
EasyIT

KPRO10
Institute of computer science, NTNU

Hans Olaf Borch
Thorvald Johannessen

Truls Jørgensen
Jan Ove Skogheim Olsen

Kristoffer Stenersen
Harald Søvik

Øystein Ulseth

kpro10@idi.ntnu.no

19th November 2004





Contents

I Project Directive 23

1 Prelude 25

2 Project mandate 27
2.1 The name of the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 Interested parties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5 Effect goals - high level requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Result goals - deliveries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.7 The scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 External conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.9 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10 Schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.10.1 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.10.2 Important dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Project plan 31
3.1 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2 Pre study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.3 Requirement specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.4 Software Design Description and test plan construction . . . . . . . . . . . . . . . 32
3.1.5 Implementation and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.6 Project evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.7 Presentation and demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.8 Project management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.9 Lectures and self study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2 Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3 Effort in each phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Organization 35
4.1 Organization chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Formal roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.1 Project leader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.2 Document director . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.3 Test coordinator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.4 Presentation manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.5 Customer contact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.6 Subsystem director 1: DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.7 Subsystem director 2: APP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.8 Subsystem director 3: GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



4 CONTENTS

5 Templates and standards 39
5.1 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1.1 Phase documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.2 Notification of meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Status report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.4 Minutes of meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2 Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Documentation and versioning 41
6.1 Textual documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 LATEX - what and why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.2 CVS - what and why . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1.3 Alternatives to CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Handling of program code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.1 Microsoft Visual SourceSafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.2.2 Alternatives to SourceSafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Project monitoring 43
7.1 Meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.1.1 Internal meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.2 Advisor meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.1.3 Customer meetings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7.2 Internal informative function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.1 Time keeping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.2.2 Activities and milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3 Status reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4 Risk management - TRECQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Quality Assurance 45
8.1 Quality assurance and measurement in EasyIT . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 Customer related quality criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.3 Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Response times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.4.1 With customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4.2 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.5 Routines for producing quality the first time . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.6 Routines for approval of phase documents . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.7 Reports and meeting notices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8.7.1 Customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.7.2 Internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
8.7.3 Advisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A Interested parties 49
A.1 Client representative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Advisors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.3 Project Team . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B Gantt chart and status diagrams 51

C Risk diagram 53

D Templates 55



CONTENTS 5

II Pre study 61

9 Introduction 63
9.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
9.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

10 Current situation 65
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.2 Technical overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
10.3 Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.4 Today’s work processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
10.5 Today’s use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

11 Desired solution 69
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.2 System modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.3 Overall system description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
11.4 Desired work processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
11.5 Desired use cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

12 Business Related Requirements 75
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
12.2 List of business related requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

13 Evaluation criteria 77
13.1 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

14 Market research 81
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
14.2 Solutions comparable to EasyIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

14.2.1 Quick overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
14.2.2 About open source software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
14.2.3 GDAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
14.2.4 OPenDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
14.2.5 About commercial software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
14.2.6 ProcessNet from Matrikon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
14.2.7 OPC DA HDA Archiver from Integration Objects . . . . . . . . . . . . . . . . . . 83
14.2.8 Trend Software from Canary Labs . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
14.2.9 OPC Toolbox from MathWorks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.2.10 OPC Systems from Eldridge Engineering Inc . . . . . . . . . . . . . . . . . . . . . 85
14.2.11 DAQBench from Agile Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
14.2.12 Software Toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
14.2.13 PI Advanced Computing Engine from OsiSoft . . . . . . . . . . . . . . . . . . . . 91
14.2.14 LabView from National Instruments . . . . . . . . . . . . . . . . . . . . . . . . . . 91

14.3 Summary of the Marked Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

15 Chapter summary 95
15.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

E Technological pre study 97
E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
E.2 Short introduction to OPC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

E.2.1 The need for standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
E.2.2 Tags/points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
E.2.3 OPC Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
E.2.4 OPC Historical Data Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

E.3 How the different technologies are evaluated . . . . . . . . . . . . . . . . . . . . . . . . . 99



6 CONTENTS

E.4 Development platforms to consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
E.4.1 Sun JAVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
E.4.2 Microsoft .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
E.4.3 Development platform summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

E.5 Database systems to consider . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
E.5.1 MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
E.5.2 Oracle Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
E.5.3 Microsoft SQL Server 2000 Developer/Enterprise Edition . . . . . . . . . . . . . 109
E.5.4 Database summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

E.6 Summary of technological pre study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

F Evaluations forms 113
F.1 All evaluation forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

III Requirements Specification 127

16 Introduction 129
16.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
16.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

17 Overall description 131
17.1 Product perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

17.1.1 System interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
17.1.2 User interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
17.1.3 Hardware interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
17.1.4 Software interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
17.1.5 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

17.2 User characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
17.3 Apportioning of requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
17.4 APP (applications) and the WEB (presentation system) . . . . . . . . . . . . . . . . . . . 135

17.4.1 Configuration of applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

18 Specific requirements 137
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
18.2 Requirements for the DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

18.2.1 Graphical overall use case for DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
18.2.2 Functional requirements for the DI . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
18.2.3 Textual use case diagrams for the DI . . . . . . . . . . . . . . . . . . . . . . . . . . 139

18.3 Requirements for the APP API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
18.3.1 Graphical overall use case for APP API . . . . . . . . . . . . . . . . . . . . . . . . 150
18.3.2 Functional requirements for the APP API . . . . . . . . . . . . . . . . . . . . . . . 151
18.3.3 Textual use cases for the APP API . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

18.4 Requirements for WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
18.4.1 Graphical overall use case for WEB . . . . . . . . . . . . . . . . . . . . . . . . . . 159
18.4.2 Functional requirements for the web portal . . . . . . . . . . . . . . . . . . . . . . 159
18.4.3 Use cases for common user tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

18.5 Design constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.5.1 Operating system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.5.2 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.5.3 Programming platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.5.4 Standards compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

18.6 Database requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.7 Software system attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168



CONTENTS 7

18.7.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.7.2 Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.7.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.7.4 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.7.5 Portability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

19 Estimation 171
19.1 The need for estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
19.2 Estimation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
19.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

19.3.1 Project Estimation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
19.3.2 Our own estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

IV Software Design Description 175

20 Introduction 177
20.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
20.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
20.3 Definitions, acronyms and abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
20.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
20.5 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
20.6 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

20.6.1 Phase 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
20.6.2 Phase 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
20.6.3 Phase 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
20.6.4 Phase 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

21 Decomposition description 181
21.1 Module decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

21.1.1 DI - Data Interchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
21.1.2 Web - Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
21.1.3 External entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

21.2 Concurrent process decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
21.3 Data decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

22 Dependency description 189
22.1 Intermodule dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

22.1.1 DI - Data Interchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
22.1.2 WEB - Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
22.1.3 External entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

23 Interface description 199
23.1 Module interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

23.1.1 Class interfaces - DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
23.1.2 Graphical user interface - Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23.1.3 External entities interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

23.2 Process interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

24 Detailed design 211
24.1 Module detailed design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

24.1.1 DI - Data Interchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
24.1.2 WEB - Web Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
24.1.3 External entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

24.2 Database detailed design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216



8 CONTENTS

V Implementation document 219

25 Introduction 221

26 Mode of operation 223
26.1 Class diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
26.2 Implementation partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
26.3 EasyIT Server / EasyIT Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

26.3.1 Technical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
26.3.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
26.3.3 Accessing the APP API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

26.4 WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
26.4.1 Technical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
26.4.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
26.4.3 Accessing the WebAPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
26.4.4 Developing custom pages using the WebAPI . . . . . . . . . . . . . . . . . . . . . 226

27 Specific implementation information 229
27.1 Implementing the DBConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
27.2 Implementing the scheduling mechanism of EasyIT Manager . . . . . . . . . . . . . . . 229
27.3 Implementing the DataCollector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
27.4 Implementing the application library and the application API . . . . . . . . . . . . . . . 231
27.5 Implementing the GetTags method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

28 Extra functionality 235
28.1 Manage user accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
28.2 Subscriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
28.3 ”Real-time” data browsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
28.4 Scheduling applications through the web interface . . . . . . . . . . . . . . . . . . . . . . 235

29 Further developement 237
29.1 Suggested improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
29.2 Estimating time consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

G Code samples 239
G.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
G.2 Example applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
G.3 Shells for custom web pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

H Class diagram 247

VI Test Document 255

30 Introduction 257
30.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
30.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

31 Overall Test plan 259
31.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
31.2 Common methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

31.2.1 Black Box testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
31.2.2 White Box testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

31.3 Test stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.3.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.3.2 Module test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.3.3 Integration test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260



CONTENTS 9

31.3.4 System test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
31.3.5 Acceptance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

31.4 Test types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
31.4.1 Functional testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
31.4.2 Testing of non-functional requirements . . . . . . . . . . . . . . . . . . . . . . . . 261

31.5 Test approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
31.5.1 Requirements based testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

31.6 Test data resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
31.7 Error handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

31.7.1 Error and incident classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
31.7.2 Error handling procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

31.8 Test plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
31.8.1 Unit Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
31.8.2 Module and integration test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
31.8.3 System test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
31.8.4 Acceptance Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

31.9 Requirements to be tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
31.10Requirements not to be tested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266

32 Templates for Testing 267
32.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
32.2 Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

33 Summary 269

I Test Report 271
I.1 Unit tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
I.2 Module Test Increment 1 - DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

I.2.1 MT-DI-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
I.2.2 MT-DI-2 and MT-DI-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
I.2.3 MT-DI-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
I.2.4 MT-DI-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

I.3 Module Test Increment 2 - API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
I.3.1 MT-API-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
I.3.2 MT-API-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
I.3.3 MT-API-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
I.3.4 MT-API-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
I.3.5 MT-API-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
I.3.6 MT-API-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
I.3.7 MT-API-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
I.3.8 MT-API-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
I.3.9 MT-API-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
I.3.10 MT-API-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
I.3.11 MT-API-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
I.3.12 MT-API-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
I.3.13 MT-API-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

I.7 Acceptance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
I.4 Module Test Increment 3 - WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

I.4.1 MT-WEB-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
I.4.2 MT-WEB-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
I.4.3 MT-WEB-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
I.4.4 MT-WEB-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
I.4.5 MT-WEB-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
I.4.6 MT-WEB-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

I.5 Stress testing DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
I.5.1 MT-STRESS-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297



10 CONTENTS

I.6 System Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
I.6.1 ST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
I.6.2 ST-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
I.6.3 ST-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
I.6.4 ST-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
I.6.5 ST-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

J Test Log 303
J.1 MT-DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

J.1.1 MT-DI-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
J.1.2 MT-DI-2 and MT-DI-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
J.1.3 MT-DI-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
J.1.4 MT-DI-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

J.2 MT-API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
J.2.1 MT-API-1,MT-API-2,MT-API-3 and MT-API-5 . . . . . . . . . . . . . . . . . . . . 305
J.2.2 MT-API-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
J.2.3 MT-API-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
J.2.4 MT-API-7 and MT-API-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
J.2.5 MT-API-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
J.2.6 MT-API-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
J.2.7 MT-API-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
J.2.8 MT-API-14 and MT-API-15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

J.3 MT WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
J.4 MT-WEB-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
J.5 ST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

J.5.1 ST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
J.5.2 ST-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

J.6 Acceptance test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

VII Project Evaluation 309

34 Introduction 311
34.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
34.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

35 The project outcome 313
35.1 The phases of the project mapped to parts of the document . . . . . . . . . . . . . . . . . 313
35.2 The TDT4290 course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314

35.2.1 Organization of the course . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
35.2.2 Lectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
35.2.3 Mandatory activity I: Six Thinking Hats . . . . . . . . . . . . . . . . . . . . . . . . 314
35.2.4 Mandatory activity II: Team building in Estenstadmarka with Luftkrigsskolen . 315

36 Organization and Cooperation 317
36.1 Internal Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

36.1.1 Organizing the work process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
36.1.2 Organizing the phase documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
36.1.3 Consistency of roles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
36.1.4 Conflicts and Conflict management . . . . . . . . . . . . . . . . . . . . . . . . . . 318

36.2 External Cooperation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
36.2.1 Cooperation with advisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
36.2.2 Cooperation with advisor assistant . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
36.2.3 Cooperation with the customer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319



CONTENTS 11

37 Carrying out the practical 321
37.1 Managing group resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
37.2 Hardware and software resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
37.3 Meeting room resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
37.4 Remote meeting resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

38 Tools 323
38.1 Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323

38.1.1 LATEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
38.1.2 CVS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
38.1.3 ER-modeller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
38.1.4 Visio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
38.1.5 Group directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
38.1.6 Backup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

38.2 Program code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
38.2.1 MS Visual Studio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
38.2.2 MS Visual SourceSafe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324

39 Phases 325
39.1 Project directive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
39.2 Pre study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
39.3 Requirements specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
39.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
39.5 Implementation and testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
39.6 Project evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
39.7 Project presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

40 Progression 327
40.1 Progression and milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
40.2 Time Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
40.3 About implementation estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

41 Summary 333
41.1 Project group matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333

41.1.1 What are we particularly satisfied with? . . . . . . . . . . . . . . . . . . . . . . . . 333
41.1.2 What could have been done better? . . . . . . . . . . . . . . . . . . . . . . . . . . 333

41.2 Course matters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
41.2.1 What are we particularly satisfied with? . . . . . . . . . . . . . . . . . . . . . . . . 334
41.2.2 What could have been done better? . . . . . . . . . . . . . . . . . . . . . . . . . . 334

K Status reports 335

VIII User guide for Easy IT 359

42 Installation guide 361
42.1 Installation guide for EasyIT Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
42.2 Installation guide for EasyITWeb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

43 Developing applications and custom web pages 363
43.1 Constructing applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

43.1.1 Step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363
43.1.2 Explaination of the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

43.2 Contructing custom web pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
43.2.1 Step by step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
43.2.2 Explanation of the code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365



12 CONTENTS

44 Using the EasyITWeb 371
44.1 Basic functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
44.2 Administrator specific functionality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371



List of Figures

4.1 Organization structure after 2 weeks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.1 Our Gantt chart (top) and planned distribution of hours for each phase . . . . . . . . . . 51
B.2 The generated status diagram - generated 19th November 2004 . . . . . . . . . . . . . . 52

C.1 Our risk diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

D.1 The template for notice of meetings with the advisors . . . . . . . . . . . . . . . . . . . . 55
D.2 The template for notice of meetings with the customer . . . . . . . . . . . . . . . . . . . . 56
D.3 The template for minutes from the meeting with the advisors . . . . . . . . . . . . . . . 57
D.4 The template for minutes from the meeting with the customer . . . . . . . . . . . . . . . 58
D.5 The template for status reports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

10.1 Conceptual model of the current situation . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
10.2 Pre study: Use case 1: Performing analysis today . . . . . . . . . . . . . . . . . . . . . . . 68
10.3 Pre study: Use case 2: Asset monitoring today . . . . . . . . . . . . . . . . . . . . . . . . 68
10.4 Pre study: Use case 3: Performing periodic caluculations today . . . . . . . . . . . . . . 68

11.1 Conceptual model of system to be developed. The existing system is outside the box. . 70
11.2 Pre study: Use case 4: Performing analyses using a stand-alone application . . . . . . . 72
11.3 Pre study: Use case 5: Setting up and viewing results from automated calculations . . . 72
11.4 Pre study: Use case 6: Asset monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

13.1 Evaluation form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

14.1 ProcessNet’s NetDraw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
14.2 ProcessNet’s NetTrend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
14.3 ProcessNet’s System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
14.4 Integration Objects’ Data Access Archiver . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
14.5 Canary Labs’ Trend Historian screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
14.6 Canary Labs’ Trend Calc screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
14.7 Canary Labs’ Trend Link screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
14.8 Canary Labs’ Trend Web screen shot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
14.9 OPC Toolbox 1.1 from MathWorks screen shot . . . . . . . . . . . . . . . . . . . . . . . . 90
14.10DAQBench from Agile Integration screen shot . . . . . . . . . . . . . . . . . . . . . . . . 91
14.11TrendWorX32 screen shot from Software Toolbox . . . . . . . . . . . . . . . . . . . . . . . 92
14.12OPC Web Client from Software Toolbox screen shot . . . . . . . . . . . . . . . . . . . . . 93
14.13ACE / VS .NET application development environment screen shot . . . . . . . . . . . . 93
14.14ACE application example from OsiSoft . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
14.15LabView from National Instruments screen shots . . . . . . . . . . . . . . . . . . . . . . . 94

E.1 Communicating using proprietary interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 98
E.2 Communicating using OPC Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

F.1 DAQBench evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

13



14 LIST OF FIGURES

F.2 GDAC evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
F.3 Matrikon ProcessNet evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
F.4 OPC DA HDA Archiver evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
F.5 OPC Systems Eldridge evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
F.6 OPC Toolbox for Matlab evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
F.7 OPC Web Client evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
F.8 OpenDA evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
F.9 PI ACE evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
F.10 Trend Software evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
F.11 TrendworX32 evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
F.12 LabView evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

17.1 Action Port Model (APM) of the EasyIT-system . . . . . . . . . . . . . . . . . . . . . . . . 132
17.2 Conceptual model of EasyIT 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
17.3 Conceptual model of EasyIT 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

18.1 Overall use case for DI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
18.2 Overall use case for API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
18.3 Overall use case for WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

20.1 Implementation phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

21.1 Overall figure of module decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
21.2 Processes spawned at startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
21.3 Representation of OPC-data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

22.1 Intermodule dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
22.2 Reading and writing synchronous from/to OPC . . . . . . . . . . . . . . . . . . . . . . . 193
22.3 Subscribing or unsubscribing to set of tags . . . . . . . . . . . . . . . . . . . . . . . . . . 194
22.4 Typical interaction between a web module and the database . . . . . . . . . . . . . . . . 195
22.5 Typical interaction between a web module and the DI . . . . . . . . . . . . . . . . . . . . 196

23.1 Methods exported between entities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
23.2 User interface 1 for TagBrowser. User selects tags for browsing . . . . . . . . . . . . . . . 204
23.3 User interface 2 for TagBrowser. The chosen tags are displayed. . . . . . . . . . . . . . . 205
23.4 User interface for ConfigTool, configure new web application . . . . . . . . . . . . . . . 206
23.5 User interface for ConfigTool, select web application for configuration . . . . . . . . . . 207
23.6 User interface for AppMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

24.1 ER diagram of the OPC data table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
24.2 Diagram of the custom pages table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

27.1 Code for connection to EasyIT through an application . . . . . . . . . . . . . . . . . . . . 232
27.2 Code that listens for connections on the EasyIT Server . . . . . . . . . . . . . . . . . . . . 233
27.3 Logged data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

G.1 The pressure checker sample application page 1 . . . . . . . . . . . . . . . . . . . . . . . 240
G.2 The pressure checker sample application page 2 . . . . . . . . . . . . . . . . . . . . . . . 241
G.3 The averager sample application page 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
G.4 The averager sample application page 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
G.5 The averager sample application page 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
G.6 Code shell for mypage.ascx 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
G.7 Code shell for mypage.ascx.cs 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

H.1 Overall class diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
H.2 Application related classes and interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
H.3 Data item classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249



LIST OF FIGURES 15

H.4 DBConnector and DataCollector(DC) classes . . . . . . . . . . . . . . . . . . . . . . . . . 250
H.5 EasyIT Server and Manager classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
H.6 Web related classes and interfaces on the EasyIt Manager . . . . . . . . . . . . . . . . . . 252
H.7 Web related classes on the EasyIT Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

31.1 Module and Integration Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

32.1 Test description table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
32.2 Error Report Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

I.1 MT-DI-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
I.2 MT-DI-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
I.3 MT-DI-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
I.4 MT-DI-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
I.5 MT-DI-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
I.6 MT-API-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
I.7 MT-API-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
I.8 MT-API-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
I.9 MT-API-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
I.10 MT-API-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
I.11 MT-API-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
I.12 MT-API-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
I.13 MT-API-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
I.14 MT-API-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
I.15 MT-API-10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
I.16 MT-API-11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
I.17 MT-API-12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
I.18 MT-API-13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
I.19 MT-WEB-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
I.20 MT-WEB-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292
I.21 MT-WEB-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
I.22 MT-WEB-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
I.23 MT-WEB-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
I.24 MT-WEB-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
I.25 MT-STRESS-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
I.26 ST-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
I.27 ST-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
I.28 ST-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
I.29 ST-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
I.30 ST-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

J.1 Screen shot MT-WEB-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

40.1 Planned Gantt Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
40.2 Actual Gantt Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
40.3 Work Hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330

K.1 Status report from 2004-08-24 to 2004-08-31- page 1 . . . . . . . . . . . . . . . . . . . . . 336
K.2 Status report from 2004-08-24 to 2004-08-31 - page 2 . . . . . . . . . . . . . . . . . . . . . 337
K.3 Status report from 2004-08-30 to 2004-09-06 - page 1 . . . . . . . . . . . . . . . . . . . . . 338
K.4 Status report from 2004-08-30 to 2004-09-06 - page 2 . . . . . . . . . . . . . . . . . . . . . 339
K.5 Status report from 2004-09-06 to 2004-09-12 - page 1 . . . . . . . . . . . . . . . . . . . . . 340
K.6 Status report from 2004-09-06 to 2004-09-12 - page 2 . . . . . . . . . . . . . . . . . . . . . 341
K.7 Status report from 2004-09-13 to 2004-09-20 - page 1 . . . . . . . . . . . . . . . . . . . . . 342
K.8 Status report from 2004-09-13 to 2004-09-20 - page 2 . . . . . . . . . . . . . . . . . . . . . 343
K.9 Status report from 2004-09-20 to 2004-09-27 - page 1 . . . . . . . . . . . . . . . . . . . . . 344



16 LIST OF FIGURES

K.10 Status report from 2004-09-20 to 2004-09-27 - page 2 . . . . . . . . . . . . . . . . . . . . . 345
K.11 Status report from 2004-09-27 to 2004-10-04 - page 1 . . . . . . . . . . . . . . . . . . . . . 346
K.12 Status report from 2004-09-27 to2004-10-04 - page 2 . . . . . . . . . . . . . . . . . . . . . 347
K.13 Status report from 2004-10-04 to 2004-10-12- page 1 . . . . . . . . . . . . . . . . . . . . . 348
K.14 Status report from 2004-10-04 to 2004-10-12 - page 2 . . . . . . . . . . . . . . . . . . . . . 349
K.15 Status report from 2004-10-12 to 2004-10-19 - page 1 . . . . . . . . . . . . . . . . . . . . . 350
K.16 Status report from 2004-10-12 to 2004-10-19 - page 2 . . . . . . . . . . . . . . . . . . . . . 351
K.17 Status report from 2004-10-19 to 2004-10-26 - page 1 . . . . . . . . . . . . . . . . . . . . . 352
K.18 Status report from 2004-10-19 to 2004-10-26 - page 2 . . . . . . . . . . . . . . . . . . . . . 353
K.19 Status report from 2004-26-10 to 2004-11-02 - page 1 . . . . . . . . . . . . . . . . . . . . . 354
K.20 Status report from 2004-26-10 to 2004-11-02 - page 2 . . . . . . . . . . . . . . . . . . . . . 355
K.21 Status report from 2004-11-02 to 2004-11-09 - page 1 . . . . . . . . . . . . . . . . . . . . . 356
K.22 Status report from 2004-11-02 to 2004-11-09 - page 2 . . . . . . . . . . . . . . . . . . . . . 357

43.1 An example application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
43.2 Configuring the demo application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
43.3 Example custom web page application: myTestPage.ascx . . . . . . . . . . . . . . . . . . 367
43.4 Example custom web page application: myTestPage.ascx.cs . . . . . . . . . . . . . . . . 368
43.5 The resulting demo page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369



List of Tables

12.1 Business related demands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

13.1 Evaluation criteria list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
13.2 Existing solutions evaluation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

E.1 Technological evaluation criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
E.2 Development platform criteria evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
E.3 Database criteria evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

18.1 DI requirement list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
18.2 DI-UC-18.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
18.3 DI-UC-18.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
18.4 DI-UC-18.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
18.5 DI-UC-18.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
18.6 DI-UC-18.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
18.7 DI-UC-18.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
18.8 DI-UC-18.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
18.9 DI-UC-18.9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
18.10DI-UC-18.10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
18.11DI-UC-18.11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
18.12API requirement list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
18.13API-UC-18.13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
18.14API-UC-18.14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
18.15API-UC-18.15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
18.16API-UC-18.16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
18.17API-UC-18.17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
18.18API-UC-18.18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
18.19API-UC-18.19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
18.20API-UC-18.20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
18.21API-UC-18.21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
18.22API-UC-18.22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
18.23API-UC-18.23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
18.24API-UC-18.24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
18.25API-UC-18.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
18.26Functional requirements for WEB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
18.27WEB-UC-1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
18.28WEB-UC-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
18.29WEB-UC-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
18.30WEB-UC-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
18.31WEB-UC-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
18.32WEB-UC-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
18.33Operating system requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.34Hardware requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
18.35Programming platform requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

17



18 LIST OF TABLES

18.36Standards compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.37Database requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.38Reliability requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.39Availability requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.40Security requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.41Maintainability requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.42Portability requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

19.1 Estimation of the hours needed to fulfill the DI requirements . . . . . . . . . . . . . . . 172
19.2 Estimation of the hours needed to fulfill the API requirements . . . . . . . . . . . . . . . 173
19.3 Estimation of the hours needed to fulfill the WEB requirements . . . . . . . . . . . . . . 174

21.1 Decomposition of Data Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
21.2 Decomposition of Database Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
21.3 Decomposition of Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
21.4 Decomposition of Web API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
21.5 Decomposition of ServerConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
21.6 Decomposition of Tag Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
21.7 Decomposition of ConfigTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
21.8 Decomposition of ServerConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
21.9 Decomposition of Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
21.10Decomposition EasyIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

22.1 Dependencies for Data Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
22.2 Dependencies for Database Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
22.3 Dependencies for Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
22.4 Dependencies for WEB API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
22.5 Dependencies for ServerConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
22.6 Dependencies for the ConfigTool and AppMonitor . . . . . . . . . . . . . . . . . . . . . . 197
22.7 Dependencies for the TagBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
22.8 Dependencies for Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
22.9 Dependencies for EasyIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

23.1 Interface for Data Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
23.2 Interface for Database Connector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
23.3 Interface for Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
23.4 Interface for WEB API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
23.5 Interface for ServerConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23.6 Interface for TagBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
23.7 Interface for ConfigTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
23.8 Interface for AppMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
23.9 Interface for Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
23.10Interface for EasyIT Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

24.1 Detailed description for Data Collector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
24.2 Detailed description for Database Connector . . . . . . . . . . . . . . . . . . . . . . . . . 211
24.3 Detailed description for Application API . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
24.4 Detailed description for WEB API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
24.5 Detailed description for ServerConnector . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
24.6 Detailed description for TagBrowser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
24.7 Detailed description for ConfigTool . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
24.8 Detailed description for AppMonitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
24.9 Detailed description for Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
24.10Detailed description for EasyIT Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
24.11Detailed description for the OPC datatables . . . . . . . . . . . . . . . . . . . . . . . . . . 216
24.12Detailed description for the WEB datatable . . . . . . . . . . . . . . . . . . . . . . . . . . 217



LIST OF TABLES 19

29.1 Estimation of the complexity of suggested improvements . . . . . . . . . . . . . . . . . . 238

31.1 Test Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

J.1 Tags logged in database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

40.1 Milestones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327





Bibliography

[1] M. S. AB. http://www.mysql.com.

[2] G. D. Access and C. Framework. http://sourceforge.net/projects/gdac/.

[3] G. D. Access and C. Framework. http://sourceforge.net/projects/opcxml/.

[4] B. Anda. http://www.idi.ntnu.no/emner/tdt4290/docs/faglig/uc-projectestimatemethodv2-
test.xls.

[5] B. Anda and R. Conradi. http://www.idi.ntnu.no/emner/tdt4290/docs/faglig/usecase-
estimering.doc.

[6] ComponentArt. http://www.componentart.com/.

[7] M. Corporation. http://www.microsoft.com.

[8] O. Corporation. http://www.oracle.com.

[9] W. O. C. Dictionary. http://www.webopedia.com/.

[10] T. O. Foundation. http://www.opcfoundation.org/.

[11] D. from Agile Integration. http://www.agile.co.za/software/daqbench.htm.

[12] O. S. from Eldridge Engineering Inc. http://www.opcsystems.com/.

[13] M. from MathWorks. http://www.mathworks.com/.

[14] P. A. C. E. from OsiSoft. http://www.osisoft.com/.

[15] IEEE. Recommended practice for software design descriptions.

[16] IEEE. Recommended practice for software requirements specifications.

[17] IEEE. Standard glossary of software engineering terminology.

[18] N. Instruments. http://www.ni.com/.

[19] C. Labs. http://www.canarylabs.com/.

[20] Matrikon. http://www.matrikon.com/.

[21] I. Objects. http://www.integ-objects.com/.

[22] C. One). www.componentone.com.

[23] Skype. http://www.skype.com.

[24] I. Systems. http://www.idi.ntnu.no/emner/tdt4175.

[25] V. V. (vetle@stud.ntnu.no) and K. S. (skogstro@stud.ntnu.no).
http://www.idi.ntnu.no/emner/tdt4145/programvare/ermod/ermod.jnlp.

21





Part I

Project Directive

23





CHAPTER1
PRELUDE

The organization of the project takes place in the project directive. The purpose of this directive is
to regulate the administrative part and the accomplishment of the project. The guidance is however
expected to change throughout the lifetime of the project. The project directive will also change when
these changes take place.

25





CHAPTER2
PROJECT MANDATE

2.1 THE NAME OF THE PROJECT

The name of the project is EasyIT.

2.2 CUSTOMER

The customer is:
ABB Corporate Research Center.
Bergerveien 12
1375 Billingstad
Norway

Customer representative:
Name: Karl-Petter Lindegaard
Phone: 66843395
Fax: 66843060
Email: karl-petter.lindegaard@no.abb.com

2.3 INTERESTED PARTIES

Interested parties are the customer (see 2.2), the EasyIT project group and the groups advisors. Please
see appendix A for a detailed list of the interested parties.

2.4 BACKGROUND

A couple of years ago, the easy access to data the industry now witnesses wasn’t feasible. The reason
for this change is the rapidly changing world of information technology. The industry now wants tools
for processing this data.
Examples of tools are:

1. Tools to quantitatively identify and characterize the business. These tools aim to optimize the
production, and thereby increase the result.

2. Tools to identify damaged or partly damaged equipment. These tools aim to reduce the down
time of the production as a whole, and with that increase the production and result.

3. Tools to generate reports for documenting the business (for instance, environmental requirements
stated by the authorities)

These tools could be used for automation of processes (generation of predefined applications and
reports). However, qualified personnel could also use these kinds of tools for looking back in history
and searching for new ways to view the processes.
A big challenge is to present an alternative that is

27



28 CHAPTER 2. PROJECT MANDATE

• easy to configure

• easy to expand with new applications for analysis of data

• user friendly when it comes to accessing data

• low cost

Earlier, the market for these systems was reserved for the big vendors and their proprietary com-
munication protocols. Now, several smaller vendors have made their way into the market, because
they use new and open standards for accessing the system data at a much lower cost compared to the
bigger vendors (i.e. ABB).

2.5 EFFECT GOALS - HIGH LEVEL REQUIREMENTS

By effect goals it is meant the effect that is to be achieved in the project. The main goal of this project is
to make a system that helps ABB to become even more competitive as a vendor for the industry.
The system should be

• easy to configure

• user friendly when it comes to accessing new data, and exploring historical data

• easy to expand with new applications for analysis of data

• low cost - use open standards for communication with the underlying system.

2.6 RESULT GOALS - DELIVERIES

By result goals it is meant those deliveries that the client demands to make the project a success. These
are:

1. an infrastructure1 for collection and suitable storage for large volumes of measure- and process
data

2. a framework2 for development of small, scheduled applications that operate on already collected
data, thereafter writing back the result to the infrastructure in pt 1.

3. a GUI gateway that presents both raw values and application results, logged by pt 1. The client
wants a web application for this purpose.

Of these three points, the most significant is the first one. Without this one, there won’t be founda-
tion for the rest.

2.7 THE SCOPE

The different stages of the project are listed in the project plan (please see chapter 3). These stages will
be put together to form the report. The members of the group must learn what is needed to make the
project a success.

This includes

• Documentation tools

• Programming platform

1A set of ready-to-use applications
2a skeleton to build applications upon



2.8. EXTERNAL CONDITIONS 29

• Version control systems

The end product - the report, source code and documentation will be delivered to the client. The
following documents will be included in the final report:

• Project directive

• Pre study

• Requirements specification

• Software Design Description

• Test Document

• Implementation Description

• Evaluation

2.8 EXTERNAL CONDITIONS

This subsection describes the external conditions. This means elements that can constrain the project
team’s work:

• The client is physically located in Oslo, and is limited to very few face-to-face meetings, perhaps
only three:

1. At startup

2. In the middle

3. At the final presentation

We are planning to use various forms of net meeting programs as a substitute.

• Microsoft products are used for most development tasks in ABB. In order to incorporate our
solution, the client wants us to use Microsoft products in the development.

• A computer where necessary software can be installed. Necessary software includes an OPC
server and perhaps a SourceSafe server. This computer will be provided by Department of Com-
puter and Information Science (IDI).

2.9 RESOURCES

The project team consists of 7 persons who are expected to work 310 hours each during the project.
That gives 2170 hours totally for the entire team.

2.10 SCHEDULE

This part presents the project’s duration and important dates.

2.10.1 Duration

The project starts 2004.08.24 and ends 2004.11.18



30 CHAPTER 2. PROJECT MANDATE

2.10.2 Important dates

2004.08.24 Start of the project

2004.08.27 Group dynamics part 1, "Six thinking hats"’

2004.09.06 Group dynamics part 2, "Team building" , Luftkrigsskolen

2004.10.28 Pre delivery of the Preliminary Study and the Requirements Specification delivered to ex-
aminer.

2004.11.08 Order time for copying the final report.

2004.11.15-17 Copying of the final report

2004.11.16-18 Presentation rooms available for rehearsal

2004.11.18 Presentation and demonstration



CHAPTER3
PROJECT PLAN

3.1 PHASES

We have chosen to divide the project into the following phases:

• Preliminary planning (project directive) - see 3.1.1

• Pre study - see 3.1.2

• Requirement specification and create test plan - see 3.1.3

• Design and test plan construction - see 3.1.4

• Implementation and testing - see 3.1.5

• Project evaluation - see 3.1.6

• Presentation and demonstration - see 3.1.7

There are also two continuous tasks spanning the project lifetime, which are always executed in
parallel to one or more phases:

• Project management - see 3.1.8

• Lectures and self study - see 3.1.9

The use of the term “responsible” in the sections below are used in the sense that the group member
listed is intended to perform the activity described.

3.1.1 Planning

In this phase the first draft of these documents was sketched and the group was organized.

Activity Responsible
Organizing the group Everyone
Responsible for the project directive Harald
Starting up the pre study Jan Ove
Templates and standards Truls and Øystein
Time Kristoffer
Creating activity plan Kristoffer and Truls
Plan quality assurance Thorvald

31



32 CHAPTER 3. PROJECT PLAN

3.1.2 Pre study

In this phase we’ll begin the study of our problem. A description of today’s solutions will be presented,
as well as tomorrow’s potential solutions. The operational and business requirements are laid down,
and form the foundation for alternative solutions. Criteria for these solutions will be set and considered
before we reach a conclusion upon our selected solution.

Given the amount of material in the technological pre study, we’ll split the workload of this part of
the pre study in three parts of the project. The parts are made up by looking at the result goals: (Please
see section 2.6.)

• The data collector side of the project.

• The application side of the project

• The presentation side of the project

Activity Responsible
Describe today’s situation and solution Jan Ove, Hans Olaf, Øystein
Describe desired situation and solution Jan Ove, Hans Olaf, Øystein
Outline business demands Harald
Outline evaluation criteria Truls
Market research Thorvald
Describe alternative solutions Kristoffer
Evaluate solutions Harald
Choice of solution Jan Ove
Finishing of the pre study report Harald

3.1.3 Requirement specification

The project’s requirements will here be specified, thoroughly examined, systemized and prioritized.
Our customer and our pre study give the basis for this phase. An outline of the software architecture
will be made, as well as data models, perhaps some prototypes of screen shots and choice of tools for
development.

Activity Responsible
Responsible for the requirements document Thorvald
Write requirements introduction Kristoffer
Write overall description Hans Olaf
Write non-functional requirements Harald
Write functional requirements Jan Ove
Document requirements Truls
Rules for acknowledgement testing Thorvald

3.1.4 Software Design Description and test plan construction

In this phase we prepare the realizable solution, and we’ll estimate the amount of time needed for
implementation. All technological issues are now to be fixed in more detail. We should now be able to
know that the implementation is possible and feasible.



3.1. PHASES 33

Activity Responsible
Document introduction Kristoffer
DI responsible Jan Ove
APP responsible Øystein
GUI responsible Hans Olaf
DFD responsible Harald
Class diagrams Kristoffer
UML responsible Truls
Estimation responsible Truls
Sequence diagrams Thorvald
Document composition / responsible Jan Ove
Detailed test plans Thorvald

3.1.5 Implementation and testing

Here we begin to implement our solution, and produce documents for programming standards, com-
menting, special algorithms etc. The test documentation is also produced in this phase.

Activity Responsible
DI responsible Jan Ove
Document introduction Harald
APP responsible Øystein
GUI responsible Hans Olaf
Produce test data Thorvald
Execution of tests Thorvald
Documenting code Everybody
Implementation document Kristoffer

3.1.6 Project evaluation

Here we evaluate the process and the result, our customer and our problem, the subject and discuss
further work on the project.

Activity Responsible
Write evaluation of process and result Harald
Evaluate customer and task in general Hans Olaf
Evaluate course Kundestyrt Project Truls
Further work Øystein

3.1.7 Presentation and demonstration

Here we prepare for presentation and demonstration of our project.

Activity Responsible
Prepare demonstration Øystein
Prepare presentation Kristoffer

3.1.8 Project management

This is the administrative part of the project. Meetings are the main part of this task. All of the group
members are allocated to specific roles - tasks they are responsible for. See section 4.2 for details.



34 CHAPTER 3. PROJECT PLAN

3.1.9 Lectures and self study

The staff of TDT4290 Kundestyrt Project arranges series of lectures relevant to the project, but also
courses in team building and group dynamics. Hours spent on these activities will be registered here.

3.2 MILESTONES

The information in this section can also be found in context in appendix B.1 - the Gantt chart.

Milestone Date
Finished project directive (planning phase) Sep 06. 2004
Finished pre studies Sep 17. 2004
Send requirements specification for approval to client Sep 24. 2004
Finished requirements specification Sep 27. 2004
Finished design of overall design Oct 05. 2004
Finished design documents Oct 15. 2004
Pre deliverance of pre study and requirements specification Oct 28. 2004
Finished implementation and test documentation Nov 04. 2004
Finished project evaluation Nov 11. 2004
Presentation Nov 18. 2004

3.3 EFFORT IN EACH PHASE

The information in this section can also be read in context in appendix B.1 - the Gantt chart.

Phase Hours esti-
mated

Hours spent

Project management 217
Lectures and self study 217
Planning 245
Pre study 301
Requirement specification 264
Design 340
Programming and documentation 340
Project evaluation 112
Presentation and demonstration 130
Sum 2170



CHAPTER4
ORGANIZATION

4.1 ORGANIZATION CHART

The organization of this project consists of

• the project group

• customer contact

• advisor group

EasyIT


Advisors
 Customer
Project group


Technical roles
Administrative roles


Name: Harald Søvik

Title: Document director


Name: Thorvald Johannesen

Title: Test coordinator


Name: Truls Jørgensen

Title: Project leader


Name: Kristoffer Stenersen

Title: Presentation manager


Name: Jan Ove S Olsen

Title: DI responsible


Name: Øystein Ulseth

Title: API responsible


Name: Hans Olaf Borch

Title: Web responsible


Name: Reidar Conradi

Title: Advisor


Name: Odd Petter N Slyngstad

Title: Advisor assistant


Name: Karl Petter Lindegaard

Title: Customer representative


Figure 4.1: Organization structure after 2 weeks

35



36 CHAPTER 4. ORGANIZATION

4.2 FORMAL ROLES

These roles are assigned to last throughout the project, and are different from the roles in 3.1 in the
sense that they designate responsibility, but not necessarily the actual work.

4.2.1 Project leader

His function is to reduce the overhead of administrative tasks like distributing work, follow-up on
workers, coordination of tasks. In case of disagreement between members of the group, low morale or
poor work completion, he has the responsibility of putting matters straight.

The project leader is Truls.

4.2.2 Document director

His function is to reduce the overhead of administering documents and source, to arrange structures
and formats for storage, making sure the repository is in working order and completing documents
when their content are available. When reports and drafts should be distributed, it is his responsibility
that they will be so on time.

The document director is Harald.

4.2.3 Test coordinator

The test coordinator shall supervise the testing of modules and the product, making sure everything is
in order to satisfy the functional requirements.

The test coordinator is Thorvald.

4.2.4 Presentation manager

The presentation manager is there to coordinate every part of the demonstration of the product. Mak-
ing sure slides are being made, demonstration equipment is in working order.

The presentation manager is Kristoffer.

4.2.5 Customer contact

The customer contact will coordinate all communication with the customer, to reduce his overhead,
and avoid duplicate questions or redundant information flow.

The customer contact is Hans Olaf.

4.2.6 Subsystem director 1: DI

The director of the Data Interchanger module is supervising the construction of the module, reporting
to the project leader if there is to much or too little labour available. He is also working together with
the test coordinator to make sure his module is compatible with other modules and is satisfying the
functional requirements.

The subsystem director 1 is Jan Ove.



4.2. FORMAL ROLES 37

4.2.7 Subsystem director 2: APP

The director of the application module is supervising the construction of the module, reporting to the
project leader if there are too much or too little labour available. He is also working together with
the test coordinator to make sure his module is compatible with other modules and is satisfying the
functional requirements.

The subsystem director 2 is Øystein.

4.2.8 Subsystem director 3: GUI

The director of the GUI module is supervising the construction of the module, reporting to the project
leader if there is too much or too little labour available. He is also working together with the test co-
ordinator to make sure his module is compatible with other modules and is satisfying the functional
requirements.

The subsystem director 3 is Hans Olaf.





CHAPTER5
TEMPLATES AND STANDARDS

During the project, we will produce a number of documents. We have developed templates that will
be applied to these documents because we want our documentation to be as structured as possible.
The group has also agreed on using standards regarding naming of directories and files. This chapter
defines the templates and standards and corresponds with chapter 8 - Quality Assurance regarding the
time to respond for each document type.

5.1 TEMPLATES

5.1.1 Phase documents

This part, the project directive, forms the standard for the appearance of all the phase documents. We
have planned the use of a internal log that contains updates in these phase documents.

5.1.2 Notification of meetings

We have two different types, for two different purposes:

• Notifying the customer of a meeting.
This template is attached in D.2

• Notifying the advisor of a meeting
This template is attached in D.1

5.1.3 Status report

This template will be applied to all status reports. The status report is a weekly summary document
written by the project coordinator and delivered to the advisor before the weekly advisor meeting.
This template is attached in D.5

5.1.4 Minutes of meetings

This template is meant to be applied to all minutes written after meetings with the supervisor and the
customer. However, minutes of internal meetings do not need to be have this template applied - it will
depend on whether we consider the meeting important or not. This templates are attached in D.3 and
D.4.

39



40 CHAPTER 5. TEMPLATES AND STANDARDS

5.2 STANDARDS

The group is using CVS for file sharing and version control on documents. The main directories are
named by the phases of the project: Project directive, preliminary study and so on. Each file is a
chapter, and chapters are named like this: Chapter_X_NAME.tex . However, we are probably going
to use another tool for file sharing when it comes to programming code; Source Safe. The reason for
this is that we probably will develop in Visual Studio .Net, and Source Safe provides version control
for .Net code.



CHAPTER6
DOCUMENTATION AND VERSIONING

This project will be using both CVS 1and SourceSafe 2for versioning files.

As this project is both educational and professional, there is loads of documentation that will be pro-
duced by a number of people. It is therefore a necessity to be able to gather documents and keep them
consistent while under development. Because of the considerable volume of text, LATEX will be used
for markup, which also allows us to use CVS for versioning due to its plaintext-nature.

6.1 TEXTUAL DOCUMENTS

6.1.1 LATEX - what and why

LATEX is a compiler that translates your written document code into your favorite document format.
You can write in any editor capable of saving plain text, and is therefore very platform-flexible. Your
code consists of HTML-like tags, but (unlike HTML) LATEX is very strict regarding correct formatting.
While you are writing, you are supposed to write, and not try to make your document look nice.
Layout can be managed in a separate part of the document, possibly even in a separate file (which in
turn can be common for all of your documents).

LATEX has a lot of labelling and numbering functions built-in, and i.e. headers and references are
managed automatically. Content can be separated into different files, and later included in the com-
plete document. This eases the overhead of cooperating on the same report.

6.1.2 CVS - what and why

Concurrent Version System called CVS controls your files by storing them in a “library” (repository).
Your CVS-client will do a “checkout” of your project, making a local copy. This copy can be edited
without interference from other editors whenever you like. When you are done editing your document
and you have had your document checked for correctness, consistency and completeness, you ask the
CVS client to update the repository.

This is where CVS has its greatest strength: If someone else has changed the repository while you
were away editing, CVS can either merge the differences or let you resolve conflicting sections. (CVS
also provides methods for setting locks to files, but since setting locks to plain text documents will
block the merging capability of CVS, we’ll not be using this feature.)

In addition there are functions for adding and removing files in the central storage without haveing
to bother with FTP or overwriting changes you were unaware of. You are also able to lock files if you
feel like they should stay the way they are, or ask CVS to notify you when someone changes a file.

1CVS is a version control system. Using it, you can record the history of sources files and documents.
http://www.gnu.org/software/cvs/

2 Visual SourceSafe provides individual developers and small development teams with tools to make safe alterations to
existing code and track changes across users, projects, and time. http://msdn.microsoft.com/vstudio/previous/ssafe/

41



42 CHAPTER 6. DOCUMENTATION AND VERSIONING

That is the concurrent part. The versioning part is rather simple. Every time someone commits a
change to a file, the change is saved to the file, making you able to “roll back” to an earlier version of
your choice. This works well with LATEX, since both text and code is in plaintext.

6.1.3 Alternatives to CVS

• Bitkeeper - expensive

• Subversion - not available at student servers

• SCCS - only available under UNIX source code license

Anyway, CVS covers of all our needs, is available for use with hardly any configuration and is
installed on student servers. CVS is available under GNU General Public License3.

6.2 HANDLING OF PROGRAM CODE

6.2.1 Microsoft Visual SourceSafe

The actual program code development will, because of customer request, be done in the program-
ming language C#. This leads us to use Microsoft Visual Studio as development environment. This
in turn will enable us to use integrated solutions for versioning, source control and code documenta-
tion. SourceSafe integrates in the development environment, and thereby reduces code management
overhead, in addition to offering functions to reduce actual development time, i.e. reuse of code.

6.2.2 Alternatives to SourceSafe

What’s described in the previous section is very similar to CVS and other versioning systems. How-
ever, MVSS is the only Microsoft-native system. Using Visual Studio with a “alien” versioning system
would provide another layer with possibility of errors. There are versioning systems which integrate
with the Explorer interface of Windows, but this adds file management overhead. No other system
offers the system of dynamic update of reused code. Our only concern with economics in this project
is hours spent. In addition, both Visual Studio and SourceSafe is available “for free” through Microsoft
Development Network Academic Alliance4. This is therefore the cheapest solution.

3http://www.gnu.org/copyleft/gpl.html
4http://www.msdnaa.net



CHAPTER7
PROJECT MONITORING

7.1 MEETINGS

Our meetings can be split up into three categories:

7.1.1 Internal meetings

We hold our internal meetings every Monday at 10 am. The agenda is to review the last week’s activ-
ities, check our status compared with our plan, discuss and coordinate further activities. There is an
informal ambience, but is led by the project leader. The report of this meeting is the basis of the status
report for the main meeting at Wednesdays.

7.1.2 Advisor meetings

Our meetings with our advisor and the advisor assistant are held Wednesdays 10 am to 11 am in room
ITV-242. These meetings are of a more formal matter, and our project leader lead them according to
the meeting agenda. The group can receive comments on their productivity and work, get help to
approach eventual problems and get general guidance. Project status and progress are reported to the
project advisor and the advisor assistant who again give feedback on these matters.

7.1.3 Customer meetings

These meetings are seldom person to person, because of our customer’s distant location. We will
mainly be in touch with him by email, but also by net meetings / video conference etc. The group’s
customer contact will be responsible for these meetings.

7.2 INTERNAL INFORMATIVE FUNCTION

7.2.1 Time keeping

Every group member keeps their hour list updated in our shared group folder. These lists are Excel
sheets, and there is also one sheet for giving a total of all the reported hours, and compare these num-
bers to our schedule. Group members have to fill in the last week’s hours by the internal meetings at
Mondays. A printout will be brought to the main meetings.

43



44 CHAPTER 7. PROJECT MONITORING

7.2.2 Activities and milestones

Our activities and milestones will mainly be discussed Mondays, in our internal meetings. Greater
variances from the decided schedule will be clarified and dealt with.

7.3 STATUS REPORTS

Status reports will be generated as a result of the internal meetings, and delivered to our project advi-
sor before 12 am Tuesdays (the day before the main meetings), along with the other documents he’ll
receive. See 8.7.3 for the list of documents. Our advisor assistant will receive an email copy of these
documents before 12 am. See 5.1.3 for a description of the status document.

7.4 RISK MANAGEMENT - TRECQ

TRECQ is an evaluation of the project’s status in view of

• Time. Progress and milestones compared to our timetable?

• Risk. Elements of risk, consequences and response? See C.1 for the risk table.

• Extent. Is our task growing or decreasing?

• Cost and time keeping. Are we following the budget?

• Quality. Do we have to reduce the quality of our product?

These points are addressed at project meetings, but they are also commented in the status report.



CHAPTER8
QUALITY ASSURANCE

This document describes quality guidelines for all routine tasks within the project. By setting these
standards, we hope to both gain efficiency and secure the quality in our work. We have established
guidelines for communication, response times, creation and approval of all documents and tasks con-
sidering all meetings.

8.1 QUALITY ASSURANCE AND MEASUREMENT IN EASYIT

The system we have been assigned to design, will take the form of a prototype, and by this serve the
purpose of a pre-study for later development within the ABB research group. Our system will never be
used directly by an end user in a realistic environment. This implies that an error in the performance
of our system will not have major consequences for either the user or the rest of the control-system,
and will of course affect our quality assurance guidelines. This does not mean that we have a lower
demand for quality assurance, but it will affect which areas we choose to emphasize in the design,
implementation and test phases. Our specific product will affect the standards by which we, and the
customer measure quality.

8.2 CUSTOMER RELATED QUALITY CRITERIA

In collaboration with our customer, we have identified goals that forms a base of high-level objectives
for the project. These are classified as quality criteria factors. Some of the criteria are directly and objec-
tively measurable, while others are subjective and indirectly measurable. Regardless of measurability,
the customer will evaluate the success factor in the project by these criteria.

Usability

• It should take a minimum of time to develop a new application that fits into the derived frame-
work. This includes easy access to collected data, scheduling of applications, and web access for
non-developers / users.

• The application development process must be easy and should not require extensive knowledge
of the underlying system.

• Reconfiguring the data collector should be easy.

• The web portal should have a uniform layout, a recognizable theme displaying web pages in a
similar way.

• All text presented should be in a common language for all users.

• The final product should be easy to install. "Wizard" installation is preferred.

45



46 CHAPTER 8. QUALITY ASSURANCE

Reliability / Efficiency

• The system should be able to perform without difficulties, while treating 500 tags on a 1 second
rate, 500 on a 10 second rate and 500 on a one minute rate.

• The system should be able to provide historical data logging up to 6 months.

• The web portal shall be able to serve several web browsers accessing the data in parallel.

Portability

• It should be easy to change the layer communicating with the underlying data sources.

Documentation

• Documentation should reflect the choices made in implementation. The possible implementation
solutions available and those finally chosen should be documented well, describing the reason
for our choices. Use of standard notation and diagrams are preferred. Source code should be
included in the final deliverance.

8.3 COMMUNICATION

Besides weekly internal meetings, the group will communicate through email (kpro10@idi.ntnu.no)
and via the discussion page at the group’s web-portal (http://www.stud.ntnu.no/groups/kpro10).
The web-portal will serve the purpose of longer discussions not suitable for email. At the web portal
the group members also share a calendar, in which each member of the group inserts marks when not
available for work. Also included in the calendar are important milestones of the project, lectures etc.

8.4 RESPONSE TIMES

8.4.1 With customer

• Approval or comments to the report from customer meetings is sent back to the author within
24hrs.

• Approval or comments on phase documents is sent back to the author within 48hrs.

• Answers to simple questions within 24hrs.

• When bigger questions occur, customer will respond within 24hrs that the question is received.
Customer will then give an estimate on how long it will take to gather the requested information.

8.4.2 Internal

Approval or comments on phase documents is received during the next period of weekly internal
group meeting.

8.5 ROUTINES FOR PRODUCING QUALITY THE FIRST TIME

There will be no groups smaller than two persons for all tasks involving production of a final docu-
ment. This document can be either code or a phase document. By this we aim to minimize the effect of
errors made by one person.



8.6. ROUTINES FOR APPROVAL OF PHASE DOCUMENTS 47

8.6 ROUTINES FOR APPROVAL OF PHASE DOCUMENTS

All phase documents are stored on the CVS server, since all these documents are considered dynamic
until delivery. The author will notify the rest of the group when a new document is ready for approval.
Group members will give their comments through the already defined communication channels.

8.7 REPORTS AND MEETING NOTICES

8.7.1 Customer

• Notice to customer will be sent 48hrs before the meeting, if not the notice will include the agenda
and other relevant documents. All customer meetings will be scheduled at least one week in
advance.

• Reports from customer meetings will be ready at 12:00 the day after the meeting. The author
will distribute the report internally by email. When the report has the group’s approval, email
containing the report will be sent to customer. The customer will receive the report within 48
hours after the meeting.

8.7.2 Internal

• Notice for internal meetings is available at the calendar on the kpro10 web portal.

• Reports from internal meetings will be placed at the groups file server, where those not able to
attend can read later.

8.7.3 Advisor

Notice of meeting with advisor will be delivered by hand by the project manager at the project guide’s
office by 12:00 the day before the meeting. The content of the delivery will be:

• Notice of advisor meeting

• Summary of last meeting

• Status report and all other documents of relevance.

• Phase documents to be considered (i.e. Project Directive, Pre study, Requirements Specification
and so on.

The attachments of the notice are stated in the notice body. See 5.1.2 for the templates of these
documents.





APPENDIXA
INTERESTED PARTIES

The appendix includes contact information of interested parties

A.1 CLIENT REPRESENTATIVE

Karl-Petter Lindegaard Researcher, PhD
Corporate Research Center, ABB
Tlf: 66843395
Email: karl-petter.lindegaard@no.abb.com

A.2 ADVISORS

Reidar Conradi
Professor
Department of Computer and Information Science, NTNU
Email: conradi@idi.ntnu.no

Odd Petter N. Slyngstad
Advisor assistant
Department of Computer and Information Science, NTNU
Email: oslyngst@idi.ntnu.no

A.3 PROJECT TEAM

Jan Ove Skogheim Olsen
Email: janovesk@stud.ntnu.no
Hans Olaf Borch
Email: borch@stud.ntnu.no
Harald Søvik
Email: harals@stud.ntnu.no
Truls Jørgensen
Email: trulsjor@stud.ntnu.no
Thorvald Johannessen
Email: thorvaj@stud.ntnu.no
Øystein Ulseth
Email: oysteiul@stud.ntnu.no
Kristoffer Stenersen
Email: kristost@stud.ntnu.no

49





APPENDIXB
GANTT CHART AND STATUS DIAGRAMS

P
la

n
la

g
t 

ti
m

ef
o

rd
el

in
g

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

D
o

ku
m

en
t/

fa
se

F
ra

 d
at

o
T

il 
d

at
o

A
nt

 t
im

er
D

ag
er

P
ro

sj
ek

tle
de

ls
e

23
.0

8.
04

18
.1

1.
04

10
,2

 %
85

F
or

el
es

ni
ng

 o
g 

eg
en

læ
rin

g
23

.0
8.

04
18

.1
1.

04
12

,8
 %

85
P

ro
sj

ek
td

ire
kt

iv
23

.0
8.

04
06

.0
9.

04
6,

9 
%

15
F

or
st

ud
ie

01
.0

9.
04

17
.0

9.
04

11
,8

 %
17

K
ra

vs
pe

si
fik

as
jo

n,
 te

st
pl

an
13

.0
9.

04
27

.0
9.

04
9,

9 
%

15
D

es
ig

n,
 te

st
de

si
gn

27
.0

9.
04

15
.1

0.
04

16
,8

 %
19

Im
pl

em
en

ta
sj

on
, t

es
tin

g
16

.1
0.

04
04

.1
1.

04
15

,6
 %

19
P

ro
sj

ek
tv

ur
de

rin
g

05
.1

1.
04

11
.1

1.
04

6,
9 

%
7

P
re

se
nt

as
jo

n 
og

 d
em

o
11

.1
1.

04
18

.1
1.

04
9,

1 
%

8
10

0,
0 

%
10

0
S

en
de

 k
ra

vs
pe

k 
til

 k
un

de
 fo

r 
go

dk
je

nn
in

g
P

re
le

ve
ra

ns
e

15
.1

1.
11

.1
0.

18
.1

0.
25

.1
0.

1.
11

.

G
an

tt
d

ia
g

ra
m

4
5

13
.9

.
20

.9
.

3
2

1

6.
9.

30
.9

.
13

6
7

8
9

23
.8

.
10

11
12

27
.9

.
4.

10
.

8.
11

.

D
a

to
D

a
g

e
r

T
im

e
r

A
n

d
e
l

2
3

.8
.

3
0
.8

.
6

.9
.

1
3
.9

.
2
0
.9

.
2
7
.9

.
4
.1

0
.

1
1
.1

0
.

1
8
.1

0
.

2
5
.1

0
.

1
.1

1
.

8
.1

1
.

1
5
.1

1
.

U
ke

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

P
ro

sj
e

kt
le

d
e

ls
e

8
8

2
2
1

1
0

 %
1

7
1

7
1

7
1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

1
7

F
o
re

le
sn

in
g
 o

g
 e

g
e
n
læ

ri
n
g

8
8

2
7
8

1
3

 %
8

8
2

8
1

8
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

0
0

P
ro

sj
e

kt
d

ir
e

kt
iv

1
5

1
5
0

7
 %

5
0

6
0

4
0

F
o

rs
tu

d
ie

1
7

2
5
5

1
2

 %
5

5
9

0
1

1
0

K
ra

vs
p

e
si

fik
a

sj
o

n
, 
te

st
p

la
n

1
5

2
1
5

1
0

 %
2
0

1
3

5
6
0

D
e
si

g
n
, 
te

st
d
e
si

g
n

1
9

3
6
5

1
7

 %
7
5

1
3

5
1
1
5

4
0

Im
p

le
m

e
n

ta
sj

o
n

, 
te

st
in

g
1
9

3
3
8

1
6

 %
2
0

9
8

1
4
0

8
0

P
ro

sj
e

kt
vu

rd
e

ri
n

g
7

1
5
0

7
 %

6
0

9
0

P
re

se
n

ta
sj

o
n

 o
g

 d
e

m
o

8
1
9
8

9
 %

5
8

1
4
0

S
u

m
/u

k
e

2
1
7
0

1
0
0
 %

1
5

5
1

6
0

1
6

5
1

6
5

1
7

0
1

7
0

1
7

0
1
7
0

1
7
3

1
7
5

1
7
5

1
6
5

1
5
7

Figure B.1: Our Gantt chart (top) and planned distribution of hours for each phase

51



52 APPENDIX B. GANTT CHART AND STATUS DIAGRAMS

T
ilg

je
ng

el
ig

 a
nt

al
l t

im
er

21
70

T
im

er
 ti

lg
je

ng
el

ig
 / 

uk
e

16
7

R
ø

d 
te

ks
t e

r 
ko

pi
 fr

a 
sh

ee
t "

G
an

t, 
pl

an
la

gt
".

D
o

ku
m

en
t/

fa
se

A
n

ta
tt

 fo
rd

el
in

g
A

n
ta

ll 
tim

er
B

ru
kt

 h
it

ti
l

G
je

n
st

år
P

ro
sj

ek
tle

de
ls

e
10

,2
 %

22
1

23
0

-9
F

or
el

es
ni

ng
 o

g 
eg

en
læ

rin
g

12
,8

 %
27

8
23

7
41

P
ro

sj
ek

td
ire

kt
iv

6,
9 

%
15

0
16

0
-1

0
F

or
st

ud
ie

11
,8

 %
25

5
26

7
-1

2
K

ra
vs

pe
si

fik
as

jo
n,

 te
st

pl
an

9,
9 

%
21

5
28

6
-7

1
D

es
ig

n,
 te

st
de

si
gn

16
,8

 %
36

5
30

2
63

Im
pl

em
en

ta
sj

on
, t

es
tin

g
15

,6
 %

33
8

34
9

-1
1

P
ro

sj
ek

tv
ur

de
rin

g
6,

9 
%

15
0

25
6

-1
06

P
re

se
nt

as
jo

n 
og

 d
em

o
9,

1 
%

19
8

11
0

88

S
u

m
10

0,
0 

%
21

70
21

97
-2

7

T
ot

al
su

m
 fo

r 
al

le
 p

å 
gr

up
pa

, u
ke

vi
s D
at

o
23

.a
u

g
.0

4
30

.a
u

g
.0

4
06

.s
ep

.0
4

13
.s

ep
.0

4
20

.s
ep

.0
4

27
.s

ep
.0

4
04

.o
kt

.0
4

11
.o

kt
.0

4
18

.o
kt

.0
4

25
.o

kt
.0

4
01

.n
o

v.
04

08
.n

o
v.

04
15

.n
o

v.
04

U
ke

1
2

3
4

5
6

7
8

9
10

11
12

13

P
ro

sj
ek

tle
de

ls
e

39
26

26
37

21
17

12
14

9
15

14
0

0
F

or
el

es
ni

ng
 o

g 
eg

en
læ

rin
g

74
38

51
23

18
16

7
8

2
0

0
0

0
P

ro
sj

ek
td

ire
kt

iv
25

72
23

13
8

5
4

0
0

8
2

0
0

F
or

st
ud

ie
5

29
58

86
51

19
6

2
3

8
0

0
0

K
ra

vs
pe

si
fik

as
jo

n,
 te

st
pl

an
0

0
0

3
59

10
7

51
15

9
37

5
0

0
D

es
ig

n,
 te

st
de

si
gn

0
0

0
0

2
3

48
55

11
6

57
21

0
0

Im
pl

em
en

ta
sj

on
, t

es
tin

g
0

0
0

0
0

0
0

11
48

96
15

8
36

0
P

ro
sj

ek
tv

ur
de

rin
g

0
0

0
0

0
0

0
0

0
0

50
20

6
0

P
re

se
nt

as
jo

n 
og

 d
em

o
0

0
0

0
0

0
0

0
0

0
0

0
11

0
S

u
m

/u
ke

14
3

16
5

15
8

16
2

15
9

16
7

12
8

10
5

18
7

22
1

25
0

24
2

11
0

A
kk

um
ul

er
t t

im
er

 b
ru

kt
 s

å 
la

ng
t

14
3

30
8

46
6

62
8

78
7

95
4

10
82

11
87

13
74

15
95

18
45

20
87

21
97

P
la

nl
ag

t t
im

er
 b

ru
kt

 s
å 

la
ng

t, 
ak

k
15

5
31

5
48

0
64

5
81

5
98

5
11

55
13

25
14

98
16

73
18

48
20

13
21

70
A

vv
ik

-1
2

-7
-1

4
-1

7
-2

8
-3

1
-7

3
-1

38
-1

24
-7

8
-3

74
27

S
ta

tu
so

ve
rs

ik
t

1
2

3
4

5
6

7
8

9
10

11
12

13

0

50

10
0

15
0

20
0

25
0

T
im

er
 b

ru
kt

T
im

er
 ti

lg
je

ng
el

ig

Figure B.2: The generated status diagram - generated 19th November 2004



APPENDIXC
RISK DIAGRAM

This section includes the risk diagram, and complements the TRECQ section of 7.4

T
ab

le
 fo

r 
id

en
tif

ie
d 

ris
ks

 in
 th

e 
pr

oj
ec

t

Con
se

qu
en

ce
Pos

sib
ility

Risk

N
r

A
ct

iv
ity

D
es

cr
ip

ti
o

n
C

o
n

se
q

u
en

ce
C

P
R

S
tr

at
eg

y 
an

d
 A

ct
io

n
s 

ta
ke

n
 

T
im

e
R

es
p

o
n

si
b

le

1
A

ll
A

B
B

 is
 lo

ca
te

d 
in

 O
sl

o
F

ew
er

 m
ee

tin
gs

 th
at

 c
us

to
m

er
 

ca
n 

at
te

nd
M

H
H

1:
 C

le
ar

ly
 e

st
ab

lis
he

d 
co

m
m

un
ic

at
io

n 
gu

id
el

in
es

. 2
: 

D
ef

in
ed

 c
us

to
m

er
 c

on
ta

ct
 a

s 
a 

ro
le

 in
 th

e 
pr

oj
ec

t 
gr

ou
p.

 3
:T

el
ep

ho
ne

 m
ee

tin
gs

C
on

t.
A

ll 
/ C

us
to

m
er

 C
on

ta
ct

2
A

ll
M

is
un

de
rs

ta
nd

in
g 

in
 fi

na
l 

sp
ec

ifi
ca

tio
ns

C
us

to
m

er
 n

ot
 s

at
is

fie
d 

w
ith

 
fin

al
 p

ro
du

ct
H

M
H

O
pe

n 
an

d 
pr

ec
is

e 
co

nt
ac

t w
ith

 c
us

to
m

er
A

fte
r 

ea
ch

 p
ha

se
C

us
to

m
er

 C
on

ta
ct

3
P

ro
j.M

an
a

ge
m

en
t

U
nd

er
es

tim
at

e 
in

 p
la

nn
in

g 
pr

oj
ec

t p
ha

se
s

Lo
w

er
ed

 q
ua

lit
y 

on
 fi

na
l p

ro
du

ct
 

/ H
ig

he
r 

w
or

kl
oa

d 
on

 th
e 

gr
ou

p
H

M
H

T
ho

ro
ug

hl
y 

pl
an

ni
ng

, a
nd

 c
on

tin
uo

us
ly

 e
va

lu
at

io
n 

ou
t 

pr
oj

ec
t s

ta
tu

s
C

on
t.

A
ll/

P
ro

je
ct

 m
an

ag
er

4
A

ll
S

tu
de

nt
s 

le
av

in
g 

th
e 

co
ur

se
Lo

w
er

ed
 q

ua
lit

y 
on

 fi
na

l p
ro

du
ct

 
/ H

ig
he

r 
w

or
kl

oa
d 

on
 th

e 
gr

ou
p

H
L

L
U

se
 o

f l
oc

al
 r

ep
os

ito
ry

 fo
r 

al
l d

oc
um

en
ts

. I
f s

itu
at

io
n 

oc
cu

rs
; r

eo
rg

an
iz

e,
 a

lte
r 

sp
ec

ifi
ca

tio
ns

.
C

on
t.

A
ll

5
A

ll
A

bs
en

ce
 d

ue
 to

 s
ic

kn
es

s 
in

 
gr

ou
p

Lo
w

er
ed

 q
ua

lit
y 

on
 fi

na
l p

ro
du

ct
 

/ H
ig

he
r 

w
or

kl
oa

d 
on

 th
e 

gr
ou

p
L

H
M

U
se

 o
f l

oc
al

 r
ep

os
ito

ry
 fo

r 
al

l d
oc

um
en

ts
. I

f s
itu

at
io

n 
oc

cu
rs

; r
eo

rg
an

iz
e,

 a
lte

r 
sp

ec
ifi

ca
tio

ns
.

C
on

t.
A

ll

6
P

ro
g/

D
oc

P
ro

bl
em

s 
w

ith
 fi

nd
in

g 
su

ita
bl

e 
te

st
s 

fo
r 

ou
r 

sy
st

em
D

el
ay

ed
 c

om
pl

et
io

n 
da

te
 o

f t
he

 
pr

og
ra

m
m

in
g 

ph
as

e.
M

M
M

C
on

st
ru

ct
io

n 
of

 a
 te

st
 p

la
n 

st
ar

ts
 d

ur
in

g 
th

e 
se

tti
ng

 o
f 

sp
ec

ifi
ca

tio
ns

 fo
r 

th
e 

sy
st

em
B

ef
or

e 
st

ar
t o

f 
im

pl
em

en
ta

tio
n

T
es

t r
es

po
ns

ib
le

7
A

ll
P

ro
bl

em
s 

w
ith

 a
va

ila
bl

e 
te

st
 

da
ta

 a
nd

 te
st

 e
nv

iro
nm

en
t 

P
ro

bl
em

s 
w

ith
 r

un
ni

ng
 r

el
ia

bl
e 

te
st

s
M

M
M

R
eg

qu
es

t t
he

 n
ee

d 
fo

r 
te

st
 d

at
a 

an
d 

m
od

ul
es

 e
ar

ly
 to

 
th

e 
cu

st
om

er
.

B
ef

or
e 

st
ar

t o
f 

im
pl

em
en

ta
tio

n
T

es
t r

es
po

ns
ib

le

8
A

ll

S
pe

nd
in

g 
to

o 
m

uc
h 

tim
e 

on
 

te
ch

ni
ca

l d
et

ai
ls

 n
ot

 im
po

rt
an

t 
fo

r 
so

lv
in

g 
th

e 
ta

sk
 e

ffi
ci

en
tly

P
ro

bl
em

s 
w

ith
 s

tic
ki

ng
 to

 th
e 

pl
an

M
M

M
T

ho
ro

ug
hl

y 
pl

an
ni

ng
, a

nd
 c

on
tin

uo
us

ly
 e

va
lu

at
io

n 
ou

t 
pr

oj
ec

t s
ta

tu
s

C
on

t.
A

ll

9
A

ll
In

te
rn

al
 c

on
fli

ct
s 

in
 th

e 
pr

oj
ec

t 
gr

ou
p

Lo
w

er
ed

 m
ot

iv
at

io
n 

an
d 

po
ss

ib
le

 a
 lo

w
er

ed
 q

ua
lit

y 
on

 
fin

al
 p

ro
du

ct
M

M
M

T
ea

m
 b

ui
ld

in
g 

/ r
es

ol
ve

 c
on

fli
ct

s 
be

fo
re

 h
ap

pe
ni

ng
C

on
t.

A
ll 

/P
ro

je
ct

 m
an

ag
er

10
A

ll
M

id
te

rm
 in

 o
th

er
 c

ou
rs

es
 

D
el

ay
s 

th
e 

pr
og

re
ss

M
H

M
A

pp
ly

 a
 h

ea
vi

er
 lo

ad
 o

f w
or

k 
to

 th
e 

gr
ou

p 
m

em
be

rs
 

no
t a

ffe
ct

ed
 b

y 
th

e 
m

id
te

rm
s

M
id

dl
e 

of
 th

e 
pr

oj
ec

t
A

ll

11
A

ll

D
el

ay
 in

 im
pl

em
en

ta
tio

n 
/ 

co
ns

tr
uc

tio
n 

of
 p

ha
se

 
do

cu
m

en
ts

.
D

el
ay

ed
 c

om
pl

et
io

n 
da

te
 fo

r 
al

l 
pr

ec
ed

in
g 

ph
as

es
.

H
M

H
C

on
tin

io
us

ly
 e

va
lu

ta
tio

n 
of

 c
ur

re
nt

 s
ta

tu
s 

ac
co

rd
ni

ng
 

to
 p

la
n.

 R
es

ch
ed

ul
in

g 
if 

si
tu

at
io

n 
oc

cu
r.

C
on

t.
A

ll 
/P

ro
je

ct
 m

an
ag

er

Figure C.1: Our risk diagram

53





APPENDIXD
TEMPLATES

This section includes templates used for communication with our customer and supervisor.

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Innkalling til veiledermøte
Beskrivelse: Periodisk hovedveiledermøte
Fra: KPRO10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)
Dato: 2004-XX-XX
Tid: Onsdag 10:00 - 11.00
Sted: ITV-242

Hensikt

Hensikten med møtet er å rapportere status til veileder og få tilbakemeldinger
fra veileder på dokumenter vedlagt innkallingen.

Forberedelser

1. Prosjektgruppens forberedelser

(a)

2. Ønske om veileders forberedelser

(a)

Agenda

1. Godkjenning av dagsorden

2. Godkjenning av møtereferat fra forrige veiledermøte

3. Kommentar til møtereferat fra siste kundemøte

4. Godkjenning av statusrapport

5. Gjennomgang av dokumenter

Figure D.1: The template for notice of meetings with the advisors

55



56 APPENDIX D. TEMPLATES

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Innkalling til kundemøte
Fra: Gruppe 10, Kundestyrt prosjekt
Til: Karl Petter Lindegaard (Kunde)

Kristoffer Stenersen
Øystein Ulseth
Jan Ove Skogheim Olsen
Thorvald Johannessen
Hans Olaf Borch
Truls Jørgensen
Harald Søvik

Dato: <dato>
Kl.: <fra> - <til>
Sted: <sted>

Hensikt

Overordnet mål for måtet

Forberedelser

1. Prosjektgruppens forberedelser

(a)

2. Kundens forberedelser

(a) -

Agenda

1. Informere kunden om prosjektets status

2. ...

3. Avtale neste kundemøte

4. Eventuelt

Figure D.2: The template for notice of meetings with the customer



57

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Møtereferat fra forrige veiledermøte
Fra: KPRO10
Gjelder: Obligatorisk ukentlig møte
Sted: ITV242
Dato: dd.mm.2004
Kl.: hh.mm - hh.mm
Møteleder: Truls Jørgensen
Referent(er): Harald Søvik

Deltagere: Reidar Conradi(Hovedveileder)
Odd Petter Slyngstad(Biveileder)
Hans Olaf Borch
Truls Jørgensen
Thorvald Johannessen
Jan Ove Skogheim Olsen
Kristoffer Stenersen
Harald Søvik
Øystein Ulseth

Sendes til: Deltagerne
Neste møte: dd.mm.04
Kl.: 10.00 - 11.00
Sted.: ITV-242

sak1

tekst 1

sak2

tekst 2

Figure D.3: The template for minutes from the meeting with the advisors



58 APPENDIX D. TEMPLATES

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Møtereferat fra forrige kundemøte
Fra: KPRO10
Gjelder: Møte med kunde
Sted: -
Dato: dd.mm.2004
Kl.: hhmm - hhmm
Møteleder: Truls Jørgensen
Referent(er): Harald Søvik

Deltagere: Kristoffer Stenersen
Øystein Ulseth
Jan Ove Skogheim Olsen
Thorvald Johannessen
Hans Olaf Borch
Truls Jørgensen
Harald Søvik
Karl Petter Lindegaard
Odd Petter N Slyngstad

Sendes til: Deltagerne
Neste møte: dd.mm.04
Kl.: hh.mm - hh.mm
Sted.: -

sak 1

tekst 1

Figure D.4: The template for minutes from the meeting with the customer



59

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-09-xx - 2004-09-xx
Fra: Kpro gr 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Generell status

Utført arbeid i perioden

• Status på dokumenter

• Møter

• Aktiviteter

• Annet

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats -

• Risiko -

• Omfang -

• Kostnad/timer -

• Kvalitet -

Problemer

• -

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-09-xx
– Veiledermøte onsdag 2004-09-xx

• Aktiviteter

–

• Annet

Figure D.5: The template for status reports





Part II

Pre study

61





CHAPTER9
INTRODUCTION

9.1 PURPOSE

This part is a documentation of the process the project goes through in gaining an understanding of
the problem, an overview of the possible solutions, the business demands, evaluation criteria, political
and legal considerations. By reading this, the reader should be able to understand the major problems
that must be solved and see different alternatives with their cons and pros.

9.2 OVERVIEW

The first part of this document consist of an outline of the current situation, the situation with an ideal
solution applied, and what this ideal solution can consist of. Second, we formalize the parts of the ideal
solution and transform them to evaluation criteria which can be applied to technical solutions. There
has been some research performed on the current market to map already existing relevant solutions.
Third, each possible solution is evaluated and one solution is chosen.

63





CHAPTER10
CURRENT SITUATION

10.1 INTRODUCTION

ABB is originally a power company, but its main activities today concerns energy and automation
systems. Our focus will be towards automation systems for monitoring and control of systems like
chemical factories, oil installations and ships.

In an industrial process, the state is measured continuously by different sensors. These sensors can
measure parameters like for instance the pressure in a pipe or the speed of a ship. All of these processes
generate enormous amounts of data that need to be logged and organized. Logged data are used both
for actively controlling and adjusting the systems, and for reporting and analyzing the performance of
the systems.

Earlier a single contractor would typically provide the total engineering of the automation system
for controlling and monitoring such industrial processes. Each vendor would use their own protocols
for communicating between the different parts of the system. ABB for instance, had their own real-time
network protocol for information exchange between nodes in the control network.

The most obvious problem with these proprietary protocols was incompatibility with other ven-
dors. This increases both the short and long term cost of the installation. This is because each vendor
has their own development- and maintenance departments, and support and service on existing in-
stallations can almost exclusively be performed by the installation contractors themselves.

In today’s market the focus is towards open signal standards for exchanging process data. This
applies especially to the bottom layers of the technology, making tough demands on resilience and
response rates. A standard of current interest is OLE for Process Control (OPC), built on Microsoft’s
COM technology. This technology is covered in detail in the chapter on OPC later in the pre study.

10.2 TECHNICAL OVERVIEW

A typical network for gathering data from industrial sites works as follows. The bottom layer consists
of gauges connected to metering stations, which produce data tags. These run on real time operat-
ing systems like ViexWorks, connected to a control net for communicating with upper layers. This
network use a real time protocol for exchanging data instead of OPC, because of the high real time
demands. Connected to the control net are several application servers and databases for assembling
and publishing the data. This middle layer contains the so called Information Management System
(IMS). The IMS is responsible for logging the data tags from the bottom layers, and typically uses the
Windows platform. The application servers provide the operating stations with a common interface
for exchanging data through OPC. The top layer consists of operating stations, which can be seen as
control panels. These stations are used for controlling the different field devices. A conceptual model
of this network is shown in Figure 10.1.

The metering stations output a vast number of tags, and have great demands on real time pro-
cessing. That is why the controllers run specialized real time operating systems. The control network
connections are redundant to be able to withstand breakdowns. The operating stations have fewer
requirements to real time data, and are typically running Windows. The reason for choosing the Win-
dows platform in the upper layers is simply that most operators are already familiar with the user
interface. The migration to Windows at the operator stations has in time caused the migration from
UNIX to Windows in the middle layer as well. The communication between the upper layers depends

65



66 CHAPTER 10. CURRENT SITUATION

P
R
 I
N
 T


H
 E
L
 P


A
L
 P
 H
A


S
H
 I
 F
T


E
N
 T
 E
R


R
 U
 N


D
G
 E
R
 F
I


A
J
 B
K
 C
L


7
M
 8
N
 9
O


D
G
 D
G
 D
G


D
G
 T
 3
U


0
V
 .
W
 X
 Y
 Z


T
 A
B


%
  
U
 T
I
 L
I
Z
 A
 T
I
 O
 N


H
 U
 B
/
 M
 A
U
 N
 I
C


2


B
 N
 C


4
 M
 b
/
 s


P
R
 I
N
 T


H
 E
L
 P


A
L
 P
 H
A


S
H
 I
F
 T


E
N
 T
 E
R


R
 U
 N


D
G
 E
R
 F
I


A
J
 B
K
 C
L


7
M
 8
N
 9
O


D
G
 D
G
 D
G


D
G
 T
 3
U


0
V
 .
W
 X
 Y
 Z


T
 A
B


%
 
 U
 T
I
L
 I
Z
 A
 T
I
 O
 N


H
 U
B
/
 M
 A
U
 N
 I
C


2


B
 N
 C


4
 M
 b
/
s


P
R
 I
N
 T


H
E
 L
 P


A
 L
 P
H
 A


S
H
 I
F
 T


E
 N
 T
 E
R


R
 U
 N


D
G
 E
R
 F
I


A
J
 B
K
 C
L


7
M
 8
N
 9
O


D
G
 D
G
 D
G


D
G
 T
 3
U


0
V
 .
W
 X
 Y
 Z


T
A
 B


%
  
 U
T
 I
L
 I
Z
 A
 T
I
 O
N


H
 U
B
 /
 M
A
 U
 N
I
 C


2


B
 N
 C


4
 M
b
 /
s


Controllers /

metering stations


Application servers


Operator stations


IMS


Control net


Figure 10.1: Conceptual model of the current situation

heavily on OPC, which is the standard of choice in the industry today. As mentioned different closed
standards were used earlier, but today the performance and widespread use of the open standard OPC
causes it to be the only actual alternative.

10.3 PROBLEMS

The openness of the OPC standard comes at a price, because some software companies specialize in
developing general purpose applications that are cheap and run on any OPC server. The cost for
a company like ABB to produce custom-made solutions for one of its customers is not competitive.
This creates a need for ABB to offer a general framework for publishing its data to customer-built
applications.

The operator station software mainly consists of Visual Basic 6.0 applications and ActiveX-controls.
The administration of the upper layers is costly because of the complexity in accessing the data from
the application servers. Another problem is the scalability of Visual Basic applications, causing trouble
when lots of applications are run in parallel on the data. None of today’s systems use Microsoft’s .NET
technology, but it is to be introduced throughout ABB’s systems within 2006.

ABB offers a system called Asset IT as a part of their automation software package Industrial IT.
This software is still being developed, and therefore it has several drawbacks. As of today, it does for
instance not support automatic monitoring of the status of the control devices directly (asset monitor-
ing). Instead, an application for monitoring the age of the equipment is incorporated into the software.
The complex algorithms needed for asset monitoring are still to be developed. Industrial IT is a large
platform, and it is costly to implement. An alternative is to use stand-alone applications like Petrobase.
These again come with their own drawbacks. Petrobase for instance doesn’t support sampling rates
shorter than 60 seconds, which is too coarse grained for some applications.

The IMS as described above performs logging of the data, and saves historical data over longer
periods of time. The problem is that as a lot of data is stored for longer periods of time, the IMS will
decrease the sampling rate to save storage space. This uncertainty in the sampling rate of the data you
need, can cause problems for some applications relying on detailed historical data. The IMS hardware
is expensive, and the software is rather complex to reconfigure.

The complexity of today’s systems enforces manual work processes, in data access as well as data



10.4. TODAY’S WORK PROCESSES 67

analysis. People even have their own Excel spreadsheets for importing data manually and performing
ad-hoc plotting and analysis. This of course affects both the performance and accuracy of the analysis.

10.4 TODAY’S WORK PROCESSES

The functionality in the ABB automation system we are to improve, consists mainly of the following
three tasks:

• Performing specific data analyses, including both gathering the appropriate data tags and storing
the results

• Asset monitoring, being able to monitor the state of the control devices in an appropriate way

• Performing periodic calculations, showing all kinds of data and interesting results as various
graphical plots

Gathering of data is being carried out manually in today’s system. To access data logged by the
Information Management System, you would have to perform some sort of query on the application
servers. The result of this query is a comma-separated list, which can then be exported manually to for
instance MS Excel. As the data might be spread out over multiple servers, one might have to manually
assemble series of data gathered from multiple queries. This is of course a process prone to human
error.

If you want to do asset monitoring, the Asset IT system of today provides you with relatively
limited support. As mentioned above, it only supports monitoring the age of the equipment. Without a
software tool for monitoring the status of control devices, operators are forced to analyses the situation
manually. This is done for instance by analyzing the equipment age data available from Asset IT, and
calculating the expected operating time remaining for the components manually. This of course is
hardly as accurate as having an automated procedure, and it is quite time consuming as well.

To access for instance weekly calculation results from monitoring the input and output of a specific
industrial process in today’s system, you would have to start by acquiring a comma-separated list
as described above. Then you would use a tool like MS Excel to create a custom made plot, either
manually or with the help of a prewritten macro.

10.5 TODAY’S USE CASES

This section illustrates how the main tasks are carried out today. The term ”manually” is often used,
meaning without the support of a software tool. For instance performing an analysis manually means
having to assemble the data and setting up the analysis by hand, and creating a custom plot from
scratch in for instance MS Excel. On the contrary, performing it automatically means having automated
procedures for doing this integrated into a user interface.

Use case 1

Describes performing general data analyses without software support. See Figure 10.2.The analysts
first queries the IMS, the exports the resulting comma-separated list to MS Excel. Then he reassembles
the data, if he had to perform multiple queries. The analysis then uses his own methods for analyzing
the data and storing the results. These include using his own Excel macros or creating custom-made
graphical plots.

Use case 2

Describes performing asset monitoring manually. See Figure 10.3.To perform asset monitoring, the an-
alyst needs to acquire lists with information about equipment age et cetera through a manual routine.
He then scans these lists manually in order to monitor the age of equipment, in search of components
so old that they need replacement. The results are published manually. An operator then needs to find
these published results and take the appropriate action (for instance ordering new components).



68 CHAPTER 10. CURRENT SITUATION

Analyst


Query IMS


Export data to

MS Excel


Perform analysis


Store results

manually


Reassemble data from

different queries


Analyst


Query IMS


Export data to MS

Excel


Analyse data

 using macro


Store results

manually


Reassemble data from

different queries
 Programmer


Write Excel macro


Publish results

manually


Retrieve information

about equipment manually


Analyse lists in

search of old equipment


Take the

approperiate action


Operator
Analyst


Publish results

manually


Other analysts


Access results

manually


Figure 10.2: Pre study: Use case 1: Performing analysis today

Analyst


Query IMS


Export data to

MS Excel


Perform analysis


Store results

manually


Reassemble data from

different queries


Analyst


Query IMS


Export data to MS

Excel


Analyse data

 using macro


Store results

manually


Reassemble data from

different queries
 Programmer


Write Excel macro


Publish results

manually


Retrieve information

about equipment manually


Analyse lists in

search of old equipment


Take the

approperiate action


Operator
Analyst


Publish results

manually


Other analysts


Access results

manually


Figure 10.3: Pre study: Use case 2: Asset monitoring today

Use case 3

Describes performing periodic calculations and publishing the results. See Figure 10.4.As above, the
analyst queries the IMS, exports the data to Excel and reassembles the data. If a complex macro is
needed, a programmer would typically supply the macro. Then the analyst can then analyses the data
using the macro. He stores the results of the analysis and publishes them manually. Other analysts
wanting to view the results need to acquire the manually. This process is then repeated each time the
results need to be updated.

Analyst


Query IMS


Export data to

MS Excel


Perform analysis


Store results

manually


Reassemble data from

different queries


Analyst


Query IMS


Export data to MS

Excel


Analyse data

 using macro


Store results

manually


Reassemble data from

different queries
 Programmer


Write Excel macro


Publish results

manually


Retrieve information

about equipment manually


Analyse lists in

search of old equipment


Take the

approperiate action


Operator
Analyst


Publish results

manually


Other analysts


Access results

manually


Figure 10.4: Pre study: Use case 3: Performing periodic caluculations today



CHAPTER11
DESIRED SOLUTION

11.1 INTRODUCTION

As the data from the metering stations will be more easily accessible, ABB wants to process them
further. The purpose of studying these historical data, describing the present and former running of
the industrial processes, is to:

• Identify and characterize the process, for optimizing the production and thus increase the earn-
ings.

• Generate reports to document the operating of the business. These are needed for instance when
facing environmental requirements to traceability imposed by the government.

• Identify damaged or broken equipment, supporting improved maintenance procedures. This
reduces down-time for the production unit, and thus increases the earnings.

Many of these activities can be automated, having predefined applications that output results of calcu-
lations automatically. Another application might be to allow ”analysts” to go through historical data
manually in search of new ways of improving the processes.

11.2 SYSTEM MODULES

The goal of our prototype is to develop a solution containing the following three modules:

• An infrastructure for gathering and storing large amounts of sampling and process data in an
appropriate way.

• A framework for developing applications that shall operate on the collected data, and write re-
sults back to the system.

• A graphical user interface for presenting collected raw data, as well as the data generated by the
applications mentioned above.

The customer’s main interest is having a framework that is easily configurable, and easy to expand
with new applications for utilizing the collected data. It should be user friendly when it comes to
accessing the data, and cheap to implement.

11.3 OVERALL SYSTEM DESCRIPTION

ABB wishes to employ data from the metering stations in a wide range of analysis applications. The
idea is to have a central application for logging data from different OPC servers. This information
should be available through a generic interface, so that any number of analysis applications can utilize
it without having to reconfigure the original application.

The applications will need data from different servers at different rates, so the data interchanger
should be flexible and configurable with respect to the gathering of data. The applications should be
able to subscribe to the data they want at their chosen rate.

69



70 CHAPTER 11. DESIRED SOLUTION

Operator stations


Log database


DI
 WEB


Web pages
Applications


P
R
 I
 N
T


H
 E
L
 P


A
L
 P
 H
A


S
 H
I
 F
T


E
N
 T
 E
 R


R
 U
 N


D
G
 E
R
 F
I


A


J


B


K


C


L


7
M
 8
N
 9
O


D


G


D


G


D


G


D
G
 T
 3
U


0


V


.


W


X


Y


Z


T
 A
B


%
  
U
 T
I
 L
I
 Z
A
 T
 I
O
 N


H
 U
 B
/
 M
 A
U
 N
 I
C


2


B
 N
 C


4
 M
 b
/
 s


P
R
 I
 N
T


H
 E
L
 P


A
L
 P
 H
A


S
 H
I
 F
T


E
N
 T
 E
 R


R
 U
 N


D
G
 E
R
 F
I


A


J


B


K


C


L


7
M
 8
N
 9
O


D


G


D


G


D


G


D
G
 T
 3
U


0


V


.


W


X


Y


Z


T
 A
B


%
  
U
 T
I
 L
I
Z
 A
 T
I
 O
 N


H
 U
 B
/
 M
 A
U
 N
 I
C


2


B
 N
 C


4
 M
 b
/
 s


P
R
 I
N
 T


H
 E
L
 P


A
L
 P
 H
A


S
H
 I
 F
T


E
N
 T
 E
R


R
 U
 N


D
G
 E
R
 F
I


A


J


B


K


C


L


7
M
 8
N
 9
O


D


G


D


G


D


G


D
G
 T
 3
U


0


V


.


W


X


Y


Z


T
 A
B


%
  
U
 T
I
 L
I
Z
 A
 T
I
 O
 N


H
 U
 B
/
 M
 A
U
 N
 I
C


2


B
 N
 C


4
 M
 b
/
s


Controllers /

metering stations


Application servers


IMS


Control net


Figure 11.1: Conceptual model of system to be developed. The existing system is outside the box.

To gather the required data, a common interface to access different OPC servers is needed. The
data interchanger for storing data from the OPC servers in a separate database will serve as a basis for
publishing the data. This interchanger should also provide an interface to applications that need the
data, both for analysis and for calculations that should be available to other applications.

In addition to this, a way to access the data tags directly through a simple user interface is re-
quested. Analysts might want to access the data without having to install new software, and therefore
it might be practical to develop an application accessed through the World Wide Web. A generic web
portal is described as the most attractive solution by the customer. Each of the scheduled applications
mentioned above will need its own web pages for displaying the data and results generated by the
corresponding application, as well as historical data from the database. The portal should be able to
present different results and data requested by the user, to serve as a basis for further analysis. Each
web application will need to be configured in the same way as the standalone applications are.

A conceptual model of the overall structure is shown in figure 11.1. Our part of the system is inside
the box.

A common Application Programming Interface (API) for the core operations needed by the three
modules should be developed. The customers wishes as much as possible of the functionality to be
configurable by an operator.

11.4 DESIRED WORK PROCESSES

As mentioned in the last chapter, the functionality in the ABB automation system we are to improve
consists mainly of three tasks. These are repeated below, and in addition to these comes the last task:

• Performing specific data analyses, including both gathering the appropriate data tags and storing
the results



11.5. DESIRED USE CASES 71

• Performing periodic calculations, showing all kinds of data and interesting results as various
graphical plots

• Asset monitoring, being able to monitor the state of the control devices in an appropriate way

• Writing complex applications that combine the available data to produce results that could not
be extracted from the old system

Our objective is to simplify and automate these tasks by making the data more accessible. First
of all the new applications can request historical data to be logged in the database, and thus we now
longer have the uncertainty in connection with availability of data.

Performing various analyses on data series can be done in two ways. A general purpose analysis
application can be written to support tasks like regression analysis et cetera with a graphical user
interface. Another way would be to write small scheduled applications that publish the appropriate
data series to the web portal. The analyst could then through the web portal either view the data as a
graphical plot, or export the data for further analysis.

To generate results from specific calculations periodically, scheduled applications can be written to
perform calculations on the data series available. For instance, one or more applications can be set up
to output say the daily average flow of fluid in a pipe each week. The results will then, once set up
correctly, be generated automatically as long as the applications runs. They can then easily be made
available through the web portal, so that any analyst interested in the data can access it without having
to install any new applications.

The process of asset monitoring can be greatly supported by an application using our API. Instead
of having to scan data and monitor the age of the equipment manually, a more complex application for
performing all monitoring tasks can be written to utilize the functionality offered by our system. Spe-
cialized algorithms for analyzing data series available from the equipment can be written to support
estimation of remaining operating time for the unit. With more data available it is also easier to allow
an application for instance to monitor the status of all the equipment on a specific industrial site.

The forth suggested task illustrates the potential flexibility in our new system. Allowing appli-
cations access to all logged data, developers might come up with new ways of combining the data to
allow new information to be extracted from the system. For instance, applications for predicting future
behavior of equipment based on historical data can be of great assistance in planning further activities.

11.5 DESIRED USE CASES

The following graphical use case diagrams illustrate how these new work processes could be imple-
mented. Since our system will be generic, it allows a task to be carried out in more than one way.
Therefore these use cases are just examples of how to use the system, not the only way to use it.

Pre study: Use case 4

Describes using a ”stand-alone” application for performing analyses. See Figure 11.2.A programmer
starts by developing the application itself, and an administrator deploys the application in the appro-
priate place. Then the administrator configures the application to allow it to publish data on the web
portal. The analyst then downloads the application and performs his analyses with the tools offered
by the application. Other analysts can then view the data through the web portal.

Pre study: Use case 5

Describes using a scheduled application for outputting periodic results automatically. See Figure 11.3.
A programmer develops applications that periodically processes data needed for the calculations. The
application is then deployed and configured by an administrator. Analysts can then access the data
through the web portal, and if needed, perform their own analyses.



72 CHAPTER 11. DESIRED SOLUTION

Analyst


Monitor reports

through web portal


Analyse

results


Programmer

Administrator


Configure

application


Develop

application
 Deploy


application


Generere schedulerte

rapporter


Analyst


Download

application


Perform

analysis


Programmer
 Administrator


Configure

application


Develop

stand-alone

application


Deploy

application


Bruke innebygde

analyseverktøy


Other analysts


Analyse

results


Access data

through web portal


Figure 11.2: Pre study: Use case 4: Performing analyses using a stand-alone application

Analyst


Monitor reports

through web portal


Analyse

results


Programmer

Administrator


Configure

application


Develop

application
 Deploy


application


Generere schedulerte

rapporter


Analyst


Download

application


Perform

analysis


Programmer
 Administrator


Configure

application


Develop

stand-alone

application


Deploy

application


Bruke innebygde

analyseverktøy


Other analysts


Analyse

results


Access data

through web portal


Figure 11.3: Pre study: Use case 5: Setting up and viewing results from automated calculations



11.5. DESIRED USE CASES 73

Analyst


Monitor equipment


Analyse

results


Programmer

Administrator


Configure

application


Develop

application


Deploy

application


Asset månitårring


Other analysts


View  equipment

status through web portal


Figure 11.4: Pre study: Use case 6: Asset monitoring

Pre study: Use case 6

Describes using prewritten applications for asset monitoring. See Figure 11.4.As with the stand-alone
application, it’s written by a programmer and deployed and configured by an administrator. The
monitoring of the equipment can then be done either through the application itself, or by monitoring
the data available through the web portal.





CHAPTER12
BUSINESS RELATED REQUIREMENTS

12.1 INTRODUCTION

This chapter will describe the business related requirements of a solution to the customer‘s problem.
These requirements are the basis for later functional requirements.

12.2 LIST OF BUSINESS RELATED REQUIREMENTS

Based on our understanding of the problem, the list in table 12.1 contains the business requirements
for the system.

Demand nr Description
BRD-1: The system must enable the user to access and collect real time numeric mea-

surement data from several different sources.
BRD-2: The system should enable the user to access historic numeric measurement

data from several different sources.
BRD-3: The protocol used to collect the measurements must be an open, non-

proprietary standard(OLE for Process Control - OPC)
BRD-4: The system must provide an easy and standardized way to develop applica-

tions that use the collected data.
BRD-5: The system must provide scheduling functionality for the applications.
BRD-6: The system must provide configuration functionality for the applications.
BRD-7: The system must provide a GUI-gateway that enables the user to view col-

lected data and data generated by applications. The gateway must be config-
urable to server specific content to specific users. Several simultaneous users
must be able to access the gateway at the same time.

BRD-8: The system must run in a environment primarily based on Microsoft prod-
ucts.

BRD-9: The overall system must be inexpensive, as the competition is fierce.

Table 12.1: Business related demands

75





CHAPTER13
EVALUATION CRITERIA

13.1 CRITERIA

Given the business related demands and further discussions with the customer, we have constructed a
collection of evaluation criteria, see figure 13.1, for the different solutions. We have grouped the criteria
in 4 different groups. The groups are based on the three modules of the system (DI, API and WEB) and
some overall criteria for the entire system.

Criteria nr DI Criteria
EC-1: The system must be able to read OPC DA-data from several sources at differ-

ent rates at the same time.
EC-2: The system should be able to read OPC HDA-data from several sources at

different rates at the same time.
EC-3: The system must be able to write OPC DA-data.
EC-4: The system must be able to store/log the data from EC1 and EC2.
Criteria nr API Criteria
EC-5: The system must make the data from EC1 and EC2 available for inspection

by users and applications..
EC-6: The system must let users and applications from EC5 to make calculations on

the data from EC5..
EC-7: The system must enable the results of the calculations from EC6 to be

stored/logged just like EC4.
EC-8: The system must be able to schedule applications to run at given intervals

with collected data sets..
EC-9: The system must have functionality for configuring applications to access it.
EC-10: The system should allow inspection of and calculations on the historical data

from EC4.
EC-11: The system should expose the functionality in EC1 to EC10 through a pro-

gramming API. The API should enable user to rapidly build applications to
access it.

Criteria nr WEB Criteria
EC-12: The system should expose all collected and all calculated data in some kind

of GUI-gateway for users to inspect it. Configurability is needed to allow
specific data to be viewed by specific users only. Several users must be able
to use the system at the same time.

Criteria nr Overall system criteria
EC-13: The system must run on Microsoft operating systems.
EC-14: The system must not be very expensive.
EC-15: The system should have the possibility to use other data sources than OPC.

Table 13.1: Evaluation criteria list

77



78 CHAPTER 13. EVALUATION CRITERIA

These criteria will be applied against the different possible solutions found during market research.
An evaluation form, see figure 13.1, will be filled out for each of them. Table 13.2, is a quick overview
of how each solution did in each criteria group. The basis for this table is the complete filled out forms
that are included in F.1. For each of the possible solutions each criterion will be given a score from 1 to
5. 1 indicates a low score, the solution does not meet the requirements in this criterion at all. 5 means
it fulfills all requirements of the criterion.

Product

Producer

Criteria What Degree of fulfillment

DI criteria

EC1 Read OPC-DA

EC2 Read OPC-HDA

EC3 Write OPC-DA

EC4 Log data

API criteria

EC5 Make available to users/app.

EC6 Make calculations

EC7 Store result of calculations

EC8 Schedule applications

EC9 Configurability

EC10 Historical data

EC11 API. Rapid development.

WEB criteria

EC12 GUI-gateway

Overall system criteria

EC13 Run on Microsoft 

EC14 Inexpensive

EC15 Other data sources

Conclusion

Figure 13.1: Evaluation form



13.1. CRITERIA 79

Solution Conclusion DI-
group

API-
group

WEB-
group

Other
criteria-
group

Degree of criteria fulfillment
DAQBench The limitation of only making drag and drop

components available make this solution un-
desirable for us.

Medium Low Medium Low

GDAC This system does not implement any log-
ging functionality. This is not acceptable, no
further evaluation is necessary. System dis-
carded.

Low Low Low High

LabView International Instruments’ LabView fulfills
most of the evaluation criteria, apparently
making it a very good solution candidate.
However it’s a large, extensive and expensive
software, and thus it does not fulfill the inex-
pensive requirement.

High High High Low

Matrikon Pro-
cessNet

Matrikon ProcessNet fulfills most of the eval-
uation criteria, apparently making it a very
good solution candidate. However it does not
allow developers to access the collected data
through an API, something which is one of the
fundamental requirements for our task.

High High High Low

OPC
DA/HDA
Archiver

Meets several of the important criteria, but
does not fulfill crucial ones like exposing it’s
functionality through a programmable API
for further application development.

High Low Medium Low

OPC Systems
Eldridge Engi-
neering Comp.
Inc

Offers some required functionality, but both
the missing functionality and the prize makes
this solution unacceptable to us.

High Low Medium Low

OPC Toolbox
for Matlab

Fulfills many requirements, but does not of-
fer functionality like scheduling and extensive
API outside Matlab. Requires Matlab, which
is expensive.

High Medium Low Medium

Iconics OPC
Web client

Same problem as TrendWorX32 from same
producer. No logging ability makes this sys-
tem completely unacceptable

LOW NA NA NA

OPenDA No logging ability means the system will fail
most of the other criteria. No further evalua-
tion needed, system discarded.

Low NA NA NA

PI Advanced
Computing
Engine

This solution looks promising, but the lack of
schedulability functionality makes it undesir-
able.

High Medium High Low

Trend software Trend software fulfills many of the require-
ments, but the lacking API and the absence
of scheduling functionality makes it unaccept-
able as a solution.

High Medium High Low

Iconics Trend-
WorX32

No logging ability makes this system com-
pletely unacceptable. No further evaluation
needed.

Low NA NA NA

Table 13.2: Existing solutions evaluation summary





CHAPTER14
MARKET RESEARCH

14.1 INTRODUCTION

In this chapter we will do research to find out if there already exists a solution suitable for ABB. This is
important for us in such a way that we are aware of what others offer, and their specifications may also
impact our final choice of solution. We used mostly the Google search engine for finding software, but
also opcfoundation.org’s [10] product list. The search word we used when using Google was ’OPC’.

Historical view
The continuous development of both computer hardware and software has caused a constant change
in the units offered for automation of process plants. A common situation today is that automation
systems often include technologies from different eras and different providers. Compatibility between
the different layers and physical units in the control system network has become a major issue for
maintenance and further development of these systems. One of the main barriers is the numerous
different data protocols used to access these units.

OPC and standardization
The high maintenance cost of automation systems has cleared the path for solutions like OPC. The
development of OPC exemplifies the process that has been going on the past few years. Major com-
panies puts a big effort in standardization of their products. While other minor companies exploits
the current situation, by offering solutions that eases the integration of different technologies. The
standardization that comes with OPC does not only provide lower maintenance cost, but also new
functionality through the simplicity in developing new applications.

Demand for increased functionality
This situation creates a customer demand for increased functionality and flexibility. This market can be
served by the major companies in automation systems, as well as new third party developers. The de-
mand for development of our product is a result of this process, and it already exists several solutions.
Many of them benefit from the new standardized OPC solution.

14.2 SOLUTIONS COMPARABLE TO EASYIT

14.2.1 Quick overview

A quick summary of the products we looked into:

• Open Source: GDAC: Cross platform basis for custom OPC servers.

• Open Source: OpenDA: OPC DA server. Most functionality is not yet implemented.

• ProcessNet from Matrikon: Extensive toolbox. Among these, drag and drop development of
process data web pages.

• Trend Software from Canary Labs: Tools for storing tags, calculate on, viewing and reporting
them, as well as Internet access to them.

81



82 CHAPTER 14. MARKET RESEARCH

• OPC Toolbox from MathWorks: OPC plug in for MatLab. Gives MatLab read and write access
to OPC DA.

• OPC Systems from Eldridge Engineering Inc: Packages for real-time trending and data logging.

• DAQBench from Agile Integration: Enables easy creation of activeX controls for measurement
and automation of OPC systems.

• TrendWorX32 from Software Toolbox: An OPC client implemented with ActiveX/OLE Object
Technology. The client provides trend analysis, of both historical and real time data.

• PI Advanced Computing Engine from OsiSoft: Allows programming of calculations, commu-
nication applications, data transfer programs. It allows users to develop calculations in Visual
Basic. ACE consists of three components: Scheduler, Manager, and Wizard.

• LabView from National Instruments: NI LabVIEW is the graphical development environment
for creating, test, measurement and control applications rapidly.

14.2.2 About open source software

The following two reviewed software solutions are open source. One definition of open source is
"Generically, open source refers to a program in which the source code is available to the general
public for use and/or modification from its original design free of charge, i.e., open. Open source
code is typically created as a collaborative effort in which programmers improve upon the code and
share the changes within the community. Open source sprouted in the technological community as a
response to proprietary software owned by corporations." [9]

14.2.3 GDAC

GDAC was developed at CERN where its original name was SLiC. The GDAC (Generic Device Access
and Control) framework is an extensible multithreaded cross platform (Linux (x86,VME)/Windows)
C++ device control environment. It typically will be used as the basis for custom OPC servers or
front-end control software.

It was developed to be used as the basis of software to control hardware devices for which there is
no control solution commercially available. In general vendors of hardware devices normally provide
OPC servers to make their devices accessible via the network. But as OPC is based on Microsoft’s OLE
technology this solution does not work on Linux VME crates which are quite commonly used in high
energy physics experiments. Besides that the detector teams in a physics experiment often build their
hardware themselves and they need to provide the control software (even if it is an OPC server) for
these devices, too. [2]

14.2.4 OPenDA

A .NET toolkit providing publish subscribe and/or request response based Web Services. OPenDA [3]
(OPc Data Access) implements the XML OPC DA middleware standard for industrial process control.
Suitable for information distribution applications. It implements the OPC DA 1.0 standard.

This project aims to produce an OPC DA server which is embeddable in a micro controller. Cur-
rently version is 0.2 alpha, and most functionality is not yet implemented.



14.2. SOLUTIONS COMPARABLE TO EASYIT 83

14.2.5 About commercial software

The rest of the software reviewed is commercial software. Commercial software is software that is
neither freeware nor shareware. Companies or individuals produce commercial software in order to
generate profit. Commercial software is almost never open source software. The intellectual property
associated with commercial software is usually protected by copyrights and patents.

14.2.6 ProcessNet from Matrikon

From Matrikon’s web page on ProcessNet [20]: "ProcessNet is an out-of-the-box decision support
solution that delivers web-based access to process data in real time, regardless of the data’s original
format or operating system. ProcessNet securely distributes your data to whoever needs it, wherever
they are."

ProcessNet has tools for drag and drop development of process data web pages, tools for report
organization, suitable for integrating with Microsoft Word and Excel and customizable trending tools.
It gives access to multiple data sources through a single user interface, the web browser; HTTP/XML
over Internet. One part of ProcessNet, NetDraw, is a thin client process graphics tools for creating
graphical representations of data series and sensor data. Has drag and drop support; non-technical
users should be able to create their own web pages. A screen shot of NetDraw is shown in Figure 14.1
below.

All together five modules put together ProcessNet. One other module is NetTrend, a tool for an-
alyzing trends in process data. A screen shot of NetTrend is shown in Figure 14.2 below. Figure 14.3
gives a system overview of ProcessNet’s system architecture. The ProcessNet server gives a common
interface for all low level producers of process data, but also a common interface for the application
modules mentioned above.

14.2.7 OPC DA HDA Archiver from Integration Objects

Integration Objects [21] offers several software products for connectivity solutions between real-time
devices and applications. The most noticeable in this discussion are perhaps OPC Data Access / His-
torical Data Access Archiver. This tool allows you to "interface with several OPC servers for access-
ing production data from various processes and archives this data into CSV, XML files or an ODBC-
compliant database. This archive can be used for trend analysis..." It also allows write backs to the
network, synchronous or asynchronous." Figure 14.4 shows some screen shots of the application

Further on, Integration Objects also offers an "OPC Data Access Explorer". This tool "allows you
to interface with several OPC DA servers for accessing production data from the various process and
automation data sources connected to your network."

14.2.8 Trend Software from Canary Labs

Canary Labs [19] is a relatively small company located in Pennsylvania. Canary Labs’ product family
is built around OPC technology. It’s divided into four parts: Trend Historian, Trend Calc, Trend Link
and Trend Web.

The Trend Historian software acquires OPC tags and stores them in a historical database and is
compliant with OPC historical data access. It provides setup for different number of tags to be stored
and has a capacity of 16,000 tags/second in a sustained logging scene. It also support export to Mi-
crosoft Excel. Figure 14.5 shows a screen shot from the logger part of this software’s setup screen.

Trend Calc is a calculation engine, built on top of the Trend Historian. Example applications of this
tool is to scale sensor input, compute difference between inputs, use inputs in mathematical formulas,
compute averages etc. Figure 14.6 shows a screen shot of the Trend Calc with examples of different tag
calculations.



84 CHAPTER 14. MARKET RESEARCH

Figure 14.1: ProcessNet’s NetDraw



14.2. SOLUTIONS COMPARABLE TO EASYIT 85

Figure 14.2: ProcessNet’s NetTrend

Trend Link is a tool for viewing, analyzing and reporting trend information. It has built in Microsoft
Excel export, as well as the ActiveX components can be viewed in an Internet browser. Figure 14.7
shows a screen shot of the Trend Link graph window.

The last tool, Trend Web, is a tool for accessing and view trend charts from the Internet. Figure 14.8
shows an example of an online ActiveX application. The plots are automatically updated when new
tags are added to the database.

14.2.9 OPC Toolbox from MathWorks

The OPC Toolbox is an extension the MATLAB [13] technical computing environment with tools for
interacting with OPC servers. It is possible to read, write, and log OPC data from devices that support
the OPC Data Access standard. The toolbox enables manufacturing processes to retrieve plant data into
MATLAB for analysis, visualization, simulation, and prototyping of algorithms. It enables MATLAB
to read from and write to OPC servers using synchronous or asynchronous operations. A screen shot
of this application is given in 14.9.

14.2.10 OPC Systems from Eldridge Engineering Inc

They call this an "all in one" OPC client. It includes packages for real-time trending, data logging, X
axis/circular/3D plotting, data logging to OLE-DB, event driven data logging, data routing support
for multiple OPC servers. [12]



86 CHAPTER 14. MARKET RESEARCH

Figure 14.3: ProcessNet’s System Architecture

Figure 14.4: Integration Objects’ Data Access Archiver



14.2. SOLUTIONS COMPARABLE TO EASYIT 87

Figure 14.5: Canary Labs’ Trend Historian screen shot



88 CHAPTER 14. MARKET RESEARCH

Figure 14.6: Canary Labs’ Trend Calc screen shot

Figure 14.7: Canary Labs’ Trend Link screen shot



14.2. SOLUTIONS COMPARABLE TO EASYIT 89

Figure 14.8: Canary Labs’ Trend Web screen shot



90 CHAPTER 14. MARKET RESEARCH

Figure 14.9: OPC Toolbox 1.1 from MathWorks screen shot

14.2.11 DAQBench from Agile Integration

DAQBench [11] is 32-bit ActiveX controls for measurement and automation. DAQBench programmers
can use development tools such as Visual Basic and Delphi to build their own applications. Within
these development tools, ActiveX controls deliver a property page interface for configuration; events
and methods for programmatic control. DAQBench controls can be used within any ActiveX control
container, such as Visual C++, Borland C++ Builder, Excel, Microsoft Internet Explorer etc. See 14.10
for some of the ActiveX components provided by DAQBench.

14.2.12 Software Toolbox

Software Toolbox is a company that provides several inexpensive OPC solutions, amongst other soft-
ware packages for industry. Many of the products are single modules used for further development
and customization at each customer. We will here mention two of these modules.

TrendWorX32 from Software Toolbox An OPC client implemented with ActiveX/OLE Object Tech-
nology. The client provides trend analysis, of both historical and real time data. Logging of OPC data
to any ODBC source. Supports also data logging to MS Access using ADO technology.

The client is meant to function as an ActiveX control with Microsoft Visual Basic and Visual C++
applications. Is also compatible with other ICONICS OPC Clients such as GraphWorX32 and Alarm-
WorX 5.0. TrendWorX32 claims also to be compatible with other OPC applications delivered by other
companies.

OPC Web Client from Software Toolbox The OPC Web Client can be used with IIS Web Server
making one connection to an OPC Server or each Web Browser can make it’s own connection to the



14.2. SOLUTIONS COMPARABLE TO EASYIT 91

Figure 14.10: DAQBench from Agile Integration screen shot

OPC Server. The client component provides an interface which makes it possible to integrate it with
VBScript, JScript, ASP,or from a client script in the browser.

14.2.13 PI Advanced Computing Engine from OsiSoft

[14]: "PI Advanced Computing Engine (ACE) allows programming of calculations (e.g., heat and
material balances, data reconciliation, real-time cost accounting, batch summary, etc.), communication
applications (e.g., alarming, emailing, paging, etc.), data transfer programs. It allows users to develop
calculations in Visual Basic. ACE consists of three components: Scheduler, Manager, and Wizard."

This software also provides functionality for retrieving/sending data to tags or other systems, var-
ious scheduling scenes, allows clamping and bad value substitution of inputs and outputs, ability to
call COM and .NET objects. It also has the ability to monitor performance of the individual equations,
as well as exposing calculations as a Web service.

14.13 shows a screen shot from the Visual Studio .Net application construction environment, 14.14
shows a application used for tag value testing.

14.2.14 LabView from National Instruments

"NI LabVIEW is the graphical development environment for creating flexible and scalable test, mea-
surement, and control applications rapidly and at minimal cost. With LabVIEW, engineers and scien-
tists interface with real-world signals, analyze data for meaningful information, and share results and
applications. Regardless of experience, LabVIEW makes development fast and easy for all users.

The LabVIEW Data logging and Supervisory Control (DSC) Module adds features and capabilities
to LabVIEW to help create monitoring applications and data logging applications. The DSC Module



92 CHAPTER 14. MARKET RESEARCH

Figure 14.11: TrendWorX32 screen shot from Software Toolbox



14.2. SOLUTIONS COMPARABLE TO EASYIT 93

Figure 14.12: OPC Web Client from Software Toolbox screen shot

Figure 14.13: ACE / VS .NET application development environment screen shot



94 CHAPTER 14. MARKET RESEARCH

Figure 14.14: ACE application example from OsiSoft

provides solutions for supervisory control of a wide variety of distributed systems using the flexibility
of graphical LabVIEW programming.

National Instruments offers a number of LabVIEW development systems and programming tools
to help you build professional applications. Choose from any of the development system or Devel-
oper Suite options on the left for system specifications, pricing, and ordering information to meet the
demands of your instrumentation systems. " [18]

Screen shots of LabView from National Instruments is given in 14.2.14

Figure 14.15: LabView from National Instruments screen shots

14.3 SUMMARY OF THE MARKED RESEARCH

These were some of the interesting solutions worth noticing in this section. We found several other
tools more or less useful. Many of them where quite extensive, probably beyond the scope of our
project. Please see Appendix F.1 for a thoroughly evaluation of the alternatives we found.



CHAPTER15
CHAPTER SUMMARY

A typical network for gathering data from industrial sites produce large amounts of data from metering
stations and gauges. The current system has no good way of logging, systemizing and exposing this
data to non-operator personnel hoping to do advanced operations like trending. With the help of
the customer we have identified the demands a solution to this problem would have and we have
described how we think it should be solved.

All the existing solutions found during market research had to be scraped as none of them fulfilled
all the requirements. However we should be able to get some inspiration from them, at least when it
comes to designing a database for OPC data tags.

As none of the existing solutions were satisfactory, we have to develop our own. The technological
pre study was meant as a startup of this and from the evaluations (see E.6) in it we have made the choice
to base our solution on the Microsoft .NET framework and a Microsoft SQL Server 2000 database. Our
job now is to crystallize the demands for, design, construct, implement and document our suggested
solution.

15.1 CONCLUSION

After reviewing the already existing solutions, we have concluded that none of them fulfill all the
requirements. The solutions that provide logging(OPC DA/HDA Archiver, OPC Toolbox for Matlab,
Trend software from Canari Labs, DAQBench, Matrikon ProcessNet, and OPC Systems from Eldridge)
of selected data tags to a database will however be studied in later phases of the project to understand
how to best store OPC data efficiently in a relational database. If we want to fulfill all the criteria, we
have to program the solution ourselves.

95





APPENDIXE
TECHNOLOGICAL PRE STUDY

E.1 INTRODUCTION

As OPC is an industry standard, development of software which utilize it can be done with a wide
array of different tools and development environments. Virtually all programming languages used in
large scale software development has the possibility of accessing OPC data. The packages used to con-
nect the language/environment with OPC have traditionally been highly proprietary, expensive and
non-free. The customer has expressed high emphasis on developing a cheap solution. The definition
of cheap entails either free software or use of Microsoft products, which the customer has standardized
on. Two big competitors crystallize themselves:

1. Microsoft .NET

2. Sun JAVA

E.2 SHORT INTRODUCTION TO OPC

E.2.1 The need for standardization

OPC (formerly OLE for Process Control) is an open standard bridging Windows based applications
and process control hardware. In automation systems process control data come from various devices
measuring temperature, pressure, movement of liquids, etc. The systems might read as well as write
values to these controls and today there are a large number of vendors and field devices available on
the market. Manufactures have many different data sources, e. g. PLCs, DCSs, databases, gages and
RTUs. Additionally, field devices might be available through different connections like Ethernet, se-
rial, radio and so on. Selected data is processed in applications which implement functionality like
visualization and analysis or simply controlling (read/write) the process control system. Further com-
plexity is added when you take into account the different platforms these applications might run on
(Windows, Dos, Linux). Certainly, one inevitable obstacle has to be passed; how to arrange easy and
painless communication between applications and different data sources?

In the pre-OPC days every manufacturer (like ABB) provided proprietary interfaces supporting
their hardware. Consequently, the software was developed with only a certain set of field controllers
in mind and thus only supporting these devices. System properties like interoperability and scalability
were basically non-existent. In practice (and often even in theory), once a customer relationship was
established, there was no choice but choosing hardware from this vendor. If expansion or replacement
was needed, choosing a device from another supplier would most likely require a complete or partly
rewrite of existing software. Also, such architecture could potentially put an unreasonable load on the
system. Imagine a control system with three control devices and three operator stations. Each of the
three operator stations needs to gather data from each control device. Worst case scenario is sketched
in figure E.1. Here each of the applications running on the operation stations requires data from all
three field devices, a total of nine different connections are required. It goes without saying that such
systems have a serious scalability problem and that the solution to these obstacles is standardization.

97



98 APPENDIX E. TECHNOLOGICAL PRE STUDY

Figure E.1: Communicating using proprietary interfaces

E.2.2 Tags/points

The values from the data sources in control systems are usually referred to as tags or points. These are
single valued data items. Each tag consists of three fields, namely a value, a quality and a timestamp.
Please note that even though the OPC Servers are obliged to include timestamps in the tags, not all
OPC compatible hardware timestamp their tags.

E.2.3 OPC Data Access

The OPC Foundation develops and maintains the specifications that constitute OPC. The first set of
specifications was released in 1996 and the main goal was to ensure interoperability. Today, OPC
consists of nine specifications. The original one is called OPC Data Access (OPC DA). OPC DA stan-
dardizes real-time data access in automation systems and is based on a client-server architecture. As
figure 1.2 shows, the data in the control devices are available through an OPC server. Thus, regardless
of hardware implementation, client applications only see an OPC interface. Adding a new device that
supports OPC should therefore be without pain. Also, the system scales very well, since this expansion
would only require one additional connection, see figure E.2.

OPC DA has four different communication mechanisms; synchronous and asynchronous calls, re-
fresh and subscription. Synchronous and asynchronous calls operate by polling and require the client
to specify what data the server should read or write. When a synchronous call is issued, the server
does not release the caller until the requested data is fetched. Likewise, when an asynchronous call is
issued, the server releases the client immediately and later returns the data in an appropriate callback
path.

Clients may also subscribe to a set of values. The server then notifies the client when significant
changes occur. Thus, subscription is event based. Refresh is another mechanism which requires the
client to specify a set of variables for reading. When the client issues the refresh call, the server responds
asynchronously by sending the data through the predefined callback path.

There are some essential parameters which define the communication between the server and the
client. As mentioned above, when using the event mechanism (subscribing to data), only significant
changes of the values are reported. The level of significance is set by the deadband parameter. This
value is a percentage and set to 0 the server will notify the clients on any change. Also worth mention-



E.3. HOW THE DIFFERENT TECHNOLOGIES ARE EVALUATED 99

Figure E.2: Communicating using OPC Server

ing is the Update Rate parameter. This is also specified by the client and sets the rate at which sub-
scribed parameters are updated. Regardless of significant changes, the callback method is not called
more frequent than the update rate. Setting this parameter to 0 will cause the server to notify clients
on any significant change.

E.2.4 OPC Historical Data Access

OPC DA standardizes real-time access to data in automation systems. In contrast, and as the name
suggests, OPC Historical Data Access standardizes exchange of stored data. Such data would be ap-
plied in a wide range of analysis, like performance assessment, trend plotting, fault prediction and so
on.

E.3 HOW THE DIFFERENT TECHNOLOGIES ARE EVALUATED

The different technologies are compared by evaluating them against the criteria listed in table E.1.
The basis for these criteria is communication with the customer and earlier experience with software
development. Each criterion is also assigned an importance priority: low, medium or high and a
numerical representation of the priority, respectively 1.0, 1.5 and 2.0. This measures how important
each criterion is compared to each other.

The numerical value of the priority assigned to each criterion will be multiplied with the evaluation
score, which range from 1 to 5, that each of the different technologies gets on the different criteria. For
example a technology that gets an evaluation score of 4 on "Technological suitability" will get a total
score for this criterion of 4(evaluation score) * 2.0(Numerical value for high priority) of 8. The score for
all the criteria of a given technology is added so we get a sum that gives us a rough estimation on how
good a solution it is.



100 APPENDIX E. TECHNOLOGICAL PRE STUDY

Criterion Description Reason Importance
Technological
suitability

The technology should be able to
fulfill all the requirements of the
product.

Important to fulfill requirements in
order to get a good product.

High

Knowledge of
technology

The members of the group should
know and to a certain degree master
the technology.

Learning new technology is time
consuming. This project has a very
limited time horizon, which should
be spent on applying, not learning
new technology.

Medium

Workload /
Complexity of
technology

The degree of complexity in utiliz-
ing the technology.

If we use more time than allocated,
we will not finish in time.

High

Monetary cost We want cheap/affordable technol-
ogy.

Extremely limited monetary budget
for this project.

Medium

Portability The technology should not be tied
to a particular software or hardware
platform.

Ideally, we should be able to run
the product on any operating sys-
tem/hardware combo available.

Low

Integration The technologies ability to integrate
with customers other products.

The customer want to standardize
on a set of core technologies for all
it’s products.

Medium

Support/help The possibility of getting support
and/or help in case of problems us-
ing the technology.

We need to be able to get help if the
technology does not work as adver-
tised or bad bugs are found.

Medium

Table E.1: Technological evaluation criteria

E.4 DEVELOPMENT PLATFORMS TO CONSIDER

E.4.1 Sun JAVA

Introduction

Java is Sun Microsystem’s version of a modern software application development platform. Software
development speed has always been held back by differences in the multitude of machines it should
be able to run on. Code compiled for one architecture can rarely run on another machine with a
different architecture. In reality this means all code must be compiled on each and every architecture.
As networking, and especially internet, has become more and more popular, this has become a huge
problem. The need to run code on any machine, independent of the architecture of that machine, has
manifested itself as the traditional information channels on the internet (web, email and news) have
proven incapable of providing the required degree of interactivity today’s users demand. Sun spotted
this early and noticed the need for a completely platform/architecture independent code standard that
could be run on any computer. Their answer is what we call Java today. Java is very closely related to
the C family of languages. The syntax is well known for everybody who has written C or C++. The
new and exciting thing about Java is that it compiles source code not to machine code for one specific
type of computer, but to a intermediate layer of what Sun calls "Java byte code". This code can run on
any computer for which there is a Java Virtual Machine (JVM). Sun has made JVM available for free
for multiple computer architectures (Windows, Linux, Solaris etc). The JVM translates the byte code
to actual machine code at run time. By making JVM available for different platforms you can actually
"compile once, run everywhere".

People quickly understood the great benefits of this and today JVM and Java Software Develop-
ment Kit (J2SE) are downloaded from Sun several thousand times a day. Developers utilizing Java
technology range in the hundreds of thousands. Everything from simple code segments on web pages
to the most complex software systems in banking and financial businesses are now developed with



E.4. DEVELOPMENT PLATFORMS TO CONSIDER 101

Java.
Today Sun can offer the following with Java: - An enormous standard library with already imple-

mented functionality - Computer architecture independent code execution

Technological suitability

Java has become a defacto standard in most areas of application development. The standard library
that comes with Java contains a vast collection of essential functionality. Clear and well structured
interfaces and object orientation gives us a professional, productive and most importantly well tested
development platform.

There are two different ways of connecting Java and OPC:

1. General DCOM bridges.

2. OPC wrappers

General DCOM bridges are software products which enables the use of all DCOM-objects in Java.
DCOM is actually a Microsoft technology developed by Microsoft for use in their Windows operating
systems. Quite a lot of work has to be done to enable Java, developed as an cross platform language,
to use DCOM. A General DCOM bridge does this for us. The downside of general DCOM bridges is
the fact that they are general. If we chose to use one for this project we have to spend time not only to
learn OPC but also on how DCOM operates. The time available for this project is limited, so this is not
something we want to do.

The following DCOM bridges for Java are available today. Functionality is more or less completely
identical.

Intrinsyc J-Integra

• Link: http://www.intrinsyc.com/

• Cost: Free time limited version available. License for full use can be bought.

Interface Tool for Java/ Bridge2Java

• Link: http://www.alphaworks.ibm.com/tech/bridge2java

• Cost: License for full use must be bought.

JACOB by Dan Adler

• Link: http://danadler.com/jacob/

• Cost: open source

jacoZoom by infoZoom

• Link:http://www.infozoom.de/ie/jacozoom.html

• Cost: Free time limited version available. License for full use can be bought.

Java2COM by Neva Object

• Link:http://www.nevaobject.com/docs/java2com/java2com.htm

• Cost: Free time limited version available. License for full use can be bought.

Jawin

• Link: http://sourceforge.net/projects/jawinproject

• Cost: open source

R-JAX by Stryon

• Link:http://www.stryon.com/products.asp?s=2

• Cost: Free time limited version available. License for full use can be bought.



102 APPENDIX E. TECHNOLOGICAL PRE STUDY

OPC wrappers are actually DCOM bridges developed especially for OPC DCOM objects. This hides
technological details from developers not interested in other DCOM objects and gives them access to
OPC through Java API interfaces. This is great for the developers, and us, because they can use spend
their time utilizing OPC, not trying to get it to work in the first place. It comes at a price though, none
of the OPC wrappers are available free of charge.

The following OPC wrappers are available. Descriptions are taken from http://www.opcconnect.com.

ErgoTech OPC Gateway

• Link: http://www.ergotech.com/

• Description:"ErgoTech is a producer of Java components for manufacturing, and the OPC
Gateway is designed to work with that company’s Virtual Instrumentation Beans (VIB)
product. VIB is a collection of visualization and data server components designed to be
used with real-time devices. "

• Cost: License for full use can be bought.

Odense Production Information (OPI) JOPCClient

• Link: http://www.opi.dk/1.6.software.htm

• Description:" Odense Production Information (OPI) of Denmark takes a different approach
with its Java OPC client API. JOPCClient is restricted to the Windows platform only, and
uses Sun’s Java Native Interface (JNI). This technique allows Java developers to access the
functionality of OPC using only Java calls and without needing knowledge of COM and
DCOM. JNI is supported by most Java Virtual Machines (excluding the Microsoft JVM), and
JOPCClient is compatible with JDK 1.1, 1.2 and 1.3. "

• Cost: Free version with limited functionality available. License for full use can be bought.

NetModule’s JPC OPC-Driver

• Link: http://www.netmodule.com/e/produkte/opc.asp

• Description:"NetModule’s JPC OPC-Driver allows OPC client programs to be coded in Java.
Java classes are provided which mirror the server objects defined by the Data Access 2 spec-
ification. Java Native Interface (JNI) is used, along with an ’OPC-BridgeDLL’ coded in C, to
interface to the actual OPC server. NetModule claims compatibility with OPC servers from
Siemens, Rockwell, B&R and K&W. "

• Cost: License for full use can be bought.

Wapice OPC2Any

• Link: http://www.wapice.com/wapice/opc2any.php?lang=en

• Description: "With OPC2Any, Finnish company Wapice offers connectivity to OPC Data
Access servers via a Java API."

• Cost: License for full use can be bought.

DCOM is not a Java friendly technology, problems related to Java, DCOM and OPC are likely to
surface.
Score: 4

Knowledge of technology

Everybody on the team knows Java; we have solid backgrounds in development with this technology.
OPC in Java is unknown for everybody. Score: 4

Workload/Complexity of technology

Low compared to other choices. Java is well know, OPC is not.
Score: 3



E.4. DEVELOPMENT PLATFORMS TO CONSIDER 103

Monetary cost

Java is free of charge from Sun. However using OPC in Java can be cheap or expensive depending
on how much work you are prepared to do. General DCOM bridges are not very expensive, but a
substantial amount of time will need to be invested in creating an OPC-API(OPC wrapper) in Java
from such a bridge. Several of these wrappers are available, but they are expensive.
Score: 4

Portability

Java was developed with portability from day one and can actually be used to "compile once, run
everywhere".
Score: 4

Integration

The customer has chosen to standardize on Microsoft products. Java is developed by Sun, one of
Microsoft’s biggest competitors. This is far from optimal; no support from Microsoft on integrating
anything written in Java with their products can be expected.
Score: 3

Support/Help

Java is used by an enormous amount of developers world wide. Help is readily available online. Sun
maintain a large database with Java related tips and tutorials. They also maintain Java Community, a
forum where developers from everywhere can ask and answer questions. It is important to note that
this kind of support is unofficial; you are dependant on other people to help you. However, you very
seldom find unique problems. Somebody has usually experienced the problem and has already found
a solution. You just have to find that somebody.
Score: 3

E.4.2 Microsoft .NET

Introduction

.NET is Microsoft Corporations version of a modern software application development platform. .Net
is Microsoft’s reply to Java. A technology that can run code independent of machine architecture and
operations systems is a big threat to them. At first they tried to work with Sun, but Sun felt Microsoft
were trying to make Windows specific changes to the language. Sun refused, and Microsoft responded
by creating .NET and refusing to have anything more to do with Java.

Technological suitability

.NET is quickly becoming a strong opponent to Java. Microsoft has invested huge amounts of money
on building a development framework which pretty much offers the same kind of functionality Java
did and continues to do. A big standard library, object orientation and a comprehensive development
environment, Visual Studio 2003, makes it hard for developers not to give .NET a serious try. Com-
munication with OPC can be done through multiple software packages: Descriptions are taken from
http://www.opcconnect.com

.NET API from OPC Foundation

• Link: http://www.opcconnect.com/dotnet.php

• Description: "the OPC .NET API .. support DA 2 and 3, DX and HDA. The .NET API
provides a unified set of interfaces for accessing both COM and SOAP/XML servers, and
also includes C# and VB.NET clients which exploit these interfaces."



104 APPENDIX E. TECHNOLOGICAL PRE STUDY

• Cost: Free of charge for members of OPC Foundation, http://www.opcfoundation.org/.
Our customer, and thus we, are members.

Industrial DOT NET "Local IO"

• Link: http://industrialdotnet.com/

• Description: "IDN Local IO is a .NET assembly which allows rapid interfacing of .NET
applications with industrial devices. Support is provided for OPC DA 2.0, with additional
protocols to be included in future versions (MODBUS TCP is currently planned)."

• Cost: Free time limited version available. License for full use can be bought.

KineticaRT OPC Client Library

• Link: http://www.kineticart.co.uk/KineticaRTOPC.asp

• Description: " KineticaRT’s .NET OPC Client .. supports OPC DA connectivity using an
architecture based on connectable .NET components."

• Cost: License for full use can be bought.

Metadynamics OPC.ClientX.NET

• Link: http://www.metadynamics.com/opcclientxnet_brochure_p1.htm

• Description: " OPC.ClientX.NET was the first commercial product to offer a native .NET
component for Data Access client development. OPC.ClientX.NET presents an object model
based closely on the existing Data Access Automation specification. Connection to both
DA 1.0 and 2.0 servers is supported, and the package helpfully includes sample code for a
complete application."

• Cost: Free version with limited functionality available. License for full use can be bought.

Northern Dynamic SLIK-DAC

• Link: http://www.nordyn.com/Main/Products/SLIKDAC/SLIKDAC_Overview.htm

• Description:" Northern Dynamic’s SLIK-DAC provides a Windows Forms Control to enable
rapid development of DA client applications."

• Cost: Free time limited version with limited functionality available. License for full use can
be bought.

Softing OPC Toolbox .NET

• Link: http://www.softing.com/en/communications/products/opc/tools/dotnet.htm

• Description:" Softing’s .NET Client Toolkit supports both Data Access 2.0x and 3.0, and is
compatible with all .NET programming languages. Comprehensive documentation inte-
grates with Visual Studio .NET (2002 or 2003), and commented examples are available for
both VB.NET and C#."

• Cost: Free version with limited functionality available. License for full use can be bought.

Technosoftware OPCDA.NET, OPCHDA.NET, OPCAE.NET

• Link: http://www.tswinc.us/pc-1-3-opcdanet.aspx

• Description: " Technosoftware’s OPC Data Access .NET Wrapper (OPCDA.NET) provides
.NET wrappers for the OPC Data Access and Common custom interfaces. Comprehensive
documentation is included, as well as source for client programs (C# and VB.NET), and
wizards for simplified application creation. OPCDA.NET 3.0 adds support for Data Access
3.0, and includes a DA 3.0 test client as well as a simulation server supporting both DA 2.0x
and 3.0."

• Cost: Free time limited version available. License for full use can be bought.



E.4. DEVELOPMENT PLATFORMS TO CONSIDER 105

Technosoftware XMLDA.NET

• Link: http://www.tswinc.us/pc-2-3-xmldanet.aspx

• Description:" Technosoftware’s XMLDA.NET is .. a .NET wrapper which provides an XML-
DA application interface. Using this component, applications developed as XML-DA client
programs are able to access (COM) DA servers. Unlike an XML-DA gateway, this is achieved
without XML serialization. XMLDA.NET is particularly recommended for ASP client appli-
cations which need to access DA servers."

• Cost: Free time limited version available. License for full use can be bought.

Visavi Visual OPC .NET

• Link: http://www.visavisoftware.com/visual_opc_net.html

• Description:" Visual OPC .NET is designed to enable rapid development of OPC DA clients
using any .NET language. Classes are included which wrap the OPC COM interfaces, as
well as Windows Forms controls which support direct binding to OPC data items."

• Cost: Free time limited version available. License for full use can be bought.

OPC in .NET should not entail any large challenges.
Score: 5

Knowledge of technology

Only one person on the team has used .NET for software development.
Score: 2

Workload/Complexity of technology

This can be quite complex. Both .NET and OPC is unknown territory for most of the group. The
similarities between .NET and Java will help to reduce this potential problem.
Score: 3

Monetary cost

The .NET-framework is freely downloadable from Microsoft. Visual Studio is free for students of IME
faculty on NTNU through Microsoft’s MSDN Academic Alliance. A .NET solution means the customer
needs to run some kind of Windows operating system from Microsoft. This is not free, but the customer
already decided on this when they chose to standardize on Microsoft products.
Score: 3

Portability

Very poor. Microsoft maintains that anybody is free to develop .NET-framework for other operating
systems. In reality, this is not happening. Mono is a Linux based .NET-framework but it is still nowhere
near complete.
Score: 2

Integration

The customer has standardized on Microsoft. A .NET solution will comprise of more or less of only
Microsoft products. Integration with the rest of the customer’ s software and hardware should be easy.
Score: 5



106 APPENDIX E. TECHNOLOGICAL PRE STUDY

Criterion Importance Sun JAVA /
Evaluation
score

Sun JAVA
/ Criterion
score

Microsoft
.NET / Evalu-
ation score

Microsoft
.NET / Crite-
rion score

Technological
suitability

H/2.0 4 8 5 10

Knowledge of
technology

M/1.5 4 6 2 3

Workload /
Complexity
of technology

H/2.0 3 6 3 6

Monetary cost M/1.5 4 6 3 4.5
Portability L/1.0 4 4 2 2
Integration M/1.5 2 3 5 7.5
Support/help M/1.5 2 3 5 7.5
Sum 23 36.0 25 40.5

Table E.2: Development platform criteria evaluation

Support/Help

You can buy support for Windows, Visual Studio and the .NET framework from Microsoft. Not an
option for this project, but the possibility is definitely there. There is also an enormous amount of .NET
material available online (web pages with free code, help and forums)
Score: 5

E.4.3 Development platform summary

The most important demand on the development platform in our project is the ability to communicate
with the OPC servers that we are supposed to read and write data to/from. While both platforms
make this possible, one has to consider the fact that OPC is build on DCOM technology. This is highly
Microsoft-specific technology. Microsoft is of course the most avid supporter of their own technology
and this puts Sun JAVA at a clear disadvantage for OPC related work. OPC in Java is a Microsoft
Windows-specific hack to Java’s platform independent architecture, while OPC in .NET is OPC in its
natural environment. Not only does .NET get the best overall score (table E.2), but the customer’s
standardization on Microsoft products strongly supports .NET as the best development platform.

E.5 DATABASE SYSTEMS TO CONSIDER

E.5.1 MySQL

Introduction

MySQL AB, most commonly know as only MySQL, is today the most widely used open source database
in the industry. This popularity is based on its easy of use and non complicated design compared to
other proprietary databases available. MySQL developers, MySQL AB [1], has sacrificed what other
database vendors consider important enterprise grade functionality to be able to deliver a basic block
of functionality at lightning speeds. It does not support the following:

• stored procedures

• referential integrity



E.5. DATABASE SYSTEMS TO CONSIDER 107

• triggers

• sub queries

It does however support the more basic operations of adding, modifying and deleting data very effi-
ciently. This is more than enough for the typical MySQL user, who normally use the database for web
related storage. Examples of use are guest books, counters or online forums on web pages. These are
typically non-critical uses, and it is in these areas MySQL has captured most of its users. However
the same users are constantly utilizing MySQL in other areas and this has prompted MySQL AB to
start implementing extra functionality normally only found in proprietary databases like MS SQL and
Oracle. The open source nature of MySQL prevents users from lock-in to a single company or database
platform; it also ensures the possibility of running MySQL on all the popular hardware platforms avail-
able. Currently more than twenty are supported, including every major Linux distribution, Mac OS X,
UNIX and Microsoft Windows.

Technological suitability

Our needs for a database are basically the ability to read, write and alter data. MySQL is more than ef-
ficient for this. It does not support more advanced functionality which would be nice, but not critically
so, to have; like stored procedures and referential integrity.
Score: 4

Knowledge of technology

The team has extensive experience with MySQL usage, in both school and non-school related work.
This is regarded as well known technology.
Score: 5

Workload/Complexity of technology

MySQL is non-complex and user friendly.
Score: 4

Monetary cost

MySQL is available as open source, for free. It can be licensed under other conditions, but this is not
an option for us.
Score: 5

Portability

MySQL is open source; it can be freely ported to any platform. It is extremely flexible on this point.
Score: 5

Integration

MySQL is not a Microsoft product, but this should not be a problem. MySQL AB has made tools for
the use and integration of MySQL on Microsoft Windows available for free with the database.
Score: 3

Support/help

MySQL under open source license does not have any official support available. Its enormous popu-
larity means that there is huge amount of documentation, tips and help available online however. You
can buy official support for MySQL from MySQL AB.
Score: 3



108 APPENDIX E. TECHNOLOGICAL PRE STUDY

E.5.2 Oracle Database

Introduction

Oracle Corporation’s [8] databases are currently the market leader in high efficiency, high demand,
and high complexity databases. According to Oracle they support pretty much all possible features
you can demand from a modern database, including encryption, clustering, high availability, data
compression, analytical tools and highly grained security control mechanism.

Oracle Corporation was founded 27 years ago in California. Larry Ellison, now Chairman and CEO,
was the first to commercialize a new kind of technology called a relational database. He and his co-
founders, Bob Miner and Ed Oates, saw a huge business potential. Today Oracle supplies technology
to virtually all kinds of industry around the globe, they can boast that 98 of the Fortune 100 companies
utilize some of their products in highly critical operations. Its product line no longer comprises of only
database technology; they know also deliver business applications, perform application development
and produce a set of decision support tools. Oracle is number one in software for information man-
agement and the currently the second largest software company in the world. The 44000 employees
of Oracle Corporation will help their employer to "innovate and to lead the industry - while always
making sure that we’re focused on solving the problems of the customers who rely on our software."

Technological suitability

Oracle is among the top, if not the number one, databases available for use today. Not only is it highly
efficient at the basic database functionality of reading, writing and altering data, but it constantly
redefines the notion of what a database solution should encompass. Functionality like

• stored procedures

• referential integrity

• triggers

• sub queries

is not only supported but in most cases it was pioneered and developed by Oracle Corporation in the
first place. This project will not have any demands for a database that aren’t met by an Oracle database.
Score: 5

Knowledge of technology

The group has limited experience with Oracle databases. It has been utilized in school projects earlier,
but in a limited way. A substantial effort, ergo use of time, will be required to learn this technology
before use in this project.
Score: 3

Workload/Complexity of technology

Oracle solutions are designed to meet any demand a customer has for a modern database. This nec-
essarily leads to a complex, but powerful product. While we have no doubt that Oracle will work as
advertised, we do think its complexity is not needed for this task.
Score: 3

Monetary cost

Oracle Corporation enables developers to download most of it products, including its databases for
free. They allow you to use full versions of the products only while developing and prototyping ap-
plications. You have to buy a non-development license when you ship your product. This is not cheap
and it makes it unusable for us.
Score: 2



E.5. DATABASE SYSTEMS TO CONSIDER 109

Portability

Oracle databases are available for multiple versions of Microsoft Windows, Linux, Solaris, HP-UX, Mac
OS X and IBM z/OS. It is not an open source solution however, so if you need to use it on any other
platforms you have a problem.
Score: 4

Integration

Oracle delivers tools and guides for integration of their products with other applications. Our customer
has chosen to standardize on another platform however, this pretty much guarantees some kind of
problems.
Score: 3

Support/help

Excellent, if you pay for it. Oracle offers extensive support through email, telephone or sending an
employee to help you. You need to have a support arrangement with them though, and this is expen-
sive. There is a fair amount of non-official help/support available online, but the online community
for Oracle is not as large as some of the other databases. This has to do with the fact that most Oracle
customers pay for support from Oracle directly.
Score: 5

E.5.3 Microsoft SQL Server 2000 Developer/Enterprise Edition

Introduction

Microsoft SQL Server 2000(MS SQL Server 2000) is Microsoft’s answer to the dominant, and highly
profitable, position Oracle has in the database industry. MS SQL Server 2000 is the culmination of
10 years worth of database technology development by Microsoft. With innovative features such as
self-optimizing and enterprise-class reliability and scalability, MS SQL Server has come a long way
from its beginnings in the fall of 2003. The last several years MS SQL Server 2000 has had double-digit
growth every year on the different Microsoft platforms. Today it has achieved a 40%market share
and continues to steal more from its competitors. While earlier regarded as a basic database system
not yet ready for prime time, it now competes with its biggest rival, Oracle, in all markets. In both
functionality and pricing Microsoft claims an advantage.

Technological suitability

MS SQL Server of course supports all the standard operations of reading, writing and altering data via
SQL-queries, and does this well. It also supports more advances features like stores procedures and
referential integrity. Microsoft claims it has all the capabilities Oracle has, and then some. We do not
require anything of our database that Microsoft SQL Server 2000 doesn’t support.
Score: 5

Knowledge of technology

Small, some members have a little experience with Microsoft’s SQL Servers. Most have none.
Score: 4

Workload/Complexity of technology

Microsoft is well known for making their products easy to use and comprehensible. SQL Server 2000
includes a set of tools for data management, free of charge. Setup and utilization of this database
should be fairly straight forward and problem free considering we are using a Microsoft application



110 APPENDIX E. TECHNOLOGICAL PRE STUDY

on a Microsoft operating system.
Score: 4

Monetary cost

MS SQL Server 2000 Developer Edition is free of charge for development and testing. Should the
customer choose to put this project on a production system, a license for MS SQL Server 2000 Enterprise
Edition will be required. These are generally cheaper than Oracle solutions of the same magnitude.
Score: 3

Portability

Very poor. MS SQL Server 2000 is a pure Microsoft product and therefore only runs on a Microsoft
operating system.
Score: 2

Integration

Excellent. Microsoft designs their products to be highly integrable with other software and operating
systems from Microsoft. The customer has chosen to standardize on Microsoft, so this should pose no
big problems.
Score: 5

Support/help

Excellent. As a Microsoft customer you get official support from Microsoft on both MS SQL Server
2000 and the operating system.
Score: 5

E.5.4 Database summary

The different database systems pretty much support all the functionality we need and all of them are
available for free for evaluation and development purposes. All of the databases could be used for
our project, but we choose to use MS SQL Server 2000 mainly because of its ease of use, the high
availability of support from its vendor and the overall best score in table E.3. As noted earlier, the
customer’s standardization on Microsoft products also makes this choice a good one.

E.6 SUMMARY OF TECHNOLOGICAL PRE STUDY

As seen in the development platform- (E.4.3) and database-summary(E.5.4) the result of this techno-
logical pre study is that our solution will be developed with a Microsoft SQL Server 2000 database on
the development platform Microsoft .NET. We will also be using Microsoft Visual Studio .NET 2003 as
a development environment.



E.6. SUMMARY OF TECHNOLOGICAL PRE STUDY 111

Criterion Importance MySQL
Evalu-
ation
score

MySQL
Criterion
score

Oracle
Evalu-
ation
score

Oracle
Criterion
score

MS SQL
Evalu-
ation
score

MS SQL
Criterion
score

Technological
suitability

H/2.0 4 8 5 10 5 10

Knowledge of
technology

M/1.5 5 7,5 3 4,5 4 6

Workload /
Complexity of
technology

H/2.0 4 8 3 6 4 8

Monetary cost M/1.5 5 7.5 2 3 3 4,5
Portability L/1.0 5 5 4 4 2 2
Integration M/1.5 3 4.5 3 4.5 5 7.5
Support/help M/1.5 3 4,5 5 7.5 5 7.5
Sum 29 45 25 39.5 28 45.5

Table E.3: Database criteria evaluation





APPENDIXF
EVALUATIONS FORMS

F.1 ALL EVALUATION FORMS

113



114 APPENDIX F. EVALUATIONS FORMS

Product DAQBench

Producer Agile Integration

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA No 1

EC3 Write OPC-DA Yes 4

EC4 Log data Yes 4

API criteria

EC5 Make available to users/app.

Yes, built in Trending functionality 
provided. Drag and drop of prebuilt 
components available. No concept of user 
defined applications.

3

EC6 Make calculations Yes, through drag and drop components. 3

EC7 Store result of calculations Yes 4

EC8 Schedule applications No 1

EC9 Configurability No 1

EC10 Historical data Yes 4

EC11 API. Rapid development.

Yes. Drag and drop components can be 
combined to make simple applications. No 
API other than the drag and drop 
components available.

3

WEB criteria

EC12 GUI-gateway
Yes, web interface available for data 
snapshots and remote monitoring. 

5

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive NA 1

EC15 Other data sources No 1

Conclusion
The limitation of only making drag and 
drop components available make this 
solution undesirable for us.

Figure F.1: DAQBench evaluation



F.1. ALL EVALUATION FORMS 115

Product GDAC, formerly SLiC

Producer CERN

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA No 1

EC3 Write OPC-DA Yes 4

EC4 Log data No 1

API criteria

EC5 Make available to users/app.

EC6 Make calculations

EC7 Store result of calculations

EC8 Schedule applications

EC9 Configurability

EC10 Historical data No, no logging in EC4 available. 1

EC11 API. Rapid development.
Yes, applications can access all 
funtionality through this api.

3

WEB criteria

EC12 GUI-gateway No 1

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive Open Source 5

EC15 Other data sources Yes 4

Conclusion

This system does not implement any 
logging functionality. This is not 
acceptable, no further evaluation is 
neccessary. System discarded.

Figure F.2: GDAC evaluation



116 APPENDIX F. EVALUATIONS FORMS

Product ProcessNet

Producer Matrikon

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA Yes 5

EC4 Log data Yes 5

API criteria

EC5 Make available to users/app.
Yes, Matrikon themselves make several 
products that work with the logged data.

5

EC6 Make calculations Yes 5

EC7 Store result of calculations Yes 5

EC8 Schedule applications Yes, Event scheduler 4

EC9 Configurability
Yes, you can configure calculations through 
a drag and drop interface

3

EC10 Historical data Yes 5

EC11 API. Rapid development.
Yes, drag and drop functionality for simple 
applications. No thorough API available.

3

WEB criteria

EC12 GUI-gateway Yes 5

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive No, prices only available on request. 1

EC15 Other data sources No, OPC only. 1

Conclusion

Matrikon ProcessNet fulfills most of the 
evaluation criteria, apparently making it a 
very good solution candidate. However it 
does not allow developers to access the 
collected data through an API, something 
which is one of the fundamental 
requirements for our task.

Figure F.3: Matrikon ProcessNet evaluation



F.1. ALL EVALUATION FORMS 117

Product OPC DA/HDA Archiver

Producer Integration Objects

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA Yes 5

EC4 Log data Yes 5

API criteria

EC5 Make available to users/app. Yes, through web interface. 3

EC6 Make calculations No 1

EC7 Store result of calculations No 1

EC8 Schedule applications No 1

EC9 Configurability No 1

EC10 Historical data Yes, but no concept of calculations. 2

EC11 API. Rapid development. No, only predefined applications. 1

WEB criteria

EC12 GUI-gateway
Yes, but only logged data. No support for 
browsing of calculated data. No concept of 
differentiated users.

3

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive N/A 1

EC15 Other data sources No 1

Conclusion

Meets several of the important criteria, but 
does not fulfill crucial ones like exposing 
it's functionality through a programmable 
API for further application development.

Figure F.4: OPC DA HDA Archiver evaluation



118 APPENDIX F. EVALUATIONS FORMS

Product OPC Systems

Producer Eldridge Engineering Comp. Inc

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA No 1

EC3 Write OPC-DA Yes 5

EC4 Log data Yes 5

API criteria

EC5 Make available to users/app.
Yes, but only to users. No concept of user 
defined applications.

4

EC6 Make calculations No 1

EC7 Store result of calculations No 1

EC8 Schedule applications No 1

EC9 Configurability No 1

EC10 Historical data Yes, but no concept of calculations. 3

EC11 API. Rapid development.
No, but source code can be bought and an 
API can be added to this.

2

WEB criteria

EC12 GUI-gateway
Yes, collected data can be viewed in the 
program. No web interface available.

2

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive
Yes, Corporate License must be bought. 
Prize: $14950

1

EC15 Other data sources No 1

Conclusion

Offers some required functionality, but 
both the missing functionality and the 
prize makes this solution unacceptable to 
us.

Figure F.5: OPC Systems Eldridge evaluation



F.1. ALL EVALUATION FORMS 119

Product OPC Toolbox for Matlab

Producer MathWorks

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA No 1

EC3 Write OPC-DA Yes 5

EC4 Log data Yes 5

API criteria

EC5 Make available to users/app. Yes 5

EC6 Make calculations
Yes, solution is integrated in Matlab 
environment. All of Matlab's other 
functionality is available.

4

EC7 Store result of calculations No 1

EC8 Schedule applications No, no concept of applications. 1

EC9 Configurability No 1

EC10 Historical data Yes 5

EC11 API. Rapid development.
Yes. If Matlab provides the desired 
application functionality.

3

WEB criteria

EC12 GUI-gateway No 1

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive $1000 per License 1

EC15 Other data sources No 1

Conclusion

Fulfills many requirements, but does not 
offer functionality like scheduling and 
extensive API outside Matlab. Requires 
Matlab, which is expensive.

Figure F.6: OPC Toolbox for Matlab evaluation



120 APPENDIX F. EVALUATIONS FORMS

Product OPC Web client

Producer Iconics

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA No 1

EC4 Log data No 1

API criteria

EC5 Make available to users/app. Yes 4

EC6 Make calculations

EC7 Store result of calculations

EC8 Schedule applications

EC9 Configurability

EC10 Historical data

EC11 API. Rapid development.

WEB criteria

EC12 GUI-gateway

Overall system criteria

EC13 Run on Microsoft 

EC14 Inexpensive

EC15 Other data sources

Conclusion

Same problem as TrendWorX32 from same 
producer. No logging ability makes this 
system completely unacceptable, no further 
evaluation needed.

Figure F.7: OPC Web Client evaluation



F.1. ALL EVALUATION FORMS 121

Product OPenDA

Producer open source collaboration

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA No, only DA 1.0 is supported. 1

EC3 Write OPC-DA Yes 5

EC4 Log data No, no logging functionality. 1

API criteria

EC5 Make available to users/app.

EC6 Make calculations

EC7 Store result of calculations

EC8 Schedule applications

EC9 Configurability

EC10 Historical data

EC11 API. Rapid development.

WEB criteria

EC12 GUI-gateway

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive

EC15 Other data sources

Conclusion
No logging ability means the system will 
fail most of the other critieria. No further 
evalutation needed, system discarded.

Figure F.8: OpenDA evaluation



122 APPENDIX F. EVALUATIONS FORMS

Product PI Advanced Computing Engine

Producer OsiSoft

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA Yes 5

EC4 Log data Yes, in proprietary PI database. 4

API criteria

EC5 Make available to users/app. Yes, through ACE calculation engine. 5

EC6 Make calculations Yes, through ACE calculation engine. 5

EC7 Store result of calculations Yes, through ACE calculation engine. 5

EC8 Schedule applications No 1

EC9 Configurability No 1

EC10 Historical data
Historical data can be read from PI database 
through ODBC and OPC.

3

EC11 API. Rapid development. Only for reading data from PI database. 3

WEB criteria

EC12 GUI-gateway Yes, web interface available. 4

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive No 1

EC15 Other data sources
Yes, anything that can put data in the PI 
database.

3

Conclusion
This solution looks promising, but the lack 
of schedulability functionality makes it 
undesirable.

Figure F.9: PI ACE evaluation



F.1. ALL EVALUATION FORMS 123

Product Trend software

Producer Canari Labs

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA Yes 5

EC4 Log data Yes 5

API criteria

EC5 Make available to users/app. Yes 5

EC6 Make calculations Yes, through their Calculation Engine. 5

EC7 Store result of calculations Yes, through their Calculation Engine. 5

EC8 Schedule applications No 1

EC9 Configurability No 1

EC10 Historical data Yes. 4

EC11 API. Rapid development.

Some limited parts of Trend Link can be 
manipulated with code but it is not flexible 
enough for us. Only parts of the total 
functionality available.

2

WEB criteria

EC12 GUI-gateway
Yes, both collected data and calculations 
available through web interface.

4

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive N/A 1

EC15 Other data sources No 1

Conclusion

Trend software fulfills many of the 
requirements, but the the lacking API and 
the absence of scheduling funtionality 
makes it unacceptable as a solution.

Figure F.10: Trend Software evaluation



124 APPENDIX F. EVALUATIONS FORMS

Product TrendWorX32

Producer Iconics

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA No 1

EC4 Log data No 1

API criteria

EC5 Make available to users/app. Yes 5

EC6 Make calculations

EC7 Store result of calculations

EC8 Schedule applications

EC9 Configurability

EC10 Historical data

EC11 API. Rapid development.

WEB criteria

EC12 GUI-gateway

Overall system criteria

EC13 Run on Microsoft 5

EC14 Inexpensive

EC15 Other data sources

Conclusion
No logging ability makes this system 
completely unacceptable. No further 
evaluation needed.

Figure F.11: TrendworX32 evaluation



F.1. ALL EVALUATION FORMS 125

Product LabView

Producer National Instruments

Criteria What Comment Degree of fulfillment

DI criteria

EC1 Read OPC-DA Yes 5

EC2 Read OPC-HDA Yes 5

EC3 Write OPC-DA Yes 5

EC4 Log data Yes 5

API criteria

EC5 Make available to users/app.
Yes, LabView offers several systems for 
application development

5

EC6 Make calculations Yes 5

EC7 Store result of calculations Yes 5

EC8 Schedule applications Yes 4

EC9 Configurability
Yes, LabView offers graphical 
configurations of the applications.

3

EC10 Historical data Yes 4

EC11 API. Rapid development.
Yes, drag and drop functionality for simple 
applications. No thorough API available.

3

WEB criteria

EC12 GUI-gateway Yes 5

Overall system criteria

EC13 Run on Microsoft Yes 5

EC14 Inexpensive No, prices only available on request. 1

EC15 Other data sources Yes 1

Conclusion

International Instruments' LabView fulfills 
most of the evaluation criteria, apparently 
making it a very good solution candidate. 
However it's a large, extensive and 
expensive software, and thus it does not 
fulfill the inexpensive requirement. 

Figure F.12: LabView evaluation





Part III

Requirements Specification

127





CHAPTER16
INTRODUCTION

16.1 PURPOSE

The goal of this document is to structure and simplify the work that is to be carried out in the construc-
tion phase and the implementation phase of the project.

16.2 SCOPE

Where the IEEE 830 has one section where the specific requirements are listed, we chose to divide the
specific requirements in three sections, one section per module. The reason for this modification of
the IEEE standard is that the product to be developed consists of three different parts. We found it
appropriate to develop different requirements for each part, because each part has different levels of
user visibility.

The software modules to be produced are:

• DI – Data Interchanger
The DI collects data from one or several OPC servers. See section 18.2 for the specific require-
ments of this module.

• APP API – Application Programmer Interface for applications
The APP API provides application developers with a single interface for accessing system func-
tionality. See section 18.3 for the specific requirements of this module.

• WEB – The web portal
A graphical user interface for presenting collected raw data, as well as the data generated by the
applications mentioned above. See section 18.4 for the specific requirements of this module.

16.3 REFERENCES

This document is based on the IEEE standard 830 [16]. The textual use cases we’ll use for describing
the specific requirements are following the guidelines from the course TDT4175 Information Systems
[24].

16.4 OVERVIEW

The rest of the requirements specification is organized as follows: Chapter 17 contains an overall de-
scription of the system to be implemented. This includes a sketch of the solution we have come up
with, and requirements to interfaces and user characteristics relevant to our system. Then the specific
requirements are presented in chapter 18. The main part of this chapter is the detailed description of
requirements organized by the three software modules described above. It also contains several other
sections on specific requirements to the system in general, in compliance with the IEEE standard.

129





CHAPTER17
OVERALL DESCRIPTION

17.1 PRODUCT PERSPECTIVE

The following section will describe our solution, called the EasyIT-solution. In principle, it’s ambition is
to solve some of the limitations attached with current work processes. In order to succeed, it must offer
real-time access to data in control systems. Data is gathered on different sampling rates and tags may
be sampled as frequent as once per second. Several applications might sample the same tag at different
rates. So, the solution is supposed to give analysts easy access to real-time data. Accordingly, effective
development and testing of suitable algorithms for data-analysis and device-verification should be
within reach. The system must also provide access to historical data if needed. In brief, such a system
will have a wide range of applications.

Our solution consists of three parts: DI, APP API and WEB. Roughly, the data interchanger (DI)
will serve as an interface to available data sources, mainly OPC-servers. Applications may access these
data through an API on the DI. Eventually, results produced by these applications are visualized on
web-pages (WEB).

17.1.1 System interfaces

Data Interchanger

The data interchanger will be the cornerstone of our solution. This part provides a uniform interface
to one or more OPC-servers. In longer terms, configuration of the interchanger should be available
through a graphical user interface. Possible configuration activities are adding/removing available
OPC-servers and monitoring of applications. In general terms, the DI interface is accessible through
an application programmer interface (API).

OPC-servers support both polling and events for data access. Consequently, the DI should also
support such mechanisms. Each application is free to subscribe to tags at different sample rates and
multiple applications may subscribe to the same tags. It is left to the DI to gather tags and distribute
them at correct rates, and to minimize the load on the OPC-severs and the network in general.

Further, the interchanger must be able to accumulate data. The clients are required to explicitly
specify which tags are to be saved. The DI will delete historical data older than a given amount of
time, say 6 months.

Finally, the DI will implement functionality to save data as OPC-tags. Applications accessing the
interchanger can therefore save produced and processed data, making data available for other appli-
cations through the DI-interface.

Application API

The actual purpose of the DI is twofold; to serve applications with real-time data from OPC-servers and
save data produced by DI’s scheduled applications. APP API serves as a layer between DI and the ap-
plications. Applications are basically scripts that will be scheduled for execution based on time. Some
programs perform only routine operations, serving as tools for more complex applications. Organiza-
tion and monitoring of these applications are handled by the data-interchanger. Figure 17.2 sketches
the composition of the EasyIT-system. As shown, the DI-part consists of a database and an interface.

131



132 CHAPTER 17. OVERALL DESCRIPTION

EasyIT Analysis

Analysis
needed

Analysis
complete

Application
configurator

Application
developer

ABB staff

Data analyst

Application
ready

A1

Develop application

Application
developer

.Net
enviroment

EasyIT
API

 A4

Application processes
data

EasyIT APIApplication

 A2

Configure application

Application
configurator

Application
EasyIT

database

 A5

Present data on web

Data
analyst

EasyIT
WEB

EasyIT
database

 A3

Collect data needed by
application

EasyIT DI EasyIT
database

OPC

EasyITABB staff

EasyIT

EasyIT
DI

EasyIT
API

EasyIT
WEB

Software
hierarchy

Actor
hierarchy

Figure 17.1: Action Port Model (APM) of the EasyIT-system

Every application in the system accesses the tags stored in the OPC-servers through the interface on
the DI. This interface is referred to as the APP(-lication) API. Writing data back to the database is also
carried out by the DI.

WEB API

Eventually, as the illustration shows, the web interface visualizes data. Please note that the web-pages
obtain data from the DI through the WEB API and not from the applications themselves.

17.1.2 User interfaces

End users of EasyIT will interact with the system using a graphical interface in the WEB-module.
Programmers using EasyIT as a skeleton, will (by their applications) interact through the APP API.

The main user interface of EasyIT is the web interface. The WEB will serve as a portal of web
pages visualising application data. Also the WEB interface will facilitate configuration activities. The
activities in question are configuration of user and user-access, applications and set-up of web-pages.
Since this configuration can be performed manually by editing text files or database entries, please
note that such graphical configuration interface do not have high propriety at the moment.

17.1.3 Hardware interfaces

Our system will not interface directly with any hardware. Nevertheless we will assume that the EasyIT
system will run on PC servers, that is; A simple computer with x86-architecture. Most applications
will run locally, but there are no major difficulties in implementing a remoting-possibility for running
computation-intensive applications on dedicated servers.



17.1. PRODUCT PERSPECTIVE 133

Figure 17.2: Conceptual model of EasyIT 1



134 CHAPTER 17. OVERALL DESCRIPTION

Figure 17.3: Conceptual model of EasyIT 2

17.1.4 Software interfaces

The EasyIT system consists of three different components, the DI, APP API and WEB API. All these
components will communicate with each other and other software systems. This section will discuss
some of the software interfaces involved in the system.

Operating system

As Figure 17.3 depicts, the entire system is running on a platform with Microsoft Windows operating
system (at ABB; Windows Server 2003).

Programming language and development environment

The implementation of EasyIT also includes an arrangement for easy development of applications
running on the system (using EasyIT as a skeleton). The API should provide easy access to data sources
and abstract the technical difficulties with i.e. OPC-subscription and database connections. Also, the
methods and mechanisms in the interface should be the same regardless of what kind of data source
the application are gathering data from. As discussed in the pre-study, our choice of development
environment is Microsoft Visual Studio .NET platform. This platform supports both web-development
and application development.

Web server

The WEB system will run on a web server. The obvious choice is Microsoft Internet Information Server
(IIS) which is an integrated part of Windows Server.



17.2. USER CHARACTERISTICS 135

DBMS (Database management system)

The DI will gather data from data sources and store some of these data in a database. Also, configura-
tion data and application data will also be stored in a database. Potentially, the rate of reads and writes
could be very large, so a critical parameter when it comes to evaluation of DBMS is performance.

17.1.5 Communications interfaces

The server running DI must support TCP/IP for communicating with WEB and OPC.

17.2 USER CHARACTERISTICS

Users of the EasyIT system may be divided into three categories and one person may hold more than
one of these roles

• System administrator

• Application developer

• Data analyst

System administrator

System administrators have privileges to add and edit users. Also administrators are allowed to con-
figure applications and the DI.

Application developer

The developers develop applications that is to perform analysis on real-time or historical data.

Data analyst

The data analysts study the output data from the applications. These data will typically be visualised
on web-pages.

17.3 APPORTIONING OF REQUIREMENTS

Some of the requirements specified in this specification have low priority. These requirements are not
considered vital for the system and can be delayed for future versions.

17.4 APP (APPLICATIONS) AND THE WEB (PRESENTATION SYSTEM)

Eventually, as the figure 17.2 shows, the web interface visualizes data. Please note that the web-pages
obtain data from the (database within) DI and not from the applications themselves.

To summarize; the DI-part of the system reads requested real-time data from the data sources
(mainly OPC). If necessary, selected data is stored by the interchanger. Applications process data ob-
tained by the interchanger and write output data back to the interchanger. The interchanger then saves
this data as tags, making output available for other applications. The web-interface supports various
ways of visualising output data. At the time of writing, two possible methods are considered; table
and plotting (as shown in the figure). So, a couple of problems need to be sorted out. First, how do
the web pages know which data to deal with and how does the web page select an appropriate way
to visualize data? Furthermore, some outputs are not intended for visualisation. How does the web-
interface know which applications have data to visualize? Bringing focus to scheduled applications,
the DI also needs a way to identify and organise these.



136 CHAPTER 17. OVERALL DESCRIPTION

17.4.1 Configuration of applications

There is certainly a need for some method of application configuration. Basically, applications process
data and web-pages visualise the output. Thus, in addition to the applications, both the DI- and WEB-
part of the system needs access to the configurations. It is not decided yet whether the configurations
will be stored as text-files or in some database-structure. At this point of the development process, the
term configuration is therefore regarded as a collection of data specifying the behaviour of one applica-
tion. The following paragraphs describe some of the elements in this configuration. The paragraph on
input data is included for completeness.

Input data

The applications are free to access any data in the data sources, so there are no reasons to list input data
in the configuration whatsoever.

Output data

Every time an application outputs some data, the DI saves these as tags. These tags will reside in the
database with other tags obtained from various data sources (read: OPC-servers). Therefore, the inter-
changer must label output data in such a way that it is possible to separate these tags from OPC-data
and identify the application which produced the tag. Thus, listing the output-data in the configuration
might be redundant. Occasionally, there might be cases where such a listing would be favourable. Say
the applications have never run. If that is the case, there would be no other way to determine what
data the application will produce, but reading the configuration.

Published data

The EasyIT-solution makes it possible to visualise data from applications on web-pages. These visual-
ized data are called published data. In mathematical terms, the application’s published data is a subset
of the output data. The configuration also needs to specify how the published data are supposed to
be visualized. So, when a certain web page is requested, the web-page first reads the configuration (to
figure out which way to represent the data). Then the web-system obtains data from the interchanger
and finally prints data using the appropriate visualization method.

Scheduling information

The DI is also responsible for starting scheduled applications. One essential parameter of these ap-
plications is the rate at which the applications are fired. Imagine an application calculating the mean
value of a number of tags. Other applications may need this value for further calculations, and the
mean value is supposed to be refreshed at a certain rate, say every ten minutes. First of all, the con-
figuration has to specify whether the associated application is scheduled. If so, the configuration also
sets a refresh rate. The DI then has enough information to fire scheduled applications at appropriate
time-intervals.



CHAPTER18
SPECIFIC REQUIREMENTS

18.1 INTRODUCTION

The specific requirements for each module are specified with three elements.

• A graphical use case diagram showing all actors and major tasks to be carried out through the
module

• A list of the functional requirements for the module

• Textual use cases describing important sequences of actions regarding the module

The textual use case descriptions are presented in tables, providing the following properties of the
requirement:

• Use case name: Identifier of the use case.

• Priority: Either High (H), Medium (M) or Low (L). All of the requirements are meant to be im-
plemented, but we have categorized them into these three levels of importance. High priority
requirements are critical for the project, requirements labelled "M" are still important, but not as
critical to implement. If we run out of time, requirements labelled "L" are considered not impor-
tant enough to be implemented.

• Iteration: Either facade, filled, focused or finished. "Filled" is the typical iteration value for the
specific requirements stage.

• Summary: A short description of the use case

• Accompanying requirements: References to the requirements covered by this use case

• Basic course of events: The steps that the actors and the system go through to accomplish the
goal.

• Alternative paths: Less common steps than the basic course.

• Exception paths: Paths taken when the errors occur.

• Triggers: The entry criteria for the use case, i.e., what initiates it.

• Pre-conditions: Conditions that must be true before the use case can be performed.

• Post-conditions: What will be true when the use case is completed.

• Date: The date when the textual use case was created.

• Author: The author of the textual use case

18.2 REQUIREMENTS FOR THE DI

137



138 CHAPTER 18. SPECIFIC REQUIREMENTS

18.2.1 Graphical overall use case for DI

DI

Read from OPC server

Create group of tags
Write to OPC server

Delete group of tags

Schedule applications

Browse tags

Figure 18.1: Overall use case for DI

18.2.2 Functional requirements for the DI

18.1 contains a list of the requirements on the DI module. Textual use cases follow for each of the
requirements.

ID Requirement Priority Use case
Data read / write

DI-1 DI reads synchronous from OPC-server. H DI-UC-18.2
DI-2 DI start asynchronous continual read (subscribes to a data tag) H DI-UC-18.3
DI-3 DI stops a continually asynchronous read. (A subscribed tag) H DI-UC-18.4
DI-4 DI pauses a continually asynchronous read. (A subscribed tag) L DI-UC-18.5
DI-5 DI continues a continually asynchronous read. (A subscribed tag) L DI-UC-18.6
DI-6 DI writes synchronous to OPC-server. H DI-UC-18.7

Scheduling
DI-7 DI schedules applications. H DI-UC-18.8

Handling tags
DI-8 Create group of tags. M DI-UC-18.9
DI-9 Delete group of tags. M DI-UC-18.10
DI-10 Browse tags. L DI-UC-18.11

Table 18.1: DI requirement list



18.2. REQUIREMENTS FOR THE DI 139

18.2.3 Textual use case diagrams for the DI



140 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: DI reads synchronous from OPC-server
ID: DI-UC-18.2
Priority: H
Iteration: Filled
Summary: DI reads data from an OPC-server. The read is synchronous, and therefore

blocking.
Accompanying
requirements:

DI-1

Basic course
of events: 1. DI is told directly by APP API or scheduler that a data tag, or group of

data tags, needs to be updated.

2. DI checks tag, or group, and figures out which OPC-server(s) need to
be contacted.

3. DI opens connections to the server(s) in 2) and asks for the current value
of the tag, or group of tags, synchronously.

4. DI blocks until the server(s) reply with the current value of the tag, or
group of tags.

5. The entity that started 1), either APP API or scheduler, is returned the
value.

Alternative paths: 5a Logging is also requested.
• 5a1. The returned value is logged to the database.
• 5a2. The entity that started 1), either APP API or scheduler, is returned

the value.

Exception paths:
• 2a If DI does not recognize the tag, or group, and therefore can not figure

out which server(s) to contact, an exception occurs and the basic course
of events is aborted.

• 3a If DI can not open a connection to the server(s), an exception occurs
and the basic course of events is aborted.

• 4a If DI waits more than a given time length or connections to the server(s)
are lost, an exception occurs and basic course of events are aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: APP API or scheduler tells DI it needs the current value of a tag, or group.
Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.2: DI-UC-18.2



18.2. REQUIREMENTS FOR THE DI 141

Use case name: DI start asynchronous continual read(subscribes to a data tag)
ID: DI-UC-18.3
Priority: H
Iteration: Filled
Summary: DI reads data from an OPC-server. The read is asynchronous and continual;

therefore non-blocking.
Accompanying
requirements:

DI-3

Basic course
of events: 1. DI is told directly by APP API or scheduler that a data tag, or group of

data tags, needs to be read continuously at a given rate.

2. DI checks tag, or group, and figures out which OPC-server(s) need to
be contacted.

3. DI opens connections to the server(s) in 2 and asks for the value of the
tag, or group of tags, to be returned to it repeatedly every n seconds.

4. DI continues with other tasks.

5. DI is interrupted by OPC-server(s) with a reply with the current value
of the tag, or group of tags.

6. The entity that started 1), either APP API or scheduler, is given the
value.

7. 5) and 6) is repeated over and over again until DI-UC-18.4, DI-UC-18.5
or an exception occurs.

Alternative paths: 6a. Logging is also requested
• 6a1. The returned value is logged to the database.
• 6a2. The entity that started 1), either APP API or scheduler, is returned

the value.
6b. If the request is for just storing data to the database (for later historical
trending), 6) and 7) become:
• 6b1. The returned value is logged to the database.
• 6b2. The entity that started 1) is returned an OK-message

Exception paths:
• 2. If DI does not recognize the tag, or group, and therefore can not figure

out which server(s) to contact, an exception occurs and the basic course
of events is aborted.

• 3. If DI can not open a connection to the server(s), an exception occurs
and the basic course of events is aborted.

• 5. If DI’s connection with the server(s) is lost, an exception occurs and the
basic course of events is aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: APP API or scheduler tells DI it needs the continually updated value of a tag,
or group.

Pre-conditions: DI is running.
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.3: DI-UC-18.3



142 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: DI stops a continually asynchronous read.(A subscribed tag)
ID: DI-UC-18.4
Priority: H
Iteration: Filled
Summary: DI stops a previously started asynchronous and continual read.
Accompanying
requirements:

DI-4

Basic course
of events: 1. DI is told directly by APP API or scheduler that a data tag, or group of

data tags, it is currently reading, to stop reading it/them.

2. DI checks tag, or group, and figures out which of its open connections
it needs to modify.

3. DI sends abort message to the server(s) in 2) and closes the connection
to them.

4. The entity that started 1), either APP API or scheduler, is returned an
OK-message.

Alternative paths:
Exception paths:

• 2a. If DI does not recognize the tag, or group, and therefore can not figure
out which server(s) to contact, an exception occurs and the basic course
of events is aborted.

• 3a. If DIs connection with the server(s) is lost, an exception occurs and
the basic course of events is aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: APP API or scheduler tells DI is needs the continually updated value of a tag,
or group.

Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.4: DI-UC-18.4



18.2. REQUIREMENTS FOR THE DI 143

Use case name: DI pauses a continually asynchronous read
ID: DI-UC-18.5
Priority: L
Iteration: Filled
Summary: DI pauses a previously started asynchronous and continual read.
Accompanying
requirements:

DI-5

Basic course
of events: 1. DI is told directly by APP API or scheduler that a data tag, or group of

data tags, it is currently reading, to temporarily stop reading it/them.

2. DI checks tag, or group, and figures out which of its open connections
it needs to modify.

3. DI sends pause message to the server(s) in 2), but keeps the connections
to them open.

4. The entity that started 1), either APP API or scheduler, is returned an
OK-message.

Alternative paths:
Exception paths:

• 2a. If DI does not recognize the tag, or group, and therefore can not figure
out which server(s) to contact, an exception occurs and the basic course
of events is aborted.

• 2b. If DI is not currently continually reading the tag or group, an excep-
tion occurs and the basic course of events it aborted.

• 3. If DIs connection with the server(s) is lost, an exception occurs and the
basic course of events is aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: APP API or scheduler tells DI it no longer needs the continually updated
value of a tag, or group, but it will need it again later.

Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.5: DI-UC-18.5



144 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: DI continues a previously paused continually asynchronous read
ID: DI-UC-18.6
Priority: L
Iteration: Filled
Summary: DI continues a previously started asynchronous and continual read.
Accompanying
requirements:

DI-6

Basic course
of events: 1. DI is told directly by APP API or scheduler that a data tag, or group of

data tags, it has currently paused reading from, to start reading it/them
again.

2. DI checks tag, or group, and figures out which of its open connections
it needs to modify.

3. DI sends continue message to the server(s) in 2).

4. The entity that started 1), either APP API or scheduler, is returned an
OK-message.

Alternative paths:
Exception paths:

• 2a. If DI does not recognize the tag, or group, and therefore can not figure
out which server(s) to contact, an exception occurs and the basic course
of events is aborted.

• 2b. If DI is not currently continually reading and has not paused the read-
ing of the tag or group, an exception occurs and the basic course of events
it aborted.

• 3. If DIs connection with the server(s) is lost, an exception occurs and the
basic course of events is aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: APP API or scheduler tells DI it no longer needs the continually updated
value of a tag, or group, but it will need it again later.

Pre-conditions: DI is running.
Post-conditions:
Date: 30.09.2004
Author: Jan Ove S. Olsen

Table 18.6: DI-UC-18.6



18.2. REQUIREMENTS FOR THE DI 145

Use case name: DI writes synchronous to OPC-server.
ID: DI-UC-18.7
Priority: H
Iteration: Filled
Summary: DI writes data from an OPC-server. The write is synchronous, and therefore

blocking.
Accompanying
requirements:

DI-7

Basic course
of events: 1. DI is told directly by APP API or scheduler that a data tag, or group of

data tags, needs to be written.

2. DI checks tag, or group, and figures out which OPC-server(s) need to
be contacted.

3. DI opens connections to the server(s) in 2) and writes the new values of
the tag, group of tags, synchronously.

4. DI blocks until the server(s) return the call.

5. The entity that started 1), either APP API or scheduler, is returned an
OK-message.

Alternative paths:
Exception paths:

• 2a. If DI does not recognize the tag, or group, and therefore can not figure
out which server(s) to contact, an exception occurs and the basic course
of events is aborted.

• 3a. If DI can not open a connection to the server(s), an exception occurs
and the basic course of events is aborted.

• 4a. If DI waits more than a given time length or connections to the
server(s) are lost, an exception occurs and basic course of events are
aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: APP API or scheduler tells DI is needs the current value of a tag, or group.
Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.7: DI-UC-18.7



146 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: DI schedules applications
ID: DI-UC-18.8
Priority: H
Iteration: Filled
Summary: DI must be able to start applications automatically at given time intervals.
Accompanying
requirements:

DI-7

Basic course
of events: 1. DI checks its scheduling database.

2. If it finds out some application should run now, it finds all the informa-
tion it needs in the database required to start it.

3. DI runs the application.

Alternative paths:
Exception paths: If DI can not start the application in 3) an exception occurs and the basic

course of events is aborted. In this case this means DI skips the current ap-
plication.

Triggers: DI is started..
Pre-conditions:
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.8: DI-UC-18.8



18.2. REQUIREMENTS FOR THE DI 147

Use case name: Create group of tags.
ID: DI-UC-18.9
Priority: M
Iteration: Filled
Summary: DI must support creation of groups of tags.
Accompanying
requirements:

DI-9

Basic course
of events: 1. DI is told directly by APP API that a group consisting of a given set of

tags needs to be created.

2. DI checks the tags and finds out which tags belong on the same servers.

3. DI creates sub-groups with all the tags on the same servers in 2).

4. DI creates a new super-group of all the sub-groups in 3.

5. 3) and 4) are saved to database.

Alternative paths:
Exception paths:

• 2a. If DI does not recognize the tags, and therefore can not figure out
which server(s) they are located on, an exception occurs and the basic
course of events is aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: An APP tells DI through APP API that a new group must be created.
Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.9: DI-UC-18.9



148 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: Delete group of tags.
ID: DI-UC-18.10
Priority: M
Iteration: Filled
Summary: DI must support creation of groups of tags.
Accompanying
requirements:

DI-10

Basic course
of events: 1. DI is told directly by APP API that a given group must be deleted.

2. DI checks the group and finds out which sub-groups it consists of.

3. DI deletes stops all reading from the sub-groups from 2) and deletes the
group from the database.

4. DI deletes the given group.

5. 3) and 4) are saved to database.

Alternative paths:
Exception paths:

• 2a. If DI does not recognize the group, an exception occurs and the basic
course of events is aborted.

• When the basic course of events is aborted, we return an error code to the
entity that started it.

Triggers: An APP tells DI through APP API that a new group must be created.
Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.10: DI-UC-18.10



18.2. REQUIREMENTS FOR THE DI 149

Use case name: Browse tags
ID: DI-UC-18.11
Priority: M
Iteration: Filled
Summary: DI must be able to browse all tags on connected OPC servers.
Accompanying
requirements:

DI-11

Basic course
of events: 1. DI is told directly from APP API to list all tags for all available servers.

2. DI connects to all the servers it needs.

3. DI contacts server(s) and request a list of all the tags available.

4. DI returns this list of tags to the entity that requested it.

Alternative paths:
• 1a. DI is given the address of a particular server.

Exception paths: 2a. DI can not contact a server
• 2a1. It drops the tags on that server.

If alternative path 1a) was taken or none of the servers from 1 can be con-
tacted, an exception is raised at this point and the basic course of events are
halted.

Triggers: APP API requests all available tags.
Pre-conditions: DI is running.
Post-conditions:
Date: 26.09.2004
Author: Jan Ove S. Olsen

Table 18.11: DI-UC-18.11



150 CHAPTER 18. SPECIFIC REQUIREMENTS

18.3 REQUIREMENTS FOR THE APP API

18.3.1 Graphical overall use case for APP API

API

Provide application
methods for handling

sets of tags

Provide methods for
handling historical data

Retrieve data from
applications, write to DI

Provide methods for
handling tags’

deadband rates

Handle data requests
from applications

Figure 18.2: Overall use case for API



18.3. REQUIREMENTS FOR THE APP API 151

18.3.2 Functional requirements for the APP API

Table 18.12 is a list of the requirements on the API module. Textual use cases follow for each of the
requirements.

ID Requirement Priority Use case
Handling sets

API-1 The API shall provide a method for building sets of tags. H API-UC-18.13
API-2 The API shall provide a method for adding tags to a set. H API-UC-18.14
API-3 The API shall provide a method for removing tags from

a set.
M API-UC-18.15

API-4 The API shall provide a method for splicing sets. M API-UC-18.16
API-5 The API shall provide a method for deleting a set. M API-UC-18.17

Handling deadband
API-6 The API shall provide a method for setting the limit

of a variables change before an update-message is sent
(deadband variable).

M API-UC-18.18

Read / write data
API-7 The API shall provide a method for subscribing to a set

of tags.
H API-UC-18.19

API-8 The API shall provide a method for terminate the sub-
scription of tags.

M API-UC-18.20

API-9 The API shall provide a method for polling a set of tags. H API-UC-18.21
API-10 The API shall provide a method for writing a set of tags

back to the DI.
H API-UC-18.22

Historical data
API-11 The API shall provide a method for reading series of his-

torical tags from the DI.
H API-UC-18.23

Configuration
API-12 The API shall provide a method for reading configura-

tion from the DI.
L API-UC-18.24

API-13 The API shall provide a method for writing configura-
tion to the DI.

L API-UC-18.25

Table 18.12: API requirement list



152 CHAPTER 18. SPECIFIC REQUIREMENTS

18.3.3 Textual use cases for the APP API

Use case name: Define sets (of tags)
ID: API-UC-18.13
Priority: H
Iteration: Filled
Summary: The API shall provide a method for building sets of tags
Accompanying
requirements:

API-1

Basic course
of events: 1. The application requests the API to create a set-object

2. The API returns the ID of the set-object

Alternative paths: None
Exception paths: In step 2, the DI may be out of resources, causing the call to fail
Triggers: The application needs a set-object
Pre-conditions: The application is connected to the DI through the API
Post-conditions: The application has the ID of a set-object
Date: 24.09.2004
Author: Øystein Ulseth

Table 18.13: API-UC-18.13



18.3. REQUIREMENTS FOR THE APP API 153

Use case name: Add tags to a set
ID: API-UC-18.14
Priority: H
Iteration: Filled
Summary: The API shall provide a routine for adding tags to a set
Basic course
of events: 1. The application compiles a list of tags

2. The applications calls the API. This call contains both the ID of the set
and the list of tags.

Alternative paths: None
Exception paths: In step 2, if the ID provided is not valid, the call will fail. If so, the application

first need to create a set as described in API-UC-18.13. Also, if the tags in the
list are not available on the OPC-servers, the call will fail.

Triggers: The application needs to add tags to a set
Pre-conditions: The set must exist and the tags in the list must be available on the OPC-

servers
Post-conditions: New tags are added to the set
Date: 24.09.2004
Author: Øystein Ulseth

Table 18.14: API-UC-18.14

Use case name: Remove tags from a set
ID: API-UC-18.15
Priority: M
Iteration: Filled
Summary: The API shall provide a routine for removing tags from a set (equivalent to

adding tags as described in API-UC-18.14).
Accompanying
requirements:

API-3

Basic course
of events: 1. The application compiles a list of tags

2. The application calls the API. The call provides both the ID of the set
and the list.

Alternative paths: None.
Exception paths: See API-UC-18.14.
Triggers: The application needs to remove tags from a set
Pre-conditions: See API-UC-18.14.
Post-conditions: Tags are removed from the set
Date: 24.09.2004
Author: Øystein Ulseth

Table 18.15: API-UC-18.15



154 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: Splice sets
ID: API-UC-18.16
Priority: M
Iteration: Filled
Summary: The API shall provide a method for splicing two sets
Accompanying
requirements:

API-4

Basic course
of events: 1. The application calls the API and provides two sets

2. The API returns a new set with the following properties:

• The new set is an union of the two sets

• If tags intersect, only the most up to date are members of the new
set.

Alternative paths: None
Exception paths: None
Triggers: The application needs to splice two sets. Splicing the original set and the set

returned in the subscription-event will create a complete set which is as up
to date as possible.

Pre-conditions: None
Post-conditions: A new set which is the union of the two sets.
Date: 24.09.2004
Author: Øystein Ulseth

Table 18.16: API-UC-18.16

Use case name: Delete a set
ID: API-UC-18.17
Priority: M
Iteration: Filled
Summary: The API shall provide a routine for deleting a set
Accompanying
requirements:

API-5

Basic course
of events: 1. The application calls the API providing the ID of the set

2. The call returns

Alternative paths: None.
Exception paths: In step 2, if the ID is not valid, the call fails
Triggers: The application need to delete a set, this might free resources in the DI.
Pre-conditions: The set exists.
Post-conditions: The set is deleted and the ID is no longer valid.
Date: 24.09.2004
Author: Øystein Ulseth

Table 18.17: API-UC-18.17



18.3. REQUIREMENTS FOR THE APP API 155

Use case name: Setting the deadband variable
ID: API-UC-18.18
Priority: M
Iteration: Filled
Summary: The deadband-variable is set on tags and not on the entire set
Accompanying
requirements:

API-6

Basic course
of events: 1. The application set the deadband variable on a tag

Alternative paths: None
Exception paths: None
Triggers: None
Pre-conditions: None
Post-conditions: The variable is given a value (a percentage)
Date: 24.09.2004
Author: Øystein Ulseth

Table 18.18: API-UC-18.18

Use case name: Subscribe to a set of tags
ID: API-UC-18.19
Priority: H
Iteration: Filled
Summary: The API shall provide a method for subscribing to a set of tags at a given rate
Accompanying
requirements:

API-7

Basic course
of events: 1. The application calls the API. The call provides the ID of the set and the

rate at which the set is subscribed.

2. In accordance to the rate, the API fires events in the application. The
event contains only the tags which have changed significantly, conse-
quently a subset of the subscribed set.

Alternative paths: In step 2, if none of the tags in the set have changed significantly (no event is
fired OR an empty set is returned).

Exception paths: If the ID of the set does not exist, the call will fail.
Triggers: The application needs to receive tags at regular time-intervals
Pre-conditions: The ID of the set must be valid.
Post-conditions: The API will fire events on the application at regular time-intervals.
Date: 24.09.2004
Author: Øystein

Table 18.19: API-UC-18.19



156 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: Terminate the subcription of tags
ID: API-UC-18.20
Priority: M
Iteration: Filled
Summary: The API shall provide a routine for terminating the subscription of a set of

tags.
Accompanying
requirements:

API-8

Basic course
of events: 1. The application calls the API. The call provides the ID of the set.

Alternative paths: None
Exception paths:

• In step 1, if the ID is not valid, the call fails.

• In step 1, if the set is not subscribed to, the call is ignored.

Triggers: The application needs to terminate the subscription. This will cause the DI
not to fire events in the application for this specific set of tags (eg. not pass
on data from this set to the application, even though the data still might be
received and passed on to other applications).

Pre-conditions: The set must exists and the set must be subscribed to.
Post-conditions: The subscription is terminated.
Date: 27.09.2004
Author: Øystein Ulseth

Table 18.20: API-UC-18.20

Use case name: Synchronous poll of a set of tags
ID: API-UC-18.21
Priority: M/L
Iteration: Filled
Summary: The API shall provide a method for polling a set of tags synchronously
Accompanying
requirements:

API-9

Basic course
of events: 1. The application calls the API. The call provides the ID of the set.

2. The API gathers data and returns the set. The control of the caller is not
released until the set is returned.

Alternative paths: The data may not exist, causing the call to time out.
Exception paths: In step 1, if the ID of the set is not valid, the call fails.
Triggers: The application needs a set of data and is willing to wait until the set is gath-

ered.
Pre-conditions: The set must exist.
Post-conditions: The most up to date set is returned to the application.
Date: 27.09.2004
Author: Øystein Ulseth

Table 18.21: API-UC-18.21



18.3. REQUIREMENTS FOR THE APP API 157

Use case name: Write data back to the DI
ID: API-UC-18.22
Priority: H
Iteration: Filled
Summary: The API shall provide a function for writing a set of tags back to the DI. The

write is synchronous.
Accompanying
requirements:

API-10

Basic course
of events: 1. The application calls the API with the set as argument.

2. The DI stores the data as tags. These tags will be available for other
applications.

Alternative paths: None
Exception paths: None
Triggers: The applications needs to save data for later use or make the data available

for other applications.
Pre-conditions: The set must be compiled.
Post-conditions: The set is stored in the DI
Date: 27.09.2004
Author: Øystein Ulseth

Table 18.22: API-UC-18.22

Use case name: Read historical data
ID: API-UC-18.23
Priority: H
Iteration: Filled
Summary: The API shall provide a function for reading series of historical tags from the

DI.
Accompanying
requirements:

API-11

Basic course
of events: 1. The application calls the API with the desired set ID (API-UC-18.13),

desired sample rate/interval of the tags, and time lag ’from’ and ’to’ as
arguments.

2. The API returns the desired sets.

Alternative paths: None
Exception paths: Some or all of the data may not exist. If some of the desired tags are not

available, the call will fail.
Triggers: The application needs historical data.
Pre-conditions: The set must be compiled.
Post-conditions: The series of sets are returned to the application.
Date: 27.09.2004
Author: Kristoffer Stenersen

Table 18.23: API-UC-18.23



158 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: Read configuration
ID: API-UC-18.24
Priority: L
Iteration: Filled
Summary: The API shall provide functions for storing application configurations.
Accompanying
requirements:

API-12

Basic course
of events: 1. The application calls the API, requesting configurations. The applica-

tion has to identify itself to the API, so that the right configuration can
be returned.

2. The API returns the configuration to the application.

Alternative paths: None
Exception paths: The API does not recognize the application’s identification. The call will fail.
Triggers: The application needs its configuration information.
Pre-conditions: The specified configuration must exist.
Post-conditions: The configurations are returned to the application.
Date: 27.09.2004
Author: Kristoffer Stenersen

Table 18.24: API-UC-18.24

Use case name: Write configuration
ID: API-UC-18.25
Priority: L
Iteration: Filled
Summary: The API shall provide functions for storing application configurations.
Accompanying
requirements:

API-13

Basic course
of events: 1. The application calls the API, requesting a configuration write. The

application identifies itself to the API, so that any old configurations
will be updated.

2. If the configuration identification is unknown, the API creates a new
configuration record for the specified configuration.

Alternative paths: None
Exception paths: None.
Triggers: The application wants to store its configuration information.
Pre-conditions: None.
Post-conditions: The configurations are stored.
Date: 27.09.2004
Author: Kristoffer Stenersen

Table 18.25: API-UC-18.25



18.4. REQUIREMENTS FOR WEB 159

18.4 REQUIREMENTS FOR WEB

18.4.1 Graphical overall use case for WEB

The graphical use case diagram in figure 18.3 shows the main actors and tasks within the WEB part of
the system.

Application
 developer

Data
 analyst

Administrator

Monitor
application status

Log in

Develop
presentation logic

Manage user
accounts

Configure
applications

View applications
results

Browse
logged data

Figure 18.3: Overall use case for WEB

18.4.2 Functional requirements for the web portal

The functional requirements for the web portal are listed in table 18.26.



160 CHAPTER 18. SPECIFIC REQUIREMENTS

ID Requirement Priority Use case
General requirements

WEB-1 All data series logged from OPC servers and data series written by
applications shall be available through the web portal

H

WEB-2 Every application shall be able to present its data on a set of cus-
tomizable web pages

H WEB-UC-2

WEB-3 When viewing data from applications operating on real time data,
the user shall be presented with the newest data available at the
time of his request.

L

WEB-4 The web portal shall support user authorization, and offer cus-
tomized functionality based on user groups

M WEB-UC-1

WEB-5 The web portal shall support application status monitoring for ad-
ministrators

L WEB-UC-6

WEB-6 The web portal shall be able to run on a computer physically sepa-
rated from the DI

L

Data presentation
WEB-7 Users shall be able to navigate through application web pages eas-

ily, using some sort of tree structure.
L WEB-UC-2

WEB-8 Users shall be able to browse all data available at the DI. H WEB-UC-3
WEB-9 When browsing data series, users shall be able to choose between

table view and graphical time plot of the data
M WEB-UC-3

Configuration
WEB-10 The web portal shall allow configuration of the set of custom web

pages for each application. For each application, an arbitrary num-
ber of pages may be created.

H WEB-UC-3
WEB-UC-4

WEB-11 The web portal shall support user administration L WEB-UC-5

Table 18.26: Functional requirements for WEB

18.4.3 Use cases for common user tasks

Textual use case diagrams for the following user tasks concerning WEB are listed in table 18.27 to table
18.32:

• WEB-UC-1 Authorize users

• WEB-UC-2 View results outputted by applications

• WEB-UC-3 Browse data series logged by DI

• WEB-UC-4 Configure applications

• WEB-UC-5 Manage user accounts

• WEB-UC-6 Monitor application status



18.4. REQUIREMENTS FOR WEB 161

Use case name: Authorize user
ID: WEB-UC-1
Priority: Medium
Iteration: Filled
Summary: The web portal shall allow user to log in.
Accompanying
requirements:

WEB-4

Basic course
of events: 1. The web portal redirects the user to a login page, prompting the user

for his username and password.

2. The user supplies his username and password.

3. User presses ”Log in” in the web interface.

4. The web portal accesses the user database through the web API.

5. The web portal receives a notice that the user has been logged in, and
additional information about the user.

6. The web portal displays a start page giving an overview of the available
applications.

Alternative paths: 6a. User is an administrator
6a1. The web portal displays a control panel allowing the user to choose
between the available administrator tasks.

Exception paths: 4a. DI is offline
• 4a1. The web portal recognizes the error, and displays an error message

to the user.
• 4a2. The interaction is aborted.

5a. User has supplied wrong user name or password
• 5a1. The web portal recognizes the error, and refuses to log in the user
• 5a2. The user is redirected to the login page, and an error message is

displayed

Triggers: The user accesses the web portal through a web browser.
Pre-conditions: -
Post-conditions: The web portal has authorized the user. User is forwarded to a page display-

ing the available applications.
Date: 23.09.2004
Author: Hans Olaf Borch

Table 18.27: WEB-UC-1



162 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: View results outputted by applications
ID: WEB-UC-2
Priority: High
Iteration: Filled
Summary: The web portal shall allow users to view the data series published by all

applications that have a web page.
Accompanying
requirements:

WEB-2,WEB-7

Basic course
of events: 1. The user selects the applications he wants to investigate further

2. The web portal displays a list of the available results from that applica-
tion

3. The user selects results he wants to view, and is forwarded to the correct
web page

4. The web portal gets the data series the selected application is set to
publish

5. The web portal displays the data in the way specified by application
programmers that have customized the web page

6. The user views the output of the selected application

Alternative paths: The user can at all times change the application to be displayed in some kind
of tree view. This will repeat the interaction from step 2 onwards.

Exception paths: 2a. DI is offline
• 2a1. The web portal recognizes the error, and displays an error message

to the user
• 2a2. The interaction is aborted.

5a. The web page has not yet been customized
• 5a1. The user is presented with for instance an ”under construction” page.

Triggers: -
Pre-conditions: The user is logged on to the system as a regular user (WEB-UC-1).
Post-conditions: The web portal presented the user with the requested results.
Date: 23.09.2004
Author: Hans Olaf Borch

Table 18.28: WEB-UC-2



18.4. REQUIREMENTS FOR WEB 163

Use case name: Browse data series logged by DI
ID: WEB-UC-3
Priority: High
Iteration: Filled
Summary: The web portal shall allow users to view all data series logged by the DI.
Accompanying
requirements:

WEB-8, WEB-9, WEB-10

Basic course
of events: 1. The web portal gets the list of data series available for browsing

2. The user selects which data series he wants to browse

3. The user selects how the data series should be displayed (table or time
plot)

4. The web portal gets the data series the selected application is set to
publish

5. The web portal displays the data in the way specified by the user

Alternative paths: -
Exception paths: 1a. DI is offline

• 1a1. The web portal recognizes the error, and displays an error message
to the user

• 1a2. The interaction is aborted.

Triggers: The user selects ”browse data series”.
Pre-conditions: The user is logged on to the system.
Post-conditions: The web portal presents the user with the requested data.
Date: 23.09.2004
Author: Hans Olaf Borch

Table 18.29: WEB-UC-3



164 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: Configure applications
ID: WEB-UC-4
Priority: Medium
Iteration: Filled
Summary: The web portal shall allow administrators and application designers to con-

figure applications and their web pages.
Accompanying
requirements:

WEB-10

Basic course
of events: 1. The administrator selects the application he wants to configure

2. The web portal displays the existing configuration of the chosen appli-
cation

3. The user is allowed to edit which data series the application outputs
and publishes

4. The user is allowed to edit whether the applications results are to be
available through the web portal

5. The user is allowed to edit the web pages connected to the applications

6. The user submits his changes

7. The web portal reads the user input, and makes the appropriate
changes to the configurations

8. The web portal receives a notice when the changes are saved

9. The web portal displays a confirmation to the user

Alternative paths: -
Exception paths: 2a. DI is offline

• 2a1. The web portal recognizes the error, and displays an error message
to the user

• 2a2. The interaction is aborted.

Triggers: The user selects application configuration in the control panel.
Pre-conditions: The user is logged in as an administrator (WEB-UC-1).
Post-conditions: Changes to application configurations have been applied on the web portal.
Date: 23.09.2004
Author: Hans Olaf Borch

Table 18.30: WEB-UC-4



18.4. REQUIREMENTS FOR WEB 165

Use case name: Manage user accounts
ID: WEB-UC-5
Priority: Low
Iteration: Filled
Summary: The web portal shall allow administrators to manage user accounts.
Accompanying
requirements:

WEB-11

Basic course
of events: 1. User selects the user group he wishes to configure

2. The web portal displays the existing configuration of the chosen user
group

3. The user is allowed to edit members of the group

4. The user is allowed to edit which applications the group is permitted
to access

5. The user submits his changes

6. The web portal reads the user input, and makes the appropriate
changes to the configurations

7. The web portal receives a notice when the changes are saved

8. The web portal displays a confirmation to the user

Alternative paths: -
Exception paths: 2a. DI is offline

• 2a1. The web portal recognizes the error, and displays an error message
to the user

• 2a2. The interaction is aborted.

Triggers: The user selects user administration in the control panel.
Pre-conditions: The user is logged in as an administrator (WEB-UC-1).
Post-conditions: Changes to users and user groups have been applied on the web portal.
Date: 27.09.2004
Author: Hans Olaf Borch

Table 18.31: WEB-UC-5



166 CHAPTER 18. SPECIFIC REQUIREMENTS

Use case name: Monitor application status
ID: WEB-UC-6
Priority: Low
Iteration: Filled
Summary: The web portal shall administrators to view the status of all applications.
Accompanying
requirements:

WEB-5

Basic course
of events: 1. The web portal requests status of all the applications from the DI.

2. The web portal receives a list of status for all applications

3. The administrator is presented with a simple list of status for each of
the applications

Alternative paths: -
Exception paths: 2a. DI is offline

• 2a1. The web portal recognizes the error, and displays an error message
to the user

• 2a2. The interaction is aborted.

Triggers: The user selects application monitoring in the control panel.
Pre-conditions: The user is logged in as an administrator (WEB-UC-1).
Post-conditions: -
Date: 27.09.2004
Author: Hans Olaf Borch

Table 18.32: WEB-UC-6



18.5. DESIGN CONSTRAINTS 167

18.5 DESIGN CONSTRAINTS

18.5.1 Operating system

Table 18.33 lists the constraints we have regarding operating systems.

OPS-1 The final product must run on a Microsoft Windows server. H

Table 18.33: Operating system requirements

18.5.2 Hardware

Table 18.34 lists the minimum requirements for the hardware the final product will run on.

HW-1 The final product must run on a Pentium 4 class PC with 512MB of ram and
500GB free disk space.

H

Table 18.34: Hardware requirements

18.5.3 Programming platform

A programming platform is defined as the combination of a programming language, tools for easing
development in the language and an extensive standard library of already implemented functionality.
Table 18.35 lists the requirements a programming platform should fulfil.

ID Requirement Priority
PRO-1 The programming platform must be available for Microsoft Windows. H
PRO-2 The programming platform must support communication with OPC servers

through DCOM.
H

PRO-3 The programming platform must support accessing a relational database
through SQL.

H

PRO-4 The programming platform must be high level, to enable a more efficient
development experience.

M

Table 18.35: Programming platform requirements

18.5.4 Standards compliance

The system needs to be in compliance with the standards in table 18.36.



168 CHAPTER 18. SPECIFIC REQUIREMENTS

ID Requirement Priority
STD-1 The finished product must communicate with OPC server through the OPC

DA 2.0 or OPC DA 3.0 standard.
H

Table 18.36: Standards compliance

18.6 DATABASE REQUIREMENTS

The database requirements are listed in table 18.37

ID Requirement Priority
DB-1 The database must remain consistent at all times. L
DB-2 The database must be able to handle writing a lot of data tags. For instance

be able to log data from 500 tags being logged at a 1 second rate, 500 tags at
a 10 second rate and 500 at a 10 minute rate.

H

DB-3 The performance of the database must not decrease noticeably when it con-
tains large amounts of data. For instance the tags mentioned above for 6
months

M

DB-4 The database must support the Structured Query Language (SQL). M
DB-5 The database must be able to run physically separated from the rest of our

application
L

Table 18.37: Database requirements

18.7 SOFTWARE SYSTEM ATTRIBUTES

This section lists the various attributes the finished system should have and the requirements that has
to be met for this to happen.

18.7.1 Reliability

The customer must be able to trust the system to do the job it is intended to do. Figure 18.38 lists all
the demands that have to be fulfilled for this to be true.

ID Requirement Priority
REL-1 The finished product is delivered with installation instructions. These must

be followed exactly.
M

REL-2 The finished product must fulfill all the security requirements in 18.40. M
REL-3 The server that the product is installed on, must meet the hardware require-

ments listed in 18.34.
M

REL-4 The server that the product is installed to, must have the other software prod-
ucts mentioned in 18.33 pre-installed and verified as working.

M

REL-5 The servers the finished solution will interact with (OPC-servers) MUST be
completely compatible with the OPC DA 2.0 or OPC DA 3.0 standard.

H

Table 18.38: Reliability requirements



18.7. SOFTWARE SYSTEM ATTRIBUTES 169

18.7.2 Availability

The system, and all of its functionality, should be available all, or close to all, the time. This attribute
of the system is called its availability. Figure 18.39 lists the demand that has to be fulfilled for this to
happen.

ID Requirement Priority
AVA-1 In case of a system crash on the server, the finished product must be able to

function again after a reboot of the operating system.
M

AVA-2 Should the product itself crash, it must be able to gracefully continue where
it left of as soon as it is restarted.

M

Table 18.39: Availability requirements

18.7.3 Security

The customer should be able to feel safe about the security of data in the system. Table 18.40 lists all
the demands that have to be fulfilled to call the system secure.

ID Requirement Priority
SEC-1 The finished solution must be delivered with source code, so that all code can

be inspected by customer.
M

SEC-2 The finished solution should be delivered with documentation on how data
is stored and accessed.

L

SEC-3 The finished solution shall not give more extended access to data than the
level of access defined for each user by an administrator.

L

SEC-4 The finished solution must make use of a relational database that makes sure
only authorized users can access its data.

M

Table 18.40: Security requirements

18.7.4 Maintainability

The product must be easy to maintain in the future. The groundwork for this is set during the con-
struction and implementation of the product. Table 18.41 lists the demands put on the system and the
development process in order to produce an easily maintained product.

ID Requirement Priority
MAI-1 All code should be written according to a common standard [7]. M
MAI-2 Code shall be commented while it is being produced, not as an afterthought. L
MAI-3 All function, variable and parameter names should be in English. M
MAI-4 All code should be in a high-level language. H

Table 18.41: Maintainability requirements



170 CHAPTER 18. SPECIFIC REQUIREMENTS

18.7.5 Portability

The demands in table 18.42 must be fulfilled to call this system as portable as the customer wants.

ID Requirement Priority
POR-1 The finished product must be able to run on server that run operating sys-

tems from Microsoft.
H

Table 18.42: Portability requirements



CHAPTER19
ESTIMATION

19.1 THE NEED FOR ESTIMATION

Estimation of hours needed is required for most projects in order to suceed with delivering the product
on time. We have already done a (somewhat rough) estimation for the project as a whole vizualised in
the Gantt chart presented in B.1. The requirements listed in the previous chapter calls however for a
more precise estimation of hours needed in the design and implementation phase. The purpose of the
estimation is to see if there is enough time to design and implement the requirements. If the estimated
time exceeds the time available for these phases 1, low priority requirements will be discarded until
hours needed equals hours estimated. We have planned to use a total of 702 hours for the design and
implemention phases.

19.2 ESTIMATION METHOD

Our first approach was to use the Project Estimation Method developed by Bente Anda [5]. This
method uses the Use Cases to estimate the time required for the two project phases design and im-
plementation. The actual estimation is done by filling in a small number of values in a worksheet [4].
The method has sucessfully been applied to several projects, so we expected the method to also work
well for our project.

The method suggested at total of 3045 hours needed for design and implementation. We suspected
that that the method was overestimating person hours needed per use case point. To examine this sus-
pection, we did prototype implementation on two of the requirements, namely the DI use case "Read
from OPC server"(18.2), and the WEB use case "Authorize User" (18.27). When employing the method
on "Read from OPC Server", the method suggested an estimate of 324 hours. Likewise, the "Authorize
User" use case was estimated to require 365 hours. This contrasts with the actual hours needed on
implementation: We used 10 hours on "Read from OPC server", and eight hours on "Authorize user".

A prototype implementation is often less time consuming than the actual implementation, so we
expect the actual amount of hours spent to be higher than indicated by the prototyping. We expected
the actual time needed to be somewhere in between what the Project Estimation Method suggested
and what the prototyping indicated.

We settled for using the group members previous experiences, combined with the aforementioned
observations to come up with an expert estimation for hours needed for the design and implementation
phases.

19.3 RESULTS

This section provides the results for both methods.

1An overview of hours in each phase is presented in B.1

171



172 CHAPTER 19. ESTIMATION

19.3.1 Project Estimation Method

The Project Estimation Method suggested the the following amount of hours needed for the designing
and implementation:

• DI: 1137 hours

• API: 528 hours

• WEB: 1380 hours

This sums up to 3045 hours.

19.3.2 Our own estimation

Estimated hours needed for each requirement part (18.2,18.3 and 18.4) are listed in the tables 19.1, 19.2
and 19.3.

ID Requirement Priority Hours needed
Data read / write

DI-1 DI reads synchronous from OPC-server. H 40
DI-2 DI start asynchronous continual read. (subscribes to a data tag) H 40
DI-3 DI stops a continually asynchronous read. (A subscribed tag) H 10
DI-4 DI pauses a continually asynchronous read. (A subscribed tag) L 10
DI-5 DI continues a continually asynchronous read. (A subscribed tag) L 10
DI-6 DI writes synchronous to OPC-server. H 20

Scheduling
DI-7 DI schedules applications. H 40

Handling tags
DI-8 Create group of tags. M 20
DI-9 Delete group of tags. M 20
DI-10 Browse tags. L 20

Total 220

Table 19.1: Estimation of the hours needed to fulfill the DI requirements

Each requirement sums up to:

• DI: 220 hours

• API: 160 hours

• WEB: 360 hours

Which, in turn, sums up 740 hours. We have planned to use 702 hours for the design and im-
plemention phase, so the following requirements are skipped in order to fit hours spent into hours
needed:

• Manage user accounts (from WEB, 18.31, WEB-11, estimated to take 20 hours)

• Browse tags (from DI, 18.11, estimated to take 20 hours)

These requirments will only be implemented if time perimts us to do so, but is in principle dis-
carded.



19.3. RESULTS 173

ID Requirement Priority Hours needed
Handling sets

API-1 The API shall provide a method for building sets of tags. H 20
API-2 The API shall provide a method for adding tags to a set. H 10
API-3 The API shall provide a method for removing tags from

a set.
M 10

API-4 The API shall provide a method for splicing sets. M 20
API-5 The API shall provide a method for deleting a set. M 10

Handling deadband
API-6 The API shall provide a method for setting the limit

of a variables change before an update-message is sent
(deadband variable).

M 10

Read / write data
API-7 The API shall provide a method for subscribing to a set

of tags.
H 10

API-8 The API shall provide a method for terminate the sub-
scription of tags.

M 10

API-9 The API shall provide a method for polling a set of tags. H 10
API-10 The API shall provide a method for writing a set of tags

back to the DI.
H 10

Historical data
API-11 The API shall provide a method for retrieve information

about historical data.
M 10

API-12 The API shall provide a method for reading series of his-
torical tags from the DI.

H 10

Configuration
API-13 The API shall provide a method for reading configura-

tion from the DI.
L 10

API-14 The API shall provide a method for writing configura-
tion to the DI.

L 10

Total 160

Table 19.2: Estimation of the hours needed to fulfill the API requirements



174 CHAPTER 19. ESTIMATION

ID Requirement Priority Hours
needed

General requirements
WEB-1 All data series logged from OPC servers and data series written by

applications shall be available through the web portal
H 15

WEB-2 Every application shall be able to present its data on a set of cus-
tomizable web pages

H 35

WEB-3 When viewing data from applications operating on real time data,
the user shall be presented with the newest data available at the
time of his request.

L 10

WEB-4 The web portal shall support user authorization, and offer cus-
tomized functionality based on user groups

M 20

WEB-5 The web portal shall support application status monitoring for ad-
ministrators

L 20

WEB-6 The web portal shall be able to run on a computer physically sepa-
rated from the DI

L 10

Data presentation
WEB-7 Users shall be able to navigate through application web pages eas-

ily, using some sort of tree structure.
L 20

WEB-8 Users shall be able to browse all data available at the DI. H 50
WEB-9 When browsing data series, users shall be able to choose between

table view and graphical time plot of the data
M 50

Configuration
WEB-10 The web portal shall allow configuration of the set of custom web

pages for each application. For each application, an arbitrary num-
ber of pages may be created.

H 30

WEB-11 The web portal shall support user administration L 20
Framework

Extra To run, the WEB functions will need a comprehensive framework
(underlying structure for navigating between pages and sharing
user- and state-data).

H 80

Total 360

Table 19.3: Estimation of the hours needed to fulfill the WEB requirements



Part IV

Software Design Description

175





CHAPTER20
INTRODUCTION

20.1 PURPOSE

The design description makes a transition from the more abstract part III - "Requirements Specifica-
tion", to a practicable specification. Therefore, part III is a prerequisite for this part. This part will
result in a detailed, implementation-near description of the system and sub-systems.

20.2 SCOPE

This part will cover all aspects of building the system according to the requirements specified earlier.
At this stage, we have reduced the number of top level modules. The APP API is no longer regarded
as a top level module, as it fits naturally as an integrated part of the DI. That leaves us with two top
level modules, namely DI and WEB. See figure 21.1 for clarification on this matter.

20.3 DEFINITIONS, ACRONYMS AND ABBREVIATIONS

A number of definitions, acronyms and abbreviations will occur in the design description. The follow-
ing lists explains each of these.

• APP API
Interface provided by the DI. Applications will communicate with the DI through this.

• DBC
Database Connector, entity for database access.

• DC
Data Collector, entity for OPC-communication.

• Design entity
An element/component of the design that is structurally and functionally distinct from other
elements and is separately named and referenced.

• Design view
A subset of design entity attribute information that is specifically suited to the needs of a software
project activity.

• DI
Data Interchanger, a top level module.

• Module
A program unit that is discrete and identifiable with respect to compiling and loading with other
units.

• WEB
Web system, a top level module.

• WEB API
Interfaces provided by the DI. The WEB-module will communicate to the DI through this.

177



178 CHAPTER 20. INTRODUCTION

Phase:


Phase 4


Phase 3


Phase 2


Phase 1
Construction of framework


Connect

Establish connection


to DI


Implementation phases


DI
 WEB


Requirements: WEB-

4,5,6,10,11,15,20,21


U
n
i
t
 
T
e
s
t
s


M
T
-
D
I


M
T
-
W
E
B


M
T
-
A
P
I


T
e
s
t
 
s
t
a
g
e
s


S
y
s
t
e
m
 
T
e
s
t


A
c
c
e
p
t
a
n
c
e
 
T
e
s
t


Start Date:


Requirements: DI-

5,6,10,11 and APP-

API- 5,6,8,11,13,14


Requirements: DI-

1,2,3,4,7,8,9 and APP-

API- 1,2,3,4,7,9,10,12


Low priority requirements, and additional

functionality


Requirements: WEB-

1,2,7,8,9,12,13,14,16,


17,18,19


Core functionality


Connect and DB

Establish connection


to OPC and Database.

Database


construction.


18.10.04


21.10.04


25.10.04


01.11.04


08.11.04


Figure 20.1: Implementation phases

20.4 REFERENCES

This document is based on the IEEE standard 1016 ([15]). Also see IEEE 610.12, Standard Glossary of
Software Engineering terminology, [17].

20.5 OVERVIEW

Chapter 21 deals with decomposition of the modules that EasyIT consists of. The purpose of this chap-
ter is to sketch an overview of the systems modules. Chapter 22 describes inter-modular dependencies
as well as other resources the modules depend on. Chapter 23 describes the interfaces. Finally, chapter
24 deals with detailed design of each module - objects attributes, processes and data.

20.6 DEVELOPMENT

We have chosen a top-down approach to the development process. First we intend to construct the
entire framework of the system, and in later phases gradually increase the functionality in accordance
with the requirements. We will therefore have a running version of the system in every phase. This
enables us to continuously evaluate the amount of time needed for the remaining implementation.
Thus, re-scheduling and re-allocation of resources throughout the implementation is made possible.
Top-down development also eases the incorporation of the test stages in the implementation phases.
Modules running in order are a prerequisite for the module and integration tests.



20.6. DEVELOPMENT 179

20.6.1 Phase 1

The first phase will be construction of an overall framework for the system. First, this framework will
consist of two independent modules, namely WEB and DI. No specific requirements are realized in
this phase.

20.6.2 Phase 2

In the second phase connection between the two frameworks will be established. This connection
will be implemented at this stage because of its necessity for the later implemented functions in the
system. Connection from DI to OPC servers and Database will also be implemented in the current
phase. After connection to database is established, this phase will also include construction of the
database structure. No specific requirements are realized in this phase.

20.6.3 Phase 3

In the third development phase, selected core functionality for both WEB and DI will be constructed.
Core functionality indicates that it is both vital for the general functionality of the system, and also is
prioritized with High or Medium in the requirements specification.

WEB functionality implemented in Phase 3:

WEB-1 Make data series logged from OPC servers and data written by applications available through
the web portal

WEB-2 Make functionality which enables application to present it’s data on a set of web pages. Ap-
plication developers shall be able to provide custom logic for displaying data.

WEB-4 Support for authentication of users, and customized functionality based on user groups.

WEB-8 Support browsing of all available data on DI, by user.

WEB-9 Support user browsing of data from DI through both table view and graphical time plot.

WEB-10 Support administrator configuration of the set of custom web pages for each application.

APP-API functionality implemented in Phase 3:

API-1 Building sets of tags

API-2 Adding tags to a set

API-3 Removing tags from a set

API-4 Splicing sets

API-7 Starting subscription of a set

API-9 Polling a set of tags

API-10 Writing back a set of tags to DI

API-12 Reading series of historical data



180 CHAPTER 20. INTRODUCTION

DI functionality implemented in Phase 3:

DI-1 Synchronous read from OPC

DI-2 Asynchronous read from OPC

DI-3 and DI-4 Start and stop of subscription from OPC

DI-7 Synchronous write to OPC

DI-8 Scheduling of applications

DI-9 Creation of tag groups

20.6.4 Phase 4

The final phase will be used for implementing additional functionality and correcting errors discovered
in the module test stages. The requirements that have been scheduled for implementation in this phase
are prioritized as Medium or Low.

WEB functionality implemented in Phase 4:

WEB-3 Support for guarantee of newest data when user browses real time data.

WEB-5 Support for application status monitoring by administrators.

WEB-7 Implement user navigation by a tree structure.

WEB-11 Support for user administration through the web portal.

APP-API functionality implemented in Phase 4:

API-5 Method for deletion of sets

API-6 Method for setting the deadband variable

API-8 Method for termination of tag subscription

API-11 Method for retrieval of information about historical data

API-13 and API-14 Method for read and write configuration data to DI

DI functionality implemented in Phase 4:

DI-5 and DI-6 Pause and continual of asynchronous read

DI-10 Delete groups of tags

DI-11 Browse tags



CHAPTER21
DECOMPOSITION DESCRIPTION

This chapter outlines the conceptual pieces of the system. In the real implementation they will probably
be further decomposed. To see the complete physical implementation, see class diagram in Chapter 26.
For each decomposed entity, a reference to the requirement specification is included. These references
should provide complete traceability to the requirements specification.

21.1 MODULE DECOMPOSITION

Figure 21.1 shows an overall architecture of the components of EasyIT. Easy IT has two main modules,
the Data Interchanger (DI) and the Web-module. DI consists of four entities, namely Application API,
Web API, Database Connector and Data Collector. The two APIs (Application and Web) share some func-
tionality. These methods will be implemented in a separate entity, called EasyIT Manager. This entity
is listed as an external entity. The Web-module also consists of four entities; the Server Connector, Tag
Browser, Configuration Tool and Application Monitor.

21.1.1 DI - Data Interchanger

The DI module consists of three modules (Application API, Web API and Database Connector) and
one sub-program (Data Collector). Together, these entities take care of data collecting and data storing.

Attribute Description
ID: Data Collector
Type: Sub-program
Purpose: The purpose of the DC is to control the flow of data to and from OPC. Related

requirements: DI1 to DI7 and DI9 to DI11, see 18.1
Function:

• un/subscribe to OPC-updates

• minimize the load on OPC-servers

• store received set in the database

• read instant value from OPC

• pass instant value on to application

• write tags to OPC

Subordinates: none

Table 21.1: Decomposition of Data Collector

181



182 CHAPTER 21. DECOMPOSITION DESCRIPTION

Data Collector

Database Connector

APP API

WEB API

Database

Config Tool

App Monitor

Server Connector

Tag Browser

Figure 21.1: Overall figure of module decomposition



21.1. MODULE DECOMPOSITION 183

Attribute Description
ID: Database Connector
Type: Module
Purpose: This entity connects the database to any other entity which needs access to

the database.
Function: DBC connects other entities to the DB. With this approach, database access is

reduced to one single point. The entity also implements connection pooling
to DB in order to improve the overall performance of the system.

Subordinates: none

Table 21.2: Decomposition of Database Connector

Attribute Description
ID: Application API
Type: Module
Purpose: This entity facilitates access to the DI for applications running on the system.

Related requirements API-18.12
Function: The Application API provides application-specific functionality to applica-

tions.
Subordinates: none

Table 21.3: Decomposition of Application API

Attribute Description
ID: Web API
Type: Module
Purpose: The connection between WEB and DI needs a common interface. This is re-

alized in the WEB API module. Related requirements WEB-18.26
Function: Web API is the interface between DI and WEB. Web API provides functional-

ity for Web such as tag browsing and application monitoring. Web API also
handles user authentication and provides logic for presenting data on Web.

Subordinates: none

Table 21.4: Decomposition of Web API



184 CHAPTER 21. DECOMPOSITION DESCRIPTION

21.1.2 Web - Web Interface

This section describes the modules constituting the web interface (user interface) part of EasyIT. This
part of the system form a flat system structure, the components involved are not depended on other
WEB components. Thus, the entities are regarded as being on the same level in the system hierarchy.

Attribute Description
ID: ServerConnector
Type: WEB-module
Purpose: This module exists because WEB needs a uniform way to read data from

the database, possibly located at another server. The ServerConnector was
created to realize requirement WEB-1.

Function: This entity establishes connection to the Web API located at the server. This
connection is made available to all the web pages.

Subordinates: none

Table 21.5: Decomposition of ServerConnector

Attribute Description
ID: TagBrowser
Type: WEB-module
Purpose: This module exists because users need to be able to view the data logged by

DI. This is required by requirement WEB-8.
Function: This module provides the users with at way to browse all data series logged

by the DI. The data is made available either as a table or as a graphical time
plot.

Subordinates: none

Table 21.6: Decomposition of Tag Browser

Attribute Description
ID: ConfigTool
Type: WEB-module
Purpose: This module exists because administrators shall be able to set up and con-

figure the web pages containing results written by applications. ConfigTool
originates from the requirement WEB-10

Function: This modules allows the administrator to set up whether an application shall
present its data on the web portal. It should also allow the creation of empty
skeletons for custom web pages associated with this application.

Subordinates: none

Table 21.7: Decomposition of ConfigTool



21.1. MODULE DECOMPOSITION 185

Attribute Description
ID: AppMonitor
Type: WEB-module
Purpose: A way to monitor the status of applications is needed through the web inter-

face. This is described in requirement WEB-5.
Function: The AppMonitor module queries the DI for status on all applications. These

data are presented to the user.
Subordinates: none

Table 21.8: Decomposition of ServerConnector



186 CHAPTER 21. DECOMPOSITION DESCRIPTION

21.1.3 External entities

Attribute Description
ID: Database
Type: Data storage
Purpose: We need to store data in a structured way. We do this in a relational database.

Related requirements are API-11 to API-14 (18.12)
Function: The entity gets data as input and stores them in tables. It can also fetch data

from these tables and return this as output.
Subordinates: Not applicable. The different modules of a modern database is beyond the

scope of this document.

Table 21.9: Decomposition of Database

Attribute Description
ID: EasyIT Manager
Type: Sub-program
Purpose: We need a class to keep track of all instances, so they can communicate, i.e.

launch subprograms and applications. Related requirements are DI-8, 18.1
Function: Start the DC, make modules available to each other.
Subordinates: none

Table 21.10: Decomposition EasyIT

21.2 CONCURRENT PROCESS DECOMPOSITION

Figure 21.2 gives a conceptual overview of what physical processes will run when the EasyIT-system
are launched. The subprocesses represent the launch of the prosess, not the process itself. EasyIT
Manager spawns it’s subprograms, and continue to act as a connection between them. Applications are
started simultaneously, and control themselves regarding scheduling. Notice that the “APPS” process
either can be absent (no apps registered) or multiple (more than one app registered).

21.3 DATA DECOMPOSITION

Figure 21.3 shows the internal representation of OPC-data. A series can contain zero or more sets. A
set can be contained by zero or more series. A set contains zero or more tags. A tag can be contained
by zero or more sets. All other data types used within the system are well known and defined in the
API of the programming language.



21.3. DATA DECOMPOSITION 187

A1

EasyIT

start
EasyIT

A1.1

EasyIT
Manager

A1.4

Database
Connector

A1.3

Application

A1.2

Data
Collector

&

& &
EasyIT
running

Figure 21.2: Processes spawned at startup

Figure 21.3: Representation of OPC-data





CHAPTER22
DEPENDENCY DESCRIPTION

This chapter describes entities and external resources needed to perform as described in the previous
chapter. To illustrate this, we have used structural charts and UML sequence diagrams.

22.1 INTERMODULE DEPENDENCIES

Data collecting and application execution are the most basic operations performed by the system. Data
are stored and structured using three datatypes; tags, sets and series. These types are described in
Figure 21.3. In brief, tags are used to store single data values. Further, a number of tags may be
bundled up in sets. If a new level of structuring is needed, sets are bundled up as series. So, in an
application running on the EasyIT-system, the programmer should group tags of interest to form a set.
A trend curve is then easily represented as a series of sets. The set data type will have methods for
adding and removing tags. Likewise, the series type will have functions for adding and removing sets.

SQL is a de facto standard for database queries. In .Net the DataAdapter object is suitable for reading
the result of a SQL-query. Method calls are synchronous. Figure 22.1 illustrates inter-modular depen-
dencies in the system. The arrow end refer to the module needed by the pointing module. The arrows
to the EasyIT Manager illustrate that some modules need reference to instances of other modules man-
aged by EasyIT. The arrows to ServerConnector illustrate communication with the EasyIT-module.

Figure 22.1: Intermodule dependencies

189



190 CHAPTER 22. DEPENDENCY DESCRIPTION

22.1.1 DI - Data Interchanger

This section will describe the dependencies between the modules in the decomposed Data Interchanger
(DI). Each module and its dependencies are described in one table.

Attribute Description
ID: Data Collector
Type: Sub-program
Purpose: The purpose of the DC is to control the flow of data to and from OPC. Related

requirements DI1 to DI7 and DI9 to DI11, see 18.1
Dependencies: The DC requires the presence of the database connector.
Resources:

• a connected network with TCP/IP availability

• an operating system with TCP/IP stack and network interface

• enough RAM and processing power to handle all received tags

• OPC servers

Table 22.1: Dependencies for Data Collector

Attribute Description
ID: Database Connector
Type: Module
Purpose: This entity is needed to interconnect the database with any other entity need-

ing to store or retrieve data..
Dependencies: Depends on DB, for access to the database.
Resources: This entity uses no additional external resources.

Table 22.2: Dependencies for Database Connector

Attribute Description
ID: Application API
Type: Module
Purpose: The system needs a way to expose it’s functionality to applications accessing

EasyIT. Related requirements API-18.12
Dependencies: DBC to connect to the database to read and write data for applications

(Tags/Sets/Series and configuration information).
Resources: .NET Remoting to communicate with applications.

Table 22.3: Dependencies for Application API



22.1. INTERMODULE DEPENDENCIES 191

Attribute Description
ID: WEB API
Type: Module
Purpose: The connection between WEB and DI needs a common interface. This is re-

alized in the WEB API module. Related requirements WEB-*: 18.26
Dependencies: DBC to connect to the database to read and write for WEB.
Resources: This entity uses no additional external resources.

Table 22.4: Dependencies for WEB API



192 CHAPTER 22. DEPENDENCY DESCRIPTION

Sequence diagrams for basic DI functionality

The following sequence diagrams sketches some of the basic DI functionality. Each diagram indicates
what entities take part in the operation and the flow of data between these entities. Please note that
the level of details is highest on the leftmost part of the diagrams. The rightmost part deals with
implementation issues not yet explored. The methods called in the sequence diagrams are described
in more detail in the next chapter, Interface description.



22.1. INTERMODULE DEPENDENCIES 193

App API

ReadTagsFromOPC(CTag[] tags)

DI OPC

ReadTagFromOPC(...)

Read

Result

CSet

CSet

App API

GetTags(Date start, Date end, CTag[] tags)

DI Database Connector

Database

GetTags(...)

GetConnection

Connection

SQL Query

Resultset

CSeries

CSeries

App API

WriteTagsToOPC(CTag[] tags)

DI OPC

WriteTagsToOPC(...)

Write

Result

bool

bool

Figure 22.2: Reading and writing synchronous from/to OPC



194 CHAPTER 22. DEPENDENCY DESCRIPTION

App API

SubscribeSet(CSet set)

DC

ReadSet

Callback(CSet set)

OPC

Subscribe

Database

DataChangeEvent

doCallback(CSet set)

Database Connector

GetConnection

Connection

SQL

App API

UnsubscribeSet(long setID)

DC OPC

UpdateSubscription

CancelSubscription

App API

SpliceSets(CSet set1, CSet set2)

DI

SpliceSets(CSet set1, CSet set2)

CSet

CSet

set1 set2

SortSet

SortSet

Figure 22.3: Subscribing or unsubscribing to set of tags



22.1. INTERMODULE DEPENDENCIES 195

22.1.2 WEB - Web Interface

Interaction between the web modules can conceptually be divided into two parts. The modules make
up the web user interface part of EasyIT, as shown in figure 21.1: The ServerConnector, TagBrowser,
ConfigTool and AppMonitor.

The first type of interaction is the one concerning retrieving data from the database. A web page
developer can run SELECT queries directly on the database. These data are typically series of tags the
user has selected for viewing in the browser, or data web applications need for building their pages.
Only two general examples are described with diagrams.

Figure 22.4 show a typical interaction between a web module and the database. The web module
sends the request for data to the ServerConnector. The ServerConnector is responsible for calling the
appropriate method in the Web API located at the server. The Web API gets the data from the database
and returns it to the web module through the ServerConnector.

Figure 22.4: Typical interaction between a web module and the database



196 CHAPTER 22. DEPENDENCY DESCRIPTION

The other type of interaction is when a web module does not need anything directly from the database,
for example the retrieval of application status for the AppMonitor web module. Here the DI has to run
some logic to figure out whether the application is running, or not.

Figure 22.5: Typical interaction between a web module and the DI

The following tables give a detailed dependency description of the four WEB modules.

Attribute Description
ID: ServerConnector
Type: WEB-module
Purpose: This module exists because WEB needs a uniform way to read data from the

database and communicate with the DI, possibly located at another server.
The ServerConnector was created for requirement WEB-1.

Dependencies: This module depends on the Web API for contacting the server.
Resources: The ServerConnector relies on the .NET Remoting functionality. The server

is responsible for registering an instance of the Web API as a well known
service, which is then looked up by the ServerConnector.

Table 22.5: Dependencies for ServerConnector

22.1.3 External entities



22.1. INTERMODULE DEPENDENCIES 197

Attribute Description
ID: ConfigTool and AppMonitor
Type: WEB-modules
Purpose: These modules exists to let the applications present their data on the web, and

monitor application status. This is required by requirement WEB-2, WEB-5
and WEB-10.

Dependencies: These modules depends on the ServerConnector for retrieving data from the
database and communicating with the DI.

Table 22.6: Dependencies for the ConfigTool and AppMonitor

Attribute Description
ID: TagBrowser
Type: WEB-module
Purpose: These modules exists because users need to be able to view the data logged

by DI. This is requrired by requirement WEB-8 and WEB-9.
Dependencies: This module depends on the ServerConnector for retrieving data from the

database.
Resources: The TagBrowser relies on the ComponentOne [22] library for generating time

plots of the data to be browsed. This library supports many different graphi-
cal depictions. This software library was recommended to us by ABB.

Table 22.7: Dependencies for the TagBrowser

Attribute Description
ID: Database
Type: Data store
Purpose: We need to store data in a structured way. We do this in a relational database.

Related demands are API-11 to API-14 (18.12)
Dependencies: Closely connected to the Database Connector.
Resources: The database is a Microsoft SQL Server 2000 which in turn requires a Mi-

crosoft operating system (Windows 2000 or newer).

Table 22.8: Dependencies for Database

Attribute Description
ID: EasyIT Manager
Type: Sub-program
Purpose: We need a class to keep track of the instances of DC, DBC, APP API and

WEBAPI, so they can communicate, i.e. launch subprograms at startup (DC)
and applications. Related requirements are DI-8, 18.1

Dependencies: none
Resources: MS Windows OS with .NET

Table 22.9: Dependencies for EasyIT





CHAPTER23
INTERFACE DESCRIPTION

This chapter describes the functionality of an entity and how other entities interact with the entity (i.e.
exported methods). The UML diagram in Figure 23.1 shows the public methods of the main classes of
the system. Also, each entity and its methods are discussed in more detail in tables.

23.1 MODULE INTERFACE

23.1.1 Class interfaces - DI

Attribute Description
ID: Data Collector
Function:

• un/subscribe to OPC-updates

• minimize load on the OPC-servers

• store received tag or set in the database

• read instant value

• pass instant value on to application

• write tags to OPC

Public methods:

• long ReadSet(CSet set) Starts a subscription on the tags contained in
the set.

• void StopReadSet(long setID) Stops an existing subscription.

• void Startup() Starts the Data Collector and its connections to OPC-
servers.

• void Shutdown() Stops the Data Collector and closes connections to
OPC-servers.

• void WriteTagsToDB(CTag[] tags) Writes a set of tags to the database.

• void WriteTagsToOPC(CTag[] tags) Writes tags to OPC.

• CSet ReadTagsFromOPC(CTag[] tags) Read tags from OPC.

Table 23.1: Interface for Data Collector

199



200 CHAPTER 23. INTERFACE DESCRIPTION

Attribute Description
ID: Database Connector
Function: This entity facilitates reading and writing to the database.
Public methods:

• SqlConnection GetSQLConnection() Creates and returns a connection
to the database. This connection is a .Net-object and provides methods
querying the database.

• void ReleaseSqlConnection(SqlConnection sqlConnection) Releases
the connection after use in order to make it available for other applica-
tions.

• void Startup(void) Starts the Database Connector and establishes the
connection to the database.

• void Shutdown(void) Shuts down the Database Connector and closes
the connection to the database.

Table 23.2: Interface for Database Connector

Attribute Description
ID: Application API
Function: The Application API is the interface between applications running on the

system and the DI.
Public methods:

• DataReceivedEventHandler DataArrival() Event fired every time the
application is supposed to receive OPC data.

• CSeries GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags, int
gran) This method creates a time series of logged tags. The granularity
parameter specifies the desired number of samples.

• void WriteTagsToOPC(CTag[] tags) Routes the call to the Data Collec-
tor.

• long SubscribeSet(CSet setm) This method routes a subscription call
to the Data Collector, thus starts a subscription.

• void UnsubscribeSet(long setID) This method routes an end subscrip-
tion call to the Data Collector, thus stops the subscription.

• CSet ReadTagsFromOPC(CTag[] tags) Reads a set of tags from OPC.

• void WriteTagsToDB(CTag[] tags) Routes a write call to the Data Col-
lector.

• CSet SpliceSets(CSet set1, CSet set2) Splices two sets.

• void WriteTagsToOPC(CTag[] tags) Writes tags to OPC.

• void SetConfigValue(int id, string name, string valueString) Writes a
configuration value to the database. The id specifies the application and
name specifies the entry to store the value.

• string GetConfigValue(int id, string name) Reads a configuration
value from the database.

Table 23.3: Interface for Application API



23.1. MODULE INTERFACE 201

Database Connector

+GetSqlConnection( ): SqlConnection
+ReleaseSqlConnection(sqlConnection: SqlConnection): void
+Startup( ): void
+Shutdown( ): void

Application API

«Event» +DataArrival( ): DataReceivedEventHandler
+GetTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries
+W riteTagsToOPC(tags: CTag[]): bool
+SubscribeSet(setm: CSet): long
+UnsubscribeSet(setID: long): void
+ReadTagsFromOPC(tags: CTag[]): CSet
+W riteTagsToDB(tags: CTag[]): void
+SpliceSets(set1: CSet, set2: CSet): CSet
+SetConfigValue(id: int, name: string, valueString: string): void
+GetConfigValue(id: int, name: string): string

Web API

+RegisterCustomPage(applicationID: int, name: string, URL: string): void
+RegisterApplication(name: string, strExecutableURL: string): void
+RemoveApplication(applicationID: int): void
+GetApplicationList( ): DataSet
+GetCustomPages(ApplicationID: int): DataSet
+ExecuteSelectQuery(q: String): DataSet
+Authorize(username: string, password: string): User
+GetTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries
+ListTagsInDB( ): CTag[]
+ReadTagsFromOPC(tags: CTag[]): CSet
+GetApplicationStatus( ): DataSet
+GetApplicationStatus(applicationId: int): int
+StartApplication(applicationID: int): void
+StopApplication(applicationID: int): void
+GetUserList( ): DataSet

EasyIT Manager

+GetDatabaseConnector( )
+GetDataCollector( )

Data Collector

+ReadSet(set: CSet): long
+StopReadSet(setID: long): void
+Startup( ): void
+Shutdown( ): void
+W riteTagsToDB(tags: CTag[]): void
+ReadTagsFromOPC(tags: CTag[]): CSet
+W riteTagsToOPC(tags: CTag[]): void

CSeries

+AddSet(thisSet: CSet): void
+CountSets( ): int
+GetSet(nIndex: int): CSet

CSet

+SortTags( ): void
+AddTag(tag: CTag): void
+CountTags( ): int
+GetTag(index: int): CTag

CTag

Figure 23.1: Methods exported between entities



202 CHAPTER 23. INTERFACE DESCRIPTION

Attribute Description
ID: Web API
Function: Web API provides an interface from DI to Web.
Public methods:

• void RegisterCustomPage(int applicationID, string name, string
URL) Registerts a new custom page in the database.

• DataSet GetApplicationList() Gets all applications registered in the
database.

• DataSet GetCustomPages(int ApplicationID) Gets all custom pages
registered to an application.

• DataSet ExecuteSelectQuery(String q) Executes a selectquery on the
database. Other queries not allowed.

• CSeries GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags)
Gets tags in a given time interval.

• CTag[] ListTagsInDB() Lists all the tags stored in the database. This
method makes it possible to visualize what data is available in the tag
browser.

• DataSet GetApplicationStatus() Get application status for all applica-
tions.

Table 23.4: Interface for WEB API



23.1. MODULE INTERFACE 203

23.1.2 Graphical user interface - Web

Attribute Description
ID: ServerConnector
Function: This entity establishes a connection to the WEB API located at the server. This

connection is then made available to all the web pages.
Interfaces: The other modules contact the server through this module. The ServerCon-

nector holds a reference to a server object the modules may use. The modules
run methods on the referred object, and the ServerConnector forwards the re-
quest to the server, returning the data set to the module. Please se table 23.4
for a detailed description of the available interface methods.

Table 23.5: Interface for ServerConnector

Attribute Description
ID: TagBrowser
Function: This module provides the users with at way to browse all dataseries logged

by the DI. The data is made available either as a table or as a graphical time
plot.

Interfaces:
• This is a user interface module, its purpose is to let the user browse tags

logged by the DI. The browser consist of two web pages. In the first, the
user selects which tags to browse, and chooses the time interval. Suit-
able user interface components will be chosen to accomplish this. The
TagBrowser displays the data as a graphical timeplot and/or a table.
Please see figure 23.2 and 23.3 for drafts of these pages.

• Input ranges: For the first screen, where the user selects witch tags to
browse, input needed is the time range. This has to be a valid date in a
given format.

Table 23.6: Interface for TagBrowser



204 CHAPTER 23. INTERFACE DESCRIPTION

Figure 23.2: User interface 1 for TagBrowser. User selects tags for browsing

Attribute Description
ID: ConfigTool
Function: This modules allows the administrator to set up whether an application shall

present its data on the web portal. It should also allow the creation of empty
skeletons for custom web pages associated with this application.

Interfaces:
• This is a user interface module. The ConfigTool lists the registered

applications. The user chooses which application and logged data he
wants to display. The ConfigTool generates a new page module, ready
for the programmer to complete. This module needs interface needs an
interface for adding and editing pages. A draft of this module is given
in figure 23.4.

• Input: The user has to specify a name and class when creating a new
application. There might be an upper limit in these names, avoiding
multiple lines in the menu.

Table 23.7: Interface for ConfigTool



23.1. MODULE INTERFACE 205

Figure 23.3: User interface 2 for TagBrowser. The chosen tags are displayed.

Attribute Description
ID: AppMonitor
Function: The AppMonitor module queries the DI for status on all applications. These

data are presented to the user.
Interfaces: This is a user interface module. It lists the applications and their status. It

does not have any user interaction, and a draft of this module can be seen in
figure 23.6.

Table 23.8: Interface for AppMonitor



206 CHAPTER 23. INTERFACE DESCRIPTION

Figure 23.4: User interface for ConfigTool, configure new web application



23.1. MODULE INTERFACE 207

Figure 23.5: User interface for ConfigTool, select web application for configuration



208 CHAPTER 23. INTERFACE DESCRIPTION

Figure 23.6: User interface for AppMonitor



23.2. PROCESS INTERFACE 209

23.1.3 External entities interface

Attribute Description
ID: Database
Function: The entity gets data as input and stores them in relation tables. It can also

fetch data from these tables and return this as output.
Interfaces: We only interface the database through SQL.

Table 23.9: Interface for Database

Attribute Description
ID: EasyIT Manager
Function: Start the DC, distribute references of modules.
Interfaces:

• Database Connector GetDatabaseConnector() returns the running in-
stance of the database connector.

• Database Data Collector GetDataCollector() returns the running in-
stance of the data collector.

Table 23.10: Interface for EasyIT Manager

23.2 PROCESS INTERFACE

Our design has proven to have very close connection between modules and processes. EasyIT Man-
ager, Data Collector, Database Connector, Applications and Web Apps can be considered processes,
leaving the interfaces as passive actors. Keeping this in mind, the dependency relations in Figure 22.1
illustrates what processes uses interface on other processes.





CHAPTER24
DETAILED DESIGN

This chapter describes what rules are governing an entity, and what algorithms are applied in specific
processes. To describe this we have employed ns-charts and natural language. Internal data-entities
critical to the operation is also to be listed. This relates to the previous chapter as a specification of how
the methods are to be implemented.

24.1 MODULE DETAILED DESIGN

24.1.1 DI - Data Interchanger

Attribute Description
ID: Data Collector
Processing: This is described in the implementation-document.
Data: This is described in the implementation-document.

Table 24.1: Detailed description for Data Collector

Attribute Description
ID: Database Connector
Processing: This is described in the implementation-document.
Data: This is described in the implementation-document.

Table 24.2: Detailed description for Database Connector

Attribute Description
ID: Application API
Processing: This is described in the implementation-document.
Data: This is described in the implementation-document.

Table 24.3: Detailed description for Application API

211



212 CHAPTER 24. DETAILED DESIGN

Attribute Description
ID: WEB API
Processing: This is described in the implementation-document.
Data: This is described in the implementation-document.

Table 24.4: Detailed description for WEB API



24.1. MODULE DETAILED DESIGN 213

24.1.2 WEB - Web Interface

Attribute Description
ID: ServerConnector
Processing: The ServerConnector instanciates a .NET Remoting object called Marshal-

ByRefObject. This object enables access to objects across application domain
boundaries in applications that support remoting. This object holds a con-
nection to the EasyIT DI, and enables WEB modules connect to the database
to get data. The ServerConnector implements one method; getServerObject(),
which returns the MarshalByRefObject.

Data: This module uses an instance of the ServerObject class, which holds a refer-
ance to the server.

Table 24.5: Detailed description for ServerConnector

Attribute Description
ID: TagBrowser
Processing:

• The user is first presented with an overview of available tags to browse in
some sort of tree view. The system is supposed to be able to collect tags
from several OPC servers, and it’s therefore natural to let the first level in
the three be the server. The next level is the path, and the last, the tag’s
name.

• The user enters the time span he wants to browse, and submits the form.
The time span can be collected from two textboxes, represented as .net
DateTime objects in the system.

• The TagBrowser asks for the approperiate data from DI with the chosen
tags and timespan. This request is sent through the ServerConnector, and
the data are recieved as a CSeries object.

• On a new page, the user is presented with the chosen data. He has the
choice of viewing them as tabular data and/or as a graphical time plot.
The graph component from Component1 [22] will be used, to save im-
plementation time.

• While viewing the results, the user can switch between the display modes
for instance through radio buttons. The table can be realized as a .net
DataTable, wich can be bound to a DataSet object. A conversion from our
custom dataset cSeries will be needed.

Please see figure 23.2 and 23.3 for a proposed layout.
Data: The TagBrowser uses Tags and Sets of Tags as described in DI, retrieved

through the ServerConnector.

Table 24.6: Detailed description for TagBrowser



214 CHAPTER 24. DETAILED DESIGN

Attribute Description
ID: ConfigTool
Processing:

• The ConfigTool initially retrieves the configuration of all applications
through the ServerConnector represented as a DataSet.

• The user is presented with a table containing status information from all
appliactions. This information includes whether the application is set up
to present data on the web.

• If an application is not set up to publish data, the user can enable this,
and set up one or more custom pages. A new empty file will be created
locally on the web server, for the web page developer to fill in. Informa-
tion about the new page(s) will also be added to the database through the
ServerConnector.

Data: The ServerConnector returns a DataSet containing the configuration for all
applications.

Table 24.7: Detailed description for ConfigTool

Attribute Description
ID: AppMonitor
Processing:

• When the user selects "Monitor applications" in the menu, the AppMoni-
tor control requests the status of all applications through the ServerCon-
nector.

• The user is presented with a table containing status information from all
appliactions. This information includes whether the application is run-
ning or not, what the last value written by the application was etc.

Data: The ServerConnector returns status for all applications, represented as inte-
gers.

Table 24.8: Detailed description for AppMonitor



24.1. MODULE DETAILED DESIGN 215

24.1.3 External entities

Attribute Description
ID: Database
Processing: The database has an underlying database managment system, which handles

transactions and keeps the database consistent at all times.
Data: Internal representation of data has no relevance.

Table 24.9: Detailed description for Database

Attribute Description
ID: EasyIT Manager
Processing: This modules does no processing of data.
Data: This modules does no processing of data.

Table 24.10: Detailed description for EasyIT Manager



216 CHAPTER 24. DETAILED DESIGN

24.2 DATABASE DETAILED DESIGN

This section shows how our database is organized. There are two separate uses that are covered:
keeping OPC-data and keeping information about applications.

Attribute Description
ID: OPC datatables
Processing: This modules does no processing of data.
Data: The OPC datatables are three tables. The tblTag stores each tag logged by

the system. Each tag has it’s unique identifyer, an instanceID. The strName,
strServer and strPath attributes are also considered as unique for a seires of a
logged tag over time. Tags can also be collected and delivered to the system
as sets, defined by the tblSet entity. A set is a collection of tags, where all tags
have the same timestamp. Then, again, sets can be put together in setseries,
defined in the tblSeries entity. Please see figure 24.1 for an ER-diagram of the
three entities.
Details tblTag:
• nInstanceID: Unique identifyer for this tag
• nTagID: This tag’s ID
• strPath: Path tag logged on the server
• strName: Name of the tag
• dtTimestamp: The time the tag was logged
• strValue: The tag’s value
• nDataType: The tag’s datatype
• bQuality: The quality of the tag’s value
• nDeadBand: The tags deadband variable
• nServerID: The ID of the server the tag was logged from
• nApplicationID: If value written by an EasyIT application, the applica-

tion’s ID is set
• strServer: The server the tag was logged from

Details tblSet
• nSetID: An ID identifying this series
• dtDate: the time the set was logged
• nRate: The set’s rate, how often are values collected from OPC
• fDeadBand: This set’s deadband variable
• bActive: Whether this set is an active set, or not

Details tblSeries:
• nSeriesID: An ID identifying this series
• nRate: This seres rate, how often are the sets collected from OPC.

Table 24.11: Detailed description for the OPC datatables



24.2. DATABASE DETAILED DESIGN 217

Figure 24.1: ER diagram of the OPC data table

Attribute Description
ID: WEB datatables
Processing: This modules does no processing of data.
Data: The WEB part of EasyIT needs to store which applications there are in the

system, and the pages these applications have. This is necessary to let the
WEB modules make the menu, and list information about registered web
pages. Please see figure 24.2 for an ER diagram of the tables.
Details tblCustomPages:
• PageID: Unique identifyer for this page
• applicationID: Which application this page belongs to
• PageURL: The URL path to where this page is located on the WEB server
• Name: The page’s name

Details tblApplication:
• nID: Unique identifyer for this application
• Name: The name of the application
• strExecutableURL: The URL path to where this application can be

launched on the WEB server

Table 24.12: Detailed description for the WEB datatable

Figure 24.2: Diagram of the custom pages table





Part V

Implementation document

219





CHAPTER25
INTRODUCTION

This chapter is a completion to the Software Design Description document. It contains all the details of
the implementation work and a tries to describe the important choices we made and most importantly
why we made them. As EasyIT is a prototype this document should prove itself as a very interesting
study to the customer should he decide to continue the development of the product. Avoiding mis-
takes and utilizing the good ideas is what prototyping is all about.

This chapter is organized in three parts. First there is a class diagram(26.1), second an overview over
how the system was built(26.2) and last there is a section with very detailed information with the
experiences we had implementing the different parts(27).

221





CHAPTER26
MODE OF OPERATION

26.1 CLASS DIAGRAMS

In Appendix H, a class diagram over the EasyIT system can be found. All the important classes are
included there. The different seperate classes are presented in figure H.2 to figure H.7, while figure
H.1 gives an overview over how the classes are connected. A much more detailed textual description
of the system follow in the rest of this implementation document and these class diagrams should be
used as a guide when reading through it.

26.2 IMPLEMENTATION PARTITIONING

EasyIT was implemented as a Visual Studio .NET solution. The solution was separated into several
projects. There were two reasons for this, the first reason was to group the files in smaller functionally
connected groups and the second was to allow for easy distribution of classes needed in multiple
locations. Our data items and the interface definitions fall in the second group. These are needed on
the EasyIT Server, the client applications and the EasyIT Web. If these data items and interfaces are
not in their own projects, we would need to distribute all the files in the entire solution to everybody
who is interacting with EasyIT. This not desirable, the Application Library should only be dependant
on the data items and the interfaces, not on the web portion of the project.

The solution was divided up in the following parts:

• ApplicationLibrary - all the files that makes up the Application Library.

• RemoteInterfaces - all the interfaces defined for use with .NET Remoting. The AppAPI and We-
bAPI interfaces resides here.

• DataItems - all the data items.

• EasyIt - all the files for the EasyIT Server, including all the files for the DataCollector, the DB-
Connector, the scheduling functionality and the implementation of AppAPI and WebAPI. This
project also includes the EasyIT Manager. The entities earlier referred to as DI, APP and APP-API
is also implemented here.

• EasyItStarter - The project with the executable that starts the EasyIT Manager.

• EasyITWeb - The entire web portion of EasyIT.

26.3 EASYIT SERVER / EASYIT MANAGER

26.3.1 Technical background

The EasyIT Server / Manager contains all parts from the above list except EasyITWeb. It is imple-
mented in the C# language and uses .NET Remoteing for communication with both the client applica-
tions and EasyITWeb.

223



224 CHAPTER 26. MODE OF OPERATION

26.3.2 Framework

EasyIT Server and Manager is implemented around the EasyIT Manager. The manager is the glue
that holds all the other parts together. It is the main class that gets started by the EasyITStarter ex-
ecutable. Its job is to start up the entire system and provide a central point of connection for all the
other modules. It also provides a central location for logging error messages for the entire system. It
is implemented in EasyIt.cs. Under the EasyIT Manager we also find the data items. The data items
are classes that represent essential entities in the EasyIT system. We have a class representing an OPC
tag, a class representing sets of these tags and a class representing series of such sets. These classes
are implemented in the three following files: CTag.cs, CSet.cs and CSeries.cs. These classes are used to
pass around information about these entities. If an application wants to read the value of a tag, it can
just fill out just pass an instance of the CTag class as an argument. The manager is also the part that
starts up the other modules of EasyIT, except for EasyITWeb. EasyIT Manager is also the entity that
implements the AppAPI.

26.3.3 Accessing the APP API

The following list lists all the methods the application developers have access to through the AppAPI.

• public CSeries GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags, int gran)

• public CSeries GetAllTags(DateTime dtStart, DateTime dtEnd, CTag[] tags)

• public CSet ReadTagsFromOPC(CTag[] tags)

• public bool WriteTagsToOPC(CTag[] tags)

• public void WriteTagsToDB(CTag[] tags)

• public long SubscribeSet(CSet setm)

• public void UnsubscribeSet(long setID)

• public CSet SpliceSets(CSet set1, CSet set2)

• public void SetConfigValue(string name, string valueString)

• public string GetConfigValue(string name)

A detailed explanation on the use of each of them follows.

When CTag instances are expected as input in calls to these methods, it is vital that the Name, Server
and Path properties of these objects match those of actual OPC tags. If these are not correct, EasyIT
and all its subcomponents have no way of knowing which tag it should read or write.

GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags, int gran) is used to get the logged values of
the specified tags in an interval between two points in time, start and stop, with a certain granularity.
This is executed synchronously and a call to this method will block until it completes. The result is
returned in a CSeries instance. For a detailed description of this important method, see 27.5

GetAllTags(DateTime dtStart, DateTime dtEnd, CTag[] tags) is used to get all the logged values of the
specified tags in an interval between two points in time, start and stop. This is executed synchronously
and a call to this method will block until it completes. The result is returned in a CSeries instance.

ReadTagsFromOPC(CTag[] tags) reads the values of the specified tags once directly from the OPC
servers the tags reside on. This is executed synchronously and a call to this method will block until it
completes. The result of this call, the current value of the tags, is returned as a CSet.

WriteTagsToOPC(CTag[] tags) writes the value of the specified tags once directly to the OPC servers



26.4. WEB 225

the tags reside on. The value of each tag is specified in each of the tags given as input. This is executed
synchronously and a call to this method will block until it completes. . The result of this call is true if
there were no problems writing the tags, or false if there were.

WriteTagsToDB(CTag[] tags) writes the value of the specified tags once directly to the database. The
value of each tag is specified in each of the tags given as input. This is executed synchronously and a
call to this method will block until it completes.

SubscribeSet(CSet setm) starts an subscription of the tags in the specified set. Each tag can spec-
ify a deadband variable through the Deadband property, or leave it at the default 0.0. The set must
specify the rate at which the client application wishes to get new data at by setting it at the creation
of the set or by updating the Rate property. The method is executed synchronously and a call to this
method will block until it EasyIT acknowledges the subscription. The data from the subscription how-
ever is returned asynchronously through the DataArrival event in the AppAPIClientBase class. If the
client wishes to do something with this data is has to register an event-listener on this event. The re-
sult of this call is a long integer representing the unique id assigned to this subscription by the EasyIT
DataCollector. This id must be saved for later if you wish to unsubscribe from the subscription.

UnsubscribeSet(long setID) stops a previously started subscription. An id previously returned from
the SubscribeSet-method must be passed as the only argument. The method is executed synchronously
and a call to this method will block until it EasyIT has unsubscribed the set completely.

SpliceSets(CSet set1, CSet set2) splice to sets. It does this by adding all the tags from both sets to
a new set and removing all but the latest, the ones with the highest timestamp, values of each tag.
The end result is a new set with the latest value of all the tags from set1 and set2 in it. The method is
executed synchronously and a call to this method will block until it completes.

SetConfigValue(string name, string valueString) stores name/value-pair in the database. This name/value-
pair is unique for this application. Storing a value with the same name as previously stored pair over-
writes the old value. Any value can be stored as long as it can be represented as a string. It is up
to the application developers to handle the conversion from and to a string. The method is executed
synchronously and a call to this method will block until it completes.

GetConfigValue(string name) retrives the value of the name/value-pair with the specified name for
this application from the database. The method is executed synchronously and a call to this method
will block until it completes.

The two sample applications in figure G.1 (PressureChecker) and G.3(Averager) show full code ex-
amples for most of the methods mentioned above. The source code in these two figures can also be
found in the two files PressureChecker.cs and Averager.c in the "application-samples" sub-folder where
EasyIT was installed.

26.4 WEB

26.4.1 Technical background

EasyITWeb is written in ASP.NET, using C# for server-side data manipulation. ASP.NET supports two
kinds of pages: stand-alone pages (extension .aspx) and so called UserControls (extension .ascx). Each
.aspx/.ascx page has a corresponding C# file connected to it. The C# files are called the Codebehind
files for the .aspx/.ascx files, and are named .aspx.cs or .ascx.cs respectively.



226 CHAPTER 26. MODE OF OPERATION

26.4.2 Framework

The entire web interface consists of one aspx file, called default.aspx, which includes several ascx
UserControls. The default.aspx page loads the menu as a UserControl, and the content of the page
as another UserControl. For each request the url to the UserControl to be loaded as main content of
the page is given in the querystring. For instance: default.aspx?url=modules/TagBrowser/SelectTags
would load the SelectTags.ascx UserControl.
The reason for choosing this approach is that is simplifies managing the page layout considerably.
A problem with all web sites is having to include header and footer files on each page in order to
make them look alike. We’ve used ASP.NET 1.1, which has no built-in support for doing this. On the
contrary, ASP.NET 2.0 supports so called ’Master-pages’ for creating common layout for all pages.
Our solution uses ASP.NET PlaceHolders, which can be loaded with UserControls at run-time. This
gives us the additional advantage of being able to let for instance the ’Create application’ button call
a refresh method on the menu UserControl directly, because references to these object can be passed
around freely.

26.4.3 Accessing the WebAPI

The first time the EasyITWeb is accessed the class ServerObject.cs is used to connect to the EasyIT
server. The hostname and port number for contacting the server is configured in the xml file Easy-
ITWeb.config in the EasyITWeb root folder. The reference to the server is stored as an instance of the
WebAPI in a so called ’application variable’ available to all ASP.NET pages. To use the WebAPI the line

WebAPI webapi = (WebAPI)Application["webapi"];

is used. Having obtained this reference, the programmer can access the methods of the WebAPI as if
it was a local object. The following code gives an example, by obtaining a set of data from the database:

DataSet myData = webapi.ExecuteSelectQuery("SELECT Name from tblApplications");

26.4.4 Developing custom pages using the WebAPI

This section will go through the methods available to support custom page developing in our system.
These mehods are all available through the WebAPI (see previous section for instructions on how to
access it).

CTag[] ListTagsInDB()
Gets a list of all tags stored in the database. The tags returned have "na" set as value, and are therefore
only useful for identifying a tag. Subsets of the returned CTag[] array can be used as parametres for
the GetTags and GetAllTags methods.

CSeries GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags, int gran):
Gets a series of tags in the given time interval, averaging values in each timeslot. Each timeslot length
is defined as the dtStart to dtEnd interval, divided by granulatity.

Details:
• dtStart: The start date for plotting
• dtEnd: The end date for plotting
• tags: The tags wanted to be plotted, need to have valid Name, Path, Server. To get a list of available

tags stored in the database, use the CTag[] ListTagsInDB() method.
• gran: Granularity of the data, give as the max number of points to be returned. If data is missing in

a timeslot, a tag with value "na" is returned.



26.4. WEB 227

• Return value CSeries: A series of tags logged in the specified time interval, passed as a DataItems.CSeries
object.

CSeries GetAllTags(DateTime dtStart, DateTime dtEnd, CTag[] tags)
Gets all tags logged in the database in the given time interval. Does not do any calculations on tag
values. This method must be used with caution; a single call can return all data stored in the database.

Details:
• dtStart: The start date for plotting
• dtEnd: The end date for plotting
• tags: The tags wanted to be plotted, need to have valid Name, Path, Server. To get a list of avail-

able tags stored in the database, use the CTag[] ListTagsInDB() method. returned. If data is
missing in a timeslot, a tag with value "na" is returned.

• Return value CSeries: A series of tags logged in the specified time interval, passed as a DataItems.CSeries
object.

CTag GetFirstOccurence(CTag tag)
Get the first occourence of a tag stored in the database.

Details:
• tag: The tag wanted the first occurence of.
• Return value CTag: The first occurence of the specified tag.

CTag GetLatestOccurence(CTag tag)
Get the latest occourence of a tag stored in the database.

Details:
• tag: The tag wanted the latest occurence of.
• Return value CTag: The latest occurence of the specified tag.





CHAPTER27
SPECIFIC IMPLEMENTATION INFORMATION

27.1 IMPLEMENTING THE DBCONNECTOR

The DBConnector is responsible for all communication with the database and is implemented in the
DBConnector.cs file.

Early in the implementation phase it became apparent that the system would access the database
very often. The typical query against the database would be short, but it would happen often and
concurrently with other access. An example is the need of the DC to log incoming data from OPC
servers. Only one row in the table called tblTag is written, but the operation will happen once for each
time an OPC server issues a callback to the system. From earlier experience we know that opening
new connections to the database can be rather time consuming because of the need to go through a
TCP/IP handshake every time. If we had just opened a new connection to the database each time we
needed to run a query, the time needed to open the connection would by far exceed the time needed
by the database to execute the actual query. This is not an acceptable solution. To solve this we imple-
mented a connection pooling system. This system starts up when EasyIT Manager is started. When
it starts, the pooling system opens n connections, where n can be tweaked for optimal performance,
to the database. These connections are then made available to the rest of the system through the two
methods GetSqlConnection() and ReleaseSqlConnection(SqlConnection sqlConnection). When some
part of the system needs to access the database it gets an already open connection to the database by
calling the GetSqlConnection-method. When it is finished, it releases the connection back into the pool
by calling the ReleaseSqlConnection-method. The connections are never closed until EasyIT Manager
closes down. If all the open connections in the pool are in use, the connection pool is dynamically
expanded with new connections as needed. This way, the time penalty for opening the connections is
taken exactly once, instead of each and every time we need to run a query. We feel that this kind of
functionality is needed for any system doing more than extremely small amounts of database access.

27.2 IMPLEMENTING THE SCHEDULING MECHANISM OF EASYIT MAN-
AGER

The requirement specification, see Figure 18.1: DI-7, required EasyIT Manager to have the possibility to
schedule applications. This is implemented in the following fashion. Each application registered with
the system is started when EasyIT Manager is started. The applications themselves are responsible for
requesting the data they need at the interval they want it at. If an application wants to read a specific
tag once every 10 minutes, it subscribes through the APP-API to a set including the tag with rate 600
seconds. It then goes to sleep until the EasyIT Manager fires a callback every 600 seconds with new
data. Another possibility for implementing scheduling is to start and stop the application each time
they want data. Considering the fact that the applications are stand alone applications, we don’t think
this is a good idea. Stand alone applications are external entities and we have little control over how
much resources and time is used to start an application. Windows does quite a lot of housekeeping
when it starts an application and we wanted to avoid having to do this over and over. It is much
more preferable to start all applications at startup and let them sleep in the background. This way of
thinking can also be observed in the section describing the implementation of the DBConnector. The
connection pooling solution for SQL-connections and this way of solving the application scheduling

229



230 CHAPTER 27. SPECIFIC IMPLEMENTATION INFORMATION

are both instances of using a "create once, then use multiple times" way of thinking that we feel greatly
improves the efficiency and scalability abilities of the system. It is also very easy for the end user to do
the "scheduling", all he has to do is to subscribe to a set with the rate it wants to receive data at. This is
important, considering that ease of use was one of the main success criteria ABB had for this project.

The actual implementation of scheduling in EasyIT Manager is implemented in the file Application-
Launcher.cs. The StartAllApplication-method in this file is called when EasyIT Manager starts. This
method reads from the database all the different applications and the path to their executables. It then
spawns all the applications as separate processes.

27.3 IMPLEMENTING THE DATACOLLECTOR

The DataCollector is one of the most crucial parts of the system. It’s the part that has all the logic
that is needed to communicate with the OPC servers. The DataCollector has two main methods for
communicating with the world, called ReadSet(CSet set) and StopReadSet(int setID). The first method
takes in a set of tags and adds these tags to the pool of tags that EasyIT is currently subscribing to from
the OPC servers.

The job of the DataCollector is divided into two parts: getting data from the OPC servers and get-
ting this data back to the clients( the applications that utilize the system). The two parts can be very
closely connected or they can be separates from each other. We have chosen to separate them; the
reason for this is explained later in this section. First we explain how we have implemented the two
different parts.

The first part is to solve the problem "what do I do when some application wants to subscribe to a
set of tags?" The easiest way to do this is to simply create a new subscription to a OPC server for each
of the tags in the set. This sounds like a good solution until you think of what happens when you have
more than a few tags in the pool. (And this is extremely likely in a production environment!) If the pool
contains 500 tags to one server we would have 500 individual subscriptions. If these tags have a rate
of 1 second, we would get 500 callbacks from this one server alone each second! Doing things this way
gives us enormous scalability issues. A much better solution is to try to build optimal subscriptions on
each server. An optimal subscription in the above scenario is just one subscription, with all 500 tags
in it. It would result in exactly one callback each second with new data for all 500 tags. This results in
a huge saving in overhead on both our system and on the OPC server in question. We opted for the
optimal set solution. What we actually do when ReadSet(CSet set) is called is the following:

1. Check if we already have a subscription for this tag at the rate indicated in the set, or at a rate that
is a divider of the rate indicated in the set. For example; if tag A is requested at rate 6, meaning
once every six seconds, and we are already subscribing to tag A at rate 3, we don’t need to start
a new subscriptions to OPC server of the tag. The application that requested the tag at rate 6 is
just given back every second value returned from the already running subscription at rate 3.

2. If the tag was not covered by running subscriptions in 1) we check if we have an open connection
to the tags OPC server. If we don’t, we open one.

3. We check if there are subscriptions on the tags server at the rate we want the tag at. If there isn’t,
we add a new subscription to the tags OPC server. We set the rate for the subscription to the rate
we want the tag at and tell the OPC server to call us back at the given interval.

4. After 3) we know we have a live subscription, either an old subscription or a new subscription
created in 3), with the rate we want on the tags OPC server. We then add the tag to this subscrip-
tion.

The OPC server will now issue callbacks to the DataCollector with the current value of the tags in
the subscription at the interval we told it. When the DataCollector gets a callback, it writes the value
of all the tags in the callback to the database through the DBConnector.



27.4. IMPLEMENTING THE APPLICATION LIBRARY AND THE APPLICATION API 231

The StopReadSet method does this in reverse.

1. Are we subscribing to this tag and are there no other sets also using this subscription? This is the
reverse of the previous list.

2. If 1) is true, remove the tag from the subscription.

3. If the subscription in 2) becomes empty, remove the subscription.

4. If the server of the description in 3) has no more subscriptions, close the connection to the server.

The second part of the DataCollector deals with getting the data back to the client that actually re-
quested it in the first place. One obvious way to do this would be to just call the clients back with new
data when we have a callback from the OPC servers. The problem with this method is what happens
when the client requests from multiple OPC servers in the same set. To mimimize the traffic between
the EasyIT system and the client applications, we want to deliver whole sets of values. If client C tells
EasyIT that it wants to subscribe to set S with tag A on server 1, tag B on server 2 and tag C on server
3 at rate 4, it should get a callback from the DataCollector with a new set with the value of tag A, the
value of tag B and the value of tag C every fourth second. How can we accomplish this when we can’t
guarantee the condition of the servers the tags are at? The answer is: we can’t. We have no way of
knowing if the three OPC servers actually will give back data at the given interval. A OPC server can
crash, can be disconnected or just have a high load and respond very slowly. OPC makes a promise of
"best effort". When our data sources are "best effort", this is the best we can promise EasyIT to be too.
This means we can’t guarantee that we have new data for all, or any, of the tags the client applications
have subscribed to at the given rate. The fact that we are "best effort" means that the callback from the
OPC servers can seem quite random at times. Given the success criterion that EasyIT should be very
easy to use for application developers, we think this should be hidden from the client applications.
They should be separated as much as possible from the irregularities of the OPC servers.

Our solution to this, and our reason for choosing to separate the two parts of the DataCollector, is
to have no direct connection between the callbacks from the OPC server and the clients that requested
the data. When OPC calls us back with new data, we simply write it to the database with the DB-
Connector. A separate thread, running in the background, checks all the sets of the current running
applications every second. Has rate seconds passed since the last time we checked? If it has, get the
newest data for the tags in the set directly from the database and give this data to the client application
that subscribed to the set. Subscribing to a set of tags means you get back the latest values of the tags
that OPC has put in the database. Doing things this way means we can guarantee that applications get
a callback at the rate it requested, we just can’t guarantee that we have new values for all the tags in
callback. We think this solution is easier for the application programmer, as we at least can guarantee
timely callbacks. In an ideal world we would want to guarantee that the callbacks to the client appli-
cations came at the requested rate and that we had new values for each of tags. As discussed earlier,
we can not make this guarantee as long as OPC is "best effort" instead of "guaranteed real-time".

The DataCollector and all its accompanying functionality is implemented in the file DC.cs. An instance
of this class is created when EasyIT Manager starts.

27.4 IMPLEMENTING THE APPLICATION LIBRARY AND THE APPLI-
CATION API

The application library is the framework that the client applications have at their disposal for commu-
nication with EasyIT. It is divided into two different parts. The application library is the code needed
to do the actual communication with EasyIT and the API is the methods exposed on top of this for use
by the application developers. The library is hidden for the application developers. All they have to
do is include the ApplicationLibrary.dll as a reference to their applications.



232 CHAPTER 27. SPECIFIC IMPLEMENTATION INFORMATION

When implementing the library we tried to always have as the main priority that developing applica-
tions for EasyIT should be easy and uncomplicated, while at the same time is should be fairly flexible.
For communicating with the EasyIT Manager, we chose to use .NET Remoting. The reason for this
is that we knew that applications would run as separate processes from the EasyIT Server. There are
limited possibilities for separate processes to communicate with each other; the most common is to use
either a shared pipe or some kind of socket programming. Both of these methods are fairly low level
and would require large amounts of work built on top of them to be of use for us. That kind of work
has already been implemented by many people before, so there is no need to re-invent the wheel over
and over. Choosing to use names pipes to communicate between the processes would also restrict the
applications to having to be run on the same machine as the EasyIT Manager. We don’t need to know
how exactly the data is transferred between the processes; we only need to know that it IS transferred
without unreasonable amounts of overhead. .NET Remoting was added to the .NET framework for
this exact purpose. It makes it possible to call methods on applications running on a remote computer
as if it the applications were running locally. The idea is to implement whatever methods you want
to execute on a server, declare them in an interface and publish on the server that you accept remote
applications to call the methods in the interface. The client then asks the server for an instance of the
interface and can call methods on this instance directly. All the underlying work like marshaling the
arguments, communication over the network and getting the result back to the caller is done automat-
ically by .NET.

For the application library the interface on the server is called IAppAPI and is declared in the file
IAppAPI.cs. This file declares all the methods the application library can call on the EasyIT Manager.
The code used by the application library to connect to EasyIT Manager is shown in figure 27.1. It is
taken from the file AppAPIClientBase.cs in the ApplicationLibrary project. What actually happens is
that we open a TcpChannel to the EasyIT Manager on a specified port and request an instance of an
object that implements the interface called IAppAPI. For this to work the EasyIT Manager must be
listening on the specified port and it must publish objects that implement the interface. The code for
the server side part of the Remoting channel is shown in figure 27.2

BinaryClientFormatterSinkProvider clientProvider =
new BinaryClientFormatterSinkProvider();
BinaryServerFormatterSinkProvider serverProvider =
new BinaryServerFormatterSinkProvider();
serverProvider.TypeFilterLevel =
System.Runtime.Serialization.Formatters.TypeFilterLevel.Full;
TcpChannel chan = new TcpChannel(props, clientProvider, serverProvider);
ChannelServices.RegisterChannel(chan);
appAPI =(IAppAPI)Activator.GetObject(
typeof(IAppAPI),
"tcp://"+easyItURL+":"+easyItPort+"/AppAPI");

Figure 27.1: Code for connection to EasyIT through an application

We can see that the server publishes objects of type AppAPI, which implement the IAppAPI, on a
new TcpChannel. This object, AppAPI, is the actual implementation of the application API. It can be
found in the file AppAPI.cs.

A small detail that is very important to notice is that the TcpChannel needs to be based a value of
"Full" for its typeFilterLever. This must be present if you plan to pass anything else then pure value
types over .NET Remoting. As we intended to pass whole sets of tags, which are implemented in our
own custom classes, we need to enable this feature. We chose to utilize the built in binary encoded tcp



27.5. IMPLEMENTING THE GETTAGS METHOD 233

IDictionary props = new Hashtable();
props["typeFilterLevel"] = "Full";
BinaryClientFormatterSinkProvider clientProvider =
new BinaryClientFormatterSinkProvider(null, null);
props["port"] = port;
BinaryServerFormatterSinkProvider formatterProvider =
new BinaryServerFormatterSinkProvider(props, null);
TcpChannel chan = new TcpChannel(props, clientProvider, formatterProvider);
ChannelServices.RegisterChannel(chan);
RemotingConfiguration.RegisterWellKnownServiceType(
Type.GetType("EasyIt.AppAPI",true),
"AppAPI",
WellKnownObjectMode.Singleton);

Figure 27.2: Code that listens for connections on the EasyIT Server

channels to do the actual communication. This is the most efficient setup, but one can easily switch
to different types communication encoding. XML encoding over the HTTP protocol is one possibility
that is extremely flexible when it comes to navigating through firewalls. This can be very useful if the
application clients run on machines that are physically separated from the EasyIT Manager through
one or more restrictive firewalls. It should however be noted that this will add extra overhead to the
communication, a thorough analysis of the required throughput needed should be performed before
taking such a step.

Now that the client application has gotten an instance of an object that implements IAppAPI, it can call
methods on this object to communicate with the EasyIT Manager. The client calls the Register-method
in IAppAPI to register itself. It sends with as a parameter another remote object that the EasyIT Man-
ager can use to call the client back with new data. This object is implemented in the AppClient.cs and
this class implements the IAppClient interface. At this time the client application can call EasyIT Man-
ager and vice versa.

If we look at the IAppAPI interface, we see that all the methods needs to have the id of the appli-
cation as an argument to the call. This is needed for EasyIT Manager to know which object called the
method. In all likelihood multiple clients will call the EasyIT Manager through the remote interface
at the same time, so we need to keep track of which one is which. We cannot keep state over a .NET
Remoting channel, this is a design choice by the .NET Remoting team, so instead we must demand
that the client identifies itself in every call to the server. This, however, is not very user friendly for
the application developers. There should not be a need for them to pass the application id in every
call they make to the server. To fix this we wrote wrappers for each of the methods in IAppAPI in
the AppAPIClientBase-class. These wrappers are the methods the application developers calls. The
wrapper then adds the application id and sends the call to the EasyIT Manager for processing.

27.5 IMPLEMENTING THE GETTAGS METHOD

The purpose of the GetTags -method is to create time trends based on logged data stored in the
database. Obviously, the Tag Browser in the WEB part depends heavily on this method, but also ap-
plications might use it. Tags stored in the database may have been logged at different rates and the
rate may even vary from time to time for one single tag. GetTags hides such variance and the users of
the method can set the granularity of the requested time series to any value. The C# definition of the
method is as follows:



234 CHAPTER 27. SPECIFIC IMPLEMENTATION INFORMATION

GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags, int gran)

As the definition indicates, the method returns a CSeries -object representing the time series re-
quested. The dtStart and dtEnd parameters defines the upper and lower limits of the time interval
and the tags parameters declare what to include in the series. Please note that the tags parameter is
an array, so it is possible to create trends for more than one tag in the same time interval. Finally, the
gran parameter sets the level of granularity. This variable specifies the number of samples contained
in the returned CSeries object. If it is set to 50, the series contains 50 samples for every tag in the
series, set to 400 the series contains 400 samples. The samples are distributed evenly in the interval.
So, if the interval spans 60 seconds and the granularity level is set to 30, the sample rate in this series
is 2 seconds. Certainly, the desired number of samples may not match the actual number of samples in
the database. The following paragraph explains how GetTags calculates the value of the samples in
the series.

Assume a tag is logged in the database at different rates in the time interval spanning from 10.00.00
to 10.01.00 on November 14th 2004. The distribution is shown in figure 27.3. Certainly, this is no real
logging, but it will illustrate how the GetTag -algorithm works quite well.

 

 

 

 

 

Tag1 (10.00.00 – 10.00.10 = 13.3

Tag2 (10.00.10 – 10.00.20) = 18

Tag3 (10.00.20 – 10.00.30) = 9

Tag4 (10.00.30 – 10.00.40) = 6

Tag5 (10.00.40 – 10.00.50) = NA

Tag6 (10.00.50 – 10.01.00) = 4

Figure 27.3: Logged data

As we can see, the tag is first logged every second, then every fifth second. Suppose GetTags
is called on this distribution with the time spanning from 10.00.00 to 10.01.00 and granularity set to
6. Thus, the six samples are separated by ten seconds. On the rightmost part of figure 27.3, the six
samples are shown. The first sample, Tag1 averages the values from 10.00.00 to 10.00.10. Tag2 averages
from 10.00.10 to 10.00.20 and so on. There are no samples available in 10.00.30 to 10.00.40 so Tag5 is set
to the value NA(not available).

So, in general the algorithm separates the time span in equaled sized intervals. Every sample re-
turned from GetTags is the average of the logged values within each interval. If there are no tags
within the interval, the sample is set to NA. GetTags uses an SQL SELECT-query to extract the logged
values in the time span. As this operation is performed by the SQL-server, the complexity is unknown.
The GetTags -algorithm then iterates through the resultset only once, yielding a linear complexity.



CHAPTER28
EXTRA FUNCTIONALITY

Having started the implementation phase, we realized that the implementation was comming along
quicker than expected. Our carefullness in planning the time had payed off, and we desided to add a
couple of extra features to the system. This includes functionality not described in the requirements
specification, but we think it adds to the quality and usefullness of the prototype. The following chap-
ter describes these extra features.

28.1 MANAGE USER ACCOUNTS

This requirement was originally excluded from the implementation because of time considerations.
The ’Configure users’ option in the web menu was implemented as a part of the existing ConfigTool
web-module. It simply lists users, and allows creating, editing and deleting users. This is only available
for administrators.

28.2 SUBSCRIPTIONS

Users might often want to browse through data just as they arrive from OPC. In the system described
in the requirements specification, you would have to set up a new application, and then write the
code to make it subscribe to the tag to be able to browse them with the TagBrowser. To solve this
inconvenience, we allow users to set up so called web subscriptions.

These subscriptions are set up by administrators, which can manage the sets of data currently being
subscribed to. The underlying functionality is exactly that of the AppAPI’s subscribe methods, only
that these subscriptions don’t need an application associated with them. They run in the background,
and are startet each time the server starts.

28.3 ”REAL-TIME” DATA BROWSING

In addition to browsing tags with the TagBrowser, we’ve added the opportunity to view the data in
”real-time”. This is accessed by selecting the tags and setting the desired granularity, and then clicking
the ’Auto refresh’ button in the TagBrowser. This is implemented simply by using a html meta-refresh
tag, indicating how often the browser is to refresh the page. The same component as in the regular
TagBrowser is used, and it shows the latest data in the time span given before hitting the ’Auto refresh’
button.

28.4 SCHEDULING APPLICATIONS THROUGH THE WEB INTERFACE

Originally, the application monitor was designed only for viewing the state of the applications. We
decided to add the possibility to start and stop the applications through the web interface. Start/Stop
buttons appear in the web interface if an application is run locally. This assumes that the .exe file for
the application has been copied to the correct location (see the user guide), and that the application has
been configured with the correct name of the .exe file through the ’Configure applications’ option in
the web interface.

235





CHAPTER29
FURTHER DEVELOPEMENT

This chapter is provided to gather all our ideas on how to improve the system if it was to be used in a
real world application.

29.1 SUGGESTED IMPROVEMENTS

XML-parser for registering subscriptions
If you want to subscribe to tags in todays system, you need to enter them one by one through the ’Sub-
scriptions’ page in the web interface. This obviously is rather time consuming if you want to subscribe
to more than a few tags. A soulution would be to use a tool like Matrikon’s ’OPC Browser’ to select
all the tags you need, and output their names to an XML file. The EasyIT system could then just parse
this XML file and start subscribing all the tags.

Tree structure for selecting tags for browsing
When selecting tags to browse you have to first select a server, then select a tag from another list box.
This could be made easier by using a tree structure with servers as root nodes, containing all tags from
that server as leaves. To simplify the process further a drag-and-drop interface could be used to allow
users to drag the tags directly from the tree into the ’Selected tags’ list box. Components like Compo-
nentArt [6] have incorporated such drag-and-drop functionality in .NET components.

Algorithms concerning granularity of data
The algorithm used for adjusting granularity of the data to be browsed is quite straight foreward. If the
granularity of the data is less than required, it simply leaves out the points not available. If the granu-
larity is higher than required, the algorithm calculates the mean value of the available data in the time
interval. In real life however, one might be interested in seeing for instance the spikes that we smooth
out. Our system can easily be extended with customized algorithms for this in the EasyIT.getTags
method, although the algorithms themselves might be very complex.

Built-in computations for the TagBrowser
Since all the data are readily available in the TagBrowser, it can be extended with some built-in func-
tionality. This could include calulating average, minimum or maximum values, or performing regres-
sion analysis on the data being displayed.

Separate WebAPI for web programmers
Our system includes a common API to be used for both internal functionality, and for the functionality
to be used by programmers developing custom web pages. Ideally this would be a separate WebAPI
containing a subset of the current WebAPI functionality. Since this is a prototype, it’s gathered in one
class for simplicity.

Customize WebAPI functionality
Since we have limited information on exactly how programmers at ABB want to use the WebAPI, the
available methods are very general. If many custom pages will require similar functionality, this might
be included in the WebAPI to tailor it to their specific needs.

237



238 CHAPTER 29. FURTHER DEVELOPEMENT

Validating user input
Our project was focused towards exploring the technology, rather than creating a robust solution. This
explains our choice of not spending time on validating user input. In a real world application, a com-
prehensive scheme for validation should of course be implemented. Visual Studio and ASP.NET in-
clude built-in components for making sure forms are filled out correctly.

Improving security
The system uses a simple scheme for implementing security. This should be extended for instance
to encrypt passwords. For any serious production use of the system where the users may access ac-
cess EasyIT WEB from outside the local intranet, the entire web solution should be ported to fully
encrypted communication channel. Technologies like HTTPS and SSL should be very easy it integrate
with EasyIT Web for this purpose.

Error handling
The system should have systematic ways of catching errors, writing them to a log and notifying
the user. Our system displays an interal error message not necessarily easily understood by a user.
EasyIT Server works under the assumption that the .NET OPC framework we utilize does everything
it should. It should handle errors from the OPC servers, lost connections and validate erroneous data.
This is a luxury we can afford as a prototype, but in a production system substantial effort will have to
be put in to making the system more robust when faced with external failure sources.

29.2 ESTIMATING TIME CONSUMPTION

This section will give a rough estimate as to how long time will be needed to implements the improve-
ments suggested in the last section. Because many of the improvements are waguely described, an
accurate estimation is difficult. Instead of estimating the exact number of hours spent, we have classi-
fied the improvements in three categories. Simple improvements are estimated to take under 25 hours
to implement. Medium improvements are estimated between 25 and 50 hours. Complex improve-
ments are estimated to take more than 50 hours. Table 29.1 categorizes the suggested improvements
using this scheme.

Improvement Complexity
XML-parser for registering subscriptions Complex
Tree structure for selecting tags for browsing Medium
Algorithms concerning granularity of data Complex
Built-in computations for the TagBrowser Simple
Separate WebAPI for web programmers Simple
Customize WebAPI functionality Medium
Validating user input Medium
Improving security Medium
Error handling Simple

Table 29.1: Estimation of the complexity of suggested improvements



APPENDIXG
CODE SAMPLES

G.1 INTRODUCTION

This chapter shows how the AppAPI and WebAPI can be used to create simple applications.

G.2 EXAMPLE APPLICATIONS

Figure G.1 and figure G.3 are code listings for two sample applications.

G.3 SHELLS FOR CUSTOM WEB PAGES

The following code listings show how the files outputted by the EasyITWeb look like. These are taken
from a page named ’MyPage’ with file name ’mypage’ under applcation 24. See listings G.6 and G.7

239



240 APPENDIX G. CODE SAMPLES

using System;
using EasyIt.DataItems;
using EasyIt.Application;

namespace Application
{

/// <summary>
/// This application checks if a specifed tag was over
/// a certain limit and writes
/// another tag both to the database and to a OPC server based on this.
/// </summary>
class PressureChecker
{

public PressureChecker()
{

const double PRESSURE_LIMIT = 150.0;

//connect to EasyIT
AppAPIClientBase b = new AppAPIClientBase(55, 6666, "localhost");

//Define tag we want
CTag tag = new CTag("opcda://testserver", "", "Pressure");
CTag[] tags = new CTag[1];

//Read tag directly from database.
CSet result = b.ReadTagsFromOPC(tags);

//figure out if pressure was over limit
double val = (double) result[0].Value;
bool overLimit;
if(val > PRESSURE_LIMIT)
{

overLimit = true;
}
else
{

overLimit = false;
}

Continues on next page

Figure G.1: The pressure checker sample application page 1



G.3. SHELLS FOR CUSTOM WEB PAGES 241

Continued from previous page

//Define new tag to write
CTag writeTag = new CTag("opcda://anothertestserver", "",

"PressureStatus");
writeTag.Timestamp = DateTime.Now;
writeTag.Value = overLimit;
writeTag.DataType = EasyItDataType.boolType;
writeTag.Quality = 1;
tags = new CTag[1];
tags[0] = writeTag;

//write tag to database
b.WriteTagsToDB(tags);
//write tag to opc
b.WriteTagsToOPC(tags);

}

[STAThread]
static void Main(string[] args)
{

new PressureChecker();
}

}
}

Figure G.2: The pressure checker sample application page 2



242 APPENDIX G. CODE SAMPLES

using System;
using System.Collections;
using System.Threading;
using EasyIt.DataItems;
using EasyIt.Application;
using EasyIt.RemoteInterfaces;

namespace Applications
{

/// <summary>
/// This sample application subscribes to two different tags at a rate of
/// 3 seconds.
/// It reads a config value from the database "averagesRequested". It then
/// calculates as many averages from the data it gets through the callback
/// as the config value says. After that it sleeps for one hour and repeats
/// everything from the start.
/// </summary>
public class Averager

{
int averagesRequested;
int averagesCalculated= 0;
EasyIt.Application.AppAPIClientBase b;
bool subscribe = true;
long setID;

public Averager()
{

//connect to EasyIT
b = new AppAPIClientBase(23, 6666, "localhost");

//define event listener, we want to handle data
b.DataArrival += new DataReceivedEventHandler(b_DataArrival);

//read config pair from database
averagesRequested = Convert.ToInt32(b.GetConfigValue("averagesRequested"));

//write config pair to database. Write startup time.
b.SetConfigValue("lastStartupDateTime", DateTime.Now.ToString());

//Define tags we want
CTag tag = new CTag("opcda://localhost/DSxPOpcSimulator.TSxOpcSimulator.1",

"", "Simulation Items.Real.Real_01");
CTag tag2 = new CTag("opcda://localhost/DSxPOpcSimulator.TSxOpcSimulator.1"

, "", "Simulation Items.Real.Real_02");

//Create a subscrition set with rate 3
CSet setm = new CSet("testSet", 3);
setm.AddTag(tag);
setm.AddTag(tag2);

Continues on next page

Figure G.3: The averager sample application page 1



G.3. SHELLS FOR CUSTOM WEB PAGES 243

Continued from previous page

//run forever, all further data handling is done in the DataArrival handler.
while(true)
{

//subscribe to set
subscribe = true;
averagesCalculated = 0;
setID = b.SubscribeSet(setm);
//sleep this thread until we have calculated enough averages
//in the callback method
while(subscribe)
{

Thread.Sleep(5000);
}
//we have calculated the requested number of averages, let’s unsubscribe,
//wait an hour and repeat
b.DataArrival -= new DataReceivedEventHandler(b_DataArrival);
b.UnsubscribeSet(setID);
Thread.Sleep(1000 * 60 * 60);
}

}

Continues on next page

Figure G.4: The averager sample application page 2



244 APPENDIX G. CODE SAMPLES

Continued from previous page

private void b_DataArrival(EasyIt.DataItems.CSet setm)
{

CTag tag1 = setm.Tags[0] as CTag;
CTag tag2 = setm.Tags[1] as CTag;
//get values
double d1 = (double)tag1.Value;
double d2 = (double)tag2.Value;

//calculate average
object average = (double) (d1 + d2)/2;

//Define tag to write to database
CTag[] tags = new CTag[1];

CTag tag = new CTag();
tag.Path = "";
tag.Name = "Average";
tag.Timestamp = DateTime.Now;
tag.Value = average;
tag.DataType = EasyItDataType.doubleType;
tag.Quality = 1;
tag.Deadband = 0.0f;
tag.Server = "Average application";
tags[0] = tag;

//write new tag to database.
b.WriteTagsToDB(tags);

//check if we have calculated enough averages.
if(averagesCalculated > averagesRequested)
{

subscribe = false;
}

}

[STAThread]
static void Main()
{

new Averager();
}

}

Figure G.5: The averager sample application page 3



G.3. SHELLS FOR CUSTOM WEB PAGES 245

<%@ Control Language="c#" AutoEventWireup="false" Codebehind="mypage.ascx.cs"
Inherits="WEB.modules.Custom.App24.mypage" Src="mypage.ascx.cs"
TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>
<h1>Under construction!</h1><br>
Please edit the file modules/Custom/App24/mypage.ascx in order to
customize this page.

Figure G.6: Code shell for mypage.ascx 1

namespace WEB.modules.Custom.App24
{

using System;
using System.Data;
using System.Web;

public class mypage : EasyITControl
{

public mypage()
{

PageTitle = "MyPage";
}

private void Page_Load(object sender, System.EventArgs e)
{

WebAPI webapi = (WebAPI)Application["webapi"];
}

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

InitializeComponent();
base.OnInit(e);

}

private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

}
}

Figure G.7: Code shell for mypage.ascx.cs 2





APPENDIXH
CLASS DIAGRAM

EasyITControl
-webapi : IWebAPI

ManagePages ManageSets ManageUsers MonitorApps

Browser Menu EditSets Autorefresh

WebAPIImpl
-easyit : EasyIT

IWebAPI

+appApi() : IAppAPI

AppAPIClientBase

AppAPIImpl
-easyIt : EasyIT

IAppAPI

EasyIT
-dc : DC
-db : DBConnector

DC DBConnector

APP 1 APP n

Database

Figure H.1: Overall class diagram

247



248 APPENDIX H. CLASS DIAGRAM

+AppAPIImpl
easyIt: EasyIt
id2Client: Hashtable
«Constructor» +AppAPI( )
-log(s: string): void
+Register(id: int, client: IAppClient): void
+GenerateCallback(id: int): void
+GetTags(id: int, dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries
+ReadTagsFromOPC(id: int, tags: CTag[]): CSet
+WriteTagsToOPC(id: int, tags: CTag[]): bool
+SubscribeSet(id: int, setm: CSet): long
+UnsubscribeSet(id: int, setID: long): void
+WriteTagsToDB(id: int, tags: CTag[]): void
+SpliceSets(id: int, set1: CSet, set2: CSet): CSet
+SetConfigValue(id: int, name: string, valueString: string): void
+GetConfigValue(id: int, name: string): string
+GetAllTags(id: int, dtStart: DateTime, dtEnd: DateTime, tags: CTag[]): CSeries

+IAppAPI

Register(id: int, client: IAppClient): void
GetTags(id: int, dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries

ReadTagsFromOPC(id: int, tags: CTag[]): CSet
WriteTagsToOPC(id: int, tags: CTag[]): bool

SubscribeSet(id: int, setm: CSet): long
UnsubscribeSet(id: int, setID: long): void

WriteTagsToDB(id: int, tags: CTag[]): void
SpliceSets(id: int, set1: CSet, set2: CSet): CSet

SetConfigValue(id: int, name: string, valueString: string): void
GetConfigValue(id: int, name: string): string

+GetAllTags(id: int, dtStart: DateTime, dtEnd: dtEnd, tags: CTag[]): CSeries

+AppAPIClientBase
«Const» EASYIT_REMOTEING_PORT: int
«Const» APPLICATION_CLIENT_ID: int
#appAPI: IAppAPI
+client: AppClient
-applicationID: int
-easyItPort: int
-easyItURL: string
«Constructor» +AppAPIClientBase(applicationID: int, easyItPort: int, easyItURL: string)
«Event» +DataArrival( ): DataReceivedEventHandler
+GetTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries
+ReadTagsFromOPC(tags: CTag[]): CSet
+WriteTagsToOPC(tags: CTag[]): bool
+SubscribeSet(setm: CSet): long
+UnsubscribeSet(setID: long): void
+WriteTagsToDB(tags: CTag[]): void
+SpliceSets(set1: CSet, set2: CSet): CSet
+SetConfigValue(name: string, valueString: string): void
+GetConfigValue(name: string): string
-client_IncomingDataHandler(setm: EasyIt.DataItems.CSet): void
+GetAllTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[]): CSeries

Figure H.2: Application related classes and interfaces



249

+OpcInfoObject
serverUrl: string
deadband: float
serverHandle: object
«Property» +ServerUrl( ): string
«Property» +Deadband( ): float
«Property» +ServerHandle( ): object
«Constructor» +OpcInfoObject(serverUrl: string, deadband: float)

+CSeries
-arrSets: ArrayList
+AddSet(thisSet: CSet): void
+CountSets( ): int
+GetSet(nIndex: int): CSet
+ToString( ): string
+RemoveSetAt(nIndex: int): void
+RemoveSet(tagSet: CSet): void
«Indexer» +this(index: int): CSet
-RemoveIf(tag: CTag, tagSet: CSet, nRate: int): void

+CSet
-deadband: float
-arrTags: ArrayList
-nRate: int
-strName: string
-id: long
-dtTimestamp: DateTime
-bActive: bool
«Property» +Deadband( ): float
«Property» +Rate( ): int
«Property» +Name( ): string
«Property» +Active( ): bool
«Property» +Tags( ): ArrayList
«Property» +Timestamp( ): DateTime
«Property» +ID( ): long
«Constructor» +CSet(name: string, rate: int)
+SortTags( ): void
+ToString( ): String
+AddTag(tag: CTag): void
+CountTags( ): int
+GetTag(index: int): CTag
+$ParseSemiList(str: String): ArrayList
+RemoveTagAt(nIndex: int): void
+RemoveTag(tag: CTag): void
+PrintToConsole( ): void
«Indexer» +this(index: int): CTag

«Enum»
+EasyItDataType
intType
doubleType
boolType
otherType

«Enum»
+EasyItApplicationStatus
noContact
running
responding
local

+CTag
-strServer: string
-strPath: string
-strName: string
-dataType: EasyItDataType
-objValue: object
-nQuality: int
-lInstanceID: long
-nDeadBand: float
-nApplicationID: long
-nRate: int
-dtTimestamp: DateTime
-opcInfoObject: OpcInfoObject
+SuperCopy( ): CTag
«Property» +GeneratedTagID( ): long
«Property» +InstanceID( ): long
«Property» +Server( ): string
«Property» +Name( ): string
«Property» +Path( ): string
«Property» +Quality( ): int
«Property» +Value( ): object
«Property» +DataType( ): EasyItDataType
«Property» +Timestamp( ): DateTime
«Property» +Rate( ): int
«Property» +Deadband( ): float
«Property» +ApplicationID( ): long
«Property» +OpcInfoObject( ): OpcInfoObject
«Constructor» +CTag(server: string, path: string, name: string)
«Constructor» +CTag( )
+Equals(obj: object): bool
+GetHashCode( ): int
+ToString( ): String
+Compare(x: object, y: object): int

Figure H.3: Data item classes



250 APPENDIX H. CLASS DIAGRAM

+DBConnector
«Const» -INITIAL_POOL_SIZE: int
-connectionString: string
-easyIt: EasyIt
-isReady: bool
-connectionPool: ArrayList
-usedConnectionPool: Hashtable
-lockingObject: object
-databaseHost: string
-database: string
-databaseUser: string
-databasePassword: string
«Constructor» +DBConnector(easyIt: EasyIt, databaseHost: string, database: string, databaseUser: string, databasePassword: string)
+GetSqlConnection( ): SqlConnection
+ReleaseSqlConnection(sqlConnection: SqlConnection): void
+Startup( ): void
+Shutdown( ): void
-getPoolConnection( ): DBConnection
-addConnectionToPool( ): DBConnection
-log(s: string): void

+DBConnection
$dbConnectionId: int
id: int
objConnect: SqlConnection
inUse: bool
«Property» +Id( ): int
«Property» +InUse( ): bool
«Property» +Connection( ): SqlConnection
«Constructor» +DBConnection(connectionString: string)
+DoQuery(query: string): SqlDataReader

+DC
$timeElapsed: long
easyIt: EasyIt
tagId2Tags: HashList
serverURL2OpcServer: Hashtable
set2appClient: Hashtable
server2OpcSubscriptions: HashList
tags: ArrayList
sets: Hashtable
timer: System.Timers.Timer
callbackLock: object
«Property» +ServerURL2Opc( ): Hashtable
«Property» +Tags( ): ArrayList
«Property» +Sets( ): Hashtable
«Constructor» +DC(easyIt: EasyIt)
+ReadSet(client: RemoteInterfaces.IAppClient, setm: CSet): long
+StopReadSet(client: RemoteInterfaces.IAppClient, setID: long): void
+Startup( ): void
+Shutdown( ): void
+W riteTagsToDB(tags: CTag[]): void
+GetApplicationName(id: int): string
-stopReadSet(client: RemoteInterfaces.IAppClient, setm: CSet): void
-removeTagFromSubscription(server: Opc.Da.Server, subscription: Opc.Da.Subscription, tag: CTag): void
-removeServer(server: Opc.Da.Server, serverUrl: string): void
-removeSubscription(server: Opc.Da.Server, subscription: Opc.Da.Subscription): void
-connectToOpcServers( ): void
-checkSetStart(setm: CSet): int
-doTesting( ): void
-subscribe(tag: CTag, rate: int): void
-addTagsToSubscription(subscription: Opc.Da.Subscription, tags: CTag[]): void
-addSubscription(server: Opc.Da.Server, rate: int): Opc.Da.Subscription
-addServer(url: string): Opc.Da.Server
-addServer(tag: CTag): Opc.Da.Server
-log(s: string): void
-handleApplicationCallbacks( ): void
-doCallback(set: CSet): void
-logOpcDataToDatabase(values: Opc.Da.ItemValueResult[]): void
-getValueAsStringFromValue(val: object): string
-getDataTypeAsStringFromValue(val: object): string
-getDataTypeFromValue(type: System.Type): EasyItDataType
-getQualityAsStringFromValue(val: Opc.Da.ItemValueResult): string
-TimerEvent(source: object, e: System.Timers.ElapsedEventArgs): void
-subscription_DataChanged(subscriptionHandle: object, requestHandle: object, values: Opc.Da.ItemValueResult[]): void

Figure H.4: DBConnector and DataCollector(DC) classes



251

+EasyIt
-components: System.ComponentModel.Container
-buttonClearLog: System.Windows.Forms.Button
-textBoxLog: System.Windows.Forms.TextBox
-dc: DC.DC
-db: DB.DBConnector
-web: WEB.WebAPI
-app: AppAPIImpl
-$easyIt: EasyIt
al: ApplicationLauncher.ApplicationLauncher
port: int
applicationDirectory: string
databaseHost: string
database: string
databaseUser: string
databasePassword: string
splash: SplashForm
id2Client: Hashtable

«Constructor» +EasyIt(port: int, applicationDirectory: string, databaseHost: string, database: string, databaseUser: string, databasePassword: string)
#Dispose(disposing: bool): void
-InitializeComponent( ): void
«Property» +AL( ): ApplicationLauncher.ApplicationLauncher
«Property» +ApplicationId2Client( ): Hashtable
«Property» +DC( ): DC.DC
«Property» +DB( ): DB.DBConnector
-startup( ): void
-startupRemoting( ): void
-startupAL( ): void
-startupDC( ): void
-startupDB( ): void
-buttonClearLog_Click(sender: object, e: System.EventArgs): void
-log(s: string): void
-button2_Click(sender: object, e: System.EventArgs): void
-CreateTag2SQL(tag: CTag): string
-CreateDate2SQL(start: DateTime, end: DateTime): string
-CreateTagDate2SQL(start: DateTime, end: DateTime, tag: CTag): string
-GetItemFromCTag(tag: CTag): Opc.Da.Item
-GetItemValueFromCTag(tag: CTag): Opc.Da.ItemValue
-GetTagFromItemResult(item: Opc.Da.ItemValueResult): CTag
-PrintSeries(series: CSeries): void
-properDoubleToString(d: double): string
+$GetInstance( ): EasyIt
+LogString(s: string): void
+GetAllTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[]): CSeries
+GetTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries
+SubscribeSetWeb(setm: CSet, fDeadband: float): CTag
+GetSetsWeb( ): CSet[]
+DeleteSetWeb(lSetID: long): void
+RestartSubcriptionsWeb( ): void
+UpdateSetSubscriptionWeb(setID: long, newSet: CSet, fDeadband: float): CTag
+ListTagsInDB( ): CTag[]
+ReadTagsFromOPC(tags: CTag[]): CSet
+SetConfigValue(id: int, name: string, valueString: string): void
+GetConfigValue(id: int, name: string): string
+WriteTagsToOPC(tags: CTag[]): bool
+SpliceSets(set1: CSet, set2: CSet): CSet
+GetApplicationStatus(applicationId: int): int
+GetSQLDate(date: DateTime): string
+GetFirstOrLatestTagFromDB(name: string, path: string, server: string, latest: bool): CTag
+GetValueObjectFromEasyITTypeAndValue(strValue: string, type: EasyItDataType): object
+GetTagFromReader(reader: SqlDataReader): CTag
+GetUniqueSetID( ): long
+Shutdown( ): void
-EasyIt_Load(sender: object, e: System.EventArgs): void

Figure H.5: EasyIT Server and Manager classes



252 APPENDIX H. CLASS DIAGRAM

+WebAPI

Log(text: string): void
RegisterCustomPage(applicationID: int, name: string, URL: string): void

RemoveCustomPage(PageID: int): void
GetApplicationList( ): DataSet

GetCustomPages(ApplicationID: int): DataSet
GetMenuTree( ): DataSet

Authorize(username: string, password: string): User
GetApplicationStatus(applicationId: int): int

GetApplicationStatus( ): DataSet
GetTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries

GetAllTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[]): CSeries
ReadTagsFromOPC(tags: CTag[]): CSet

ListTagsInDB( ): CTag[]
GetFirstOccurence(tag: CTag): CTag

GetLatestOccurence(tag: CTag): CTag
GetTagTree( ): DataSet

ExecuteSelectQuery(q: String): DataSet
GetSetsW eb( ): CSet[]

DeleteSetW eb(lSetID: long): void
SubscribeSetW eb(setm: CSet, fDeadband: float): CTag

UpdateSetSubscriptionW eb(setID: long, newSet: CSet, fDeadband: float): CTag
RegisterApplication(name: string, strExecutableURL: string): void

UpdateApplication(applicationID: int, name: string, strExecutableURL: string): void
RemoveApplication(applicationID: int): void

StartApplication(applicationID: int): void
StopApplication(applicationID: int): void

GetUserList( ): DataSet
CreateUser(newUser: User): bool

DeleteUser(username: string): void
UpdateUser(newUser: User): void

WebAPIImpl
easyit: EasyIt
«Constructor» +W ebAPIImpl( )
+Log(text: string): void
+RegisterCustomPage(applicationID: int, name: string, URL: string): void
+RemoveCustomPage(pageID: int): void
+RegisterApplication(name: string, strExecutableURL: string): void
+UpdateApplication(applicationID: int, name: string, strExecutableURL: string): void
+RemoveApplication(applicationID: int): void
+GetApplicationList( ): DataSet
+GetCustomPages(ApplicationID: int): DataSet
+GetMenuTree( ): DataSet
+GetTagTree( ): DataSet
+runQuery(q: String): DataSet
+Authorize(username: string, password: string): User
+GetTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[], gran: int): CSeries
+GetAllTags(dtStart: DateTime, dtEnd: DateTime, tags: CTag[]): CSeries
+ListTagsInDB( ): CTag[]
+ReadTagsFromOPC(tags: CTag[]): CSet
+GetApplicationStatus( ): DataSet
-getNameFromApplicationStatusBits(appStatus: int): string
+GetApplicationStatus(applicationId: int): int
+GetFirstOccurence(tag: CTag): CTag
+GetLatestOccurence(tag: CTag): CTag
+GetSetsW eb( ): CSet[]
+DeleteSetW eb(lSetID: long): void
+SubscribeSetW eb(setm: CSet, fDeadband: float): CTag
+UpdateSetSubscriptionW eb(setID: long, newSet: CSet, fDeadband: float): CTag
+StartApplication(applicationID: int): void
+StopApplication(applicationID: int): void
+GetUserList( ): DataSet
+CreateUser(newUser: User): bool
+DeleteUser(username: string): void
+UpdateUser(newUser: User): void

Figure H.6: Web related classes and interfaces on the EasyIt Manager



253

+EasyITControl

«Property» +PageTitle( ): string

+Menu

-Page_Load(sender: object, e: EventArgs): void
+RefreshMenu( ): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void

+ServerObject

«Constructor» +ServerObject(caller: Global)
+GetServerObject( ): WebAPI

+MonitorApps

«Constructor» +MonitorApps( )
-Page_Load(sender: object, e: EventArgs): void
#changeAppStatus(sender: object, e: CommandEventArgs): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void

+ManagePages

«Constructor» +ManagePages( )
-Page_Load(sender: object, e: EventArgs): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void
#deleteCustomPage(sender: object, e: CommandEventArgs): void
-newPageButton_Click(sender: object, e: EventArgs): void
-SaveConfigButton_Click(sender: object, e: EventArgs): void
-createFiles( ): bool

+ManageUsers

«Constructor» +ManageUsers( )
-Page_Load(sender: object, e: EventArgs): void
#deleteUser(sender: object, e: CommandEventArgs): void
#editUser(sender: object, e: CommandEventArgs): void
-NewUserButton_Click(sender: object, e: EventArgs): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void

+SelectApplication

«Constructor» +SelectApplication( )
-Page_Load(sender: object, e: EventArgs): void
#removeApplication(sender: object, e: CommandEventArgs): void
#editApplication(sender: object, e: CommandEventArgs): void
-createApplication(sender: object, e: EventArgs): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void

+EditSets

«Constructor» +EditSets( )
-Page_Load(sender: object, e: EventArgs): void
-getDataSetFromCSet(set: CSet): DataSet
#removeTag(sender: object, e: CommandEventArgs): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void
-AddTagButton_Click(sender: object, e: System.EventArgs): void
-SaveSetButton_Click(sender: object, e: System.EventArgs): void
-CancelButton_Click(sender: object, e: System.EventArgs): void

+ManageSets

«Constructor» +ManageSets( )
-Page_Load(sender: object, e: EventArgs): void
-getDataSetFromCSets(sets: CSet[]): DataSet
#deleteSet(sender: object, e: CommandEventArgs): void
#editSet(sender: object, e: CommandEventArgs): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void
-AddSetButton_Click(sender: object, e: System.EventArgs): void

+Autorefresh

-Page_Load(sender: object, e: System.EventArgs): void
-drawGraph(cSeries: CSeries, tags: CTag[]): void
-fillChartWithSeries(xyPlot: C1WebChart, cs: CSeries): void
-fixX(cs: CSeries): void
-cSeriesToPointArray(cs: CSeries, tagNr: int): PointF[]
-dateTimeToChartTime(cs: CSeries, i: int, tagNr: int): float
-ut(o: Object): void
-CSeriesToDataTable(cs: CSeries): DataTable
-tagToString(tag: CTag): String
#OnInit(e: EventArgs): void
-InitializeComponent( ): void

+Browser

«Constructor» +Browser( )
-Page_Load(sender: object, e: System.EventArgs): void
-initGraph( ): void
-drawGraph(cSeries: CSeries, tags: CTag[]): void
-fillChartWithSeries(xyPlot: C1WebChart, cs: CSeries): void
-fixX(cs: CSeries): void
-cSeriesToPointArray(cs: CSeries, tagNr: int): PointF[]
-dateTimeToChartTime(cs: CSeries, i: int, tagNr: int): float
-ut(o: Object): void
#OnInit(e: EventArgs): void
-InitializeComponent( ): void
-CSeriesToDataTable(cs: CSeries): DataTable
-tagToString(tag: CTag): String
-DropDownList1_SelectedIndexChanged(sender: object, e: System.EventArgs): void
-SetPlotAreaAttributes(usePlotArea: bool): void
-DataGrid1_SelectedIndexChanged(sender: object, e: System.EventArgs): void
-Button_Redraw_Click(sender: object, e: System.EventArgs): void
-CheckBox_ViewSmoothed_CheckedChanged(sender: object, e: System.EventArgs): void
-Button_Autorefresh_Click(sender: object, e: System.EventArgs): void
-CheckBox_showall_CheckedChanged(sender: object, e: System.EventArgs): void

Figure H.7: Web related classes on the EasyIT Web





Part VI

Test Document

255





CHAPTER30
INTRODUCTION

30.1 PURPOSE

The purpose of this part is to document how we have planned and performed testing of the require-
ments stated in the requirements specification.

This document was commenced in the Requirements Specification phase, and has evolved through-
out the Software Design Description and Implementation phases. When the latter phase was finished,
we performed the tests described in Appendix I. The overall testing objectives are:

• Find irregularities in the behavior of the system, as early as possible.

• Verify that specified requirements are met.

• Verify that existing and new processes can be performed as intended.

• Verify that all modules in the system work as an integrated system.

• Show the customer that the product has the agreed functionality and quality.

30.2 OVERVIEW

This document is divided into 4 chapters. The following chapter describes the overall test plan for the
system. This chapter forms the foundation for all testing procedures performed on the system. Chapter
32 is a collection of templates used in the test process. In the summary, chapter 33, we will summarize
how the different testing procedures were performed, including the results from these tests, before the
summary provides and conclusion of the tests performed and the system’s performance in general.

This document includes two appendixes: Appendix I contains the test report, and Appendix J
contains the test log. The aforementioned summary (chapter 33) draws its conclusion from these two
appendices,

257





CHAPTER31
OVERALL TEST PLAN

31.1 INTRODUCTION

This chapter describes the overall test plan for EasyIT. It includes explanation of different test methods,
the objective of testing, and a description of our selected test methods. The test plan documents how
we intend to verify that the implementation is according to the requirements specification.

EasyIT is a system that relays heavily on the performance of other systems in its environment.
However, during the development of EasyIT, there will be no possibility to carry out a test in context
with a real control system. This limitation forms a challenge in finding good and realistic tests. The
situation will mainly affect module and stress testing of DI, but will also affect the rest of the testing
processes. Detailed plan for testing of the separate modules will follow later in this chapter, in 31.8

31.2 COMMON METHODS

There exists two distinct common approaches for testing, Black Box and White Box. The two methods
give us different knowledge about the system, and both will be used in the overall test plan for EasyIT.

31.2.1 Black Box testing

In Black Box testing the system is treated without considering its internal structures. All test input is
given and output is collected on the outside of the object being tested. This method is often used to
test the implementation of functional requirements. We intend to use this method for this purpose.

31.2.2 White Box testing

In White Box testing, knowledge about the internal structures is necessary. The data used for input is
specifically selected for testing of the different areas of the system.

259



260 CHAPTER 31. OVERALL TEST PLAN

31.3 TEST STAGES

This section describes the different test stages defined in the project. These stages cover the whole
implementation phase from design of the first classes, to the final acceptance test.

31.3.1 Unit tests

This is tests of the smallest defined units in the system. These tests forms the base of the base of the
continuous verification of the systems performance. All unit tests in this project will be executed by the
designer, which also generates the test cases based on the design document.Unit tests are performed
as White Box tests.

31.3.2 Module test

When units are joined together, they form separate software modules. Module testing is performed
to certify that interaction between the separate units is according to specifications. Errors occurring
at this stage, should in general not be related to malfunction in single units. Those errors should be
discovered in unit testing. In the requirements specification we have identified three separate modules
in EasyIT:

• Data Collector, Database Connector and Database

• APP-API

• WEB - Web portal, and WEB-API

We will perform Black Box testing in the module test. The test phase for each module will not occur
at the same time, because of dependencies in function and implementation. Execution plan for the
module test will be described later in this chapter.

31.3.3 Integration test

At this stage, the different software modules are joined together. Testing will be executed on selected
parts of the system to discover possible errors in interaction between modules. Malfunction in previ-
ously tested modules should have been discovered in earlier module testing. In these tests, the system
will be treated as a Black Box. The functions tested, are according to those implemented in the cur-
rent increment. In our test plan we will indirectly execute the integration test stage while performing
module testing, since we will use previously tested modules as a test environment during the module
testing.

31.3.4 System test

As in general integration tests, we will test the system in a simulated environment, to certify that its
interface to other subsystems and users is according to requirements specification.

We intend to use Black Box testing at this final integration test. EasyIT has three major interfaces to the
outside environment.

• the control sub-system through OPC.

• the human user through the web interface

• the application interface



31.4. TEST TYPES 261

Testing of the system will be executed simultaneously from, and on, all three interfaces. OPC test
data that will be produced by an OPC simulation server. Test data will be described later in this
document.

31.3.5 Acceptance test

The acceptance test serve the purpose of a final system test. The former tests should have discovered
all technical errors in the system before this stage. This test will be performed by the customer alone,
based on the general system documentation. On customers request, more in-depth information may
be provided. All additional information will be registered as a documentation or system flaw. This
final test will conclude whether the product satisfies its initial requirements or not.

31.4 TEST TYPES

This section describes the two test types we will focus on in the project, namely functional testing
and testing of non-functional requirements. We could have extended the number of types to include
independent tests for process testing, interface testing and integrity testing, but we will include these
types while testing the non-functional requirements. These requirements will for the most part be
tested in module testing of WEB and at the system test stage.

31.4.1 Functional testing

Testing of functional requirements, as specified in the requirements specification. This test type is
included at all testing stages.

31.4.2 Testing of non-functional requirements

Performed both in module and system test stage. For most parts of the system this test is equivalent to
interface, performance and stress testing.

31.5 TEST APPROACHES

There are numerous ways of carrying out a test stage. Our criteria for choosing approach depends on
the nature of the system we are developing. This is also discussed in chapter 8 in the Project Directive.

31.5.1 Requirements based testing

We have selected to follow a requirements based testing approach, an approach we find applicable.
Which requirements to be tested is presented later in this chapter. In general we aim at testing as many
as possible of the requirements defined in the requirements specification. Requirements tested are both
functional and non functional requirements.

31.6 TEST DATA RESOURCE

OPC test data will be provided by the DSxPOpcSimulator, an OPC Server for simulation and testing.
The server generates random, ramped, and stepped values in the OPC protocol, and is fully config-
urable by the user.



262 CHAPTER 31. OVERALL TEST PLAN

31.7 ERROR HANDLING

This section describes classification of errors and incidents in the project. This includes description of
error handling procedures.

31.7.1 Error and incident classification

The definitions in this section is taken from ’’Test Management Plan Guidelines”, presented in lecture
Oct-01-04.

Critical: The defect causes system crash, loss or corruption of data. The defect also stops the testing
completely, both for the test being run and for other tests. Correcting this error or implementing this
change request is crucial for the system to work properly.

High: The defect stops the current test, and might also have an impact on testing concerning inter-
facing units.

Medium: The defect affects this test only and has limited impact for the test progress. Correcting
this error may add value to the business in terms of time and/or cost.

Low: The defect does not stop the current test and has no impact on the test progress.

31.7.2 Error handling procedures

All errors detected during the tests will be reported using the error reporting form (see 32.2). However,
minor errors (class Low) that are corrected during the test stage do not need to be reported. This rule
applies mainly to unit testing. Errors in class medium and above initiates a re-execution of the test,
after the error has been corrected.

31.8 TEST PLAN

This section describes the general test process, that is the different activities and the general sequencing
of activities to take place as part of the test effort for each individual test stage. The tests described will
be performed at different stages in the implementation phase. Responsible for all tests is Test Manager,
but tests may and will sometimes be executed by other roles in the group.

31.8.1 Unit Test

The smallest and first test to take place is the unit test. We have identified the following units that will
be included in the unit test:

Units in DI

• APP-API

• WEB-API

• Data Collector

• Database Connector

• Database

Units in WEB



31.8. TEST PLAN 263

• Server Connector

• Tag Browser

• Config Tool

• APP Monitor

Testing of these units will be by executed by developer during the implementation phase. Require-
ments tested are those identified in the design document. We will not document these tests, due to the
nature of the system we are developing. As previously discussed the final product will take the form
of a prototype, and we have chosen at this stage to emphasize implementation rather than documen-
tation.

31.8.2 Module and integration test

APP-API
 WEB-API


DI
 WEB


OPC Sub layer


Data Collector

Database Connector


Database


Applications
 User Interface


Web - Portal


MT-DI


MT-WEB


MT-API


Figure 31.1: Module and Integration Test

The module tests will be executed incrementally. By doing so, we will minimize the amount of
time used to prepare each test. Instead of designing numerous specific test scripts, we intend to use
a previously tested module to provide data and environment for the tests. This approach creates a
gradual transition from module to integration test phase, since interaction between modules will be
tested indirectly while each module is tested. The tests will be executed by the developer group for
each module in company with the test manager. Figure 31.1 illustrates the three module tests and the
interfaces they are affected by. The three circles representing the tests also illustrates how integration
of the three modules will be tested.

1. The first module to be tested is the module containing the three units; Data Collector, Database
Connector and Database module. This module forms the base of the DI. This module will be
tested with the test cases MT-DI-1 - MT-DI-12 (see I.1), which covers all functional requirements
for DI.

2. (a) The second module test will test the APP-API. The test can be classified as both a module
and an integration test, since it aims to test APP-API as a module, while also testing the



264 CHAPTER 31. OVERALL TEST PLAN

integration with the previously tested sub layers of the DI. This explains why the entity APP-
API is treated independently as a unit in the former test stage and now as an independent
module.

(b) WEB: The third module and integration test is testing the WEB module and the interface
between WEB and DI (WEB-API).

In addition to the general module tests, a stress test (Figure I.25) on DI and the database is also planned
to be executed. This test will be performed according to the quality criteria proposed in chapter 8.

31.8.3 System test

The system test will be executed by the end of the implementation period. In this phase the entire sys-
tem will be tested with the Black Box approach. The test will be executed in a simulated environment,
where the system receives input from all of it three interfaces.

Requirements tested from test application

• Set handling

• Deadband handling

• Read/Write data

• Historical data

• Configuration

Requirements tested from web user

• General functional requirements

• Data presentation

• Configuration

• WEB-API

Requirements tested from the OPC Sub layer

• Data Read/Write

• Scheduling

• Handling Tags

Several of the requirement tests for the different modules overlap. Testing of requirements for the
APP-API will also indirectly test most of the requirements for DI. The system tests will be executed as
followed:

ST-1 Configure DI to read and store tags.

ST-2 Creation of a test application. We will by doing this test, secure the attainment of the overall qual-
ity goals proposed in the project directive, chapter 8. The APP should use functions described in
API requirements.

ST-3 Test execution of the application. Testing both APP-API and DI requirements.

ST-4 Create web page for the test application.

ST-5 Test Web portal with the predefined MT-WEB tests, and test application running.



31.8. TEST PLAN 265

31.8.4 Acceptance Test

The final acceptance test will be a modified version of the system test, with a time limit for execution
set to two hours. Instead of having to develop code for the test application (Figure: I.27), the customer
will be given a code example ready to use. Our conceptual end-user is familiar with the tools and
procedures for writing applications for EasyIT. We do not expect the tester, our customer, to be that
comfortable with these features of EasyIT in the few minutes reserved for this test. This is why we
alter ST-2.

Table 31.8.4 summarize the different test stages used in the project.

Unit Test Module and Integration Test System Test Acceptance Test
Planned by TM TM TM TM

Executed by Designer Project/TM Project/TM Customer
Checklists created by Designer TM TM TM
Test cases created by Designer TM TM TM

Test data provided by Project Project Project Project
Acceptance criteria Checklist No High Errors No High Errors Customer approval

Schedule Week 43/44 Week 45 Week 46 Week 46

Table 31.1: Test Scope



266 CHAPTER 31. OVERALL TEST PLAN

31.9 REQUIREMENTS TO BE TESTED

Following requirements will be tested:

• Table 19.1: DI requirement list

• Table 19.13: API requirement list

• Table 19.29: Functional requirements for WEB

31.10 REQUIREMENTS NOT TO BE TESTED

WEB-1 All data series logged from OPC servers and data series written by applications shall be available
through the web portal. The WEB portal does not explicit distinct these two types of data. The re-
quirement will be indirectly tested while testing other functions which utilize data from database.

WEB-3 When viewing data from applications operating on real time data, the user shall be presented with
the newest data available at the time of his request. The requirement has low priority, and will be
implemented before the last increment. If implemented, then a unit test will be performed by
designer.

DB-4 The database must support the Structured Query Language (SQL). Since Microsoft SQL Server is
chosen as a database server, we do not see the need for testing this requirement.

DB-5 The database must be able to run physically separated from the rest of our application. Since the project
has only one PC at disposal we do not have the ability to test this requirement.



CHAPTER32
TEMPLATES FOR TESTING

32.1 INTRODUCTION

All tests executed will be documented by the following templates.

• Test description table, written by TM - Including; detailed step by step description written inde-
pendent for each test.

• Error reporting form

32.2 TEMPLATES

Test ID Unique Test ID 
Title  
Test Stage Module/System/Acceptance test 
Responsible  
Executed by  
Date  
Pre Conditions   

Task Expected response Result Test Spec. 
 
 
 
 

  

Passed/Failed  
Comments  
Ref. to error log  
 

Figure 32.1: Test description table

267



268 CHAPTER 32. TEMPLATES FOR TESTING

 
Error Report ID  
Classification L / M / H / C 
Reported By  
Date  
Description  
Responsible for correction  
Correction description  

 
 
 
 
 
 
 

 

Figure 32.2: Error Report Table



CHAPTER33
SUMMARY

All the tests (module tests, system test and the acceptance test) were executed with a satisfactory result.
We revealed several issues to be improved, but we did not experience any incidents which could be
classified as errors in our system. One reason for this is maybe the way the implementation and unit
testing process was done. The top down approach with defined requirements for each phase made us
put an effort in getting rid of many errors in the early stages. Important matters, such as integration of
modules and connection to interfaces, were prototyped before the actual implementation phase began.
In that way we had stable versions of the system when the final requirements were implemented and
the official module test and system test were executed.

One test case, STRESS-1, could not be executed due to limitations in our test environment. To exe-
cute this test we would have needed more than the one test machine provided by the course and other
test servers.

Even though the tests did not reveal any gap between our system and the requirements specifica-
tion, there are many issues to be solved before it could be classified as stable and applicable for an
end user. Our ideas and plans for further development of EasyIT are found in the Implementation
Document. A summary of further development and cost estimation is also found in the evaluation
document. The requirements specification and hence the tests were defined for a prototype. That has
allowed us to overlook important matters for ready-to-ship software, for example security matters such
as encryption of passwords, and validation of user input. While these matters are indeed important
for software ready to ship, these matters can be overlooked for prototyp software such as EasyIT.

We are happy to conclude that we have documented the fulfillment of all functional requirements
for DI, APP-API and WEB.

269





APPENDIXI
TEST REPORT

This chapter describes the results from executing the test stages described in the overall test plan (see
chapter 31). The tests in this section was made during the Design / Test Design phase. The environ-
ment for all tests have been an ordinary computer - 1 GHz - 512 MB Ram. Additional description of
data used, and results from the tests are provided in the Test Log, Appendix B J.

I.1 UNIT TESTS

As stated in the overall test plan, unit tests will not be documented. However the identified units have
been continuously tested during the implementation phase. The DSxPOpcSimulator has been used
to provide test data during implementation. The same test server will be used for the documented
module and system tests. The developers report that unit testing has been executed, and all units
perform as expected before the module tests takes place.

271



272 APPENDIX I. TEST REPORT

I.2 MODULE TEST INCREMENT 1 - DI

The first documented test to be executed is the DI module test. This section displays the test cases from
MT-DI-1 to MT-DI-5.

I.2.1 MT-DI-1

Test ID MT-DI-1 
Title DI reads synchronous from OPC-server  
Test Stage Module Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 01.11.04 
Pre Conditions  Two OPC test servers running on test machine. 

Task Expected response Result Test Spec. 
1. DI is given 
two random 
selected tags 
from the APP-
API that needs 
an update. 

1. DI will by itself 
figure out which 
OPC-server(s) need to 
be contacted,  
make contact with them 
- and request 
synchronous update. In 
this state all other 
connections will be 
blocked. The updated 
values are delivered to 
APP-API 
 
2. Data delivered to 
APP-API are 
consistent. 
 

1. Both OPC 
servers are 
contacted, 
and 
synchronous 
tag update is 
done.  
Tag values, 
and OPC- 
server 
addresses are 
shown in log 
table. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.1: MT-DI-1



I.1. UNIT TESTS 273

I.2.2 MT-DI-2 and MT-DI-3

MT-DI-2 and MT-DI-3 are executed as one test since MT-DI-3 is depending on having a subscription to
stop.

 
Test ID MT-DI-2 
Title DI reads asynchronous continually (subscribes to a data tag) – 

Including DB logging  
Test Stage Module Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 01.11.04 
Pre Conditions Two OPC test servers running on test machine. 

Task Expected response Result 
1. DI is given a set of 
random selected tags  
from APP-API that 
needs to be read 
continuously at a 
given rate. The rate, 
every n seconds, is 
supplied.  
 

1.1. DI will by itself 
figure out which 
OPC-server(s) need 
to be contacted, 
make contact with 
them, and request 
asynchronous 
update. DI should be 
able to perform 
other tasks while 
waiting for interrupt 
from OPC server. 
The updated values 
are delivered to 
APP-API. All values 
will be logged in 
DB.  
 
1.2. Data logged in 
DB and data 
delivered to APP-
API are consistent. 

1. At first try we get 
an internal error 
message (see 
comments). After 
having restarted the 
OPC servers we get 
the expected result. 

Test Spec. 

2. Execute MT-DI-3 2.1 See MT-DI-3 2.1 See MT-DI-3 
Passed/Failed Passed 
Comments At first try we are unable to log from 

DSxPOpcSimulator.TSxOpcSimulator.1, because the test server 

Figure I.2: MT-DI-2



274 APPENDIX I. TEST REPORT

 
Test ID MT-DI-3 
Title DI stops a continually asynchronous read.(A subscribed tag) 
Test Stage Module Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 01.11.04 
Pre Conditions  1. Two OPC test servers running on test machine. 

2. MT-DI-2 is executed and subscription not stopped 
Task Expected response Result Test Spec. 
1. DI is given a 
command from 
APP-API to stop 
subscribing a group 
of tags.  

1. DI will by itself 
figure out which 
OPC-server(s) need 
to be contacted, 
make contact with 
them, and cancel 
further subscription. 
DI should be able to 
perform other tasks 
while waiting for 
acknowledgement 
from OPC server. 
 
2. Data logged in 
DB and data 
delivered to APP-
API are consistent. 
 

1. Subscription was 
stopped according 
to the given signal. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.3: MT-DI-3



I.1. UNIT TESTS 275

I.2.3 MT-DI-4
 
Test ID MT-DI-4 
Title DI starts applications  
Test Stage Module Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 01.11.04 
Pre Conditions  Schedule table is not empty. 

Task Expected response Result Test Spec. 
1. DI starts up and 
checks database to 
figure out which 
applications it needs 
to start. Starts all 
needed applications. 
 

1. Applications start 
up. 
 

1. Application start 
up according to 
specifications from 
database. 

Passed/Failed Passed 
Comments The following was written to EasyIt- log: AL: application 

C:\work\EasyIt\EasyIt\EasyItStarter\bin\Debug\apps\HackerTest.exe 
started. 

Ref. to error log No errors occurred 
 

Figure I.4: MT-DI-4



276 APPENDIX I. TEST REPORT

I.2.4 MT-DI-5
 
Test ID MT-DI-5 
Title Creation and removal of tag groups. 
Test Stage Module Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 01.11.04 
Pre Conditions  Two OPC servers are running. 

Task Expected response Result 
1. DI is told directly 
by APP-API to start 
subscription on a tag 
from one of the two 
servers.  
1.2. Step one is 
repeated 8 times.  

For each new 
requested tag: 
1.1. DI checks the 
tags and finds out 
which tags belong 
on the same servers.  
1.2. DI creates sub-
groups with all the 
tags with the same 
rate, on the same 
servers in 1).  
1.3 DI subscribes to 
the needed 
subgroups on the 
different OPC-
servers. 

1.1 Subscription 
from to servers is as 
expected. New tags 
are added to their 
respective sub-
groups. 

Test Spec. 

2.1 The subscriptions 
of tags created in 1), 
is requested to be 
deleted from APP-
API.  
 

2.1. DI checks the 
tag and finds out 
which sub-groups it 
is in. 
2.2. DI deletes the 
tags from the 
groups. 
2.3. DI stops all 
subscriptions for 
empty sub-groups. 
2.4 DI disconnects 
from all servers 
without any 
subscriptions. 

2.1 Tags are deleted 
from sub-groups 
2.2 Subscription of 
the empty sub-
groups is stopped.  
2.4 DI has 
disconnected from 
the two test servers. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 

Figure I.5: MT-DI-5



I.1. UNIT TESTS 277

I.3 MODULE TEST INCREMENT 2 - API

The second test increment is testing of the APP-API. This section describes the test cases from MT-API-
1 to MT-API-13.

I.3.1 MT-API-1

 
Test ID MT-API-1 
Title Define set of tags 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  All MT-DI tests have been executed 

Task Expected response Result Test Spec. 
1. Test application 
creates a set-object. 

1. A new set was 
created. 

1. New set was 
created as expected. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.6: MT-API-1



278 APPENDIX I. TEST REPORT

I.3.2 MT-API-2

 
Test ID MT-API-2 
Title Add tags to a set 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  All MT-DI tests have been executed 

Task Expected response Result Test Spec. 
1. Test application 
adds tags to the set 
created in MT-API-
1. 

1. The tags are 
added to the set. 

1. The tags were 
added to the set as 
expected. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.7: MT-API-2



I.1. UNIT TESTS 279

I.3.3 MT-API-3

 
Test ID MT-API-3 
Title Remove tags from a set 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  All MT-DI tests have been executed 

Task Expected response Result Test Spec. 
1. Test application 
remove tags to the 
set created in MT-
API-1. 

1. The tags are 
removed from the 
set. 

1. The tags were 
removed from the 
set.  

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.8: MT-API-3



280 APPENDIX I. TEST REPORT

I.3.4 MT-API-4

 
Test ID MT-API-4 
Title Splice sets 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the splice 
function in the APP-
API with to sets as 
arguments. 

1. The API returns a 
new set with the 
following 
properties:  
 
• The new set is an 
union of the two sets  
 
• If tags intersect, 
only the most up to 
date are members of 
the new set. 
 

1. The result is as 
expected. The new 
set is a union of the 
two sets.  

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.9: MT-API-4



I.1. UNIT TESTS 281

I.3.5 MT-API-5
 
Test ID MT-API-5 
Title Delete a set 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  All MT-DI tests have been executed. 

Task Expected response Result Test Spec. 
1. Test application 
deletes the set object 
created in MT-API-
1. 

1. The set is deleted. 1. The set was 
deleted. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.10: MT-API-5



282 APPENDIX I. TEST REPORT

I.3.6 MT-API-6
 
Test ID MT-API-6 
Title Setting the deadband variable 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
set the deadband 
variable on a tag. 
 
2. Test application 
adds tag to set. 
 
3. Test application 
subscribes to set. 

1. APP-API asks DI 
to subscribe to the 
set.  
 
2. New data is only 
received from OPC 
for this tag if the 
new data is changed 
more than the 
deadband indicates. 

1. New data were 
only received if the 
value varied more 
than the deadband 
variable. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.11: MT-API-6



I.1. UNIT TESTS 283

I.3.7 MT-API-7
 
Test ID MT-API-7 
Title Subscribe to a set of tags 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the API. The 
call provides the set 
and the rate at 
which the set is to 
be subscribed at. 

1. The APP-API 
subscribes to the set 
in DI and returns a 
set ID immediately 
to the application. 
 
2. In accordance to 
the rate, the APP-
API calls the 
application back 
regularly. The 
callback contains a 
new set with the 
latest values of the 
tags in the requested 
set. 

1. Subscription was 
established, as 
expected. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.12: MT-API-7



284 APPENDIX I. TEST REPORT

I.3.8 MT-API-8
 
Test ID MT-API-8 
Title Terminate subscription of tags 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the APP-API. 
The application 
provides the ID of 
the set to be 
terminated. 

1. APP-API tells DI 
to terminate the set 
requested by test 
application. 

1. Termination of 
subscription 
executed as 
expected. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.13: MT-API-8



I.1. UNIT TESTS 285

I.3.9 MT-API-9
 
Test ID MT-API-9 
Title Synchronous poll of a set of tags 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the API. The 
call provides the ID 
of the set. 

1. APP-API gathers 
data and returns the 
set. The control of 
the caller is not 
released until the set 
is returned. 
 
2. The newest data 
set is returned to the 
application. 

1. The synchronous 
poll executed as 
expected. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.14: MT-API-9



286 APPENDIX I. TEST REPORT

I.3.10 MT-API-10

 
Test ID MT-API-10 
Title Write data back to the DB 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove  
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the API with a 
set of tags as 
argument. 

1. The set is stored 
in the database. 

1. The set is stored 
in the database, 
according to the 
expected response. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.15: MT-API-10



I.1. UNIT TESTS 287

I.3.11 MT-API-11

 
Test ID MT-API-11 
Title Read data from DB 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the APP-API 
with a tag, a from-
date and a to-date.  

1. The APP-API 
gets all logged tag 
values of the given 
tag in the given 
interval and returns 
this as a series of 
tags to the 
application. 

1. APP-API gets all 
tags in the specified 
interval. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.16: MT-API-11



288 APPENDIX I. TEST REPORT

I.3.12 MT-API-12

 
Test ID MT-API-12 
Title Write configuration (And read configuration) 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result 
1.1 Test application 
calls the API, 
requesting a 
configuration write. 
The application 
identifies itself to 
the API, so that any 
old configuration 
will be updated. 

1.1 If the 
configuration 
identification is 
unknown, the API 
creates a new 
configuration record 
for the specified 
configuration. If the 
configuration id is 
know, the 
configurations are 
stored directly. 

1.1 The test 
application writes 
"testvalue" to the 
config field 
"TestField"; 
The database shows 
that config field 
TestField for 
application with the 
id of the test 
application is stored 
with value 
"testvalue". 
 

Test Spec. 

2.1 Execute MT-
API-15 

2.1 See MT-API-15 2.1 See MT-API-15 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.17: MT-API-12



I.1. UNIT TESTS 289

I.3.13 MT-API-13

 
Test ID MT-API-13 
Title Read configuration 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 03.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. OPC test server is running  
3. Functions used in sub layers of DI are implemented 

Task Expected response Result Test Spec. 
1. Test application 
calls the API, 
requesting 
configurations. The 
application has to 
identify itself to the 
API, so that the right 
configuration can be 
returned. 

1. The API returns 
the configuration to 
the application. 

1. A test application 
reads the config. 
field "TestField" 
from MT-API-14. It 
gets the correct 
value, "testvalue", 
returned. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.18: MT-API-13



290 APPENDIX I. TEST REPORT

I.7 ACCEPTANCE TEST

The acceptance test was executed successfully on the 11.11.04. The test cases used are identical to the
ones covering the system tests (except ST-2). Since no errors occurred, the test cases will not be repeated
here. The exception is, that instead of having to develop code for the test application (Figure: I.27), the
customer was given a code example ready to use. The code example was the test application written
by tester in ST-2. The customer was given a code walkthrough of the test application, as a presentation
of the feature.
Since our customer is located in Oslo, the test was done via Microsoft’s Remote Desktop. The test
executors were able to observe the tester on the shared computer desktop. For communication an
ordinary telephone connection was used.



I.7. ACCEPTANCE TEST 291

I.4 MODULE TEST INCREMENT 3 - WEB

The third test increment is testing of the WEB. This section describes the test cases from MT-WEB-1 to
MT-WEB-6.

I.4.1 MT-WEB-1
 
Test ID MT-WEB-1 
Title Authorize user 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 04.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. DI is running 
Task Expected response Result 
1. User enters 
the URL for 
EasyIT in the 
web browser. 

1.1. The web portal 
redirects the user to a 
login page, prompting 
the user 
for his username and 
password 

1.1 Ok. 
Webpage is 
displayed in 
browser 

2.1 The tester 
supplies a 
regular 
username and 
password. 
2.2. User press 
”Log in” in the 
web interface. 

2.1. The web portal 
accesses the user 
database through the 
web API. 

2.1 User name 
is first wrong 
spelled. (see 
comments) 
 
2.2 Correct 
username is 
given.  

Test Spec. 

3.1 Repeat from 
2.1. This time 
supplying an 
administrator 
username. 

3.1. The web portal 
receives a notice that 
the user has been 
logged in, and 
additional information 
about the user. 
3.2. The web portal 
displays a start page 
giving an overview of 
the available 
applications. 
3.3. If the user is an 
administrator. The web 
portal displays a 
control panel allowing 
the user to choose 
between the available 
administrator tasks. 

3.1. Start page 
is displayed, 
both for user 
and 
administrator 
logon. 

Passed/Failed Passed 
Comments In 2.1, the username was first wrong spelled. The web 

portal gave an error message that it did not recognize the 
user. The test continued without restarting.  

Ref. to error log No errors occurred 
 

Figure I.19: MT-WEB-1



292 APPENDIX I. TEST REPORT

I.4.2 MT-WEB-2
 
Test ID MT-WEB-2 
Title View results outputted by applications  
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 04.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. User is logged in 
Task Expected response Result 
1.1 The tester selects 
an application to 
investigate further 
 

1.1 The web portal 
displays a list of the 
available web pages 
for the selected 
application. 

1.1 The 
correct list 
is 
presented 

Test Spec. 

2.1 The tester selects 
which results to 
view. 

2.1 The web portal 
displays the data in 
the way specified by 
application the 
programmers that 
have customized the 
web page 

2.1. The 
correct 
results are 
presented. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.20: MT-WEB-2



I.7. ACCEPTANCE TEST 293

I.4.3 MT-WEB-3
 
Test ID MT-WEB-3 
Title Browse data series logged by DI 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 04.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. User is logged in 
Task Expected response Result 
1.1 The tester selects 
which data series to 
be browse, and sets 
granularity and time 
span. 
 
 

1.1. The web portal 
gets the selected 
data series from the 
DI  
 

1.1. The 
selected 
tags appear 
in the list 
box. 

Test Spec. 

2.1 The tester selects 
how the data series 
should be displayed 
(test for both table 
and time plot) 
 

2.1. The web portal 
displays the data in 
the way specified by 
the user 
 

2.1 Data 
series is 
displayed 
in both 
table and 
time plot. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.21: MT-WEB-3



294 APPENDIX I. TEST REPORT

I.4.4 MT-WEB-4
 
Test ID MT-WEB-4 
Title Configure applications  
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 04.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. Tester is logged in as Administrator 
3. The tester has selected “Configure applications” in 

the menu 
Task Expected response Result 
1.1 The tester 
selects an 
application to 
configure. 

1.1. The web portal displays 
the existing configuration of 
the chosen application 

1.1 
Configur
ation is 
displayed 

2.1. The tester: 
- adds a web 
page 
-deletes a web 
page 
-changes 
application 
name  

2.1 The web portal allows 
changes in configurations to 
be made. 

2.1 Ok. 

Test Spec. 

3.1 The tester 
submits the 
changes made 
in 2.1. 
 

3.1. The web portal reads the 
user input, and makes the 
appropriate 
changes to the configurations 
3.2. The web portal receives 
a notice when the changes 
are saved 
3.3. The web portal displays 
a confirmation to the user 

3.1 A 
confirma
tion is 
displayed
. 
Configur
ation is 
saved. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 

Figure I.22: MT-WEB-4



I.7. ACCEPTANCE TEST 295

I.4.5 MT-WEB-5
 
Test ID MT-WEB-5 
Title Manage user accounts 
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 04.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. Tester is logged in as Administrator 
3. Tester has selected “Manage users” in the menu 

Task Expected response Result 
1. The tester selects a 
user to configure 
 

1.1. The web portal 
displays the 
existing 
configuration for 
the chosen user 
1.2. The 
administrator is 
allowed to edit 
properties of the 
selected user 

1.1. 
Existing 
configurati
ons are 
displayed. 

Test Spec. 

2.1. The tester alters 
configuration data for 
the user and which 
applications the user 
is permitted to 
access, and submits 
the changes. 

2.1. The web portal 
reads the user input, 
and makes the 
appropriate 
changes to the 
configurations. 
 

2.1. (See 
comments) 
2.2. 
Changes 
are 
submitted 
and stored. 

Passed/Failed Passed 
Comments By accident the tab key was pressed when entering 

configurations. The server responded with an error 
message. Since user validation is not required for our 
system, this is not classified as an error. The test 
continued with Task 2.1, the next result was Result 2.2. 

Ref. to error log No errors occurred 
 

Figure I.23: MT-WEB-5



296 APPENDIX I. TEST REPORT

I.4.6 MT-WEB-6
 
Test ID MT-WEB-6 
Title Monitor application status  
Test Stage Module and Integration Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 04.11.04 
Pre Conditions  1. All MT-DI tests have been executed 

2. Tester is logged in as Administrator 
Task Expected response Result Test Spec. 
1. The tester 
selects to view 
the application 
status 
 
 

1. The web portal 
requests status of all the 
applications from the DI. 
 
2. The administrator is 
presented with a simple 
list of status for each of 
the applications 
 
3. The administrator can 
start and stop registered 
applications  

1. The 
correct 
application 
status is 
displayed 
on the web 
portal. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.24: MT-WEB-6



I.7. ACCEPTANCE TEST 297

I.5 STRESS TESTING DI

Because limitations in the test environment, we were not able to perform this test. To execute this test
we would have needed more than the one test machine provided by the course and other test servers.

I.5.1 MT-STRESS-1
 
Test ID MT-STRESS-1 
Title Stress testing DI 
Test Stage Module and Integration Test 
Responsible TM 
Executed by  
Date  
Pre Conditions  1. All MT-DI tests have been executed 

2. One OPC test server is running on a remote 
computer 

Task Expected response Result Test Spec. 
1. Setup the OPC 
test server to provide 
500 tags on a 1 
second 
rate, 500 on a 10 
second rate and 500 
on a one minute rate. 
 
2. Configure DI to 
read the actual tags, 
and store to DB. 
 

1. The system 
should perform as 
normal.  
(Measure the 
CPU/Memory usage 
and disk activity on 
the test PC.)  
 
 

 

Passed/Failed  
Comments  
Ref. to error log  
 

Figure I.25: MT-STRESS-1



298 APPENDIX I. TEST REPORT

I.6 SYSTEM TEST

The final documented test is the system test. The system test was executed according to the overall test
plan. This section describes the test cases from ST-1 to ST-5.

I.6.1 ST-1
 
Test ID ST-1 
Title Configuration of DI 
Test Stage System Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 08.11.04 
Pre Conditions  1. All module tests have been executed.  

2. OPC Test server is running 
3. The system is installed and running on a 

machine(s) fulfilling the soft and hardware 
requirements specified in the requirements 
specification. 

Task Expected response Result Test Spec. 
1. Configure the 
DI to connect to 
OPC test server, 
and by this be 
able to provide 
tags to 
application 
developer. 
 

1. Configuration 
should be easy, and 
not exceed 15 
minutes. 

1. Configuration 
was finished in 3 
minutes. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.26: ST-1



I.7. ACCEPTANCE TEST 299

I.6.2 ST-2

 
Test ID ST-2 
Title Create application 
Test Stage System Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 08.11.04 
Pre Conditions  1. All module tests have been executed.  

2. OPC Test server is running 
3. The system is installed and running on a 

machine(s) fulfilling the soft and hardware 
requirements specified in the requirements 
specification. 

Task Expected response Result Test Spec. 
1. The test executor 
will create a test 
application which 
utilizes the 
implemented 
functions in APP-
API, according to 
specified 
requirements. 
 

1. The time used for 
development of the 
test application 
should not exceed 30 
min. 

1. Test 
application 
was made 
in 10 
minutes. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.27: ST-2



300 APPENDIX I. TEST REPORT

I.6.3 ST-3
 
Test ID ST-3 
Title Execute application 
Test Stage System Test 
Responsible TM 
Executed by Thorvald, Jan Ove 
Date 08.11.04 
Pre Conditions  1. All module tests have been executed.  

2. OPC Test server is running 
3. The system is installed and running on a 

machine(s) fulfilling the soft and hardware 
requirements specified in the requirements 
specification. 

Task Expected response Result Test Spec. 
1. Configure DI 
to start 
scheduling of 
the test 
application 
created in ST-2.  
 
2. Let the test 
application run 
while 
performing ST-
4 and ST-5. 
 

1. The result from 
execution of the test 
application should be 
according to 
requirements and 
design specifications, 
and not cause the DI to 
restart. 

1. The test 
application 
is started up, 
without 
causing a 
restart on DI. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.28: ST-3



I.7. ACCEPTANCE TEST 301

I.6.4 ST-4

 
Test ID ST-4 
Title Create web page for the test application created in ST-2 
Test Stage System Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 08.11.04 
Pre Conditions  1. All module tests have been executed.  

2. OPC Test server is running 
3. The system is installed and running on a machine(s) 

fulfilling the soft and hardware requirements 
specified in the requirements specification. 

4. Test application is running. 
Task Expected response Result Test Spec. 
1. Create a web 
page for the test 
application created 
in ST-2. 

1. The time used for 
creation of web page, 
should not exceed 30 
minutes, and be 
easily included in the 
web portal without 
having to restart. 
 

1. The 
webpage is 
created in 3 
minutes, and 
is displayed 
through the 
web portal. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.29: ST-4



302 APPENDIX I. TEST REPORT

I.6.5 ST-5

 
Test ID ST-5 
Title Re-execute web portal module tests 
Test Stage System Test 
Responsible TM 
Executed by Thorvald, Hans Olaf 
Date 08.11.04 
Pre Conditions  1. All module tests have been executed.  

2. OPC Test server is running 
3. The system is installed and running on a machine(s) 

fulfilling the soft and hardware requirements 
specified in the requirements specification. 

4. Test application is running. 
Task Expected response Result Test Spec. 
1. Re-execute the 
web portal module 
tests (MT-WEB-1 
to MT-WEB-6) 
with the current test 
application running 
 

1. Response should 
be according to those 
defined in MT-WEB-
1 to MT-WEB-6. 

1. All tests 
give 
expected 
results. No 
changes 
since module 
test. 

Passed/Failed Passed 
Comments  
Ref. to error log No errors occurred 
 

Figure I.30: ST-5



APPENDIXJ
TEST LOG

This chapter describes the different data used in all module and system tests, and their result.

J.1 MT-DI

This section includes the test data, and results from the module tests done on DI.

J.1.1 MT-DI-1

The test tags selected:

• 1: DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real 01"

• 2: ICONICS.SimulatorOPCDA.2","","Numeric.Step"

Test values delivered to APP-API:

• S1: 0.00000000023283064365386963

• S2: 1.0

J.1.2 MT-DI-2 and MT-DI-3

MT-DI-2 and MT-DI-3 are executed as one test since MT-DI-3 is depending on having a subscription to
stop.

The test tags selected:

• 1: DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real 01"

• 2: ICONICS.SimulatorOPCDA.2","","Numeric.Step"

Set update rate: 2 sec

The result from logging is shown by the out print from the database:

J.1.3 MT-DI-4

This test required no input data, nor produced one.

303



304 APPENDIX J. TEST LOG

Tag: Timestamp: Value
Numeric.Step 01.11.2004 10:28:55 0.5
Numeric.Step 01.11.2004 10:28:55 0.5

Simulation Items.Real.Real 01 01.11.2004 10:28:55 214.161479697796
Numeric.Step 01.11.2004 10:28:57 1

Simulation Items.Real.Real 01 01.11.2004 10:28:59 216.325453507481
Simulation Items.Real.Real 01 01.11.2004 10:29:01 216.810264586471

Numeric.Step 01.11.2004 10:29:01 0

Table J.1: Tags logged in database

J.1.4 MT-DI-5

The test application started subscription on the provided 2 second rate, on each of these collection of
tags.

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_01"
ICONICS.SimulatorOPCDA.2","","Numeric.Step");

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_02"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_03"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_04"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Integer.Int_01"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Integer.Int_02"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Integer.Int_03"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Integer.Int_04"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

The following optimal sets were created:

Set a: DSxPOpcSimulator.TSxOpcSimulator.1, rate 2

• Simulation Items.Real.Real 01

• Simulation Items.Real.Real 02

• Simulation Items.Real.Real 03

• Simulation Items.Real.Real 04

• Simulation Items.Integer.Int 01

• Simulation Items.Integer.Int 02

• Simulation Items.Integer.Int 03

• Simulation Items.Integer.Int 04



J.2. MT-API 305

Set b: CONICS.SimulatorOPCDA.2, rate 2

• Numeric.Step

• Simulation Items.Real.Real 02

• Simulation Items.Real.Real 03

• Simulation Items.Real.Real 04

• Simulation Items.Integer.Int 01

• Simulation Items.Integer.Int 02

• Simulation Items.Integer.Int 03

• Simulation Items.Integer.Int 04

Then the application requested subscription for the following tags with a rate on 3 seconds.

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_05"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

The following new correct set were made:

Set c: DSxPOpcSimulator.TSxOpcSimulator.1, rate 3

• Simulation Items.Real.Real 05

Set d: CONICS.SimulatorOPCDA.2, rate 3

• Numeric.Step

J.2 MT-API

This section includes the test data, and results from the module tests done on APP-API.

J.2.1 MT-API-1,MT-API-2,MT-API-3 and MT-API-5

All three test used the same test data winch were provided in MT-DI-5. The result from these tests are
also identical with the ones produced in MT-DI-5.

J.2.2 MT-API-4

Two set of the following tags were spliced:

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_01"
ICONICS.SimulatorOPCDA.2","","Numeric.Step"

Set 1:
Numeric.Step 03.11.2004 11:26:54 0.5
Simulation Items.Real.Real_02 03.11.2004 11:26:55 111.791614697796

Set 2:
Numeric.Step 03.11.2004 11:26:57 1
Simulation Items.Real.Real_01 03.11.2004 10:27:01 193.331682227481

The result set with three tags, after splice:



306 APPENDIX J. TEST LOG

Numeric.Step 03.11.2004 11:26:57 1
Simulation Items.Real.Real_01 03.11.2004 10:27:01 193.331682227481
Simulation Items.Real.Real_02 03.11.2004 11:26:55 111.791614697796

J.2.3 MT-API-6

A set with rate 3 and deadband 1.0 on all tags were requested via an application. At the same time,
DSxPOpcSimulator and ICONICS were set to provide a constant simulation value on these tags. These
tags were requested:

DSxPOpcSimulator.TSxOpcSimulator.1", "", "Simulation Items.Real.Real_05" = 0.5
ICONICS.SimulatorOPCDA.2","","Numeric.Step" = 1.0

The result was as expected: No callback was made from OPC, since there was no change in value.

J.2.4 MT-API-7 and MT-API-8

Both tests used the same test data provided in MT-DI-3. The result from these tests are also identical
with the ones produced in MT-DI-3.

J.2.5 MT-API-9

This test used the same test data provided in MT-DI-1. The results from the test are also identical with
the ones produced in MT-DI-1.

J.2.6 MT-API-10

The following set of tags where requested to be written to database:

TestDataTag1 = 1.343
TestDataTag2 = 34.343
TestDataTag3 = 76.333

The following rows where added to the database:

TestDataTag1 03.11.2004 11:50:57 1.343
TestDataTag2 03.11.2004 11:50:57 34.343
TestDataTag3 03.11.2004 11:50:57 76.333

J.2.7 MT-API-11

The tag Simulation Items.Real.Real 01 on OPC-simulator DSxPOpcSimulator.TSxOpcSimulator.1 is re-
quested from 03.11.2004 10:45:00 to 03.11.2004 10:47:00. The following tag values are returned:

03.11.2004 10:45:33 120.916258137207
03.11.2004 10:45:37 122.469736196101
03.11.2004 10:45:39 123.548466004198
03.11.2004 10:46:10 135.612150835572
03.11.2004 10:46:12 136.250593777746

J.2.8 MT-API-14 and MT-API-15

Only specified in the Test Report.



J.3. MT WEB 307

J.3 MT WEB

These tests were based on user input through the web portal. The results from these tests were a
confirmation given back to the user in the form of an alternation in the display of the web page. These
tests are described further in the test cases found in the Test Report. The only test result documented
here is an exception screen shot from MT-WEB-5.

J.4 MT-WEB-5

By accident the tab key was pressed when entering configurations. The server responded with an error
message. Since user validation is not required for our system, this is not classified as an error. The test
continued with Task 2.1 without restarting. Figure J.1, displays a screen shot documenting the incident.

Figure J.1: Screen shot MT-WEB-5

J.5 ST

J.5.1 ST-1

The configuration file created in ST-1:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

<appSettings>
<add key="serverPort" value="6666" />
<add key="applicationDirectory" value="apps" />
<add key="database" value="fest" />
<add key="databaseHost" value="doc10.idipc.idi.ntnu.no" />
<add key="databaseUser" value="easyit" />



308 APPENDIX J. TEST LOG

<add key="databasePassword" value="easyit" />
</appSettings>

</configuration>

J.5.2 ST-2

Code for the test application created in ST-2:

using System;
using EasyIt.Application;
using EasyIt.DataItems;
namespace TestApp1
{
/// <summary>

/// Summary description for Class1.
/// </summary>
class Class1
{

/// <summary>
/// The main entry point for the application.
/// </summary>

[STAThread]
static void Main(string[] args)
{

AppAPIClientBase clientBase = new AppAPIClientBase(4, 6666, "localhost");
clientBase.DataArrival +=new
EasyIt.RemoteInterfaces.DataReceivedEventHandler (clientBase_DataArrival);

CTag tag = new CTag("opcda://localhost/ICONICS.SimulatorOPCDA.2", "", "Numeric.Step");
CSet set = new CSet("", 3);
set.AddTag(tag);

clientBase.SubscribeSet(set);
}

private static void clientBase_DataArrival(CSet setm)
{

Console.WriteLine("got data from EasyIt");
}

}
}

J.6 ACCEPTANCE TEST

The test cases used for the acceptance test are identical to the ones covering the system tests, except
ST-2 (for further description see the overall test plan 31). Since no errors occurred, all test data and
results provided in this log for system tests also apply to the acceptance test.



Part VII

Project Evaluation

309





CHAPTER34
INTRODUCTION

This part evaluates the project, the course TDT420 Kundestyrt Prosjekt and the other components
required to accomplish the project.

34.1 PURPOSE

The goal of this project evaluation is to critcal examine the project and the way it has been carried out.
We will look at the results as well as the organization of the project, and point out positive and negative
matters with regards to the accomplishment of the project. Hopefully, all involved parties (the project
group especially, but perhaps also the customer and the advisors) can learn from the matters pointed
out in this part in later projects.

34.2 OVERVIEW

The following views of the the project are evaluated in the succeeding chapters:

Chapter 35 Provides an evaluation of the outcome of the project.

Chapter 36 Provides an evaluation of different forms of cooperation we have experienced during the
project.

Chapter 37 Provides an evaluation of how we solved practical obstacles during the project.

Chapter 38 Provides an evaluation of the tools we used for documentation, implementation og ver-
sioning control.

Chapter 39 Provides an evaluation on how we carried out the different phases of the project

Chapter 40 Provides an evaluation of the progression and hours spent on the project

Chapter 41 Concludes the project evaluation.

311





CHAPTER35
THE PROJECT OUTCOME

This chapter deals with evaluations of the outcome. First, we examine how we carried out the aminis-
traive parts of the project, then we evaluate the outcome of the course TDT4290 itself.

35.1 THE PHASES OF THE PROJECT MAPPED TO PARTS OF THE DOC-
UMENT

The project has been divided into 8 phases. Easch phase has been accompanied by a phase document.
The different phases of the project are:

1. Preliminary planning - as presented in 3.1.1

2. Pre study - as presented in 3.1.2

3. Requirements specification /test plan creation- as presented in 3.1.3

4. Design and test plan construction - as presented in 3.1.4

5. Implementation and testing - as presented in 3.1.5

6. Project evaluation - as presented in 3.1.6

7. Presentation and demonstration - see 3.1.7

The phase documents, divided by parts, are mapped to the phases as follows:

Part I - Project directive maps phase 1

Part II - Pre study maps phase 2

Part III - Requirements specification maps phase 3

Part IV - Software Design Description maps phase 4

Part V - Implementation document maps phase 5

Part VI - Test Document maps the test contents of phase 3, 4 and 5

Part VII - Project evaluation maps phase 6

Part VIII - User guide to EasyIT maps partially phase 7

Part I is mainly about managing the project, whereas we’re approaching the EasyIT system with
gradually increasing precision during the phases II, III and IV. We have written Part III and IV to
comply with IEEE standards. Part V seeks to cover the main aspects of the implementation, with
important code snipplets and description of essential algorithms. Part VI covers the overall test plan
and test reports for all official tests of the system. Bear in mind, though, that the EasyIT system is
regarded as a prototype, and that exhaustive testing has not been prioritzed on a high level. Part VII

313



314 CHAPTER 35. THE PROJECT OUTCOME

is this part, it seeks to evaluate the project. In part VIII a short user guide to EasyIT is provided. This
serves as some of the background material for the presentation.

We see several advantages of the mapping of phases to document parts. Doing so makes an even
more obvious separation between the phases, and thereby makes natural mile stones for the project.
We have one exception for this practice - the test document, which doesn’t map to a specific phase. The
reason for this it that the work with the testing has been carried out in parallel with the other phases
as stated in the first list above.

Overall, we’re satisfied with this approach.

35.2 THE TDT4290 COURSE

The group agrees on the high relevance of the course - this is perhaps the most relevant course yet with
regards to experience what a real-life job situation will be like. We have put a lot of effort in this project,
and we have learned a lot. This section provides an evaluaton of how we experienced the following
aspects of the course.

35.2.1 Organization of the course

The organization of the course has been adequate. The course started on time, and the course staff suc-
ceeded to motivate us. In short, the first impression of the organization was very good. We experienced
however something that could be done better:

Every group was promised the exclusive use of one computer. We needed a computer to run an
OPC dummy server, an MS SQL server, MS Virtual Source Safe and Visual Studio - in short, we needed
a computer. We had to ask for it, then wait, then ask for it again, then wait, then ask for it again
before we could finally use it. We can’t see any reason for why the computers weren’t ready from day
one. Also, we suggest that the room in which the computers are placed are marked as unavailable to
everyone not involved in the course. Before we unplugged the monitor,keyboard and mouse from the
computer, and put a note over the monitor that said: ”KPRO10 only”, we experienced several times
that someone had rebooted the computer and used it for something else.

The course compendium handed out in the beginning course appears poorly organized. We suggest
a rearranging of the compendium, where the the administrative matters are placed at the beginning,
followed by the content of the each phase document, and the different projects placed at the end.

35.2.2 Lectures

The lectures given in the course were supposed to support the work with the project, and they were.
We have nothing adversely to point to with regard to the lectures.

35.2.3 Mandatory activity I: Six Thinking Hats

Jens Aarup, the lecturer this day, was outstanding. We learned a lot from this session. We tried to
use the Six Thinking Hats method in the sucessive days after the session, but we did not use it later,
although it could have been useful. We see Six Thinking Hats as a useful resource, but it presumes
considerable effort from each group member. We didn’t use enough time to establish the proper setting
to make this method work.

The organization of the day could have been better. 7 hours straight with only short breaks in
between made us unfocused at the end of the day. Perhaps this could be avoided with a split of the
day, with one hour in between.



35.2. THE TDT4290 COURSE 315

35.2.4 Mandatory activity II: Team building in Estenstadmarka with Luftkrigsskolen

The purpose of this day was to make a stronger team of the project group. The organization of this
day seemed very thought through. After one hour of briefing on campus, buses transported us to
Estenstadmarka where each were assigned two people from from Luftkrigsskolen as guides for the
day.

The arena for the team building is a completely different arena than is the usual scene for us work-
ing together. The good thing with moving the arena like this, is that we learned to collaborate without
regard to the context we’re in. The tasks given were varied, and forced us to collaborate and explore
sides of ourselves and the others that we were’nt necessearly aware of. The project group has used the
experiences from this day, directly or indirectly throughout the project.

Apart from the heavy raining, which noboday can be blamed for, the group agrees that this day
was a sucess.





CHAPTER36
ORGANIZATION AND COOPERATION

This chapter deals with how we organized the group, and in which way the final result has been
affected by our organization. We will discuss both internal cooperation and the cooperation with the
customer and the advisors.

36.1 INTERNAL COOPERATION

Before starting to produce the project directive and the pre study we established different roles for
each group member. The roles all had specific and clearly identifiable responsibilities through-out
the project. However, we also made it clear that these roles not necessarily implied having the en-
tire workload related to that role but rather a administrative responsibility. Establishment of different
responsibilities quickly made us ready for producing the first two documents. The approach taken
was starting on both documents at once. The three group members with direct construction and im-
plementation responsibilities started on the pre study while the other members finished the project
directive. As soon as the project directive was finished the entire group joined up for the pre study.
This approach of alternating the working area for all group members has been a key to maintaining a
common understanding for the project. The general cooperation in the group has been good. Both the
Six Thinking Hats session (see 35.2.3) and the team bulding (35.2.4) established a common agreement
on that one important goal is to make everyone’s opinion being heard. The group has definitely not
been afraid to take discussions, and we feel jointly responsible for all major decisions taken.

36.1.1 Organizing the work process

In addition to ”Kundestyrt Prosjekt”, all group members have been taking several other courses, with
their own lectures, projects, assignments and exams. Since there exist no coordination between the
different courses, the workload on group members have varied from week to week. Coordination of
the work process has mainly been done in our weekly internal meetings on mondays.

We usually have started the meetings with each group member describing what have been done
the past week, which problems that have occurred and which questions that need further discussion
in the group before the work can continue. At each meeting we have assigned a set of tasks for each
group member (often in pairs), according to project role and available work hours the upcoming week.
We have also had a smaller internal meeting after each advisor meeting on wednesdays, for coordina-
tion and discussion on corrections on phase documents given by advisor. This routine seems to have
worked well for us. By having these two weekly meetings, we have been able to stay updated on each
other’s working area, and quickly been able to re-organize when needed. Since the weekly work has
mainly been done in sub groups, the groups have usually had their own internal work meetings during
the week. Most of the time, several sub groups have been represented during the day in the reserved
computer lab for the course studentse (see 37.2), so direct communication between group members
have been easy. When not present at the same location, all group members have been using an instant
messenger service, as stated in 37.1. This way of organizing the work process has made it easy to ask
questions, or having smaller discussions without having to wait to next internal meeting.

317



318 CHAPTER 36. ORGANIZATION AND COOPERATION

36.1.2 Organizing the phase documents

When starting on a new project phase, one or two project members have had the responsibility of
investigate different solutions on how to execute that phase. This includes finding a set of suitable
standards (i.e. the IEEE standard used in several of our documents), or simply drawing a sketch with
some ideas on how to best organize the phase. Then discussions on which solution to choose has been
done in one of the weekly meetings. By doing so, we feel that the transition from one phase to the
next has been been smooth. There has been some comfort in knowing that there were always someone
knowing what to do next. And that when discussions started on how to execute a phase, we had
already defined a set of alternatives. See chapter 39 for an evalutation of each phase.

36.1.3 Consistency of roles

The internal organization structure which were established in the first phase of the project has re-
mained throughout the project’s lifespan. The project leader and document responsible have had the
general administrational responsibility. Since this responsibility includes writing the status report, the
project leader have always had an overview on the project status, and by that been able to assure that
the project was headed in the right direction.

36.1.4 Conflicts and Conflict management

Despite of being seven individuals, with sometimes seven different views on an issue, we have not had
any personal conflicts during the project. The reason for this is maybe that we have allowed ourselves
to have discussions and considering everyone’s point of view on a matter. One other reason for the low
conflict level is maybe that we all have found our work areas meaningful, and having had the same
high ambitions for the project. We have had an open communication amongst us, and a low threshold
for asking each other for help.

36.2 EXTERNAL COOPERATION

36.2.1 Cooperation with advisor

The cooperation with our supervisor has been satisfactory. The phase documents we have wanted to
be reviewed, has been delivered by hand at 12 each Tuesday. At the advisor meeting the following
day at 10, we have been given a thorough examination of the documents. In addition to the specific
document related review, we have also been given general advices on difficulties in the project. The
advisor has also been available for questions and advice outside the regular meeting hours with quick
responses to any questions.

36.2.2 Cooperation with advisor assistant

In the beginning we were uncertain on how to use our advisor assistant, since that role were more
informal described in the information compendium given in the course introduction. (See 35.2.1 on
review of the compendium) Being early in the project, we did not know that we were supposed to ask
for response from the advisor assistant, and therefore we didn’t get any. But after having finished the
first two phase documents, the project leader had a meeting with the advisor advisor and asked for
feedback. From then on, we got a a very in-depth response that has been of great help of the project.
So, after the startup difficulties, we have had an open dialogue and good cooperation with our advisor
assistant. The thorough and detailed feedback on the phase documents has been of great value for the
project group.



36.2. EXTERNAL COOPERATION 319

36.2.3 Cooperation with the customer

Since the first customer meeting we have had a good and open dialogue with our customer. The first
meeting was very informative, and made us quickly ready to define our approach to the assignment.
We were at first worried by the lack of face to face meetings available during the three months. But we
have managed to arrange several meetings via the previously described IP telephone program Skype
[23]. See 37.4 for details. We feel that these remote meetings has been a good replacement for the
more ordinary meetings. Perhaps the telephone meetings have been easier to arrange than face to face
meetings, even if we were situated in the same city. These meetings have taken place when going
through some of the phase documents, or if we felt to clarify requirements for EasyIT.

But of course, it’s better to meet face-to-face. As we were restricted to one meeting of this nature,
we chose to meet during the requirements specification phase. The meeting lasted one work day, and
we managed to go through all the different requirements in a way that clarified the many questions
we had at that time. In short, the customer has been highly available through e-mail and by telephone.
We have been given quick responses on all important questions.





CHAPTER37
CARRYING OUT THE PRACTICAL

This chapter evaluates how we carried out the different practical matters if the project.

37.1 MANAGING GROUP RESOURCES

The project group consisted of 7 members. Each member were expected to put down 24 hours of work
each project week. During the 13-week timespan of the project, the group estimated to work 2170
hours in total.

We developed a system in MS Excel, where each project member had one work sheet file. Every
tuesday, each member filled in hours spent on each phase. A separate worksheet summarized these
hours, and presented it in an easy to read graph, and also compared the hours actually spent against
what was estimated. This graph, included in Appendix B, was also included in every status report.

We also developed a forum on the internet, where the group could announce important matters,
questions etc. Also, a common calendar was made available for the members both to read and to make
entries on important matters.

We have used the time keeping system in Excel actively, due to its simplicity. Filling out is done
in no time, and the results are immediate. The forum on the internet was also constructed with the
same goal in mind - simplicity. However, as we have been spending over 2000 hours together this
semester, the need for additional conversations over a forum turned out to not be that high. Instead,
we have been using instant messenger tools for communicating when not being at the same place. The
calendar however, has been used a lot. We see this as a simple, yet powerful tool that makes it easy for
all members to be up to date on where and when of important matters.

We did also use the common email adress kpro10@idi.ntnu.no as a reply-to-adress when send-
ing mail to the advisors and/or the customer. The reason for this is that we wanted important mail to
be distributed to all the group members.

37.2 HARDWARE AND SOFTWARE RESOURCES

The course students were given the fifth floor in the P15 building, including meeting rooms,printing
facilities and a computer lab. Although it sounded promising, the conditions for thinking and problem
solving were not optimal from our point of view, as the computer lab was crowded and rather noisy.
Also, most of the programs we needed (see next chapter for details), including Visual Studio, were not
installed on the machines, resulting in the need for Remote Desktop Connection to one of the ts-stud
servers and the group’s allocated computer mentioned in the previous chapter. This resulted in that
when coming to the design and implementation phases, we decided to move. We found ourselves a
more silent computer lab, ”Kalhari”, at ”Verkstedteknisk”. This is not the usual place to find computer
students, and that suited us well.

37.3 MEETING ROOM RESOURCES

Every Monday at 12, as stated in 36.1.1 we have kicked off the week with an internal meeting. Even
though, as stated in the previous section, the fifth floor in the P15 building had some meeting rooms

321



322 CHAPTER 37. CARRYING OUT THE PRACTICAL

available, we found it necesseary to make a reservation for another room so that we were guaranteed
to have a place to meet. We got the room A161 for these meetings.

Every Wednesday we have met with our advisors. (As stated in 36.1.1). Reservation for the room
used for this purpose was done by the advisors.

For the one meeting we’ve had with the customer, we used the meeting room at P15. See the next
section for the other ways we communicated with the customer.

37.4 REMOTE MEETING RESOURCES

Meetings with our customer was mainly carried out over internet meetings due to the distant location
of our workplaces. The customer was not able to physically meet with us more than once, so we had
to figure out a way to make the communcation channel as open as possible. The first, obvious solution
was to use some kind of netmeeting. The customer, sat however behind a firewall that didn’t allow
much traffic. We then tried the program Skype [23], that provided crystal clear sound and worked well
with ABB’s firewall. We set up one computer with good speakers and a microphone, and it was like the
customer were in the room with us. Of course, it was still a substitute, but with thorough preparation
from both parts (ie. all necesseary documentation was handed over the day before, only one group
member spoke at a time) the meetings were sucessfully carried out.



CHAPTER38
TOOLS

This chapter evaluates the software tools we have used throughout the phases of the project.

38.1 DOCUMENTS

All documents generated by the project have been written in LATEX shared within the group using CVS.
ER-diagrams are created with ER-modeller, all other diagrams have been drawn with Visio.

38.1.1 LATEX

LaTeX has been described earlier, see 6.1.1. Clearly, our use of LaTeX have lead to a heavy overhead
concerning layout. This document has probably sections where placement of tables and figures look
somewhat strange, even though we have tried to avoid that. You can indicate where you want the
placement of tables and figures, but where it actually ends up is in the end decided by LATEX. On
the other hand, we have without doubt had an easy time managing our documents, because of the
includeable structure, that is a directory structure: report/part/chapter/. Making templates and using
these have been a major strength, both in standalone documents (like minutes and status-reports) and
the project report (which have a root-file defining layout parameters and styles). Since LaTeX is stored
as plain text, it can be written on any platform using any text editor. This have been greatly appreciated
by the Linux-using members of the team, and is also enabling us to use CVS. Documentation have been
easily accessible through search-engines on the web.

38.1.2 CVS

CVS has been described earlier, see 6.1.2. As mentioned above, LaTeX as a plaintext typesetting tool
enables us to use CVS. This have indeed been very helpful; When team members have been working
from home or at different locations, they have been able to edit files and publish these changes without
having to clear this operation with other members. The tool got quickly accepted within the group
and no difficulties worth noting have occurred. The overhead using CVS were for Microsoft Windows
using team members; We found no CVS-tool that would work with our repository, so for each cvs
operation (add, remove, commit, update), one would have to log on to a *nix-server mounting the
same network share as where the checkout where, and perform the operations with the native cvs-
program. As there were no further attempts to get a windows-friendly cvs-program working, the
overhead is to be considered insignificant.

38.1.3 ER-modeller

This program is written by Vetle Valebjørg and Kristian Skogstrøm at NTNU. This is a fairly simple
java-program available from web [25]. It is able to print diagrams, and using a PDF printer, we got
nice vector-graphic files to include in our report. This program were only used to draw a handful of
figures.

323



324 CHAPTER 38. TOOLS

38.1.4 Visio

Visio is a Microsoft product aimed at supporting a broad range of modelling languages, and we em-
ployed mainly UML class diagram and dfd. We also employed a Visio stencil for drawing APM dia-
grams. Visio were previously known to all members of the team, so using it were pretty straightfor-
ward and without suprises. The major problem we experienced were with file types; Visio could not
save files as PDF (which were our favourite format for inclusion), and printing to a PDF writer gave
corrupted labels. We solved this by exporting from Visio as Encapsulated PostScript, and converting
this to PDF using Acrobat Distiller.

38.1.5 Group directory

We were provided a group directory by the students’ webserver at NTNU with a quota of 60MB. This
proved to be too little, and we got an extension to 100MB by request. This directory was used to store
the CVS repository and the SourceSafe directory, and keep shared files between us, like time lists and
time budgets (as desribed in 37.1).

38.1.6 Backup

Fortunately we never needed this. It was done by a script executed at 7 am and 4 pm every day, and
basically took the whole group directory and compressed it into a single file, which was stored at a
separate location.

38.2 PROGRAM CODE

All development of program code has been done within the .NET environment; MS Visual Studio for
implementation and MS Virtual SourceSafe for sharing.

38.2.1 MS Visual Studio

When developing in .NET, MS Visual Studio is an obvious choice of developer environment. This IDE
is packed with a wide range of features making the implementation easier for the developer. Fortuately,
students at NTNU have free access to most Microsoft products, including Visual Studio and MS Virtual
SourceSafe.

38.2.2 MS Visual SourceSafe

MS Visual SourceSafe (VSS) is a tool for avoiding conflicts caused by simultaneous changes to the code
done by the developers. MS Visual Studio comes with built-in support for VSS, and therefore we used
VSS as a sharing tool for our code.

As as mentioned in 35.2.1, VSS wasn’t installed on the computer lab. We installed it on our server
and kept all source files there. However, VSS requires that it is installed on the machine where the
developement is done as well. We solved this by installing MS Visual Studio and VSS on our home
computers, and worked on those computers at school via Remote Desktop Connection. Unfortunately
only four out of seven group members had this option. But in addition, one member could work remote
on the server. As the implementation phase went by, we used four members on pure implementation
and three members on documentation, so it turned pretty sucessfull after all. Perhaps we hadn’t been
more effective with all members implementing at the same time either.



CHAPTER39
PHASES

In this chapter we briefly describe what happened in each phase.

39.1 PROJECT DIRECTIVE

The project directive is a document that holds information of the accomplishment of the project. This
is meant as a reference for team members, and can be changed any time during the project. We made
no major changes in this document. The content of this document were suggested by an appendix to
the compendium we got at the first day of the project, and we followed these guidelines with minor
exceptions. The phase consisted of many other (not relevant to the document) things, like getting CVS
and LaTeX up and running, organizing weekly meetings, team building and so on. It was generally a
good formal start to the project.

39.2 PRE STUDY

As the customer wanted a system buildt on a technology which the team members were unfamiliar
with, much of the pre study-phase were used to get to know this technology, and this really helped us
a great deal in understanding the problem. There were no existing solutions that we could use, and
ABB wanted us to develop our own anyway. This phase consisted of a lot of reading, and re-entering
the information into the prestudy document. We did not experience any problems in this phase.

39.3 REQUIREMENTS SPECIFICATION

The IEEE830 standard (“Recommended Practice for Software Requirements Specifications”) were em-
ployed to help put the requirements in a reasonable structure. As we had a good understanding of
the technology and how ABB wanted the problem solved, this phase was more writing than thinking.
Still, we figured out a misunderstanding in this phase regarding the applications. We’d though that
an application were sort of a program that ran on a separate computer with GUI, connecting to our
server. What ABB meant was that an application were more like a script that could be run headlessly
on the server, with the results possibly presented on web. This clarification eased our job a great deal.
All requirements got a priority, which enabled us to not implement certain requirements if we ran out
of time in the implementation-phase.

39.4 DESIGN

We also employed an IEEE standard in this phase: IEEE1016 (“Recommended Practice for Software
Design Descriptions”). We found this standard difficult to use, and think we might have been better
off with another structure. As we had a good understanding of how to implement the system, we
kept the document as it is. We discovered that the APP API-module rather should be considered as
an entity within the Data Collector, but this did not involve any problems. We decided to keep the
previous documents the way they were written, and just comment the change in the introduction to

325



326 CHAPTER 39. PHASES

this part. This discovery did not lead to any problems. The completion of the phase-document was
delayed since we were uncertain if it were complete, even thought the phase was not.

39.5 IMPLEMENTATION AND TESTING

The implementation was done by two groups consisting of two persons, one group on each module.
We feel that this partition were appropriate, because it allowed the groups to have close and consistent
communication. It also allowed for easy division of work. The system were implemented top-down,
starting with a skeleton and filling this with functions. This was done in an incremental manner. We
experienced this as a very clean and tidy way of development, and we were actually able to implement
more functionality than what was specifyed in the requirements specification. There were no problems
in this phase.

39.6 PROJECT EVALUATION

After the implementation was done and the product approved by the customer, we felt that the project
was about coming to an end. However, we still had two phases to go, and should not relax. This
phase contained testing with customer and writing of implementation- and evaluation document. We
experienced no problems or delays during this phase.

39.7 PROJECT PRESENTATION

This phase had not yet started when this evaluation was completed.



CHAPTER40
PROGRESSION

This chapter will describe how the progression in the project has been, compared to the initial plan.

40.1 PROGRESSION AND MILESTONES

The overall project plan was set during the making of the project directive. At that time, we had little
knowledge on the group’s performance and the project scope. The plan was made based on previous
project experience, and by analyzing earlier reports from "Kundestyrt Prosjekt". Table 40.1, shows
the project plan with milestones for each phase. We have entered the actual milestone dates for the
different phases in the third column.

Milestone Planned
Date

Actual Date

Finished project directive
(planning phase)

Sep 06. 2004 Sep 09. 2004

Finished pre studies Sep 17. 2004 Sep 24. 2004
Send requirements specification
for approval to client

Sep 24. 2004 Oct 01. 2004

Finished requirements
specification

Sep 27. 2004 Oct 13. 2004

Finished design of overall
design

Oct 05. 2004 Oct 06. 2004

Finished design documents Oct 15. 2004 Oct 30. 2004
Pre deliverance of pre study
and requirements specification

Oct 28. 2004 Oct 28. 2004

Finished implementation and
test documentation

Nov 04. 2004 Nov 07. 2004

Finished project evaluation Nov 11. 2004 Nov 12. 2004
Presentation Nov 18. 2004 Nov 18. 2004

Table 40.1: Milestones

As seen in Table 40.1, we relative early got a delay varying from one to two weeks. We clearly un-
derestimated the work load on the first couple of phases. The gantt diagram (generated after the phases
were finished), further illustrates how the different phases have been executed. The diagram shows
that several phases were run in parallel. This happened often because of the complementary work
needed on the documents, after the main work was done. In these phases, a bigger part of the group
moved on to the next phase while often two persons did the final editing from the previous phase.
The complementary work done on the phase documents were an iterative process. New versions were
made and reviewed until the document was considered finished. The reviewing process was more
time consuming than expected, and may explain some of the reasons for the delayed milestone dates.

327



328 CHAPTER 40. PROGRESSION

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

D
o

ku
m

en
t/f

as
e

F
ra

 d
at

o
T

il 
d

at
o

A
nt

 t
im

er
D

ag
er

P
ro

sj
ek

tle
de

ls
e

23
.0

8.
04

18
.1

1.
04

10
,2

 %
85

F
or

el
es

ni
ng

 o
g 

eg
en

læ
rin

g
23

.0
8.

04
18

.1
1.

04
12

,8
 %

85
P

ro
sj

ek
td

ire
kt

iv
23

.0
8.

04
06

.0
9.

04
6,

9 
%

15
F

or
st

ud
ie

01
.0

9.
04

17
.0

9.
04

11
,8

 %
17

K
ra

vs
pe

si
fik

as
jo

n,
 te

st
pl

an
13

.0
9.

04
27

.0
9.

04
9,

9 
%

15
D

es
ig

n,
 te

st
de

si
gn

27
.0

9.
04

15
.1

0.
04

16
,8

 %
19

Im
pl

em
en

ta
sj

on
, t

es
tin

g
16

.1
0.

04
04

.1
1.

04
15

,6
 %

19
P

ro
sj

ek
tv

ur
de

rin
g

05
.1

1.
04

11
.1

1.
04

6,
9 

%
7

P
re

se
nt

as
jo

n 
og

 d
em

o
11

.1
1.

04
18

.1
1.

04
9,

1 
%

8
10

0,
0 

%
10

0
S

en
de

 k
ra

vs
pe

k 
til

 k
un

de
 fo

r 
go

dk
je

nn
in

g
P

re
le

ve
ra

ns
e

P
ro

sj
ek

te
ts

 s
ta

rt
da

to
23

.0
8.

04
P

ro
sj

ek
te

ts
 s

lu
ttd

at
o

18
.1

1.
04

P
ro

sj
ek

td
ag

er
 ti

l d
is

po
si

sj
on

85
"D

ag
er

" 
so

m
 g

år
 ti

l p
ro

sj
ek

tle
de

ls
e

9
"D

ag
er

" 
til

 fo
re

le
sn

 o
g 

eg
en

læ
rin

g
11

Jo
bb

ed
ag

er
 ig

je
n

65

23
.8

.
10

11
12

27
.9

.
4.

10
.

8.
11

.
13

6
7

8
9

G
an

tt
d

ia
g

ra
m

4
5

13
.9

.
20

.9
.

3
2

1

6.
9.

30
.9

.
15

.1
1.

11
.1

0.
18

.1
0.

25
.1

0.
1.

11
.

Figure 40.1: Planned Gantt Diagram



40.1. PROGRESSION AND MILESTONES 329

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

35
36

37
38

39
40

41
42

43
44

45
46

47
48

49
50

51
52

53
54

55
56

57
58

59
60

61
62

63
64

65
66

67
68

69
70

71
72

73
74

75
76

77
78

79
80

81
82

83
84

85
86

87
88

D
o

ku
m

en
t/

fa
se

F
ra

 d
at

o
T

il 
d

at
o

A
n

t 
tim

er
D

ag
er

P
ro

sj
ek

tle
de

ls
e

23
.0

8.
04

18
.1

1.
04

10
,2

 %
85

F
or

el
es

ni
ng

 o
g 

eg
en

læ
rin

g
23

.0
8.

04
18

.1
1.

04
12

,8
 %

85
P

ro
sj

ek
td

ire
kt

iv
23

.0
8.

04
09

.0
9.

04
6,

9 
%

18
F

or
st

ud
ie

01
.0

9.
04

24
.0

9.
04

11
,8

 %
24

K
ra

vs
pe

si
fik

as
jo

n,
 te

st
pl

an
18

.0
9.

04
13

.1
0.

04
9,

9 
%

26
D

es
ig

n,
 te

st
de

si
gn

07
.1

0.
04

30
.1

0.
04

16
,8

 %
24

Im
pl

em
en

ta
sj

on
, t

es
tin

g
19

.1
0.

04
07

.1
1.

04
15

,6
 %

19
P

ro
sj

ek
tv

ur
de

rin
g

05
.1

1.
04

12
.1

1.
04

6,
9 

%
8

P
re

se
nt

as
jo

n 
og

 d
em

o
12

.1
1.

04
18

.1
1.

04
9,

1 
%

7
10

0,
0 

%
12

6

##
##

18
.1

0.
25

.1
0.

1.
11

.
8.

11
.

12
13

23
.8

.
30

.9
.

6.
9.

13
.9

.
20

.9
.

27
.9

.
4.

10
.

11
.1

0.
8

9
10

11
4

5
6

7

G
an

tt
d

ia
g

ra
m

1
2

3

Figure 40.2: Actual Gantt Diagram



330 CHAPTER 40. PROGRESSION

1 2 3 4 5 6 7 8 9 10 11 12 13

0

50

100

150

200

250

Timer brukt
Timer tilgjengelig

Figure 40.3: Work Hours

The most time consuming phase, was the making of requirements specification and test plan. We
planned to use 15 days but ended up with 26 days in this phase. Although 13 of the 26 days of were
overlapping other phases, we had clearly underestimated the work having to be done in this phase. At
the time we made the gantt diagram and set the milestone dates we felt quite confident in that specify-
ing the requirements should not take more than 15 days. A possible explanation for the miscalculation
is that we had a more shallow understanding for the system when planning, than what we had when
starting the requirements specification process. During the phases preceding the requirements specifi-
cation, we gradually got a deeper understanding for the system and revealed more complex problems
to be addressed.

40.2 TIME CONSUMPTION

All project members attend several other courses than "Kundestyrt Prosjekt". All courses have had
their own projects, assignments and exams. This has naturally affected the work processes in our
project. Figure 40.3 illustrates the total working hours for each week on the project. The first six weeks
are fairly stable and according to our expectations. In week 7 and 8, many group members had mid-
term exams and larger assignments, which is clearly shown in Figure 40.3. This is also an explanation
for the delay on completion of the requirements specification document. In the following three last
weeks of the project we made up for the hours lost. In average the project had 178 work hours per
week from the 7’Th to the 12’Th week of the project, which is only about 10 hours more per week than
planned. Since the project is ending on a Thursday, there exist a difference between the estimated and
actual work hours in week 13. In general the hours in a normal working week is counted from Monday.
The estimation and explanation for the time spent implementing is further described in the evaluation
summary.



40.3. ABOUT IMPLEMENTATION ESTIMATE 331

40.3 ABOUT IMPLEMENTATION ESTIMATE

Estimated person hours for the implementation phase are written in 19.3. To repeat this; The results
were 3045 hours with the Project Estimation Method[5]. As we thought this sounded way too much,
we did our own “expert estimation”, which resulted in 740 hours. As seen in B, both of these were too
high. In addition to implementing all the requirements agreed upon, we implemented some functions
the customer probably will find useful together with what was requested. We have in total spent 313
person hours implementing. This number is subject to change in case of last minute modifications to
the system.





CHAPTER41
SUMMARY

Being now in our fourth year and having had several project assignments earlier, we feel that this
course have had the highest relevance. It is also the first time where the final grade for the course relies
on our performance in the project alone. As usual we have additional exams, and the project is just
counted as an exercise. The fact that we are dealing with a real customer and have tried to solve a real
problem has also been inspiring for us. This has made us put in an extra effort which by it self has
made the experience even more instructive. Besides the technical details we have learned a lot of how
a real project is carried out.

41.1 PROJECT GROUP MATTERS

41.1.1 What are we particularly satisfied with?

Development model: Even thought we have used sort of an incremental model for our documents,
the whole project has followed the waterfall development model. This have worked out well, thanks
to excellent guidance from our advisers.
Cooperation within the group: Initially, there were few people which knew each other within the
group. As the project passed, all members of the group grew together in a close manner, and it has
stayed that way. There have been no critical conflicts within the group, and everyone has cooperated
in a satisfying manner when asked to.
The customer: We consider ourselves lucky because our customer was easy and pleasant to work with,
and he had a consistent image of what he wanted built throughout the project. Also, the task was in-
teresting itself, giving us a glimpse into industrial use of information technology.

41.1.2 What could have been done better?

Requirements specification document: This document took more than one review to complete, and
could have been more thoroughly worked through the first time. However, having experienced this,
we will probably do better in our next project.
Design document: Following an IEEE standard and writing this document was possibly unnecessary.
We had a good understanding on how to implement, and the standard just complicated our process
of documenting this. The document were changed a lot and the completion of it delayed. The next
time a document of this sort is to be written, we will spend more time on how to to it, instead of blindly
following an IEEE path.

41.2 COURSE MATTERS

333



334 CHAPTER 41. SUMMARY

41.2.1 What are we particularly satisfied with?

The weekly meetings with our advisors : Our advisor has met prepared for every meeting with com-
ments on what has been delivered. At first we thought that the practice with physically giving the
advisor everything we wanted reviewed was somewhat cumbersome, but later we realized that this
practice made the weekly deleviries more formal. Our advisor assistant gave us higly appreciated,
detailed (down to grammar corrections) feedback.
The teambuilding in Estenstadsmarka : The team building made the group a group. As most of us
didn’t know each other, we were more like seven guys which were put together than a real group. This
day changed that. The heavy rain problably made it even more effective.

41.2.2 What could have been done better?

The course compendium : This compendium has much information, but appears poorly organized.
See 35.2.1 for more details on the evaluation of the course.



APPENDIXK
STATUS REPORTS

This appendix provides all status reports the group has made during the project life span. The purpose
of providing these is to document how we have been working. The status report has been written in
Norwegian, as all our correspondence with our advisors has been in Norwegian.

The status reports also contained additional attachments not included here, such as a risk diagram
and a Gantt diagram found in the appendices of the Project Directive (Gantt diagram at B, risk diagram
at C), and also an updated diagram of hours spent.See the final diagram at Chapter 40.

335



336 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-08-24 - 2004-08-31
Fra: Kpro gr 10
Til: Reidar Conradi (Veileder)

Odd Petter N Slyngstad (Veilederassistent)

Generelt

Gruppen har brukt en del til på å bli kjent, i tillegg til å fordele arbeidsopp-
gavene ifm. oppstart av prosjektet.

Utført arbeid i perioden

• Status på dokumenter

1. Prosjektdirektiv

(a) Alle dokumenter planlagt eller under utarbeidelse. Ferdigstilles
til neste møte.

2. Forstudie under planlegging

• Møter

1. Internmøte torsdag 2004-08-26

2. Intermøte mandag 2004-08-31

• Aktiviteter

1. Six thinking hats fredag 2004-08-27

2. Fordelt roller på internmøte mandag.

3. Statusrapport og møteinnkalling.

4. Generelt delegert arbeidsoppgaver.

• Annet

1. Opprettet webområde med tilhørende IS (kalender, forum, mm.)
[http://www.stud.ntnu.no/groups/kpro10/] .

TROKK (Tid, Risiko, Omfang, Kostnad, Kvalitet)

• Tid - Innenfor stipulerte rammer.

• Risiko - Risikoanalyse ikke utført. (Kommer neste uke)

• Omfang - For tidlig å si noe om.

• Kostnad/timer - System under utarbeidelse.

Figure K.1: Status report from 2004-08-24 to 2004-08-31- page 1



337

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

• Kvalitet - For tidlig å si noe om, ettersom ikke risikoanalyse er utført.

Problemer

• Problem - hva hindrer fremdrift eller spiser ressurs?

– Ingen problemer identifisert.

Planlagt arbeid i neste periode

• Møter

1. Internmøte mandag 2004-09-06

2. Veiledermøte torsdag 2004-09-09 (10-12)

• Aktiviteter

1. Teambuilding

• Annet

1. Alle arbeider med sine tildelte oppgaver.

Figure K.2: Status report from 2004-08-24 to 2004-08-31 - page 2



338 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-08-30 - 2004-09-06
Fra: Kpro gr 10
Til: Reidar Conradi (Veileder)

Odd Petter N Slyngstad (Veilederassistent)

Generelt

I denne perioden har gruppen hatt to dokumenter under utarbeidelse: Prosjek-
tdirektiv og forstudiet. Fire av gruppemedlemmene har jobbet med prosjektdi-
rektivet, tre med forstudiet. Prosjektdirektivets første versjon er nå ferdig, og
mye grunnarbeid av forstudiet er gjennomført. Dette grunnarbeidet gir gode
forutsetninger for videre arbeid med forstudiet i neste periode.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv: Ferdigstillelse av første utkast 1

– Forstudium: Under utarbeidelse, ferdigstilles 2004-17-09. En
foreløpig versjon presenteres på møtet

• Møter

– Internmøte mandag 2004-09-06, fra 1200-1300. Nøkkelpunktene var
å gi alle status på på prosjektdirektivet og forstudiet, og samordne
aktiviteter.

• Aktiviteter

– Teambuilding i Estenstadmarka 2004-09-06, 1315 - 1930

• Annet

TROKK (Tid, Risiko, Omfang, Kostnad, Kvalitet)

• Tid - I henhold til hva som er planlagt i Ganttdiagram 2

• Risiko - I denne perioden har vi sett faren av at risko 3 3 skal slå til. Vi har
derfor brukt tid på å planlegge prosjektfasene.

• Omfang - Gruppens oppfatning av omfanget på prosjektet har holdt seg
relativt stabil. Det kan se ut som at det er mer bakgrunnskunnskap å sette
seg inn i enn først antatt i forstudiet.

1vedlegg 1
2vedlegg 2
3vedlegg 3

Figure K.3: Status report from 2004-08-30 to 2004-09-06 - page 1



339

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

• Kostnad/timer - Forrige periode brukte gruppen 133 timer og 141 timer
denne periode. Avsatt tid hver uke er på 167 timer. Vi bruker altså noe
under den avsatte tiden. 4

• Kvalitet - I prosjektdirektivet omhandler kap 8 kvalitetssikring. Det er
ingen indikasjoner på at vi må redusere kvaliteten på prosjektet.

Problemer

• Gruppen har jobbet under normert tid. Dette trenger ikke å være et
problem, men kan være en indikator på at fremdriften går for sakte.

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-09-13

– Veiledermøte onsdag 2004-09-15

– Kundemøte over telefon/nett (tid ikke fastsatt)

• Aktiviteter

– Videre forstudie

– Markedsundersøkelse ifm forstudiet.

• Annet

4vedlegg 4

Figure K.4: Status report from 2004-08-30 to 2004-09-06 - page 2



340 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-09-06 - 2004-09-12
Fra: Kpro gr 10
Til: Reidar Conradi (Veileder)

Odd Petter N Slyngstad (Assistentveileder)

Generelt

Hovedsaklig har arbeidsinnsatsen vært konsentrert rundt fullføring av det tek-
nologiske forstudiet og komplettering av prosjektdirektivet.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv: Gjennom korretur etter forrige veiledermøte.

– Forstudium: En del ferdig, resten avhengig av informasjon fra
kunde (møte onsdag).

– Teknologisk forstudium: I all hovedsak ferdigstillt.

• Møter

– Internmøte mandag 2004-09-13, fra 1200-1600. Diskusjon rundt krav
til prosjektet. Gjennomgang av krav fra kunden. Fordeling av
oppgaver for perioden.

– Ekstraordinært internmøte 2004-09-10, kl 1600-1700 Forberedelser
til møtet på mandag.

• Aktiviteter

– Pizzagilde på Peppes, 2004-09-12 kl 1900-2230.

• Annet

– Fått PC på P15/Doc.

TROKK (Tid, Risiko, Omfang, Kostnad, Kvalitet)

• Tid - I henhold til hva som er planlagt i Ganttdiagram 1

• Risiko

– Strategi for å forbygge risiko 10 - konflikter i prosjektgruppen:
Pizzagilde på Peppes.

1vedlegg 2

Figure K.5: Status report from 2004-09-06 to 2004-09-12 - page 1



341

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

– Risko 8 - Epostserveren til ABB er nede: Får ikke avtalt møte.

– Risio 1 - Kunden er i Oslo: Mulighet for dårligere dialog.

• Omfang - Gruppen ser at prosjektet har stort potensiale, og at det kreves
grundig arbeid med begrensning av dette i kravspesifikasjonen.

• Kostnad/timer -

• Kvalitet - Viktig at oppgaven avgrenses i forholdt til disponibel tid, slik
at produktet ikke har graverende mangler.

Problemer

• Usikkerhet rundt hvorvidt ABB ønsker et horisontalt eller vertikalt
produkt.

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-09-20

– Veiledermøte onsdag 2004-09-22

– Kundemøte over telefon/nett (tid ikke fastsatt)

• Aktiviteter

– Videre forstudie

– Påbegynne kravspesifikasjon.

• Annet

Figure K.6: Status report from 2004-09-06 to 2004-09-12 - page 2



342 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-09-13 - 2004-09-20
Fra: Kpro gr 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen vært konsentrert rundt fullføring av forstudiet.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv - 3. revisjon

– Forstudie - første versjon ferdig

– Kravspesifikasjon - struktur ferdig

• Møter

– Nettmøte med kunden over SKYPE (2004-09-15, kl 1200-1500).
Fokuset på møtet gikk på problemforståelse, og avklaring av
spørsmål angående foreløpig kravspesifikasjon fra kunde.

– Intermøte (2004-09-20, kl 12-13). Presentasjon av status på fremdrift
i gruppa. Fordeling av arbeidsoppaver i neste periode

• Aktiviteter

– -

• Annet

– -

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - I henhold til hva som er planlagt i Ganttdiagram (appendix
A i prosjektdirektiv) ligger vi tre dager bak skjema. Dette kan skyldes
at møtet med kunden ble utsatt to dager, i det vi var avhengig av
avklaringer fra kunden for å kunne ferdigstille forstudiet. Prosjeket går
over i en ny fase - kravspesifikasjonen. For at ikke forsinkelsen skal
forplante seg utover, må arbeidet i denne fasen konsentreres.

• Risiko

– Ingen identifiserte risikoer i løpet av perioden.

Figure K.7: Status report from 2004-09-13 to 2004-09-20 - page 1



343

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

• Omfang - Gruppen ser at prosjektet har stort potensiale, og at det kreves
grundig arbeid med avgrensning av dette i kravspesifikasjonen. Møtet
med kunden var en forutsetning for dette arbeidet.

• Kostnad/timer - Noe etter normert, men gruppen holder en god
progresjon

• Kvalitet - Oppgaven må avgrenses i forhold til disponibel tid - for å
ivareta kvaliteten på det som leveres.

Problemer

• Under nettmøtet ble det klart at en trådløs forbindelse ikke er tilstrekkelig
for en problemfri samtale over SKYPE. Vi må derfor benytte nettverksk-
abel i fremtidige møter.

Planlagt arbeid i neste periode

• Møter

– Kundemøte torsdag 2004-09-23 (foreløpig)

– Internmøte mandag 2004-09-27

– Veiledermøte onsdag 2004-09-29

• Aktiviteter

– Kravspesifikasjon

– Revisjon av forstudiet

Figure K.8: Status report from 2004-09-13 to 2004-09-20 - page 2



344 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-09-20 - 2004-09-27
Fra: Kpro gr 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen vært konsentrert rundt kravspesifikasjon.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv - 5. revisjon - anses som ferdig (med unntak av
kontinuerlig oppdatering av risiko)

– Forstudie - andre versjon ferdig: forslag til endringer fra veileder og
kunden er tatt til følge

– Kravspesifikasjon -
- Introduksjon ferdig,
- Overall description påbegynt,
- Specific requirements påbegynt.

• Møter

– Nettmøte med kunden (Karl Petter Lindegaard) over SKYPE (2004-
09-23, kl 1300-1400, 1500-1600).
Fokuset på møtet gikk på teknisk tilbakemelding på forstudiet.

– Internmøte (2004-09-20, kl 12-13).
Presentasjon av status på dokumenter, se "Status på dokumenter".
Status på fremdrift i gruppa. Fordeling av arbeidsoppaver i neste
periode.

• Aktiviteter

– -

• Annet

– -

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - I henhold til hva som er planlagt i Ganttdiagram (appendix
A i prosjektdirektiv) ligger vi ca fem dager bak skjema. Vi har utsatt

Figure K.9: Status report from 2004-09-20 to 2004-09-27 - page 1



345

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

oversendelse av kravspesifikasjon til kunde til 011004. Arbeidet er
intenst, men arbeidet med kravspesifikasjonen er mer omfattende enn
hva gruppen har forutsett.

• Risiko

– Risiko 5 - Sykdom i gruppen.

– Risko 9 - Kastet bort tid på å overtale LATEX til å skrive "‘Appendix"’
foran appendixene. Uten hell.

– Risiko 3 - Arbeidet med kravspesifikasjonen er mer omfattende enn
antatt. Vi ligger etter Gantt-diagrammet.

• Omfang - Omfanget av kravspesifikasjonen er mer omfattende enn først
antatt.

• Kostnad/timer - Vi holder normert timeforbruk.

• Kvalitet - Oppgaven må avgrenses ytterligere i forhold til disponibel tid
- for å ivareta kvaliteten på det som leveres.

Problemer

•

Planlagt arbeid i neste periode

• Møter

– Kundemøte mandag 2004-10-04 - i Trondheim

– Internmøte mandag 2004-09-27

– Veiledermøte onsdag 2004-09-29

• Aktiviteter

– Kravspesifikasjon

– Konstruksjon

Figure K.10: Status report from 2004-09-20 to 2004-09-27 - page 2



346 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-09-20 - 2004-09-27
Fra: Kpro gr 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen har vært konsentrert rundt kravspesifikasjon.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv - ferdig

– Forstudie - tredje versjon ferdig: forslag til endringer fra veileder og
kunden er tatt til følge. Anses som ferdig?

– Kravspesifikasjon -
- Introduksjon - 2. revisjon ferdig,
- Overall description - 2. revisjon ferdig,
- Specific requirements 1. revisjon ferdig.
- Overordnet testplan 1. revisjon ferdig.

– Testdokument - overordnet testplan ferdig

• Møter

– 2004-10-04, kl 1030-1330, 1400-1630 - Møte med kunden(Karl Petter
Lindegaard) på grupperom, P15 .
Fokuset på møtet var hovedsakelig på diskusjon rundt kravspesi-
fikasjon. I siste del av møtet ble konstruksjonfasen drøftet. Se ved-
lagte møtereferat.

– Internmøte utgikk grunnet overlappende kundemøte.

• Aktiviteter

– -

• Annet

– -

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - I henhold til hva som er planlagt i Ganttdiagram (appendix A i
prosjektdirektiv) ligger vi ca 5 dager bak skjema.

Figure K.11: Status report from 2004-09-27 to 2004-10-04 - page 1



347

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

• Risiko

– Risiko 3 - Arbeidet med kravspesifikasjonen er mer omfattende enn
antatt. Vi ligger etter Gantt-diagrammet.

– Risiko 10 - Vi har ikke maksimal fremdrift grunnet midter-
mavvikling i andre fag .

• Omfang - Omfanget av kravspesifikasjonen er omfattende, og det har vi
tatt konsekvensen av, ved å forlenge tiden som er satt av.

• Kostnad/timer - Vi har budsjetteret med 172 timer brukt i denne fasen.
Vi har brukt 138 timer. Dette skyldes midtermavvikling i andre fag, som
tar mye tid. Se vedlagt Ganttdiagram og timebruk på neste side.

• Kvalitet - Oppgaven må avgrenses ytterligere i forhold til disponibel tid
- for å ivareta kvaliteten på det som leveres.

Problemer

•

Planlagt arbeid i neste periode

• Møter

– Kundemøte over Skype, dato TBA.

– Internmøte mandag 2004-10-11

– Veiledermøte onsdag 2004-10-13

• Aktiviteter

– Kravspesifikasjon ferdigstilling

– Konstruksjon

Figure K.12: Status report from 2004-09-27 to2004-10-04 - page 2



348 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-10-04 - 2004-10-12
Fra: KPRO 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen har vært konsentrert rundt fullføring av kravspesifikasjon
og påbegynnelse av designdokumentet.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv - ferdig
(untatt er 8.2 - Customer Related Quality Criterions. Vi har ikke
mottatt flere krav fra kunden.

– Forstudie -
(untatt er E.3 og F - Konsistens i evalueringsskalaene gjøres i neste
periode.

– Kravspesifikasjon - sluttføres

– Testdokument - utfylles

– Designdokument - under utarbeidelse

• Møter

– 2004-10-04, kl 1030-1330, 1400-1630 - Møte med kunden, se referat.

– 2004-10-06, kl 1000-1100 - Møte med veiledere, se referat.

– 2004-10-07, kl 1300 - Internmøte, diskusjon rundt struktur for
designdokumentet.

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - I henhold til hva som er planlagt i Ganttdiagram (appendix A i
prosjektdirektiv) ligger vi fortsatt ca 5 dager bak skjema.

• Risiko

– Risiko 10 - 5 av gruppens medlemmer har hatt midtermavvikling i
andre fag. Dette har sinket gruppens progresjon. Dette vil også i
noen grad gjelde for neste periode.

• Omfang - Omfanget av kravspesifikasjonen er omfattende, og det har vi
tatt konsekvensen av, ved å forlenge tiden som er satt av.

Figure K.13: Status report from 2004-10-04 to 2004-10-12- page 1



349

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

• Kostnad/timer - Vi har brukt 1082 timer så langt, mot budsjettert 1155.
Dette skyldes midtermavvikling i andre fag, som tar mye tid. Se vedlagt
Ganttdiagram og timebruk på neste side.

• Kvalitet - Oppgaven må avgrenses ytterligere i forhold til disponibel tid -
for å ivareta kvaliteten på det som leveres. Vi kjører en estimering i neste
periode på timebruk for implementasjon.

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-10-18

– Veiledermøte onsdag 2004-10-20

• Aktiviteter

– Designdokument ferdigstilles

– Konstruksjon av moduler/prototyper

– Estimering av timebruk på implementasjon

– Rette opp i evalueringsskala i forstudie

Figure K.14: Status report from 2004-10-04 to 2004-10-12 - page 2



350 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-10-12 - 2004-10-19
Fra: KPRO 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen har vært konsentrert rundt design og prototyping

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv
Vedlagt er 8.2 - Customer Related Quality Criterions.

– Forstudie
Vedlagt er Appendix F - Konsistens i evalueringsskalaene.

– Kravspesifikasjon
Vedlagt er kap 19 - Estimering

– Testdokument
Vedlagt er testdokumentets appendix G.1 - "Module test 1 - DC and
OPC-layer".

– Designdokument - under utarbeidelse

• Møter

– 2004-10-13, kl 1000-1100 - Møte med veiledere, se referat.

– 2004-10-18, kl 1300 - Internmøte, diskusjon rundt struktur for
designdokumentet.

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - I henhold til hva som er planlagt i Ganttdiagram (appendix
A i prosjektdirektiv) ligger vi fortsatt ca 5 dager bak skjema. Vi har
prototypet noe for å lette arbeid med konstruksjon. Dessuten har dette
vist seg nyttig for estimeringen.

• Risiko

– Ingen risiki identifisert.

• Omfang - Gruppen er ved godt mot med hensyn på å bli ferdig til angitt
tid.

Figure K.15: Status report from 2004-10-12 to 2004-10-19 - page 1



351

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

• Kostnad/timer - Vi har brukt 1187 timer så langt, mot budsjettert 1325.

• Kvalitet - Oppgaven må avgrenses ytterligere i forhold til disponibel tid
- vi har kjøret en estimering timebruk for design og implementasjon.Se
vedlagt avsnitt om estimering.

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-10-25

– Veiledermøte onsdag 2004-10-27

• Aktiviteter

– Designdokument ferdigstilles

Figure K.16: Status report from 2004-10-12 to 2004-10-19 - page 2



352 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-10-19 - 2004-10-26
Fra: KPRO 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen har vært konsentrert rundt design og implementasjon .

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv -ferdigstilt
Korrekturlesing pågår

– Forstudie -ferdigstilt
Korrekturlesing pågår

– Kravspesifikasjon -ferdigstilt
Korrekturlesing pågår

– Testdokument
Første versjon ferdigstilt

– Designdokument
Hovedkomponentene er ferdig, men er ikke ferdig sammensydd
enda.

• Møter

– Møte med veiledere, utgikk grunnet at hovedveileder ikke kunne
møte.

– 2004-10-25, kl 1200 - 1400: Internmøte - Agenda:

1. Status på design /implementering WEB
2. Status på design /implementering DI
3. Status på testdokument
4. Fordeling av ressurser i neste periode.

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - Vi kjører i ferdigstilling av detaljert design og implementasjon i
parallell for å bli ferdig i tide.

• Risiko

Figure K.17: Status report from 2004-10-19 to 2004-10-26 - page 1



353

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

– Ingen risiki identifisert.

• Omfang - Gruppen er ved godt mot med hensyn på å bli ferdig til angitt
tid.

• Kostnad/timer - Vi har brukt 184 denne uke, 1371 timer så langt, mot
budsjettert 1498.

• Kvalitet - Etter estimeringen kan vi ivarta kvaliteten på samtlige krav.

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-11-01

– Veiledermøte onsdag 2004-11-03

• Aktiviteter

– Designdokument ferdigstilles

– Testdokumentets første revidering ferdigstilles

– Modulene DI og WEB kobles sammen og implementasjonen fortset-
ter.

– Korrekturlesing / konsistensjekk av tidligere fasedokumenter.

Figure K.18: Status report from 2004-10-19 to 2004-10-26 - page 2



354 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-26-10 - 2004-11-02
Fra: KPRO 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen har vært konsentrert rundt design og implementasjon.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv -ferdigstilt

– Forstudie -ferdigstilt

– Kravspesifikasjon - Korrekturlesing av 3.versjon pågår.

– Testdokument - 2. versjon ferdig

– Designdokument - 2. versjon ferdig

• Møter

– 2004-10-27, kl 1000 - 1100: Møte med veiledere - (referat vedlagt)

– 2004-11-91, kl 1200 - 1400: Internmøte - Agenda:

1. Endelig deadline for koding: mandag 2004-11-08, kl 12. Altså
skal all koding være ferdigstilt innen neste internmøte.

2. Korrekturlesing av tidligere fasedokumenter gjennomgått.

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - Vi kjører i ferdigstilling av detaljert design og implementasjon
i parallell for å bli ferdig i tide. Dersom vi klarer å ferdigstille
implementeringen til neste mandag, har vi tatt igjen det vi lå bak i følge
Gantt-diagrammet.(vedlagt)

• Risiko - Ingen risiki identifisert

• Omfang - Gruppen er ved godt mot med hensyn på å bli ferdig til angitt
tid.

• Kostnad/timer - Vi har brukt 221 denne uken, 1595 timer så langt, mot
budsjettert 1673.

• Kvalitet - Vi ligger an til å oppfylle alle krav.

Figure K.19: Status report from 2004-26-10 to 2004-11-02 - page 1



355

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

Planlagt arbeid i neste periode

• Møter

– Internmøte mandag 2004-11-08

– Veiledermøte onsdag 2004-11-10

• Aktiviteter

– Implementasjonen ferdigstilles

– Testing ferdigstilles

– Prosjektvurdering.

– Korrekturlesing / konsistensjekk av tidligere fasedokumenter.

Figure K.20: Status report from 2004-26-10 to 2004-11-02 - page 2



356 APPENDIX K. STATUS REPORTS

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 1

Statusrapport
Tidsrom: 2004-11-02 - 2004-11-09
Fra: KPRO 10
Til: Reidar Conradi (Hovedveileder)

Odd Petter N Slyngstad (Biveileder)

Generelt

Arbeidsinnsatsen har vært konsentrert implementasjon, testing og prosjekte-
valuering.

Utført arbeid i perioden

• Status på dokumenter

– Prosjektdirektiv -ferdigstilt

– Forstudie -ferdigstilt

– Kravspesifikasjon - ferdigstilt

– Testdokument - testing pågår

– Designdokument - 3. versjon ferdig

– Prosjektevaluering - 50% ferdig

• Møter

– 2004-10-27, kl 1000 - 1100: Møte med veiledere - (referat vedlagt)

– 2004-11-91, kl 1200 - 1400: Internmøte - Agenda:

1. Vi klarte målet om å bli ferdige med koding til møtet! Kun
småting gjensto - de er pr 2004-11-09 unnagjort.

2. Endelig deadline for dokumentasjon er satt til neste mandag.

TROKK (Innsats, Risiko, Omfang, Kostnad, Kvalitet)

• Innsats - Alle har gjort en kjempeinnsats forrige uke. Implementasjonen
ble ferdig til mandag, som var målet.

• Risiko - Ingen risikoer identifisert

• Omfang - Gruppen blir ferdig til angitt tid.

• Kostnad/timer - Vi har brukt 250 denne uken, 1845 timer så langt, mot
budsjettert 1848. Det er et avvik på kun 3 timer, som vi må kunne si oss
fornøyd med.

• Kvalitet - Så vidt vi kan se, er alle krav fra kravspesifikasjonen oppfylt. I
tillegg er det utviklet ekstra features.

Figure K.21: Status report from 2004-11-02 to 2004-11-09 - page 1



357

TDT4290 Kundestyrt prosjekt 2004
EasyIT ABB Corporate Research Center

Gruppe 10
Side 2

Planlagt arbeid i neste periode

Neste periode går frem til torsdag 2004-11-17.

• Møter

– Internmøte mandag 2004-11-15

– Veiledermøte onsdag 2004-11-16 ?

• Aktiviteter

– Ferdigstillelse av dokumentasjon til mandag 2004-11-15:

– Testing ferdigstilles i løpet av tirsdag 2004-11-10, føres i testdoku-
mentet til torsdag 2004-11-12.

– Prosjektvurderingen ferdigstilles innen onsdag 2004-11-11.

– Designdokument ferdigstilles til mandag 2004-11-15.

– Installasjonsveiledning og brukerveiledning ferdigstilles til torsdag
2004-11-12

– Implementasjonsdokument påbegynnes torsdag 2004-11-12, og fer-
digstilles til mandag 2004-11-15

– Presentasjon forberedes fra mandag 2004-11-15.

Figure K.22: Status report from 2004-11-02 to 2004-11-09 - page 2





Part VIII

User guide for Easy IT

359





CHAPTER42
INSTALLATION GUIDE

42.1 INSTALLATION GUIDE FOR EASYIT SERVER

Prerequisites:
- MS SQL Server is installed
- IIS web server is installed

1) Unzip the file EasyITServer.zip to where you want to install EasyIT.

2) In MS SQL Server, create a new database and add a new user to this database. The user must
have the rights to create, drop, alter, select, update and delete tables in the new database.

3) Run the file EasyITDatabaseCreator.exe in the subfolder “Setup” of where EasyIT was installed.

4) Enter the following information about the database and user from step 2:
• Host to database server
• Name of database on the server
• Name of the user
• Password for the user.

Click “Create database table” and re-run EasyITDataBaseCreator.exe until you get no error messages.
EasyIT will not function correctly otherwise.

5) Setup of EasyIT Server. Open the file EasyItStarter.exe.config in a text editor. Please fill in the
following information:
easyITPort: This is the port EasyIT uses to listen for communication from applications. Default is port
6666, but this can be changed freely. The default should be fine for most use, but it will however need
to be changed to be able to run multiple EasyIT servers on the same machine. This port MUST be the
same port as the different applications use to connect to EasyIT, see 43.1.
applicationDirectory: This is the sub-folder in which EasyIT will try to locate applications for it to run.
This sub-folder is not an absolute folder name, it is relative to the folder in with the EasyIT Server was
installed. The default value of "apps" should work for everyone.
databaseHost: The hostname of the database server. This MUST be changed to the database server from
step 2. Default value is completely unusable for everyone.
databaseName: The name of the database on the server given in databaseHost. This is the database
EasyIT Server will use to log incoming data. Default value is completely unusuable for everyone.
databaseUser: The user that was created in step 2. Default value completely unusable, it must be
changed.
databasePassword: The password for the user created in step 2. Default value is completely unusable, it
must also be changed.

6) EasyIT Server is now ready for use. It can be started by running the EasyItStarter.exe file. Any
problems will be reported in the log windows of EasyIT Server.

Next you should follow the 42.2 and if you want to add applications to the system; 43.1.

361



362 CHAPTER 42. INSTALLATION GUIDE

Application developers have the following methods available as an interface for communication with
EasyIT Server
• public CSeries GetTags(DateTime dtStart, DateTime dtEnd, CTag[] tags, int gran)
• public CSet ReadTagsFromOPC(CTag[] tags)
• public bool WriteTagsToOPC(CTag[] tags)
• public void WriteTagsToDB(CTag[] tags)
• public long SubscribeSet(CSet setm)
• public void UnsubscribeSet(long setID)
• public CSet SpliceSets(CSet set1, CSet set2)
• public void SetConfigValue(int id, string name, string valueString)
• public string GetConfigValue(int id, string name)

For details about the use each of these methods, including description of the different parameters
see the implementation document. A more advanced sample application than in figure 43.1 can be
found in the in the Sample sub folder in the folder EasyIT Server was installed to.

42.2 INSTALLATION GUIDE FOR EASYITWEB

1) Unzip EasyITWeb.zip to the wwwroot folder of IIS. This is usually c:/inetpub/wwwroot, but it
might be placed in another location. The IIS-administrator should know this. EasyITWeb will be un-
packed in a sub-folder called EasyITWeb, this is the EasyITWeb root folder.

2) Set file permissions: The web portal will ble placed under c:/inetpub/wwwroot/EasyITWeb by
default. To be able to create custom pages, the web server needs permission to write files in the custom
page directory. This is how to achieve it:

• Open Windows Explorer and go to the EasyITWeb root folder.
• Double click the ’modules’ folder, and right click the ’Custom’ folder
• Select ’Properties’ and then click the ’Security’ tab
• If no ’Security’ tab appears follow these steps before continuing:

• Select ’Folder options’ from the ’Tools’ menu bar in Windows Explorer
• Select the ’View’ tab and scroll to the bottom of the list
• Uncheck the ’Use simple file file sharing’ box and click ok
• Now right click the ’Custom’ folder once again, and the ’Security’ tab should appear.

• Click the ’Add’ button, and then the ’Advanced’ button on the next screen
• Click ’Find now’ in the Select users and groups dialog.
• Select the ASP.NET user account in the list, and press ’OK’ twice
• Back in the Properties dialog for the Custom folder, select the ASP.NET account and check the ’Full

control’ box in the Permissions list. Then click OK.
• The EasyITWeb will now be able to write files to this folder

3) Configure server contact point: The address for connecting to the EasyIT server is configured in the
EasyITWeb.config file in the EasyITWeb root folder. The connection uses a tcp connection, and you
need to supply a hostname to the server and a port number.

4) Configure user accounts: A default administrator account is created with username ’admin’ and
password ’admin’. Once logged in, new accounts can be created through the ’Configure users’ page
available from the menu.



CHAPTER43
DEVELOPING APPLICATIONS AND CUSTOM

WEB PAGES

43.1 CONSTRUCTING APPLICATIONS

This is a guide to make applications that communicate with EasyIT.

43.1.1 Step by step

1. Open Visual Studio

2. Click File -> New -> Project

3. Select Visual C# Project and Console Application

4. Register a new application on the EasyIT web portal as described in 44.2

5. Add the following DLL files as .NET references to the new project: RemotingInterfaces.dll, Ap-
plicationLibrart.dll, DataItems.dll. They are located in the “client-libraries” folder where you
installed EasyIT.

6. Development can now start. See figure 43.1

7. Build the application

8. Copy the resulting exe file to the applications folder defined in “EasyItStarter.exe.config”. Usu-
ally the applications folder is the sub-folder named “apps” in the folder that EasyIT was installed
to.

9. The application is now ready for use in EasyIT. It can be started and stopped through the “Mon-
itor Application” module on the web portal. For detailed description of this see 44.2

43.1.2 Explaination of the code

using EasyIt.Application;
using EasyIt.DataItems;
using EasyIt.RemoteInterfaces

We start by declaring that we want to use these three namespaces.

AppAPIClientBase clientBase = new AppAPIClientBase(25, 6666, "localhost");

This is the call that connects us to the EasyIt server. The first parameter is an unique identifier for
this application. This identifier is generated when the application is registered on the EasyIT web por-
tal in step 4. It is VERY IMPORTANT to register each new application on the web portal and use the
id that the portal generates here!

363



364 CHAPTER 43. DEVELOPING APPLICATIONS AND CUSTOM WEB PAGES

namespace TestApp1
{
/// <summary>
/// Summary description for Class1.
/// </summary>
class Class1
{
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main(string[] args)
{
AppAPIClientBase clientBase = new AppAPIClientBase(25, 6666, "localhost");
clientBase.DataArrival +=new .DataReceivedEventHandler(clientBase_DataArrival);

CTag tag = new CTag("opcda://localhost/ICONICS.SimulatorOPCDA.2", "", "Numeric.Step");
CSet set = new CSet("", 3);
set.AddTag(tag);
clientBase.SubscribeSet(set);
while(true){
Thread.Sleep(6000);
}
}

private static void clientBase_DataArrival(CSet setm)
{
Console.WriteLine("got data from EasyIt");
}
}

}

Figure 43.1: An example application

The second parameter is the port server and the third is the hostname of the machine the server
is running on. These are defined by the EasyIT administrator and are located in the file "EasyIt-
Starter.exe.config" in the folder that EasyIT was installed to. It is essential that these parameters are
correct, or no contact to the EasyIT server can be made.

clientBase.DataArrival +=new .DataReceivedEventHandler(clientBase_DataArrival);
....
private static void clientBase_DataArrival(CSet setm)
{
Console.WriteLine("got data from EasyIt");
}

This registers an eventhandler on the DataArrival event. This event gets triggered everytime the
EasyIT server has new data for the client. In this case we say that the method clientBase_DataArrival
should be called everytime EasyIT server sends new data to us. clientBase_DataArrival just prints "got
data from EasyIt" each time it is called but in a real application this method would inspect the incoming
data, in setm, and do some kind of calculations on it.



43.2. CONTRUCTING CUSTOM WEB PAGES 365

CTag tag = new CTag("opcda://localhost/ICONICS.SimulatorOPCDA.2", "", "Numeric.Step");

This creates a new Tag object. The first parameter is the hostname of the opc server where the tag
can be found, the second parameter is the path to the tag on server and the third parameter is the
name of the tag on the server. These three parameters should match an actual tag on an actual
OPC DA server. In this case we say we want to read the tag named "Numeric.Step" from the server
"opcda://localhost/ICONICS.SimulatorOPCDA.2".

CSet set = new CSet("", 3); set.AddTag(tag);

We create a new set, give it rate of 3, and add our tag to it. A rate of 3 means we want callback
with new values for each of the tags in the set every third second.

int subscriptionID = clientBase.SubscribeSet(set);

And finally we ask EasyIT to subscribe to the tag. From this call we get back a subscription id. This
should be saved for later use, as this id must used if we want to unsubscribe from the set.

The end result is an application that gets a callback from the EasyIT server every third second with
the newest value of the tags in the set is subscribed to.

43.2 CONTRUCTING CUSTOM WEB PAGES

43.2.1 Step by step

Follow these steps to create and customize a page for an existing application:

1. Choose ’Configure applications’ from the menu, end click the ’Edit’ button next to the application
you want the page to be associated with.

2. Enter desired display name (used as page title) and file name (physical name on the disk) for
the new page, and press ’Add page’. This creates empty ’shells’ which can be edited in order to
customize the page.

3. Navigate to the right application under ’Application results’ in the menu, and select the page the
you’ve just created. This pages contains information on where to find the file on the disk, for
instance ’myPage.ascx’.

4. Using your favourite editor, open the ’myPage.ascx’ and ’myPage.ascx.cs’ files, and edit these.

5. Once you save your changes, the page is updated and compiled. There is no need to restart the
EasyIT server.

The following code listings shows an example of a page for getting some data from the database,
and displaying it as a table on the web page. The code is based on the empty shells automatically
generated when adding the page. Lines that have been edited are marked with bold face letters. See
listing 43.3 and 43.4

43.2.2 Explanation of the code

The myTestPage.ascx files declares an asp:DataGrid, which is a component which can be filled with
a DataSet from the database in order to produce an html table. In the myTestPage.ascx.cs file, the
datagrid is declared using the line



366 CHAPTER 43. DEVELOPING APPLICATIONS AND CUSTOM WEB PAGES

Figure 43.2: Configuring the demo application



43.2. CONTRUCTING CUSTOM WEB PAGES 367

<%@ Control Language="c#" AutoEventWireup="false"
Codebehind="myTestPage.ascx.cs" Inherits="WEB.modules.Custom.App25.myTestPage"
TargetSchema="http://schemas.microsoft.com/intellisense/ie5" %>

<h1>Demo!</h1>
<p>Here are the 30 first datavalues requested logged by the demo
application:</p>
<p><asp:DataGrid id="DataGrid1" runat="server"></asp:DataGrid></p>

Figure 43.3: Example custom web page application: myTestPage.ascx

protected System.Web.UI.WebControls.DataGrid DataGrid1;
Three lines are added to the Page_Load method, which is run each time the page is loaded in the
browser.
string query = ”SELECT top 30 strName, strValue, dtTimestamp FROM tblTag
WHERE strServer = ’opcda://localhost/ICONICS.SimulatorOPCDA.2’
AND strPath = ’ ’ AND strName = ’Numeric.Step’ ”;
DataGrid1.DataSource = webapi.ExecuteSelectQuery(query);
DataGrid1.DataBind();
The first line defines a query asking for the first 30 rows logged by the server of the tag subscribed
to by testapp1 (shown in the previous section). The second line executes the query by calling the
ExecuteSelectQuery in the WebAPI. The ExecuteSelectQuery method returns a DataSet, which is set as
the DataSource for the DataGrid component. The component is then filled with the data by calling the
DataBind() method. The resulting page is shown in figure 43.5.



368 CHAPTER 43. DEVELOPING APPLICATIONS AND CUSTOM WEB PAGES

namespace WEB.modules.Custom.App25
{

using System;
using System.Data;
using System.Web;

public class myTestPage : EasyITControl
{

protected System.Web.UI.WebControls.DataGrid DataGrid1;

public myTestPage()
{

PageTitle = "MyTestPage";
}

private void Page_Load(object sender, System.EventArgs e)
{

WebAPI webapi = (WebAPI)Application["webapi"];

string query = "Select top 30 strName, strValue, dtTimestamp from
tblTag where strServer = ’opcda://localhost/ICONICS.SimulatorOPCDA.2’
and strPath = ” and strName = ’Numeric.Step’"; DataGrid1.DataSource =
webapi.ExecuteSelectQuery(query);
DataGrid1.DataBind();

}

#region Web Form Designer generated code
override protected void OnInit(EventArgs e)
{

InitializeComponent();
base.OnInit(e);

}

private void InitializeComponent()
{

this.Load += new System.EventHandler(this.Page_Load);
}
#endregion

}
}

Figure 43.4: Example custom web page application: myTestPage.ascx.cs



43.2. CONTRUCTING CUSTOM WEB PAGES 369

Figure 43.5: The resulting demo page





CHAPTER44
USING THE EASYITWEB

There are two kinds of users of the EasyITWeb: Analysts and Administrators. Analysts have access
to the ’Browse data’ and ’Application results’. In addition to these, Administrators have access to
’Subscriptions’, ’Configure applications’, ’Configure users’ and ’Monitor applications’. These are all
described below, in the order in which they appear in the menu.

44.1 BASIC FUNCTIONALITY

Browse data
This page allows you to select which tags you want to browse, and set the granularity and time span
for the data. Tags are selected by first choosing a server in the server list. This list is automatically
populated, depending on which servers the tags available at the server are logged from. This includes
both applications (represented by the application name) and OPC Servers (represented by their URL).
When a server is chosen, the available tags appear in the tags list box. By selecting them one by one and
pressing the ’Add tag’ button, these are added to the list of selected tags. The time span for the data
plot is set in the To/From boxes. If a tag is selected, the ’Copy timespan’ button is used for setting the
time span to the exact time in which the selected tag is logged. Granularity is the number of samples
to be displayed when browsing data. To view the selected tags press the ’View data’ button.

The data is now displayed as a time plot by default. You can change the chart type, time span and
other properties. If you want to view real-time data that is being logged at the moment, set the desired
time frame and choose ’Autorefresh’.

Application results
Displays a list of applications. Click the name of the application to show which pages are available.
Click the name of the page you want to view.

44.2 ADMINISTRATOR SPECIFIC FUNCTIONALITY

Subscriptions
This page displays all active subscriptions, and allows you to edit these. Web subscriptions are needed
when a user wants to browse data from an opc-server without having to write a separate application
just for subscribing to the data. The first page allows you to add, edit or delete subscriptions. The
’delete’ button stops the logging of the data on the DI. Add/edit lets you edit the tags to be contained in
the set, and set the granularity and deadband for the set. If you save a set with no tags, the subscription
is automatically removed.

Configure applications
Displays a list of all applications containing the following information: ID of the application (used for
recognizing applications that connect to the DI). Name of the application. The number of custom pages
associated with the application (nofPages). URL to the executable file for the application.

To add a new application simply enter its name and URL to executable file (if created) in the ’Add
new application’ form. To delete an application, press the ’Delete’ button next to the application.
To edit existing configuration of an application, press the ’Edit’ button next to the application. This

371



372 CHAPTER 44. USING THE EASYITWEB

presents you with a new page showing the custom pages associated with the chosen application. This
page allows you to add or delete pages, and to configure the application itself. To configure the appli-
cation, change Name and URL to desired values and press ’Save configuration’.

To add new page, enter its display name and name of the file to be written to disk. When ’Add page’
is clicked an empty shell of an asp.net page is outputted to %webroot%/EasyITWeb/modules/Custom/AppX.
The folder is created automatically from the ID of the application, so application 15 would have its files
under the App15 directory. Pages can be deleted from the database with the ’Delete’ button next to each
page. This deletes the database entry, but does not delete the actual files on disk.

Configure users
A list of currently registered users is displayed. Press ’Delete’ next to the user if you want to delete the
account from the database. ’Edit’ og ’New user’ brings you to the page for editing user account details.
A unique username must be supplied (this is not possible to change after creating the user account).

Monitor applications
Gives a list of applications and their status. Allows an administrator to start and stop these applications
directly through the ’Start’ or ’Stop’ button next to each application. This only works provided that the
exe files are placed under the EasyITStarter/apps/ directory and that the name of the exe file is stored
in the application configuration.


	I Project Directive
	1 Prelude
	2 Project mandate
	2.1 The name of the project
	2.2 Customer
	2.3 Interested parties
	2.4 Background
	2.5 Effect goals - high level requirements
	2.6 Result goals - deliveries
	2.7 The scope
	2.8 External conditions
	2.9 Resources
	2.10 Schedule
	2.10.1 Duration
	2.10.2 Important dates


	3 Project plan
	3.1 Phases
	3.1.1 Planning
	3.1.2 Pre study
	3.1.3 Requirement specification
	3.1.4 Software Design Description and test plan construction
	3.1.5 Implementation and testing
	3.1.6 Project evaluation
	3.1.7 Presentation and demonstration
	3.1.8 Project management
	3.1.9 Lectures and self study

	3.2 Milestones
	3.3 Effort in each phase

	4 Organization
	4.1 Organization chart
	4.2 Formal roles
	4.2.1 Project leader
	4.2.2 Document director
	4.2.3 Test coordinator
	4.2.4 Presentation manager
	4.2.5 Customer contact
	4.2.6 Subsystem director 1: DI
	4.2.7 Subsystem director 2: APP
	4.2.8 Subsystem director 3: GUI


	5 Templates and standards
	5.1 Templates
	5.1.1 Phase documents
	5.1.2 Notification of meetings
	5.1.3 Status report
	5.1.4 Minutes of meetings

	5.2 Standards

	6 Documentation and versioning
	6.1 Textual documents
	6.1.1 LaTeX - what and why
	6.1.2 CVS - what and why
	6.1.3 Alternatives to CVS

	6.2 Handling of program code
	6.2.1 Microsoft Visual SourceSafe
	6.2.2 Alternatives to SourceSafe


	7 Project monitoring
	7.1 Meetings
	7.1.1 Internal meetings
	7.1.2 Advisor meetings
	7.1.3 Customer meetings

	7.2 Internal informative function
	7.2.1 Time keeping
	7.2.2 Activities and milestones

	7.3 Status reports
	7.4 Risk management - TRECQ

	8 Quality Assurance
	8.1 Quality assurance and measurement in EasyIT
	8.2 Customer related quality criteria
	8.3 Communication
	8.4 Response times
	8.4.1 With customer
	8.4.2 Internal

	8.5 Routines for producing quality the first time
	8.6 Routines for approval of phase documents
	8.7 Reports and meeting notices
	8.7.1 Customer
	8.7.2 Internal
	8.7.3 Advisor


	A Interested parties
	A.1 Client representative
	A.2 Advisors
	A.3 Project Team

	B Gantt chart and status diagrams
	C Risk diagram
	D Templates

	II Pre study
	9 Introduction
	9.1 Purpose
	9.2 Overview

	10 Current situation
	10.1 Introduction
	10.2 Technical overview
	10.3 Problems
	10.4 Today's work processes
	10.5 Today's use cases

	11 Desired solution
	11.1 Introduction
	11.2 System modules
	11.3 Overall system description
	11.4 Desired work processes
	11.5 Desired use cases

	12 Business Related Requirements
	12.1 Introduction
	12.2 List of business related requirements

	13 Evaluation criteria
	13.1 Criteria

	14 Market research
	14.1 Introduction
	14.2 Solutions comparable to EasyIT
	14.2.1 Quick overview
	14.2.2 About open source software
	14.2.3 GDAC
	14.2.4 OPenDA
	14.2.5 About commercial software
	14.2.6 ProcessNet from Matrikon
	14.2.7 OPC DA HDA Archiver from Integration Objects
	14.2.8 Trend Software from Canary Labs
	14.2.9 OPC Toolbox from MathWorks
	14.2.10 OPC Systems from Eldridge Engineering Inc
	14.2.11 DAQBench from Agile Integration
	14.2.12 Software Toolbox
	14.2.13 PI Advanced Computing Engine from OsiSoft
	14.2.14 LabView from National Instruments

	14.3 Summary of the Marked Research

	15 Chapter summary
	15.1 Conclusion

	E Technological pre study
	E.1 Introduction
	E.2 Short introduction to OPC
	E.2.1 The need for standardization
	E.2.2 Tags/points
	E.2.3 OPC Data Access
	E.2.4 OPC Historical Data Access

	E.3 How the different technologies are evaluated 
	E.4 Development platforms to consider
	E.4.1 Sun JAVA
	E.4.2 Microsoft .NET
	E.4.3 Development platform summary

	E.5 Database systems to consider
	E.5.1 MySQL
	E.5.2 Oracle Database
	E.5.3 Microsoft SQL Server 2000 Developer/Enterprise Edition
	E.5.4 Database summary

	E.6 Summary of technological pre study

	F Evaluations forms
	F.1 All evaluation forms


	III Requirements Specification
	16 Introduction
	16.1 Purpose
	16.2 Scope
	16.3 References
	16.4 Overview

	17 Overall description
	17.1 Product perspective
	17.1.1 System interfaces
	17.1.2 User interfaces
	17.1.3 Hardware interfaces
	17.1.4 Software interfaces
	17.1.5 Communications interfaces

	17.2 User characteristics
	17.3 Apportioning of requirements
	17.4 APP (applications) and the WEB (presentation system)
	17.4.1 Configuration of applications


	18 Specific requirements
	18.1 Introduction
	18.2 Requirements for the DI
	18.2.1 Graphical overall use case for DI
	18.2.2 Functional requirements for the DI
	18.2.3 Textual use case diagrams for the DI

	18.3 Requirements for the APP API
	18.3.1 Graphical overall use case for APP API
	18.3.2 Functional requirements for the APP API
	18.3.3 Textual use cases for the APP API

	18.4 Requirements for WEB
	18.4.1 Graphical overall use case for WEB
	18.4.2 Functional requirements for the web portal
	18.4.3 Use cases for common user tasks

	18.5 Design constraints
	18.5.1 Operating system
	18.5.2 Hardware
	18.5.3 Programming platform
	18.5.4 Standards compliance

	18.6 Database requirements
	18.7 Software system attributes
	18.7.1 Reliability
	18.7.2 Availability
	18.7.3 Security
	18.7.4 Maintainability
	18.7.5 Portability


	19 Estimation
	19.1 The need for estimation
	19.2 Estimation method
	19.3 Results
	19.3.1 Project Estimation Method
	19.3.2 Our own estimation



	IV Software Design Description
	20 Introduction
	20.1 Purpose
	20.2 Scope
	20.3 Definitions, acronyms and abbreviations
	20.4 References
	20.5 Overview
	20.6 Development
	20.6.1 Phase 1
	20.6.2 Phase 2
	20.6.3 Phase 3
	20.6.4 Phase 4


	21 Decomposition description
	21.1 Module decomposition
	21.1.1 DI - Data Interchanger
	21.1.2 Web - Web Interface
	21.1.3 External entities

	21.2 Concurrent process decomposition
	21.3 Data decomposition

	22 Dependency description
	22.1 Intermodule dependencies
	22.1.1 DI - Data Interchanger
	22.1.2 WEB - Web Interface
	22.1.3 External entities


	23 Interface description
	23.1 Module interface
	23.1.1 Class interfaces - DI
	23.1.2 Graphical user interface - Web
	23.1.3 External entities interface

	23.2 Process interface

	24 Detailed design
	24.1 Module detailed design
	24.1.1 DI - Data Interchanger
	24.1.2 WEB - Web Interface
	24.1.3 External entities

	24.2 Database detailed design


	V Implementation document
	25 Introduction
	26 Mode of operation
	26.1 Class diagrams
	26.2 Implementation partitioning
	26.3 EasyIT Server / EasyIT Manager
	26.3.1 Technical background
	26.3.2 Framework
	26.3.3 Accessing the APP API

	26.4 WEB
	26.4.1 Technical background
	26.4.2 Framework
	26.4.3 Accessing the WebAPI
	26.4.4 Developing custom pages using the WebAPI


	27 Specific implementation information
	27.1 Implementing the DBConnector
	27.2 Implementing the scheduling mechanism of EasyIT Manager
	27.3 Implementing the DataCollector
	27.4 Implementing the application library and the application API
	27.5 Implementing the GetTags method

	28 Extra functionality
	28.1 Manage user accounts
	28.2 Subscriptions
	28.3 ''Real-time'' data browsing
	28.4 Scheduling applications through the web interface

	29 Further developement
	29.1 Suggested improvements
	29.2 Estimating time consumption

	G Code samples
	G.1 Introduction
	G.2 Example applications
	G.3 Shells for custom web pages

	H Class diagram

	VI Test Document
	30 Introduction
	30.1 Purpose
	30.2 Overview

	31 Overall Test plan
	31.1 Introduction
	31.2 Common methods
	31.2.1 Black Box testing
	31.2.2 White Box testing

	31.3 Test stages
	31.3.1 Unit tests
	31.3.2 Module test
	31.3.3 Integration test
	31.3.4 System test
	31.3.5 Acceptance test

	31.4 Test types
	31.4.1 Functional testing
	31.4.2 Testing of non-functional requirements

	31.5 Test approaches
	31.5.1 Requirements based testing

	31.6 Test data resource
	31.7 Error handling
	31.7.1 Error and incident classification
	31.7.2 Error handling procedures

	31.8 Test plan
	31.8.1 Unit Test
	31.8.2 Module and integration test
	31.8.3 System test
	31.8.4 Acceptance Test

	31.9 Requirements to be tested
	31.10 Requirements not to be tested

	32 Templates for Testing
	32.1 Introduction
	32.2 Templates

	33 Summary
	I Test Report
	I.1 Unit tests
	I.2 Module Test Increment 1 - DI
	I.2.1 MT-DI-1
	I.2.2 MT-DI-2 and MT-DI-3
	I.2.3 MT-DI-4
	I.2.4 MT-DI-5

	I.3 Module Test Increment 2 - API
	I.3.1 MT-API-1
	I.3.2 MT-API-2
	I.3.3 MT-API-3
	I.3.4 MT-API-4
	I.3.5 MT-API-5
	I.3.6 MT-API-6
	I.3.7 MT-API-7
	I.3.8 MT-API-8
	I.3.9 MT-API-9
	I.3.10 MT-API-10
	I.3.11 MT-API-11
	I.3.12 MT-API-12
	I.3.13 MT-API-13

	I.7 Acceptance test
	I.4 Module Test Increment 3 - WEB
	I.4.1 MT-WEB-1
	I.4.2 MT-WEB-2
	I.4.3 MT-WEB-3
	I.4.4 MT-WEB-4
	I.4.5 MT-WEB-5
	I.4.6 MT-WEB-6

	I.5 Stress testing DI
	I.5.1 MT-STRESS-1

	I.6 System Test
	I.6.1 ST-1
	I.6.2 ST-2
	I.6.3 ST-3
	I.6.4 ST-4
	I.6.5 ST-5


	J Test Log
	J.1 MT-DI
	J.1.1 MT-DI-1
	J.1.2 MT-DI-2 and MT-DI-3
	J.1.3 MT-DI-4
	J.1.4 MT-DI-5

	J.2 MT-API
	J.2.1 MT-API-1,MT-API-2,MT-API-3 and MT-API-5
	J.2.2 MT-API-4
	J.2.3 MT-API-6
	J.2.4 MT-API-7 and MT-API-8
	J.2.5 MT-API-9
	J.2.6 MT-API-10
	J.2.7 MT-API-11
	J.2.8 MT-API-14 and MT-API-15

	J.3 MT WEB
	J.4 MT-WEB-5
	J.5 ST
	J.5.1 ST-1
	J.5.2 ST-2

	J.6 Acceptance test


	VII Project Evaluation
	34 Introduction
	34.1 Purpose
	34.2 Overview

	35 The project outcome
	35.1 The phases of the project mapped to parts of the document
	35.2 The TDT4290 course
	35.2.1 Organization of the course
	35.2.2 Lectures
	35.2.3 Mandatory activity I: Six Thinking Hats
	35.2.4 Mandatory activity II: Team building in Estenstadmarka with Luftkrigsskolen


	36 Organization and Cooperation
	36.1 Internal Cooperation
	36.1.1 Organizing the work process
	36.1.2 Organizing the phase documents
	36.1.3 Consistency of roles
	36.1.4 Conflicts and Conflict management

	36.2 External Cooperation
	36.2.1 Cooperation with advisor
	36.2.2 Cooperation with advisor assistant
	36.2.3 Cooperation with the customer


	37 Carrying out the practical
	37.1 Managing group resources
	37.2 Hardware and software resources
	37.3 Meeting room resources
	37.4 Remote meeting resources

	38 Tools
	38.1 Documents
	38.1.1 LaTeX
	38.1.2 CVS
	38.1.3 ER-modeller
	38.1.4 Visio
	38.1.5 Group directory
	38.1.6 Backup

	38.2 Program code
	38.2.1 MS Visual Studio
	38.2.2 MS Visual SourceSafe


	39 Phases
	39.1 Project directive
	39.2 Pre study
	39.3 Requirements specification
	39.4 Design
	39.5 Implementation and testing
	39.6 Project evaluation
	39.7 Project presentation

	40 Progression
	40.1 Progression and milestones
	40.2 Time Consumption
	40.3 About implementation estimate

	41 Summary
	41.1 Project group matters
	41.1.1 What are we particularly satisfied with?
	41.1.2 What could have been done better?

	41.2 Course matters
	41.2.1 What are we particularly satisfied with?
	41.2.2 What could have been done better?


	K Status reports

	VIII User guide for Easy IT
	42 Installation guide
	42.1 Installation guide for EasyIT Server
	42.2 Installation guide for EasyITWeb

	43 Developing applications and custom web pages
	43.1 Constructing applications
	43.1.1 Step by step
	43.1.2 Explaination of the code

	43.2 Contructing custom web pages
	43.2.1 Step by step
	43.2.2 Explanation of the code


	44 Using the EasyITWeb
	44.1 Basic functionality
	44.2 Administrator specific functionality



