.close();
conn.close();
} catch (JMSException e) {
e.printStackTrace();
}
}

The topic string is dynamically created. The message is published as a JMS text message.
This message will be automatically converted to an MQTT message and sent to a subscriber.

Deploying the sample
The attached sample can be deployed easily. It is provided in the form of an EAR file that can
be installed on WebSphere Application Server. You can find deployment instructions at:

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base
.doc/info/aes/ae/welc_howdoi_tapp.html

Running the sample
After the sample is deployed into the WebSphere Application Server instance, the WMQTT
Utility (from SupportPac IA92) can be used as a client to send and receive messages
(Figure 4-4 on page 141).
140 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wasinfo/v8r0/topic/com.ibm.websphere.base.doc/info/aes/ae/welc_howdoi_tapp.html

Figure 4-4 Using the WMQTT Utility

4.3 Integrate MQTT with IBM WebSphere Operational Decision
Management

Integrating MQTT-based messaging systems with WebSphere Operational Decision
Management, a business events processing engine, can turn simple status updates from
remote devices into alarms that focus immediate attention on the things being monitored.
WebSphere Operational Decision Management can be used to define and apply business
rules to incoming events, so it is an ideal partner with MQTT messaging, which enables
communication with devices at the farthest reaches of a network.

The scenario involving Transportation Company B also illustrates how to apply business rules
to events that are communicated through MQTT messages. For example, the company, in
addition to monitoring the specific location of each of its trucks, might also need to track
whether the trucks are staying on the projected travel routes to ensure that goods are
delivered on time. The company can use WebSphere Operational Decision Management to
define the projected route of each truck and an area of acceptable variance around that route
where the truck is allowed to travel.

Frequent updates from MQTT-enabled remote devices give WebSphere Operational Decision
Management the current location of each truck, as shown in Figure 4-5 on page 142. This
information is analyzed against the projected route (and the acceptable area of variance) to
generate an alarm if the truck is driven off course.
Chapter 4. Integrating MQTT 141

Figure 4-5 Using MQTT and WebSphere Operational Decision Management to generate an alarm when a truck goes too
far from its intended travel route

To implement this solution, the developer must define the events, rules, and actions using the
WebSphere Operational Decision Management Event Designer and then publish the assets
to the WebSphere Operational Decision Management Event Runtime.

For more information about the components of a WebSphere Operational Decision
Management installation, see:

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

4.3.1 Using Event Designer

Event Designer is an Eclipse-based application used to define events in WebSphere
Operational Decision Management, along with the rules for handling each event and the
actions, if any, that are executed in response to each event.

Events
Events represent an occurrence outside the monitoring system. They generally take the form
of an incoming message that is presented in a format that makes the information being
conveyed understandable to the system. In the scenario outlined in this section, the arrival of
each message containing the location information for a given truck is considered an event.
Events hold relevant information in event objects. In a simple system, such as that described
here, it is sufficient to use fields for the truck identification number and its current position
(using latitude and longitude coordinates), along with a time stamp.

Connectors
Connectors are the way data enters or exits the system. A connector is responsible for
handling the technical aspects of each type of communication. There are specific connectors
for handling HTTP posts, JMS messages, or file system operations.

Reporting
application

(Truck)

Supervisor

GPS

GPS
signal

MQFT

WebSphere MQ
WODM

JMS User consoleJMS connector

Event
runtime

Origin

Destination

Origin

Destination

Origin

Destination

Direct route of truck Tight tracking gridLoose tracking grid

Rules

Alarm
message

Cellular network

MQTT
142 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

For using MQTT-generated data as an event source, a JMS connector is defined for the event;
it is the easiest way to receive the message from the queue manager without any
intermediary applications. In this case the original MQTT message from the device on the
truck should be published as a JMS text message with a predefined topic. The connector
must be configured to subscribe to that predefined topic to allow the message to enter the
Events Runtime for processing.

Although four different message formats are available for communicating events, this
discussion focuses on the connector packet and the custom XSL transformation formats.

Using a connector packet
A connector packet is an XML file that is defined using the Decision Server Events packet
schema, which is available at:

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/topic/com.ibm.wbe.reference
.doc/doc/developingapplications-ituser.html

If this option is chosen, the developer must ensure that the incoming messages match the
connector packet format. Depending on the scenario, there are different possibilities for which
component will be responsible for composing the message.

The easiest way is to compose the message in the specified format directly on the device,
and then publish without further need for transformation. This approach is an added burden
for the messaging application on the device. Not all message applications can handle the
specified XML format. In addition, this method can waste network bandwidth, because the
message length can be smaller if only the needed data is sent without any additional
formatting.

A second option is to add a formatting component between the incoming MQTT message
from the device and the outgoing JMS message to WebSphere Operational Decision
Management. This component can read the message directly from the queue manager or can
subscribe to the appropriate JMS topic and receive the message and then transform it to the
connector packet format. This method can be done using IBM WebSphere Message Broker
or a custom-made application to intercept the messages, re-format them to meet the
connector packet specification, and republish the messages to the final destination topic. This
approach saves bandwidth and allows the application on the remote device to remain
relatively simple.

Using a custom XSL transformation
The custom XSL transformation approach allows the developer to use any message format
as long as an XSL file is provided to transform the original XML format to what is required for
the internal Decision Server Events packet format. This approach is most useful when there
are no extra components between the message reception and WebSphere Operational
Decision Management, but the construction and debugging of the XSL file can be time
consuming.

Business objects
Business objects are the way data flows inside the WebSphere Operational Decision
Management Event Runtime engine. They typically include some event object information but
also add some extra fields needed to implement the functionality. For example, business
objects can be created from the event object, with an additional field added to indicate the
date and time when an alarm is raised.
Chapter 4. Integrating MQTT 143

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/topic/com.ibm.wbe.reference.doc/doc/developingapplications-ituser.html
http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/topic/com.ibm.wbe.reference.doc/doc/developingapplications-ituser.html

Actions
Actions are the output for the Event Runtime engine. They are executed when a condition is
evaluated, possibly initially triggered by an incoming event. For the scenario being defined
here, only one action needs to be defined, to be invoked when a truck is out of its planned
route.

Just like events, actions can hold a connector that determines the nature of the action taken
place. For our sample scenario, a user console connector is enough to notify a supervisor at
company headquarters that a truck is out of route. If the supervisor works in a remote location
or travels to different locations, a JMS connector can be used to send the notification using
the MQTT protocol, with the same message formatting considerations used for events.

Event rules
The final step in the development process is creating the event rules that determine which
actions are invoked when a event arrives under defined circumstances.

For the scenario described in this paper, the developer must define rules to determine if the
truck’s location coordinates (latitude and longitude) are within the acceptable route. If the
coordinates are ever not within the acceptable route, an alarm action is raised containing all
the information included in the Business Object Definition (Event Object Data plus the date
and time of the message).

4.3.2 Deploying the solution

For initial testing purposes, the solution created in Event Designer can be deployed into an
Event Runtime environment. You need to define a runtime connection that includes the host,
port, user, and password in the Event Runtime server.

For information about using the Business Space widgets to test the solution, see:

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

4.4 Integrate MQTT with IBM Intelligent Operations Center

You can integrate devices or applications that use the MQTT protocol with the IBM Intelligent
Operations Center, an event management system that can help municipalities monitor
operations and predict and respond to changing situations. For example, integrating MQTT
makes it possible to extend the reach of the IBM Intelligent Operations Center to traveling
road maintenance vehicles or to remote devices monitoring rising water or approaching
storms.
144 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/dmanager/v7r5/index.jsp

Figure 4-6 provides a high-level view of the IBM Intelligent Operations Center. When MQTT
devices are introduced, they connect to the internal event management engine, through
which events and other updates are processed.

Figure 4-6 IBM Intelligent Operations Center architecture as integrated with devices

For more information about event management using the IBM Intelligent Operations Center,
see:

http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/index.jsp?topic=/com.ibm.iicoc.doc
/admin_evtprocov.html

For more information about components and subsystems, see:

http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/index.jsp?topic=/com.ibm.iicoc.doc
/ov_products.html

Sametime

KPI
engine

Event
management

engine

Messaging
system

Reporting
engine

Workflow
engine

GIS
server

Security
layer Subsystem layer

WebSphere Application Server

WebSphere Portal Server

UI services

KPI
data

provider

Notification
data

provider

Event
data

provider

Model
Manager
Server

Model
manager

Services layer

Reverse proxy

UI abstraction layerXXXX
XXXXX
XXX
XXXXX

Security
services

Event/
KPI flow

MQTT

Legend

IBM products

Third party product

Security related services

IBM Intelligent Operations
Center specific capability
or system
Chapter 4. Integrating MQTT 145

http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/index.jsp?topic=/com.ibm.iicoc.doc/admin_evtprocov.html
http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/index.jsp?topic=/com.ibm.iicoc.doc/ov_products.html
http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/index.jsp?topic=/com.ibm.iicoc.doc/ov_products.html

4.4.1 The Common Alert Protocol format

The Common Alerting Protocol (CAP) format is an OASIS standard. It is a general format for
exchanging emergency alerts and public warnings over various types of networks. CAP
allows a consistent warning message to be disseminated simultaneously over many different
warning systems. It also facilitates the detection of emerging patterns in local warnings of
various kinds, which can indicate undetected hazards or hostile acts.

The IBM Intelligent Operations Center supports messages in the CAP format and uses it to
exchange event information with external systems. Products and services can be integrated
with the IBM Intelligent Operations Center using events. Events communicated to the IBM
Intelligent Operations Center must be in the CAP format. These events can relate to key
performance indicators (KPI) monitored by the IBM Intelligent Operations Center or might be
unrelated to KPIs.

Example 4-8 shows a sample CAP message that describes a car accident.

Example 4-8 Example of a CAP message describing a car accident

<?xml version="1.0" encoding="UTF-8"?>
<cap:alert xmlns:cap="urn:oasis:names:tc:emergency:cap:1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:oasis:names:tc:emergency:cap:1.2 CAP-v1.2-os.xsd ">
<cap:identifier>1112</cap:identifier>
<cap:sender>Transportation</cap:sender>
<cap:sent>2011-02-17T15:00:00-05:00</cap:sent>
<cap:status>Actual</cap:status>
<cap:msgType>Alert</cap:msgType>
<cap:scope>Public</cap:scope>
<cap:code>KPI</cap:code>
<cap:info>
<cap:category>Transport</cap:category>
<cap:event>TrafficAccident</cap:event>
<cap:urgency>Unknown</cap:urgency>
<cap:severity>Extreme</cap:severity>
<cap:certainty>Unknown</cap:certainty>
<cap:eventCode>
<cap:valueName>OwningOrg</cap:valueName>
<cap:value>Police</cap:value>
</cap:eventCode>
<cap:onset>2011-02-17T15:00:00-05:00</cap:onset>
<cap:senderName>Transportation</cap:senderName>
<cap:description>Single car crash</cap:description>
<cap:parameter>
<cap:valueName>accident number</cap:valueName>
<cap:value>1112</cap:value>
</cap:parameter>
</cap:info>
</cap:alert>

Additional information: For more information and the complete CAP specification, visit
the OASIS website at:

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html
146 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://docs.oasis-open.org/emergency/cap/v1.2/CAP-v1.2-os.html

For more information about integrating IBM Intelligent Operations Center with the CAP
format, see:

http://publib.boulder.ibm.com/infocenter/cities/v1r0m0/topic/com.ibm.iicoc.doc/int
_cap.html

CAP format messages can be published from a device or from an intermediate application:

� A device generates the complete CAP standard-compliant XML document and sends it
over MQTT. However, this option is generally not expected of devices because they tend to
have little memory. Where possible, the CAP format message can be published directly to
the inbound message queue in WebSphere Message Broker.

� A device can also publish its raw data, such as temperature, water level, and other data, to
an application server or IBM WebSphere Message Broker. The application server or IBM
WebSphere Message Broker then transforms the incoming message to CAP format and
forwards it to the inbound message queue in WebSphere Message Broker. Alternatively,
the raw message can be published to a topic on the queue manager (MQTT broker) in the
IBM Intelligent Operations Center, and a separate message broker instance can transform
it into CAP format for further processing.

4.4.2 Integration points of the IBM Intelligent Operations Center

A complete installation of the IBM Intelligent Operations Center involves an instance of
WebSphere Message Broker V8.0 and WebSphere MQ V7.0. In both cases, the format of the
message is an XML document that is compliant with the CAP format.

The WebSphere Message Broker instance has an inbound queue that is defined to consume
messages that are published in CAP format. This queue name is also exposed as a JMS
topic destination. For details about using the inbound queue, see:

http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/topic/com.ibm.iicoc.doc/int_eventi
nboundqueue.html

WebSphere MQ V7.0 uses telemetry channels. After a WebSphere MQ V7.0 queue manager
with telemetry support is established, the queue manager (or the MQTT broker, specifically)
in the IBM Intelligent Operations Center can accept the connections from devices (using the
MQTT protocol) directly. The publications are received as topics, which are then consumed by
WebSphere Message Broker applications either using a JMS topic or a local queue.

4.5 Integrate MQTT with IBM Lotus Expeditor integrator

IBM Lotus Expeditor integrator is an edge server used for n-tier messaging topologies. It is an
OSGi event and message-driven Java application that consists of Eclipse plug-ins that allow
for simple, configurable data exchange over different transport protocols to integrate remote
locations (and remote devices and appliances) with powerful back-end service buses. The
communication channel between the back-end messaging system and Lotus Expeditor
integrator is based on JMS messaging.

Using IBM Lotus Expeditor integrator as an edge server includes the following typical industry
examples:

� Transporting data to the remote endpoint
� Retrieving data from the remote endpoint
� Managing data exchange between remote resources without back-end interaction
� Retrieving information about remote endpoint resources
Chapter 4. Integrating MQTT 147

http://publib.boulder.ibm.com/infocenter/cities/v1r0m0/topic/com.ibm.iicoc.doc/int_cap.html
http://pic.dhe.ibm.com/infocenter/cities/v1r0m0/topic/com.ibm.iicoc.doc/int_eventinboundqueue.html

� Controlling the Expeditor integrator run time and resources

More information about IBM Lotus Expeditor integrator is available at:

http://www.ibm.com/software/lotus/products/expeditor/integrator.html

You can find additional technical details about integrating applications with IBM Lotus
Expeditor integrator at:

http://www.lotus.com/ldd/lewiki.nsf/dx/integrator02.html

To achieve an independent remote runtime environment for an edge server that includes a
messaging provider, Expeditor integrator comes with the Eclipse/Equinox application runtime
environment plus additional Java EE-like services, including IBM micro broker as a
messaging provider for MQTT and JMS clients, monitoring services for end-to-end
monitoring, and an adapter framework for integration of devices with traditional protocols and
remote management facilities.

Lotus Expeditor integrator uses the included IBM micro broker as the MQTT messaging
provider and an IBM micro broker bridge (see Figure 4-7). The IBM micro broker and broker
bridge is used for transparent connectivity to other JMS-compliant messaging back ends
(such as IBM WebSphere MQ). The core component of the Lotus Expeditor integrator
application is the Expeditor integrator Application Control Service (ACS). The Lotus Expeditor
integrator ACS is a central processing component for all incoming and outgoing messages. It
interprets the messages and triggers further actions to orchestrate a use case within a
transactional unit of work. For example, the ACS provides file transmission capabilities for
retail environments and messaging processing and forwarding functions for SmartGrid
environments.

Figure 4-7 Lotus Expeditor integrator extends IBM micro broker with application intelligence

4.5.1 Messaging in Expeditor integrator

Lotus Expeditor integrator is based on IBM micro broker as the MQTT messaging provider
and is an event- and message-driven integration hub for exchanging data using MQTT and
other data transport protocols.

Micro broker
JMS Buffered Client
(durable for Sending)

Micro broker JMS or
MQTT Client
(with or without Durable Subscription)

IBM Lotus Expeditor integrator
(with IBM micro broker)

MQTT

JMS

MQ

MQTT Client
(with or without Durable Subscription)

IBM WebSphere
MQ / Message Broker

MQTT

Backend Clients
148 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www.ibm.com/software/lotus/products/expeditor/integrator.html
http://www.lotus.com/ldd/lewiki.nsf/dx/integrator02.html

There are two communication channels for bridging MQTT messages from the client side (the
device or appliance) to the back-end service bus:

� JMS over WebSphere MQ
� HTTP (inbound: REST, outbound: based on the Apache HTTP client)

Custom header parameters (message properties) control the executed Application Control
Service actions. They define the message’s purpose, such as sending/retrieving files,
messages or other data; executing simple data processing such as data evaluation and
filtering; and controlling the Lotus Expeditor integrator application through remote control,
remote management, and remote monitoring.

Figure 4-8 on page 150 shows an example for retrieving MQTT messages from devices at the
decentralized integration point (the edge server). The received MQTT message can be
further processed there or transformed into a message for the target back-end messaging
system (for example, WebSphere MQ). The message header of the message publisher can
contain specific message properties (custom message headers) that trigger an assigned
ACS flow in Expeditor integrator.

There are many default flows for predefined standard use cases already available that can be
kicked off by the correct message properties. Figure 4-8 on page 150 illustrates setting the
property MessagePurpose to MessageForward and TransportType to MESSAGE. The
ResourceType can be used as an alias through which further configuration data can be
retrieved during flow execution, for example, the DestinationName (the target queue/topic
name that is bridged to a specific queue/topic in the back-end messaging system). The JMS
Destination Adapter monitors the topic or queue (CustomerOutQ/CustomerTopic) to which
the initial message is sent and triggers the correct ACS flow based on the provided message
properties. The triggered ACS flow gets the received message, retrieves further configuration
information, such as the target queue name, and transfers the message payload to the
provided back-end queue.

ACS flow execution status messages are sent to the monitoring queues at the beginning and
the end of the flow. Messages (for example MQTT) can be sent to the Expeditor integrator
application to transport data and trigger actions.
Chapter 4. Integrating MQTT 149

Figure 4-8 Principle of receiving messages from devices and forwarding them to back-end integration layer

Predefined values for the message header property MessagePurpose are defined in
Expeditor integrator for specific actions and use cases for which corresponding ACS default
flows are included.

4.5.2 Example 1: Local integration of established devices and protocols
through messaging

This example demonstrates how data from a remote MQTT-enabled instance is sent to Lotus
Expeditor integrator as a decentralized integration hub. For example, the retrieved data from a
delivery truck can position log data that is required for instant truck dispatching and
rescheduling. The payload data is then retrieved from the message and is detached locally,
for example as a file in a local file system where other systems use it as a data import source.
There can also be requirements for the other direction, sending local data from traditional
applications that is available in a file format to be connected to messaging-enabled devices.

Use case flow
This use case uses the following flow (Figure 4-9 on page 151):

1. MQTT client application (Publisher) sends the MQTT message containing example text
data (for example, the truck position log) to the edge server at company headquarters.

2. Lotus Expeditor integrator monitors for published messages from trucks at a defined
MQTT topic. If a message is received, the message content is then detached to the local
file system as a SampleLogFile.txt file (using the SendLogFileToLocalFileSystem.flow
file).

3. When the received truck position log data is detached as a local file, this file can be easily
used for data input into traditional applications (for example, a truck scheduling system).

Application Control
Service

(event triggers flow
to process file

transfer)
Local Message
Queue/TopicGet

message

Tx

Put
message

Build target
message/topic

Target message/topic content

Target message/topic

Create and send
message

Transaction
status message

Create status
messageSend

message

Enterprise
(backend)

Remote Location

Publish
topic

Trigger flow

JMS Dest
Adapter

Message queue
monitoring

R
es

o
u
rc

e
M

o
n
it
o
r

MessagePurpose = MessageForward

TransportType = MESSAGE

ResourceType = Message | …

Payload (e.g., update customer data)

CustomerOutQueue

CustomerTopic

Lotus
Expeditor

micro
broker

including
bridge

MQTT to
MQ
150 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 4-9 Local integration example of writing content of received MQTT messages to a local file

Prerequisites
This example requires the following prerequisites:

� Installed Lotus Expeditor integrator run time

Make note of the =<XPDINTEGHOME> installation directory

� The Lotus Expeditor XPDinteg.xml integrator configuration file, which is available in the
<XPDINTEGHOME>/config directory

� A simple text file, myFile.txt, that contains sample position data and that can be copied
into the text message body of the MQTT client application

Configuration steps
Complete the following to configure this example.

1. Configure the SampleSendLogFileJmsAdapter JMS adapter in the XPDinteg.xml
configuration file, as shown in Example 4-9.

Example 4-9 Step 1 for the JMSDESTINATIONADAPTER to receive log messages

<adapter type="XPDINTEGJMSDESTINATIONADAPTER" name="SampleSendLogFileJmsAdapter">
<listener>
<topic>com/ibm/integrator/flowtriggerevent/FileTransfer/LocalFileSystemFile/Sample
SendLogFileJmsAdapter</topic>
</listener>
<configuration>
<param name="JndiConnectionFactoryKey" value="jms/XPDintegConnectionFactory"/>
<param name="JndiDestinationKey" value="jms/XPDintegSendLogFileTopic"/>
<param name="JndiDeadLetterKey" value="jms/XPDintegServerDeadletterQ"/>
<param name="ValidateLocationId" value="OFF"/>
</configuration>
</adapter>

Edge Server Expeditor Integrator

(SendLogFileToLocalFileSystem.flow
takes the incoming message, retrieves
the payload content and detaches it as
a file to local file system)

SendLogFileToLocalFileSystem.flowJMS Adapter

("SampleSendLogFileJmsAdapter"
triggers
SendLogFileToLocalFileSystem.flow
when message is published)

Pub
Sub

XPDinteg_SendLogFileTopic

MQTT Client Publisher (e.g., truck)

Java program with MQTT client
that creates an example message
with:

• Expeditor integrator custom
message header properties and

• Example message payload

LocalFileSystem
Adapter

File in local file system

(<XPDINTEG_HOME>/datatrans/
inbound/SampleLogFile.txt)

MQTT Message Header

Payload (text file)

MQTT
Chapter 4. Integrating MQTT 151

2. Configure the publisher/subscriber topic under which the message carrying the log file will
be published, as shown in Example 4-10.

Example 4-10 Step 2 in JMSDESTINATIONADAPTER configuration

<topics> ...
<topic purpose="SendLogFileTopic">
<topic-name>XPDintegSendLogFileTopic</topic-name>
<jndi-key>jms/XPDintegSendLogFileTopic</jndi-key>
</topic>
...

3. Create the ACS flow for picking up the message and writing the payload into a local file.
Locate examples of ACS flow definition files (under <XPDINTEGHOME>/samples/flowdefs).
Make sure a unique process name and the EventAdmin Service trigger topic of the
configured SampleSendLogFileJmsAdapter are used. Create a new flow file
SendLogFileToLocalFileSystem.flow in directory <XPDINTEGHOME>/flowdefs with the
following content and these settings:

– DestinationPath = datatrans/inbound
– DestinationName = SampleLogFile.txt
– DestinationCreationMode = append

Example 4-11 shows the ACS flow definition for detaching the payload of the received log
messages to a local file (SampleLogFile.txt).

Example 4-11 ACS flow definition

<?xml version="1.0" encoding="UTF-8"?>
<Process Name="SendLogFileToLocalFileSystem\Process"
Trigger="com/ibm/integrator/flowtriggerevent/FileTransfer/LocalFileSystemFile/Samp
leSendLogFileJmsAdapter">
<XPDintegActivity
Name="SendLogFileToLocalFileSystem\MessageReadActity"
ActivityName="XPDINTEGMESSAGEREAD"
PropertyKey="DATAREFERENCE"
JndiConnectionFactoryKey="jms/XPDintegConnectionFactory"
/>
<XPDintegActivity
Name="SendLogFileToLocalFileSystem\ChangeCustomHeader"
ActivityName="XPDINTEGCHANGECUSTOMHEADER"
AddDefaultHeaders="FALSE"
Header1="OVERWRITE::DestinationName::SampleLogFile.txt"
Header2="OVERWRITE::DestinationPath::datatrans/inbound"
Header3="OVERWRITE::DestinationCreationMode::APPEND"
/>
<XPDintegActivity
Name="SendLogFileToLocalFileSystem\MessageToFile"
ActivityName="XPDINTEGMESSAGETOFILE"
JndiConnectionFactoryKey="jms/XPDintegConnectionFactory"
/>
<XPDintegActivity
Name="SendLogFileToLocalFileSystem\FileWriteToFileSystem"
ActivityName="XPDINTEGFILEWRITETOFILESYSTEM"
AdapterName="XPDINTEGFILESYSTEMADAPTER"
/>
</Process>
152 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Deploy and activate the configuration
To deploy and activate the configuration, follow these steps:

1. Stop the Lotus Expeditor integrator run time (click Close or Exit in the OSGi console).

2. Reset the Lotus Expeditor integrator run time (run
<XPDINTEGHOME>resetscript/XPDintegReset.bat or .sh).

3. Start the Lotus Expeditor integrator run time (run <XPDINTEGHOME>/XPDintegStart.bat or
.sh).

4. Wait until the Lotus Expeditor integrator run time is available (check by pointing your
browser to the admin GUI). You can use a local host (http://localhost:8777/ui). Under
Linux, the run time starts in the background the first time it is started after a reset. Check
for the expeditor process and end/kill it. Then rerun XPDintegStart.sh.

MQTT client application (Publisher)
Example 4-12 shows the syntax that creates the MQTT client application (Publisher) to send
the log message to topic XPDintegSendLogFileTopic.

Example 4-12 MQTT client application sending message to a topic

public static final String pubTopicString = System.getProperty("pubTopicString",
"XPDintegSendLogFileTopic");

Run the example
To run the example, follow these steps:

1. Start Lotus Expeditor integrator.

2. Switch on ACS flow logging by entering toggleFlowLog.

3. Use your MQTT client application to publish a log message with some log sample text
payload (for example, content from myFile.txt).

4. The message is retrieved and its payload appended to SampleLogFile.txt in
<XPDINTEGHOME>/datatrans/inbound.

5. The execution of your ACS flow SendLogFileToLocalFileSystemProcess is then displayed
in the OSGi console.

6. Note that the file datatrans/inbound/SampleLogFile.txt is created and the content of the
message payload is appended.

7. You can repeat sending messages. The message payload is appended to the target
SampleLogFile.txt.

See Figure 4-10 for a successful example of OSGi console output when
SendLogToLocalFileSystem.flow is executed properly.

Figure 4-10 Lotus Expeditor integrator OSGi console output when SendLogToLocalFileSystem.flow is
executed
Chapter 4. Integrating MQTT 153

4.5.3 Example 2: Messaging-based back-end integration of devices
and protocols

This example explains how messages from micro broker clients (MQTT clients) can be
forwarded by the edge server to the back-end messaging system. Data preprocessing,
filtering, auditing, and so on, take place during the forwarding process.

Use case
This use case uses the following flow:

1. The MQTT client application (Publisher) sends an MQTT message containing example
text data (such as truck status log information) to the edge server at company
headquarters. This data is of interest to the company and must be further forwarded to the
back-end messaging system. Truck usage data is collected and further analyzed for
possible usage optimization, for truck maintenance and for purchase and investment
planning.

2. Lotus Expeditor integrator monitors for published messages from trucks at a defined
MQTT topic. If a truck status message is received, the message content is forwarded to
the corresponding WebSphere MQ queue in the back end XPDintegResInQ100 (using the
SendStateInfoMessageForward.flow). See Figure 4-11 for a successful example of this
process.

3. When the received truck position log data is detached as a local file, this file can be easily
used for data input into established applications.

Figure 4-11 Example for sending MQTT messages containing truck status information to the MQ back end

Prerequisites
This example requires the following prerequisites:

� Installed Lotus Expeditor integrator run time

Make note of the installation directory (=<XPDINTEGHOME>)

Edge Server Expeditor Integrator

(SendStateInfoMessageForward.flow
takes the incoming message and
forwards it to XPDinteg_ResOutQ
which is bridged to backend messaging
system)

SendStateInfoMessageForward.flowJMS Adapter

("SampleSendStateInfoJmsAdapter"
triggers
SendStateInfoMessageForward.flow
when message is published)

Pub
Sub

XPDinteg_SendLogFileTopic

MQTT Client Publisher (e.g., truck)

Java program with MQTT client
that creates an example message
with:

• Expeditor integrator custom
message header properties and

• Example message payload

MQTT Message Header

Payload (text file)

MQTT

MQ Message Header

XPDinteg_ResOutQ

IBM WebSphere MQ

(Backend messaging system)

XPDinteg_ResInQ100

Micro Broker
Bridge (MQ)

MQ

Edge Server simply
forwards messages from
MQTT Pub/Sub to P2P
JMS/MQ backend system
•Message data

preprocessing could take
place (e.g., filtering,
decryption, masking,
etc.)
154 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

� The Lotus Expeditor integrator XPDinteg.xml configuration file, which is available in the
<XPDINTEGHOME>/config directory

� A simple text file, myFile2.txt, that contains sample truck status information and that can
be copied into the text message body of the MQTT client application

� A messaging back-end system (for example, WebSphere MQ server) with the following
settings:

– IP Address/Hostname: myBroker
– Queue manager: TestQM
– Port: 14100
– Channel: TestChannel

� The following back-end queues for the Lotus Expeditor integrator run time

– XPDintegResInQ100
– XPDintegDeadletterQ100
– XPDintegSyncQ100
– Optionally: XPDintegReqOutQ100, XPDintegCtrlOutQ100, XPDintegLogQ100,

XPDintegEventQ100

Configuration steps
Complete the following to configure this example.

1. Configure the SampleSendStateInfoJmsAdapter JMS adapter in the XPDinteg.xml
configuration file as shown in Example 4-13.

Example 4-13 Step 1 for receiving log messages

<adapter type="XPDINTEGJMSDESTINATIONADAPTER"
name="SampleSendStateInfoJmsAdapter">
<listener>
<topic>com/ibm/integrator/flowtriggerevent/MessageForward/MESSAGE/SampleSendSta
teInfoJmsAdapter</topic>
</listener>
<configuration>
<param name="JndiConnectionFactoryKey" value="jms/XPDintegConnectionFactory"/>
<param name="JndiDestinationKey" value="jms/XPDintegSendStateInfoTopic"/>
<param name="DestinationName" value="jms/XPDintegResOutQ"/>
<param name="TruckNo" value="100"/>
<param name="JndiDeadLetterKey" value="jms/XPDintegServerDeadletterQ"/>
<param name="ValidateLocationId" value="OFF"/>
</configuration>
</adapter>

2. Configure the outgoing queue for delivering messages to the back-end system and
provide the publish/subscribe topic under which the message carrying the log file will be
published in the XPDinteg.xml file, as shown in Example 4-14.

Example 4-14 Step 2 for JMSDESTINATIONADAPTER configuration for receiving status
messages

<queues> ...
<queue purpose="ResultOutQueue">
<queue-name>XPDintegResOutQ</queue-name>
<jndi-key>jms/XPDintegResOutQ</jndi-key>
</queue>
...
</queues>
Chapter 4. Integrating MQTT 155

<topics> ...
<topic purpose="SendStateInfoTopic">
<topic-name>XPDintegSendStateInfoTopic</topic-name>
<jndi-key>jms/XPDintegSendStateInfoTopic</jndi-key>
</topic>

3. Create the ACS flow for picking up the message and forwarding it to local
XPDintegResOutQ. Locate examples of ACS flow definition files under
<XPDINTEGHOME>/samples/flowdefs). Make sure a unique process name and the
EventAdmin Service trigger topic of the configured SampleSendStateInfoJmsAdapter is
used. Create a new flow file, SendStateInfoMessageForward.flow, in directory
<XPDINTEGHOME>/flowdefs with the content shown in Example 4-15.

Example 4-15 ACS flow definition for forwarding payload

<?xml version="1.0" encoding="UTF-8"?>
<Process Name="SendStateInfoMessageForward\Process"
Trigger="com/ibm/integrator/flowtriggerevent/MessageForward/MESSAGE/SampleSendS
tateInfoJmsAdapter">
<XPDintegActivity
Name="SendStateInfoMessageForward\ReadResource"
ActivityName="XPDINTEGMESSAGEREAD"
PropertyKey="DATAREFERENCE"
/>
<XPDintegActivity
Name="SendStateInfoMessageForward\MessageWrite"
ActivityName="XPDINTEGMESSAGEWRITE"
JndiConnectionFactoryKey="jms/XPDintegConnectionFactory"
/>
</Process>

4. Configure the micro broker bridge connection to the back-end queues (find example
configurations for back-end connectivity in the
<XPDINTEGHOME>/samples/config/SampleXPDinteg.xml file). Make sure that all local and
remote queues are defined and exist. The bridge flow entries must also point to existing
queues.

5. Configure the WebSphere MQ server connectivity in 4.1: Objects for Back-end QUEUE
CONFIG of the XPDinteg.xml configuration file.

Example 4-16 shows the MQ server back-end connection configuration for the remote
back-end XPDintegResInQ100 in the XPDinteg.xml file.

Example 4-16 back-end connection configuration for the MQ server

<connection-factory name="ConnectionFactory1" type="MQ"
jndiKey="jms/XPDinteg-MQConnectionFactory">
<params>
<param name="hostname" value="myBroker"/>
<param name="port" value="14100"/>
<param name="queue-manager" value="TestQM"/>
<param name="clientid" value="XPDinteg100"/>
<param name="channel" value="TestChannel"/>
...
156 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

6. Configure the remote queue or queues of the WebSphere MQ server.

Example 4-17 shows the Declaration of remote queues on the MQ server back end to
which local queues can be bridged to in the XPDinteg.xml file.

Example 4-17 Remote queues for bridging

..
<queue purpose="ServerSyncQ" type="MQ" jndiKey="jms/MQSyncQ">
<params>
<param name="queue-name" value="XPDintegSyncQ100"/>
</params>
</queue>
<queue purpose="ServerDeadletterQ" type="MQ" jndiKey="jms/MQServerDeadletterQ">
<params>
<param name="queue-name" value="XPDintegDeadletterQ100"/>
</params>
</queue>
<queue purpose="ServerResultInQueue" type="MQ" jndiKey="jms/MQServerResInQ">
<params>
<param name="queue-name" value="XPDintegResInQ100"/>
</params>
</queue>
...

7. Configure the queue bindings in the bridge (local queue to and from a remote queue) in
4.2: BRIDGE CONFIG of the XPDinteg.xml file. Make sure that the local and remote
queues are declared in XPDinteg.xml and do exist.

Example 4-18 shows the definition of micro broker bridge connections in XPDinteg.xml (for
example, XPDintegResOutQ and XPDintegResInQ100).

Example 4-18 Definition of micro broker bridge connections in XPDinteg.xml

<pipes>
<!-- Each pipe is exposed in the configuration. By using JNDI for the remote
endpoints we are able to achieve the requirement of different endpoints for
different queues all with configuration. -->
<pipe name="Back-end-pipe1">
<!-- As configured and referenced in the ConnectionFactory previously. -->
<jndi-connection connection-factory-key="jms/XPDinteg-MQConnectionFactory"
sync-queue-key="jms/MQSyncQ" dead-letter-queue-key="jms/MQServerDeadletterQ"/>
...
<flow name="resOutQFlow" direction="OUTBOUND">
<source name="ubQ" type="QUEUE">
<value>XPDintegResOutQ</value>
</source>
<target name="mqQ" type="JNDI" value="jms/MQServerResInQ"></target>
</flow>
<flow name="serverDeadetterQFlow" direction="OUTBOUND">
<source name="ubQ" type="QUEUE">
<value>XPDintegServerDeadletterQ</value>
</source>
<target name="mqQ" type="JNDI" value="jms/MQServerDeadletterQ"></target>
</flow>
...
Chapter 4. Integrating MQTT 157

Deploying and activating the configuration
To deploy and activate the configuration, follow these steps:

1. Stop the Lotus Expeditor integrator run time (click Close or Exit in the OSGi console).

2. Reset the Lotus Expeditor integrator run time (run
<XPDINTEGHOME>resetscript/XPDintegReset.bat or .sh).

3. Start the Lotus Expeditor integrator run time (run <XPDINTEGHOME>/XPDintegStart.bat or
.sh).

4. Wait until the Lotus Expeditor integrator run time is available (check this by pointing your
browser to the admin GUI). You can use a local host (http://localhost:8777/ui). Under
Linux, the run time starts in the background the first time it is started after a reset. Check
for the expeditor process and end/kill it. Rerun XPDintegStart.sh.

MQTT client application and Publisher
Create the MQTT client application (Publisher) that sends the fictive truck status message to
topic XPDintegSendStateInfoTopic. Example 4-19 shows the syntax for sending status
messages to topic.

Example 4-19 Sending status messages to topic

public static final String pubTopicString = System.getProperty("pubTopicString",
"XPDintegSendStateInfoTopic");

Run the example
To run the example, follow these steps:

1. Start Lotus Expeditor integrator (if not done yet).

2. Switch on ACS flow logging by entering toggleFlowLog.

3. Use your MQTT client application to publish a text message with some of the truck status
sample text payload (for example, content from myFile2.txt).

4. The message is retrieved and its payload is forwarded to XPDintegResOutQ which is
bridged to back-end queue XPDintegResInQ100 (check the content of the
XPDintegResInQ100).

5. The execution of your ACS flow SendStateInfoMessageForwardProcess is displayed in the
OSGi console.

6. You can repeat sending messages. The messages are received at the back end in the
XPDintegResInQ.

Figure 4-12 shows the successful execution of this process.

Figure 4-12 Lotus Expeditor integrator OSGi Console output during successful execution of
SendStateInfoMessageForward.flow

Note: These scenarios can be secured by using end-to-end messaging security based on
TLS/SSL.
158 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Chapter 5. Typical topologies and patterns
of use

The network topology is one part of the overall physical architecture of a system. It describes
the placement of the various components in different physical domains and the interaction
between those.

In this chapter we provide an overview of the typical network topologies for MQTT-based
messaging. We discuss the common layers and define the components within each layer, and
describe two common topology patterns that developers can follow based on the type of
server device to be used.

This chapter contains the following sections:

� Typical topology
� Client to enterprise server
� Client to edge server to enterprise server

5

© Copyright IBM Corp. 2012. All rights reserved. 159

5.1 Typical topology

The network topology of a machine-to-machine (M2M) system varies depending on the type
and number of devices being connected.The following lists important factors that influence
this decision:

� Some remote devices are not allowed to embed the MQTT client, even if delivered by
means of a client library.

� Server performance will drop if too many remote devices are connected to it directly.

� Certain devices can require private or specific protocols, necessitating the use of an edge
gateway to act as a proxy.

� Network outage might influence the SLAs that need to be fulfilled.

To handle these challenges, a variety of different topologies can be used. However, to speed
design and implementation, the selected topology should build upon standard connectivity
patterns and components, to the extent possible.

The basic topology patterns that are most relevant to this discussion of WebSphere MQ and
the MQTT protocol are:

� The client connects to the server directly.
� The client connects to the server through an edge gateway.

The IBM MQTT connectivity solution works well in these topologies. It provides a lightweight
messaging option that can be critical if the network between the devices and the central
system components is constrained due to latency, limited bandwidth or high incremental
costs. And because the MQTT client libraries are small and require limited processing
capacity on the devices which host them, the solution can work even with constrained
devices.

5.1.1 Pattern 1: Client to enterprise server

For some systems, it is best to connect the remote devices to the Enterprise Integration Layer
directly, as shown in Figure 5-1, also called the basic connectivity pattern. This approach
works when third-party software (such as the MQTT client) can be embedded in the devices,
and the number of devices is relatively small, with only hundreds or perhaps a few thousand
devices connected.

Figure 5-1 Client to enterprise server

Enterprise
Integration Layer

(ESB)Business
Application

Device

Enterprise Remote Location

Pattern 1
160 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Table 5-1 shows the components of the basic connectivity pattern.

Table 5-1 Components of a basic connectivity pattern

5.1.2 Pattern 2: Client to edge server to enterprise server

Pattern 2 connects the devices to the Enterprise Integration Layer through an Edge Gateway.
The Edge Gateway acts as a hub or concentrator for devices to connect to, and transports
messages between the devices and the Enterprise Integration Layer, illustrated in Figure 5-2.
This makes Pattern 2 ideal for systems with an unreliable or insecure network, or where the
number of devices can cause a performance slowdown if they were connected directly to the
server in the Enterprise Integration Layer.

Figure 5-2 Client to edge server to enterprise server

Component Purpose

Business application(s) An application that wishes to send and receive messages to or
from a device. It connects to the server in the Enterprise
Integration Layer using a supported transport protocol, such as
JMS, MQ, or MQTT.

Enterprise Integration Layer The server here acts as a central concentrator that remote
devices connect to. The following list reflects other activities that
the server supports:
� Acts as an enterprise service bus for business applications

message exchange.
� Capable of storing events and notifications for later delivery, if

connectivity was not available when first attempted.
� Capable of enforcing connection security by means of

TSL/SSL to authenticate remote devices.
� Capable of mediation for filtering and aggregating messages,

such as to reduce the volume of messages traveling over the
network.

� Capable of event correlation, such as merging or mapping an
event or alarm between the devices and business
applications

Devices Remote sensors or applications that collect information or carry
out tasks and which must communicate to and from the central
system.

Enterprise
Integration Layer

(ESB)Business
Application

Edge
Gateway

Device

Enterprise Remote Location

Pattern 2
Chapter 5. Typical topologies and patterns of use 161

Table 5-2 lists the components of a client-to-edge-server-to-enterprise server topology.

Table 5-2 Components of a client-to-edge-server-to-enterprise server topology

5.1.3 Pattern 2A: Client to edge server (proxy) to enterprise server

Some organizations prohibit embedding third-party software, such as a messaging client, in
remote devices. Or devices might use a private protocol or unusual communications format
that the server in the Enterprise Integration Layer cannot understand. And the devices are
distributed one by one. In such cases, the Edge Gateway can be used as a 1-1 proxy (Pattern
2A) shown in Figure 5-3.

Figure 5-3 Client to edge server (proxy) to enterprise server

By acting as a proxy to and from the Enterprise Integration Layer, the Edge Gateway in
Pattern 2A allows devices to communicate using their preferred private or specific protocol,
such as ANO.

Component Purpose

Business applications See Table 5-1 on page 161 for Pattern 1.

Enterprise Integration Layer See Table 5-1 on page 161 for Pattern 1.

Edge gateway Serves as a hub or concentrator for devices to connect; supports
the following functions:
� Acts as a gateway to and from the Enterprise Integration

Layer using a single connection.
� Allows devices to communicate with each other without going

through the Enterprise Integration Layer.
� Capable of storing events and notifications for later delivery, if

connectivity was not available when first attempted.
� Capable of applying application logic, such as filtering or

aggregation of messages.
� Capable of applying application logic, such as event

correlation, which is used to merge or map the event or alarm
between device and enterprise integration layer.

Devices See Table 5-1 on page 161 for Pattern 1.

Business
Application

Device

Enterprise Remote Location

Pattern 2A

Edge
Gateway

(1-1 proxy)

Enterprise
Integration Layer

(ESB)
162 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

5.1.4 Pattern 2B: Client to edge server (with adapter) to enterprise server

Pattern 2B is similar to Pattern 2, except that it includes an adapter application in the Edge
Gateway to translate messages that arrive from the remote device or devices using a protocol
that cannot be understood. This pattern with adapter application is shown in Figure 5-4.

Figure 5-4 Client to edge server (with adapter) to enterprise server

5.1.5 Pattern 2 extended: Multiple edge servers connected to each other

This extended pattern is quite similar to the basic Pattern 2 with the option that some Edge
Gateways are directly connected with each other; see Figure 5-5. This might be appropriate
when remote locations need to communicate but without any data transmission to enterprise
systems and vice versa. It will reduce the data traffic to a necessary amount but requires
additional monitoring of the Edge Gateway instances.

Figure 5-5 Multiple edge servers connected to each other

Enterprise
Integration Layer

(ESB)Business
Application

Edge
Gateway

(with adapter) Device

Enterprise Remote Location

Pattern 2B

Enterprise
Integration Layer

(ESB)Business
Application

Edge
Gateway

Device

Edge
Gateway

Device
Chapter 5. Typical topologies and patterns of use 163

5.1.6 Selection criteria for the main pattern

Table 5-3 gives an overview about the typical requirements and the selection criteria for
Pattern 1 or pattern 2.

Table 5-3 Criteria for selecting a messaging topology pattern

5.2 Client to enterprise server

In this section, we discuss the basic pattern of connecting devices to the enterprise server
directly.

Decision criteria Pattern 1: Client to enterprise
server

Pattern 2: Client to edge
server to enterprise server

Use case and topology related

Data processing at remote
location

None to less; only data
transmission between remote
locations and enterprise

Moderate to extended (for
example filtering, data
exchange between devices at
one physical location)

Number of devices per remote
location

One to less Multiple and different devices

Device related

Available resources (for
example, processor or
memory)

Moderate resources on the
devices; able to handle some
additional workload

None to less resources
available on the devices for
extensions

Extensibility (for example, API
or connectivity options)

API or connectivity options
available on devices

Almost closed device
implementations with nearly
zero access to functions and
data; proprietary device
interfaces

Network related

Reliability of connection Almost reliable online
connectivity or none to less
need of data buffering at remote
locations

Unreliable connectivity with a
moderate to huge amount of
data that needs to be
transferred

Security of lower protocols Lower protocols secured with
no need of additional
encryption on-top

Unsecured connectivity with the
need of additional security layer
on-top
164 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

5.2.1 The topology

The client to enterprise server relationship is an example of basic connectivity topology, as
illustrated in Figure 5-6.

Figure 5-6 Client to enterprise server (basic connectivity topology)

The main characteristics for selecting the basic pattern are described based on the decision
table in Table 5-3 on page 164. Table 5-4 includes several areas of criteria for selecting the
basic connectivity pattern. This table divides the information based on use case, device, and
network relation.

Table 5-4 Criteria for selecting the basic connectivity pattern

Enterprise
Integration Layer

(ESB)Business
Application

Device

Enterprise Remote Location

Pattern 1

Decision criteria Pattern 1: Client to enterprise server

Use case and topology related

Data processing at remote location None to less; only data transmission between
remote locations and enterprise.

Remote locations with 1:1 data transfer between
the locations themselves and the enterprise can
be connected directly.

Number of devices per remote location One to less

A small number of devices at a remote location
allow direct connectivity to them.

Device related

Available resources (for example processor,
memory)

Moderate resources on the devices; able to
handle some additional workload.

If extended capabilities (data preprocessing or
filtering, protocol extension) are required and the
devices have enough resources, they can be
extended directly. This makes sense when a lot of
equal devices should be connected in the same
manner.
Chapter 5. Typical topologies and patterns of use 165

Extensibility (for example, API or connectivity
options)

API or other connectivity options available on
devices.

If extended capabilities (data preprocessing or
filtering, protocol extension) are required and the
devices provide an API or extended connectivity
options, they can be extended directly. This
makes even sense as well when a lot of equal
devices should be connected in the same
manner.

Network related

Reliability of connection Almost reliable online connectivity or none to less
need of data buffering at remote locations

An almost online connectivity requires none to
less buffering on the devices; this reduces the
overhead of data processing dramatically and
allows direct connectivity.

Security of lower protocols Lower protocols secured with no need of
additional encryption on-top

If the network transport between the remote
locations and the enterprise is secured, there is
no need for additional security layer on top. Uses
almost online connectivity, which simplifies the
connectivity and allows direct coupling.

Decision criteria Pattern 1: Client to enterprise server
166 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

5.2.2 The architecture

The main architecture looks quite similar to the topology pattern. The solution approach is
based on the extension of the simple ESB Pattern. Figure 5-7 shows an enterprise service
bus that consists of a Backbone Service Bus and the directly connected devices.

Figure 5-7 Client to enterprise server architecture

When designing a system architecture using Pattern 1, consideration must be given to the
selection of the messaging application and the communication protocol. The server software
will act as broker for messages to and from the devices, and the ESB provides the flexible
connectivity infrastructure for integrating applications and services. The communication
protocol should be as lightweight as possible due to a large number of connections. The
MQTT protocol was specifically designed for communicating with remote devices across
constrained networks, so it is an ideal choice for messages between the devices and the
server.

IBM WebSphere MQ Telemetry can act as an MQTT server with high performance and
flexible scaling capability which can handle current connections to multiple devices.
Furthermore, the MQTT client libraries provided by IBM WebSphere MQ Telemetry can be
used in constrained devices that have little storage and computing capability. In addition, with
MQTT publish/subscribe client implementations in Eclipse Project Paho donated by IBM,
users can save effort when designing and implementing systems. As a full-blown powerful
ESB product, IBM WebSphere Message Broker provides the flexible connectivity
infrastructure for integrating business applications and services, using MQTT natively.

Figure 5-8 on page 168 shows one possible implementation of the architecture previously
described. The example shows IBM WebSphere MQ Telemetry as a central messaging layer
between the devices and the enterprise application layer.

Other
Application

Other
Application

Other
Application

Other
Application

Other
Application

Other
Application

Technical
Monitoring

Technical
Monitoring

Enterprise Remote
Locations

A

A

A

A

Backbone Service Bus

.

.

.

Chapter 5. Typical topologies and patterns of use 167

Figure 5-8 Architecture of the client to enterprise server topology

5.2.3 Sample using the client to enterprise server connectivity pattern

Figure 5-9 on page 169 provides an example of client to enterprise server architecture in a
telematics system that is used for vehicle monitoring. The company needs to monitor
information such as running speed, tire pressure, interior temperature, and other information.
Thus, multiple sensors are attached to each vehicle. The sensor readings are to be
transmitted to company headquarters on a predetermined schedule, but if an updated report
is not received on time, the central system needs to send a message instructing the devices
to submit the data that has been recorded.

MQTT protocol: IBM WebSphere Message Broker can also implement the MQTT protocol
natively. You need to decide whether the devices are connected to IBM WebSphere MQ or
IBM WebSphere Message Broker, depending on whether the data that is coming from the
devices can be processed directly by other applications or must be modified (transformed
or routed).

.

.

.

Device

MQTT Client App

mqtty3.jar

Device

Device

Device

MQTT Client App

mqttclient.dll
Libmqttclient.a/so

Application
A

Application
N

. . .

Enterprise Service Bus
WMB/WESB

WMQ Server

Mediation and Mgmt

Q
u
eu

e
M

an
ag

er
.
.
.

MQTT

MQI,JSM,MQTT

Cloud
Service

System A

MQTT
MQTT

Channel

MQTT
Channel

MQ
Telemetry
Service
168 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 5-9 Architecture of a sample telematics messaging system in logistics

The client to enterprise server pattern works well for telematics, particularly in the field of
logistics. The following are factors that influence this decision:

� There is direct data transfer between trucks and the enterprise without additional data
preprocessing or filtering.

� The number of vehicles and sensors is unlikely to go higher than 100,000 (generally
considered the limit for this pattern).

� The sensors and other remote devices are generally newer and, therefore, have the ability
to embed and use third-party software, such as a messaging application.

� If no network is available, the devices are able to buffer the data until the next data
transfer.

� The data that is transferred is not security critical for a single truck because the data is
mostly truck healthy information or position data.

The following examples are specific to this case and its implementation:

� Trucks: MQTT client library: IBM WebSphere MQ Telemetry Software Development
Toolkit, which contains IBM WebSphere MQ Client C and Java libraries

– MQTT client library must be compatible with the device platform.

– The persistence capability avoids loss of data when MQTT client crashes or powers off.

– The connection between the device and enterprise server can be configured securely,
such as SSL (Java only).

– The devices that want to connect to the enterprise server can be authorized, such as
JAAS (Java only).

MQTT

Telematics System

DB2

Vehicle monitoring Logistics monitoring

Smart traffic

WebSphere MB/ESB

WebSphere MQ

WebSphere Application Server

Cloud B Service

GIS Service

Cloud A Service

3G/Wifi/GPRS

Telematics Unit (in vehicle)

MQTT Client

Communication unitProcessor

GPS unit Vehicle monitor Logistics monitor

App1 App2 Appn. . .

MQTT

MQTT

GPS
service
Chapter 5. Typical topologies and patterns of use 169

� Enterprise: MQTT server/broker: IBM WebSphere MQ Telemetry

Consider the following important factors:

– WebSphere MQ Telemetry has good performance during the high number of
concurrent connections from devices.

– The applications can be developed and connect to the MQTT server and broker easily
by using different transports, such as MQTT, MQI, or JMS.

– Strong security management allows authorizing device registration and securing the
connection.

� Enterprise: ESB: IBM WebSphere Message Broker and IBM WebSphere ESB

– Strong capability of integration with other systems
– Loose coupling model for updating, refactoring, and integrating

5.3 Client to edge server to enterprise server

Here we discuss the second topology pattern, client to edge server to enterprise server. Two
examples of this pattern also will be discussed, one from retail and another from the utility
industry.

5.3.1 The topology

The topology for this pattern is shown in Figure 5-10.

Figure 5-10 Pattern 2: Client to edge server to enterprise server topology

Numerous industry requirements or system constraints might lead a developer to use the
client to edge server to enterprise server topology, but the main characteristics of systems
that can benefit from this pattern are listed in Table 5-5.

Table 5-5 Characteristics of systems benefited by client to edge server to enterprise server topology

Enterprise
Integration Layer

(ESB)Business
Application

Edge
Gateway

Device

Enterprise Remote Location

Pattern 2

Decision criteria Pattern 2: Client to edge server to enterprise server

Use case and topology related

Data processing at remote location Moderate to extended (for example, filtering or data exchange
between devices at one physical location

Remote locations with data exchange, preprocessing and filtering
require additional mediation capabilities that lead to a dedicated
integration endpoint: Edge Gateway. Examples are Retail Stores or
Buildings with Smart Meter Devices.
170 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

5.3.2 The architecture

The solution approach is based on the extension of the Federated ESB Pattern. Figure 5-11
on page 172 shows a Federated ESB that consists of a Backbone Service Bus and managed
integration endpoints, called Edge Gateways. These endpoints help to extend the reach of an
ESB to the edge of an enterprise’s IT infrastructure in a reliable and controlled manner.

Number of devices per remote location Multiple and different devices

Use an Edge Gateway to reduce the number of connections and
make the data preprocessing more transparent at a single
integration endpoint.

Device related

Available resources (for example, processor or
memory)

None to less resources available on the devices for extensions

At remote locations a lot of devices do have limited resources and
there is no room for extended integration functionality on these
devices. An Edge Gateway can implement these extensions and
reduce the impact on the devices.

Extensibility (for example, API or connectivity
options)

Almost closed device implementations with nearly zero access to
functions and data; proprietary device interfaces

Often the number of device types is limited to proprietary protocols
and connectivity options; there is a mediation required in between
the devices and the enterprise layer. These mediations can be
implemented in a configurable and flexible manner on an Edge
Gateway with extended capabilities for remote monitoring and
remote configurability and extensibility.

Network related

Reliability of connection Unreliable connectivity with a moderate to large amount of data that
needs to be transferred

Unsecured and unreliable networks require a data buffering at
remote locations for further delivery. This can be done in an
effective manner by an Edge Gateway. All data buffering and
preprocessing can be provided in a transactional context that no
data will be lost or compromised.

Security of lower protocols Unsecured connectivity with the need of additional security layer
on-top

If the device connectivity options are limited to unsecured protocols
(for example, FTP or HTTP) and the connectivity between remote
locations and the enterprise layer is not secured, and there is a
need for additional security layer on top. This should be
implemented a single time, at the Edge Gateway.

Decision criteria Pattern 2: Client to edge server to enterprise server
Chapter 5. Typical topologies and patterns of use 171

Figure 5-11 Client to edge server to enterprise server architecture

Today, many enterprises have already established a central enterprise integration facility and
monitoring for technical reasons. Nevertheless, data exchange with branch offices is still
handled batch-oriented with file transfer over unsecured and non-reliable connections in
many cases. Changing these business processes from batch to reliable and near real-time
processing requires a paradigm shift: The Federated ESB Pattern helps to extend the control
of centrally managed integration processes to the edge.

One implementation of such an Edge Gateway that has been developed based on the
requirements noted previously and especially for the retail industry is IBM Lotus Expeditor
integrator, which provides platform and application management as well as access services
such as the messaging and transaction services. These services allow for integration and
control of the managed integration endpoint of an Enterprise Service Bus.

5.4 Using the client to edge server to enterprise server
connectivity pattern

In this section we include samples from different industries of using the client to edge server
to enterprise server connectivity pattern.

5.4.1 Retail industry

Retail companies face hard competition. The only way to further reduce costs is seen in
streamlining business processes. Business process flexibility and automation requires
state-of-the-art IT systems. Furthermore, expanding business to new locations and most of all
moving into remote markets challenges existing IT systems. Reliable and secure data

Other
Application

Other
Application

Other
Application

Other
Application

Other
Application

Other
Application

Technical
Monitoring

Technical
Monitoring

Enterprise Remote
Locations

A

A

A

A

.

.

.

EG1

EG2

EG3

EGn

Backbone Service Bus

EG
Integration end points (Edge Gateways) of an ESB that provides a
reliable, managed data exchange and a remote application control.
172 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

transmission between remote stores and back-end infrastructure is key to assure continuous
business and availability.

Business analytics and optimization supports ad-hoc decisions and reactions to market and
environment changes. Analytical investigations need most current data (for example, store
revenue and transaction data). Subsequent actions must be processed instantly (for example,
distribution of price updates to stores).

Existing classical time-triggered batch processing and data transport technologies, such as
FTP or even file system shares, are not able to fulfill these requirements reliably, securely,
and economically if network connections are slow and unreliable. Messaging technology
addresses these drawbacks and adds possibilities of data-triggered transmission and
transactional processing. Messaging is already recognized as the backbone data transport
mechanism in service-oriented IT infrastructures.

Now, data transmission based on messaging technology is extended not only to the store but
into the store. In order to achieve a seamless integration, it is recommended that all
connected devices and appliances in the store also use messaging technology.

Figure 5-12 shows typical retail store integration scenarios. In terms of a centralized IT
strategy of a retail enterprise the IBM Lotus Expeditor integrator can be implemented as a
lightweight Edge Gateway to collect, distribute and, in some cases, preprocess the data. As
the devices in retail stores do provide a large variety of protocols, it is important that an Edge
Gateway supports these. IBM Lotus Expeditor is part of the IBM Retail Industry Framework as
one option for retail store integration scenarios.

Figure 5-12 Retail integration example

Remote Location Server

Expeditor Integrator
(built on Lotus Expeditor Client)

Other Client
Systems

Resource Adapter
Framework

and
Resource Monitor

Application Control
Service

(Event trigger flows
to process use cases)

IBM
Micro Broker

(�B)

�B Bridge
MQTT to MQ

Bottle Return
Systems

�B JMS
Buffered
Client

(Durable for
sending)

MQTT Client
(Durable

subscription)

WebSphere Message
Broker

Message
Queues

MQ

Buffer
subscribed
message

MQTT
Message
Topics

�B JMS
Client

(Durable
subscription)

Handhelds

Monitor
files

JDBC

HTTP

FTP

Scale

Database

REST
(HTTP

systems)

Backbone Service
Bus

(BSB)

Tx

�B Pub/Sub
(MQTT)

4690
Ctrl

FTP
Server

File
Read
Write
Chapter 5. Typical topologies and patterns of use 173

A typical retail store integration scenario includes the following key components:

� Backbone Service Bus

This component is the central messaging bus in the enterprise infrastructure. All retail
stores are connected to this ESB. A typical implementation is IBM WebSphere Message
Broker.

� Remote Location Server

This server hosts all applications for back office processes within a retail store. Depending
on store size this server might exist multiple times. It is the physical server on which the
Edge Gateway runs.

� IBM Lotus Expeditor integrator (micro broker)

Lotus Expeditor integrator as an implementation of the Edge Gateway provides a
lightweight integration hub for remote locations, such as retail stores. It enables
straightforward business and application integration of the enterprise central office with its
retail stores in a reliable, flexible, and managed way. It can even be deployed at remote
locations with limited hardware and software resources and with no skilled IT
management available.

Lotus Expeditor integrator interacts with the POS systems, label printers, and scales for
forwarding price update data, label data, and scale data to the retail stores and to pick up
transaction log and other data from the retail store. It supports the following protocols to
talk with devices:

– File system
– (S)FTP
– JDBC
– HTTP
– Other protocols through custom implementation based on an adapter API

One of the most important interfaces of IBM Lotus Expeditor integrator is the MQTT
protocol-based connectivity to different types of messaging clients that can be implemented
on devices:

� Micro broker JMS Buffered Client for buffered message-based connectivity (intended for
durable sending, supports network outages)

� Micro broker JMS Client for simple message-based connectivity (intended for durable
subscription)

� MQTT Client on non-Java platforms for simple message-based connectivity (intended for
durable subscription)

The challenge today is to extend the reliable and secure data connectivity to the last mile
between Edge Gateway and devices. Typically, retailers have started to roll out secure and
reliable messaging for the following reasons:

� Provide data, such as price updates, scale and label printer data to the stores

� Collect data, such as transaction data, invoice data from the stores in a transactional
context

In 4.5, “Integrate MQTT with IBM Lotus Expeditor integrator” on page 147, we describe in
detail the message-based connectivity between the IBM Lotus Expeditor integrator and
devices running the micro broker JMS Client.
174 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

5.4.2 Energy and utilities industry

The energy and utility industry is undergoing a big change due to the constantly increasing
demand for energy at the same time as traditional energy generation resources are
exhausting. The energy production and distribution must be more efficient and sustainable.
The trend to green energy generation is noticeable.

One way of achieving the higher efficiency is better balancing of energy generation, storage
and consumption. This can be done most efficiently as near to the physical location of
generation, storage, and consumption as possible. The need for centralized communications
is reduced and autonomous operations of increasingly smaller sections of the distribution grid
are enabled.

New energy management applications drive the establishment of smart grids. Their efficiency
heavily depends on the ability to capture fine-grained, real-time, energy-related sensor data,
such as power consumption and power generation meter values, and control commands (for
example, direct load-control commands for devices that support control functions).

The following basic architectural approaches exist for capturing data from sensors and
actuators:

� Centralized data capturing and processing
� De-centralized data capturing with partly preprocessing de-centrally and centrally

In the following sections we explain the different methods to achieve data exchange with
intelligent meters.

Centralized approach
The centralized approach is used for collection of (sensor/actuator) data that requires
centralized processing. An example is the collection of energy consumption data for billing
purposes. In addition, for better energy production planning, centralized captured data can be
analyzed for consumption prediction.

Figure 5-13 on page 176 shows the centralized approach in which Integration tier 1 is
centrally placed in the IT back-end system. High parallel processing power and
high-bandwidth connections for further processing are easily made available and
maintainable.
Chapter 5. Typical topologies and patterns of use 175

Figure 5-13 Centralized architecture approach

Decentralized approach
The decentralized architectural approach is for use cases that rely on decentralized
integration tiers (mini-server or integration hub), for example a smart grid server. If the
captured data is required only for use cases that required further interaction with
decentralized objects, instant processing close to these objects is more efficient. A typical
example is a minicomputer or server that needs to control a device with sensors and
actuators. The server collects the sensor data, processes it and interacts with the actuators to
control the device based on the retrieved sensor data.

This approach includes the following typical requirements:

� Decentralized use cases are more efficiently executed near to the data source and close
to the controlled objects (for example, leveling grid load by controlling photovoltaic plants
as producers and hot water boilers as consumers).

� Constant back-end connectivity cannot be assured and is not desired or even not allowed.

� Data from home or premises needs to be transmitted anonymously, securely, and reliably
(decentralized data transformation).

� Provide intermittently connected decentralized components that are intelligent enough to
run decentralized use cases (decentralized transactional secure, reliable, remote
manageable, and monitored execution unit).

Figure 5-14 on page 177 shows that Integration tier 1 is placed closer to the producers of the
events. Only a subset of the collected data, maybe forwarded to the back-end system,
depending on its relevance. The main objective for the data collection at this layer is
preprocessing for further actions only relevant to the local environment (of tier 1).

High volume event
processing facilities

Business backend
and data center

Data exchange
control management

Integration tier 1
(events and data)

Integration tier 2
(business)

Event and data
collection

Logical Unit 1

Logical Unit n

…

Logical Unit 2
176 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure 5-14 Decentralized architecture approach

5.4.3 Industry example with decentralized application logic

The decentralized approach can be used to collect data from sensor devices and to interact
locally with connected actuators. The Edge Gateway acts as Integration tier 1 and MQTT is
the messaging-based communication option for data exchange between the devices and
appliances (logical units).

Figure 5-15 on page 178 contains the different integration options for smart meters,
household and smart grid appliances, applications and services with IBM Lotus Expeditor
integrator as the Edge Gateway. Currently many traditional meters are only accessible
through serial communication interfaces. Meter Gateways bridge these meters into the
TCP/IP world by using different protocols and standards (for example HTTP/SOAP).
However, messaging becomes more popular as a communication technology because an
integration into a messaging-based back-end services bus is more efficient. Protocol
overhead is smaller and conversion between JMS messaging systems is simpler.

Data exchange
control management

High volume event
processing facilities

Business backend
and data center

Integration tier 2
(filtered events

and data) optional

Integration tier 3
(business)

Event and data
collection

Logical Unit 1

Logical Unit n

…

Logical Unit 2

• Events and data are
collected from each
producer; filtered,
preprocessed

• Local action can be taken
without backend (not
dependent on backend
availability)

• Cheap integration layer

Integration tier 1
(events and data)

Runtime for
de-central
integration

and
processing

Runtime for
de-central
integration

and
processing
Chapter 5. Typical topologies and patterns of use 177

Figure 5-15 Example for integration of meters with Edge Server

As already discussed for the retail industry, the micro broker clients can use Expeditor
integrator (IBM micro broker as the MQTT provider) as the Edge Server (or Grid Server) for
seamless messaging-based integration with the back-end system. This approach is reliable
and can be end-to-end secured (for example, by using SSL or additional security features in
IBM Lotus Expeditor integrator).

An Edge Server such as IBM Lotus Expeditor integrator provides a decentralized remotely
manageable Java application run time based on open standards (OSGi) that can work without
constant back-end connectivity. This allows not only for autonomous operation and execution
of de-central use cases, for example control of accessible energy producers (private
photovoltaic solar power plants) and consumers (hot water boilers, geo-thermal heating) for
leveling power usage in low voltage grids, but also for preprocessing of data (for example,
evaluate and filter meter readings, apply data privacy, and so forth).

The IBM Lotus Expeditor integrator Resource Adapters and the Resource Monitor Service
are responsible for monitoring, reading and writing data to the different target resources. This
also includes the publish/subscribe engine and queues in IBM micro broker to which the
micro broker clients are connected. The Resource Monitor triggers configured ACS flows that
perform the data exchange (and possible data processing). The Monitoring Service creates
ACS flow status messages for transactional monitoring by the back-end service bus
(Business Events). The Monitoring Service also creates log events that can be forwarded to
operational monitoring facilities in the back-end system.

De-central Server

Expeditor Integrator
(built on Lotus Expeditor Client)

Resource Adapter
Framework

and
Resource Monitor

Application Control
Service

(Event trigger flows
to process use cases)

IBM
Micro Broker

(�B)

�B Bridge
MQTT to MQ

WebSphere Message
Broker

Message
Queues

MQ

Buffer
subscribed
message

MQTT

Monitor
files

Backbone Service
Bus

(BSB)

Tx

�B Pub/Sub
(MQTT) File

Read
Write

MQTT or JMS Client

Legacy access: serial
/HTTP/FTP/File
178 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The selection for an optimal solution heavily depends on non-functional requirements. The
following list notes most of those requirements:

� Number of connected meters; number of possible parallel connections

� Meter reading interval and absolute reading time; accepted delay between meter data
read and meter data storage at the back end

� Meter data push (initiated by meter) versus meter data poll (back-end initiated reading)

� Security (encryption, authentication, authorization)

� Availability (central versus de-central approach)

� Assured delivery of meter data

If the collected data is required for local control interactions (for example, controlling energy
consumers and producers) decentralized autonomous grid servers are preferred
(independent of centralized back-end systems). Figure 5-16 shows the architecture for the
utility scenario.

Figure 5-16 Energy and utility example architecture for integration of meters in SmartGrid infrastructures

A decentralized architecture provides the following benefits:

� Remote entities become more and more instrumented.

� Every device has computing power for different use cases but works in isolation.

� Remote entities are intermittently interconnected.

� Entities are not always online and depend often on a small and unreliable bandwidth.

� Intelligence is required immediately at a large number of remote entities.

� Processing of the data (preprocessing, filtering, preprocessing) where it occurs for
security and performance reasons (forward only the needed data to the back-end system).

� Remote entities can work more intelligently when combining the isolated device
capabilities. To achieve this there must exist basic and standardized services that can be
leveraged by each device.

� The large number of independently developed devices will require an intelligent tool chain
for test and maintenance.

Home premises Grid premises

Home
server JMS (MQ) over

TCP/IP
(or HTTP/SOAP)

Energy
data server
(de-central)

Automatic meter
management and
operations system

B2C portal

Meter
transport
protocols

(e.g., RS-232/
Zigbee

MQTT over
TCP/IP (or
HTTP/SOAP)

Meter
Meter

gateway

Backend premises

TCP/IP
(private)

TCP/IP
VPN/Internet
Chapter 5. Typical topologies and patterns of use 179

It is recommended to push data from the meter to the back end, for example by using MQTT.
rather than having back-end processes poll for data. This saves back-end resources and
transmission channel overhead. The following list notes the important reasons to save
resources:

� Currently, all networks with many hops and heavy load are based on a store-and-forward
mechanism. The usage of the available transmission channel is more efficient for small
arbitrary data packets when data transmission is packet-based rather than
connection-oriented.

� Data packets are sent when available and travel over different nodes (routers and other
nodes) to their destination. Intelligent routing algorithms from one node to the next
optimize the transmission speed.

� Data transmission reliability is not always in focus in lower transport layers and must be
applied by higher layers (for example TCP versus UDP).

There are different Edge Server functions in a Smart Metering environment. Smart Home
Servers or Gateways and Meter Gateways also make use of meter data for local processing
and execution of use cases. The following list shows the differences to the Grid Server:

� Smart home server or meter gateways

– Support many protocols, many connectivity options, many sensors and actors,
consumers and producers from different vendors.

– Abstract end device APIs, provide data in standard format for further processing (for
example, protocol conversion in MQTT and data in XML).

– Provide a user friendly GUI for home customers to position new services in home
premises.

– Allow easy user-friendly wiring of home devices for home control functions.

� Decentralized server or grid server

– Prepare data for seamless reliable back-end processing (masking, filtering, or
securing).

– Run advanced use cases (headless) for controlling more complex devices without
requiring constant back-end connectivity, for example use cases that depend on
optimization, prediction, modelling functions.

– IBM can provide application development tooling, support, back-end integration, and
remote management for de-central servers.
180 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Chapter 6. Scaling a system

In this chapter we provide information about the considerations you need to take into account
when scaling or expanding an MQTT-based messaging system to include more and more
interconnected devices.

This chapter contains the following sections:

� Scaling overview
� Provisioning first-time connections (PROV pattern)
� Pushing messages to a large number of devices (LSPN pattern)
� Pushing messages from a large number of devices (LSSP, LSSP2 patterns)

6

© Copyright IBM Corp. 2012. All rights reserved. 181

6.1 Scaling overview

As a system expands and the number of connected MQTT-enabled devices increases,
developers must keep in mind several critical architectural considerations to ensure proper
response time as the system grows or scales.

6.1.1 Types of scaling

Traditionally, scaling is achieved in two ways:

� Vertical scaling: Processing capacity is added to the processing nodes without adding any
new nodes. This method is also called scaling up.

� Horizontal scaling: New nodes are added to balance the processing load between them.
This method is also called scaling out or clustering.

When dealing with large sensor systems, horizontal scaling is the preferred approach. You
can add multiple device handlers to manage the required number of devices, which helps
maintain proper response times and adds architectural flexibility.

As the number of devices increases, you can also add new layers. For example, you can use
Edge Device Hubs to group specific types of devices within certain areas of affinity.

6.1.2 Scalability patterns

Patterns are available to guide the solution architect when defining large scale systems.
These patterns can be used alone or in combination with other patterns. The goal of these
patterns is to add the required intermediary components in a transparent way. By doing this,
the overall processing capacity of the system is increased without affecting other
components.

Almost every component in a typical WebSphere MQ-MQTT topology can be scaled
horizontally, provided certain considerations are taken into account. Refer to Chapter 5,
“Typical topologies and patterns of use” on page 159.

For purposes of this analysis, scalability patterns are grouped into the following categories
based on their primary purpose:

� PROV pattern: Configuring a device for its first-time use.
� LSPN pattern: Sending messages from the central system to devices.
� LSSP and LSSP2 patterns: Sending messages from devices to the central system.

In the remaining sections in this chapter we provide detailed information about these patterns.

6.2 Provisioning first-time connections (PROV pattern)

This pattern provisions first-time connections to new devices in a scalable way. Each device is
configured to connect to a predefined provisioning server in its first use. The provisioning
server sends connection information to the device, which is configured to always connect to a
specific messaging service provider.
182 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

6.2.1 Applicability

Use the PROV pattern when you consider the following system characteristics to be most
important:

� Auto-configuration

Devices need to be configured on their first time use, without any user interaction. Include
only provisioning server information in the devices before they are deployed. Depending
on the capabilities of the device, the device can be configured such that if it loses its
connection or configuration information or if it has just been started, the device can try
using a previous connection or go back to the provisioning server to obtain the connection
information again.

� Communication server independence

Devices cannot be hard coded to use a specific queue manager. The only information
needed at the device start is the provisioning server location, which can be changed later
by sending information to reconfigure the device (assuming it is capable of receiving such
information). The aim is to add flexibility to the model, allowing the devices to connect to
different queue managers easily.

� Scalability

The solution must be scalable without affecting the architecture. As the number of devices
increases, there must be an ability to add more components to the system without having
to change the model. There are usually far fewer provisioning messages than actual
communication messages, but if provisioning needs are too high, consideration can be
given to clustering the provisioning service.
Chapter 6. Scaling a system 183

6.2.2 Architecture

The architecture of the PROV pattern is shown in Figure 6-1.

Figure 6-1 PROV pattern architecture

Table 6-1 lists the components of the PROV pattern.

Table 6-1 PROV pattern components

Component Purpose

Devices x1 to xN Individual devices connected to the same queue manager

Device Hub A cluster of queue managers that handle messaging to and from
devices

MQ QMxx Individual queue managers, each handling a group of devices

Provisioning Service Manages the communication parameters for each device

Device to QM Database which records the device-manager association

Message Broker QMASx Routes messages to and from the appropriate queue manager

Application Any application that exchanges messages with the system. These
applications are not directly involved in the provisioning procedure.

Device Hub

Devices Central Device Hub Application Space

Application

Provisioning
Service

Device
to
QM

Devices
aa1 to aaN

Devices
nn1 to nnN

3

1

MQ QMA

MQ QMB
Message
Broker 1
QMAS1

4

MQ QMN

MQ cluster

2

5

Devices
a1 to aN
184 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

6.2.3 Communication sequence

The following steps take place when provisioning a new connection under the PROV pattern:

1. The device that wants to communicate with the central system connects to the
provisioning service and provides its unique device ID.

2. The provisioning service selects a queue manager for the device and records the
association in the database.

3. The provisioning service returns queue manager connection information to the device,
which stores it for future use.

4. The device uses the stored connection information to connect to the queue manager. The
same connection information will be used each time until the device is reprovisioned or
configured again.

5. The device subscribes to a unique topic specific to the device.

In an implementation of this pattern, the first communication between the device and the
provisioning service can be executed using any protocol that is accessible to both parts, such
as MQTT, HTTP, or REST.

The provisioning service selects the queue manager for each device. The rules for this
selection can vary from one implementation to another, but typically this difference involves
only the need to spread the devices equally to the available queue managers. Some scenario
information can be taken into account, such as differences in network connectivity speed, the
physical layout of the devices, or unbalanced use of the available queue managers.

Also, when provisioning a device that has been previously provisioned, the same queue
manager should be assigned because the issue most likely relates to a device reset or
dropped connection.

6.3 Pushing messages to a large number of devices (LSPN
pattern)

This pattern manages communication with a large number of devices, particularly when the
main communication direction is from the central system to the devices.

6.3.1 Applicability

Use the LSPN pattern when you consider the following system characteristics to be most
important:

� Scalable to a large number of devices

This pattern can be applied to any system, but its benefits are realized most fully when
using a large number of remote devices or applications. It allows for multiple queue
managers to be used to communicate with different groups of devices, balancing the
workload between them. As the number of devices increases, more queue managers can
be added to maintain required response times.

� Real-time messaging

The number of queue managers is variable and can be adjusted to reduce communication
latency, which is important because messages are supposed to be delivered in near real
time. The queue managers also can temporarily store pending messages for later delivery
in the event that communication to the receiving device or application is lost. And if the
Chapter 6. Scaling a system 185

LSPN pattern is used in conjunction with the PROV pattern, reconfiguration information
can be sent to devices to change how they communicate with the central system.

� Architecture independent

With the LSPN pattern, changes in architecture should be transparent to the rest of the
system; when a new queue manager is added, it should not affect the operation of any
existing ones. The device or application will always send messages to the same point, so it
will not be affected by any changes in the queue manager structure.

� High availability

To keep communication highly available, if a particular component fails, traffic can be
redirected through other components. If the failure is in one of the queue managers, the
affected devices can be reprovisioned to use another queue manager and continue
working. If the failure is in the message broker, other components in the same MQ cluster
can be assigned to cover the failure.

6.3.2 Architecture

The architecture of the LSPN pattern, shown in Figure 6-2, is more complex than that of the
PROV pattern discussed in the previous section.

Figure 6-2 LSPN pattern architecture

Device Hub

Devices Central Device Hub Application Space

Devices
a1 to aN

Application

Provisioning
Service

Device
to
QM

Devices
aa1 to aaN

Devices
nn1 to nnN

3

1

MQ QMA

MQ QMB
Message
Broker 1
QMAS1

4

MQ QMN

MQ cluster

2

186 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Table 6-2 lists the components of the LSPN pattern.

Table 6-2 LSPN pattern components

6.3.3 Communication sequence

The following steps are executed when a message is sent from the application to a device
under the LSPN pattern:

1. The application sends a request to the message broker using the appropriate
communication protocol, which can be MQTT or another one (HTTP, JMS, REST, and so
on).

2. The message broker determines which queue manager is responsible for the destination
device.

3. The message broker publishes the message to the queue manager using the appropriate
topic.

4. The queue manager sends the MQTT message to the destination device.

6.4 Pushing messages from a large number of devices (LSSP,
LSSP2 patterns)

The LSSP pattern sends messages from a large number of devices to a central system.
There are two versions of this pattern, one of which utilizes an edge device hub in an
intermediate layer.

6.4.1 LSSP applicability

Use the LSSP pattern when you consider the following system characteristics to be most
important:

� Scalable to a large number of devices

This pattern can be applied to systems of any size. As long as the number of devices
increases, additional intermediate components (such as queue managers) can be added.
If the number of devices is too high or the devices are distributed too far geographically,
then the LSSP2 pattern should be considered.

Component Purpose

Application Any application that pushes messages to a device or group of
devices

Message broker QMASx Routes messages to the appropriate queue manager; additional
processing can be added to handle authorization, message
transformation, and so on

Device to QM Database that records the device-manager association

Device hub A cluster of queue managers used to send messages to devices

MQ QMxx Individual queue managers, each handling a group of connected
devices

Devices x1 to xN Individual devices connected to the same queue manager
Chapter 6. Scaling a system 187

� Direct connection to central systems

In this pattern, every device is directly connected to the central system when a connection
is available. If the connection is lost, the device tries to reconnect to the same queue
manager or, if that attempt fails, requests updated connection information from the
provisioning manager.

� Fixed-interval messaging

In most cases, the devices in this pattern are expected to send messages at
predetermined time intervals or immediately if an exceptional event occurs.

� Parallel application processing

The processing application can handle parallel message processing. Also, every message
should be processed only once, so specific logic should be implemented by the
application to prevent processing of duplicate messages, if they occur.

� Architecture independent

With the LSSP pattern, changes in architecture are transparent to the rest of the system,
so when a new queue manager is added, it will not affect the operation of any existing
queue managers. And if a queue manager is taken out of service, only the devices that are
directly connected to it will need to be reconfigured. To the rest of the system, this change
remains transparent.

� High availability

To keep communication highly available, if a particular component fails, traffic can be
redirected through other components. If the failure is in one of the queue managers, the
affected devices can be reprovisioned to use another queue manager and continue
working.
188 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

6.4.2 LSSP architecture

The architecture of the LSSP pattern, illustrated in Figure 6-3, shows only a central device
hub.

Figure 6-3 LSSP pattern architecture

Table 6-3 lists the components of the LSSP pattern.

Table 6-3 LSSP pattern components

Component Purpose

Devices x1 to xN Individual devices connected to the same queue manager

Device hub Individual queue managers, each handling communication with a
group of devices

MQ QMxx Queue managers, defined as local to the application server, that
receive messages from the workload balancing mechanism

Message Broker QM ASx A cluster of queue managers used to send messages from devices
to the broker

Device to QM Database that records the device-manager association

Application The final destination that picks the message from the queue
manager for processing

Device Hub

Devices Central Device Hub Application Space

Devices
a1 to aN

Application

Provisioning
Service

Device
to
QM

Devices
aa1 to aaN

Devices
nn1 to nnN

2

3

MQ QMA

MQ QMB
Message
Broker 1
QMAS1

1

MQ QMN

MQ cluster
Chapter 6. Scaling a system 189

6.4.3 LSSP communication sequence

The following sequence of steps is executed when a device sends a message to the
application under the LSSP pattern:

1. The device publishes a message to its corresponding queue manager, using MQTT with a
specified inbound topic.

2. The inbound topic is mapped to a clustered queue and published to the queue manager.

3. The queue manager defined as local in the application server receives the message sent
by the workload balancing routine.

4. The application gets the message from the server queue manager and processes it.

6.4.4 LSSP2 applicability

The same system characteristics that support use of the LSSP pattern also support use of
the LSSP2 pattern (as listed in 6.4.1, “LSSP applicability” on page 187). The main difference
between the patterns is that the LSSP2 pattern inserts an intermediate layer to help manage
message flow.

This layer, which contains an edge device hub, might be required for several reasons:

� Geographic proximity

If the devices are widely distributed and the network to reach them is of poor quality or too
expensive, it is better to have an edge hub located near the devices to optimize
communication with the central system.

� Protocol incompatibility

It the devices are unable to use the MQTT protocol, an edge hub can be used as a
protocol converter.

� Device control

Some devices, such as RFID sensors, require a specific controller to work properly. This
controller can also act as an edge hub and handle the communication between the
devices and the central system.
190 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

6.4.5 LSSP2 architecture

The architecture of the LSSP2 pattern, illustrated in Figure 6-4, adds an intermediate layer
with an edge device hub.

Figure 6-4 LSSP2 pattern architecture

Table 6-4 lists the components of the LSSP2 pattern.

Table 6-4 LSSP2 pattern components

Device Hub

Devices Edge Device Hub Central Device Hub Application Space

Devices
a1 to aN

Devices
n1 to nN

Application

MQ QMB

Provisioning
Service

Device
to
QM

Devices
aa1 to aaN

Edge Hub 1

Edge Hub 2Devices
aa1 to aaN

MQ QMN

MQ QMA

Message
Broker 1
QMAS1

MQ cluster

1 2
3

4

Component Purpose

Devices x1 to xN Individual devices connected to the same queue manager

Edge Hubx Individual hubs controlling a group of related devices and sending
information to the corresponding queue manager

Device hub Individual queue managers, each handling communication with a
group of devices

MQ QMxx Queue managers, defined as local to the application server, that
will receive messages from the workload balancing mechanism

Message Broker QM ASx A cluster of queue managers used to send messages from devices
to the broker

Device to QM Database that records the device-manager association

Application The final destination that picks the message from the queue
manager for processing
Chapter 6. Scaling a system 191

6.4.6 LSSP2 communication sequence

The following sequence of steps is executed when a device sends a message to the
application under the LSSP2 pattern:

1. The device sends a message to its edge hub using an appropriate communication
protocol.

2. The edge hub publishes the message to its corresponding queue manager, using MQTT
with a specified inbound topic.

3. The inbound topic is mapped to a clustered queue and published to the queue manager.

4. The queue manager defined as local in the application server receives the message sent
by the workload balancing routine.

5. The application receives the message from the application server queue manager and
processes it.
192 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Appendix A. MQTT and devices

The number of different types of devices that can benefit from MQTT implementations is
growing every day. This appendix discusses some of the available MQTT implementations on
specific devices to demonstrate their use and functionality. The first section shows how to use
MQTT directly from a circuit board, in this case the Arduino platform. The second section
covers the use of MQTT from mobile devices (including smartphones, PDAs, or tablets).
Although there are a good number of different platforms, each one with its particularities, in
this book we discuss devices based on the IBM Worklight and Android devices.

A

© Copyright IBM Corp. 2012. All rights reserved. 193

A.1 MQTT and Arduino devices

In this section we describe the use of the MQTT protocol for the devices that are built on top
of the Arduino board.

A.1.1 Introducing Arduino

Arduino is an open source electronics platform that allows you to enhance the capabilities of
sensors and actuators. Arduino is built on top of a micro-controller that has a number of digital
and analogue pins. These pins allow the board to sense its environment and respond to it.
After the wiring is done, the board can be programmed using the Arduino programming
language.

The syntax of this programming language is similar to the C programming language. The
similarity also extends to use of libraries in C programs. That is, a regularly used piece of
code could be hived off as a library which other programmers could include in their
subsequent programs.

A.1.2 Simple Arduino circuit

This scenario shows a simple example of using Arduino and is taken from the Arduino
development IDE. It provides an illustration of the circuit (Figure A-1) and includes the source
code (Example A-1). The board is an Arduino Uno. In the circuit shown in Figure A-1, the LED
has its cathode connected to GND and the anode to pin 13.

Figure A-1 Illustration of the Arduino circuit

Additional resource: You can learn more about the Arduino programming language at:

http://arduino.cc/en/Reference/HomePage
194 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://arduino.cc/en/Reference/HomePageArduinoProgrammingLanguage

In general, the Arduino code runs such that the setup() is run once and only once. Whereas
the loop() function runs all the time unless the reset button on the board is pressed. When
reset is pressed, the code execution begins again with setup() followed by looping the loop()
function. To run the code, it is first compiled in the IDE and then is uploaded to the board. The
upload causes a reset automatically, and the execution begins as described before.

In Example A-1, the LED connected to pin 13 is first designated as an OUTPUT pin. Then, in
the loop() function, the LED is turned on using the built-in digitalWrite() function, where
HIGH turns the LED ON and LOW turns it OFF. A delay of 1000 milliseconds (or a second) is
introduced between these functions to give an impression of a blinking LED.

Example A-1 Source code for the sample circuit

/
Blink
Turns on an LED on for one second, then off for one second, repeatedly.
This example code is in the public domain.

/
void setup() {

// initialize the digital pin as an output.
// Pin 13 has an LED connected on most Arduino boards:
pinMode(13, OUTPUT);

}
void loop() {

digitalWrite(13, HIGH); // set the LED on
delay(1000); // wait for a second
digitalWrite(13, LOW); // set the LED off
delay(1000); // wait for a second

}

A.1.3 MQTT support in Arduino

The MQTT support in Arduino is provided through a library that is an implementation of the
MQTT protocol V3. You can download this library at:

http://knolleary.net/arduino-client-for-mqtt/

This library should be included in the Arduino code and then appropriate functions are called
for CONNECT, PUBLISH, SUBSCRIBE, and so forth. In our simple example, the code for
CONNECT is added in the setup() function because the connection is made only once. The
SUBSCRIBE code is added in the setup() function, and the message that has arrived is
handled separately in a callback() function. The PUBLISH code is added in the loop()
function.

A.1.4 Arduino and MQTT with a publish scenario

The network support for the Arduino board is provided using a shield, such as Arduino
Ethernet shield. This shield is connected to a modem or a network port using a standard
network cable. This shield sits on top of the Arduino Uno board or other board.

For more information about the Arduino Ethernet shield, see:

http://arduino.cc/en/Main/ArduinoEthernetShield
Appendix A. MQTT and devices 195

http://knolleary.net/arduino-client-for-mqtt/
http://knolleary.net/arduino-client-for-mqtt/
http://arduino.cc/en/Main/ArduinoEthernetShield

Description of the scenario
This scenario illustrates an Arduino-based device that publishes to a topic using the MQTT
protocol. The device is a simple temperature sensor that measures the ambient temperature
every two minutes and publishes to a topic on an MQTT server.

Figure A-2 illustrates the circuit for this scenario.

Figure A-2 Publish scenario circuit

Example A-2 lists the source code for this scenario.

Example A-2 Source code

#include <SPI.h>
#include <PubSubClient.h>
#include <DallasTemperature.h>
#include <OneWire.h>
#include <Ethernet.h>
#include <util.h>
#include <ctype.h>
/
OneWire - http://www.arduino.cc/playground/Learning/OneWire
Dallas Temperature Sensor -
https://code.google.com/p/dallas-temperature-control-library/source/checkout
MQTT - http://knolleary.net/arduino-client-for-mqtt/
/
#define CLIENTID "ArduinoSensor"
#define TOPICNAME "sensor/temperature"
#define POLLINTERVAL 120000
#define DS18S20Pin 2
196 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

//Some MAC - DEAD BEEF FEED !
byte mac [] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED} ;
//Connect to test.mosquitto.org server
byte server [] = { 85, 119, 83, 194 };
//Our MQTT client
PubSubClient arduinoClient(server, 1883, callback) ;
//Board on time
unsigned long boardTime = 0 ;
//Sensed temperature
float sensedTemperature = 0.0 ;
//Temperature in character format for publishing
char charTemperature [20]
;
//Temperature chip i/o
OneWire oneWire(DS18S20Pin); // on digital pin 2
DallasTemperature sensors(&oneWire);
//Handle message from mosquitto and set LEDs
void callback(char topic, byte payload, unsigned int length){
//Do nothing as we are publishing ONLY.
}
void setup(void) {
Serial.begin(9600);
// Start the sensor
sensors.begin();
//Connect to the MQTT server - test.mosquitto.org
beginConnection() ;
}
//Initialise MQTT connection
void beginConnection() {
Serial.begin(9600);
Ethernet.begin(mac) ;
int connRC = arduinoClient.connect(CLIENTID) ;
if (!connRC) {
Serial.println(connRC) ;
Serial.println("Could not connect to MQTT Server");
Serial.println("Please reset the arduino to try again");
delay(100);
exit(-1);
}
else {
Serial.println("Connected to MQTT Server...");
}
}
void loop(void) {
boardTime = millis();
if ((boardTime % POLLINTERVAL) == 0) {
getTemp() ;
dtostrf(sensedTemperature,5,2,charTemperature) ;
arduinoClient.publish(TOPICNAME, charTemperature) ;
}
}
void getTemp() {
// Send the command to get temperatures
sensors.requestTemperatures();
delay(100);
Appendix A. MQTT and devices 197

sensedTemperature = sensors.getTempCByIndex(0);
delay(150);
}

The description of the source code is as follows:

1. Add the PubSubClient.h, OneWire.h, and DallasTemperature.h header files and ensure
that the associated .cpp files are available to the IDE.

2. The server to be connected to is defined as a byte array where each number represents
the octets of an IP address.

3. Define a function callback() that receives control when a message for the subscribed
topic arrives.

4. Define the client arduinoClient using the server IP address in the form of byte array, port
number and the callback() function as the arguments.

5. Define the name of the client and the topic to be subscribed as constants.

6. As part of setup(), initialize the pins and initiate the connection. To initiate the connection,
define (randomly) the MAC address for the device as 0xDEADBEEFFEED. Change it to the
MAC address as applicable to your installation.

7. As part of the setup() function, initialize the temperature sensor.

8. In the loop() function, obtain the temperature every 2.0 minutes, and publish it to an
MQTT topic.

Running the scenario
To run the scenario, follow these steps:

1. Start an instance of the WMQTT Utility.

2. Enter the IP address and port for the MQTT broker.

3. Click Connect.

4. Enter a topic for the subscription as sensor/temperature/.

5. Turn on the board.

6. Click Subscribe on the WMQTT Utility.

Temperatures appear in the WMQTT Utility.

A.1.5 Arduino and MQTT with a subscribe scenario

The network support for the Arduino board is provided using a shield, such as Arduino
Ethernet shield. This shield is connected to a modem or a network port using a standard
network cable. This shield sits on top of the Arduino Uno board or other board.

For more information about the Arduino Ethernet shield, see:

http://arduino.cc/en/Main/ArduinoEthernetShield

Description of the scenario
This scenario shows a device that subscribes to a topic using the MQTT protocol. In this
example, an application reads in the temperature that is published by the device described in
A.1.4, “Arduino and MQTT with a publish scenario” on page 195. This application has logic in
it to determine whether the temperature is within predetermined limits. If the temperature is
within limits, a message as YES,YES is published. If the temperature is not within limits, a
198 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://arduino.cc/en/Main/ArduinoEthernetShield

message as NO,YES or YES,NO is published, depending on whether the lower limit or higher
limit, respectively, was breached.

Figure A-3 shows the circuit for this scenario.

Figure A-3 Subscribe scenario circuit

In this circuit, three LEDs have anodes connected to pins 7, 8, and 9, respectively. Their
cathodes are grounded. The resistors are 220 to avoid damaging the LED. These three
resistors approximately replicate an RGB LED behavior. That is, at any point, only one of the
LEDs will be glowing to indicate NORMAL, HIGH, or LOW situations.

Example A-3 shows the source code for this scenario.

Example A-3 Source code

#include <Ethernet.h>
#include <EthernetUdp.h>
#include <EthernetServer.h>
#include <EthernetClient.h>
#include <util.h>
#include <Dns.h>
#include <Dhcp.h>
#include <SPI.h>
#include "PubSubClient.h"
//Pin definition
#define NORMALPIN 7
#define LOWPIN 8
#define HIGHPIN 9
//MQTT definition
#define CLIENTID "ArduinoActuator"
Appendix A. MQTT and devices 199

#define TOPICNAME "sensor/temperature/monitor"
/
By default Pin 7 will be ON to denote that the temperature is between HIGH and LOW
limits.
When the limits are breached, then Pin 7 goes OFF and either Pin 8 or Pin 9 goes
ON depending on which limit was breached.
Pin 7 Pin 8 Pin 9
NO,NO 0 1 1 Meaningless - this should not happen !
NO,YES 0 1 0 LOW limit breached
YES,NO 0 0 1 HIGH limit breached
YES,YES 1 0 0 NORMAL - No limits are breached.
/
// CHANGE MAC ADDRESS TO THAT APPEARS ON THE ETHERNET SHIELD
byte mac [] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED} ;
//
//Connect to test.mosquitto.org server
byte server [] = { 85, 119, 83, 194 };
//Handle message from mosquitto and set LEDs
void callback(char topic, byte payload, unsigned int length) {
int i=0; char buffer [length] ;
for(i=0;i<length;i++) {
buffer [i] = char((payload + i)) ;
}
String payLoadData = buffer ;
setPins(payLoadData) ;
}
//Our MQTT client
PubSubClient arduinoClient(server, 1883, callback) ;
void setup() {
//Set pins to indicate normal
beginPins() ;
//Connect to the MQTT server - test.mosquitto.org
beginConnection() ;
}
//Initialise LED pins
void beginPins() {
pinMode(NORMALPIN, OUTPUT) ;
pinMode(LOWPIN, OUTPUT) ;
pinMode(HIGHPIN, OUTPUT) ;
digitalWrite(NORMALPIN, HIGH) ;
digitalWrite(LOWPIN, LOW) ;
digitalWrite(HIGHPIN, LOW) ;
}
//Initialise MQTT connection
void beginConnection() {
//Serial.begin(9600);
Ethernet.begin(mac) ;
int connRC = arduinoClient.connect(CLIENTID) ;
if (connRC) {
arduinoClient.subscribe(TOPICNAME) ;
} else {
Serial.println(connRC) ;
}
}
void loop() {
200 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

arduinoClient.loop() ;
}
void setPins(String s) {
/
The code between BEGIN and END turns ON all the LED for a second before turning ON
or OFF the LED
to denote the temperature range. If the temperature source does not fluctuate too
much, then this
piece of code can give an impression that the Arduino is "working".
/
// BEGIN
digitalWrite(NORMALPIN, HIGH) ;
digitalWrite(LOWPIN, HIGH) ;
digitalWrite(HIGHPIN, HIGH) ;
delay(1000) ;
// END
s.trim();
int temperatureLimits[] = {1,1} ;
if (s.substring(0,s.indexOf(',')) == "YES") { temperatureLimits [0] = 1; }
if (s.substring(0,s.indexOf(',')) == "NO") { temperatureLimits [0] = 0 ; }
if (s.substring(s.indexOf(',')+1) == "YES") { temperatureLimits [1] = 1 ;}
if (s.substring(s.indexOf(',')+1) == "NO") { temperatureLimits [1] = 0 ;}
int ledPins [] = {NORMALPIN, LOWPIN, HIGHPIN} ;
int ledStatus [] = {1, 0, 0} ; //Default is NORMAL, so NORMAL pin is ON
for (int i=0; i<2; i++) {
if (temperatureLimits [i] == 0) { ledStatus [0] = 0 ; ledStatus [i+1] = 1 ; }
}
for (int j=0; j<3; j++) {
digitalWrite(ledPins[j],ledStatus[j]
);
}
}

The description of the source code is as follows:

1. Add the PubSubClient.h header file, and ensure that this header file and the associated
.cpp files are available to the IDE.

2. Define the server to be connected to as a byte array, where each number represents the
octets of an IP address.

3. Define a function callback() that receives control when a message for the subscribed
topic arrives.

4. Define the arduinoClient client using the server IP address in the form of byte array, port
number, and the callback() function as the arguments.

5. Define the name of the client and the topic to be subscribed as constants.

6. As part of the setup() function, initialize the pins and initiate the connection. To initiate the
connection, define (randomly) the MAC address for the device as 0xDEADBEEFFEED.
Change it to the MAC address that is burnt onto the device.

7. After initiating the connection, subscribe to the topic name in which you are interested.

The callback() function calls the setPins() function to turn ON or OFF the LEDs as
described previously.
Appendix A. MQTT and devices 201

Running the scenario
To run the scenario, follow these steps:

1. Start an instance of the WMQTT Utility.

2. Enter the IP address and port for MQTT broker.

3. Click Connect.

4. Enter a topic for publication as sensor/temperature/monitor.

5. Type in a message as YES,YES and click Publish.

6. Watch the LEDs turn ON or OFF.

To run this scenario, set up an MQTT server and a client. Then, publish to the
sensor/temperature/monitor topic a message as YES,YES, NO,YES, or other setting.

A.2 MQTT and mobile communication devices

Mobile communication devices are the fastest growing application segment. The traditional
mobile phone has evolved into a powerful computing device, and new platforms and mobile
operating systems are also now available.

Despite the wide variety of available technological capabilities, keep in mind the following
factors when considering building applications for mobile devices:

� Preservation of battery life

Mobile communication devices are designed, as the name implies, to be mobile. Thus, as
a general rule, the time interval between charges needs to be as long as possible.
Independent of the device’s platform or battery technology, running applications consume
resources (processor, memory, and network connectivity) and consume battery power.

Even when application management is generally a platform’s choice, applications should
be designed to consume the least resources possible.

� Processing capacity

Even when mobile devices have a relatively good processing capacity, make applications
as simple as possible in terms of processing to speed up response time and to help
preserve battery life.

� Network optimization

Mobile devices should have at least one network connectivity option. In fact, most devices
have a choice between several connection possibilities that vary in speed, connectivity
range, battery consumption, and cost to the user.

As a general rule, most types of connectivity are at some point limited in range. Mobile
applications should be able to switch between available communication options
seamlessly based on a set of user-defined preferences. By doing this, an application can
use a preconfigured IEEE 802.11x (WiFi) connection when available and then switch to a
3G cellular connection when the previous connection is out of range. It is the application’s
responsibility to continue its functionality in a transparent way.

� Platform capabilities

Base requirements to build applications can vary from one platform to another. Usually,
the platform owner provides a set of APIs to develop applications for their platform.
Sometimes, as with MQTT, free implementations of the protocol allow the developer to
concentrate on the application functionality and use the MQTT protocol as a service.
202 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

For a list of available APIs, see Table 1-1 on page 7. For the benefits of using MQTT over
other protocols, see 1.3, “Benefits of using MQTT” on page 12.

In this section we introduce two mobile technologies: Worklight and Android.

A.2.1 Worklight

Worklight, an IBM company, lets developers use JavaScript and HTML 5 to develop
applications for different mobile devices. Worklight also provides a set of enterprise features
that includes version management of client application, secure and scalable connectivity to
back-end systems, and uniform push notification.

Worklight consists of the following components:

� Worklight Studio is an Eclipse-based integration development environment that allows
developers to perform coding, generate client application packages for different platforms
and deploy applications to Worklight Server.

� Worklight Server is a Java-based server application. It is designed to use enterprise
systems and is accessed from mobile phones. It also provides administration functions
such as authentication, direct update of web and hybrid applications, and operational
functions.

� Device Runtime is a cross mobile platform run time. Worklight uses the PhoneGap
framework with the Worklight plug-in to provide web applications, hybrid, or native
applications for mobile devices.

� Worklight Console is a web-based console for administration of application version
management, push notification management and reporting and analytics. It provides a
user-friendly way to manage deployed applications, adapters, and other resources on the
Worklight Server.

For more information about Worklight, see:

http://www.worklight.com/product/overview

Figure A-4 on page 204 shows an architectural diagram of the Worklight components.
Appendix A. MQTT and devices 203

http://www.worklight.com/product/overview

Figure A-4 Architecture diagram of Worklight

Integrating MQTT with Worklight
The integration between MQTT and Worklight is performed in the Device Runtime level.
Because Worklight uses the PhoneGap framework to provide cross-platform run time for
supported mobile devices, a PhoneGap plug-in needs to be built for supporting MQTT. A
PhoneGap plug-in lets developers use a specific third-party native library or device function,
which is not available in PhoneGap.

Because there is no official support of MQTT in Worklight, developers need to build a custom
plug-in to develop MQTT applications.

Figure A-5 on page 205 illustrates the architecture of the Device Runtime plug-in. It consists
of a JavaScript wrapper and native code. Native code is Objective-C that calls the MQTT C
client library to communicate with the MQTT broker. A JavaScript wrapper provides a
JavaScript API by invoking native code through the JavaScript/Native bridge of PhoneGap.

1Worklight Studio

HTML5, Hybrid
and Native Coding

Optimization
Framework

Integrated
Device SDKs

Third Party Library
Integration

iOS
SDK

Android
SDK

BlackBerry
SDK

Win Phone
SDK

B
u
ild

 E
n
g
in

e

Pu
b
lic

 a
n
d
 P

ri
va

te
 A

p
p
 S

to
re

s

_
_

_

3Device Runtime

Cross-platform
Compatibility Layer

Server Integration
Framework

Encrypted Storage

Runtime Skinning

Reporting for Statistics
and Diagnostics

A
p
p
lic

at
io

n
 C

o
d
e

4

Worklight Server

Server-side
Application Code

JSON Translation

Authentication

Adapter Library

S
ta

ts
 A

g
g
re

g
at

io
n

Client-side
App Resources

Direct Update

Mobile
Web Apps

Unified Push
Notifications

2

Worklight Console

Application Version Management

Push Management

Reporting and Analytics

4

E
n
te

rp
ri
se

 b
ac

ke
n
d
 s

ys
te

m
s

an
d
 C

lo
u
d
 s

er
vi

ce
s

204 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Figure A-5 Architecture diagram of Worklight

A.2.2 Android

Android is a mobile operating system. The Android software stack is shown in Figure A-6 on
page 206. In this section we show how to develop a basic MQTT application for publishing
location data on Android. With the powerful sensors support on Android, you can publish
other data from sensors, such as gyroscopic sensor or digital compass to the MQTT broker.

Device APIs

HTML, CSS, JavaScript, Images

Worklight API

N
at

iv
e

Third Party Libraries

Third Party Libraries

Native Page
Manager

Worklight
JSAPI

Worklight
Native API

Common
Controls

Device API
(PhoneGap)

MQTT Plugin

MQTT
JSAPI

MQTT
Native API

MQTT Client
Libraries

JS/Native Bridge (PhoneGap)

Worklight
Startup
Code

(Template)

Native Application Code

H
T
M

L,
 C

S
S
,

Ja
va

S
cr

ip
t

Appendix A. MQTT and devices 205

Figure A-6 Android software stack

Sample MQTT application
To develop Android applications, you need to set up a development environment, including
the Android SDK, Eclipse, the ADT plug-in for Eclipse, and the AVD Manager. You can find
more information about the Android development environment at:

http://developer.android.com/

Also to enable MQTT use in an Android application, include the corresponding Java libraries
as part of your project. You can download the IA92 SupportPac client library from:

http://www-01.ibm.com/support/docview.wss?uid=swg24006006

Programming model
Even though it is Java based, there are some specific Android APIs that should be considered
to ensure the correct functioning of our application.

The main difference between an Android application and a traditional JSE application is the
need of Activities and Services. Each one plays a specific role inside the programming model,
and ignoring some of their peculiarities can lead to unexpected application behavior.

Activities are user-centric tasks, probably involving a panel and some user interaction. They
are short lived because only one activity is active at a specific moment in time. The operating
system chooses to pause or destroy an activity based on its own needs. The application does
not have much control about how activities are executed. So, activities let the user review
application configuration information or type a message to be sent using MQTT. To execute
more controllable processing, you need to use services.

Application Framework

Package
Manager

Activity
Manager

Window
Manager

Content
Providers

View
System

Resource
Manager

Location
Manager

Notification
Manager ...

Applications

...

Libraries Android Runtime

Core Libraries

Dalvik Virtual
Machine

OpenGL | ES

SGL SSL

WebKit

...

Linux Kernel

Display
Driver WiFi Driver

Audio
Drivers

Keypad
Driver

Power
Management ...
206 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://www-01.ibm.com/support/docview.wss?uid=swg24006006
http://developer.android.com/

Services are defined as possible long-time processing operations that are not directly related
to the user’s interaction. They are the place where you will manage the MQTT connection and
messaging exchange because you want it to be an always-running background process.

There is another rule to take into consideration for our sample: Services can be stopped by
the operating system at any time, if for example the device is in standby or if it is low on
resources (low memory, low battery, and so forth). To partially prevent this from happening,
this specific service should be marked as sticky, meaning that the operating system will try to
restart the service as soon as possible if the service is killed.

For more information about this topic, see:

http://developer.android.com/

Sample code
In this section we show how to build a location publisher on the Android platform. An
advantage to developing an application on a smartphone today is that it is easy to obtain data
from sensors through the APIs of the mobile phone platform. Most smartphones on the
market contain a branch of sensors, such as GPS, gyroscopic sensor, accelerometer, digital
compass, and other types of sensors. Instead of publishing a fix string to the MQTT server,
the sample program in this section publishes the location information from GPS sensors of
the phone for a period of time.

To simplify the program, the MQTT application is defined inside an activity instead of a
service. The difference between an activity and a service is the lifecycle. Although a service
always runs in the background, an activity runs only when the application is in the foreground.
The MQTT connection between client and server is interrupted if the activity is not in the
foreground. You can modify the sample program to a long-running service after you learn how
to develop an MQTT application on Android.

This sample is based on the Java sample that is shown in 2.5.3, “Publisher and subscriber in
Java” on page 37. The Java sample is provided in the additional materials supplied with this
book. The following paragraphs list and explain only the key parts related to MQTT client
programming.

Requesting user permissions
In Android development, operations such as writing external disks, accessing the Internet,
and obtaining location data require declaring permission in an Android manifest file. This
sample needs to declare the following permissions (see Example A-4):

� ACCESSFINELOCATION

To receive location data updates, declare this permission.

� ACCESSMOCKLOCATION

Allow this sample to create mock location providers for testing purposes.

� INTERNET

MQTT client needs Internet access to connect with the MQTT broker.

Example A-4 Android manifest file sample

<manifest ...>
<uses-permission android:name="android.permission.ACCESSFINELOCATION" />
<uses-permission android:name="android.permission.ACCESSMOCKLOCATION" />
<uses-permission android:name="android.permission.INTERNET"/>
...
</manifest>
Appendix A. MQTT and devices 207

http://developer.android.com/

Initialize connection to the MQTT broker
First, define a MQTTActivity class that inherits from the Activity class. Then update onCreate
with the text shown in Example A-5. onCreate is called during the construction of the Activity
class. This sample needs to build up the connection to the MQTT broker at the start, so
MQTTClient is initialized and the connect method is called.

For QoS=1 and QoS=2 message delivery, MQTTClient requires that temporary information is
stored on a local file system. It saves files in the running directory of the sample by default,
but this does not allow the sample to write in Android. This sample gets a temporary directory
with the getCacheDir() method, and provides it to an MqttDefaultFilePersistence instance.
Then MqttDefaultFilePersistence uses this directory to store temporary message delivery
information.

Example A-5 Initialization code of the MQTTActivity class

@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
try {
//a. Create an instance of MQTT client

String cacheDir = getCacheDir().getAbsolutePath();

client = new MqttClient(Example.TCPAddress, Example.clientId, new
MqttDefaultFilePersistence(cacheDir));

//b. Prepare connection options

//Use default connection options in this sample.

//c. Connect to broker with the connection options

client.connect();
} catch (MqttException e) {

throw new RuntimeException(e);
}
textView = (TextView) findViewById(R.id.text);
initLocationService();
}

The publishMessage method, shown in Example A-6, provides the caller with a way to publish
a message easily. Log.d outputs messages to a logging system in Android. It is similar to
standard output in Java Standard Edition. textView is a visible component in this sample. A
message is appended to it if message delivery is successful.

Example A-6 Publish method code

public void publishMessage(String topic, String message) {
//d. Publish message to topics
MqttTopic mqttTopic = client.getTopic(topic);
MqttMessage mqttMessage = new MqttMessage(message.getBytes());
mqttMessage.setQos(Example.QoS);
Log.d(TAG, "Waiting for up to " + Example.sleepTimeout / 1000
208 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

+ " seconds for publication of \"" + mqttMessage.toString()

+ "\" with QoS = " + mqttMessage.getQos());
Log.d(TAG, "On topic \"" + mqttTopic.getName()

+ "\" for client instance: \"" + client.getClientId()

+ "\" on address " + client.getServerURI() + "\"");
MqttDeliveryToken token;
try {

token = mqttTopic.publish(mqttMessage);

token.waitForCompletion(Example.sleepTimeout);

textView.append("Delivery token \"" + token.hashCode()

+ "\" has been received: " + token.isComplete() + "\n");
} catch (MqttException e) {

Log.e(TAG, "Cannot publish message, " + message);
}
}

Example A-7 shows how a client application registers callback and defines behavior of
callbacks for location data updates. This method uses the following flow:

1. Gets locationManager from the system service.

2. Defines a listener locationListener that responds to location updates. This sample
implements only the onLocationChanged method. When location updates occur, this
method is called, and this sample publishes a message to the routes/Truck01 topic with
the format time, latitude, longitude, status to MQTT broker.

3. Registers the listener with the location manager.

Example A-7 Register callback of location data updates

private void initLocationService() {
LocationManager locationManager = (LocationManager)
this.getSystemService(Context.LOCATIONSERVICE);
//Define a listener which responds to location updates
LocationListener locationListener = new LocationListener() {
public void onLocationChanged(Location location) {

String message = System.currentTimeMillis() + "," + location.getLatitude() + ","

+ location.getLongitude() + ",B";

publishMessage("routes/Truck01", message);
Appendix A. MQTT and devices 209

}
public void onStatusChanged(String provider, int status, Bundle extras) {}
public void onProviderEnabled(String provider) {}
public void onProviderDisabled(String provider) {}
};
// Register the listener with the location manager.
locationManager.requestLocationUpdates(LocationManager.NETWORKPROVIDER, 0, 0,
locationListener);
}

For the remainder of this sample, download the sample project and refer to it. After importing
the project, you can run this sample either on an emulator or your Android phone. Activate the
GPS on your phone before starting the sample. Then, you can see update messages print to
the window for a period of time. You can also verify the application with a IA-92 GUI client.
You just need to start the GUI, connect to the server to which your application connects,
subscribe to routes/Truck01 topic or all topic #, and then you will see that the IA-92 GUI client
gets published messages from the sample Android application as shown in Figure A-7.

Figure A-7 Using the MQTT Utility

Using mock location data for testing
If you are using an emulator for testing or if you want to customize your current location, you
can use mock location data for the testing. Follow the instructions in “Providing mock
location Data” in the following document. It describes three methods (using Eclipse, DDMS,
or the geo command in a console) to provide mock location data for your phone or emulator.

http://developer.android.com/guide/topics/location/obtaining-user-location.html
210 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://developer.android.com/guide/topics/location/obtaining-user-location.html

Appendix B. The MQTT protocol

The MQ Telemetry Transport (MQTT) protocol is a lightweight network protocol that is used
for publish/subscribe messaging between devices. In this appendix we describe the various
commands that flow back and forth between the publisher or subscriber and the server.

The traces shown in this appendix were captured using Wireshark, an open source tool to
view packets traveling across a network. You can find details about Wireshark at:

http://www.wireshark.org/

The sections of this appendix discuss the following topics:

� MQTT concepts
� Set up for tracing
� Connect to the MQTT server
� Publishing with QoS 0
� Publishing with QoS 1
� Publishing with QoS 2
� Subscribing

B

Tip: The IBM developerWorks website has the complete MQTT protocol specification at:

http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html
© Copyright IBM Corp. 2012. All rights reserved. 211

http://www.wireshark.org/
http://www.ibm.com/developerworks/webservices/library/ws-mqtt/index.html

B.1 MQTT concepts

In this section we describe the following concepts of the MQ Telemetry Transport protocol:

� Quality of service levels and flows
� QoS determination
� QoS Impact on performance
� Client identifier
� Durable and non-durable subscribers with MQTT
� Understanding MQTT persistence
� Message overhead
� Keep alive handling
� Retry message delivery
� Last will and testament
� Retained Flag on Messages
� TCP/IP overhead
� Message format
� Command messages

B.1.1 Quality of service levels and flows

Quality of service (QoS) levels should be understood by every user of MQTT. A QoS value
determines how each message will be delivered and must be specified for every message
sent by means of MQTT.

A real-life comparison can be made with letters sent through a postal service. An informal
letter to a friend can be dropped into a mailbox and the sender might never think about it
again. The sender expects the letter will get to its destination, but there are no significant
consequences if it does not arrive. In contrast, a letter to which the recipient must respond is
more important, so the sender might choose a higher level of delivery service that provides
proof that the letter was received at its destination. In each situation, the choices made by the
sender of the letter are comparable to choosing QoS levels in MQTT.

It is important to choose the proper QoS value for every message, because this value
determines how the client and the server will communicate to deliver the message.

QoS 0: At most once delivery
It is termed as “At most once message delivery” as messages are delivered according to the
best effort of the underlying network. A response is not expected and no retry semantics are
defined in the protocol. The message arrives at the broker either once or not at all. This is the
least level of QoS. The MQTT client or the server would just attempt sending the message
without waiting for any kind of receipt. There are no steps taken to ensure message delivery
other than the features provided by the TCP/IP layer. Also, there is no retry attempted by the
MQTT layer if there is a failure to deliver the message. Hence if the client is sending a
message it can arrive at the broker once or never. A QoS 0 message can get lost if the client
unexpectedly disconnects or if the server fails. From a performance perspective this adds
value because it is the fastest way to send a message using MQTT.

The MQTT command message used is PUBLISH. No other command messages flow for the
QoS 0 messages.

Table B-1 on page 213 shows the QoS level 0 protocol flow.
212 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Table B-1 QoS level 0 protocol flow

QoS 1: At least Once Delivery
The message is delivered at least once. The MQTT client or the server would attempt to
deliver the message at least once, but there can be a duplicate message. The receipt of a
message by the broker is acknowledged by a PUBACK message. If there is an identified
failure of either the communications link or the sending device, or the acknowledgment
message is not received after a specified period of time, the sender resends the message
with the DUP bit set in the message header. The message arrives at the broker at least once.
Both SUBSCRIBE and UNSUBSCRIBE messages use QoS level 1.

If the client does not receive a PUBACK message (either within a time period defined in the
application, or if a failure is detected and the communications session is restarted), the client
resends the PUBLISH message with the DUP flag set. When it receives a duplicate message
from the client, the broker republishes the message to the subscribers, and sends another
PUBACK message. At the client side, the implementations of the MQTT protocol also provide
an additional feature known as the MQTT persistence. The MQTT persistence layer is not
described in the specification of MQTT but is normally available with MQTT client
implementations. When a QoS 1 message is published to the server, the client would need to
wait for the acknowledgement to arrive. There can be a program termination or a crash at the
client device. When the client is started again it will need to resume from the point it left before
the crash. Hence the message is stored in a persistence layer such as disk and retrieved
soon after the reconnecting back to the broker.

The MQTT command messages used are PUBLISH and PUBACK. While the publish
happens the message will be logged to the MQTT persistence and removed when PUBACK
is received. A message with QoS level 1 has a Message ID in the message header.

Table B-2 shows the QoS level 1 protocol flow.

Table B-2 QoS level 1 protocol flow

QoS 2: Exactly once delivery
This is the highest level of QoS. Additional protocol flows above QoS level 1 ensure that
duplicate messages are not delivered to the receiving application. The message is delivered
once and only once when QoS 2 is used. The MQTT client or the server will ensure that the
message is sent only once. This QoS must be used only when duplicate messages are not
desired. From a performance perspective, there is a price to be paid in terms of network traffic
and processing power.

Client Message and direction Broker

QoS = 0 PUBLISH

---------->

Action: Publish message to
subscribers

Client Message and direction Broker

QoS = 1

DUP = 0

Message ID = x

PUBLISH

---------->

Actions:

-- Store message in database

-- Publish message to
subscribers

Action: Discard message PUBACK

<----------
Appendix B. The MQTT protocol 213

The MQTT command messages used are PUBLISH, PUBREC, PUBREL and PUBCOMP.
The message is sent in the PUBLISH flow and the client will store that message in the MQTT
persistence layer if used. The message will remain locked on the server. PUBREC is sent by
the server in response to PUBLISH. PUBREL will be dispatched to the server from the client
in response to PUBREC. Once PUBREL is received by the broker it can dispatch the
messages to the subscribers and send back PUBCOMP to the PUBREL. A message with
QoS level 2 has a Message ID in the message header.

Table B-3 shows the QoS level 2 protocol flow.

Table B-3 QoS level 2 protocol flow

If a failure is detected, or after a defined time period, each part of the protocol flow is retried
with the DUP bit set. The additional protocol flows ensure that the message is delivered to
subscribers once only.

Because QoS1 and QoS2 indicate that messages must be delivered, the broker stores
messages in a database. If the broker has problems accessing this data, messages might be
lost.

Assumptions for QoS levels 1 and 2
In any network, it is possible for devices or communication links to fail. If this happens, one
end of the link might not know what is happening at the other end; these are known as in
doubt windows. In these scenarios assumptions have to be made about the reliability of the
devices and networks involved in message delivery.

WebSphere MQ Telemetry Transport assumes that the client and broker are generally
reliable, and that the communications channel is more likely to be unreliable. If the client
device fails, it is typically a catastrophic failure, rather than a transient one. The possibility of
recovering data from the device is low. Some devices have non-volatile storage, for example
flash ROM. The provision of more persistent storage on the client device protects the most
critical data from some modes of failure.

Beyond the basic failure of the communications link, the failure mode matrix becomes
complex, resulting in more scenarios than the specification for WebSphere MQ Telemetry
Transport can handle.

Client Message and direction Broker

QoS = 2

DUP = 0

Message ID = x

PUBLISH

---------->

Action: Store message in
database

PUBREC

<----------

Message ID = x

Message ID = x PUBREL

---------->

Actions:

-- Update database

-- Publish message to
subscribers

Action: Discard message PUBCOMP

<----------

Message ID = xb
214 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The time delay (retry interval) before resending a message that has not been acknowledged
is specific to the application, and is not defined by the protocol specification.

B.1.2 QoS determination

When the client subscribes to the topic it will specify a QoS at which it would like to receive
messages from the server. Let us consider a scenario where the publisher A is sending the
messages to the topic at QoS 2. A subscriber can subscribe at QoS 0 and then the messages
to client will be delivered with QoS 0. The QoS value is further used in SUBSCRIBE and
UNSUBSCRIBE requests. A subscribe request from the client is a QoS 1 request, the server
will respond with SUBACK, which will ensure that the subscription has happened.

B.1.3 QoS impact on performance

There is a simple rule when considering performance impact of QoS. It is: “The higher the
QoS, the lower the performance.” Let us evaluate performance corresponding with higher
QoS. Suppose the time taken for sending a PUBLISH message is pt. If QoS is used, the total
time taken to transfer n number of messages will be npt. Now in case of QoS 1, the PUBACK
message (that is reply for the PUBLISH message) will flow from server to client. This is a
2-byte message and might take a lot less time than pt, hence call it mt. So the time taken for
transferring n messages will be n(pt + mt). And for QoS 2, the PUBREC, PUBREL and
PUBCOMP messages would be flowing. Hence the n number of messages would take
approximately n(pt + 3mt). So if 10 messages need to be transferred from client to server and
pt is 1 second and mt is 0.4 seconds, a QoS 0 message would take 101 = 10 seconds, QoS 1
message would take 10(1 + 0.4) which is 14 seconds and QoS 2 message would take 22
seconds.

B.1.4 MQTT client identifier

MQTT protocol defines a “client identifier” (client ID) that uniquely identifies a client in a
network. In simple terms, when connecting to a server a client needs to specify a unique
string that is not used currently and will not be used by any other client that will connect to the
MQTT server. There are several ways of choosing a client identifier. Here are some
examples:

� A Sensor installed in a particular location can use location code as the client ID.

� A mobile device having network ability can choose the MAC address or some unique
device ID as the client ID

But MQTT restricts the client ID length to 23 characters. Hence there will be a situation when
the client ID needs to be shortened. While shortening the client identifier, it needs to be
ensured that the client ID is not the same as any other client ID used in the network. In order
to keep the identifier short and unique, you should introduce a reliable identifier generation
mechanism. For instance, you might create a client identifier from the 48-bit device MAC
address. If transmission size is not a critical issue, you might use the remaining 17 bytes to
make the address easier to administer, like some human readable text in the identifier.

Now let us try to understand the implications of two clients getting the same client identifier.
The MQTT server keeps track of the pending messages to be sent to a client based on the
client identifier. Thus, if a client has been using QoS 1 or QoS 2 and subscribed to any topic
and disconnected from the server, the server will save the messages that arrived for the client
while it was disconnected. Once the client reconnects, the server will send those messages to
the client. If some other MQTT device uses the same client ID and connects to the server, the
server will send the messages it had saved to it.
Appendix B. The MQTT protocol 215

Another scenario related to the client identifiers is the duplicate connections. Let us say a
particular device using client ID DeviceA is connected to the broker. If another client comes
with the same client ID DeviceA, the server can decide if it has to allow the new client to
connect and disconnect the existing client or keep the old connection alive and disallow the
new client. This is an optional feature of an MQTT server.

B.1.5 Durable and non-durable subscribers with MQTT

A durable subscriber in any client can receive all the messages published on a topic,
including messages published while the client was inactive. Defining inactive is important at
this point. A client is said to be inactive in the following cases:

� A client has connected and subscribed to a topic and later disconnected with the server
without unsubscribing to that topic.

� A client has connected and subscribed to a topic and later disappeared from the network
due to some network issue or lost connection to the server.

A non-durable subscriber is any client that does not intend to receive messages published
while it is inactive. A client is said to be non-durable in the following cases:

� A client always uses the clean session flag set to true when it connects to the server.

� A client always unsubscribes for all the topics it subscribed for, before disconnecting.

In MQTT, QoS 0 messages are never persisted while a durable subscriber is inactive. Only
QoS 1 and QoS 2 messages are persisted by the server and sent when the client becomes
active. MQTT further provides a facility that allows MQTT clients to refrain from receiving
messages while they were disconnected by setting the clean start flag to true.

Here is an example flow for a typical durable MQTT subscriber:

1. MQTT ClientA connects to the server by specifying the clean session flag as false.

2. ClientA subscribes to the topic topic/test.

3. MQTT ClientB connects to the server and publishes messages of QoS 1 and QoS 2 to
topic topic/test.

4. ClientA receives them.

5. ClientA disconnects from the server (note ClientA did not unsubscribe).

6. ClientB publishes more messages of QoS1 and QoS 2.

7. ClientA connects to the server by specifying the clean session flag as false.

8. ClientA receives all the messages that were published while it was inactive and all the
future messages that will be published to the topic topic/test.

Durable subscribers are useful when the subscribing client needs all the messages that are
published to the topic it subscribes to. So a client needs not really worry about being on the
network because it is assured to receive the messages while it was disconnected or even lost
connection.

While durable subscriptions is a nice feature to have, it adds additional responsibility to the
server to hold the messages until the client connects back to the server.

B.1.6 Understanding MQTT persistence

MQTT protocol is designed with the assumption that the client and server are generally
reliable. What this means is that the client machine and the server machine will not crash or
216 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

hang or get into power failure issues. The assumption may prove to be costlier in some
situations for the clients and hence a feature known as MQTT client persistence is provided
by the implementations. It is used with QoS 1 and QoS 2 message flows. Here is how it
works:

� Before the client actually sends the PUBLISH command over the wire, it will store it on
disk or any other volatile storage.

� The client, when it receives an acknowledgement, deletes the message from the disk.
Thus, in case of a power failure and restart of the client application, the first action soon
after the reconnect is to check the pending messages in the client persistence and send
them. On the server side, this feature is generally managed by the messaging engine
itself.

B.1.7 MQTT message overhead

MQTT has a very low message overhead. Let us try to understand how many additional bytes
of data will flow from client to server for one of the scenarios. Consider a scenario where a
client needs to send a message, say “Hello” 10 times. Additionally, the client needs to tell the
server that the destination is “a/b” for every message.

For sending it using MQTT here is the computation of total number of bytes:

1. CONNECT -> Fixed (2 bytes) + Variable (12 bytes) = 14 bytes
2. CONNACK -> Fixed (2 bytes) + Variable (2 bytes) = 4 bytes
3. PUBLISH -> Fixed (2 bytes) + Variable:

Length(a/b) = 3.

So 2 bytes for representing the topic name, followed by topic name, followed by msg ID,
followed by payload, which is 2 + 3 + 2 + 5 = 12 bytes.

4. There are 10 publications happening... hence (12) 10 = 120 bytes
5. DISCONNECT - Fixed (2 bytes) = 2 bytes

Hence this scenario needs 14 + 4 + 120 + 2 = 140 bytes.

As you can see from the above example, the overhead for every message is fixed at 2 bytes.
And the total overhead is 140 - 80 = 60 bytes for this scenario.

B.1.8 MQTT keep alive handling

You might be wondering how an MQTT Server would know if the MQTT client is still on the
network and vice-versa. That is the keep alive timer on the client and server. The TCP/IP
timeout and error handling mechanisms are at the network layer, but the MQTT client and
server need not depend on that. The client says hello to the server and the server responds
back acknowledging it. That is how simple keep alive works.

But the interesting question is when should a client tell the server that it is alive. As per MQTT
it is only when there has not been any interaction between them for some period of time. The
time period is a configurable option. This option can the set while connecting to the server by
the client. It is the client that will choose the keep alive time, the server just keeps a record of
the value in the client information table on the server side.

There are two messages that constitute the keep alive interaction, PINGREQ and
PINGRESP. The PINGREQ, the ping request, is sent by the client to the server when the
keep alive timer expires. The PINGRESP, the ping response, is the reply sent by the server for
a ping request from the client. Both these messages are short 2-byte messages. They are not
Appendix B. The MQTT protocol 217

associated with any QoS. The PINGREQ is sent only once and the client waits for the
PINGRESP.

Internally there is a simple timer that triggers in the client It will check if there has been any
other recent activity between the client and the server. If not, a PINGREQ is sent. The client
will wait until a PINGRESP is received. On the server side also, if there is no message
received from the client within the keep alive time period, it disconnects the client. But the
server will offer a grace period to the client, that is an additional 50% of the keep alive time
period.

When choosing a keep alive time for a client there are some considerations. If the MQTT
client is less active and sends one or two messages in an hour's time and if the keep alive is
set to a very low value, say 10 seconds, the network would be flooded with PINGREQ and
PINGRES messages. On the other hand, if the keep alive timer is set to a high value, say 1
hour and the client goes out of the network, the server will not know that the client has gone
away for a long time. This would affect administrators who monitor the connected clients and
also the server would keep retrying PUBLISH messages. So based on the message flow and
amount of time the client can be idle, the keep alive timer needs to be chosen.

B.1.9 Retry message delivery

Let us consider a scenario when a message of QoS 1 is published from a client to a server
but the PUBACK is not received from the server, then the MQTT client will retry sending the
message after a specified time period. This timeout is different from the keep alive. The retry
timeout is the maximum amount of time the client will wait for the server to send a response or
vice-versa. This retry will happen until there is an error from the TCP/IP layer. That is, if there
is any type of socket exception, then retry processing ceases. In cases where QoS 2
message delivery is not used there could be duplicate messages seen due to retry by the
MQTT client or server. Hence when a retry happens the message will be marked with a
duplicate flag. The application receiving the message will know if the received message is a
duplicate or not.

As a user of an MQTT client it would be possible that a duplicate message is received while
using QoS 1 due to MQTT retry. On some slow and fragile networks, one can observe a large
number of duplicate messages due to the retry processing. If the retry timeout is very low, the
network can be clogged with a large number of duplicates.

B.1.10 Last will and testament

When a client connects to the server it can define a topic and a message that needs to be
published automatically when it unexpectedly disconnects. Let us now try to understand this
feature in detail and also how it can be used. Firstly, an unexpected disconnect will happen
when the client does not send a DISCONNECT command to the server and goes out of the
network. This can happen due to several reasons including loss in network connection or
termination of the client program.

When a client connects to the server, the following parameters can be specified optionally:

1. The will topic at which the will message needs to be published.
2. The will message that needs to be published.
3. The will QoS of the message that will get published on the topic.
4. The will retain flag that signifies if the message should be retained.

We have already learned about the keep alive feature of MQTT. When the client unexpectedly
disconnects, the keep alive timer at the server side will detect that the client has not sent any
218 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

message or the keep alive PINGREQ. Hence it will immediately publish the Will message on
the Will topic specified by the client.

The LWT feature can be very useful in some scenarios as a basis for the design of the
solution. If the fire alarms or the sensors in the field are equipped with an MQTT client, this
feature can be used to detect when the device goes out of the network. Normally in a solution
there would be health monitors that give a complete overview of the health of the running
devices. The LWT feature can be used to create notifications on the health monitor so that the
user can take action.

There could be a case when the health monitor that needs to know about the unexpected
disconnection of the client is itself not connected to the server. That is when retained
messages can be used for LWT. The broken Will retains the last published messages and
immediately sends the Will message when the subscription happens. There are cases when
the health monitor itself unexpectedly disconnects and reconnects back. If QoS 1 or 2
messages are used for LWT those messages can be received.

B.1.11 Retained flag on messages

MQTT provides a feature of holding a message for a topic even after it is delivered to the
connected subscribers. This is achieved through a “retained” flag on the publish message.
The publisher of the message sets this flag on the message while publishing. Here is an
example flow to understand retained messages:

1. Client A connects to the server and subscribes to topic “a/b”.
2. Client B connects to the server and publishes the message “Hello” with Retain flag to

“a/b”.
3. Client A receives the message without Retain flag set.
4. Client C connects to the server and subscribes to “a/b”.
5. Client C receives the message with Retain flag set.

Even if the server is restarted, the retained message will not be lost. It is also important to
note that there is only one retained message that is held per topic. The retained publications
are primarily used to maintain state information. If a particular topic is used to publish a state
message from a device, the messages can be retained messages. The advantage is that the
new monitoring program that connects can subscribe to this topic and gets to know the last
published state messages from the device.

B.1.12 TCP/IP overhead

When designing applications for networks such as cellular networks the TCP/IP overhead
should be considered. MQTT is just like any other protocol such as HTTP or FTP for the
TCP/IP stack. TCP/IP is the communication protocol of the Internet. It defines how the client
and server need to communicate with each other. All the major operating systems on the
server support TCP/IP. The client devices also come with the operating system that has
built-in capability of TCP/IP. Although MQTT adds only 2 bytes of additional header to a
message, there is more data that flows on the network layers. The additional header data
cannot be exactly computed on a per MQTT message basis. IP header, frame header and
other keep alive flows at the network layer add to additional data flows while using MQTT
clients.
Appendix B. The MQTT protocol 219

B.1.13 WebSphere MQ Telemetry Transport message format

The message header for each WebSphere MQ Telemetry Transport command message
contains a fixed header. Some messages also require a variable header and a payload.

WebSphere MQ Telemetry Transport fixed header
The message header for each WebSphere MQ Telemetry Transport command message
contains a fixed header. Table B-4 shows the fixed header format.

Table B-4 Fixed header format

WebSphere MQ Telemetry Transport payload
The following types of WebSphere MQ Telemetry Transport command message have a
payload in the message header:

� CONNECT

The payload contains one or three UTF-8 encoded strings. The first string uniquely
identifies the client to the broker. The second string is the Will topic, and the third string is
the Will message. The second and third strings are present only if the Will flag is set in the
CONNECT Flags byte.

� SUBSCRIBE

The payload contains a list of topic names to which the client can subscribe, and the QoS
level. These strings are UTF-encoded.

� SUBACK

The payload contains a list of granted QoS levels. These are the QoS levels at which the
administrators for the broker have permitted the client to subscribe to a particular topic
name. Granted QoS levels are listed in the same order as the topic names in the
corresponding SUBSCRIBE message.

The payload part of a PUBLISH message contains application-specific data only. No
assumptions are made about the nature or content of the data, and this part of the message
is treated as a BLOB.

If you want an application to apply compression to the payload data, you need to define in the
application the appropriate payload flag fields to handle the compression details. You cannot
define application-specific flags in the fixed or variable headers.

WebSphere MQ Telemetry Transport variable header
The message header for some types of WebSphere MQ Telemetry Transport command
message contains a variable header. It resides between the fixed header and the payload.

The format of the variable header fields are described in the following topics, in the order in
which they must appear in the header:

� Protocol name
� Protocol version
� Connect flags
� Keep alive timer
� Connect return code

Bit 7 6 5 4 3 2 1 0

byte 1 Message type DUP flag Qos level RETAIN

byte 2 Remaining length
220 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

� Topic name
� Message identifier

The variable length Remaining Length field is not part of the variable header. The bytes of the
Remaining Length field do not contribute to the byte count of the Remaining Length value.
This value only takes account of the variable header and the payload.

WebSphere MQ Telemetry Transport command messages
Here is the list of supported WebSphere MQ Telemetry Transport command messages:

� CONNACK

Acknowledges connection request. The CONNACK message is the message sent by the
broker in response to a CONNECT request from a client.

� CONNECT

A client requests a connection to a broker. When a TCP/IP socket connection is
established between the client and the broker, a protocol level session is required. It is
assumed that the direction of connection is client to broker, and that the client supports
broker listener functionality.

� DISCONNECT

This is the disconnection notification. The DISCONNECT message is sent from the client
to the broker to indicate that it is about to close its TCP/IP connection. This allows for a
clean disconnection, rather than just dropping the line. Sending the DISCONNECT
message does not affect existing subscriptions. They are persistent until they are either
explicitly unsubscribed, or if there is a clean start. The broker retains QoS 1 and QoS 1
messages for topics to which the client is unsubscribed until the client reconnects. QoS 0
messages are not retained, since they are delivered on a best efforts basis.

� PINGREQ

PING request. The PINGREQ message is an “are you alive” message that is sent from, or
received by, a connected client.

� PINGRESP

PING response. A PINGRESP message is the response to a PINGREQ message and
means “yes I am alive”. Keep Alive messages flow in either direction, sent either by a
connected client or the broker.

� PUBACK

Publish acknowledgement. A PUBACK message is the response to a PUBLISH message
with QoS level 1. A PUBACK message is sent by a broker in response to a PUBLISH
message from a publishing client, and by a subscriber in response to a PUBLISH
message from the broker.

� PUBCOMP

Assured publish complete. This message is either the response from the broker to a
PUBREL message from a publisher, or the response from a subscriber to a PUBREL
message from the broker. It is the fourth and last message in the QoS 2 protocol flow.

� PUBLISH

Publish message. A PUBLISH message is sent by a client to a broker for distribution to
interested subscribers. Each PUBLISH message is associated with a topic name (also
known as the Subject or Channel). This is a hierarchical name space that defines a
taxonomy of information sources for which subscribers can register an interest. A
message that is published to a specific topic name is delivered to connected subscribers
for that topic. To maintain symmetry, if a client subscribes to one or more topics, any
Appendix B. The MQTT protocol 221

message published to those topics is sent by the broker to the client as a PUBLISH
message.

� PUBREC

Assured publish received. A PUBREC message is the response to a PUBLISH message
with QoS level 2. It is the second message of the QoS level 2 protocol flow. A PUBREC
message is sent by the broker in response to a PUBLISH message from a publishing
client, or by a subscriber in response to a PUBLISH message from the broker.

� PUBREL

Assured publish release. A PUBREL message is the response either from a publisher to a
PUBREC message from the broker, or from the broker to a PUBREC message from a
subscriber. It is the third message in the QoS 2 protocol flow.

� SUBACK

Subscription acknowledgment. A SUBACK message is sent by the broker to the client to
confirm receipt of a SUBSCRIBE message. A SUBACK message contains a list of granted
QoS levels. These are the levels at which the administrators for the broker permit the client
to subscribe to a specific topic name. In the current version of the protocol, the broker
always grants the QoS level requested by the subscriber. The order of granted QoS levels
in the SUBACK message matches the order of the topic Names in the corresponding
SUBSCRIBE message.

� SUBSCRIBE

Subscribe to named topics. The SUBSCRIBE message allows a client to register an
interest in one or more topic names with the broker. Messages published to these topics
are delivered from the broker to the client as PUBLISH messages. The SUBSCRIBE
message also specifies the QoS level at which the subscriber wants to receive published
messages.

� UNSUBACK

Unsubscribe acknowledgment. The UNSUBACK message is sent by the broker to the
client to confirm receipt of an UNSUBSCRIBE message.

� UNSUBSCRIBE

Unsubscribe from named topics. An UNSUBSCRIBE message is sent by the client to the
broker to unsubscribe from named topics.

For more details about message format and command messages, see:

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=%2Fcom.ibm
.etools.mft.eb.doc%2Fac10840_.htm

Set up for tracing

In this section we describe how to configure tracing with Wireshark and the WMQTT Utility.

B.1.14 Wireshark

To initiate the trace, download and install the Wireshark product. The remainder of this
section is written with Wireshark installed on a Linux system (Ubuntu 10.04) that
communicates with an MQTT server using a wireless network. The network interface that is
traced is wlan0, which in this book is the name of the interface.
222 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

http://publib.boulder.ibm.com/infocenter/wmbhelp/v6r0m0/index.jsp?topic=%2Fcom.ibm.etools.mft.eb.doc%2Fac10840_.htm

To download and install Wireshark:

1. Set up an ID that has access to run the trace.

2. The tracing is done using the Wireshark GUI. If you are using the root user ID, start the
GUI with the gksudo command, which is documented at:

https://help.ubuntu.com/community/RootSudo#Graphical_sudo|gksudo

Type gksudo wireshark on the command line, and press Enter.

3. To see the list of interfaces that are available in the Wireshark GUI, go to Capture
Interfaces. See Figure B-1. Do not click Start yet.

Figure B-1 Available interfaces

For the sake of brevity, we also add a filter in this example so that only those packets that are
destined to the server are traced (Figure B-2):

1. In the main Wireshark window, click Filter.
2. Enter the IP address of the MQTT server.
3. Click Apply.

Figure B-2 Add a filter

B.1.15 WMQTT Utility: IA92 SupportPac

We set up the IA92 client for the trace. Be sure that the server IP address matches the server
IP address that you enter for the filter. In the Options tab of the WMQTT Utility, shown in
Appendix B. The MQTT protocol 223

https://help.ubuntu.com/community/RootSudo#Graphical_sudo|gksudo

Figure B-3, enter a name for the Client ID. After you enter the server IP address, port number,
and the client ID, the setup is completed. Do not click Connect yet.

Figure B-3 Set up the IA92 client for the trace

B.2 Connect to the MQTT server

With the setup complete, you can begin the trace when the client connects to the server:

1. In the Options tab of the WMQTT Utility, ensure that the name of the client identifier is set
to localGhost.

2. In the Options tab of the WMQTT Utility, ensure that the Clean session option is selected.

3. In the Options tab of the WMQTT Utility, set the number of seconds for the Keep Alive
option to 30.

4. Click Connect in the WMQTT Utility.

5. To start the Wireshark trace, go to Capture Interfaces. Be sure to apply the filter. Then,
click Start to initiate the trace.

The remainder of this appendix uses Wireshark and the WMQTT Utility to show messages
sent on the MQTT protocol. We start by looking at the CONNECT and CONNACK messages.
224 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

B.2.1 The CONNECT message

The client sends a CONNECT message to the server to initiate the connection as shown in
the Wireshark trace in Figure B-4. The data flowing from the client to the server displays in
the bottom pane of the window in hexadecimal format.

Figure B-4 Wireshark trace

Table B-5 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#connect|C
ONNECT

Table B-5 Bytes table

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 0 0 1 0 0 0 0 Message Type 1 (upper nibble) denoting a connection request.
Lower nibble is not used.

2 0 0 0 1 1 0 0 0 Remaining length 0x18 or 24 bytes

3 0 0 0 0 0 0 0 0 Length Most Significant Byte - 0

4 0 0 0 0 0 1 1 0 Length Least Significant Byte - 6

5 0 1 0 0 1 1 0 1 M
Appendix B. The MQTT protocol 225

http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html#connect|CONNECT

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload. These categories are:

1. The first two bytes make up the fixed header of the message.

a. The first byte has the message type as 1 denoting a CONNECT message.

b. The second byte has the remaining length of the message. The trace shows a total of
26 bytes of which the first two are for the fixed header. Therefore, the balance is 24
bytes or 0x18 in byte 2.

6 0 1 0 1 0 0 0 1 Q

7 0 1 0 0 1 0 0 1 I

8 0 1 1 1 0 0 1 1 s

9 0 1 1 0 0 1 0 0 d

10 0 1 1 1 0 0 0 0 p

11 0 0 0 0 0 0 1 1 Protocol version - 3

12 0 0 0 0 0 0 1 0 Connect flags - 0x02
User name - 0 (Not set)
Password - 0 (Not set)
Will retain - 0 (Not set)
Will QoS - 00 (Not set)
Will flag - 0 (Not set)
Clean session - 1 (yes)
Reserved - 0

13 0 0 0 0 0 0 0 0 Keep Alive time - Most Significant Byte - 0

14 0 0 0 1 1 1 1 0 Keep Alive time - Least Significant Byte - 0x1e - 30 seconds

15 0 0 0 0 0 0 0 0 Client Identifier length - Most Significant Byte - 0

16 0 0 0 0 1 0 1 0 Client Identifier length - Least Significant Byte - 0x0a - 10

17 0 1 1 0 1 1 0 0 l

18 0 1 1 0 1 1 1 1 o

19 0 1 1 0 0 0 1 1 c

20 0 1 1 0 0 0 0 1 a

21 0 1 1 0 1 1 0 0 l

22 0 1 0 0 0 1 1 1 G

23 0 1 1 0 1 0 0 0 h

24 0 1 1 0 1 1 1 1 o

25 0 1 1 1 0 0 1 1 s

26 0 1 1 1 0 1 0 0 t

Byte 7 6 5 4 3 2 1 0 Remarks
226 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

2. Then, we have the variable header that is broken up as follows:

a. The first two bytes (3 and 4 in the table) contain the length of the protocol name as 6
bytes.

b. The next six bytes (5 thru 10) are the actual name of the protocol - MQIsdp.

c. The 11th byte stores the protocol version - 3.

d. The 12th byte holds the connection flags with each bit of this byte denoting if a
connection flag is turned ON or OFF. Since in our example we have set the Clean
session flag as ON and others are not set, the value of this byte is 0x02.

e. The next two bytes comprise the number of seconds for Keep Alive of the client. Since
this was set as 30 seconds in the WMQTT Utility, it is seen here as 0x1e.

3. The rest of the bytes describe the length and the actual value of the client identifier.

a. The first two bytes (15 and 16 in the table) contain the length of the client identifier as
10 bytes.

b. The rest of the bytes (17 thru 26) are the actual client identifier - localGhost as set in
the GUI.

4. The payload does not exist for a CONNECT message.
Appendix B. The MQTT protocol 227

B.2.2 The CONNACK message

The server responds to the connection request from the client with a CONNACK message as
shown in the Wireshark trace in Figure B-5. The data flowing from the client to the server
displays in the bottom pane in hexadecimal format.

Figure B-5 Wireshark trace

Table B-6 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-6 Bytes table

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 0 1 0 0 0 0 0 Message type 2 (upper nibble) denoting a connection
acknowledgment. The lower nibble is not used.

2 0 0 0 0 0 0 1 0 Remaining length 0x02 or 2 bytes

3 0 0 0 0 0 0 0 0 Reserved byte - set to 0

4 0 0 0 0 0 0 0 0 Actual return code of the connection - 0
228 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

a. The first byte has the message type as 2 denoting a CONNACK message.

b. The second byte has the remaining length of the message as 2 bytes.

2. Then, we have the variable header that is broken up as follows.

a. The first byte is Reserved and is therefore set to 0.

b. The second byte has the return code. It is 0 denoting a successful connection.

3. The payload does not exist for a CONNACK message.

B.3 Publishing with QoS 0

After the client is connected to the server, you can publish as described here:

1. Set up Wireshark as described in “Set up for tracing” on page 222.
2. In the WMQTT Utility, enter a topic name, such as samples/topic02.
3. Enter a test message to be published, such as This is a test message.
4. Start the trace as described in B.2, “Connect to the MQTT server” on page 224.
5. Click Publish to publish this message.

Figure B-6 shows the client setup to publish this message.

Figure B-6 Client setup
Appendix B. The MQTT protocol 229

The client does the publication by sending a PUBLISH message, as shown in the Wireshark
trace in Figure B-7. The data flowing from the client to server displays in the bottom pane in
hexadecimal format.

Figure B-7 Wireshark trace

The length of the topic name is 15 bytes and the length of the test message is 21 bytes.
Adding 2 bytes for the length that is stored as a prefix to the topic name and another 2 bytes
as the prefix to the actual message, the total comes to 40 or 0x28 bytes as seen in the bytes
table above. The actual message that is published does not display in the trace that is shown
in Figure B-7. It displays in another Wireshark window. We do not show this window for the
sake of brevity.

Table B-7 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-7 Bytes table

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 0 1 1 0 0 0 0 Message Type 3 (upper nibble) denoting a publication. The lower
nibble (bits 1 and 2) is zero to denote QoS 0.

2 0 0 1 0 1 0 0 0 Remaining length 0x28 or 40 bytes

3 0 0 0 0 0 0 0 0 Length of topic name - Most Significant Byte - 0

4 0 0 0 0 1 1 1 1 Length of topic name - Least Significant Byte - 15
230 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message:

a. The first byte has the message type as 3 denoting a PUBLISH message - bits 4 and 5
of upper nibble. It also denotes QoS as 0 in the bits 1 and 2 of the lower nibble.

b. The second byte has the remaining length of the message as 0x28 or 40 bytes.

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the length of the topic name as 0x000f
or 15 bytes.

b. The next 11 bytes (5 thru 19) are the actual name of the topic, samples/topic02.

3. The rest of the message is the payload.

a. The first two bytes (20-21) are the Message ID.

b. The remaining bytes (22-42) is the actual message published.

B.4 Publishing with QoS 1

After the client is connected to the server, you can publish as described here:

1. Set up Wireshark as described in “Set up for tracing” on page 222.
2. In the WMQTT Utility, enter a topic name, such as car/gps.
3. Enter a message such as 35.818888889,-78.644722222 to be published.
4. Set the QoS value to 1.
5. Start the trace as described in B.2, “Connect to the MQTT server” on page 224.
6. Click Publish to publish this message.

5 0 1 1 1 0 0 1 1 s

6 0 1 1 0 0 0 0 1 a

7 0 1 1 0 1 1 0 1 m

8 0 1 1 1 0 0 0 0 p

9 0 1 1 0 1 1 0 0 l

10 0 1 1 0 0 1 0 1 e

11 0 1 1 1 0 0 1 1 s

12 0 0 1 0 1 1 1 1 /

13 0 1 1 1 0 1 0 0 t

14 0 1 1 0 1 1 1 1 o

15 0 1 1 1 0 0 0 0 p

16 0 1 1 0 1 0 0 1 i

17 0 1 1 0 0 0 1 1 c

18 0 0 1 1 0 0 0 0 0

19 0 0 1 1 0 0 1 0 2

Byte 7 6 5 4 3 2 1 0 Remarks
Appendix B. The MQTT protocol 231

Figure B-8 shows the client setup to publish this message.

Figure B-8 Client setup
232 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

B.4.1 The PUBLISH message

The client performs the publication by sending a PUBLISH message, as shown in the
Wireshark trace in Figure B-9. The data flowing from the client to the server displays in the
bottom pane in hexadecimal format.

Figure B-9 Wireshark trace

Table B-8 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-8 Bytes table

The bytes and description are similar to the trace seen for PUBLISH QoS 0 message except
for the QoS value in the PUBLISH message sent.

Byte 7 6 5 4 3 2 1 0 Remarks

1a

a. The first byte of the fixed header to show the QoS of 1.

0 0 1 1 0 0 1 0 Message Type 3 (upper nibble) denoting a publication. The lower
nibble (bits 1 and 2) shows QoS 1.

12b

b. The last byte in the variable header has the message ID as 2.

0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

13 0 0 0 0 0 0 1 0 Message ID - Least Significant Byte - 2
Appendix B. The MQTT protocol 233

B.4.2 The PUBACK message

The server responds to a QoS 1 PUBLISH message with a PUBACK message, as shown in
the Wireshark trace in Figure B-10. The data flowing from the client to the server displays in
the bottom pane in hexadecimal format.

Figure B-10 Wireshark trace

Table B-9 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-9 Bytes table

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 1 0 0 0 0 0 0 Message Type 4 (upper nibble) denoting acknowledgment
of publication. The lower nibble is not used.

2 0 0 0 0 0 0 1 0 The remaining length - 0x02 - 2 bytes.

3 0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

4 0 0 0 0 0 0 1 0 Message ID - Least Significant Byte - 2
234 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

a. The first byte has the message type as 4 denoting a PUBACK message - upper nibble.
It also denotes QoS as 0 in the bits 1 and 2 of the lower nibble.

b. The second byte has the remaining length of the message as 0x02 or 2 bytes.

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the message ID as 2.

3. There is no payload.

B.5 Publishing with QoS 2

After the client is connected to the server, you can publish as described here:

1. Set up Wireshark as described in “Set up for tracing” on page 222.
2. In the WMQTT Utility, enter a topic name, such as car/gps.
3. Enter a message such as 35.818888889,-78.644722222 to be published.
4. Set the QoS value to 2.
5. Start the trace as described in B.2, “Connect to the MQTT server” on page 224.
6. Click Publish to publish this message.

Figure B-11 shows the client setup to publish this message.

Figure B-11 Client setup

B.5.1 The PUBLISH message

The client does the publication by sending a PUBLISH message as shown in the Wireshark
trace in Figure B-12 on page 236. The data flowing from the client to the server displays in the
bottom pane in hexadecimal format.
Appendix B. The MQTT protocol 235

Figure B-12 Wireshark trace

Table B-10 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-10 Bytes table

The bytes and description are similar to the trace seen for PUBLISH message QoS 0 except
for the QoS value in the PUBLISH message.

B.5.2 The PUBREC message

The server responds back with a PUBREC message for the incoming QoS 2 message from
the client, as shown in the Wireshark trace in Figure B-13 on page 237. This message is the

Byte 7 6 5 4 3 2 1 0 Remarks

1a

a. The first byte of the fixed header shows the QoS as 2.

0 0 1 1 0 1 0 0 Message Type 3 (upper nibble) denoting a publication. The lower
nibble (bits 1 and 2) shows QoS 2.

12b

b. The last byte in the variable header has the message ID as 3.

0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

13 0 0 0 0 0 0 1 1 Message ID - Least Significant Byte - 3
236 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

second message in a QoS 2 publication. The data flowing from the client to the server
displays in the bottom pane in hexadecimal format.

Figure B-13 Wireshark trace

Table B-11 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-11 Bytes table

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

a. The first byte has the message type as 5 denoting a PUBREC message - upper nibble.
The lower nibble is not used.

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 1 0 1 0 0 0 0 Message Type 5 (upper nibble) denoting acknowledgment of
publication. The lower nibble is not used.

2 0 0 0 0 0 0 1 0 The remaining length - 0x02 - 2 bytes.

3 0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

4 0 0 0 0 0 0 1 1 Message ID - Least Significant Byte - 3
Appendix B. The MQTT protocol 237

b. The second byte has the remaining length of the message as 0x02 or 2.

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the message ID of the message as
0x03 or 3.

3. There is no payload.

B.5.3 The PUBREL message

The client responds back with a PUBREL message for the incoming PUBREC message from
the server, as shown in the Wireshark trace in Figure B-14. This message is the third
message in a QoS 2 publication. The data flowing from the client to the server displays in the
bottom pane in hexadecimal format.

Figure B-14 Wireshark trace

Table B-12 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-12 Bytes table

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 1 1 0 0 0 0 0 Message Type 6 (upper nibble) denoting acknowledgment of
publication.
238 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

a. The first byte has the message type as 6 denoting a PUBREL message - upper nibble.
The lower nibble is not used.

b. The second byte has the remaining length of the message as 0x02 or 2.

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the message ID of the message as
0x02 or 2.

3. There is no payload.

B.5.4 The PUBCOMP message

The server responds back with a PUBCOMP message for the incoming PUBREL message
from the server, as shown in the Wireshark trace in Figure B-15 on page 240. This message
is the fourth and final message in a QoS 2 publication. The data flowing from the client to the
server displays in the bottom pane in hexadecimal format.

2 0 0 0 0 0 0 1 0 The remaining length - 0x02 - 2 bytes.

3 0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

4 0 0 0 0 0 0 1 1 Message ID - Least Significant Byte - 3

Byte 7 6 5 4 3 2 1 0 Remarks
Appendix B. The MQTT protocol 239

Figure B-15 Wireshark trace

Table B-13 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-13 Bytes table

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

a. The first byte has the message type as 7 denoting a PUBCOMP message - upper
nibble. The lower nibble is not used.

b. The second byte has the remaining length of the message as 0x02 or 2.

Byte 7 6 5 4 3 2 1 0 Remarks

1 0 1 1 1 0 0 0 0 Message Type 7 (upper nibble) denoting acknowledgment of
publication. The lower nibble is not used.

2 0 0 0 0 0 0 1 0 The remaining length - 0x02 - 2 bytes.

3 0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

4 0 0 0 0 0 0 1 1 Message ID - Least Significant Byte - 3
240 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the message ID of the message as
0x02 or 2.

3. There is no payload.

B.6 Subscribing

After the client is connected to the server, you can subscribe (see Figure B-16):

1. Set up Wireshark as described in “Set up for tracing” on page 222.
2. In the WMQTT Utility, enter a topic name, such as temperatures/Raleigh.
3. Start the trace as described in B.2, “Connect to the MQTT server” on page 224.
4. Click Subscribe to subscribe to a given topic name.

Figure B-16 Subscribe
Appendix B. The MQTT protocol 241

B.6.1 The SUBSCRIBE message

The client sends out a SUBSCRIBE message to the server, as shown in the Wireshark trace
in Figure B-17. The data flowing from the client to the server displays in the bottom pane in
hexadecimal format.

Figure B-17 Wireshark trace

Table B-14 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-14 Bytes table

Byte 7 6 5 4 3 2 1 0 Remarks

1 1 0 0 0 0 0 1 0 Message Type 8 (upper nibble) denoting a subscription. The lower
nibble (bits 1 and 2) denotes QoS 1 of SUBSCRIBE messages.
This is for acknowledging multiple subscription requests.

2 0 0 0 1 1 0 0 1 Remaining length 0x19 or 25 bytes

3 0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

4 0 0 0 0 0 1 0 0 Message ID - Least Significant Byte - 4

5 0 0 0 0 0 0 0 0 Length of topic name - Most Significant Byte - 0

6 0 0 0 1 0 1 0 0 Length of topic name - Least Significant Byte - 0x14 - 20
242 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

a. The first byte has the message type as 8 denoting a SUBSCRIBE message - bits 4 and
5 of the upper nibble. It also denotes QoS as 1 in the bits 1 and 2 of the lower nibble.

b. The second byte has the remaining length of the message as 0x19 or 25 bytes.

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the message ID 0x02 or 2.

b. The next two bytes (5 and 6 in the table) contain the length of the topic name as
0x0014 or 20 bytes.

3. The rest of the message is the payload. It is just the name of the topic being subscribed.

a. The next twenty bytes (7 thru 26) are the actual name of the topic -
temperatures/Raleigh.

b. The last byte shows the requested QoS.

7 0 1 1 1 0 1 0 0 t

8 0 1 1 0 0 1 0 1 e

9 0 1 1 0 1 1 0 1 m

10 0 1 1 1 0 0 0 0 p

11 0 1 1 0 0 1 0 1 e

12 0 1 1 1 0 0 1 0 r

13 0 1 1 0 0 0 0 1 a

14 0 1 1 1 0 1 0 0 t

15 0 1 1 1 0 1 0 1 u

16 0 1 1 1 0 0 1 0 r

17 0 1 1 0 0 1 0 1 e

18 0 1 1 1 0 0 1 1 s

19 0 0 1 0 1 1 1 1 /

20 0 1 0 1 0 0 1 0 R

21 0 1 1 0 0 0 0 1 a

22 0 1 1 0 1 1 0 0 l

23 0 1 1 0 0 1 0 1 e

24 0 1 1 0 1 0 0 1 i

25 0 1 1 0 0 1 1 1 g

26 0 1 1 0 1 0 0 0 h

27 0 0 0 0 0 0 0 0 Requested QoS is 0

Byte 7 6 5 4 3 2 1 0 Remarks
Appendix B. The MQTT protocol 243

B.6.2 The SUBACK message

The server responds with a SUBACK message for the subscription request received by the
client, as shown in the Wireshark trace in Figure B-18. The data flowing from the client to the
server displays in the bottom pane in hexadecimal format.

Figure B-18 Wireshark trace

Table B-15 deciphers each byte to show how this message correlates with the MQTT V3.1
Protocol Specification.

Table B-15 Bytes table

Byte 7 6 5 4 3 2 1 0 Remarks

1 1 0 0 1 0 0 0 0 Message Type 9 (upper nibble) denoting acknowledgement of
subscription request. The lower nibble is not used.

2 0 0 0 0 0 0 1 1 Remaining length 0x03 or 3 bytes

3 0 0 0 0 0 0 0 0 Message ID - Most Significant Byte - 0

4 0 0 0 0 0 1 0 0 Message ID - Least Significant Byte - 4

5 0 0 0 0 0 0 0 0 Granted QoS 0 - upper 6 bits are not used.
244 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

The bytes transmitted can be broadly categorized into fixed header, variable header, and a
payload as follows:

1. The first two bytes make up the fixed header of the message.

a. The first byte has the message type as 9 denoting a SUBACK message - upper nibble.
The lower nibble is not used.

b. The second byte has the remaining length of the message as 0x03 or 3.

2. Then, we have the variable header that is broken up as follows.

a. The first two bytes (3 and 4 in the table) contain the message ID of the message as
0x02 or 2.

3. The rest of the message is the payload which has the granted QoS as 0.

B.6.3 Subscribed message

We now trace the receipt of a message that was published by another client to the same
server and topic (in this case, temperatures/Raleigh). To publish the message and initiate the
trace, follow these steps:

1. In another instance of GUI, click Connect to initiate the connection from the client to a
MQTT server.

2. Enter the name of a topic as temperatures/Raleigh in the bottom (Publish) pane.

3. Enter text as 21C,69.8F to denote the temperature in Celsius and Fahrenheit.

4. In Wireshark, click Start in the list of live captures for the wlan0 interface to begin the
trace.

5. Click Publish in the GUI to publish this message.

6. From the Capture menu option, select Stop to stop the capture.
Appendix B. The MQTT protocol 245

The message received is actually a PUBLISH command from the server to client. Figure B-19
shows this message.

Figure B-19 Subscribed

The bytes table and description are the same as described for publications (B.3, “Publishing
with QoS 0” on page 229).
246 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Appendix C. Additional material

This book refers to additional material that can be downloaded from the Internet as described
in the following sections.

Locating the Web material

The Web material associated with this book is available in softcopy on the Internet from the
IBM Redbooks Web server. Point your Web browser at:

ftp://www.redbooks.ibm.com/redbooks/SG248054

Alternatively, you can go to the IBM Redbooks website at:

ibm.com/redbooks

Select Additional materials and open the directory that corresponds with the IBM Redbooks
form number, SG248054.

Downloading and extracting the Web material

Create a subdirectory (folder) on your workstation, and extract the contents of the Web
material .zip file into this folder.

C

© Copyright IBM Corp. 2012. All rights reserved. 247

ftp://www.redbooks.ibm.com/redbooks/SG248054
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

248 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

References

� IBM Lotus Expeditor integrator product information

http://www.ibm.com/software/lotus/products/expeditor/integrator.html

� IBM Lotus Expeditor integrator wiki

http://www.lotus.com/ldd/lewiki.nsf/dx/10092008022324PMJHEPKF.htm

� IBM developerWorks, Extending Java Message Service messaging to retail store devices

http://www.ibm.com/developerworks/lotus/documentation/retailjms/

� IBM developerWorks, Messaging security guide for IBM Lotus Expeditor 6.2.3 integrator
software

http://www.ibm.com/developerworks/lotus/documentation/expeditorsecurity/

� OSGi Alliance

http://www.osgi.org

� Eclipse Consortium

http://www.eclipse.org

� Equinox on-line information

� http://www.eclipse.org/equinox/

� Oracle Sun Developer Network, Java Messaging API documentation

http://java.sun.com/products/jms/docs.html

Help from IBM

IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
© Copyright IBM Corp. 2012. All rights reserved. 249

http://www.ibm.com/software/lotus/products/expeditor/integrator.html
http://www.lotus.com/ldd/lewiki.nsf/dx/10092008022324PMJHEPKF.htm
http://www.ibm.com/developerworks/lotus/documentation/retailjms/
http://www.ibm.com/developerworks/lotus/documentation/expeditorsecurity/
http://www.osgi.org
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.eclipse.org
http://www.eclipse.org/equinox/
http://java.sun.com/products/jms/docs.html

250 Building Smarter Planet Solutions with MQTT and IBM WebSphere MQ Telemetry

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

Building Sm
arter Planet Solutions w

ith M
QTT and IBM

 W
ebSphere M

Q

Building Sm
arter Planet Solutions

w
ith M

QTT and IBM
 W

ebSphere M
Q

Building Sm
arter Planet Solutions

w
ith M

QTT and IBM
 W

ebSphere M
Q

Telem
etry

Building Sm
arter Planet Solutions w

ith M
QTT and IBM

 W
ebSphere M

Q Telem
etry

Building Sm
arter Planet Solutions

w
ith M

QTT and IBM
 W

ebSphere M
Q

Telem
etry

Building Sm
arter Planet Solutions

w
ith M

QTT and IBM
 W

ebSphere M
Q

Telem
etry

®

SG24-8054-00 ISBN 0738437085

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

Building Smarter Planet
Solutions with MQTT and
IBM WebSphere MQ

Introduces MQTT and
includes scenarios
that demonstrate its
capabilities

Provides a quick
guide to getting
started with MQTT

Includes typical
usage patterns and
guidance on scaling a
solution

MQ Telemetry Transport (MQTT) is a messaging protocol that is
lightweight enough to be supported by the smallest devices, yet robust
enough to ensure that important messages get to their destinations
every time. With MQTT devices such as smart energy meters, cars,
trains, satellite receivers, and personal health care devices can
communicate with each other and with other systems or applications.

This IBM Redbooks publication introduces MQTT and takes a
scenario-based approach to demonstrate its capabilities. It provides a
quick guide to getting started and then shows how to grow to an
enterprise scale MQTT server using IBM WebSphere® MQ Telemetry.
Scenarios demonstrate how to integrate MQTT with other IBM
products, including WebSphere Message Broker. This book also
provides typical usage patterns and guidance on scaling a solution.

The intended audience for this book ranges from new users of MQTT
and telemetry to those readers who are looking for in-depth knowledge
and advanced topics.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Primary authors
	Additional authors
	Additional contributors

	Now you can become a published author, too!
	Comments welcome
	Stay connected to IBM Redbooks publications

	IBM Sponsorship
	IBM Software Accelerated Value Program

	Chapter 1. Overview of MQTT
	1.1 Building a Smarter Planet
	1.1.1 Internet of Things
	1.1.2 Smarter Planet
	1.1.3 Telemetry and the Internet

	1.2 MQTT and WebSphere MQ Telemetry
	1.2.1 MQ Telemetry Transport
	1.2.2 WebSphere MQ Telemetry
	1.2.3 Basic concepts of MQTT
	1.2.4 Comparison between MQTT and HTTP
	1.2.5 MQTT and Eclipse Paho
	1.2.6 MQTT and open source

	1.3 Benefits of using MQTT
	1.4 Where to use MQTT
	1.4.1 Example implementations of MQTT
	1.4.2 Machine-to-machine
	1.4.3 MQTT and sensors

	Chapter 2. Getting started with MQTT
	2.1 Clients and brokers used in this book
	2.1.1 MQTT clients
	2.1.2 MQTT brokers

	2.2 Scenario used in this book
	2.2.1 Business challenge
	2.2.2 MQTT-enabled solution

	2.3 MQTT concepts
	2.3.1 MQTT messaging
	2.3.2 Client programming

	2.4 MQTT brokers
	2.4.1 Really Small Message Broker
	2.4.2 Mosquitto
	2.4.3 WMQTT Utility

	2.5 Building a sample MQTT application with freely available software
	2.5.1 Preparation
	2.5.2 Building the sample MQTT application
	2.5.3 Publisher and subscriber in Java
	2.5.4 Publisher and subscriber in C

	Chapter 3. Using MQTT with IBM WebSphere MQ Telemetry
	3.1 Installing, configuring, and managing WebSphere MQ Telemetry
	3.1.1 Before you begin
	3.1.2 Installing WebSphere MQ
	3.1.3 Verifying the installation of WebSphere MQ Telemetry
	3.1.4 Configuring a queue manager for WebSphere MQ Telemetry
	3.1.5 Authorizing MQTT clients to access WebSphere MQ
	3.1.6 Enabling the security features of WebSphere MQ for telemetry channels
	3.1.7 Configuring WebSphere MQ to send messages to MQTT clients
	3.1.8 Performance considerations for WebSphere MQ Telemetry

	3.2 Building a simple solution using WebSphere MQ Telemetry
	3.2.1 Solution overview
	3.2.2 Solution implementation

	3.3 WebSphere MQ classes for Java Message Service
	3.3.1 Sample applications
	3.3.2 Troubleshooting

	3.4 WebSphere MQ Telemetry daemon for devices
	3.4.1 Installing and configuring the WebSphere MQ Telemetry daemon for devices
	3.4.2 WebSphere MQ Telemetry daemon for devices bridges
	3.4.3 Sample implementations of WebSphere MQ Telemetry daemon for devices

	3.5 Troubleshooting WebSphere MQ Telemetry
	3.5.1 Location of logs and error files
	3.5.2 Tracing the telemetry service

	Chapter 4. Integrating MQTT
	4.1 Integrate MQTT with IBM WebSphere Message Broker
	4.1.1 IBM WebSphere Message Broker versions
	4.1.2 Example 1: MQInput node
	4.1.3 Example 2: JMSInput node

	4.2 Integrate MQTT with IBM WebSphere Application Server
	4.2.1 Assumptions
	4.2.2 Integration

	4.3 Integrate MQTT with IBM WebSphere Operational Decision Management
	4.3.1 Using Event Designer
	4.3.2 Deploying the solution

	4.4 Integrate MQTT with IBM Intelligent Operations Center
	4.4.1 The Common Alert Protocol format
	4.4.2 Integration points of the IBM Intelligent Operations Center

	4.5 Integrate MQTT with IBM Lotus Expeditor integrator
	4.5.1 Messaging in Expeditor integrator
	4.5.2 Example 1: Local integration of established devices and protocols through messaging
	4.5.3 Example 2: Messaging-based back-end integration of devices and protocols

	Chapter 5. Typical topologies and patterns of use
	5.1 Typical topology
	5.1.1 Pattern 1: Client to enterprise server
	5.1.2 Pattern 2: Client to edge server to enterprise server
	5.1.3 Pattern 2A: Client to edge server (proxy) to enterprise server
	5.1.4 Pattern 2B: Client to edge server (with adapter) to enterprise server
	5.1.5 Pattern 2 extended: Multiple edge servers connected to each other
	5.1.6 Selection criteria for the main pattern

	5.2 Client to enterprise server
	5.2.1 The topology
	5.2.2 The architecture
	5.2.3 Sample using the client to enterprise server connectivity pattern

	5.3 Client to edge server to enterprise server
	5.3.1 The topology
	5.3.2 The architecture

	5.4 Using the client to edge server to enterprise server connectivity pattern
	5.4.1 Retail industry
	5.4.2 Energy and utilities industry
	5.4.3 Industry example with decentralized application logic

	Chapter 6. Scaling a system
	6.1 Scaling overview
	6.1.1 Types of scaling
	6.1.2 Scalability patterns

	6.2 Provisioning first-time connections (PROV pattern)
	6.2.1 Applicability
	6.2.2 Architecture
	6.2.3 Communication sequence

	6.3 Pushing messages to a large number of devices (LSPN pattern)
	6.3.1 Applicability
	6.3.2 Architecture
	6.3.3 Communication sequence

	6.4 Pushing messages from a large number of devices (LSSP, LSSP2 patterns)
	6.4.1 LSSP applicability
	6.4.2 LSSP architecture
	6.4.3 LSSP communication sequence
	6.4.4 LSSP2 applicability
	6.4.5 LSSP2 architecture
	6.4.6 LSSP2 communication sequence

	Appendix A. MQTT and devices
	A.1 MQTT and Arduino devices
	A.1.1 Introducing Arduino
	A.1.2 Simple Arduino circuit
	A.1.3 MQTT support in Arduino
	A.1.4 Arduino and MQTT with a publish scenario
	A.1.5 Arduino and MQTT with a subscribe scenario

	A.2 MQTT and mobile communication devices
	A.2.1 Worklight
	A.2.2 Android

	Appendix B. The MQTT protocol
	B.1 MQTT concepts
	B.1.1 Quality of service levels and flows
	B.1.2 QoS determination
	B.1.3 QoS impact on performance
	B.1.4 MQTT client identifier
	B.1.5 Durable and non-durable subscribers with MQTT
	B.1.6 Understanding MQTT persistence
	B.1.7 MQTT message overhead
	B.1.8 MQTT keep alive handling
	B.1.9 Retry message delivery
	B.1.10 Last will and testament
	B.1.11 Retained flag on messages
	B.1.12 TCP/IP overhead
	B.1.13 WebSphere MQ Telemetry Transport message format

	Set up for tracing
	B.1.14 Wireshark
	B.1.15 WMQTT Utility: IA92 SupportPac

	B.2 Connect to the MQTT server
	B.2.1 The CONNECT message
	B.2.2 The CONNACK message

	B.3 Publishing with QoS 0
	B.4 Publishing with QoS 1
	B.4.1 The PUBLISH message
	B.4.2 The PUBACK message

	B.5 Publishing with QoS 2
	B.5.1 The PUBLISH message
	B.5.2 The PUBREC message
	B.5.3 The PUBREL message
	B.5.4 The PUBCOMP message

	B.6 Subscribing
	B.6.1 The SUBSCRIBE message
	B.6.2 The SUBACK message
	B.6.3 Subscribed message

	Appendix C. Additional material
	Locating the Web material
	Downloading and extracting the Web material

	Related publications
	References
	Help from IBM

	Back cover

