Logic View

FIRST IN FIELDBUS

MAI / 05 Logic View Versão 8

Logic View

smar

web: www.smar.com.br

Especificações e informações estão sujeitas a modificações sem prévia consulta. Para atualizações mais recentes veja o site da smar acima.

BRASIL

Smar Equipamentos Ind. Ltda. Rua Dr. Antonio Furlan Jr., 1028 Sertãozinho SP 14170-480

Tel.: +55 16 3946-3599 Fax: +55 16 3946-3554 e-mail: insales@smar.com.br

ALEMANHA Smar GmbH

Rheingaustrasse 9 55545 Bad Kreuznach Germany

Tel: + 49 671-794680 Fax: + 49 671-7946829 e-mail: infoservice@smar.de

EUA

Smar International Corporation

6001 Stonington Street, Suite 100 Houston, TX 77040 Tel.: +1 713 849-2021 Fax: +1 713 849-2022 e-mail: sales@smar.com

CHINA

Smar China Corp.

3 Baishiqiao Road, Suite 30233 Beijing 100873, P.R.C. Tel.: +86 10 6849-8643 Fax: +86-10-6894-0898 e-mail: info@smar.com.cn

MEXICO

Smar Mexico

Cerro de las Campanas #3 desp 119 Col. San Andrés Atenco

Tlalnepantla Edo. Del Méx - C.P. 54040 Tel.: +53 78 46 00 al 02

Fax: +53 78 46 00 al 02 Fax: +53 78 46 03 e-mail: ventas@smar.com

Smar Laboratories Corporation

6001 Stonington Street, Suite 100 Houston, TX 77040 Tel.: +1 713 849-2021 Fax: +1 713 849-2022 e-mail: sales@smar.com

FRANÇA

Smar France S. A. R. L. 42, rue du Pavé des Gardes

F-92370 Chaville Tel.: +33 1 41 15-0220 Fax: +33 1 41 15-0219 e-mail: smar.am@wanadoo.fr

CINGAPURA

Smar Singapore Pte. Ltd.

315 Outram Road #06-07, Tan Boon Liat Building Singapore 169074

Tel.: +65 6324-0182 Fax: +65 6324-0183 e-mail: info@smar.com.sg

Smar Research Corporation

4250 Veterans Memorial Hwy. Suite 156 Holbrook , NY 11741 Tel: +1-631-737-3111

Tel: +1-631-737-3111 Fax: +1-631-737-3892

e-mail: sales@smarresearch.com

HOLANDA

Smar Nederland

De Oude Wereld 116 2408TM Alphen aan den Rijn Tel: +31 172 494 922

Fax: +31 172 474 922

e -mail : info@smarnederland.nl

REINO UNIDO Smar UK Ltd

3, Overhill Road - Cirencester

Gloucestershire - GL7 2LG

Tel: +44 (0)797 0094138 Fax: +44 (0)797 4747502 e-mail: info@smarUK.co.uk

Introdução

O manual de Configuração, Programação e Aplicações do sistema DF65 está dividido em 3 partes.

- A Lógica Ladder: onde descrevemos os elementos de controle de uma estratégia de controle disponíveis no LogicView e utilizados pela DF65.
- 2. Blocos de Função: onde apresentamos descrições detalhadas de todos os blocos de função disponíveis no LogicView e utilizados pela DF65
- 3. LogicView: onde descrevemos o software da Smar LogicView. Este programa é o aplicativo utilizado para configurar o hardware do sistema de controle (Módulos de I/O, fontes, CPU, etc.), implementar as lógicas ladder de controle (incluindo os elementos lógicos Ladder e os blocos de função).

Sugere-se que o usuário leia inicialmente os Capítulos 1 e 2 para em seguida passar para o Capítulo 3, que descreve, de maneira clara, como implementar os elementos descritos nos dois primeiros capítulos. No entanto, nada impede que o usuário inicie a leitura do Capítulo 3 antes do anteriores e os consulte toda vez que precisar durante a leitura do Capítulo 3.

Este manual possui exemplos práticos que descrevem passo a passo como configurar as estratégias de controle. Estes exemplos foram incluídos de modo a facilitar o entendimento do sistema. Estas aplicações estão distribuídas ao longo deste manual.

- O Capítulo 3 trata da descrição do Software LogicView da Smar.
- O Capítulo 4 traz soluções para problemas comuns encontrados pelo usuário para configurar o sistema DF65.

Nota

Este documento é uma descrição dos blocos de função e os elementos lógicos (Elementos Ladder) que estão implementados no co-processador (DF65). Além disso este documento apresenta uma descrição de como configurar e editar redes lógicas Ladder através da programa aplicativo LogicView da Smar. Este documento também descreve em detalhes este software.

A Smar se reserva ao direito de alterar qualquer parte deste documento sem aviso prévio.

Lembre-se de que diferentes versões do DF65 possuem diferentes tipos de dados, blocos de funções e características genéricas. A última versão do DF65 sempre é uma atualização do manual sem aviso prévio. Isto significa que ele conterá todas as características (antigas e novas) incluídas.

Índice

NotaÍndice	
mentos da Rede (Elementos Ladder)	
Definições dos Elementos da Caixa de Ferramenta da Rede	
4F	
Contato Normalmente Aberto	1.2
Contato Normalmente Fechado	1.1
⊣t⊢	
Contato Sensível à Transição de Subida	1.1
-III-	
Contato Sensível à Transição de Descida	1.1
	1.2
⟨⟩	
Bobina Invertida	1.2
(S) Set de Bobina	1.2
-(F)-	
Reset de Bobina	1.2
Conjunto de Bobina Retentiva (de Memória)	13
-(≤m)-	
Bobina com Set Retentivo (de Memória)	1.2
Bobina com Reset Retentivo	1.5
Bobina Sensível à Transição de Subida	1.2
(1)-	
Bobina Sensível à Transição de Descida	1.2
Conexão Horizontal	1.3
Conexão Vertical	1.3
Elimina Conexão Vertical	1.5
<u>ান</u>	
Bloco Funcional	1.3
Função do Usuário	1.5
Jump	
Desvio para outra rede	1.3
<pre><pre></pre></pre>	
Retornoógica Booleana	
Contato Normalmente Aberto	1.3
Contato Normalmente FechadoFunção Lógica OR (OU)	
Função Lógica AND (E) Equações Booleanas	1.4
Álgebra de Boole	

A entrada EN e a saída ENO	
Blocos de Função Disponíveis em Ordem Alfabética	
Blocos de Função Listados por Grupos Funcionais	
Funções Relacionadas por Tempo/Pulso	
Funcões de Manipulação de Dados	
Funções Matemáticas	
Funções de Comparação	
Funções de Controle de Processo	
Funções relacionadas por Tempo/Pulso	
Acumulador de Pulsos (ACC)	
Acumulador de Pulsos (ACC_N)	
Contador Decrescente de Pulso (CTD)	
Contador Crescente de Fulso (CTU1)	
Alarme em Tempo Real (RTA)	
Tempo de Atraso para Desligar (TOF)	
Tempo de Atraso para Desligar (TOF1)	
Tempo de Atraso para Ligar (TON)	
Contador de Atraso para Ligar (TON1)	
Temporizador de Pulso (TP1)	
Temporizador de Pulsos (TP1)	
Funções de Manipulação de Dados	
Conversão de Byte para Bits (BTB)	
Primeiro a Entrar - Primeiro a Sair (FIFO)	
Constantes Inteiras (ICT)	
Conversão de Inteiro para BCD (ITB)	
Conversão de Inteiro para Real (ITR)	
Multiplexador (MUX)	
Operação Not Bit a Bit (NOT)	
Seleção Binária das Saídas (OSEL)	
Constantes Reais (RCT)	
Conversão de Real para Inteiro (RTI)	
Truncagem (TRC)	
Bit Wise Logic (BWL)	
Funções Matemáticas	
Valor Absoluto (ABS)	
Adição (ADD)	
Divisão (DIV)	
Módulo (MOD)	
Multiplicação (MUL)Raiz Quadrada (SQR)	
Subtração (SUB)	
Funções de Comparação	
Igualdade (EQ)	
Seqüência Monotônica Decrescente (GE)	
Sequência Decrescente (GT)	
Sequência Monotônica Crescente (LE)	
Limitador (LMT)	
Seqüência Crescente (LT)	
Máximo (MAX)	
Mínimo (MIN)	
Desigualdade (NE)	
Funções de Controle de Processo	
Limite Cruzado e Velocidade de Variação (XLIM)	
Sample Hold com Incremento e Decremento (SMPL)	
Rampa Automática com Incremento e Decremento (ARAMP)	
Linearização (LIN)	
Equações Multivariáveis (MATH1)	
Equação 1 – Umidade Relativa	
Equação 2- API	
Equação 3 – Processamento de sinal	
Controlador PID	

Introdução	
Instalação	
Usando o LOGICVIEW	
Iniciando uma Aplicação	
Informações de Projeto	
Diretório de Trabalho	
Configurando os módulos de E/S	
Módulos Especiais	
Configuração e Consistência de Hardware Editando Módulos de E/S	
Módulos de E/S especiais	
Configurando o módulo DF44	
Configurando o Módulo de temperatura DF45	
Configurando o Módulo DF46	
Configurando o Módulo FB700	
Balanço Geral	
ID e os Módulos	
Uma nota sobre as ferramentas Copy (Copiar), Paste (Colar) e Move (Mover)	
Copiar e Colar	
Mover	
Desfazer	
Alocação de Memória	
Adicionando Módulos	
Adicionando um novo Rack	
Subsistema de E/S Remoto	
Tabela Global	
Saídas Fail/Safe	
Configurando Módulos Virtuais (Pontos de memória discretos)	
User TAG e descrição para os pontos virtuais	
Configurando a estratégia de controle	
Diagramas Ladder (Redes de Ladder)	
A Rede Lógica	
O Ciclo Completo do DF65	
Execução Sincronizada da Lógica Ladder e Comunicação	
Preferências de Edição de Redes Lógicas	
Administrando Múltiplas Redes Lógicas	
Movendo-se de uma célula para outra	
Inserindo Elementos de Diagrama Ladder	
Inserindo Blocos de Função	
Apagando Elementos com o Botão Delete	
Conexões de Blocos de Função	
Operação Manual/Automática do Loop PID	
Dicas gerais sobre a rede	
Procurando nas Redes Lógicas	
Usando a Opção Procurar E/S	
A Opção Procurar Funções do Usuário	
A Opção Procurar Blocos de Função	
Adicionando Notas às Linhas de Programação Ladder	
Espaço Ocupado pela Memória e Tempo de Execução	
Memórias da CPU	
A Rede (Diagrama Ladder)	
BLOCOS de FUNÇÃO	
Conectando ao DF65	
Cabos	
Chave de Comunicação	
Camada Física e Time Out	
Alterando as Configurações de Comunicação do DF65	
Alterando os Parâmetros de Comunicação do DF65	
Otimização da Comunicação	
Leitura com View:	

Configurações de Comunicação para Ethernet	2 5 4
Time Out para LAN	3.34
Time Out para LANEndereço IP do ENET-700/ ENET-710	3.54
Usando ENET-700	3.54
Usando ENET-710	
Configuração da Porta Serial	
Modos de Operação da Porta RS-485	3.59
Mudando o Endereço IP e Username/Password	
Ajustando o Timeout para ENET-700/ENET-710	3.61
Trabalhando ON-Line	
Fazendo o Download da Configuração	
Monitoração ON-LINE	
A CPU em Modo RUN	
Monitorando Blocos de Função e Elementos Ladder	
Monitorando Velocidade	
Monitorando blocos de E/S	
Forçando Elementos	3.65
Usando a Ferramenta de Monitoração na Página Endereços MODBUS	
Modo ON-LINE	3.67
Opção Editar Ladder On-line	3.68
Como funciona?	3.69
Os botões para opção Editar Ladder On-line	
Opção Edição On-line Completa	3.69
Utilizando o Modo Edição On-line Completa	3.70
Adicionando/Alterando Elementos na Ladder	3.71
Adicionando/Apagando Redes	
Adicionando/Apagando Módulos	3.74
Adicionando/Apagando Módulos Virtuais	
Adicionando/Apagando Interface RIO	3.76
Adicionando/Apagando Funções de Usuário	3.76
Alterar configuração de módulos	3.77
Mover módulos na página de hardware	
Teste do Sistema após as atualizações	
Download Diferencial	
1.º Passo	
Tabela de Condições	
Regras:	
2º Passo:	
3° Passo:	
4º Passo:	3.83
Diferenças entre Editar On-line e Edição On-line Completa	3.86
Vantagens do Modo Edição On-line Completa	
Observações:	
Nota para módulo DF45	
Nota para o módulo FB-700	3.86
Nota para comunicação via BlockView	3.87
Problemas de Comunicação	3.87
a) Antes do botão Send	
b) Após o botão Send	
c) Após o Aceitar Mudanças	
Desistência de Atualizações no Modo Edição On-line Completa	3.89
Exemplos para a opção Edição On-line Completa	3.91
a) Exemplo 1:	
b)Exemplo 2:	
Conectando o DF65 a HMI	
OPC (OLE for Process Control)	
Usando Drivers de Comunicação com MODBUS	
Comunicação Modbus	
Código de Endereços Modbus	
Implicações Quando se Altera Configuração do DF65	2 102
impricações Quanto Se Artera Coringuração do Dros	3. 103
Mapa de Memória Digital	
Mapa de Memória Analógico	
Registros Especiais	
ReadyScanRio (RIO)	
SSIOStatus	
Atribuição manual dos endereços Modbus	
Alocação Automática de Endereços Modbus	
Alocação Manual de Endereços Modbus	
Alocação de Endereços Modbus para Bloco de Função	3 107

IntroduçãoCriando uma Função de usuário	
Mensagens de Alerta	
Como estimar o espaço de memória para as Funções do Usuário	
Editar uma UF (Função do usuário)	
Otimizando o Hardware para uma aplicação	3

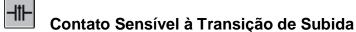
ELEMENTOS DA REDE (ELEMENTOS LADDER)

Esta seção o apresentará o significado dos elementos ladder da rede.

Os Elementos da Rede

O LogicView usa símbolos e notações como definido no padrão IEC - 61131-3.

Fig 1.1- Caixa de Ferramenta da Rede.


Definições dos Elementos da Caixa de Ferramenta da Rede.

O estado do link esquerdo será copiado para o link direito se o estado da variável estiver ON (Ligado). Caso contrário, o link direito será OFF (Desligado).

O estado do link esquerdo será copiado para o link direito se o estado da variável estiver OFF. Caso contrário, o link direito será OFF.

O estado do link direito será ON se o link esquerdo estiver ON e ocorrer uma subida do nível lógico (de OFF para ON). O estado do link direito será OFF para qualquer outra situação.

Contato Sensível à Transição de Descida

O estado do link direito será ON se o link esquerdo estiver ON e ocorrer uma descida do nível lógico (de ON para OFF). O estado do link direito será OFF para qualquer outra situação.

Bobina

O estado do link esquerdo será copiado para a variável booleana e para o link direito.

Bobina Invertida

O estado do link esquerdo será copiado para o link da direita. O inverso do estado do link esquerdo é copiado para a variável booleana associada, isto é, se o estado do link esquerdo estiver OFF, então o estado da variável será ON, e vice-versa.

Set de Bobina

A variável booleana será colocada em ON quando o link esquerdo estiver em ON, e permanecerá assim até que se tenha um reset através de uma bobina RESET.

Reset de Bobina

A variável booleana associada é resetada para OFF quando o link esquerdo está em ON, e permanece assim até que seja ajustada através de uma bobina SET.

Conjunto de Bobina Retentiva (de Memória)

A variável booleana associada será gravada na memória.

Observação: A ação desta bobina retentiva é idêntica à da bobina, exceto que a variável booleana associada é automaticamente gravada na memória.

Bobina com Set Retentivo (de Memória)

A variável booleana associada será ajustada para ON quando o link esquerdo estiver em ON, e permanece assim até que seja resetado através de uma bobina RESET. A variável booleana associada será guardada na memória.

Observação: A ação desta bobina retentiva de ajuste é idêntica à da Bobina de Ajuste (SET), exceto que a variável booleana associada é automaticamente gravada na memória.

Bobina com Reset Retentivo

A variável booleana associada será resetada para OFF quando o link esquerdo estiver em ON e permanecerá resetada até que seja ajustada através de uma bobina SET. A variável booleana associada será guardada na memória.

Observação: A ação desta bobina é idêntica à da bobina RESET (Destrava), exceto que a variável booleana associada é automaticamente gravada na memória.

Bobina Sensível à Transição de Subida

O estado da variável booleana será ON se o link esquerdo sofrer uma variação de OFF para ON. O estado do link esquerdo sempre será copiado para o link direito.

Bobina Sensível à Transição de Descida

O estado da variável booleana será ON se o link esquerdo sofrer uma variação de ON para OFF. O estado do link esquerdo sempre será copiado para o link direito.

Conexão Horizontal

Use esta ferramenta para traçar uma linha de ligação da esquerda para a direita na célula marcada.

Conexão Vertical

Use esta ferramenta para traçar uma linha de ligação (segmento para baixo) do lado direito da célula marcada.

Elimina Conexão Vertical

Elimina conexão vertical. Para efetuar esta ação é necessário posicionar o quadro de seleção no elemento o qual possui a linha vertical.

Bloco Funcional

Use esta ferramenta para abrir uma janela de diálogo para escolher a função desejada.

Função do Usuário

Use esta ferramenta para abrir uma janela de diálogo para escolher as funções do usuário disponíveis.

Desvio para outra rede

Se há mais de uma rede disponível, será aberta uma janela de diálogo para escolher a rede de destino

Retorno

Use esta ferramenta para retornar à última célula executável antes da transferência. Caso nenhuma transferência tenha sido usada, este procedimento será ignorado.

Lógica Booleana

A associação de contatos e bobinas gera funções booleanas. Abaixo, apresenta-se um breve resumo sobre estas funções e álgebra de Boole.

Contato Normalmente Aberto

Esquema	Tabela de estados	
A S= A	Α	S
	0	0
	1	1

Quando o estado de A muda de 0 para 1 o contato A é fechado e o fluxo de força passa do Power Rail da esquerda para a direita energizando a bobina S.

Contato Normalmente Fechado

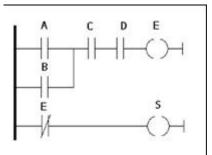
Esquema	Tabela de estados	
$A S = \overline{A}$	Α	S
	0	1
	1	0

O contato A é normalmente fechado. Isto é, o fluxo de força passará por A energizando S até que o valor de A mude de 0 para 1. Desta forma a bobina S tem comportamento inverso comparada à bobina do item anterior (contato normalmente aberto).

Função Lógica OR (OU)

Esquema	Tabela d	e estados	
	Α	В	S
A S=A+B	0	0	0
	0	1	1
B	1	0	1
	1	1	1

Os contatos A e B são normalmente abertos. Associando dois contatos em paralelo implementa-se a função OR (Ou Lógico). A bobina será energizada quando qualquer um dos dois contatos estiver fechado.


Função Lógica AND (E)

Esquema	Tabela d	e estados	
	Α	В	S
A B S=A.B	0	0	0
	0	1	0
	1	0	0
	1	1	1

Os contatos A e B são normalmente abertos. A bobina S será apenas energizada quando A e B ao mesmo tempo forem iguais a 1. Caso contrário o fluxo de força não passará do lado esquerdo (Power Rail) até o lado direito.

Equações Booleanas

Utilizando contatos e bobinas pode-se implementar funções booleanas. Por exemplo, considere o diagrama ladder abaixo:

A saída S dependerá do estado dos contatos A, B, C, D e do estado da bobina E. O valor do estado C depende de A e B. Assim a função lógica que descreve o circuito acima é:

$$E = (A + B).C.D$$

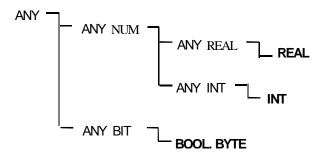
$$S = \overline{E}$$

Álgebra de Boole

Equações booleanas, como mostradas acima, podem se tornar bastante complexas, porém o resultado pode ser simplificado utilizando a álgebra de boole. Abaixo é mostrado um resumo das propriedades da álgebra de Boole.

1	A.1= A
2	A.0= 0
3a	A.A= A
3b	$A\overline{A} = 0$
4a	A+ A =1
4b	A+A=A
5	A+1=1
6	A.B+A.C=A.(B+C)
7	A+A.B= A
8	A.(B+C)= A.B+A.C
9a 9b	$\overline{A+B} = \overline{A}.\overline{B}$ $\overline{A.B} = \overline{A} + \overline{B}$

Quando as expressões se tornarem muito complexas sugere-se utilizar o mapa de Karnaugh para simplicá-las. Esta informação pode ser encontrada em qualquer livro de eletrônica digital.


BLOCOS DE FUNÇÃO

Introdução

Esta é uma referência completa e atualizada dos blocos de função. Aqui são apresentados diagramas de blocos com entradas, saídas, parâmetros de configuração e variáveis internas. Incluindo também, explicações detalhadas sobre cada bloco, funcionamento e configuração de cada um deles. Alguns exemplos são apresentados para facilitar o entendimento e utilização por parte do usuário.

Muitas vezes, uma entrada ou saída será classificada como ANY, ANY_NUM, ANY_BIT, ANY_REAL ou ANY_INT. Se uma entrada é ANY_NUM, significa que ela pode ser ligada com uma saída REAL ou uma INT. Para um melhor entendimento veja tabela abaixo:

Referência	Tipo de dados	Número de bits	Versão
BOOL	Booleano	1	1.xx or superior
INT	Inteiro	16	2.xx or superior
REAL	Número Real	32	2.xx or superior
WORD	Cadeia de caracteres	16	2.xx or superior

Se o usuário tentar configurar as duas entradas de um bloco com variáveis de tipos diferentes, como por exemplo, somar um número inteiro a um número real, o LogicView não permitirá esta configuração. Ao ser selecionada a primeira variável do bloco, imediatamente as outras entradas são esperadas serem do mesmo tipo desta variável.

Durante a configuração das saídas e entradas, o LogicView pedirá ao usuário que informe qual o tipo de variável a ser configurada quando esta estiver relacionada no manual como ANY_XX.

Cada bloco de função possui uma tabela onde são apresentados as entradas de cada bloco, as saídas, os parâmetros e as variáveis.

- I Entrada: é uma variável de um outro bloco ou é proveniente de um cartão de E/S;
- P Parâmetro: são as configurações do usuário;
- O Saídas: são resultados do processamento do bloco;
- V Variáveis auxiliares do algoritmo do bloco.

Informação sobre a utilização de ponto "." e vírgula "," na entrada de parâmetros de blocos de função:

O formato para a entrada de dados numéricos (utilização de "." e ",") deve estar de acordo com os padrões definidos nas configurações regionais do computador.

A entrada EN e a saída ENO

Todas as funções têm entrada EN e saída ENO.

A entrada EN é usada para habilitar a função a ser processada. Se a entrada EN é falsa, todas as saídas irão para Zero e a função não será executada.

A saída ENO vai para verdadeiro para indicar que a função foi executada com êxito, sem nenhum problema.

Blocos de Função Disponíveis em Ordem Alfabética Abaixo estão listadas todas as funções.

NOME DA FUNÇÃO	DESCRIÇÃO
ABS	Valor Absoluto
ACC	Acumulador de Pulsos
ACC_N	Acumulador de Pulsos
ADD	Adição
ARAMP	Rampa Automática de Subida ou de Descida
ВТВ	Conversão de Byte para Bits
BT1	Conversão de BCD para Inteiros
BWL	Lógica Digital (AND, NAND, OR, NOR, XOR, NXOR).
CTD	Contador Decrescente
CTU	Contador Crescente
CTU1	Contador Crescente
DIV	Divisão
EQ	Igualdade
FIFO	Primeiro a Entrar Primeiro a Sair
GE	Seqüência Monótona Decrescente
GT	Sequência Decrescente
ICT	Constantes Inteiras
ITB	Conversão de Inteiros para BCD
ITR	Conversão de Inteiros para Real
LE	Sequência Monótona Crescente
LIN	Linearização
LMT	Limitador
LT	Seqüência Crescente
MATH1	Equações Multivariáveis
MAX	Máximo
MIN	Mínimo
MOD	Módulo
MUL	Multiplicação
MUX	Multiplexador
NE	Desigualdade
NOT	Operação NOT BIT a BIT
OSEL	Seleção Binária das Saídas
PID	Controlador PID
RCT	Constantes Reais
RTA	Alarme de Relógio em Tempo Real
RTI	
SEL	Conversão Real para Inteiros
SMPL	Seleção Binária Sample Hold com Incremento e Decremento
	Raiz Quadrada
SQR STATUS	Status do Sistema
STP	
SUB	Controle de Step
TOF	Subtração
1	Tempo de Atraso para Desligar
TOF1 TON	Tempo de Atraso para Ligar
TON1	Tempo de Atraso para Ligar
	Tempo de Atraso para Ligar
TOT	Totalização
TP4	Pulso do Timer
TP1	Pulso do Timer
TRC	Truncagem
XLIM	Limite Cruzado e Velocidade de Variação

Blocos de Função Listados por Grupos Funcionais

Funções Relacionadas por Tempo/Pulso

MNEMÔNICO	DESCRIÇÃO
ACC	Acumulador de Pulsos
ACC_N	Acumulador de Pulsos
CTU1	Contador Crescente
TOF1	Tempo de Atraso para Desligar
TON1	Tempo de Atraso para Ligar
TP1	Pulso do Timer
CTD	Contador Decrescente
CTU	Contador Crescente
TOF	Tempo de Atraso para Desligar
TON	Tempo de Atraso para Ligar
TP	Pulso do Timer
RTA	Relógio de Alarme em Tempo Real

Funções de Manipulação de Dados

MNEMÔNICO	DESCRIÇÃO
BTB	Conversão de Byte para Bits
BTI	Conversão de BCD para Inteiros
BWL	Lógica Digital (AND, NAND, OR, NOR, XOR, NXOR).
FIFO	Primeiro a Entrar Primeiro a Sair
ICT	Constantes Inteiras
ITB	Conversão de Inteiro para BCD
ITR	Conversão de Inteiro para Real
MUX	Multiplexador
NOT	Operação NOT Bit a Bit
OSEL	Seleção Binária das Saídas
RCT	Constantes Reais
RTI	Conversão de Real para Inteiros
TRC	Truncagem
SEL	Seleção Binária

Funções Matemáticas

. angood mate	mandao
MNEMÔNICO	DESCRIÇÃO
ABS	Valor Absoluto
ADD	Adição
DIV	Divisão
MOD	Módulo
MUL	Multiplicação
SQR	Raiz Quadrada
SUB	Subtração

Funções de Comparação

MNEMÔNICO	DESCRIÇÃO
EQ	Igualdade
GE	Seqüência Monótona Decrescente
GT	Seqüência Decrescente
LE	Seqüência Monótona Crescente
LMT	Limitador
LT	Seqüência Crescente
MAX	Máximo
MIN	Mínimo
NE	Desigualdade

Funções de Controle de Processo

MNEMÔNICO	DESCRIÇÃO
ARAMP	Rampa Automática de Subida e de Descida
LIN	Linearização
MATH1	Equações Multivariáveis
PID	Controlador PID
SMPL	Sample Hold com Incremento e Decremento
STATUS	Status do Sistema
STP	Controle de Step
TOT	Totalização
XLIM	Limite Cruzado e Velocidade de Variação

Funções relacionadas por Tempo/Pulso

Acumulador de Pulsos (ACC)

Descrição

O bloco do acumulador de pulsos trabalha junto com o módulo DF41/DF42/DF67 (Módulo entrada de pulso) acumulando os pulsos de entrada provenientes de uma fonte externa. Geralmente, uma das entradas do módulo de entrada de pulso é ligada à entrada IN do bloco ACC.

Durante o ciclo de controle, o módulo de entrada de pulso acumula pulsos num registrador local no circuito. No final de todo ciclo de controle o DF65 lê o total acumulado e automaticamente limpa o registrador interno para o próximo ciclo (prevenindo um estouro de capacidade). Quando o controle lógico é executado, o bloco ACC gera um número inteiro de pulsos na entrada IN e adiciona-os num acumulador interno TOT_L e TOT_H e, este acumulador é compartilhado como saídas do bloco ACC.

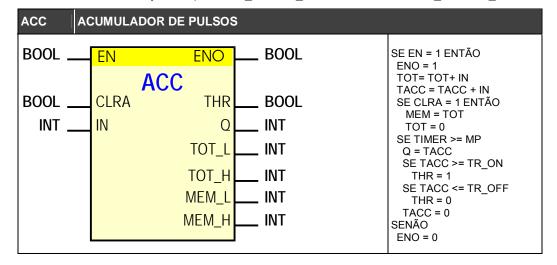
Duas ações são realizadas quando a entrada CLRA está alta no bloco ACC:

Os valores acumulados TOT_L e TOT_H são movidos para os registradores MEM_L e MEM_H. Os conteúdos de TOT_L e TOT_H são zerados.

A saída Q

Este bloco de função pode dar a informação da freqüência dos pulsos (vazão) num intervalo de tempo (MP) que pode ser configurado pelo usuário. A saída Q mostrará atualizadamente o valor dos pulsos acumulados em cada intervalo de tempo MP.

Os parâmetros TR_ON e TR_OFF são os limites de histerese para o cálculo da saída THR. A saída THR irá para nível alto quando Q for maior ou igual que TR_ON e voltará para nível baixo quando Q for menor ou igual a TR_OFF.


Modo Acumulador

O bloco de função ACC pode acumular os pulsos nos registradores TOT_L e TOT_H de dois modos diferentes:

- ✓ contagem máxima em TOT_L é 32767 e TOT_H representa quantas vezes a contagem estourou esse valor. Isso significa que o total dos pulsos acumulados é dado pela fórmula: (TOT H * 32768) + TOT L
- ✓ contagem máxima em TŌT_L é 9999 e TOT_H representa quantas vezes TOT_L estourou esse valor. Isso é, o total dos pulsos acumulados é dado pela fórmula: (TOT_H * 10000) + TOT L

O modo acumulador é ajustado durante a configuração do bloco ACC.

O modo ajustado para TOT L e TOT H será estendido a MEM L e MEM H.

CLASS		DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DE ENTRADA	BOOL
I	CLRA	SALVA TOT PARA MEM E APAGA O ACUMULADOR TOT	BOOL
	IN	ENTRADA DE PULSO (DO M 302)	INT
	CTW	PALAVRA DE CONTROLE	WORD
P	TR_ON	VALOR DE Q PARA TRANSIÇÃO DA SAÍDA THR PARA ON	INT
Г	TR_OFF	VALOR DE Q PARA TRANSIÇÃO DA SAÍDA THR PARA OFF	INT
	MP	PERÍODO DE CONTAGEM DOS PULSOS	INT
	ENO	HABILITAÇÃO DE SAÍDA	BOOL
	THR	SAÍDA THR	BOOL
	Q	PULSOS ACUMULADOS NO PERÍODO MP (VAZÃO)	INT
0	TOT_L	VALOR DO ACUMULADOR ATUAL (LOW WORD)	INT
	TOT_H	VALOR DO ACUMULADOR ATUAL (HIGH WORD)	INT
	MEM_L	VALOR DO ACUMULADOR DA MEMÓRIA (LOW WORD)	INT
	MEM_H	VALOR DO ACUMULADOR DA MEMÓRIA (HIGH WORD)	INT
V	TACC	ACUMULADOR DE PULSOS	INT
V	TMAC	ACUMULADOR DE TEMPO (TIMER)	INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Apenas Configuração				Auxiliar e Passagem de Parâmetro											
15					10	9	8	7	6	5	4	3	2	1	0

Auxiliar e Passagem de Parâmetro

- Bits de Indicação de Estado:

Bit 0 – estado da entrada booleana EN

Bit 1 – estado da entrada booleana CLRA

Bit 2 – estado da saída booleana ENO

Bit 3 – estado da entrada booleana THR

Apenas Configuração

- Seleciona o modo de totalização (LOWER WORD LIMIT):

Bit 8

0 = Acumulador TOT (Low Word) vai de 0 à 9999

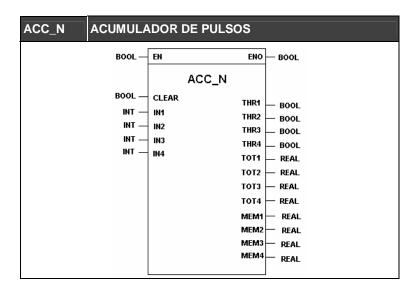
1 = Acumulador TOT (Low Word) vai de 0 à 32767

Acumulador de Pulsos (ACC_N)

Descrição

Este bloco acumula pulsos provenientes das entradas IN1 a IN4 e mostra o valor totalizado nas saídas TOT1 a TOT4. A entrada CLEAR igual a 1 zera estes contadores e o valor totalizado é movido para os registradores MEM1 a MEM4 e a totalização continua.

Fator multiplicador de escala Factor


Cada entrada possui associado um parâmetro para conversão em unidades de engenharia. Se FACTOR for igual a 1 a saída é dada no intervalo de 0 a 10000.

Histerese e limites

Cada entrada possui dois parâmetros que definem a histerese da totalização dos pulsos. Os parâmetros TR_ON1 a TR_ON4 e TR_OFF1 a TR_OFF4 configuram esta histerese. A saídas THR1 a THR4 irão para nível alto quando a vazão for maior do que os valores de TR_ON1 a TR_ON4 e irão para nível baixo quando a vazão for menor ou igual aos valores de TR_OFF1 a TR_OFF4. A vazão é a freqüência dos pulsos em um intervalo de tempo MP (configurado pelo usuário).

Entrada CLEAR

Toda vez que houver uma transição da entrada CLEAR de zero para um, as saídas TOT serão zeradas e os respectivos valores serão repassados às saídas MEM.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	CLEAR	ZERA A TOTALIZAÇÃO E ENVIA OS VALORES PARA AS SAÍDAS MEM	BOOL
1	IN1	ENTRADA DE PULSOS 1	INT
	IN2	ENTRADA DE PULSOS 2	INT
	IN3	ENTRADA DE PULSOS 3	INT
	IN4	ENTRADA DE PULSOS 4	INT
	FACTOR1	FATOR DE CONVERSÃO DE ESCALA (EU) DA ENTRADA 1.	REAL
	FACTOR2	FATOR DE CONVERSÃO DE ESCALA (EU) DA ENTRADA 2.	
	FACTOR3	` '	REAL
	FACTOR4	FATOR DE CONVERSÃO DE ESCALA (EU) DA ENTRADA 4.	REAL
	TR ON1	TR_ON LIMITE SUPERIOR DA HISTERESÉ	INT
	TR OFF1	TR_OFF LIMITE INFERIOR DA HISTERESE	IIN I
Р	TR_ON2	TR_ON LIMITE SUPERIOR DA HISTERESE	INT
	TR OFF2	TR_OFF LIMITE INFERIOR DA HISTERESE	IIN I
	TR_ON3	TR_ON LIMITE SUPERIOR DA HISTERESE	INT
	TR_OFF3	TR_OFF LIMITE INFERIOR DA HISTERESE	IIN I
	TR_ON4	TR_ON LIMITE SUPERIOR DA HISTERESE	INIT
	TR_OFF4	TR_OFF LIMITE INFERIOR DA HISTERESE	INT
	MP	PERÍODO DE CONTAGEM DOS PULSOS	INT
	ENO	SAÍDA HABILITADA	BOOL
	MEM1	VALOR ACUMULADO DE PULSOS	REAL
	MEM2	VALOR ACUMULADO DE PULSOS	REAL
	МЕМ3	VALOR ACUMULADO DE PULSOS	REAL
	MEM4	VALOR ACUMULADO DE PULSOS	REAL
0	THR1	INDICA SE OS LIMITES DE HISTERESE FORAM ATINGIDOS PARA ENTRADA 1	REAL
	THR2	INDICA SE OS LIMITES DE HISTERESE FORAM ATINGIDOS PARA ENTRADA 2	REAL
	THR3	INDICA SE OS LIMITES DE HISTERESE FORAM ATINGIDOS PARA ENTRADA 3	REAL
	THR4	INDICA SE OS LIMITES DE HISTERESE FORAM ATINGIDOS PARA ENTRADA 4	REAL
	TACC1	ACUMULADOR DE PULSOS DA ENTRADA 1	INT
	TACC2	ACUMULADOR DE PULSOS DA ENTRADA 2	INT
	TACC3	ACUMULADOR DE PULSOS DA ENTRADA 3	INT
	TACC4	ACUMULADOR DE PULSOS DA ENTRADA 4	INT
	TAMC	ACUMULADOR DE TEMPO (TIMER)	INT
٧	OVRFLW	INDICAÇÃO DE OVERFLOW DE TOT E MEM	BYTE
	B_THR	THRESHOLD BOOLEANO E STATUS	BYTE
	INCR1	INCREMENTOS PARA CARRY OVER	REAL
	INCR2	INCREMENTOS PARA CARRY OVER	REAL
	INCR3	INCREMENTOS PARA CARRY OVER	REAL
	INCR4	INCREMENTOS PARA CARRY OVER	REAL

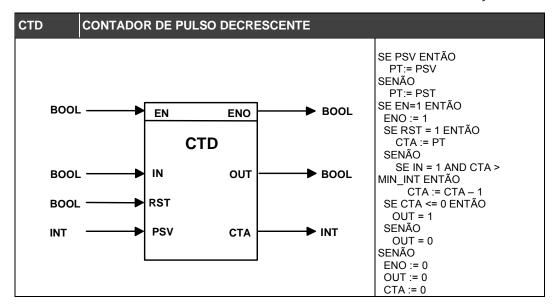
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Contador Decrescente de Pulso (CTD)

Descrição

A função CTD faz a contagem de transições do estado lógico 0 (falso) para estado lógico 1 (verdadeiro). Um exemplo de uma transição de falso para verdadeiro pode ser descrita por um botão de liga e desliga. Enquanto o botão não for acionado, a operação de ligar não é efetuada. Quando o botão é acionado, o estado muda para ligado.

Contador Interno CTA


Na entrada deste bloco conecta-se uma entrada digital. Toda vez que ocorrer uma transição de subida, o acumulador de pulso (CTA) decresce de uma unidade. Quando o contador interno chegar a zero, a saída OUT irá para verdadeiro. O contador interno CTA pode ser acessado através de uma porta de comunicação na saída do bloco.

RST (Reset)

Fazendo RST igual a verdadeiro o contrador interno será zerado.

Configuração do número de pulsos a serem contados

O parâmetro interno PST ajusta o número de pulsos a serem contados até que a saída OUT mude de estado para verdadeiro. No LogicView o usuário deve informar o valor para parâmetro PST. Este valor também pode ser configurado através da entrada PSV, neste caso usuário deverá conectar a entrada do bloco CTD com a saída de um outro bloco de função ou a um módulo de I/O.

CLASSE	MNEM		TIPO
	EN	HABILITAÇÃO DE ENTRADA	BOOL
	IN	ENTRADA DOS PULSOS	BOOL
ı	RST	RESET DO BLOCO	BOOL
	PSV	CONECTA-SE ESTA ENTRADA PARA AJUSTAR PST EXTERNAMENTE	INT
Р	PST	CONTADOR DE VALOR PRÉ-AJUSTADO PELO PARÂMETRO	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	ESTADO DO CONTADOR CTA. 0 SE CTA É DIFERENTE DE ZERO. 1 SE CTA = 0.	BOOL
	CTA	ACUMULADOR DE PULSOS	INT
V	STS	STATUS	WORD

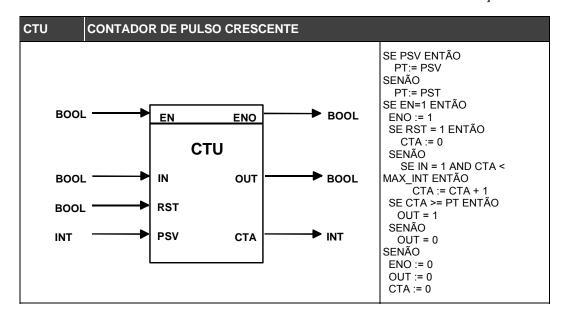
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Contador Crescente de Pulso (CTU)

Descrição

A função CTU realiza a contagem de transições do estado lógico 0 (falso) para estado lógico 1 (verdadeiro).

Contador Interno CTA

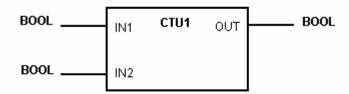

Toda vez que ocorrer uma transição de subida, o acumulador de pulso (CTA) é incrementado de uma unidade. Esta operação é feita até que o contador interno chegue ao valor prefixado no parâmetro PST. Quando isso ocorrer a saída OUT muda para verdadeiro, ou seja, de estado zero para estado 1.

RST (Reset)

Caso a entrada RST for verdadeira esta contagem será zerada.

Configuração do número de pulsos a serem contados

O parâmetro interno PST ajusta o número de pulsos a serem contados até que a saída OUT mude de estado para verdadeiro. No LogicView o usuário deve informar o valor para parâmetro PST. Este valor também pode ser configurado através da entrada PSV, neste caso usuário deverá conectar a entrada do bloco CTU com a saída de um outro bloco de função ou a um módulo de I/O.



CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN	ENTRADA DOS PULSOS	BOOL
	RST	RESET DO BLOCO	BOOL
	PSV	CONECTA-SE ESTA ENTRADA PARA AJUSTAR PST EXTERNAMENTE	INT
P	PST	CONTADOR DE VALOR PRÉ-AJUSTADO PELO PARÂMETRO	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	OUT= 1 QUANDO O VALOR CONFIGURADO EM PST É ATINGIDO.	BOOL
	CTA	ACUMULADOR DE PULSOS	INT
V	STS	STATUS	WORD

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Contador Crescente de Pulsos (CTU1)

Tem funcionamento igual ao bloco CTU, porém, só possui duas entradas e uma saída. IN1 habilita o bloco, IN2 é a entrada de pulsos. A saída OUT vai para verdadeiro quando o contador interno (não acessível) chegar ao valor prefixado no parâmetro PST.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	IN1	HABILITAÇÃO DA ENTRADA	BOOL
•	IN2	ENTRADA DOS PULSOS	BOOL
Р	PST	CONTADOR DE VALOR PRÉ AJUSTADO PELO PARÂMETRO	INT
0	OUT	OUT= 1 QUANDO O VALOR CONFIGURADO EM PST É ATINGIDO.	BOOL
V	STS	STATUS	WORD

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Alarme em Tempo Real (RTA)

Descrição

Este alarme é baseado num relógio em tempo real do módulo do **DF65**. Quando ocorre um alarme a saída **ALM** irá para verdadeiro e permanecerá nesta condição. O alarme será acionado conforme a data e hora configuradas dentro do bloco RTA. O usuário deverá selecionar a hora e a data para o disparo do alarme. Existe a opção de selecionar o dia da semana (neste caso o alarme disparará todas as vezes neste mesmo dia da semana e horário), dia do mês, mês (se este campo não for selecionado o alarme disparará todas as vezes neste mesmo horário e dia do mês) e ano.

RST (Reset)

Se for aplicado um **RST (RESET)**, o **ALM** retornará para falso, mas não antes de continuar verdadeiro durante pelo menos um segundo.

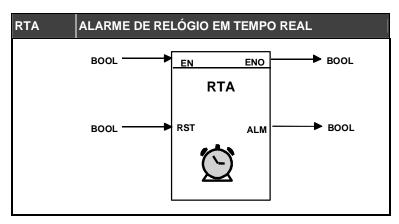
Parâmetro Hora

O usuário deverá configurar a hora desejada para o acionamento do alarme. Esta hora deverá ser informada no formato **HR:MIN:SEC**, onde os parâmetros HR, MIN e SEC são respectivamente relacionados com hora, minuto e segundo.

Parâmetro Dia

O usuário pode selecionar este parâmetro, escolhendo uma data específica. O parâmetro **Dia** possui duas opções: **Dia da Semana** e **Dia do Mês**.

Se o usuário configurar o parâmetro **Dia da Semana**, deverá selecionar o dia da semana: Domingo, Segunda-feira, Terça-feira, Quarta-feira, Quinta-feira, Sexta-feira ou Sábado.


Se o usuário configurar o parâmetro **Dia do Mês**, deverá selecionar o dia no formato de dois dígitos.

Parâmetro Mês

No formato de dois dígitos o usuário poderá informar o mês do ano em que deseja que o alarme seja acionado.

Parâmetro Ano

No formato de 4 dígitos o usuário poderá informar o ano em que deseja que o alarme seja acionado. O ano escolhido deverá estar dentro do intervalo 1980 até 2079.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
•	RST	RESET DO BLOCO	BOOL
	SEC	SEGUNDO	BYTE
	MIN	MINUTO	BYTE
	HR	HORA	BYTE
Р	WD	DIA DA SEMANA	BYTE
	DAY	DIA	BYTE
	MON	MÊS	BYTE
	YR	ANO	BYTE
O	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	ALM	SAÍDA DO ALARME	BOOL
V	СТВ	BYTE DE CONTROLE	BYTE

I: Entrada, P: Parâmetro, O: Saída, V: Variável

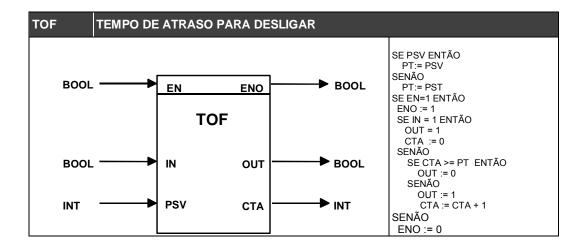
Tempo de Atraso para Desligar (TOF)

Descrição

Esta função mantém o estado Verdadeiro da entrada IN por um determinado período de tempo.

Parâmetro PST

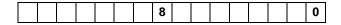
O tempo no qual o estado é mantido verdadeiro é configurado através do parâmetro PST. Este tempo é dado por **PST** vezes 10ms (PST * 0,01 s).


Se **IN** vai para Verdadeiro, antes de **OUT** ir para falso, **OUT** ficará em verdadeiro e o período de tempo iniciará novamente no momento que **IN** for para falso.

Contador Interno CTA

Toda vez que ocorrer uma transição de descida, o acumulador de pulso (CTA) é incrementado de uma unidade.

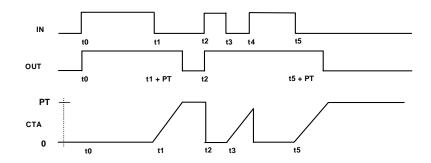
Entrada PSV


O usuário poderá configurar a entrada PSV para selecionar o valor do parâmetro PST externamente. Isto é, a entrada PSV pode ser conectada à saída de um bloco de função ou um módulo de I/O.

CLASSE	MNEM	DESCRIÇÃO	TIPO
ı	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN	ENTRADA DE PULSOS	BOOL
	PSV	CONECTA-SE ESTA ENTRADA PARA AJUSTAR PST EXTERNAMENTE	INT
Р	PST	VALOR PRÉ-AJUSTADO DO TIMER ATRAVÉS DO PARÂMETRO	INT
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	SAÍDA DO BLOCO	
	CTA	ACUMULADOR DE PULSOS DO TIMER	INT
V	ICT	VALOR INICIAL DO TIMER PARA O CONTADOR	INT
	STS	STATUS	WORD

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Detalhe do parâmetro STS


BIT 8 - BIT RESULTANTE: 1= ON, OCORRE UM ATRASO NO TEMPO PARA LIGAR;

0= OFF, OUT=0.

BIT 0 - BIT HABILITADO: 1= CONTADOR ESTÁ FUNCIONANDO;


0 = NÃO ESTÁ CONTANDO.

FUNÇÃO ATRASO NO TEMPO PARA DESLIGAR - Diagramas temporais

Tempo de Atraso para Desligar (TOF1)

Apresenta funcionamento igual ao bloco TOF, porém só possui uma entrada e uma saída. O valor do timer é somente ajustável nos parâmetros do bloco.

CLASSE	MNEM	DESCRIÇÃO	TIPO
I	IN	ENTRADA DE PULSOS	BOOL
Р	PST	VALOR PRÉ-AJUSTADO DO TIMER ATRAVÉS DO PARÂMETRO	INT
0	OUT	OUT= 1 QUANDO O VALOR CONFIGURADO EM PST É ATINGIDO.	BOOL
V	STS	STATUS	WORD

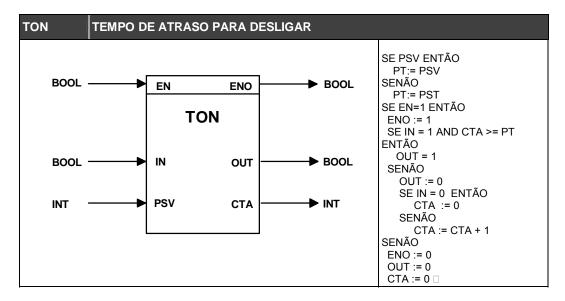
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Tempo de Atraso para Ligar (TON)

Descrição

Esta função atrasa a saída OUT de ir para Verdadeiro por um período de tempo, após a entrada IN ter mudado para Verdadeiro.

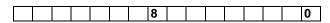
Parâmetro PST


O tempo no qual o estado é mantido verdadeiro é configurado através do parâmetro PST. Este tempo é dado por **PST** vezes 10ms (PST * 0,01 s). Se **IN** vai para Falso, antes de **OUT** ir para falso, **OUT** ficará em falso.

Contador Interno CTA

Toda vez que ocorrer uma transição de subida, o acumulador de pulso (CTA) é incrementado de uma unidade.

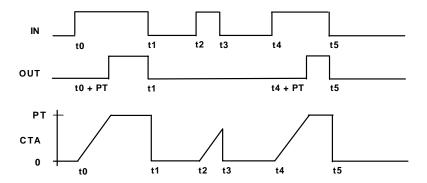
Entrada PSV


O usuário poderá configurar a entrada PSV para selecionar o valor do parâmetro PST externamente. Isto é, a entrada PSV pode ser conectada à saída de um bloco de função ou um módulo de I/O.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
1	IN	ENTRADA DE PULSOS	BOOL
•	PSV	CONECTA-SE ESTA ENTRADA PARA AJUSTAR PST EXTERNAMENTE	INT
Р	PST	VALOR PRÉ-AJUSTADO DO TIMER ATRAVÉS DO PARÂMETRO	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	SAÍDA DO BLOCO	
	CTA	ACUMULADOR DE PULSOS DO TIMER	INT
V	ICT	VALOR INICIAL DO TIMER PARA O CONTADOR	INT
\$	STS	STATUS	WORD

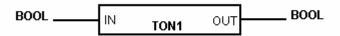
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Detalhe do parâmetro STS


BIT 8 - RESULT BIT: 1= ON, OCORRE UM ATRASO NO TEMPO PARA LIGAR;

0= OFF, OUT=0.

BIT 0 - ENABLE BIT: 1= CONTADOR ESTÁ FUNCIONANDO;


Função atraso no tempo para ligar - Diagramas Temporais

*Observação: O Parâmetro BAS não tem nenhum efeito neste momento!

Contador de Atraso para Ligar (TON1)

Apresenta funcionamento igual ao bloco TON, porém só possui uma entrada e uma saída. O valor do timer é somente ajustável nos parâmetros do bloco.

CLASSE	MNEM	DESCRIÇÃO	TIPO
I	IN	ENTRADA DE PULSOS	BOOL
Р	PST	VALOR PRÉ AJUSTADO DO TIMER ATRAVÉS DO PARÂMETRO	INT
0	OUT	OUT= 1 QUANDO O VALOR CONFIGURADO EM PST É ATINGIDO.	BOOL
V	STS	STATUS	WORD

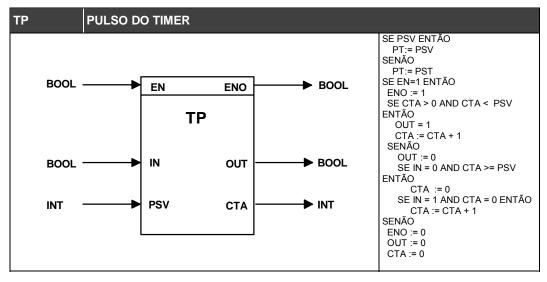
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Temporizador de Pulso (TP)

Descrição

Esta função gera um pulso de tempo fixo na saída OUT para cada transição de subida (Falso para Verdadeiro) na entrada IN.

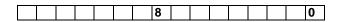
Configuração da largura do Pulso


A largura do pulso é determinada por PST (ou pelo valor da entrada PSV, se esta entrada está conectada) vezes 0,01 segundo (10ms). Transições na entrada IN serão ignoradas enquanto o pulso de saída OUT estiver ativo. O contador CTA está disponível como uma saída de número inteiro.

Contador Interno CTA

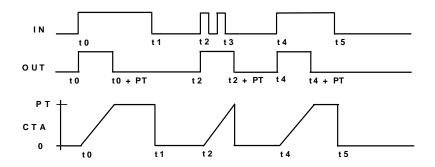
Toda vez que um pulso for gerado na saída o acumulador de pulso (CTA) é incrementado de uma unidade.

Entrada PSV

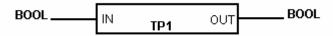

O usuário poderá configurar a entrada PSV para selecionar o valor do parâmetro PST externamente. Isto é, a entrada PSV pode ser conectada à saída de um bloco de função ou um módulo de I/O.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN	ENTRADA DE PULSOS	BOOL
<u> </u>	PSV	CONECTA-SE ESTA ENTRADA PARA AJUSTAR PST EXTERNAMENTE	INT
Р	PST	VALOR PRÉ-AJUSTADO DO TIMER ATRAVÉS DO PARÂMETRO	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	SAÍDA DO BLOCO	BOOL
	CTA	ACUMULADOR DE PULSOS DO TIMER	INT
V	ICT	VALOR INICIAL DO TIMER PARA O CONTADOR	INT
	STS	STATUS	WORD

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Detalhe do parâmetro STS

BIT 8 - RESULT BIT: 1= ON, OCORRE UM ATRASO PARA LIGAR; 0= OFF, OUT=0.


BIT 0 - ENABLE BIT:1= O CONTADOR ESTÁ FUNCIONANDO; 0 = NÃO ESTÁ CONTANDO.

Função do Temporizador do Pulso - Diagramas Temporais

Temporizador de Pulsos (TP1)

Apresenta funcionamento igual ao bloco TP, porém, este bloco só possui uma entrada para os pulsos e uma saída OUT. Toda vez que uma transição de subida ocorrer na entrada do bloco, um pulso de largura definido pelo parâmetro PST vezes 0,01 segundos será gerado na saída.

CLASSE	MNEM	DESCRIÇÃO	TIPO
I	IN	ENTRADA DE PULSOS	BOOL
P	PST	VALOR PRÉ-AJUSTADO DO TIMER ATRAVÉS DO PARÂMETRO	INT
0		OUT= 1 DURANTE O.01xPST SEGUNDOS, TODA VEZ HOUVER TRANSIÇÃO DE SUBIDA NA ENTRADA.	BOOL
V	STS	STATUS	WORD

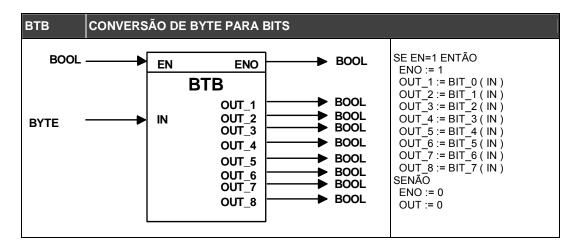
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Funções de Manipulação de Dados

Conversão de Byte para Bits (BTB)

Descrição

A função BTB converte 1 byte em 8 saídas paralelas, cada uma delas representando um bit.


Conversão

A entrada do bloco é um byte e as saídas (OUT_1 até OUT_8) compõem o byte de entrada no formato paralelo, do bit menos significativo (OUT_1) até o bit mais significativo (OUT_8).

O byte de entrada pode ser proveniente de um cartão de I/O (por exemplo um cartão de entrada digital DF20 de push-buttons), um byte virtual ou da saída de outro bloco de função.

Por exemplo, quando conecta-se um cartão de entradas digitais push-buttons (DF20) ao DF65. Este cartão permite acessar oito entradas digitais e cada um desses bits forma o byte de entrada do bloco BTB.

As saídas OUT_1 até OUT_8 podem ser utilizadas como entradas de outros blocos de função, como, por exemplo, o bloco BWL ou o bloco NOT.

CLASS	MNEM	DESCRIÇÃO	TIPO
l .	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN	ENTRADA DO BLOCO	BYTE
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT_1	BIT 0 (LSB)	BOOL
	OUT_2	BIT 1	BOOL
	OUT_3	BIT 2	BOOL
	OUT_4	BIT 3	BOOL
	OUT_5	BIT 4	BOOL
	OUT_6	BIT 5	BOOL
	OUT_7	BIT 6	BOOL
	OUT 8	BIT 7 (MSB)	BOOL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Conversão de BCD para Inteiro (BTI)

Descrição

Esta função converte um valor em BCD na entrada IN para número inteiro e coloca-o na saída OUT.

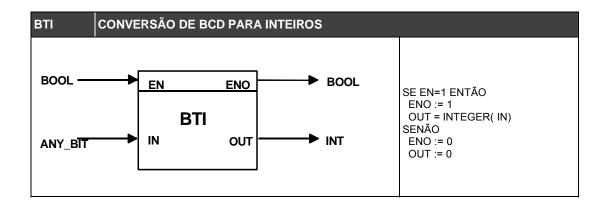
Conversão

Um número de dois dígitos em BCD está na forma:

BIT7-BIT6-BIT5-BIT4 BIT3-BIT2-BIT1-BIT0

Cada conjunto de quatro bits compõe um dígito. Por exemplo: o número 10. Em código BCD, a representação é 10h.

O primeiro dígito da esquerda para a direita pode ser escrito na forma binária como 0001.


O segundo dígito pode ser escrito na forma binária como 0000. Assim 10BCD 0001 000Binário.

Costuma-se confundir o código BCD com a numeração binária. Porém cada grupo de quatro bits somente representa um dígito, que varia de 0 até 9.

Por exemplo, não pode haver representação em código BCD do tipo $12~9_{BCD}$, mesmo que o número 12~possa ser representado por 4~bits.

O código BCD é bastante utilizado em displays de sete segmentos. Cada display representa um dígito BCD.

A representação mostrada acima pode ser estendida para N dígitos, sempre notando que cada dígito varia apenas de 0 até 9.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
<u> </u>	IN	ENTRADA DO BLOCO	ANY_BIT
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	SAÍDA DO BLOCO. VALOR DA ENTRADA CONVERTIDO PARA INTEIRO.	INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Primeiro a Entrar - Primeiro a Sair (FIFO)

Descrição

Esse bloco de funções permite armazenar dados com o DF65. Toda a vez que o bloco é usado, uma área da RAM não volátil é reservada para dados na base first in first out (FIFO).

Tamanho da FIFO

O usuário pode estabelecer esta área diretamente do parâmetro **SIZE**. O tamanho máximo possível dependerá da memória RAM livre disponível no módulo DF65 quando for feita a configuração. Os dados na FIFO e o(s) correspondente(s) tempo(s) da(s) amostra(s) podem ser acessados direto da comunicação com o módulo DF65 via Modbus/RTU ou Modbus/TCP.

Control Word (CTW) - MODO FIFO

Modo Padrão:

Os dados são inseridos na FIFO até que esta fique cheia. Depois disso, nenhum dado pode ser inserido até que uma ou mais variáveis sejam retiradas.

Modo de Janela Móvel:

O dado está sempre entrando no bloco FIFO. Neste caso, se a FIFO está cheia, uma descarga automática das antigas variáveis é executada antes da nova variável ser armazenada. Deste modo a FIFO sempre mantém as amostras mais recentes.

Modo de Fila Circular:

O dado está sempre entrando no bloco FIFO. Neste caso, se a FIFO está cheia, o novo dado será armazenado na posição ocupada pelo dado mais antigo, sem alteração nas posições ocupadas pelos demais dados.

Control Word (CTW)- MEMÓRIA FIFO

Os dados de registro são armazenados de três maneiras.

- Salvar última ďata/hora

Salva a variável e apenas o tempo da última amostra.

- Não salvar data/hora

Salva somente a variável

- Salvar valor & data/hora

Salva a variável e o tempo da amostra para todas as amostras.

Entradas LOAD, UNLOAD e CLEAR

Toda vez que o estado da entrada LOAD mudar para verdadeiro a FIFO começa a armazenar os dados na entrada IN do bloco. A cada ciclo de varredura da CPU, o bloco FIFO realiza uma leitura, e incrementa o ponteiro interno para a posição de memória seguinte. Se UNLOAD muda para verdadeiro, a FIFO é descarregada. A entrada CLEAR apaga toda a área de memória reservada para o bloco FIFO.

Trigger

Se o valor do parâmetro TRIGGER for configurado para um valor N, a saída irá para alto quando a FIFO gravar a amostra de número N. Supondo, por exemplo, que o parâmetro TRIGGER foi configurado para 9 e o tamanho da FIFO é de 10 registros. Quando a FIFO registrar o nono valor a saída TRIGGER irá para alto.

Saídas EMPTY e FULL

A saída EMPTY igual a um indica que a FIFO está completamente vazia.

A saída FULL igual a um indica que a FIFO está completamente preenchida.

Tipo da amostra

O usuário pode selecionar dois tipos de dados para serem armazenados na FIFO: inteiro ou real.

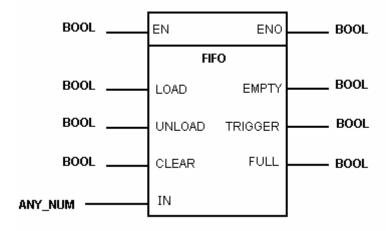
1 dado inteiro ocupa 2 bytes (1 Registro Modbus)

1 dado real ocupa 4 bytes (2 Registros Modbus)

Se o usuário escolher o tipo de dado a ser armazenado na FIFO como sendo inteiro, cada registro ocupará um registro Modbus. Deve ser feita uma distinção entre o número de registros configurados para FIFO e o número verdadeiro de registros Modbus. Caso o tipo de registro seja configurado como real, serão alocados dois registros Modbus.

Tempo da amostra

Nas 3 opções de armazenamento de dados, a FIFO aloca uma área de endereços Modbus para o tempo.


Salvar última data/hora: São alocados 6 bytes para registrar o tempo da última amostra.

Não salvar data/hora: Mesmo não armazenando o tempo da amostra, a FIFO reserva essa área Modbus para os parâmetros internos de tempo.

Salvar valor & data/hora: Para cada valor armazenado a FIFO reserva 1 registro para o valor desse dado, mais 3 registros (6 bytes) para armazenar cada tempo da amostra.

Endereços Modbus alocados

A FIFO será alocada pelo LogicView em uma área Modbus 4xxxx (Register). O parâmetro PTR é um ponteiro para o início dos endereços de memória FIFO (endereços Modbus relativos). Exemplo: Se a FIFO tiver 16 registros (palavras), os registros Modbus 42501 até 42516 são endereçados como 0 até 15.

Sequência de bits para a palavra de controle FIFO

Somente Configuração						Auxiliares e Passagem de Parâmetros									
15				11	10	9	8	7	6	5	4	3	2	1	0

Auxiliares e passagem de parâmetros

Status de indicação de bits:

Bit 0 – É o status da entrada EN booleana

Bit 1 - É o status da entrada LOAD booleana (1=LOAD; 0=NONE)

Bit 2 - É o status da entrada UNLOAD booleana (1=UNLOAD;0=NONE)

Bit 3 - É o status da entrada CLEAR booleana (1=CLEAR; 0=NONE)

Bit 4 - É o status da saída ENO booleana

Bit 5 - É o status da saída EMPTY booleana

Bit 6 - É o status da saída TRIGGER booleana. (Quantidade de trigger compatível)

Bit 7 - É o status da saída FULL booleana

Somente Configuração

Bit 11	Bit 8	
0	0	- MODO PADRÃO
0	1	- MODO JANELA MÓVEL
1	0	- MODO FILA CIRCULAR
1	1	- MODO FILA CIRCULAR

Nota

O modo FILA CIRCULAR só está implementado a partir da versão de firmware XX.55*

Selecionar a aquisição:

Bit 9	Bit 10	
0	0	Salva os dados na FIFO e o horário de salvamento na tabela de controle.
1	0	Salva os dados na FIFO sem salvar o horário.
0	1	Salva os dados e o horário de cada dado carregado na FIFO.

^{*} Os detalhes de versão do equipamento podem ser vistos na figura 3.2 deste manual.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	LOAD	CARREGAR N VALORES DA FIFO	BOOL
1	UNLOAD	DESCARREGAR N VALORES DA FIFO	BOOL
	CLEAR	APAGAR DADOS DA FIFO	BOOL
	IN	ENTRADA DOS DADOS	ANY_NUM
	CTW	PALAVRA DE CONTROLE	WORD
P	SIZE	ESPECÍFICA O TAMANHO DA FIFO, # DO REGISTRADOR MODBUS (EM PALAVRA).	INT
	TRIGGER	VALOR PARA CONFIGURAR O BIT DE SAÍDA DO TRIGGER. (# DO REGISTRADOR NO FIFO)	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	EMPTY	A FIFO ESTÁ VAZIA	BOOL
0	TRIGGER	INDICA QUE A QUANTIDADE DE REGISTROS ARMAZENADOS ATINGIU O VALOR ESPECIFICADO NO PARÂMETRO TRIGGER.	BOOL
	FULL	FIFO ESTÁ CHEIA	BOOL
	PTR	PONTEIRO PARA ENDEREÇO DE MEMÓRIA DA FIFO (ENDEREÇO MODBUS RELATIVO)	INT
	CTR	CONTADOR DE NÚMERO DO REGISTRADOR UTILIZADO NA FIFO.	INT
V	SEC	SEGUNDO	BYTE
V	MIN	MINUTO	BYTE
	HR	HORA	BYTE
	DAY	DIA	BYTE
	MON	MÊS	BYTE
	YR	ANO	BYTE

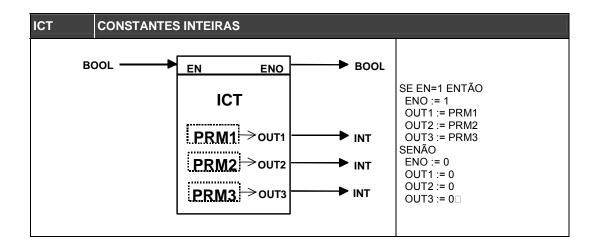
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Constantes Inteiras (ICT)

Descrição

Esta função envia valores de constantes inteiras para as saídas OUT1, OUT2 e OUT3. Estas constantes são informadas na configuração do bloco no LogicView. Deve-se notar que estas constantes somente serão enviadas às saídas do bloco quando a entrada EN for verdadeira e que as saídas são variáveis inteiras.

Parâmetros PRM1, PRM2 e PRM3


Nestes parâmetros o usuário deverá inserir o valor das constantes inteiras que deseja gerar. Por exemplo:

PRM1= 32

PRM2=346

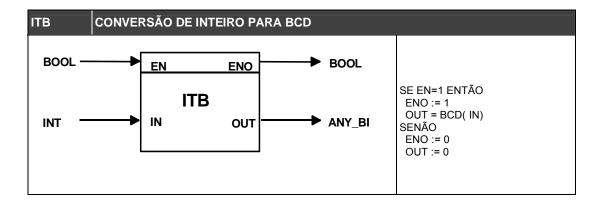
PRM3= 456

Quando EN=1 verdadeiro, as saídas Out1, Out2 e Out 3 indicarão: 32, 346, 456.

CLASSE	MNEM	DESCRIÇÃO	TIPO
I	EN	HABILITAÇÃO DA ENTRADA	BOOL
	PRM1	VALOR DA CONSTANTE 1	INT
Р	PRM2	VALOR DA CONSTANTE 2	INT
	PRM3	VALOR DA CONSTANTE 3	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT1	SAÍDA DO VALOR ESTABELECIDO EM PRM1	INT
J	OUT2	SAÍDA DO VALOR ESTABELECIDO EM PRM2	INT
	OUT3	SAÍDA DO VALOR ESTABELECIDO EM PRM2	INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Conversão de Inteiro para BCD (ITB)


Descrição

Esta função converte um número inteiro na entrada IN para formato BCD e coloca-o na saída OUT.

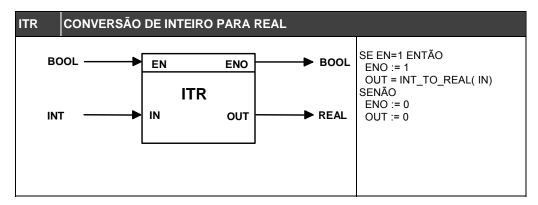
Conversão e Operação

Se a saída é um byte, os dois dígitos menos significativos do dado inteiro serão convertidos para BCD e se essa saída é um bit, ela representará o bit de ordem menos significativa da conversão.

Por exemplo: na entrada IN tem-se a leitura 112 e a saída do bloco é um byte. Na saída do bloco tem-se 12_{BCD} ou 0001 0010. Se a saída é um bit, ela indicará falso, isto é, zero.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
•	IN	ENTRADA DO BLOCO	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	SAÍDA DO BLOCO. VALOR DA ENTRADA CONVERTIDO PARA BCD.	ANY_BIT

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Conversão de Inteiro para Real (ITR)

Descrição

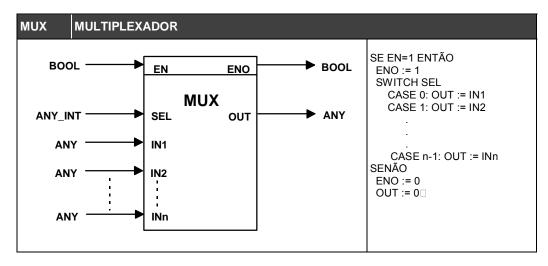
Esta função converte um número inteiro na entrada IN para um formato real e coloca-o na saída OUT.

Conversão e Operação

Por exemplo: na entrada IN temos o número 455 inteiro. O bloco ITR transforma este número para real, permitindo que operações que necessitem de parâmetros reais sejam feitas.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
ļ.	IN	ENTRADA DO BLOCO	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	SAÍDA DO BLOCO. VALOR DA ENTRADA CONVERTIDO PARA INTEIRO.	REAL

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Multiplexador (MUX)

Descrição

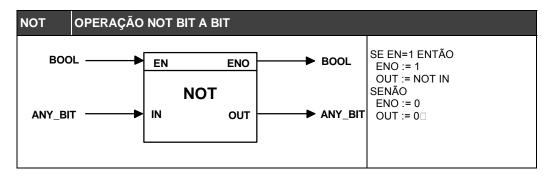
Esta função seleciona uma das entradas IN e coloca o seu valor na saída OUT. A seleção é feita de acordo com o valor da entrada SEL.

Seleção da Saída

Se SEL for igual a 0, a saída selecionada será IN1, caso SEL= 1 a saída selecionada será IN2 e assim sucessivamente. Porém, se a entrada SEL for negativa, IN1 será selecionada. Caso SEL for maior do que o número de entradas possíveis (n-1) a saída será igual a INn. Em ambas as exceções a saída ENO irá para Falso mostrando que a entrada SEL está fora do range.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	SEL	SELEÇÃO DA ENTRADA	ANY_INT
	IN1	ENTRADA NÚMERO 1	ANY
	IN2	ENTRADA NÚMERO 2	ANY
	IN3	ENTRADA NÚMERO 3	ANY
	INn-1	ENTRADA NÚMERO N-1	ANY
	INn	ENTRADA NÚMERO N	ANY
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
U	OUT	SAÍDA SELECIONADA POR SEL	ANY

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Operação Not Bit a Bit (NOT)

Descrição

Esta função inverte o nível lógico da entrada IN. A saída OUT será NOT (IN).

Operação

Se a entrada for "verdadeira", isto é, nível "1", o bloco NOT fará a saída igual a falso (zero). E viceversa. Esta função pode ter como entrada um byte ou um bit apenas. Um byte de I/O terá cada um de seus bits invertidos logicamente. Por exemplo, o byte 00000000 será convertido para 11111111. Portanto, se a entrada é um byte a operação NOT é feita bit a bit.

CLASS	MNEM	DESCRIÇÃO	TIPO
•	EN	HABILITAÇÃO DA ENTRADA	BOOL
ľ	IN	ENTRADA DO BLOCO	ANY_BIT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	SAÍDA DO BLOCO. O ESTADO DA ENTRADA É INVERTIDO LOGICAMENTE	ANY_BIT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

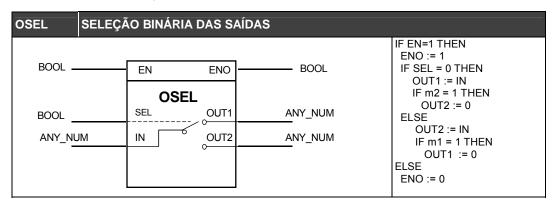
Seleção Binária das Saídas (OSEL)

Descrição

Esta função permite que o usuário selecione a saída para onde será enviado o valor da entrada IN. Se a entrada SEL for igual a zero a saída OUT1 será selecionada. Se SEL for igual 1 será selecionada a saída OUT2.

Control Word - Seleção do valor das saídas não selecionadas

OUT1 Não Selecionada


Quando a entrada SEL for igual a 1 selecionará a saída OUT2. O usuário deve informar o valor desejado para a saída não utilizada OUT1.

- Manter último valor: Mantém o último valor da saída OUT1.
- Ajustar para zero: Envia zero para a saída OUT1.

OUT2 Não Selecionada

Quando a entrada SEL for igual a 0 selecionará a saída OUT1. O usuário deve informar o valor desejado para a saída não utilizada OUT2.

- Manter último valor: Mantém o último valor da saída OUT2.
- Ajustar para Zero: Envia zero para a saída OUT2.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
I	SEL	SELEÇÃO DA SAÍDA	BOOL
	IN1	ENTRADA	ANY_NUM
P	CTW	CONTROL WORD	WORD
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT1	SAÍDA 1	ANY_NUM
	OUT2	SAÍDA 2	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Detalhe da Control Word

	Somente Configuração							Auxi	liares	e Pa	ssage	m de	parâr	netro	s
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
						m1	m2								

Os bits abaixo selecionam o valor da saída quando esta não for conectada à entrada IN.

Bit 8 0 = Saída OUT1 - Mantém o último valor

1 = Saída OUT1 - Vai para 0 (Set to ZERO)

Bit **9** 0 = Saída OUT2 - Mantém último valor

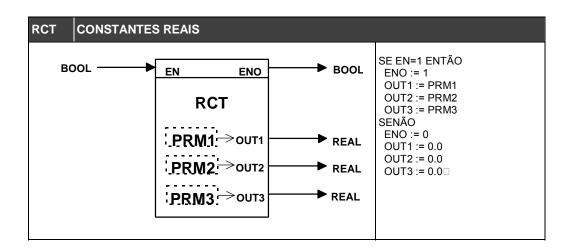
1 = Saída OUT2 - Vai Para Zero (Set to ZERO)

Constantes Reais (RCT)

Descrição

Esta função envia valores constantes Reais para as saídas. Estes valores são informados durante a configuração do bloco no LogicView. Quando EN = verdadeiro as constantes reais serão repassadas para as saídas.

Parâmetros PRM1, PRM2 e PRM3


Nestes parâmetros o usuário deverá inserir o valor das constantes inteiras que deseja gerar. Por exemplo:

PRM1= 32,34

PRM2=346,56

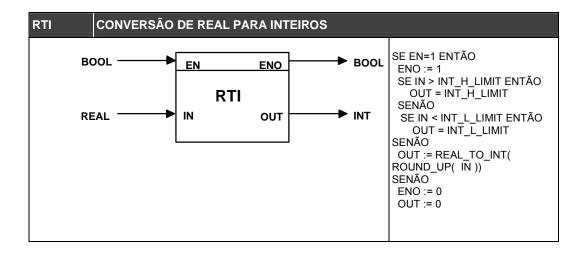
PRM3= 456,97

Quando EN=1 verdadeiro, as saídas Out1, Out2 e Out 3 indicarão: 32,34/346,56/456,97.

CLASSE	MNEM	DESCRIÇÃO	TIPO
1	EN	HABILITAÇÃO DA ENTRADA	BOOL
	PRM1	VALOR DA CONSTANTE 1	REAL
P	PRM2	VALOR DA CONSTANTE 2	REAL
	PRM3	VALOR DA CONSTANTE 3	REAL
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT1	SAÍDA DO VALOR ESTABELECIDO EM PRM1	REAL
J	OUT2	SAÍDA DO VALOR ESTABELECIDO EM PRM2	REAL
	OUT3	SAÍDA DO VALOR ESTABELECIDO EM PRM3	REAL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Conversão de Real para Inteiro (RTI)

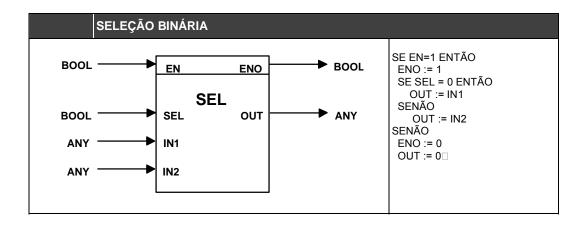

Descrição

Esta função converte um valor real na entrada IN em número inteiro e coloca-o na saída OUT.

Conversão e Operação

Se o número a ser convertido não puder ser colocado no formato de número inteiro, a saída OUT assumirá o maior (ou menor) valor de número inteiro possível e a saída ENO irá para Falso, indicando uma exceção na execução da função. A tabela abaixo exemplifica algumas dessas conversões:

Número Real	Número Inteiro
5,55	6
-4,954	-4
0,3	1
0,65	1
0,22	1
7,11	8
1001,1	1002
9050,7	9051
-0,25	0
-0,75	0
-0,55	0
1001,8	1002


CLASS	MNEM	DESCRIÇÃO	TIPO
•	EN	HABILITAÇÃO DA ENTRADA	BOOL
ľ	IN	ENTRADA DO BLOCO	REAL
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
Ο	OUT	SAÍDA DO BLOCO. VALOR DA ENTRADA CONVERTIDO PARA VALOR INTEIRO.	INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

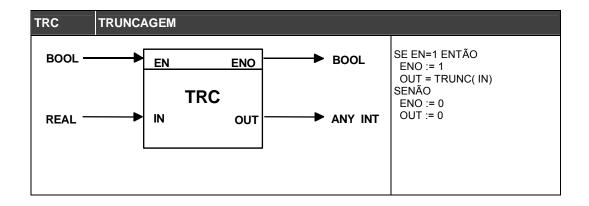
Seleção Binária (SEL)

Descrição

Esta função é usada para selecionar entre as duas entradas IN1 e IN2 e redirecioná-las para a saída OUT. A entrada SEL funciona como uma chave. Se SEL é Falso, IN1 será transcrito para OUT, caso contrário, o valor de IN2 é que será transcrito.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	SEL	SELEÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA 1	ANY
	IN2	ENTRADA 2	ANY
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	SAÍDA	ANY

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Truncagem (TRC)

Descrição

Esta função faz a truncagem de um número real e a saída terá apenas a parte inteira do número de entrada.

Conversão e Operação

Supondo que a entrada é um número real da forma IN= X.Y a saída será igual a OUT= X. Por exemplo: Se IN= 1.3456 a saída será OUT= 1.

CLASS	MNEM	DESCRIÇÃO	TIPO
1	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN	ENTRADA DO BLOCO	REAL
ENO		HABILITAÇÃO DA SAÍDA	BOOL
O	OUT	SAÍDA DO BLOCO.VALOR DE ENTRADA TRUNCADO.	ANY_INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Bit Wise Logic (BWL)

Descrição

O bloco BWL permite que funções lógicas sejam implementadas utilizando um bloco funcional. Seis funções lógicas diferentes podem ser configuradas: AND, NAND, OR, NOR, XOR e NXOR. O usuário escolhe o tipo de operação lógica durante a configuração e o bloco BWL passa a ter a função especificada neste procedimento. O bloco possui extensões para mais de duas entradas, com um máximo de 14 entradas configuráveis. Se as entradas são bytes, o bloco realiza as operações lógicas bit a bit entre as entradas. Se a entradas são bits, o bloco faz as operações entre os bits representados por cada entrada digital.

Control Word - Função AND

A função lógica AND para duas entradas IN1 e IN2 tem uma saída OUT dada pela equação booleana: OUT=IN1.IN2. Transpondo esta equação lógica para a tabela de estados:

IN1	IN2	OUT
0	0	0
0	1	0
1	0	0
1	1	1

Se as entradas forem bytes a função AND será aplicada bit a bit, isto é:

IN1= (BIT17)(BIT16)(BIT15)(BIT14)(BIT13)(BIT12)(BIT11)(BIT10) IN2= (BIT27)(BIT26)(BIT25)(BIT24)(BIT23)(BIT22)(BIT21)(BIT20) OUT= (BIT17**AND**BIT27).....(BIT11**AND**BIT21)

Exemplo: IN1= 00001111 IN2= 11110000 OUT= 00000000

Control Word - Função NAND

Esta função é associação da função AND com a função NOT inversora. Logo a saída lógica é a função AND invertida.

Control Word - Função OR

A função lógica OR para duas entradas IN1 e IN2 tem uma saída OUT dada pela equação booleana: OUT=IN1+IN2. Transpondo esta equação lógica para a tabela de estados:

IN1	IN2	OUT
0	0	0
0	1	1
1	0	1
1	1	1

Se as entradas forem bytes a função OR será aplicada bit a bit, isto é:

IN1= (BIT17)(BIT16)(BIT15)(BIT14)(BIT13)(BIT12)(BIT11)(BIT10) IN2= (BIT27)(BIT26)(BIT25)(BIT24)(BIT23)(BIT22)(BIT21)(BIT20) OUT= (BIT17**OR**BIT27).....(BIT11**OR**BIT21)

Exemplo: IN1= 00001111 IN2= 11110000 OUT= 11111111

Control Word - Função NOR

Esta função é associação da função OR com a função NOT inversora. Logo a saída lógica é a função OR invertida.

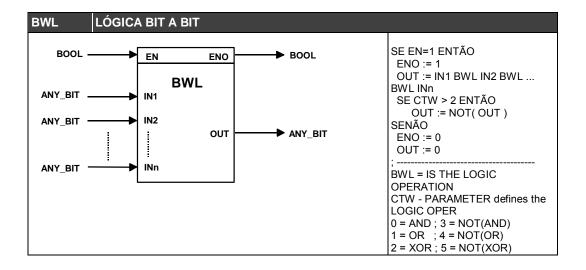
Control Word - Função XOR

A função lógica OR para duas entradas IN1 e IN2 tem uma saída OUT dada pela equação booleana: OUT=IN1 $\overline{\text{IN2}}$ + $\overline{\text{IN1}}$ IN2 . Transpondo esta equação lógica para a tabela de estados:

IN1	IN2	OUT
0	0	0
0	1	1
1	0	1
1	1	0

Se as entradas forem bytes a função XOR será aplicada bit a bit, isto é:

IN1= (BIT17)(BIT16)(BIT15)(BIT14)(BIT13)(BIT12)(BIT11)(BIT10) IN2= (BIT27)(BIT26)(BIT25)(BIT24)(BIT23)(BIT22)(BIT21)(BIT20) OUT= (BIT17XORBIT27).....(BIT11XORBIT21)


Exemplo: IN1= 01011100 IN2= 11110000 OUT= 10101100

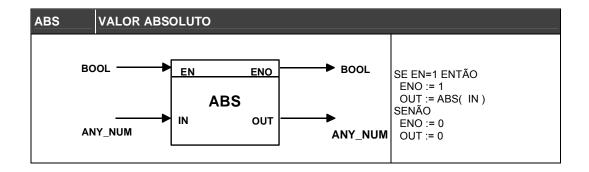
Control Word - Função NXOR

Esta função é associação da função XOR com a função NOT inversora. Logo a saída lógica é a função NXOR invertida.

O bloco BWL permite que está lógica seja expansível para 14 entradas. Na tabela abaixo mostramos as funções lógicas para mais de duas entradas e suas respectivas saídas.

	ENTRADAS						SAÍI	DAS		
IN1	IN2		INn-1	INn	AND	NAND	OR	NOR	XOR	NXOR
0	0		0	0	0	1	0	1	0	1
0	0		0	1	0	1	1	0	1	0
0	0		1	0	0	1	1	0	1	0
0	0		1	1	0	1	1	0	0	1
							1	0		
1	1		1	0	0	1	1	0	1	0
1	1		1	1	1	0	1	0	0	1

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_BIT
	IN2	ENTRADA NÚMERO 2	ANY_BIT
1	IN3	ENTRADA NÚMERO 3	ANY_BIT
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_BIT
	INn	ENTRADA NÚMERO N	ANY_BIT
P	CTW	CONTROL WORD	WORD
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
<u> </u>	OUT	RESULTADO DA SAÍDA	BOOL/BYTE
V	OPR	OPERAÇÃO LÓGICA	WORD


I: Entrada. P: Parâmetro. O: Saída. V: Variável

Funções Matemáticas

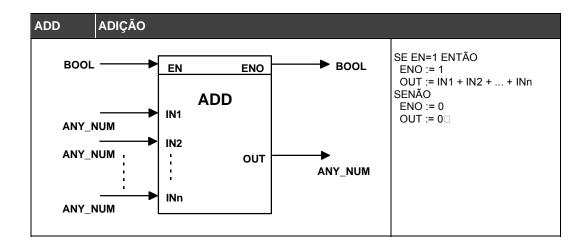
Valor Absoluto (ABS)

Descrição

Esta função encontra o valor absoluto da entrada IN e coloca o resultado na saída OUT. Por exemplo: se a leitura for -0,78987 na entrada IN, a saída será 0,78987.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
•	IN	ENTRADA DO BLOCO	ANY_NUM
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
O	OUT	SAÍDA DO BLOCO. VALOR ABSOLUTO DA ENTRADA.	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Adição (ADD)

Descrição

Esta função soma todas as entradas IN e coloca o resultado na saída OUT.

Operação

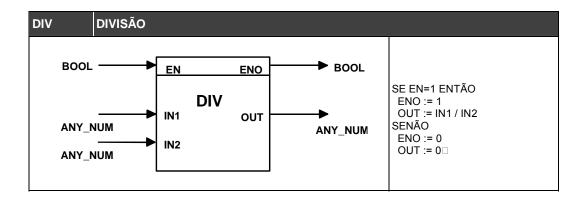
Se o resultado sair fora dos limites do tipo de número que pode ser representado, a saída OUT será o maior (ou menor) número possível representado segundo o seu tipo. Esta situação é apontada como tendo a saída ENO falsa. O número de entradas (n) que será utilizado nessa operação é previamente determinado durante a configuração. Se o usuário tentar configurar as duas entradas com variáveis de tipos diferentes, por exemplo, somar um número inteiro a um número real, o LogicView não permitirá esta configuração. Ao ser selecionada a primeira variável do bloco, imediatamente as outras entradas são esperadas serem do mesmo tipo desta variável.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
	IN3	ENTRADA NÚMERO 3	ANY_NUM
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	RESULTADO DA SOMA	ANY NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Divisão (DIV)

Descrição


Esta função divide IN1 por IN2.

Operação

Se o resultado sair fora dos limites do tipo de número que pode ser representado, a saída será o maior (ou menor) valor possível que pode ser representado de acordo com o seu tipo. Todas as exceções ocorridas serão assinaladas colocando-se a saída ENO em falso.

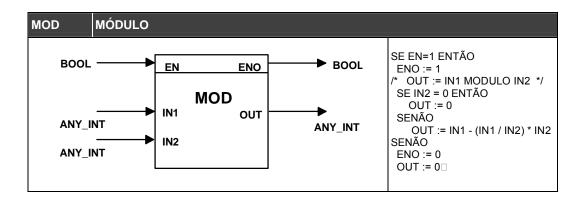
Se o usuário tentar configurar as duas entradas com variáveis de tipos diferentes, por exemplo, somar um número inteiro a um número real, o LogicView não permitirá esta configuração.

Ao ser selecionada a primeira variável do bloco, imediatamente as outras devem ser do mesmo tipo desta variável. Uma divisão de zero por zero produzirá resultados diferentes para tipos diferentes de variáveis. Se as variáveis forem inteiras o resultado será –1. Se as variáveis são reais, o resultado será zero.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
ı	IN1	ENTRADA DO DIVIDENDO	ANY_NUM
	IN2	ENTRADA DO DIVISOR	ANY_NUM
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
O	OUT	RESULTADO DA DIVISÃO	ANY NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Módulo (MOD)


Descrição

Esta função toma o resto da divisão de IN1 por IN2 e coloca o valor na saída OUT.

Operação

Por exemplo: IN1= 25 e IN2= 7, a saída será OUT= 4. Por que:

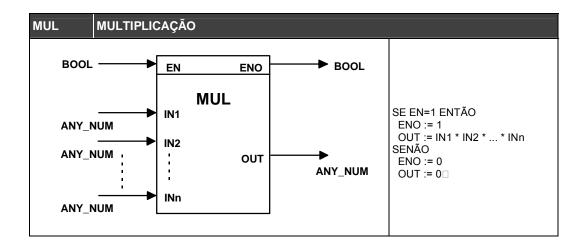
O usuário deve estar atento para o fato de que IN1 e IN2 devem ser inteiros.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA DO DIVIDENDO	ANY_INT
'	IN2	ENTRADA DO DIVISOR	ANY_INT
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESTO DA DIVISÃO	ANY_INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Multiplicação (MUL)

Descrição


Esta função multiplica todas as entradas IN e coloca o resultado na saída OUT.

Operação

Se o resultado sair fora dos limites do tipo de número que pode ser representado, a saída OUT será o maior (ou menor) número possível representado segundo o seu tipo. Esta situação é apontada mantendo-se a saída ENO em Falso.

O número de entradas IN é determinado previamente durante a configuração.

Se o usuário tentar configurar as duas entradas com variáveis de tipos diferentes, por exemplo, somar um número inteiro a um número real, o LogicView não permitirá esta configuração. Ao ser selecionada a primeira variável do bloco, imediatamente as outras entradas devem ser do mesmo tipo desta variável.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
•	IN3	ENTRADA NÚMERO 3	ANY_NUM
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO DA MULTIPLICAÇÃO	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Raiz Quadrada (SQR)

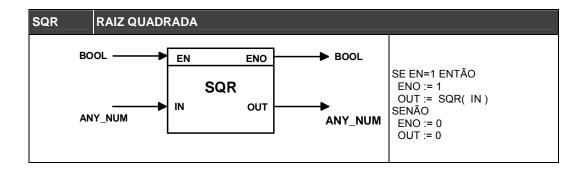
Descrição

Esta função encontra a raiz quadrada do valor na entrada IN e coloca o resultado na saída OUT. Se a entrada IN é negativa o resultado irá para zero e a saída ENO irá para falso.

Control World- Tipo de Entrada/Saída

O tipo de dado na entrada e na saída podem ser configurados para "Comum/Regular" e "Porcentagem/Percentage".

Se a opção "Porcentagem" foi selecionada há dois modos de operação:


Se a entrada foi configurada para inteiro então :

$$OUT = 100 * \sqrt{IN}$$

Se a entrada foi configurada para real então:

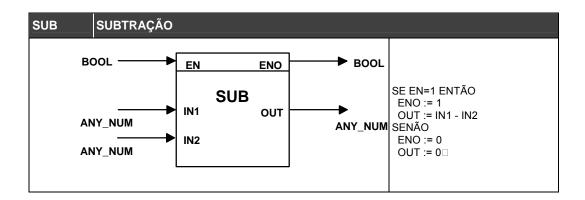
$$OUT = 10 * \sqrt{IN}$$

Na opção "Comum", o bloco extrai a raiz quadrada da entrada.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
•	IN	ENTRADA	ANY_NUM
D	CTW	PALAVRA DE CONTROLE	WORD
T .	CTO	NIVELAMENTO	REAL
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
J	OUT	RESULTADO DA OPERAÇÃO	ANY_NUM
V	PER	OPERAÇÃO PERCENTUAL	WORD

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Subtração (SUB)


Descrição

Esta função subtrai IN2 de IN1 (IN1 - IN2).

Operação

Se o resultado da subtração sair fora dos limites do tipo de número que pode ser representado, a saída OUT será o maior (ou menor) número possível representado segundo o seu tipo. Essa situação faz com que a saída ENO vá para falso.

Se o usuário tentar configurar as duas entradas com variáveis de tipos diferentes, por exemplo, somar um número inteiro a um número real, o LogicView não permitirá esta configuração. Ao ser selecionada a primeira variável do bloco, imediatamente as outras entradas devem ser do mesmo tipo desta variável.

CLASS	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	1.0 ELEMENTO DA SUBTRAÇÃO	ANY_NUM
	IN2	2.0 ELEMENTO DA SUBTRAÇÃO	ANY_NUM
О	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO DA SUBTRAÇÃO	ANY_NUM

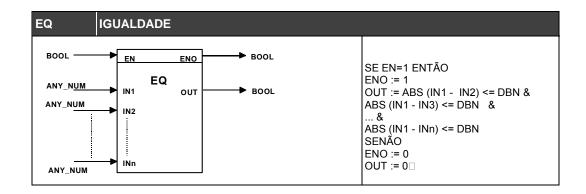
I: Entrada, P: Parâmetro, O: Saída, V: Variável

Funções de Comparação

Igualdade (EQ)

Descrição

Esta função indicará verdadeiro na saída **OUT** se as entradas **IN** não sofrerem desvio maior do que o valor da Zona-Morta **(DBN)** da entrada IN1. O bloco EQ é indicado quando deseja-se comparar variáveis em termos de igualdade. O parâmetro DBN fornece ao usuário uma ferramenta para determinar o ajuste de quão próximas precisam ser cada uma dessas medidas para que estas sejam consideradas iguais.


Parâmetro DBN e Operação

No caso de usar somente 2 entradas (IN1 e IN2) a função comporta-se como igual-com-zonamorta, portanto tornando OUT Verdadeiro se ABS(IN1 - IN2) < = DBN.

Por exemplo: Tem-se 3 entradas e o parâmetro DBN foi configurado com o valor default que é 10. IN1= 12, IN2=21 e IN3= 5. Ou seja:

ABS(IN1-IN2)= 9 < 10 ABS(IN1-IN3)= 7 < 10

Portanto como DBN = 10, a saída OUT será igual a "Verdadeiro"

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
1	IN3	ENTRADA NÚMERO 3	ANY_NUM
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
P	DBN	ZONA MORTA	REAL
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO LÓGICO DA COMPARAÇÃO	BOOL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Sequência Monotônica Decrescente (GE)

Descrição

Esta função indicará Verdadeiro na saída **OUT** se as entradas **(IN1 a INn)** estiverem em uma ordem monotônica decrescente. Uma seqüência monotônica decrescente é definida como uma seqüência de números em que dois elementos adjacentes estão relacionados por INn-1>=INn. Ou seja:

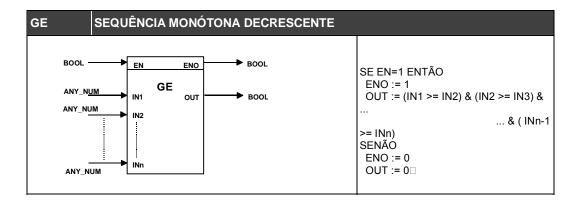
IN1,IN2,IN3......INn-2,INn-1, INn

Onde:

IN1>=IN2

IN2>=IN3

INn-2>=INn-1


INn-1>=INn

Pode-se usar esta equação para implementar blocos condicionais que comparam as duas entradas e tomam uma decisão (o estado da saída muda para 1 e habilita um outro bloco).

Operação

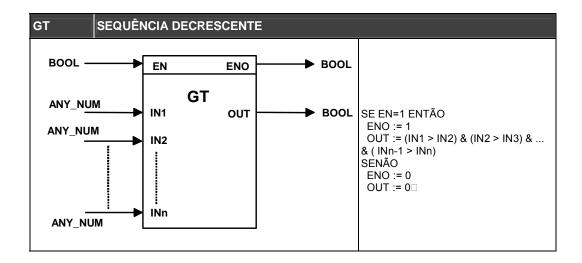
Uma seqüência monotônica decrescente pode ser exemplificada como: 12,8,8,5,3,1.

No caso de usar somente 2 entradas (IN1 e IN2) a função comporta-se como uma comparação de maior ou igual, tornando OUT verdadeiro se IN1 > = IN2.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
	IN3	ENTRADA NÚMERO 3	ANY_NUM
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO LÓGICO DA COMPARAÇÃO	BOOL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Seqüência Decrescente (GT)


Descrição

Esta função indicará verdadeiro na saída OUT se as entradas (IN1 a INn) estiverem em ordem decrescente. Isto é:

IN1>IN2>IN3>IN4......INn-1>INn.

No caso de usar somente 2 entradas (IN1 e IN2) a função comporta-se como uma comparação de maior que, tornando OUT verdadeiro se IN1 > IN2.

Pode-se usar esta equação para implementar blocos condicionais que comparam as duas entradas e tomam uma decisão (o estado da saída muda para 1 e habilita um outro bloco).

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
1	IN3	ENTRADA NÚMERO 3	ANY_NUM
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO LÓGICO DA COMPARAÇÃO	BOOL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Sequência Monotônica Crescente (LE)

Descrição

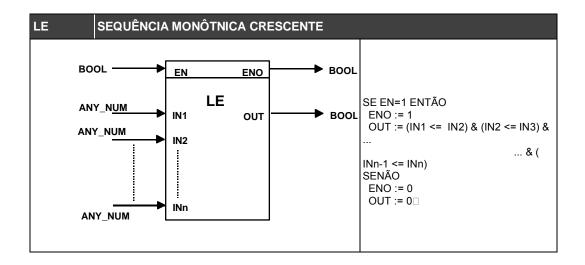
Esta função indicará verdadeiro na saída OUT se as entradas (IN1 a INn) estiverem em uma ordem monôtonica crescente. Uma seqüência monotônica crescente é definida como uma seqüência de números em que dois elementos adjacentes estão relacionados por INn-1≤INn. Ou seja:

IN1,IN2,IN3.....INn-2,INn-1, INn

Onde:

IN1≤IN2

IN2≤IN3


...

INn-2≤INn-1 INn-1≤INn.

Por exemplo: 1,1,3,3,4,5,6,78,78.

No caso de usar somente 2 entradas (IN1 e IN2) a função comporta-se como a comparação <u>menor</u> ou igual, fazendo OUT verdadeiro se IN1 ≤IN2.

Pode-se usar esta equação para implementar blocos condicionais que comparam as duas entradas e tomam uma decisão (o estado da saída muda para 1 e habilita um outro bloco).

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
•	IN3	ENTRADA NÚMERO 3	ANY_NUM
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO LÓGICO DA COMPARAÇÃO	BOOL

I: Entrada, P: Parâmetro, O: Saída, V: Variável

Limitador (LMT)


Descrição

Esta função limita a entrada IN entre o valor das entradas MIN e MAX e coloca o resultado na saída OUT.

Se os limites são excedidos ENO sinalizará e irá para Falso. Suponha que deseja-se limitar a entrada de um sinal entre 1 e 10. Neste caso pode-se gerar duas constantes e ligá-las nas portas MIN e MAX, o sinal a ser limitado é ligado na entrada IN. A saída quando os limites são excedidos é igual a 1, quando o limite inferior é excedido, ou 10 quando o limite superior é excedido.

Parâmetros MIN e MAX

O usuário configura o valor máximo (MAX) e mínimo (MIN) da saída. A saída será igual a MAX se a entrada excedeu o valor MAX e será igual a MIN se a entrada for menor do que MIN.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN	ENTRADA A SER LIMITADA	ANY_NUM
0	MIN	LIMITE MÍNIMO DO LIMITADOR	ANY_NUM
	MAX	LIMITE MÁXIMO DO LIMITADOR	ANY_NUM
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	SAÍDA DO BLOCO LIMITADA	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Sequência Crescente (LT)


Descrição

Esta função indicará verdadeiro na saída OUT se as entradas (IN1 a INn) estiverem em uma ordem crescente. Isto é:

IN1<IN2<IN3<IN4......INn-1<INn

No caso de usar somente 2 entradas (IN1 e IN2) a função comporta-se como uma comparação menor que, tornando OUT verdadeiro se IN1 < IN2.

Pode-se usar esta equação para implementar blocos condicionais que comparam as duas entradas e tomam uma decisão (o estado da saída muda para 1 e habilita um outro bloco).

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
	IN3	ENTRADA NÚMERO 3	ANY_NUM
ľ			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO LÓGICO DA COMPARAÇÃO	BOOL

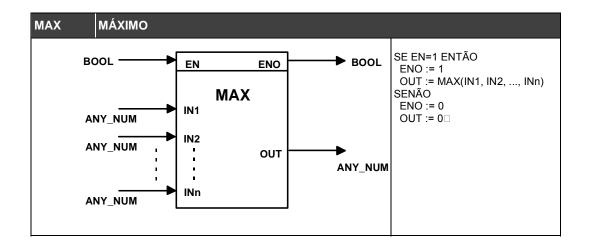
I: Entrada. P: Parâmetro. O: Saída. V: Variável

Máximo (MAX)

Descrição

Esta função seleciona o valor máximo das entradas IN e coloca-o na saída OUT.

Operação


O número de entradas IN (n) é previamente determinado durante a configuração. Suponha que temos 4 entradas e as respectivas leituras sejam:

IN1= 5,899 IN2= 7,9000

IN3= 10,899

IN4= 23,90

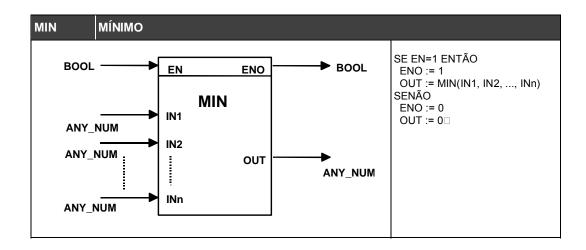
A função MAX envia para saída o valor da saída IN4, ou seja, 23,90.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
	IN3	ENTRADA NÚMERO 3	ANY_NUM
·			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT	MÁXIMO VALOR DAS ENTRADAS	BOOL

I: Entrada, P: Parâmetro, O: Saída, V: Variável

Mínimo (MIN)

Descrição


Esta função seleciona o valor mínimo das entradas (IN1 a INn) e coloca-o na saída OUT.

Operação

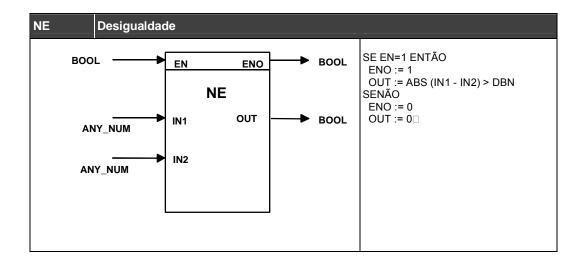
O número de entradas (n) é previamente determinado durante a configuração. Suponha que temos 4 entradas e as respectivas leituras sejam:

IN1= 5,899 IN2= 7,9000 IN3= 10,899 IN4= 23,90

A função MIN envia para saída o valor da saída IN1, ou seja, 5,899.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
•	IN3	ENTRADA NÚMERO 3	ANY_NUM
•			
	INn-1	ENTRADA NÚMERO N-1	ANY_NUM
	INn	ENTRADA NÚMERO N	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	MÍNIMO VALOR DAS ENTRADAS	BOOL

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Desigualdade (NE)

Descrição

Esta função indicará verdadeiro na saída **OUT** somente se a diferença for **(IN1-IN2) > DBN** (zona morta). O parâmetro DBN é configurado pelo usuário.

Operação e parâmetro DBN Exemplo: IN1= 0,78 IN2= 0,70 IN1-N2=0,08 DBN= 0,05

Neste caso a saída OUT= 1 (verdadeiro), pois o valor configurado para DBN (0,05) indica que na aplicação acima IN1 é diferente de IN2. O usuário controla o range no qual há a igualdade através do parâmetro DBN.

CLASSE	MNEM	DESCRIÇÃO	TIPO
ı	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	ENTRADA NÚMERO 1	ANY_NUM
	IN2	ENTRADA NÚMERO 2	ANY_NUM
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	RESULTADO LÓGICO DA COMPARAÇÃO	BOOL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Funções de Controle de Processo

Limite Cruzado e Velocidade de Variação (XLIM)

Descrição

Esta função limita um sinal dentro de valores estáticos ou dinâmicos e também controla sua velocidade de variação. A saída OUT% é o resultado filtrado de entrada A%.

Limitação estática e dinâmica

Estática

Para limitar estaticamente um sinal, desconecta-se a entrada B. O sinal A é limitado entre BL e BH (ajustados pelo usuário).

Dinâmica

Se a entrada B for conectada é possível limitar dinamicamente a entrada A através da entrada B. Para maior flexibilidade os limites são modificáveis com ganhos e bias (deslocamentos) individuais.

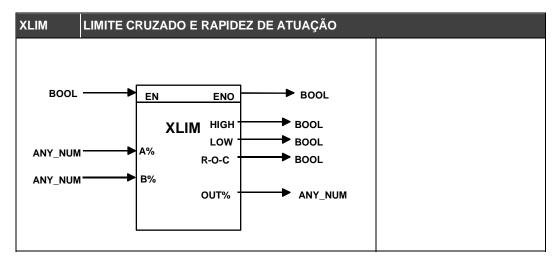
Control Word (CTW)- Rate of Change

O limite de velocidade de variação pode ser aplicado nos dois sentidos, aumentando ou diminuindo ou para uma direção específica. Existem 4 tipos selecionáveis: verifica ambos, apenas superior, apenas taxa de atuação ou nenhum.

Parâmetros BL e BH

- Se A≤BL a saída OUT será igual a BL.
- Se BL<A<BH a saída OUT será igual a A.
- Se A≥BH a saída OUT será igual a BH.

Parâmetros GH e GL


- Se A≤ B.GL+BL a saída OUT será igual B.GL+BL
- Se B.GL+BL<A<B.GH+BH a saída OUT será igual a A
- Se A≥ B.GH+BH a saída OUT será igual a B.GH+BH

Parâmetro DB e as saídas LOW e HIGH

O bloco possui saídas para indicar se os limites inferior (LOW) e superior (HIGH) foram alcançados O parâmetro DB pode ser ajustado para gerar uma histerese, evitando que a saída oscile quando a variável esta próxima do valor limite.

Parâmetro RAT e a saída Rate of Change (ROC)

A saída ROC vai para nível lógico 1 quando a velocidade de variação do sinal alcançar o valor configurado no valor RAT. Quando a entrada A muda mais rápido do que RAT, a variação na saída é mantida dentro do valor fixado por RAT até que o sinal de entrada A caia abaixo deste valor. O alarme ROC neste período está em nível alto.

CLASSE	PARAM	DESCRIÇÃO	TIPO
ı	EN	HABILITAÇÃO DA ENTRADA	BOOL
	A%	ENTRADA A	ANY_NUM
	В%	ENTRADA B	ANY_NUM
P	CTW	VERIFICA AMBOS/APENAS SUPERIOR/APENAS TAXA DE ATUAÇÃO	WORD
	GL	LIMITE DE GANHO INFERIOR	I/1000
	BL	LIMITE DE BIAS INFERIOR	I/100
	GH	LIMITE DE GANHO ALTO	I/1000
	ВН	LIMITE DE BIAS ALTO	I/100
	DB	ZONA MORTA (HISTERESE) EM %	I/100
	RAT	VELOCIDADE DE VARIAÇÃO MÁXIMA EM % POR SEGUNDO	I/100
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	HIGH	ALARME DE LIMITE SUPERIOR	BOOL
	LOW	ALARME DE LIMITE INFERIOR	BOOL
	R-O-C	ALARME DA TAXA DE ATUAÇÃO	BOOL
	OUT%	PARÂMETRO DE SAÍDA	ANY_NUM

I: Entrada, P: Parâmetro, O: Saída, V: Variável

Totalização (TOT)

Descrição

Este bloco fornece a totalização da entrada. Esta totalização é a integral da entrada multiplicada por um fator de escala, FCF. Este fator de escala permite que o usuário configure a totalização em 3 modos de operação. Se sua aplicação requer o cálculo do volume totalizado instantâneo, basta utilizar o bloco TOT para integrar a vazão, que é a derivada temporal do volume. A base de tempo do bloco é segundos.

Uma vazão é geralmente dada em unidades de engenharia (EU) por unidade de tempo. Por exemplo:

Uma vazão de 1 m³/s como entrada do bloco TOT terá como saída a totalização em m³.

Considere que em sua aplicação você necessite do valor da energia de um dispositivo elétrico. O bloco TOT permite que você calcule o valor desta energia através da potência instantânea. Pois:

$$Energia = \int Pot (t) dt$$

e ainda Pot(t)= V(t).I(t), onde V(t) é a tensão instantânea e I(t) a corrente instantânea.

Saídas TOT e parâmetro TU

O intervalo de tempo em que a saída é totalizada está de acordo com o valor configurado em TU. A integração (totalização) é mantida em um registrador interno que pode ir até 8.000.000 unidades. A saída TOT é o valor da totalização.

Saída dl

O valor máximo da totalização é de 8.000.000 e o mínimo de - 8.000.000. Toda vez que a saída do totalizador atingir estes valores a saída dl muda do estado zero para estado um durante um intervalo de tempo. A saída dl é portanto um contador de viradas de contagem.

Parâmetro FCF

O parâmetro FCF permite ao bloco TOT operar em 4 modos diferentes:

IN é REAL e representa a vazão em unidades de engenharia:

FCF deve ser igual a 1 para ter totalização sem qualquer fator de escala em unidades de engenharia (ou ajuste o fator que você quiser usar). Por exemplo:

Vazão Q é medida em m³/h. Uma hora possui 3600 segundos. Portanto, o valor de TU deve ser igual a 3600. Supondo uma vazão constante de 60 m³/h a totalização será dada pela expressão:

$$TOT(t) = \int_{0}^{t(segundos)} \frac{FCF}{TU} * IN(t) dt = \int_{0}^{t(segundos)} \frac{1}{3600} * 60 dt = \int_{0}^{t(segundos)} \frac{1}{60} dt [m^{3}]$$

Portanto após um minuto ou 1/60 horas ou 60 segundos o valor de TOT será:

$$TOT[m^3] = \int_0^{60} \frac{1}{60} dt = 1m^3$$

A cada 1/60 horas ou a cada 1 minuto o bloco totaliza a entrada e mostra este valor na saída. Pois: 60 m³_______1 hora

1 m³ t (intervalo de tempo em que a totalização é mostrada)

Então, t= 1/60 horas ou 1 minuto

IN é REAL e representa a vazão em porcentagem:

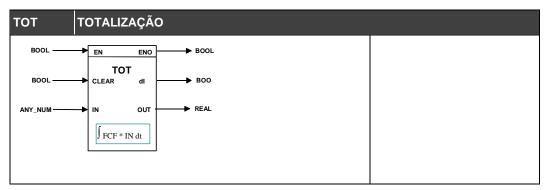
Neste caso, a entrada será interpretada como uma porcentagem representada por um número real entre 0 e 100 (0% e 100% respectivamente). FCF deve ser igual à vazão máxima em unidades de engenharia (vazão a 100%) para ter a totalização em unidades de engenharia. A configuração do parâmetro TU é similar à entrada real em unidades de engenharia. A totalização será mostrada na unidade de engenharia configurada.

IN é INT:

Neste caso, a entrada será interpretada como um número inteiro entre 0 e 10000 (0% e 100% respectivamente). FCF dever ser igual à vazão máxima em unidades de engenharia dividido por 10000. Supondo uma vazão máxima de 1 m³/s e uma vazão de 0.5 m³/s o valor de FCF é igual a vazão máxima dividido por 10000, isto é, 0,0001. O valor de TU é, neste caso, igual 1, pois a totalização é dada em m³. Uma entrada de 0,5 m³/segundo equivale a 5000 (ou 50 % da escala).

Portanto:

$$OUT = \int_{0}^{t} \frac{FCF}{TU} * IN\%(t)dt = \int_{0}^{t} 0.0001 * 5000dt = 0.5t(m^{3})$$

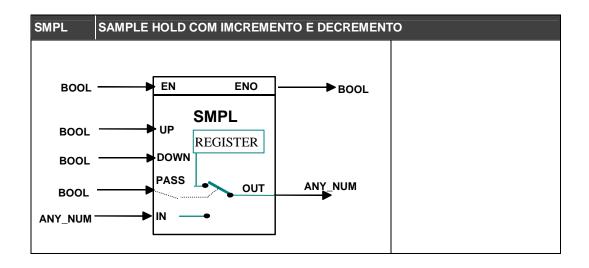

Logo em 1 minuto (ou 60 segundos) o valor totalizado será de 30 m³.

Quando FCF é menor que zero:

Quando o bloco estiver totalizando uma vazão negativa, a totalização é decrementada, enquanto que, quando a vazão é positiva a totalização é incrementada. Quando FCF for maior do que zero, isto é, positivo, o bloco totalizador só aceita vazões positivas.

Entrada CLEAR

Se a entrada CLEAR for alterada para verdadeiro, a totalização será reiniciada e os registradores internos do bloco TOTserão zerados.



CLASSE	MNEM	DESCRIÇÃO	TIPO
ı	EN	HABILITAÇÃO DA ENTRADA	BOOL
	CLEAR	ZERA O TOTALIZADOR	BOOL
	IN	ENTRADA DO BLOCO	ANY_NUM
P	CTW	PALAVRA DE CONTROLE	WORD
	TU	VALOR DE TOTALIZAÇÃO PARA UMA UNIDADE DE CONTAGEM	REAL
	FCF	FATOR DE TAXA DE VAZÃO	REAL
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	dl	ALARME QUE INDICA QUANDO A TOTALIZAÇÃO ATINGIU O VALOR -8.000.000 OU 8.000.000. NESTE CASO DL= 1.	BOOL
	OUT	SAÍDA TOTALIZADA	REAL
V	ACC	VALOR FRACIONÁRIO DA TOTALIZAÇÃO	REAL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Sample Hold com Incremento e Decremento (SMPL)

Esta função amostra o valor na entrada IN e o coloca no REGISTRADOR quando a entrada PASS muda de verdadeiro para falso. O valor do REGISTRADOR pode ser incrementado ou decrementado usando a entrada UP ou DOWN. A velocidade deste incremento ou decremento é definida pelo parâmetro ASPD. Este bloco pode ser utilizado em conjunto com um bloco PID.

CLASSE	MNEM	DESCRIÇÃO	TIPO
)	EN	HABILITAÇÃO DA ENTRADA	BOOL
	UP	INCREMENTAR O CONTADOR	BOOL
	DOWN	DECREMENTAR O CONTADOR	BOOL
	PASS	COLOCA O VALOR DO REGISTRADOR NA SAÍDA	BOOL
	IN	ENTRADA	ANY_NUM
P	ACCEL	FATOR DE ACELERAÇÃO – INCREMENTO E DECREMENTO	INT
	ASPD	VELOCIDADE DE ATUAÇÃO EM % POR SEGUNDO	REAL
	L_LMT	LIMITE INFERIOR	REAL
	H_LMT	LIMITE SUPERIOR	REAL
0	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT	PARÂMETRO DE SAÍDA	ANY NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Rampa Automática com Incremento e Decremento (ARAMP)

Descrição

Esta função incrementa ou decrementa a saída OUT de modo linear baseado num período de tempo estabelecido. Este bloco de função pode ser utilizado para criar uma base de tempo para um gerador de um set point automático quando combinado com o bloco de função de linearização ou uma rampa simples.

Numa aplicação de geração de set point o ARAMP é preparado para gerar uma saída de 0 a 100% num período de tempo tal que acompanhe a curva de set point. A saída do ARAMP será conectada à entrada do bloco de função LIN (linearização) configurado com a curva de perfil do set point.

Control Word-Time Selection

A base de tempo do bloco pode ser selecionada em segundos, minutos ou horas conforme a necessidade da aplicação. Esta seleção influi diretamente no valor escolhido para o parâmetro FTIME

Parâmetros FTIME, INC/DECR

FTIME é o tempo que a saída leva para mudar de 0 a 100 %. A direção da mudança é dada pela entrada INC/DECR. Se esta entrada for verdadeira, a saída OUT será gradualmente decrementada com velocidade definida pelo parâmetro FTIME, caso contrário, a saída será incrementada com a velocidade definida no parâmetro FTIME.

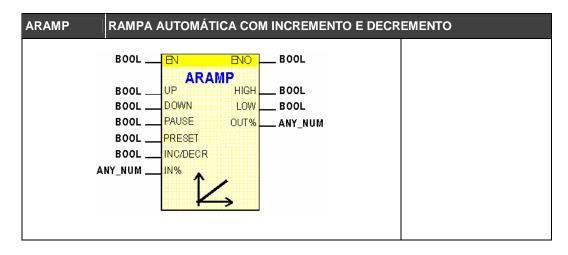
Comando de Pausa (PAUSE)

O PAUSE congela a saída OÚT. Nesse instante, a saída pode ser incrementada ou decrementada através da seleção das entradas UP e DOWN.

Comandos UP e DOWN, parâmetro ASPD

O UP e o DOWN avançarão ou reverterão a saída OUT para um valor desejado usando o ajuste de velocidade manual pelo parâmetro ASPD. Este parâmetro configura a velocidade de atuação manual.

Parâmetros LOW L e HIGH L


O parâmetro LOW_L configura o limite inferior da rampa gerada pelo bloco ARAMP enquanto que o parâmetro HIGH_L configura o limite superior da rampa de saída. A rampa parte do valor da entrada IN até o valor máximo configurado no parâmetro HIGH_L. Se o valor da entrada for menor do que LOW L o valor incial da rampa será igual a LOW L.

Parâmetros Alarmes HIGH e LOW

Quando a rampa de saída atingir o limite inferior (LOW_L) ou superior (HIGH_L), os alarmes LOW e HIGH, respectivamente, serão acionados. Isto é, a saída LOW vai para nível alto se o limite inferior é atingido. Similarmente, se o limite superior é atingido, a saída HIGH muda para verdadeiro.

Parâmetro ACCEL

É a aceleração manual de atuação. Quando a saída do bloco é uma parábola, o parâmetro ACCEL permite ajuste fino da saída, proporcionando maior definição da taxa de mudança da saída.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	UP	AVANÇA A SAÍDA OUT CONFORME ASPD	BOOL
	DOWN	REVERTE A SAÍDA OUT CONFORME ASPD	BOOL
	PAUSE	CONGELA A SAÍDA OUT	BOOL
-	PRESET	ZERA A RAMPA	BOOL
	INC/DEC	SAÍDA OUT SERÁ INCREMENTADA 0. SAÍDA OUT SERÁ INCREMENTADA	BOOL
	IN%	ENTRADA DO BLOCO	ANY_NUM
	CTW	HORAS, MINUTOS OU SEGUNDOS	WORD
	ASPD	VELOCIDADE DE ATUAÇÃO MANUAL EM % POR SEG.	INT/100
P	ACCEL	ACELERAÇÃO INICIAL MANUAL DE ATUAÇÃO	INT
<u>-</u>	FTIME	TEMPO PARA MUDAR DE 0 A 100% A SAÍDA OUT	INT
	LOW_L	LIMITE INFERIOR DO REGISTRADOR	INT/100
	HIGH_L	LIMITE SUPERIOR DO REGISTRADOR	INT/100
o	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	HIGH	ALARME DE LIMITE SUPERIOR DA RAMPA	BOOL
	LOW	ALARME DE LIMITE INFERIOR DA RAMPA	BOOL
	OUT%	RAMPA DE SAÍDA	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Linearização (LIN)

Descrição

Este bloco de função simula uma função usando uma tabela de pontos. Valores intermediários são calculados usando o método de interpolação linear. Eles podem ser arranjados em séries para implementar curvas com mais de 10 pontos. O usuário deverá informar uma tabela de pontos, pares X e Y, que representarão uma função. Um valor de entrada X corresponde uma saída Y, isto é, o bloco implementa uma função f(x). Para cada coordenada x, existe uma coordenada y correspondente. Ou seja, o usuário deve inserir na configuração do parâmetro dez pares de pontos:

(x1,y1), (x2,y2), (x3,y3), (x4,y4), (x5,y5), (x6,y6), (x7,y7), (x8,y8), (x9,y9), (x10,y10)

Entrada IN

O bloco pode funcionar em dois modos conforme a configuração da entrada:

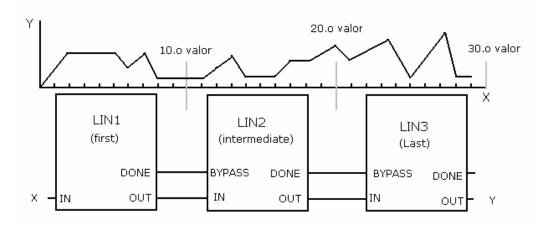
Entrada IN% é um número inteiro:

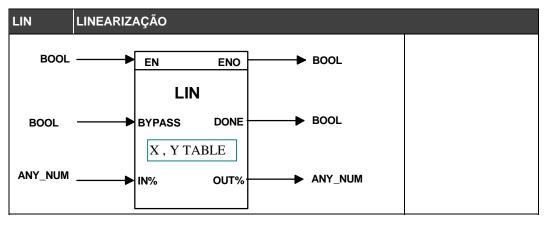
Neste caso a entrada do bloco será interpretada como um número de 0 a 10000.

Entrada IN% é um número real:

Neste caso a entrada do bloco será interpretada como uma porcentagem real.

Bypass


Se a entrada Bypass está em alto, o bloco LIN repassa a entrada do bloco para a saída sem processar este dado.


Control Word (CTW)- Comportamento serial

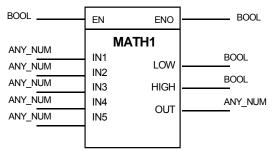
Quando uma aplicação requerer mais de 10 pontos, vários blocos LIN podem ser colocados em série.

O sinal DONE deve ser ligado à entrada BYPASS do próximo bloco. O primeiro bloco do arranjo deve ser configurado como PRIMEIRO, todos os intermediários como INTERMEDIÁRIO e o último como ÚLTIMO.

Uma aplicação que requer 30 pontos para representar uma função tem a seguinte configuração:

CLASSE	PARAM	DESCRIÇÃO	TIPO
ı	EN	HABILITAÇÃO DA ENTRADA	BOOL
	BYPASS	REPASSA A ENTRADA ATÉ A SAÍDA SEM HAVER NENHUM PROCESSAMENTO.	BOOL
	IN%	ENTRADA DO BLOCO	ANY_NUM
	CTW	PALAVRA DE CONTROLE	WORD
	X1	X PARA O PRIMEIRO PONTO	I/100
	Y1	Y PARA O PRIMEIRO PONTO	I/100
P			
l.			
	X10	X PARA O ÚLTIMO PONTO	1/100
	Y10	Y PARA O ÚLTIMO PONTO	I/100
	CTW	PALAVRA DE CONTROLE	WORD
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
Ο	DONE	HABILITA O BLOCO LIN SEGUINTE EM UMA APLICAÇÃO EM SÉRIE.	BOOL
	OUT	PARÂMETRO DE SAÍDA	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Equações Multivariáveis (MATH1)

Descrição

É possível escolher entre três equações que realizam operações matemáticas diferentes. Para cada tipo de equação escolhido, existe uma configuração de parâmetros diferente. Os três tipos de equação são:

- Equação 1- Umidade Relativa
- Equação 2- Função API
- Equação 3- Processamento de Sinais

IMPORTANTE: Na configuração do bloco, o LogicView apresentará para cada equação escolhida a opção de configurar vários parâmetros. O usuário deverá apenas configurar os parâmetros indicados neste manual.

Equação 1 – Umidade Relativa

Esta função fornece como saída a umidade relativa calculada com referência a duas entradas. Estas consistem de duas entradas de temperatura, uma com a leitura do bulbo seco e a segunda com a leitura de temperatura do bulbo úmido.

Umidade

É igual ao resultado da Função de Cálculo da Umidade, faixa de 0.000000 a 1.000000, representando valores de 0 % a 100%.

Conversão de escala para a saída

OUT = A * Umidade + B

Os parâmetros A e B são configurados pelo usuário. A é o GANHO da escala do valor de saída OUT e B é igual ao BIAS da escala do valor de saída OUT. Exemplo: para obter-se uma saída de 0 a 100 (%), deve-se colocar o valor de A = 100 e B = 0

Parâmetros LOW e HIGH

LOW é o LIMITE inferior da saída OUT. Se a saída OUT calculada for menor que o limite inferior este limite é sinalizado na saída digital LOW (LOW = 1).

HIGH é o LIMITE superior da saída OUT. Se a saída OUT calculada for maior que o limite superior este limite é sinalizado na saída digital HIGH (HIGH = 1).

Parâmetros da equação umidade relativa

K1: É uma constante ajustada conforme a localidade da aplicação. O valor desta constante deve ser igual à pressão atmosférica local e é configurado na tela de parâmetros do LogicView.

K2: É o ganho da escala dos valores das entradas IN1 e IN2.

K3: Deslocamento da escala dos valores das Entradas IN1 e IN2.

As entradas são calculadas utilizando as seguintes equações:

Tbseco = IN1 * K2 + K3 Tbúmido = IN2* K2 + K3

Exemplo: para obter-se uma Entrada de 0 a 100 $^{\circ}$ C, onde os valores de IN1 e IN2 são de 0 a 10000, deve-se colocar o valor de K2 = 0,01 e K3 = 0.

K4: Mostra o valor de Tbseco = IN1 * K2 + K3 em Unidades de Engenharia (somente para o supervisório usando a comunicação Modbus, no endereço Modbus do parâmetro K4).

K5: Mostra o valor de Tbúmido = IN2* K2 + K3 em Unidades de Engenharia (somente para o supervisório usando a comunicação Modbus, no endereço Modbus do parâmetro K5)

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
	IN1	TEMPERATURA DO BULBO SECO (ANTES DA CONVERSÃO)	REAL
1	IN2	TEMPERATURA DO BULBO ÚMIDO (ANTES DA CONVERSÃO)	REAL
	IN3	NÃO UTILIZADA	REAL
	IN4	NÃO UTILIZADA	REAL
	IN5	NÃO UTILIZADA	REAL
	K1	K1 É IGUAL A PRESSÃO ATMOSFÉRICA	REAL
	K2	GANHO DA ESCALA DOS VALORES DAS ENTRADAS IN1 E IN2	REAL
	К3	BIAS DA ESCALA DOS VALORES DAS ENTRADAS IN1 E IN2	REAL
P	K4	MOSTRA O VALOR TBSECO (APÓS A CONVERSÃO)	REAL
	K5	MOSTRA O VALOR TBUMIDO (APÓS A CONVERSÃO)	REAL
	Α	ESCALA DE SAÍDA (GANHO)	REAL
	В	ESCALA DE SAÍDA (BIAS)	REAL
	LOW	LIMITE INFERIOR DE SAÍDA	REAL
	HIGH	LIMITE SUPERIOR DE SAÍDA	REAL
	R_PTR	PONTEIRO PARA MEMÓRIA VIRTUAL (ANALÓGICA)	WORD
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	LOW	ALARME DE LIMITE INFERIOR	BOOL
	HIGH	ALARME DE LIMITE SUPERIOR	BOOL
	OUT	SAÍDA DE UMIDADE RELATIVA	ANY_NUM

I: Entrada, P: Parâmetro, O: Saída, V: Variável

Equação 2- API

Este bloco implementa uma equação conforme a norma API, cujas especificações são apresentadas em tabelas anexas. Estas tabelas de medição de petróleo são para uso em cálculos de quantidades de petróleo cru e produtos derivados de petróleo em condições de referência em qualquer dos três sistemas de medição amplamente usados.

Estas tabelas são fornecidas para cálculos padronizados de medidas de quantidades de fluídos de petróleo a despeito do ponto de origem, destino ou unidades de medidas utilizados por costume ou estatutos.

Uma lista completa das novas tabelas ASTM-API-IP publicadas é o resultado da cooperação entre o American Society for Testing And Materials , American Petroleum Institute e o Institute of Petroleum (London).

Control Word (CTW)- Selecione Entradas

Esta equação possui quatro tipos de entradas possíveis das quais o usuário deverá selecionar uma opção. Cada opção escolhe uma tabela específica.

- ° API+ Temperatura (°F) → ver tabelas 5/6
- Densidade Relativa + Temperatura (°F) → ver tabelas 23/24
- Densidade + Temperatura (⁰C) → ver tabelas 53/54
- Densidade + Tempertatura (°C) → ver tabelas 59/60

Control Word (CTW)- Selecione Produtos

O tipo de produto deverár ser selecionado neste campo. Os produtos disponíveis são: petróleo bruto, produtos generalizados, MTBE e óleo lubrificante. Selecionadas as entradas e o produto, tem-se qual tabela será utilizada.

Control Word (CTW)- Selecione Saída

O usuário deverá configurar o tipo de saída. Existem duas opções:

- VCF
- CCF

Tabelas

Uma vez que o usuário tenha configurado as entradas, o produto e a saída, terá também implicitamente selecionado uma tabela da norma API.

Fatores de conversão de escala das entradas

A escala das entradas possui fatores (parâmetros configuráveis pelo usuário) para converter estes parâmetros para unidades de engenharia (EU). A entrada IN1 pode ser ajustada através dos parâmetros de ganho (K1) e BIAS (K2). De maneira semelhante a entrada IN2 pode ser ajustada através dos parâmetros K3 (ganho) e K4 (BIAS). Após a conversão as entradas possuem o seguinte formato:

Densidade(EU)= IN1*K1+K2 Tempertatura(EU)=IN2*K3+K4 Pressão (EU)=IN3*LOW+HIGH

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
J	IN1	ENTRADA DA DENSIDADE OU DENSIDADE CORRIGIDA	REAL
	IN2	ENTRADA DA TEMPERATURA	REAL
	CTW	PALAVRA DE CONTROLE	WORD
	K1	GANHO PARA ENTRADA DE DENSIDADE PARA CONVERTER EM UNIDADES DE ENGENHARIA, CONFORME AS TABELAS SEGUINTES.	REAL
	K2	BIAS PARA ENTRADA DE DENSIDADE PARA CONVERTER EM UNIDADES DE ENGENHARIA, CONFORME AS TABELAS SEGUINTES.	REAL
	КЗ	GANHO PARA ENTRADA DE TEMPERATURA PARA CONVERTER EM UNIDADES DE ENGENHARIA, CONFORME AS TABELAS SEGUINTES	REAL
Р	K4	BIAS PARA ENTRADA DE TEMPERATURA PARA CONVERTER EM UNIDADES DE ENGENHARIA, CONFORME AS TABELAS SEGUINTES	REAL
	K5	COEFICIENTE DE EXPANSÃO TÉRMICA A 60°F OU 15°C (1/°F OU 1/°C)	REAL
	Α	VCF	REAL
	В	F-FATOR DE COMPRESSÃO	
	LOW	GANHO DA ENTRADA DE PRESSÃO A SER CONVERTIDO EM UNIDADES DE ENGENHARIA COMO INDICADO NAS TABELAS SEGUINTES.	
	HIGH	BIAS DA ENTRADA DE PRESSÃO A SER CONVERTIDO EM UNIDADES DE ENGENHARIA COMO INDICADO NAS TABELAS SEGUINTES.	
	R_PTR	NÃO USADO	
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	LOW	INDICA DADO DE ENTRADA NO RANGE DE EXTRAPOLAÇÃO	BOOL
0	HIGH	INDICA DADO DE ENTRADA FORA DO RANGE DE EXTRAPOLAÇÃO	BOOL
	OUT	SAÍDA EM VALOR INTERMEDIÁRIO OU VCF.	REAL

I: Entrada. P: Parâmetro. O: Saída. V: Variável

	Entradas		Saídas			
Tabelas 5 e 6	API Gravity	Faixa de	Intermediário (tabela 5)	Final (tabela 6)		
	Range (°API)	temperatura(°F)	APIa 60°F	VCF a 60 °F		
A-Óleo cru	0 até 100	0 até 300	0 até 100 °API			
B-Produtos generalizados	0 até 85	0 até 300	0 até 85 °API			
C-MTBE	(*)	0 até 300	0,00027 até 0,00097 °F ⁻¹			
D-Óleo lubrificante	-10 até 45	0 até 300	-10 até 45 °API			

	Entradas		Saídas			
Tabelas 23 e 24	Relative Density	Faixa de	Intermediário(tabela 23)	Final (tabela 24)		
	Range	temperatura(°F)	Densidade Relativa a 60(°F)	VCF a 60(°F)		
A-Óleo cru	0,611 até 1,076	0 até 300	0,611 até 1,076			
B-Produtos generalizados	0,653 até 1,076	0 até 300	0,653 até 1,076			
C-MTBE	(*)	0 até 300	0,00027 até 0,00097 (°F ⁻¹)			
D-Óleo lubrificante	0,800 até 1,164	0 até 300	0,800 até 1,164			

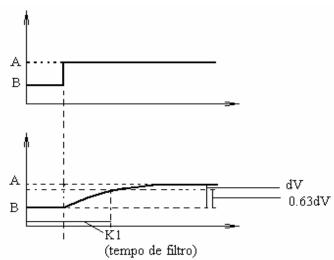
	Entradas		Saídas			
Tabelas 53 e 54	Density Range	Faixa de	Intermediário(tabela 53)	Final (tabela 54)		
	(kg/m³)	temperatura(°C)	Densidade a ° C (kg/m³)	VCF a 15 °C		
A-Óleo cru	610 até 1075	-18 até 150	610 até 1075			
B-Produtos generalizados	653 até 1075	-18 até 150	653 até 1075			
C-MTBE	(**)	-18 até 150	0,000486 até 0,001674 (° C ⁻¹)			
D-Óleo lubrificante	800 até 1164	-20 até 150	800 até 1164			

	Entradas		Saídas			
Tabelas 59 e 60.	Density Range	Faixa de	Intermediário(tabela 59)	Final (tabela 60)		
	(kg/m³)	temperatura(°C)	Densidade a 20°C (kg/m³)	VCF a 20°C		
A-Óleo cru	610 até 1075	-18 até 150	610 até 1075			
B-Produtos generalizados	653 até 1075	-18 até 150	653 até 1075			
C-MTBE	(**)	-18 até 150	0,000486 até 0,001674 °C ⁻¹			
D-Óleo lubrificante	800 até 1164	-20 até 150	610 até 1075			

^(*) Coeficiente de expansão térmica a 60 ° F

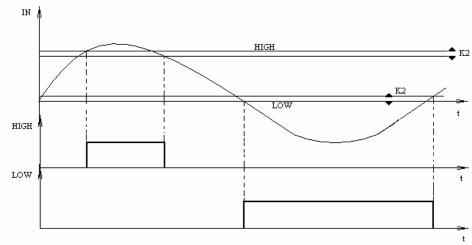
Alguns exemplos de resultados de cálculos:

Tabela	Den(EU)	T(Eu)	Intermediário	VCF
5A/6A – Óleo cru – API+T(F)	30	200	21,2	
5A/6A	30	80	28,6	0,9914
5D/6D – Óleo lubrificante - API+T(F)	30	80	28,8	
23B/24B – Produtos generalizados – Rel.Dens+T(F)	0,9	80	0,9075	0,9914
53A/54A- Óleo cru - Dens+T(15C)	630	60	671,1	0,9377
59A/60A- Óleo cru - Dens+T(20C)	630	42	650,5	0,9679
59D/60D- Óleo lubrificante- Dens+T(20C)	830	40	842,2	0,9850


Equação 3 - Processamento de sinal

Descrição

A opção processamento de sinal utiliza uma equação que filtra o sinal de entrada. O filtro é exponencial de primeira ordem. A entrada IN1 recebe este sinal de entrada.


Tempo característico do filtro (K1)

K1 é o tempo característico do filtro em segundos. Considere uma entrada degrau. O tempo decorrido até o valor da saída atingir 63 % do valor do degrau é definido como tempo característico do filtro.

^(**)Coeficiente de expansão térmica a 15 ° C

Histerese K2 e alarmes High e Low

Quando a entrada atingir o valor configurado em HIGH, a saída HIGH irá para nível alto até que a entrada ultrapasse HIGH-K2. De maneira semelhante, quando a entrada atingir o valor LOW, a saída LOW vai para nível um até a que entrada ultrapasse o valor LOW+K2.

CLASSE	MNEM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO DA ENTRADA	BOOL
•	IN1	SINAL A SER PROCESSADO	ANY_NUM
	K1	TEMPO CARACTERÍSTICO DO FILTRO EM SEGUNDOS. É UM FILTRO EXPONENCIAL DE PRIMEIRA ORDEM.	REAL
P	K2	HISTERESE PARA O PROCESSAMENTO O PROCESSAMENTO DE ALARME HIGH AND LOW. DEVERÁ SER UMA VÁLVULA NÃO NEGATIVA.	REAL
	LOW	LIMITE INFERIOR PARA O PROCESSAMENTO DE ALARME APÓS O FILTRO DIGITAL.	REAL
	HIGH	LIMITE SUPERIOR PARA O PROCESSAMENTO DE ALARME APÓS O FILTRO DIGITAL.	REAL
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	LOW	ALARME DE LIMITE INFERIOR	BOOL
0	HIGH	ALARME DE LIMITE SUPERIOR	BOOL
	OUT	SAÍDA APÓS CÁLCULO DO FILTRO.	ANY_NUM

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Controlador PID

Descrição

O consagrado algoritmo PID para controle de processos contínuos, associado à flexibilidade de configuração de características de operação através de parametrização, permite a utilização deste bloco a uma variedade de aplicações e estratégias de controle.

Este bloco oferece várias opções de configuração do algoritmo de controle tendo como base os termos Proporcional (P), Integral (I) e Derivativo (D), que podem ser aplicados ao erro ou apenas à variável de processo (PV).

Os limites de anti-reset windup (limites aplicados apenas ao termo integral) podem ser configurados pelo usuário.

Além disto, tem-se opção de seleção entre: algoritmo ISA ou paralelo, ação direta ou reversa, transferência de Manual para Automática bumpless ou hard.

Palavra de Controle (CTW) - Tipo de PID

PI.D: As ações P e I atuam sobre o erro e a ação D sobre a variável de processo. Desta forma o sinal de saída acompanha as mudanças de set point segundo as ações proporcional e integral, mas não dá uma variação indesejável devido à ação derivativa. É o mais recomendado para a maioria das aplicações com o set point ajustável pelo operador.

PID: As ações P, I e D atuam sobre o erro. Desta forma o sinal de saída é alterado quando há mudanças na variável de processo ou no set point. É recomendado para controle de relação ou para controle escravo em cascata.

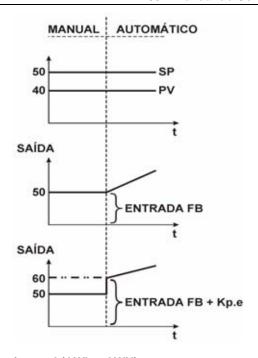
I.PD: Neste tipo somente a integral atua sobre o erro. Mudanças no set point provocam a variação no sinal de saída de maneira suave. É recomendado para processos que não podem ter variações bruscas na variável em função da mudança no set point. É o caso de processos de aquecimento com ganho muito alto.

Palavra de Controle (CTW) - Tipo de algoritmo

PARALELO: OUT =
$$K_p$$
. $e + \frac{e}{T_R.s} + \frac{T_D.s.e}{1 + \alpha T_D.s}$

ISA: OUT =
$$K_{P} \left[1 + \frac{1}{T_{R}.s} + \frac{T_{D}.s}{1 + \alpha .T_{D}.s} \right] e$$

Palavra de Controle (CTW) - Tipo de ação


Existem processos que requerem que o sinal de saída (variável manipulada – MV) aumente quando a variável de processo aumenta, enquanto que outros requerem o contrário.

Tipo de ação	Erro	Efeito				
Reverso	e = SP – PV	Saída diminui com aumento da PV				
Direto	e = PV – SP	Saída aumenta com aumento da PV				

Palavra de Controle (CTW) - Tipo de transferência de Manual para Automático

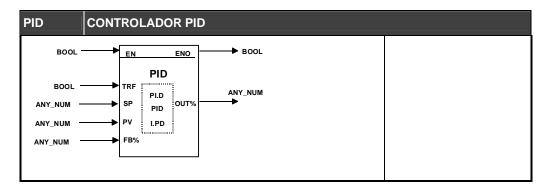
Bumpless: No chaveamento do modo manual para o automático, o bloco PID inicia os cálculos partindo do último valor em manual, isto é, não ocorre um salto na saída do bloco.

Hard: No chaveamento do modo manual para o automático, o bloco PID fornecerá como primeiro valor em automático o último valor em modo manual mais o termo proporcional.

Anti-saturação pelo termo integral (AWL e AWU)

Usualmente o algoritmo de controle pára automaticamente a contribuição do modo integral, quando o sinal de saída atinge os limites de 0% ou 100%. As contribuições dos modos proporcional e derivativo não são afetadas.

Uma característica que diferencia o algoritmo deste bloco é a possibilidade de configuração destes limites. Estreitando-se tais limites através dos parâmetros AWL e AWU, obtém-se respostas mais rápidas e evita-se overshoot em processos de aquecimento, por exemplo.


Constantes do PID (KP, TR, TD e BIAS)

KP – Ganho proporcional

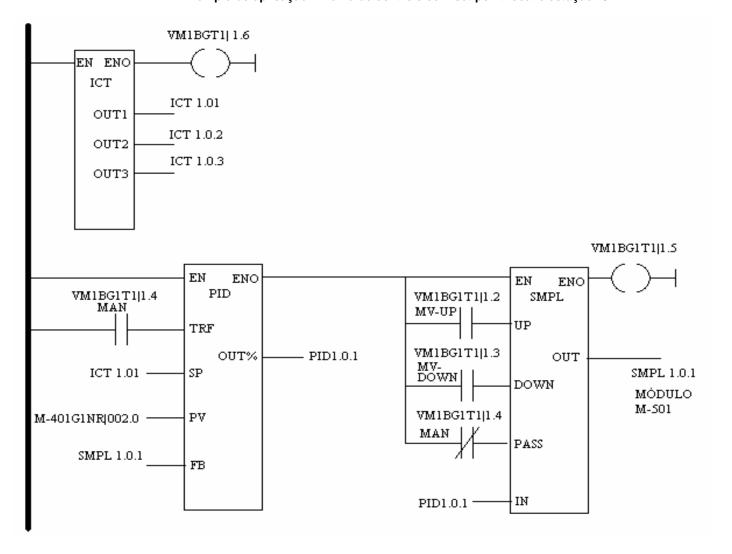
TR – Tempo da integral em minutos/repetição, portanto, quanto maior este parâmetro menor é a ação integral. Pode ser interpretado como sendo o tempo necessário para a saída ser incrementada/decrementada do valor do erro (no PID paralelo), mantendo-se o mesmo constante.

TD – Tempo derivativo em minutos. O termo derivativo é calculado usando uma pseudo-derivada, isto é, uma ação semelhante a um lead/lag, na qual a constante de lag é alfa*TD. Na implementação deste bloco o fator alfa é igual a 0.13.

BIAS – Neste parâmetro é possível ajustar o valor inicial do sinal de saída quando o controle é transferido de manual para automático. Isto pode ser feito somente se a entrada FB não estiver conectada.

CLASSE	PARAM	DESCRIÇÃO	TIPO
	EN	HABILITAÇÃO	BOOL
	TRF	SELEÇÃO FUNCIONAMENTO MANUAL OU AUTOMÁTICO	BOOL
	SP	SET POINT	ANY_NUM
•	PV	VARIÁVEL DO PROCESSO	ANY_NUM
	FB%	SE TRF 1, A ENTRADA CONECTADA EM FB É REPASSADA ATÉ A SAÍDA	ANY_NUM
	CTW	PALAVRA DE CONTROLE	WORD
	KP	GANHO PROPORCIONAL	INT/100
	BIAS	BIAS	INT/100
Р	AWL	LIMITE INFERIOR FINAL DO ANTI-RESET	INT/100
	AWU	LIMITE SUPERIOR FINAL DO ANTI-RESET	INT/100
	TR	TEMPO INTEGRATIVO (Min/Rep)	REAL
	TD	TERMO CONSTANTE DERIVATIVO (Min)	REAL
O	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	OUT%	SAÍDA (VARIÁVEL MANIPULADA)	ANY_NUM
	ER0	ERRO PREVISTO NO PROCESSO	INT/100
	PV0	VALOR DA VARIÁVEL PREVISTA NO PROCESSO	INT/100
V	FB0	VALOR DE REALIMENTAÇÃO PREVISTA	INT/100
V	B0	VALOR PREVISTO DAS BIAS	LONG
	IT0	VALOR DO TERMO INTEGRATIVO PREVISTO (Min/Rep)	REAL
	DR0	VALOR DO TERMO DERIVATIVO PREVISTO (Min)	REAL

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Detalhe do Parâmetro CTW

Somente Configuração						Aux	iliar	e Pa	ssag	jem c	le Pa	ırâm	etro		
15			12	11	10	9	8			5	4		2	1	0

Auxiliar e Passagem de Parâmetro

- Bit 0 é o estado da entrada Booleana EN
- Bit 1 é o estado da entrada Booleana TRF (0 = Auto; 1 = Manual, é rastreamento)
- Bit 2 é o estado da saída Booleana ENO
- Bit 4- é o estado da variável auxiliar de realimentação (1 = rastreamento)
- Bit 5 é o estado de funcionamento (0 = primeira vez, 1 = está rodando, não pela primeira vez)

Exemplo de aplicação - Malha de controle com set point local e estação A/M

Características da configuração:

- Set point local, ajustável através do parâmetro do PRM1 do bloco ICT
- Variável de processo obtida através do módulo DF43, visualizado na tela acima no range de 0 a 10.000.
- Controle do modo automático/manual através de variável virtual (MAN)
- Bloco SMPL fazendo o papel de estação auto/manual, com possibilidade de incremento/decremento(entradas UP e DOWN) da saída quando em manual.

Status do Sistema (STATUS)

Descrição

Este bloco permite configurar 8 variáveis booleanas que informam o status de um módulo de I/O, de um módulo remoto de I/O ou das portas de comunicação do DF65. Existem 4 classes possíveis para serem selecionadas:

Control Word (CTW)- Selecione Classe

O usuário deverá escolher a classe do escravo dentre:

- IO MASTER: Trata-se de um módulo de I/O conectado no mesmo rack do DF65.
- IO RIO: Trata-se de um módulo de I/O no DF66
- COMM RIO: Status da comunicação entre DF65 e DF66.
- CPU_PORT: Status da comunicação das portas do DF65 (Port_1, Port_2 e Port_3). Indica atividade na porta de comunicação.

Control Word (CTW)- Selecione Subclasse e Selecione item

Após escolher a classe, devem ser selecionados a subclasse e o item. Class.sub class.item

- IO_MASTER.RACK.SLOT: Deve ser informado o rack e o slot onde se encontra o módulo desejado.
- IO_RIO.RACK.SLOT: Deve ser informado o rack e o slot onde se encontra o módulo desejado.
- COMM RIO.RIO: Deve ser informado qual I/O remota.
- CPU_PORT.PORT: Dever ser informado qual porta da CPU (Port_1, Port_2 ou Port_3) deseja-se monitorar a comunicação.

Significado do Status e saídas

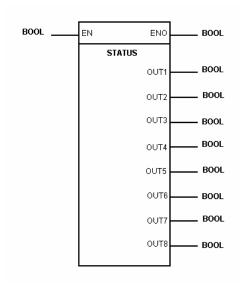
O significado das saídas conforme a escolha da classe é:

IO Master e IO RIO:

0: Status= módulo de I/O "ruim".

1: Status= módulo de I/O "bom".

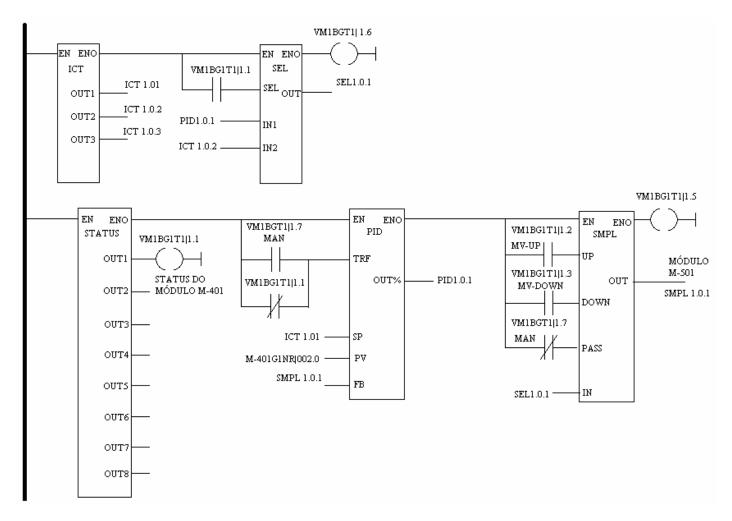
COMM RIO:


0: "Comunicação Falha".

1: "Comunicação Sem Erros".

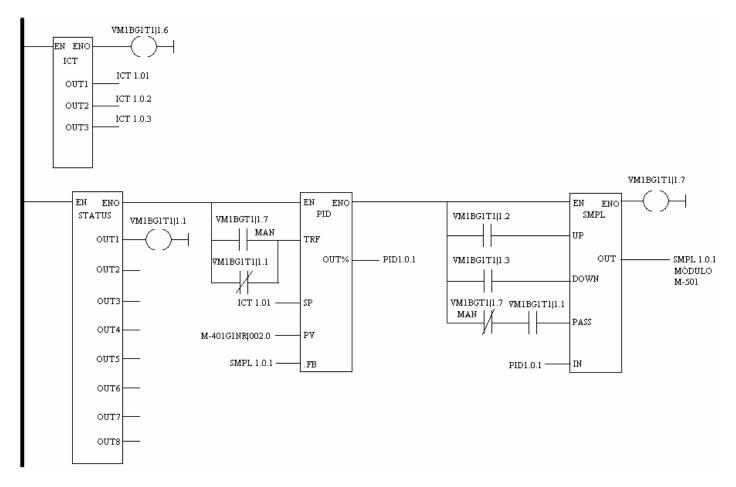
CPU PORT:

0: Porta não comunicando.


1: Porta comunicando.

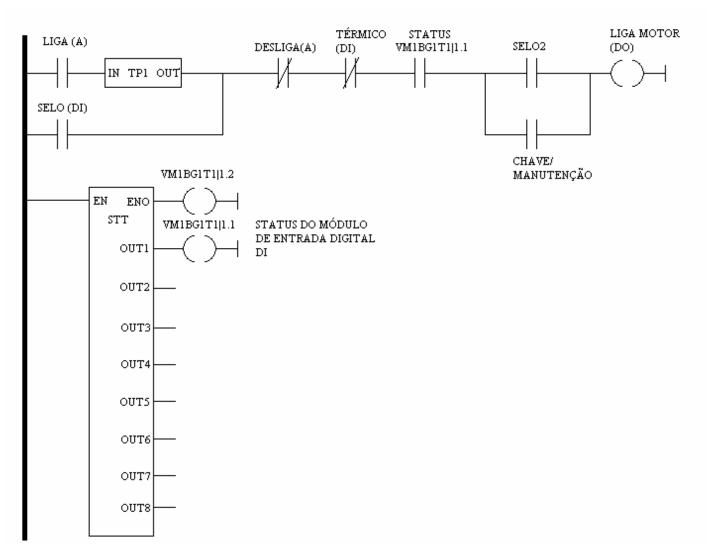
CLASSE	MNEM	DESCRIÇÃO	TIPO
	IN1	HABILITAÇÃO DA ENTRADA	BOOL
	SC1	CLASSE	BYTE
		SUBCLASSE	BYTE
		ITEM	2 BYTES
		CLASSE	BYTE
	SC2	SUBCLASSE	BYTE
		ITEM	2 BYTES
		CLASSE	BYTE
	SC3	SUBCLASSE	BYTE
		ITEM	2 BYTES
		CLASSE	BYTE
	SC4	SUBCLASSE	BYTE
P		ITEM	2 BYTES
F		CLASSE	BYTE
	SC5	SUBCLASSE	BYTE
		ITEM	2 BYTES
	SC6	CLASSE	BYTE
		SUBCLASSE	BYTE
		ITEM	2 BYTES
	SC7	CLASSE	BYTE
		SUBCLASSE	BYTE
		ITEM	2 BYTES
		CLASSE	BYTE
	SC8	SUBCLASSE	BYTE
		ITEM	2 BYTES
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
	OUT1	STATUS DE SC1	BOOL
	OUT2	STATUS DE SC2	BOOL
	OUT3	STATUS DE SC3	BOOL
0	OUT4	STATUS DE SC4	BOOL
	OUT5	STATUS DE SC5	BOOL
	OUT6	STATUS DE SC6	BOOL
	OUT7	STATUS DE SC7	BOOL
	OUT8	STATUS DE SC8	BOOL
·	-	Entrada D. Parâmetro O. Saída V. Variával	·

I: Entrada. P: Parâmetro. O: Saída. V: Variável


Exemplo de Aplicação: Malha de controle com set point local, estação A/M com valor de segurança quando o status do módulo DF57 é "bad".

Características da configuração:

- Set point local, ajustável através do parâmetro do PRM1 do bloco ICT
- Variável de processo obtida através do módulo M-401, visualizado na tela acima no range de 0 a 10.000.
- Controle do modo automático/manual através de variável virtual (MAN)
- Bloco SMPL fazendo o papel de estação auto/manual, com possibilidade de incremento/decremento(entradas UP e DOWN) da saída quando em manual.
- Status do módulo M-401 é verificado. Caso o funcionamento deste módulo seja falho, a saída do bloco STATUS altera o status da saída OUT1 para "bad". Um bloco SEL (seleção binária) tem como entradas a saída do PID e uma constante gerada pelo bloco ICT. Assim quando há uma falha, um valor de segurança é enviado para a saída.


Exemplo de Aplicação: Malha de controle com set point local, estação A/M e indicação do status do módulo DF57.

Características da configuração:

- Set point local, ajustável através do parâmetro do PRM1 do bloco ICT.
- Variável de processo obtida através do módulo DF57, visualizado na tela acima no range de 0 a 10.000.
- Controle do modo automático/manual através de variável virtual (MAN).
- Bloco SMPL fazendo o papel de estação auto/manual, com possibilidade de incremento/decremento(entradas UP e DOWN) da saída quando em manual.
- Status do módulo DF57 é verificado. Caso o funcionamento deste módulo seja falho, a saída do bloco STATUS altera o status da saída OUT1 para "bad". O bloco SMPL faz a seleção para manual e a saída é congelada com o último valor com status "good".

Exemplo de Aplicação: Acionamento de motor com comandos liga e desliga e contatos de segurança incluindo status do módulo digital de entrada.

LIGA(A)	DESLIGA(A)	SELO(DI)	TÉRMICO(DI)	STATUS(A)	SELO2	CHAVE/ MANUTENÇÃO	
Comando de acionamento do motor através de variável auxiliar	Comando de desligamento do motor através de variável auxiliar	Selo do aciona- mento do motor, mantém o estado liga.	Alarme que indica que a temperatura do motor atingiu uma temperatura limite.	Status do módulo de entrada digital. Falha neste módulo desliga o motor.	Controle auxiliar	Controle Auxiliar	MOTOR (DO)
1	0	1	0	1(**)	0/1(*)	0/1(*)	LIGA
Χ	1	Χ	Χ	Χ	Χ	Χ	DESLIGA
X	Х	X	1	X	Х	X	DESLIGA
X	Х	X	X	0(**)	Х	X	DESLIGA

X- Estado redundante

^{(*)-} Estes controles são chaves manuais acionadas pelos operadores. Os dois contatos formam uma porta OR lógico, assim a saída será habilitada se SELO2 ou CHAVE/MANUT forem iguais a 1. (**) – STATUS = 1 significa comunicação sem falhas

STATUS = 0 significa ID incorreto ou módulo não presente.

Controle Step (STP)

Descrição

Este bloco de funções é usado em combinação com o bloco **PID**. A saída do **PID** é conectada na entrada **DMV** para executar um controle ON_OFF ou ON_NONE_OFF. O controle ON_OFF estabelece um controle de abertura e fechamento de válvulas durante um intervalo de tempo predefinido. O Controle ON_NONE_OFF proporciona o controle da abertura ou fechamento das válvulas levando em conta a taxa de variação da saída do PID ou a entrada DMV.

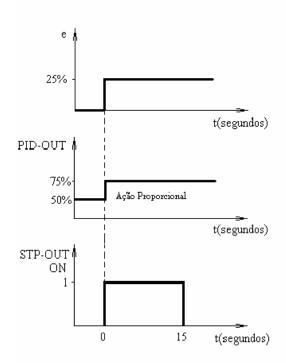
Tempo de Abertura das Válvulas VOT

Este parâmetro deve ser ajustado com o tempo aproximado necessário para a válvula ir de totalmente fechada para totalmente aberta.

Largura de pulso mínima WPL

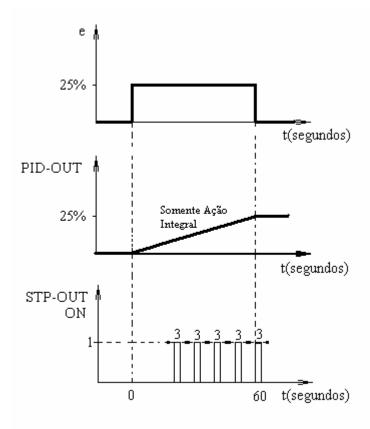
O usuário deverá configurar a largura deste pulso mínima por 0,1 s no parâmetro WPL e o tempo para excursão total do elemento de controle.

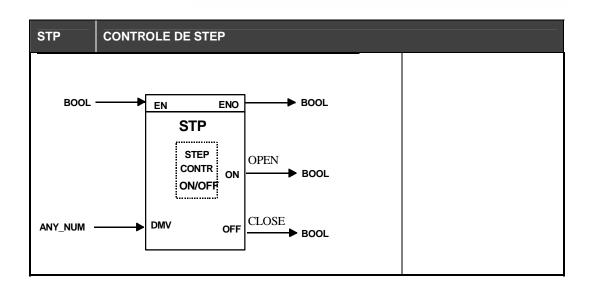
Control Word (CTW)- Tipo de controle


O usuário deverá selecionar o tipo de controle, isto é, ON_OFF ou ON_NONE_OFF

Controle ON_OFF

Supondo que a entrada OPEN acione um motor que abre uma válvula enquanto que a saída CLOSE aciona um motor que fecha a válvula, o bloco STP permite que estes pulsos de controle sejam gerados configurando-se o valor de VOT. Neste modo de controle, o bloco compara DMV com valores internos. Se a entrada DMV for maior do que 80 % a saída ficará em ON, nível alto. Se a saída for menor do que 70 % a saída ficará em OFF, nível baixo. Valores entre 70% e 80% fazem com que a saída assuma o último estado.


Controle ON NONE OFF


Um PID com apenas ação proporcional com ganho KP=1 e VOT igual a 1 minuto. Supondo que no instante t=0 um degrau de erro igual a 25% seja aplicado. Portanto a abertura das válvulas é de 25% de 1 minuto, isto é, 0,25*TR = 15 segundos. A figura abaixo mostra este exemplo em maiores detalhes.

A ação integral do PID equivale a uma série de pulsos de tamanho mínimo WPL com freqüência determinada pelo tempo integral do bloco PID (TR) e pelo desvio do controle. A freqüência dos pulsos é dada pelo valor de TR. O valor de WPL é fixo e determinado na configuração do bloco. Supondo que TR= 1 minuto e que WPL = 3 segundos e que um degrau de erro de 25 % é aplicado na entrada. Um controlador padrão aumentaria ou diminuiria a saída em 25 % em 1 minuto (TR). Para fazer a válvula ter tempo de abertura (VOT) igual a 1 minuto são necessários 15 segundos

(25% de 60 segundos), pois WPL= 3 segundos. Assim 5 pulsos de tamanho 3 segundos são necessários. A saída permanece neste modo de funcionamento enquanto a saída do PID manter a mesma taxa de mudança.

CLASSE	PARAM	DESCRIÇÃO	TIPO
1	EN	HABILITAÇÃO DA ENTRADA	BOOL
·	DMV%	ENTRADA DO BLOCO	ANY_NUM
	CTW	PALAVRA DE CONTROLE	WORD
Р	WPL	LARGURA DE PULSO MÍNIMA POR 0.1s	INT
	VOT	TEMPO DE ABERTURA DA VÁLVULA EM 0.1s	INT
	ENO	HABILITAÇÃO DA SAÍDA	BOOL
0	ON	SAÍDA NÍVEL ALTO (ABRIR)	BOOL
	OFF	SAÍDA NÍVEL BAIXO (FECHAR)	BOOL
	MVB	MV ANTERIOR	INT
V	C_TIME	PULSO SEGURADO	INT
	DEBT	DEBT ACUMULADO	INT

I: Entrada. P: Parâmetro. O: Saída. V: Variável

Detalhe do parâmetro CTW

Somente Configuração				Auxiliar e Passagem de Parâmetro									
15					8	7				3	2	1	0

Auxiliar e Passagem de Parâmetro e Parâmetro

Bits de Indicação do Status:

Bit 0 - é o estado da entrada Booleana EN Bit 1 - é o estado da saída Booleana ENO

Bit 2 - é o estado da saída Booleana OPEN (1 = ABERTO; 0 = NENHUM) Bit 3 - é o estado da saída Booleana CLOSE (1 = FECHADO; 0 = NENHUM)

Bit 7 - é o estado anterior de EN (último valor de EN).

O LOGICVIEW

Introdução

Este capítulo apresenta os fundamentos do uso do software de programação LOGICVIEW para o co-processador lógico da Smar DF65. Será mostrado como criar, enviar e corrigir erros eventuais na configuração do DF65.

Antes de ler este capítulo o usuário deverá ler os capítulos 1 e 2 deste manual para se familiarizar com os elementos de ladder e blocos de função.

O software LOGICVIEW é baseado no Microsoft Windows de 32 bits e, portanto, operado da mesma maneira básica que outras aplicações Windows, i.e. através de menus, browsing, cortar e colar, botões e drop down lists, etc. Assume-se que o usuário já possua familiaridade com a interface Windows.

Este manual também mostrará como gerar e registrar o Tag List do DF65 no computador que vai rodar o DF65 OPC Server.

A operação e configuração do DF65 OPC Server será também apresentada aqui.

Instalação

Sistema Operacional

O LOGICVIEW opera em qualquer sistema operacional Windows de 32 bits, portanto está pronto para o Windows95/98, Windows NT (com service pack 3 no mínimo), Windows 2000, Windows Millennium (Me) e Windows XP. Entretanto, o OPC Server do DF65 conta com a característica multi-read do Windows NT (com no mínimo service pack 3) e Windows 2000, que desta forma, automaticamente, exclui outra versão do Windows.

Antes de Iniciar a Instalação

Verifique as características mínimas listadas abaixo. É recomendado e, às vezes, obrigatório, que o usuário feche quaisquer aplicações Anti-Vírus e algumas aplicações de controle através de display.

Características Mínimas para o LOGICVIEW

- Processador Pentium IV ou superior (ou equivalentes, como: AMD, Athlon, Duron).
- 256 MB de RAM ou mais.
- 100 MB de espaço no disco rígido ou mais.
- Microsoft Windows 2000(Service Pack 2) ou Windows XP.
- Uma porta serial ou um cartão adaptador para Ethernet para comunicar com o controlador DF65.

Características Mínimas DF65 Tag List e DF65 OPC Server

Igual ao item anterior, exceto que o sistema operacional deve ser: Windows NT+ Service Pack 3 ou superior ou Windows 2000.

Instalando

A instalação deve auto-iniciar poucos segundos após o CD-ROM ser inserido no drive de CD-ROM. Se após inserir o CD-ROM no drive a instalação não iniciar automaticamente, vá até o diretório que contém a aplicação e execute o arquivo SETUP. A instalação do programa vai iniciar e guiá-lo durante todo procedimento de instalação.

Usando o LOGICVIEW

Iniciando uma Aplicação

Para iniciar a programação do software de programação do DF65, clique no botão START. Vá até programas e, então, localize o grupo SMAR e posicionando o ponteiro do mouse sobre ele, irá mostrar um ou mais botões com aplicações SMAR, então clique no ícone de aplicação LOGICVIEW.

Inicialmente uma janela de registro aparecerá. Clique no botão de ok para continuar. O usuário poderá mais tarde voltar a esta tela usando o menu: Help/About LOGICVIEW.

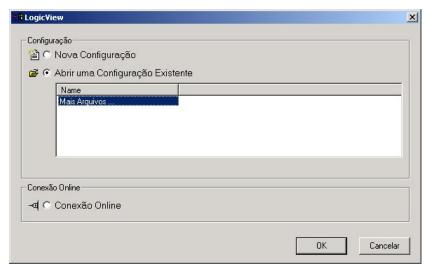


Fig 3.1- Iniciando uma aplicação

Em seguida, selecione "Nova Configuração" na caixa de diálogo mostrada acima para uma nova configuração ou abra uma configuração existente ("Abrir Uma Configuração Existente").

Uma configuração tem que ser criada para cada sistema DF65. Um sistema DF65 é composto de um módulo de CPU, um ou mais módulos de E/S e de nenhuma até 6 interfaces de E/S remotas (RIO) com os respectivos módulos de E/S. Isto significa que um projeto com várias CPUs DF65 terá um arquivo de configuração para cada CPU. No caso de uma CPU redundante, ambas deverão possuir a mesma configuração.

Informações de Projeto

Quando iniciado o DF65, a primeira página ("Primeira Página") também referida, "Página da Documentação", aparecerá automaticamente. Preencha a tabela com toda informação disponível e, o que é mais importante neste ponto, selecione a versão da CPU apropriada antes de iniciar a configuração.

Normalmente, a CPU que o usuário receberá é a última versão disponível, mas uma maneira de descobrir a versão da CPU é conectá-la na porta serial de seu PC e ir para o Modo On Line. Veja o item "Conectando o DF65" para maiores detalhes.

O usuário poderá voltar para a página de documentação e fazer alterações a qualquer momento usando o menu Configuração/Primeira Página ou clicando em

Nota:

Esta informação de Projeto é valiosa para organização do projeto e documentação. Muitos dos relatórios gerados pelo LOGICVIEW, que podem ser impressos, vão precisar desta informação.

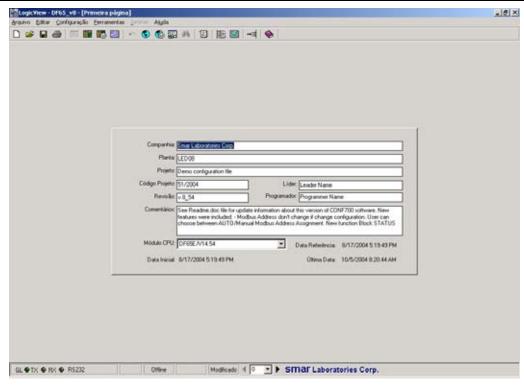


Fig 3.2- Janela Informações de Projeto

Diretório de Trabalho

O LOGICVIEW permite que o usuário configure o diretório de trabalho. Este diretório será utilizado como diretório padrão para salvar configurações. Da mesma forma, quando o usuário transferir uma configuração da DF65 para a estação de trabalho, o LOGICVIEW automaticamente salvará a configuração transferida para este diretório.

Para configurar o diretório de trabalho clique em Ferramentas→Preferências→Diretório. A janela abaixo será mostrada.

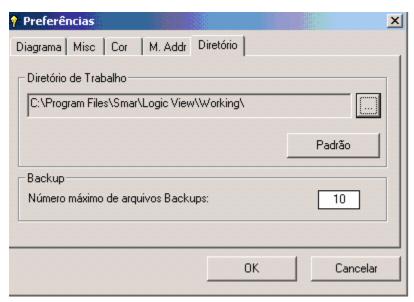


Fig 3.3-Selecionando o diretório

Clique no botão "..." para alterar este diretório.

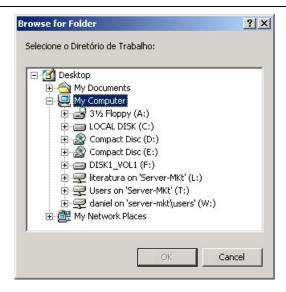


Fig 3.4- Janela de Seleção

O botão "Padrão" vai restaurar o caminho original para o diretório padrão C:\Program Files\Smar\LOGICVIEW_v8-54\Working\.

O LogicView gera o backup de uma configuração sempre que for efetuado o salvamento de uma alteração. A extensão dos arquivos de backup é ".Bxx", onde "xx" é a numeração sequencial dos arquivos de backup gerados, por exemplo: o primeiro backup possui a extensão .B01, o segundo .B02 e assim por diante. A quantidade de arquivos de backup é configurada no campo mostrado pela figura 3.3, sendo limitada pela capacidade física do HD. Para utilização de um arquivo backup, deve-se renomear o arquivo para a extensão ".PL8".

Configurando os módulos de E/S

No último passo foi selecionada a versão de CPU que será utilizada. Agora é preciso definir completamente o sistema de hardware do DF65. Para entrar na "Página de Módulo" vá até o menu Configuração/Página de Módulo ou clique em

Em uma nova configuração esta página começará com rack de 4 slots com uma fonte de alimentação PS-AC-0 no slot 0 e um módulo de CPU no slot1. Os slots 2 e 3 estão inicialmente vazios.

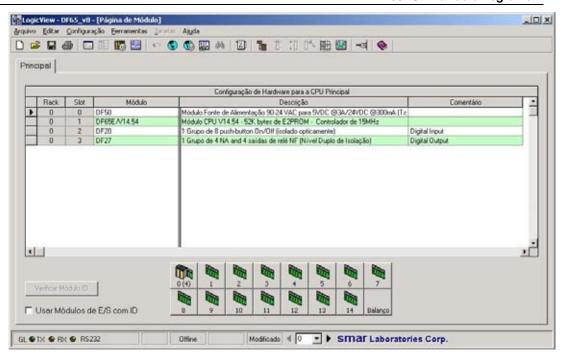


Fig 3.5- Configurando os Módulos de Entrada e Saída

Adicionando Módulos

Para adicionar módulos vá para uma célula vazia na coluna "Módulo" e clique nela. Um arco de drop-down aparecerá à direita da célula. Agora clique no arco down e faça a seleção do módulo clicando sobre ele. Tão logo o módulo for selecionado ele será adicionado ao slot vazio correspondente e o LOGICVIEW automaticamente aloca memória para os pontos de E/S. O usuário não precisa gerenciar alocação de memória como é preciso na maioria dos sistemas disponíveis no mercado.

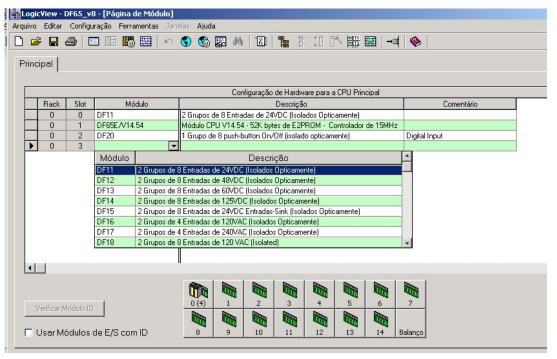


Fig 3.6- Janela : Adicionando Módulos

Módulos Especiais

Alguns módulos necessitam de configuração extra. Uma caixa de diálogo especial será automaticamente aberta assim que o bloco for adicionado. Alguns desses módulos são:

Entrada Analógica (DF43DR), Entrada de temperatura (DF45), Módulo Fieldbus Foundation (FB700) e futuramente módulos DeviceNet e Profibus.

Por exemplo, o módulo de temperatura (DF45) abrirá uma caixa de configuração onde o usuário pode configurar como cada entrada individual deve funcionar.

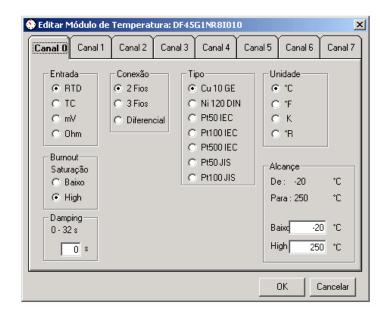


Fig 3.7- Configuração do Módulo de Temperatura DF45 no LOGICVIEW

Configuração e Consistência de Hardware

É extremamente importante que o número do rack e a posição de cada módulo específico na configuração sejam compatíveis com a verdadeira versão de montagem de hardware da CPU.

Muitos dos módulos em um sistema DF65 não são inteligentes e a CPU não pode saber se eles foram colocados incorretamente ou se são inexistentes. Módulos mais elaborados, como DF45 ou FB-700 causarão mensagens de alarme se o posicionamento verdadeiro não for compatível com a configuração do software.

É bastante recomendado que a configuração de hardware seja impressa e usada para a instalação. Para isto, vá até o menu File/Print e selecione as opções, como indicadas abaixo, e clique no botão OK para uma impressão inicial do projeto. A opção Print Preview permite que o usuário visualize no monitor a impressão que deseja realizar. No menu File existe a opção Print Preview ou na janela de impressão.

Fig 3.8- Configurações de Impressão

Editando Módulos de E/S

Módulos podem ser apagados, repostos (apagados e inseridos) ou simplesmente movidos para qualquer outro slot de uma estação de E/S remota.

Primeiro é preciso selecionar o módulo que se deseja editar. Clique na coluna bem ao final da linha onde está o módulo. Alguns ícones na barra de ferramentas estarão habilitados para uso.

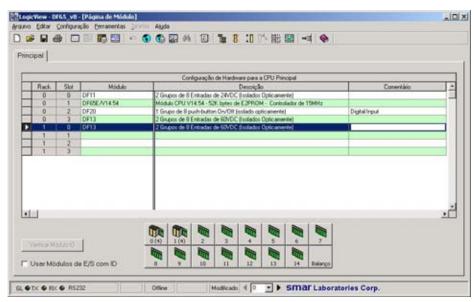


Fig 3.9- Editando os Módulos de Entrada e Saída

Para apagar um módulo.

Para mover um módulo.

Para caracterizar um módulo.

Módulos de E/S especiais

Muitos dos módulos do DF65 podem ser especificamente configurados para se adaptarem às necessidades e características da aplicação. Estes tipos de módulo proporcionam ao usuário um nível extra de flexibilidade. Geralmente módulos relacionados com sinais analógicos, sensores especiais e aqueles que aquisicionam/enviam sinais usando os protocolos Modbus ou Fieldbus possuem um nível dedicado de configuração.

Configurando o módulo DF44

O módulo DF44 lê 8 sinais analógicos contínuos de tensão ou corrente. As entradas são isoladas do IMB. No DF44 todas as entradas são diferenciais e isoladas entre si, (Mínimo 10 m Ω), fazendo a instalação fácil e mais confiável com respeito a questões de aterramento.

As entradas são configuradas individualmente para ler:

- 10 V, 5 V, 0 a 5 Vdc ou 1-5 V, com o resistor shunt interno na posição V.
- 20 mA, 0-20 mA, 4-20 mA, com o resistor shunt interno na posição I.

Assim que o módulo DF44 é adicionado a um slot vazio, a caixa de diálogo abaixo aparece na tela. Cada canal deverá ser configurado independentemente. A CPU receberá o sinal de entrada já convertido em uma porcentagem dentro da faixa de entrada selecionada.

Este número vem de uma faixa de 0 a 10000. O significado deste número é uma porcentagem imaginária com ponto fixo para separar os 2 últimos dígitos decimais. Por exemplo, 5000 representa 50,00 %, enquanto que 10000 significa 100,00%.

Fig 3.10- Configurando as Entradas do Módulo DF44

Configurando o Módulo de temperatura DF45

Para cada entrada do DF45 existe uma configuração específica. No LOGICVIEW, quando a caixa de diálogo para a configuração do módulo é aberta, é possível selecionar o tipo de medida, conectividade do cabo, tipo de sensor, unidades de engenharia utilizadas e a faixa que será convertida em porcentagem.

O DF45 fornece tanto um valor (inteiro) quanto um *status* (Booleano). O *status* indica se existe *burnout* alto ou baixo do sensor, conforme selecionado na configuração. O *status* pode ser usado para alertar o operador e também ser usado para falhas, para tomar decisões na lógica de intertravamento.

Dois grupos serão associados a este módulo:

DF45G1B8Irrm.c, um grupo 8 pontos booleanos onde cada um representa o estado de burnout de cada entrada individualmente.

DF45G2NR8Irrm.c, um grupo com 8 pontos inteiros representando a porcentagem de cada entrada de sinais individualmente.

Cada canal é composto por 3 bornes, identificados nas etiquetas por, "A", "B" e "C".

- "A" entrada 1,
- "B" entrada 2,
- "C" comum, o qual é compartilhado por duas das entradas, como segue:
- Canal 1 e 2, usa o comum do borne 3A.
- Canal 3 e 4, usa o comum do borne 8A.
- Canal 5 e 6. usa o comum do borne 3B.
- Canal 7 e 8, usa o comum do borne 8B.

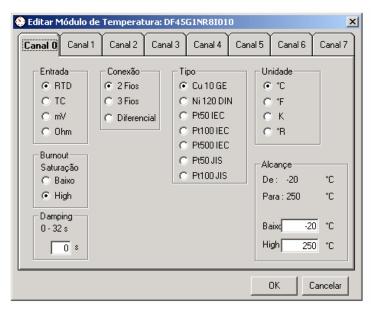


Fig 3.11- Configurando as Entradas do Módulo DF45

Configurando o Módulo DF46

É um módulo de saídas analógicas com 4 saídas de corrente e 4 saídas de tensão representando os mesmos sinais como os 4 precedentes. Em outras palavras, as 4 saídas do módulo estão divididas em modo de tensão ou corrente.

Sinais em corrente são mais imunes a ruído e outras interferências, então são recomendados para ambientes amplos e industriais, enquanto que saídas a tensão são recomendadas para conectividade com dispositivos mais próximos como controladores, indicadores, registradores de papel, gravadores, etc.

Na caixa de configuração, as faixas de corrente e tensão estão amarradas. Quando uma é configurada a outra é automaticamente determinada.

Para faixas de tensão, o módulo de hardware vem com um *DIP Switch* interno já configurado para a faixa de 5V (linha um na caixa de diálogo) e é atribuído ao usuário a mudança da posição do DIP Switch para funcionar na faixa de 10 V.

Fig 3.12- Configurando as Entradas do Módulo DF46

Configurando o Módulo FB700

Desde o início, a SMAR é líder na tecnologia Foundation Fieldbus (FF) e o DF65 foi o primeiro dispositivo controlador lógico a suportar um módulo que pode se integrar completamente a uma rede fieldbus.

O módulo FB700 é um dispositivo padrão FF, que pode ser integrado a uma estratégia de controle através da relação com outros blocos de função localizados em outros dispositivos da rede.

A SMAR desenvolveu alguns blocos no FB700 que permitem troca de dados entre a rede lógica ladder e os dispositivos FF. Para interfaces de sinal discretas são usados os blocos CIDD ou CODD, enquanto para interfaces de sinal analógicas são utilizadas CIAD ou COAD.

Diagrama do Bloco	Descrição	Quantidade	Memória
ALARM	ALARM – O sinal de entrada será examinado. A saída apropriada será configurada de maneira a refletir sua condição.	8	0
CIDD	Comm. Input Digital Data – 8 sinais digitais da entrada estarão disponíveis para o DF65.	4	16 Bits na área digital de E/S (8 Bits dados + 8 Bits status)
CIAD	Comm. Input Analog Data - 8 sinais Analógicos da entrada estarão disponíveis para o DF65.	2	Ocupa o lugar de 16 sinais analógicos + 8 Bits na área digital de E/S (status)
CODD	Comm. Output Digital Data - 8 sinais digitais do DF65 podem ser enviados para a rede.	3	16 Bits na área digital de E/S (8 Bits dados + 8 Bits status)
COAD	Comm. Output Analog Data - 8 sinais analógicos do DF65 podem ser enviados para a rede.	2	Ocupa o lugar de 16 sinais analógicos + 8 Bits na área digital de E/S (status)

Certifique-se de digitar o mesmo tag físico do dispositivo no módulo FB700 e no Syscon.

O Syscon é uma ferramenta dedicada para configurar, enviar, corrigir e monitorar uma rede Foundation Fieldbus. A partir do Syscon cada FB700 é visto como dispositivo FF comum e, consequentemente, o usuário poderá associar um "Device Tag" único a ele. É no Syscon que o

usuário define o número de cada bloco de função de E/S (MDO, MAO, MDI e MAI) necessários para interagir com o FB700.

A tabela abaixo mostra a relação direta entre os blocos de função vistos no Syscon e como eles são representados no LOGICVIEW.

LOGICVIEW	SYSCON	Observação
CIDD	MDO	Fieldbus to Ladder Function Block, Discrete Type
CIAD	MAO	Fieldbus to Ladder Function Block, Analogue Type
CODD	MDI	Ladder to Fieldbus Function Block, Discrete Type
COAD	MAI	Ladder to Fieldbus Function Block, Analogue Type

No LOGICVIEW a seguinte caixa de diálogo será preenchida de modo compatível com o Syscon. Primeiro todos os "Device Tag" devem estar de acordo e o mesmo deverá acontecer com a quantidade de cada tipo de blocos de função de E/S (CIDD, CIAD, CODD, COAD).

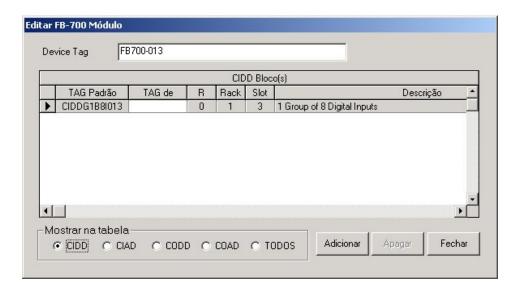


Fig 3.13- Configurando o Módulo FB700 no LOGICVIEW

Qualquer configuração entre o LOGICVIEW e o Syscon habilitará o LED "SAVING", na frente do painel do FB700, para piscar.

Ethernet DF65 BALLEY BY DF1302 Foundation FB SALVANIA SALVAN

Uma típica Aplicação Fieldbus Foundation

Fig 3.14- Uma Aplicação Fieldbus Típica Utilizando o FB700

Neste exemplo, o DF65 e o DFI302 estão compartilhando a linha Ethernet (hub/switch são omitidos no desenho). Uma configuração Foundation Fieldbus pode ser enviada para qualquer rede Fieldbus a partir do PC. A configuração do PC passará através do DFI302 e atingirá cada dispositivo de campo incluindo o FB700.

Como calcular a memória usada para cada canal Fieldbus

Considere os blocos conectados do módulo Fieldbus e continue adicionando o espaço necessário por bloco. Esta informação pode ser obtida da última coluna da tabela de blocos Fieldbus.

Balanço Geral

Na parte inferior da Página de Módulos existe um botão escrito "Balanço".

Fig 3.15- A Função Balanço

Clicando neste botão, o LOGICVIEW apresentará um balanço completo com a lista dos módulos, racks, flat cables, terminais e uma estimativa de consumo de corrente. Veja o exemplo abaixo:

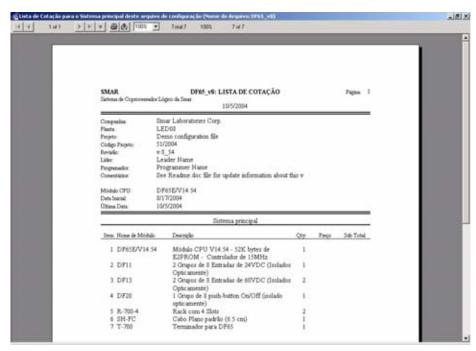


Fig 3.16- Um Relatório Gerado com a Função Folha de Balanço Geral

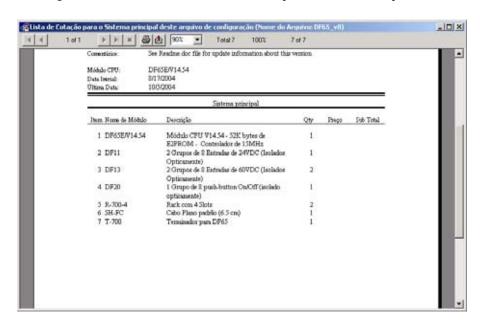


Fig 3.17- Um Relatório Gerado com a Função Folha de Balanço Geral

Esta informação poderá ser impressa ou exportada em vários formatos para personalização. Para exportar clique em e selecione o tipo de formato do arquivo de destino.

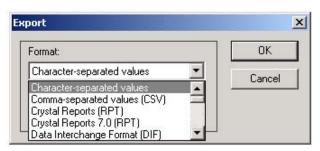


Fig 3.18- Exportando Variáveis MODBUS

ID e os Módulos

Este circuito adicional permite que a CPU, através do LOGICVIEW, identifique os módulos do seu sistema sem que eles tenham sido informados na Página de Módulo do LOGICVIEW. Durante o controle, a CPU verifica a existência dos módulos.

Através do bloco Status, o usuário mantém atualizado em *run time* a verificação dos módulos definidos na Página de Módulo.

Para fazer a verificação de módulos, o usuário deve adicionar os racks na Página de Módulo do LOGICVIEW e clicar no botão situado na parte inferior esquerda da tela Verificar. Desta forma, o LOGICVIEW informa ao usuário os módulos plugados nos seus respectivos racks selecionados.

Para verificar quais módulos estão conectados deve-se clicar em Verificar Módulo ID e assim os módulos são automaticamente verificados.

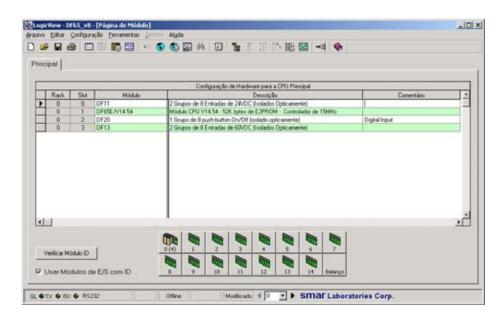


Fig 3.19- A Característica Módulo ID: A Caixa CheckBox Habilita esta Função

Nota

Módulos antigos que não possuam o circuito ID quando adicionados ao sistema juntamente com módulos novos neste circuito, quando utilizado a ferramenta Verificar Módulo ID causarão falsas indicações do módulo ID, desta forma esta funcionalidade não possui confiabilidade neste caso. Por exemplo, quando tivermos um módulo DF46 (com circuito ID) num mesmo rack que módulos antigos haverá uma perturbação dentro do sistema.

Uma nota sobre as ferramentas Copy (Copiar), Paste (Colar) e Move (Mover)

Copiar e Colar

Estas ferramentas de edição padrão do Windows estão disponíveis no LOGICVIEW. Elas facilitam o trabalho de edição da estratégia de controle e da edição dos diagramas Ladder entre outras funcionalidades.

Dentro de um projeto que necessite de vários loops iguais, pode-se usar estas ferramentas para economizar tempo.

No diagrama a seguir, há um loop PID. Se houver a necessidade de repetir este loop em outra parte da rede lógica, as ferramentas Copiar e Colar podem ser utilizadas.

Com o botão esquerdo do mouse, clica-se na região de interesse selecionando-a toda. O LOGICVIEW gera um retângulo preto que delimita a região selecionada.

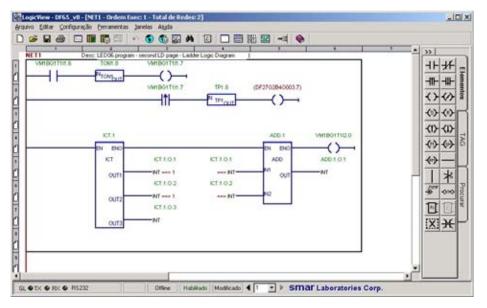


Fig 3.20- Uma Configuração Ladder (Copiar e Colar)

Através do Menu Editar→Copiar copia-se a região selecionada. Assim, basta ir até a região onde se deseja colar esta configuração e usa-se a ferramenta Colar (Editar=>Colar). As teclas de atalho do Windows podem ser utilizadas. Ao invés de Copiar pode-se utilizar Ctrl-C. Ao invés de Colar pode-se usar Ctrl-V.

Entretanto, no processo de Copiar e Colar os links e labels são perdidos. O LOGICVIEW copia apenas o desenho. Cabe ao usuário adicionar os novos links (O LOGICVIEW não duplica os links e TAGs).

Mover

Se o usuário for inserir um bloco de função onde não houver espaço, o LOGICVIEW habilita automaticamente a ferramenta de mover (Mover) para que o usuário selecione outra região para inserir o elemento que se deseja mover. Pode-se utilizar a ferramenta Mover (Menu Editar-) Mover) para mover células dentro de uma rede lógica ladder. Neste caso, porém, o LOGICVIEW mantém os links e os TAGs pois não haverá duplicação dos mesmos.

Desfazer

Qualquer operação na rede ladder pode ser desfeita através do botão desfazer.

Fig 3.21- O Botão Desfazer

No LOGICVIEW é possível desfazer as vinte últimas ações. Isto é feito através da ferramenta de Desfazer. O usuário pode configurar o número de operações de Desfazer no menu Ferramentas → Preferências. O número de operações que pode ser desfeito varia de 0 a 20 operações.

Fig 3.22-A Janela Preferências: Ajuste de Operações Desfazer

A operação de Desfazer só funciona na Página de Rede. O usuário pode desfazer as operações feitas nesta janela de acordo com o número de operações configuradas. Assim, o usuário pode reverter operações como as seguintes:

- Inserir um elemento (bobinas, contatos, blocos de função, etc.);
- Apagar um elemento;
- Uma operação de mover;
- Operações de Copiar e Colar;
- Operação de substituir.

Se o usuário deixar a Página da Rede todos os dados disponíveis para operações de Desfazer serão perdidas. A seguinte mensagem aparecerá para o usuário:

Alocação de Memória

O LOGICVIEW automaticamente gera um tag default para cada ponto de E/S e automaticamente aloca cada módulo na memória.

O rótulo default do tag é baseado no tipo de módulo, local ou remoto, número do rack e posição no slot. Isto significa que um rótulo default de tag é baseado na localização física do ponto de E/S.

O usuário pode também configurar os tags para cada ponto de acordo com seu critério. Isto é feito através das tabelas globais ("global tables").

O Tag default é construído como indicado abaixo:

mmmmcgdntxrs.c

Código	Função	Alguns Valores Comuns
mmmm	Mnemônico do módulo	001, 101, 303, 401, CIDD, CIAD,
С	Classe	G (for regular E/S), S (for status),
g	Número de Classes	1, 2,
d	Tipo de Dado	B (para Bit), I (para Integer), R (para Real),
n	Número de pontos por grupo	1, 4, 8,
t	Tipo de Sinal	I (para entrada), O (para saída)
X	Localização local ou remota	0 (para Local), 1 to 6 (para Remota)
r	Número de identificação do Rack	0 a 14
S	Número de identificação do Slot.	0 a 3
С	Número de canal	0 a 7

Adicionando Módulos

Para adicionar novos módulos vá até uma célula vazia na coluna módulos e clique nela. Um menu *drop-down* aparecerá à direita da célula. Clique no arco na janela *drop-down* e selecione o módulo clicando nele. Tão logo o módulo é selecionado, ele será adicionado ao *slot* vazio correspondente.

O LOGICVIEW alocará memória automaticamente (exceto se o usuário configurar o LOGICVIEW para endereçamento manual) para os módulos de entrada e saída. Neste caso, o usuário não precisará se preocupar em lidar com a alocação de memória.

Adicionando um novo Rack

Clique em ícone de um rack vazio para aumentar o backplane com mais slots livres. Na figura abaixo somente os racks 0 e 1 são utilizados, então é possível selecionar quaisquer outros disponíveis.

Fig 3.23- Adicionando um Novo Rack

Quando a próxima janela de diálogo for aberta você pode indicar se o slot mais à esquerda precisa de uma fonte de força e se um flat cable é utilizado para conectar este rack ao próximo rack. Se este for o último rack do backplane deverá ser selecionado o terminador.

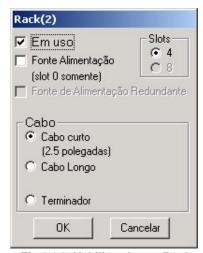


Fig 3.24- Habilitando um Rack

Subsistema de E/S Remoto

E/S remotas possibilitam distribuir racks com módulos de E/S em várias localizações em campo e conectá-las à CPU através de redes EIA 485 de alta velocidade.

Distribuir os racks economizará em cabos e em custos de instalação e sinais remotos podem ser partes da mesma configuração.

Se o módulo de CPU escolhido é capaz de trabalhar como um mestre-E/S remoto, é possível incluir interfaces de E/S remotas para expandir os módulos de E/S em racks localizados remotamente. Um sistema DF65 pode ter até 6 subsistemas de E/S remotos.

Para adicionar subsistemas de E/S clique em na barra de tarefas.

Fig 3.25-Habilitar um Módulo de E/S Remoto

Na figura acima selecione o subsistema clicando no número de E/S remoto(s) desejados. Dentro do subsistema de E/S remoto, racks e módulos podem ser configurados exatamente como para E/S locais descritos no sistema principal. Novas tabelas relacionadas com subsistemas de E/S aparecerão na "Página de Módulo".

Tabela Global

Na tabela de E/S global é possível configurar um identificador simbólico amigável ao usuário (tag do usuário) para cada grupo de E/S ou pontos individuais (canais).

Para iniciar uma tabela global vá até o menu: Configuração/ Tabela Global ou clique em Clique em "Detalhe de Pontos" para visualizar a Tabela de Canal.

O canal tag do usuário, especificamente, mas também a descrição e a cor dos cabos (ou alternativamente cabo/número dos terminais) são extremamente úteis quando deseja-se configurar uma estratégia de controle. Quanto mais é feito aqui, menos será preciso fazer mais tarde em outras partes do projeto. Além disso, permite que outros usuários entendam a configuração no futuro.

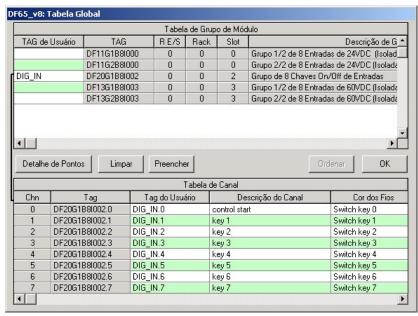


Fig 3.26- Tabela Global

O grupo de módulo de rótulo do usuário também é de grande ajuda para localizar tags para os elementos. É recomendado que eles sejam inseridos também. É recomendado que os nomes sejam consistentes e incluam tag do loop e nomes de parâmetros.

Por exemplo, para E/S analógicas, é possível dar um nome no formato loop.tag.PV.

Saídas Fail/Safe

Na tabela global de E/S é possível configurar os valores de fail/safe, isto é, a saída no caso de falha no envio da configuração para o DF65.

O usuário pode digitar valores de segurança na grade de interface (veja figura abaixo) na coluna "Valor de Segurança". O usuário pode redimensionar os campos (Tag do Usuário, Valores de Segurança, etc.) se o texto ou os valores não couberem dentro dos campos.

Nota: Somente Módulos de Saída Digital e Analógica possuem esta característica. Os valores de segurança para o Módulo de Saída Digital são expressos em "0" e "1", enquanto que os de Saída Analógica em porcentagem.

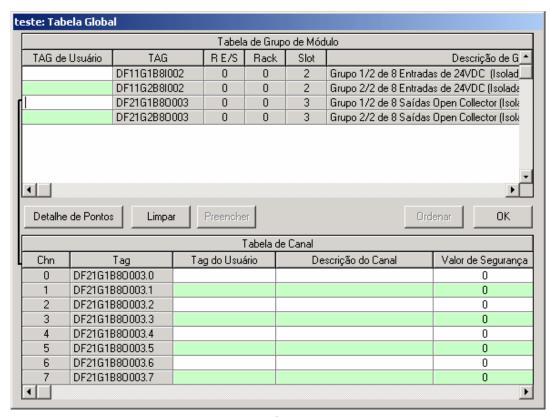


Fig 3.27- Saídas Fail/Safe

Configurando Módulos Virtuais (Pontos de memória discretos)

Na maioria das vezes, a lógica requer o armazenamento de variáveis temporárias que poderão ser usadas em um ou mais lugares no conjunto de redes de lógica ladder. Pode ser necessário utilizar variáveis que não tenham nenhuma E/S física, mas precisem de acesso através do Modbus para visualização e operação da estação de trabalho.

Módulos virtuais são usados para criar tais pontos. Um exemplo é a operação automática/manual de controle em um bloco PID.

Utilize o menu: Configuração/Página de Módulos Virtuais ou clique em configurar tantos módulos virtuais quantos forem necessários.

Cada módulo virtual possui 8 posições discretas de memória. Isto significa que 8 variáveis auxiliares extra foram criadas. É possível adicionar/criar tantos módulos virtuais quanto necessários, mas há um limite de 2000 pontos discretos (para DF65E), incluindo entradas e saídas discretas e módulos virtuais.

Recomenda-se que o usuário separe grupos diferentes de variáveis virtuais para as diferentes partes da estratégia da planta. Esta regra simples pode auxiliar em uma varredura posterior da estratégia e debugging da lógica.

Outro conjunto de módulos virtuais pode também ser reservado para aplicações diversas como saídas ENO de blocos de função e também é útil como uma falsa constante para entradas não utilizadas.

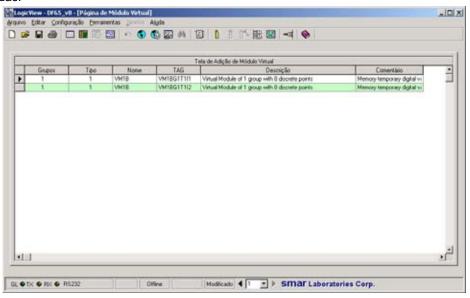


Fig 3.28- Configurando as Variáveis Virtuais

Para ficar mais fácil encontrar um ponto específico de memória, recomenda-se configurar o "userlabel" para cada ponto de um módulo virtual.

User TAG e descrição para os pontos virtuais

Os tags do usuário podem também ser configurados para os pontos virtuais na memória.

Vá até menu: Configuração/Tabela Virtual Global ou clique em

Recomenda-se que a nomeação seja consistente, por exemplo, usando um tag de um loop e o nome do parâmetro. Exemplo: loop_tag*.MODE para todos os pontos utilizados para controle de modo automático/manual de blocos PID.

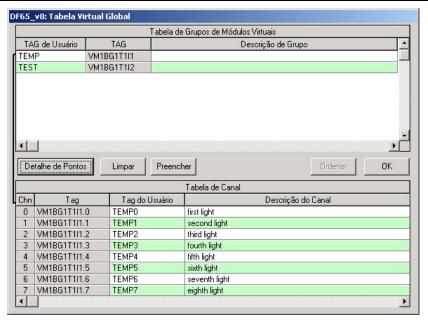


Fig 3.29- Configurando TAGs do Usuário

Para facilitar a localização de um grupo específico de pontos de memória, recomenda-se que os labels do usuário sejam configurados para o grupo de módulos virtuais.

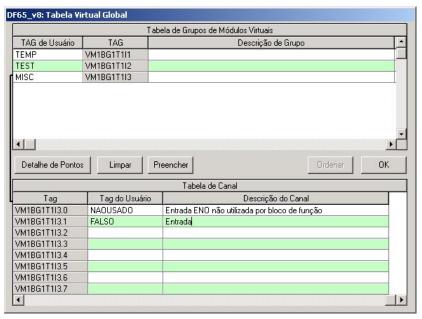


Fig 3.30- Configurando TAGs do Usuário

Somente um simples ponto NÃOUSADO é necessário para todos as saídas ENO não usadas na CPU. Pode servir para todos os blocos de função que precisarem dele. Usa-se para a saída ENO de todos os blocos de função que não possuam link para outro bloco de função de maneira a garantir que não existam mensagens de erro dadas quando a validade da configuração é verificada.

Na maioria das configurações haverá entradas não utilizadas que devem ser associadas a algum ponto para evitar mensagens de erro. Para este propósito, também, é uma boa idéia criar um ponto com uma entrada não utilizada, por exemplo chamada FALSO.

Configurando a estratégia de controle

Após definir o hardware e a estratégia de controle estiver pronta, pode-se começar a montar as operações lógicas para a aplicação reunindo um conjunto de Redes Lógicas Ladder para acomodar a funcionalidade aplicação da planta.

Recomenda-se fortemente seguir os passos básicos explicados anteriormente de maneira a continuar com a preparação da lógica. De qualquer maneira, pode-se voltar a qualquer momento para fazer alterações, para otimizar ou expandir a aplicação.

Isto implica que o número e tipo de módulos, bem como a lógica de controle podem ser editados.

Para inserir a estratégia de controle também chamada "Página de Rede" vá até o menu: Configuração/Página da Rede ou clique em

Diagramas Ladder (Redes de Ladder)

A estratégia de controle pode ser dividida em vários diagramas de ladder (redes de Ladder). É importante não confundir as redes ladder com a rede de comunicação Modbus.

O DF65 segue o padrão IEC-61131-3 para linguagem ladder e suporta elementos de lógica ladder e, também, um conjunto de blocos de função, desde os mais simples até os mais complexos.

As redes lógicas do DF65 podem realizar uma grande quantidade de aplicações de maneira simples. O DF65 é descrito como um Controlador Híbrido Universal por causa do vasto número de blocos de função que podem ser inseridos em um mesmo diagrama com tipos discretos de elementos para cobrir não somente aplicações orientadas para controle discreto, como também para aplicações mais complexas de controle de processo.

Outros dispositivos também afirmam possuir esta capacidade, mas quando se fala em detalhes de implementação, a velocidade, flexibilidade e qualidade de trabalho do DF65 farão a diferença. Fluxo de Ladder e blocos podem ser conectados. Pode-se usar tantas redes ladder quantas forem necessárias se existir memória suficiente (a versão demo do LOGICVIEW é limitada a duas redes).

Por exemplo, supondo que sua aplicação/sistema precise de uma rede para cada loop de controle, então é fácil encontrar todos os blocos e a lógica associada com aquele loop, isto é, similar ao conceito ISA S88.01 "control module". Para controle sequencial e de batelada, uma rede pode ser configurada para cada passo e uma rede principal para o controle da transição entre os passos.

A Rede Lógica

Cada rede é uma matriz de 15 linhas e 16 colunas totalizando 240 células disponíveis. Estas células são também utilizadas para inserir elementos de lógica ladder e blocos de função.

O "Power Rail" (uma espécie de fonte de estado lógico 1 ou verdadeiro) para ladder está bem à esquerda da matriz e o fluxo de força irá sempre da esquerda para a direita, conseqüentemente as bobinas tendem a ficar à direita, sequindo a lógica que envolve contatos e blocos de função.

É também possível criar uma função booleana "one-time-use" para ser adicionada mais tarde, enquanto se edita a rede lógica. É basicamente um bloco de função personalizado no qual o usuário determina o número de saídas e todas as equações booleanas a serem internamente resolvidas.

O Ciclo Completo do DF65

Às vezes é importante saber como exatamente é a seqüência de execução usada pela CPU de um sistema DF65 para resolver a lógica Ladder.

Tudo começa quando o processador da CPU lê as entradas vindas de todos os módulos de E/S (locais ou remotos). No próximo passo, a CPU verifica a ordem de execução na lista da rede lógica incluída na configuração e começa a executar uma por uma. Quando a última rede é terminada, o processador da CPU envia os resultados para os módulos de saída (locais ou remotas) e, em seguida, responde a qualquer requisição de comunicação pendente no momento.

Execução Sincronizada da Lógica Ladder e Comunicação

Como pode ser visto, módulos remotos e locais funcionam de modo sincronizado. É importante notar que uma requisição de comunicação pode ser recebida a qualquer momento pela CPU, mas

será respondida apenas depois que toda rede lógica seja completamente resolvida. Desse modo nunca será possível ler um valor intermediário durante a execução das Redes Lógicas.

Següência de Execução da Rede Lógica

Para algumas aplicações, a ordem específica para cada célula individual dentro da rede lógica pode fazer a diferença. O processador da CPU começa com a célula na primeira linha e coluna, célula (1,1) da matriz e continua até o fim de cada coluna antes de se mover para o primeiro elemento da segunda coluna e procede desta forma até que toda célula em um rede específica sejam consideradas, então irá proceder com a próxima rede lógica até a última na lista de execuções.

Preferências de Edição de Redes Lógicas

Para facilitar o trabalho do usuário, é possível mostrar os rulers (numeração dos grids de linha e coluna) selecionando Ferramentas, em seguida, Preferências e depois o item Régua/Nota.

Fig 3.31- A Janela de Preferências do LOGICVIEW

Administrando Múltiplas Redes Lógicas

Para facilitar a consulta rápida, cada diagrama (rede Ladder) pode ser nomeado e descrito. A ordem de execução também pode ser configurada. É possível desabilitar a execução de uma ou mais redes lógicas.

Para acessar Network Manager vá em: Editar/Gerenciamento de Redes ou clique em

Uma listagem de todas as redes lógicas (diagramas ladder) aparecerá na caixa de diálogo.

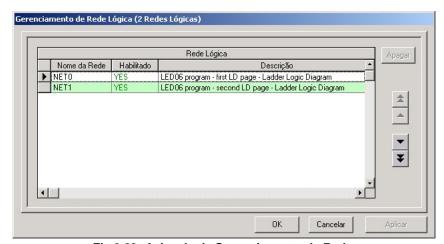


Fig 3.32- A Janela de Gerenciamento de Redes

Recomenda-se nomear e descrever cada rede de diagrama ladder. Isto pode ser diretamente feito na lista acima.

Movendo-se de uma célula para outra

Selecione a rede ladder que se deseja trabalhar clicando nas setas de voltar ou adiante localizadas na parte inferior da tela, ou selecione diretamente da lista Drop Down que aparecer, quando clicase na seta de drop down na caixa branca entre as setas mencionadas.

Inserindo Elementos de Diagrama Ladder

Há uma ferramenta específica para inserir/apagar elementos ladder. Ela está disponível no lado direito da interface do LOGICVIEW. O usuário pode criar e editar programas em redes ladder através da opção Elementos.

Fig 3.33- Inserindo Contatos e Bobinas

Selecione contatos e bobinas na opção Elementos. Conexões Horizontais e Verticais também podem ser utilizadas.

Para adicionar um elemento ladder na rede, selecione um elemento como contatos, bobinas, linhas verticais ou horizontais na opção Elementos no lado direito da interface do LOGICVIEW. Clique no elemento a ser adicionado e posicione-o na área desejada dentro da rede Ladder. O LOGICVIEW automaticamente insere este elemento.

O LOGICVIEW tem um característica "check-as-you-go" que previne o usuário de inserir elementos que não sejam aplicáveis a uma célula específica. Neste caso, uma mensagem de "Não se Encaixa" aparecerá.

Assim que um elemento lógico tenha sido colocado ele poderá ser referido por seu Tag padrão ou pelo Tag do usuário.

Fig 3.34- TAGs padrão do LOGICVIEW

Após inserir um elemento é preciso associá-lo com um TAG do usuário.

Isto é feito na opção TAG localizada à direita da interface do LOGICVIEW. Veja a figura à esquerda desta página.

Nesta barra de ferramentas existe uma lista drop-down onde o usuário pode escolher o tipo de elemento ou link.

O tipo de elemento ou link podem ser:

- Relés
- Bobinas
- Link de entrada analógica
- Link de saída analógica
- Link de entrada de byte
- Link de saída de byte

Se o usuário selecionar relés, então o LOGICVIEW mostrará duas opções: grupos de E/S e grupos virtuais.

Fig 3.35- Grupos de E/S e Grupos Virtuais

Se o usuário selecionar bobinas, então o LOGICVIEW mostrará duas opções: grupos de analógicos e grupos virtuais.

Fig 3.36- Grupos Analógicos e Grupos Virtuais

Relés e bobinas podem também ser associados a módulos digitais de entrada ou saída.

Em seguida, atribua um TAG ao elemento, selecione o elemento alvo e o LOGICVIEW automaticamente mostrará os módulos virtuais e módulos de entrada e saída disponíveis. Isto é feito na opção TAG.

Após selecionar um ponto virtual, entrada ou saída clicando neste elemento, posicione-o no elemento ao qual será atribuído a este TAG. Toda esta atribuição de TAG é feita através de uma operação simples de *drag and drop*.

Nota:

Não se esqueça de selecionar o tipo de elemento na lista *drop-down*. Se a seleção é "bobina" e o elemento ao qual será atribuído o TAG é um relé, o LOGICVIEW mostrará uma mensagem de erro.

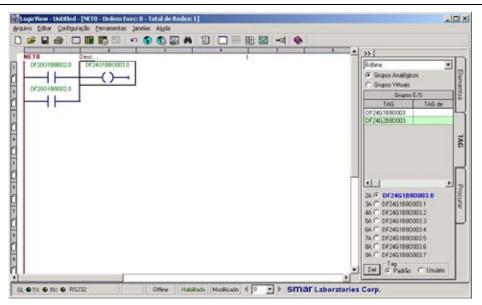


Fig 3.37- Relés e Contatos e Seus Respectivos TAGs do usuário.

Note que os relés (entradas) também podem ser associados a saídas (bobinas) criando lógicas de intertravamento usadas normalmente para manter um estado. Veja o ponto SAÍDA1 onde tanto a bobina de saída (R1C3) e o relé de entrada (R2C1) no diagrama acima indicam que eles foram conectados.

O usuário pode também apagar um TAG atribuído. Existe um botão DEL na parte inferior da opção TAG:

Fig 3.38- O Botão Del

Clique neste botão e posicione o mouse sobre qualquer TAG que se deseja apagar.

Inserindo Blocos de Função

Clique na opção Elementos e selecione o ícone FC na barra de ferramentas. Mova o *mouse* na rede. Note que o ícone do mouse muda para FC. Clique em qualquer célula para inserir um bloco de função. Um formulário de Blocos de Função aparecerá na tela. Selecione o tipo de bloco da lista *drop-down*.

Existem restrições para onde os blocos podem ser inseridos. Isto está relacionado com o tamanho do bloco e elementos na vizinhança, assim, às vezes o usuário deverá selecionar outro local para o bloco de função.

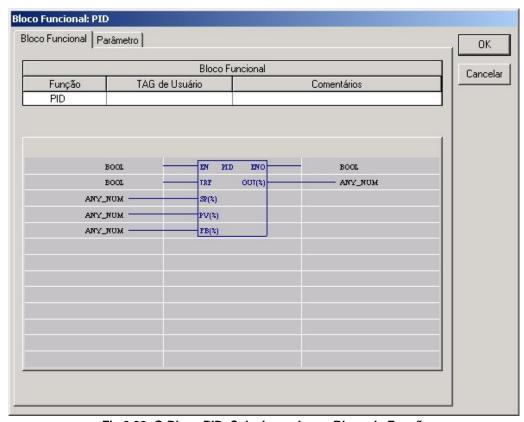


Fig 3.39- O Bloco PID: Selecionando um Bloco de Função

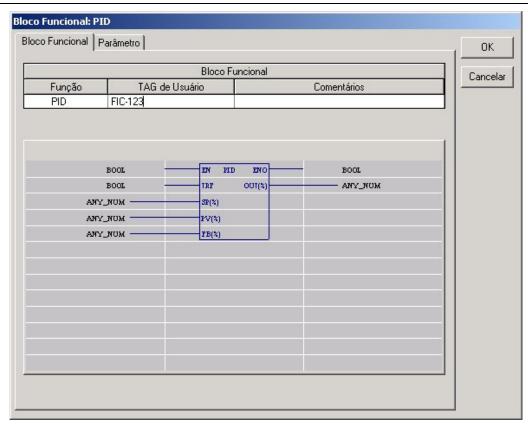


Fig 3.40- O Bloco PID: Criando um TAG do Usuário para o Bloco de Função

Um tag deverá ser atribuído ao bloco de função no campo "TAG do Usuário". O software previne a duplicação de tags. O usuário precisa ir até a opção Parâmetros para completar a configuração dos blocos de função.

Cada parâmetro possui um valor default e um intervalo de valores específico.

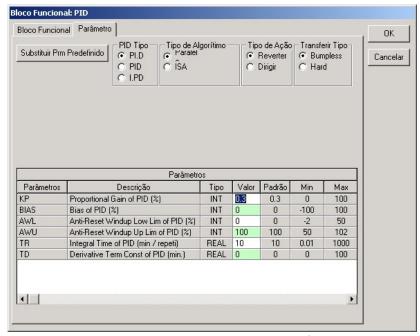


Fig 3.41- O Bloco PID: Configurando Parâmetros

Após o bloco ter sido inserido, os parâmetros podem ser editados posicionando o mouse sobre o bloco e clicando-se com o botão direito do mouse.

Note que o tipo de dados para as entradas e saídas não foi ainda determinado e então é indicado como "ANY_NUM". O LOGICVIEW automaticamente gera um TAG default para as entradas e saídas.

Para os blocos de função, a entrada de habilitação (EN) deve ser verdadeira para o bloco ser executado. Isto é feito conectando esta entrada ao power rail localizado à esquerda. No diagrama acima, a entrada EN está conectada à esquerda (R1C1).

Para evitar mensagens de aviso quando se verifica a configuração, todas as saídas ENO não utilizadas devem ser conectadas. Conseqüentemente uma bobina foi inserida (Em R1C3). Para associar a saída do bloco PID com um ponto comum não utilizado, clica-se na saída ENO e seleciona-se o ponto e então adiciona-se uma bobina a este elemento.

Para atribuir TAGs às entradas e saídas do Bloco PID selecione a entrada ou saída do bloco de função desejado. Clique na opção TAG. Se, por exemplo, nós clicarmos em uma saída do bloco PID a opção TAG automaticamente mostra todos os links disponíveis para essa entrada, saídas e entradas de outros blocos de função, entradas e saídas de módulos de E/S.

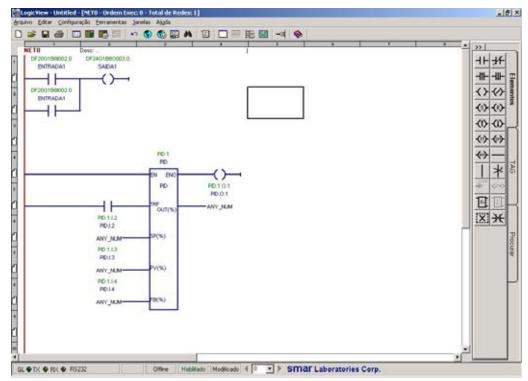


Fig 3.42- Configurando as Entradas e Saídas do Bloco de Função

Em seguida, selecione uma entrada ou saída do bloco de função ou uma entrada de um módulo de E/S na opção TAG.

Para atribuir este TAG à entrada ou saída do bloco de função, clique no TAG e posicione-o na entrada ou saída do bloco de função. Ou selecione a entrada ou saída do bloco de função, dê um duplo clique no TAG que será conectado. O LOGICVIEW automaticamente atribui o TAG àquela entrada ou saída do bloco de função.

Para configurar PV como uma das entradas de corrente física, clique na entrada PV, certifique-se de que o botão Grupo de E/S e selecione o módulo desejado e o terminal. Se o usuário selecionar mostrar o TAG do usuário, o TAG configurado como um ponto na tabela global será indicado. Se PV vier de outro bloco de função selecione "Function Block Output" Assim que uma das entradas ou saídas são selecionadas o tipo de dados de todas entradas e saídas do bloco é configurado automaticamente. Todas entradas e saídas devem ser do mesmo tipo.

Apagando Elementos com o Botão Delete

Clique nestes botões para ativar a função Apagar, então posicione o mouse neste elemento e clique no elemento para apagá-lo.

Para apagar uma região contendo elementos ladder clique no botão abaixo. Selecione a região e dê um clique para apagar.

Conexões de Blocos de Função

Existe um grid que mostra todos os links conectados a esta saída do Bloco de Função. Quando o usuário desejar eliminar o link será preciso apenas selecioná-lo (linha) no grid mostrado. Em seguida clicando no comando de "Cortar" para eliminar este link.

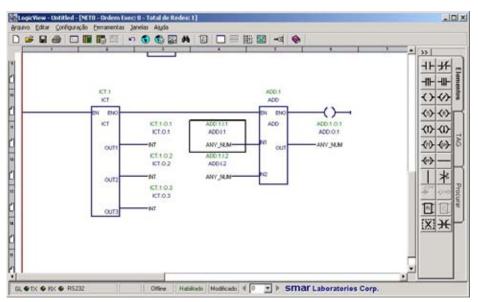


Fig 3.43- Links dos Blocos de Função

Operação Manual/Automática do Loop PID

Para o modo chaveamento automático/manual um contato foi configurado (em R2C1 no exemplo acima). É necessário que memória virtual seja associada para este chaveamento funcionar. A localização de memória pode ser criada e dado um tag do usuário adequado como descrito previamente. Então, o contato auto/manual precisa ser associado com sua posição de memória.

Selecione a entrada "Track Feedback" (TRF) do bloco PID para configurá-la. Então, na opção TAG selecione o ponto de memória virtual que será associado com esta entrada.



Fig 3.44- Operação Automática e Manual do Bloco PID

Selecione "Grupos Virtuais" e escolha o ponto associado. Se o tag do usuário para o ponto já foi configurado na tabela virtual global, o tag será indicado na lista.

O modo do bloco PID pode agora ser selecionado através da estação de trabalho do operador escrevendo-se um valor no registrador Modbus que corresponde ao ponto virtual.

No modo manual o valor da saída não pode ser escrito diretamente na saída do módulo PID por que a saída física não é atualizada. Normalmente um bloco Sample/ Hold (SMPL) é conectado a saída do bloco PID, usado como uma estação automático/manual e no modo manual a saída é escrita na saída do bloco SMPL.

Clique no ponto do diagrama onde se deseja inserir o bloco, então insira o bloco clicando em "Fc" na barra de ferramentas e selecionando-se tipo de bloco.

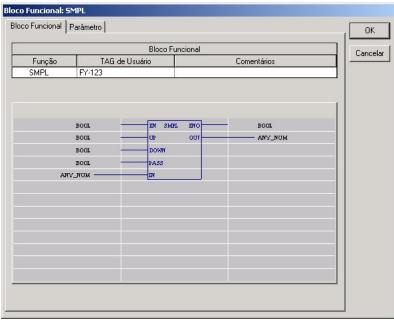


Fig 3.45- Adicionando um Bloco de Função SMPL

Configuram-se os elementos de ladder para a entrada EN e a saída ENO. As entradas UP e DOWN devem ser contatos normalmente abertos (NA) e a entrada PASS uma entrada normalmente fechada (NF), um contato invertido.

A entrada PASS deve ser configurada para o ponto auto/manual, isto é, o mesmo ponto que a entrada TRF do bloco PID, a diferença é que para o bloco SMPL ela é invertida pelo contato Normalmente Fechado. Siga o mesmo procedimento para a entrada TRF.

As entradas up e down são da mesma maneira configuradas como um ponto de memória virtual definido previamente como FALSE.

Para configurar a entrada IN do bloco SMPL com a saída do bloco PID clicando-se na entrada SMPL e selecionando "FB Output" e escolhendo a saída do bloco PID dentro da lista.

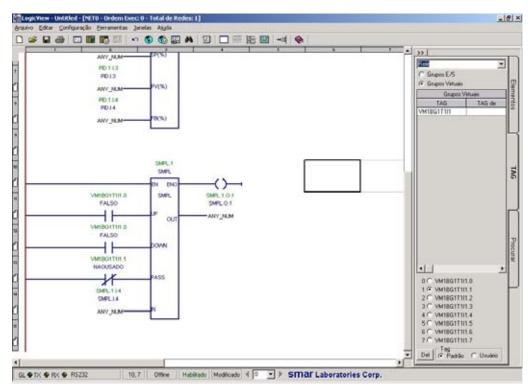


Fig 3.46- Conectando o Bloco SMPL ao Bloco PID

Assim que a saída do PID tenha sido conectada ao bloco SMPL, é possível visualizar o TAG da saída do PID na entrada do bloco SMPL confirmando o link. A entrada TRF do PID é a mesma da entrada PASS do bloco SMPL diferindo apenas no fato de ser invertida.

No bloco PID a entrada de realimentação (FB) também tem que ser configurada de modo a garantir a transferência "bumpless". O valor deve vir a partir da saída do bloco que vai para a saída de corrente, isto é, na maioria dos casos a saída SMPL deve ser conectada à entrada FB do bloco PID. Com um duplo clique na entrada FB, seleciona-se "FB input" e escolhe-se a saída correspondente do bloco SMPL da lista.

Fig 3.47- Escolhendo as Entradas

No caso especial em que a aritmética é feita na saída do bloco PID em outros blocos após o PID (isto é feedforward), o valor final da saída deve ter uma função correspondente inversa antes de ser conectada à entrada de realimentação do bloco de PID.

Para facilitar pode-se alterar o tag do usuário do bloco SMPL para indicar que o tag do look e que é a saída do loop, por exemplo, loop_tag.OUT. O LOGICVIEW garante que não exista duplicação de TAGs.

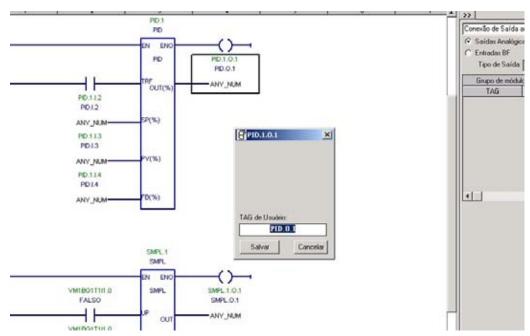


Fig 3.48- Diagrama Ladder com Blocos PID e SMPL

No diagrama acima é mostrado como a saída do SMPL vai para a entrada de realimentação do bloco PID. No modo manual, o valor da saída pode agora ser escrito no registrador Modbus correspondente a saída do bloco SMPL. Finalmente, a saída do loop deve ser associada com um ponto físico de E/S. Clicando na saída OUT do módulo SMPL configura-se esta saída para um módulo de saída (E/S Group).

Operação do Set Point do Loop PID

O bloco PID precisa ter um valor de set point (SP) para operar e ele deve vir de algum lugar.

Dessa maneira um bloco de constantes inteiras (ICT) precisa ser configurado. Novamente é uma boa idéia ter uma metodologia consistente para os blocos ICT utilizados.

Por exemplo, deve-se ter somente um loop por diagrama ladder (rede/network) e deve-se usar apenas um bloco ICT para o setpoint e limites de alarme do loop. Ou, usa-se uma rede separada para conter todos os blocos ICT para todo o sistema, divididos de forma que um bloco administra set points, outros alarmes, etc.

Selecione a célula desejada e clique no ícone "Fc" de maneira a inserir o bloco. Selecione o bloco ICT e dê a ele um tag. Certificando-se de que a entrada EN seja verdadeira conectando-a ao Power Rail usando um link horizontal.

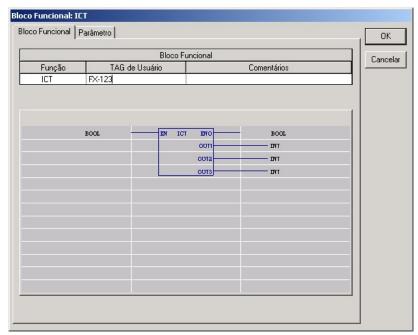


Fig 3.49- Inserindo um Bloco ICT

Para cada saída do bloco ICT pode ser dado um tag do usuário diferente para facilitar a referência a ele. Isto é feito clicando-se com o botão do mouse na saída e então digitando o nome desejado. Novamente , consistência facilita configurar e entender a estratégia de controle, por exemplo, todos os setpoints devem ser construídos a partir do tag do loop seguido pelo loop tag.SP.

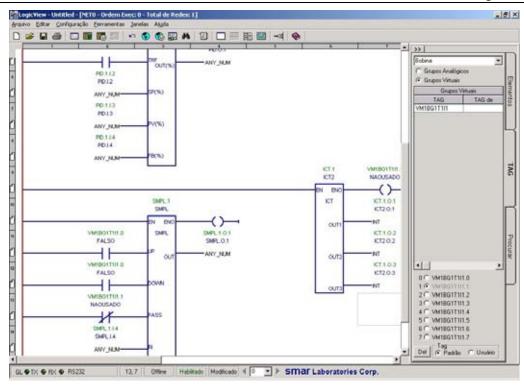


Fig 3.50- Configurando o Set Point Utilizando um Bloco de Função ICT

Clique na entrada set point (SP) do bloco PID para configurá-la. Então clique na opção TAGs e escolha o bloco ICT.

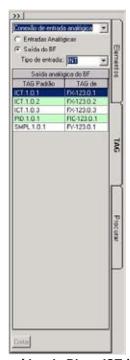


Fig 3.51- Conectando as saídas do Bloco ICT às Entradas do Bloco PID

Selecione "FB input" e escolha a saída correspondente do bloco ICT. O set point do bloco PID pode agora ser configurado à partir da estação de trabalho do operador escrevendo-se um valor para o registro MODBUS que corresponda ao parâmetro interno do bloco ICT.

Na configuração acima, o set point do bloco PID (SP, em R3C1) tem o mesmo tag da saída do bloco ICT (em R12C3), porque eles estão conectados.

Dicas gerais sobre a rede

Saltos podem ser feitos entre as sub-rotinas baseadas em certas condições. Todos os parâmetros do DF65 são globais e podem ser utilizados em qualquer rede.

As linhas e colunas da posição atual do cursor são mostradas no canto da janela como r, c.

A linha e a coluna também são usadas pela estratégia automática de verificação do LOGICVIEW para indicar alguma célula com erro ou discrepância potencial. Clicando em Ferramentas e, então, Preferências é possível selecionar qual informação vai ser mostrada no diagrama ladder, enquanto edita-se a estratégia de controle. A informação para cada elemento pode ser editada em uma tela de diagrama ladder clicando com o botão direito do mouse.

Caso mais redes sejam necessárias, vá até o menu: Editar → Adicionar Rede ou clique em

Imprimindo documentação

O LOGICVIEW imprime toda documentação relevante para a configuração de hardware e software, eliminando a necessidade de separar a documentação em ferramentas de terceiros.

A documentação foi gerada automaticamente enquanto a configuração foi estabelecida. Todas as descrições, observações e anotações que foram inseridas, por exemplo, as Tabelas Globais são salvas em um arquivo como parte da configuração e podem ser impressas.

Fig 3.52- Janela de Configuração de Impressão

Procurando nas Redes Lógicas

O LOGICVIEW permite ao usuário procurar, buscar e substituir TAGs, blocos de função e funções do usuário e seus respectivos links dentro da rede ladder. Um projeto pode possuir várias páginas de rede ladder. Então esta ferramenta é bastante útil ao usuário.

Clique na opção Procurar e as seguintes opções serão mostradas na barra de ferramentas à direita da interface do LOGICVIEW.

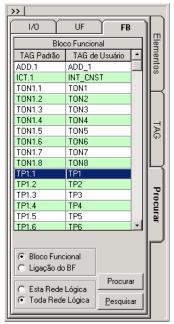


Fig 3.53- A Barra de Ferramentas do LOGICVIEW: A Opção Elementos

A opção E/S dentro da opção Procurar apresenta todas as entradas e saídas dos módulos de E/S. O usuário pode procurar qualquer TAG a partir da opção E/S, buscar e substituí-la na rede lógica. O usuário também pode selecionar qualquer relé ou bobina associada com um TAG e o LOGICVIEW automaticamente o mostrará na opção TAG.

O usuário possui a opção de fazer esta operação em apenas uma rede ou em todas as redes.

A opção UF mostrará todas as funções definidas pelo usuário disponíveis. A opção FB faz o mesmo para todas os blocos de função e seus links de saída.

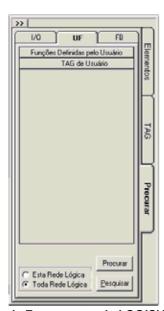


Fig 3.54- A Barra de Ferramentas do LOGICVIEW: A Opção UF

Selecione (clique em) qualquer elemento e, em seguida, no botão Pesquisar. O LOGICVIEW automaticamente seleciona o elemento na rede lógica.

De modo semelhante, o usuário também pode usar a função Pesquisar na janela mostrada abaixo:

Fig 3.55- A Característica de Pesquisar do LOGICVIEW

O campo "Critério da Pesquisa" permite que o usuário digite uma *string* que se deseja encontrar. O critério de pesquisa pode também incluir *wildcards* (coringas) como "aaa*", "*aaa" ou "*aaa*" que representam encontrar algo começando com "aaa", terminando com "aaa" ou possuindo "aaa". Por exemplo, se o elemento a ser encontrado é "todas as entradas do módulo DF20", o usuário pode digitar "DF20*" como critério da pesquisa. O usuário pode também selecionar um TAG na opção Procurar e clicar no botão Pesquisar.

O usuário deve especificar qual a categoria do elemento alvo.



Fig 3.56- Procurando um Elemento Específico

As categorias são:

- FB- O LOGICVIEW procurará por Blocos de Função.
- Grupos de E/S- O LOGICVIEW procurará por entradas e saídas de grupos de E/S.
- UF- O LOGICVIEW procurará por Funções Definidas pelo Usuário.
- Link FB- O LOGICVIEW procurará por links de Blocos de Função.
- TODOS- O LOGICVIEW procurará em todas as categorias.

Usando a Opção Procurar E/S

Selecione a saída ou entrada e clique no botão Procurar.

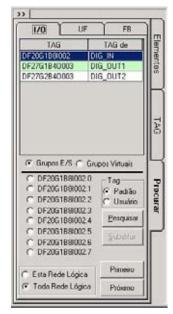


Fig 3.57- A Opção Procurar E/S

Isto fará com que a seguinte janela seja aberta:

Fig 3.58- Procurando um Elemento de E/S

Em seguida, clique no botão de Pesquisar e o LOGICVIEW automaticamente irá mostrar todas as ocorrências (com a respectiva informação de onde a ocorrência se localiza dentro da rede Ladder) desta entrada em uma lista na parte inferior da *interface* do LOGICVIEW.

Fig 3.59- Listando os Elementos de E/S Encontrados

Clique em qualquer registro da lista. O LOGICVIEW automaticamente seleciona o elemento desejado dentro da rede.

Se o usuário desejar substituir o resultado da busca por um TAG específico, o botão Substituir pode fazer esta operação.

Nota:

A função Substituir é somente para a substituição dos TAGs de E/S.

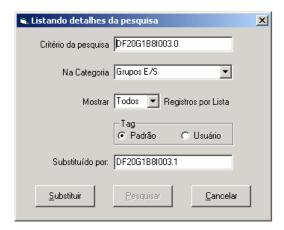


Fig 3.60- Substituindo um Elemento na Rede Lógica

O usuário precisa selecionar um TAG na opção E/S da opção Procurar como substituto. O LOGICVIEW preenche automaticamente no campo "Substituir por:" O usuário não pode digitar neste campo para evitar uma entrada inválida.

Digite o elemento a ser buscado no campo "critério de pesquisa" como na função "Pesquisar". Clique no botão de Substituir.

Uma lista de substituições aparecerá na parte inferior da interface do LOGICVIEW como a seguir:

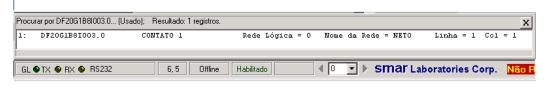


Fig 3.61- Lista de Substituições

Como na função Pesquisar, com um clique simples em qualquer registro da lista o LOGICVIEW seleciona a célula do elemento. Com um duplo clique no elemento dentro da lista de registros encontrados o usuário pode escolher substituir ou não o elemento.

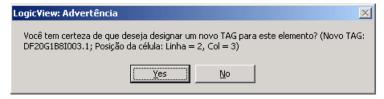


Fig 3.62- Confirmando a Substituição

Clique em Sim para substituir o TAG. O LOGICVIEW irá verificar se o TAG substituto pode ser atribuído ao elemento após o usuário clicar em Sim.

A Opção Procurar Funções do Usuário

O usuário pode procurar por funções definidas pelo usuário. Clique nos botões de Procurar e Pesquisar para procurar a função do usuário desejada na rede ou uma lista das ocorrências desta função do usuário no inferior da interface do LOGICVIEW. Clicando no registro desejado fará com que o LOGICVIEW selecione a função do usuário desejada dentro da rede. O usuário pode também selecionar uma função do usuário dentro de uma rede Ladder e encontrar outras ocorrências desta função do usuário. Esta opção não suporta a opção Substituir.

A Opção Procurar Blocos de Função

O usuário pode procurar por blocos de função e links de blocos de função. Selecione o bloco de função alvo na rede ladder. Clique no botão Encontrar Primeiro para obter a primeira ocorrência do bloco de função ou do link. Clique em Encontrar Próximo obterá a próxima ocorrência do bloco de função ou link. O usuário pode também clicar no botão Procurar para obter uma lista do bloco de função ou link na parte inferior da interface do LOGICVIEW. Clique em qualquer registro na lista e o LOGICVIEW automaticamente selecione o bloco de função ou link.

Esta opção não suporta a opção Substituir.

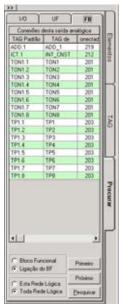


Fig 3.63- A Opção Blocos de Função

Adicionando Notas às Linhas de Programação Ladder

Se o usuário habilitar a opção "Régua/Nota" em Configurações→Preferências, o LOGICVIEW permitirá que o usuário adicione uma nota a cada linha de programação Ladder. Isto faz com que a rede ladder fique mais fácil para ler e debug.

Fig 3.64-Adicionando Notas à Rede Ladder

Clique no ícone "Small Note" no *ruler* localizado à esquerda da interface do LOGICVIEW, como na figura seguinte:

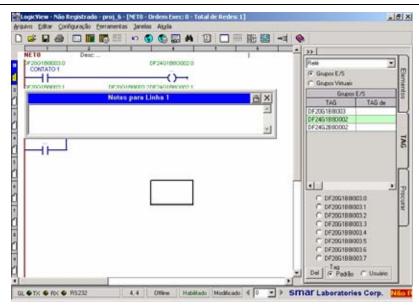


Fig 3.65- Notas no LOGICVIEW

O LOGICVIEW mostrará uma caixa onde o usuário pode adicionar e modificar notas para cada linha de programação Ladder. Normalmente a caixa estará sob a linha. Se esta caixa não se encaixar na linha, ela estará acima da linha. O usuário pode arrastar a caixa de Notas para qualquer posição dentro da rede Ladder, redimensioná-la e travá-la nesta posição clicando no botão de Travar. Trata-se de um botão de Trava/Destrava.

Espaço Ocupado pela Memória e Tempo de Execução

No software configurador LOGICVIEW, o item "Verificar Configuração" do menu Configuração faz a análise automática da configuração e gera o espaço de memória e a estimativa do tempo de execução para esta configuração.

Após enviar a configuração para o DF65, a caixa de diálogo Conexão ON-LINE mostra o tempo exato de execução.

Se for preciso estimar manualmente, os próximos itens mostrarão como fazê-lo.

Memórias da CPU

Memória	Espaço Disponível
DF65	28 KB
DF65-R	23 KB
DF65-E	52 KB
DF65-ER	44 KB

Espaço de memória: para calcular a memória ocupada pela configuração do usuário (em bytes) use a fórmula abaixo:

Memória = Módulos + Redes Lógicas

Onde:

Módulos

Todos os módulos de E/S utilizados na configuração ocupam espaço de memória para economizar valores de E/S e tabelas de varredura. Para cada módulo utilizado, determine o tamanho de memória ocupado da tabela de módulos de E/S e some os resultados deste cálculo.

Redes

A configuração do usuário representada pelo Diagrama Lógico Ladder, ocupa espaço de memória. Para calcular este valor, use a tabela Rede e adicione os valores para cada elemento, bloco de função e função do usuário utilizados na rede Ladder.

Função do Usuário

Requer espaço de memória para si mesma a ser executada e tabelas. Para cada Função do usuário usada na rede, determine o tamanho através da tabela Função do Usuário e adicione todos os resultados deste cálculo.

Blocos de Função

Também ocupam espaço de memória devido aos seus parâmetros e valores de saída. Para cada bloco de função utilizado na rede, determine o tamanho de memória ocupada através da tabela Blocos de Função e some todos os resultados deste cálculo.

Módulos de E/S

Nome	Descrição	Byte
DF11	2 grupos de 8 entradas de 24 Vdc (isolados opticamente/Source)	9
DF12	2 grupos de 8 entradas de 48 Vdc (isolados opticamente/Source)	9
DF13	2 grupos de 8 entradas de 60 Vdc (isolados opticamente/Source)	9
DF14	2 grupos de 8 entradas de 125 Vdc (isolados opticamente/Source)	9
DF15	2 grupos de 8 entradas de 24 Vdc (isolados opticamente) (sink)	9
DF16	2 grupos de 4 entradas de 120 Vac (isolados opticamente)	9
DF17	2 grupos de 4 entradas de 240 Vac (isolados opticamente)	9
DF18	2 grupos de 8 entradas de 120 Vac (isolados opticamente)	9
DF19	2 grupos de 8 entradas de 240 Vac (isolados opticamente)	9
DF20	1 grupo de 8 push-button On/Off	9
DF21	1 grupo de 16 saídas open collector (isolados opticamente)	13
DF22	2 grupos de 8 saídas a transistor (fonte)	13
DF22	1 grupo de 8 saídas 120/240 Vac (isolado opticamente)	11
DF24	2 grupos de 8 saídas 120/240 Vac (isolados opticamente)	13
DF25	2 grupos de 4 saídas de relé NA com RC interno (isolados opticamente)	11
DF26	2 grupos de 4 saídas de relé NF (isolados opticamente)	11
DF27	1 grupo de 4 saídas de relé NA e 4 saídas de relé NF (isolados opticamente)	11
DF28	2 grupos de 8 saídas de relé NA (isolados opticamente)	13
DF29	2 grupos de 4 saídas de relé NA (isolados opticamente)	
DF30	2 grupos de 4 saídas de relé NF (isolados opticamente)	
DF69	2 grupos de 8 saídas de relé NA com RC interno (isolados opticamente)	
DF31	1 grupo de 4 saídas de relé NA e 1 grupo de 4 saídas de relé NF (isolados opticamente)	11
DF32	1 grupo de 8 entradas de 24 Vdc e 1 grupo de 4 saídas de relé NA (isolados opticamente)	18
DF33	1 grupo de 8 entradas de 48 Vdc e 1 grupo de 4 saídas de relé NA (isolados opticamente)	18
DF34	1 grupo de 8 entradas de 60 Vdc e 1 grupo de 4 saídas de relé NA (isolados opticamente)	18
DF35	1 grupo de 8 entradas de 24 Vdc e 1 grupo de 4 saídas de relé NF (isolados opticamente)	18
DF36	1 grupo de 8 entradas de 48 Vdc e 1 grupo de 4 saídas de relé NF (isolados opticamente)	18
DF37	1 grupo de 8 entradas de 60 Vdc e 1 grupo de 4 saídas de relé NF (isolados opticamente)	18
DF38	1 grupo de 8 entradas de 24 Vdc e 1 grupo com 2 saídas de relé NA e 2 saídas de relé NF (isolados opticamente)	18
DF39	1 grupo de 8 entradas de 48 Vdc e 1 grupo com 2 saídas de relé NA e 2 saídas de relé NF (isolados opticamente)	18
DF40	1 grupo de 8 entradas de 60 Vdc e 1 grupo com 2 saídas de relé NA e 2 saídas de relé NF (isolados opticamente)	18
DF41	2 grupos de 8 entradas de pulso 0-100 Hz-24 Vdc	
DF43R	8 entradas analógicas de corrente/tensão com resistor shunt interno	46
DF45	8 entradas de sinais de nível baixo (TC, RTD, mV, Ω) isolados opticamente	32
DF46	4 saídas analógicas de tensão e de corrente (isoladas opticamente)	63
FB-700	1 canal H1 Fieldbus (isolado)	*1
DF50	Fonte de Alimentação para IMB e para saída: 5 Vdc @ 3 A e 24 Vdc @ 300 mA (isolação entre todos eles). Com capacidade para redundância.	4

Notas:

Para o módulo Fieldbus FB700: Existe uma tabela para calcular o número de bytes ocupados por uma configuração. O FB700 possui um tipo diferente de alocação de memória dependendo do número de blocos de função (CIDD, CIAD, CODD, COAD) usados no módulo. A primeira linha da tabela indica o número de bytes usados mesmo se nenhum bloco foi adicionado à configuração. Para cada bloco de função conte o número de bytes se ao menos um bloco for utilizado. Se nenhum bloco for utilizado conte como ZERO bytes para o bloco.

FB-700	FB-700 1 canal H1 Fieldbus (isolado)			
		BYTES		
Módulo FB-700 89				
CIDD (se houver) 3				
CIAD (se houver), (n = número de CIAD) $7 + n*32$				
CODD (se houver) (n = número de CODD) $5 + n*16$				
COAD (se houver)), (n = número de COAD) $9 + n*128$				

A Rede (Diagrama Ladder)

ELEMENTOS	BYTES	TEMPO DE EXECUÇÃO (μs)
RELÉ	4	27
BOBINA	4	34
SALTO	4	25
RETORNAR	4	24
LINHA	0	0
LINHA VERTICAL *(1)	2	18
COLUNA *(2)	8	20
FUNÇÃO DO USUÁRIO *(3)	*	*
BLOCO DE FUNÇÃO *(3)	*	*
PÁGINA DA REDE (DIAGRAMA LADDER)	12	-

Nota:

A atualização dos tags associados a elementos da lógica Ladder é feita através de processamento por coluna. Assim os tags contidos nas colunas da esquerda serão atualizados primeiro que os das colunas da direita.

Exemplo:

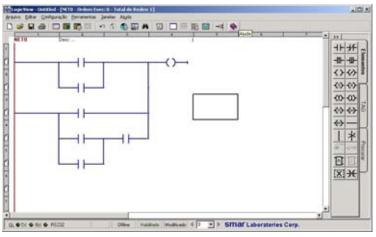


Fig 3.66- Estimando a Memória Ocupada pela Ladder

Neste exemplo, tem-se 2 grupos de linhas verticais na coluna 2 e um grupo de linhas verticais na coluna 3.

O espaço de memória é igual a 2x2 + 2x2 + 1x2 bytes.

Para cada coluna usada na página de rede.

No exemplo acima, 4 colunas são utilizadas. Assim, 4x8 bytes.

Para estimar a memória ocupada por cada função do usuário e bloco de função, verifique a tabela específica. Cada bloco de função e função do usuário aloca algum espaço de memória quando inseridos na rede Ladder.

FUNÇÃO DO USUÁRIO (UF)		
Cada função do usuário	20	
Cada temporário utilizado (TEMPn)	4	
Cada saída utilizada (OUTn)	7	
Cada operador AND e OR	4	
Cada constante "0" ou "1"	5	
Cada variável	11	
Variável precedida por transição positiva ou negativa (^ ou !).		

Cada função do usuário (UF) pode ser usada apenas um vez em qualquer rede lógica. UF permite que a lógica seja inserida diretamente através de uma equação booleana através do método Click-And-Write.

Para calcular o tamanho de memória utilizado por uma configuração de modo a acomodar uma UF específica, são aplicadas as seguintes regras:

- Qualquer função por si só ocupa 20 bytes.
- 4 bytes para cada vez que uma variável temporária for usada (Tempn).
- 7 bytes para cada saída de função (Outn).
- 11 bytes para qualquer variável não precedida por um símbolo sensor de transição (^ ou !).
- 17 bytes para qualquer variável precedida por um símbolo sensível a transição (^ ou !).
- 4 bytes por cada operação "AND" ou "OR".
- 5 bytes por cada constante "0" ou "1".

Exemplo: A função SELECT . Esta função simula uma chave multiplexadora com quatro entradas (INA,INB,INC e IND) selecionadas por SEL1 e SEL2. OUT1 representa a saída da chave. OUT2 mostrar se qualquer uma das entradas é zero. A função também prepara a bobina24 para indicar como a seleção de linha poderia tolerar qualquer mudança.

SELECT

TEMP1:=/SEL1*/SEL2*/INA; TEMP2:=/SEL1*SEL2*INB; TEMP3:=SEL1*/SEL2*INC; TEMP4:= SEL1*/SEL2*IND; COIL24:=^SEL1+!SEL1+^SEL2+!SEL2; OUT1:=TEMP1+TEMP2+TEMP3+TEMP4; OUT2:=INA+INB+INC+IND; END SELECT

Assim:

Regra	Descrição	Número de bytes
1	São precisos 20 bytes para a Função de usuário (UF)	20
2	Variáveis temporárias foram usadas 8 vezes	8x4
3	A UF possui duas saídas	2x7
4	12 variáveis sem usar o símbolo sensível a transição ^ ou !	12x11
5	4 variáveis usando símbolos sensíveis para transição	4x17
6	14 ANDs e ORs	14x4
7	Sem constantes	0
	Total de Bytes	322 bytes

BLOCOS de FUNÇÃO

ID	NOME DA FUNÇÃO	DESCRIÇÃO	VER	Bytes Ladder	Bytes Parâmetros	Tempo (µs) integer (*)	Tempo (µs) real (*)
0	TON1	Tempo de atraso para ligar	1.00	6	18	34	-
1	TOF1	Tempo de atraso para desligar	1.00	6	18	33	-
2	TP1	Pulso do timer	1.00	6	18	37	-
3	CTU1	Contador crescente	1.00	6	18	38	-
4	TON	Tempo de atraso para ligar	2.00	6	14	41	-
5	TOF	Tempo de atraso para desligar	2.00	6	14	38	-
6	TP	Pulso do timer	2.00	6	14	58	-
7	CTU	Contador crescente	2.00	6	12	52	-
8	CTD	Contador decrescente	2.00	6	12	62	-
9	BWL	Lógica digital (AND, NAND, OR, NOR, XOR, NXOR).	2.30	6	8 + 2*n + T	60	-
10	NOT	Operação NOT BIT a BIT	2.30	6	6 + T	43	-
11	ICT	Constantes Inteiras	2.00	6	20	43	-
12	RCT	Constantes Reais	2.00	6	38	-	183
13	ITR	Conversão Inteiro para Real	2.00	6	8	-	463
14	RTI	Conversão Real para Inteiro	2.00	6	6	557	-
15	TRC	Truncagem	2.00	6	6 + T	61	-
16	ABS	Valor Absoluto	2.00	6	6 + T	46	192
17	SQR	Raiz Quadrada	2.30	6	18 + T	2746	1933
18	ADD	Adição	2.00	6	4 + 2*n + T	55	666
19	MUL	Multiplicação	2.00	6	4 + 2*n + T	74	373
20	SUB	Subtração	2.00	6	8 + T	50	409
21	DIV	Divisão	2.00	6	8 + T	65	797
22	MOD	Módulo	2.00	6	8 + T	60	-
23	SEL	Seleção Binária	2.30	6	8 + T	54	62
24	MAX	Máximo	2.00	6	4 + 2*n + T	58	373
25	MIN	Mínimo	2.00	6	4 + 2*n + T	58	567
26	LMT	Limitador	2.00	6	10 + T	353	375
27	MUX	Multiplexador	2.30	6	4 + 2*n + T	73	371
28	GT	Seqüência decrescente	2.00	6	2 + 2*n	51	541
29	GE	Seqüência monotônica decrescente	2.00	6	2 + 2*n	51	250
30	EQ	Igualdade	2.00	6	12 + 2*n	609	740
31	LE	Sequência monotônica crescente	2.00	6	2 + 2*n	54	646
32	LT	Seqüência crescente	2.00	6	2 + 2*n	54	349
33	NE	Inigualdade	2.00	6	16	301	442
34	XLIM	Limite cruzado e velocidade de variação	2.30	6	40 + T	1097	2529
35	PID	Controlador PID	2.00	6	62 + T	5678	4825
36	STP	Controle de STEP	2.00	6	26	273	1003
37	RTA	Alarme de relógio em tempo real	2.00	6	18	43	-
38	BTI	Conversão BCD para inteiro	2.30	6	6 + T	47	-
39	ITB	Conversão inteiro para BCD	2.30	6	6 + T	46	-
40	ВТВ	Conversão Byte para bits	2.30	6	2	39	-

ID	NOME DA FUNÇÃO	DESCRIÇÃO	VER	Bytes Ladder	Bytes Parâmetros	Tempo (µs) integer (*)	Tempo (µs) real (*)
41	TOT	Totalização	2.30	6	30	2008	1995
42	SMPL	Sample Hold com incremento e decremento	2.30	6	40 + T	4142	3126
43	ARAMP	Rampa automática de subida ou de descida	2.30	6	36 + T	4481	4454
44	LIN	Linearização	2.30	6	38 + T	89	1683
45	FIFO	Primeiro a Sair-Primeiro a Entrar	4.36	6	34 + 2*F_Size	2040	1700
46	ACC	Acumulador de pulsos	4.37	6	34	140	*
47	ACC_N	Acumulador de pulsos	8.41	6	136	200	*
48	OSEL	Seleção binária das saídas	8.45	6	24	89	102
49	MATH	Equações Multivariáveis	8.45	6	112	29860	30068

Onde:

- F_Size = Número de registros MODBUS selecionados para a FIFO.
- n = Número de entradas IN de blocos de função na caixa de diálogo extensível (parâmetro de valor extensível) quando inserida este bloco de função na rede.
- T = Número de bytes para tipo selecionado de saída do bloco de função. Ver tabela abaixo:

TYPE	(T) BYTES
BOOL	1
INT	2
WORD	2
REAL	4
ANY	8
ANY_NUM	8
ANY_INT	8
ANY_REAL	8
ANY_BIT	8

Tempo de execução: é dado em microsegundos e depende do tipo de entrada/saída selecionada para o bloco de função. Se bloco de função possuir um tipo diferente de inteiro ou real, utilize a coluna Inteiro para calcular seu valor.

Conectando ao DF65

A maneira mais fácil de conectar um PC ao DF65 é através da porta serial. A primeira porta da CPU do DF65 é uma EIA-232 que pode comunicar com qualquer PC que possua uma porta serial padrão disponível. A maioria dos PCs possui duas portas seriais descritas como COM1 ou COM2.

Cabos

O cabo produzido pela SMAR "C232-700" de 72 polegadas pode ser utilizado para conectar uma porta DB9 macho serial a uma porta serial DB9 fêmea na DF65 ou um cabo pode ser montado seguindo o esquema abaixo. A figura ilustra como montar um cabo no caso do PC possuir um conector DB9 ou DB25.

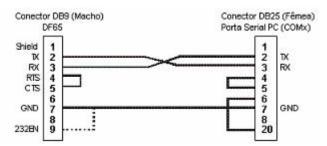


Fig 3.67- Cabo Serial para Conectar o PC e a DF65: Conector DB9

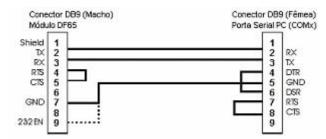


Fig 3.68- Cabo Serial para Conectar o PC e a DF65: Conector DB25

Existem outros cabos que podem ser utilizados em um sistema DF65. Por favor, consulte o manual Guia do Usuário do DF65 para maiores informações.

O próximo passo é saber como configurar os parâmetros de configuração para o DF65. É preciso localizar e colocar a chave de comunicação na CPU do DF65 na posição default no caso do usuário ter se esquecido de como a CPU foi configurada ou se é a primeira vez que esta comunicação é testada.

Chave de Comunicação

No módulo CPU, entre as portas de comunicação, existe um grupo de 4 chaves. Usando uma chave de fenda pequena deve ser assegurado que a chave mais inferior das 4 esteja deslizada apontando para a esquerda olhando-se de frente para o módulo. Nesta posição a CPU está com os parâmetros default de comunicação MODBUS. Isto é, o Device ID, também chamado Device Address é 1, baud rate igual a 9600 bps e a paridade é par.

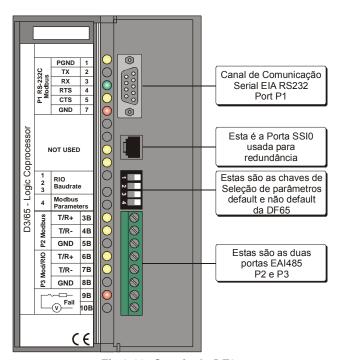


Fig 3.69- Canais da DF65

Mais tarde estes parâmetros podem ser alterados usando o LOGICVIEW mas eles só terão efeito quando a chave de comunicação estiver na posição de Não Default (chave à direita).

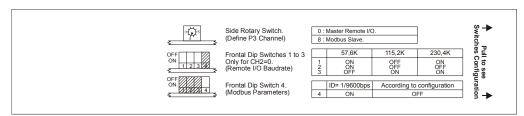


Fig 3.70- Especificações das Chaves de Comunicação e DIP Switches

Para maiores informações sobre as chaves de comunicação e canais de comunicação do DF65 veja também o manual Guia Do Usuário do DF65.

Camada Física e Time Out

Agora deve ser verificado se as configurações de comunicação permitem que o LOGICVIEW comunique com a CPU do DF65. Vá até o menu Ferramentas-Ajustes de Comunicação e a seguinte caixa de diálogo será aberta. Selecione a interface para a camada física EIA-232 como mostrado na figura.

Fig 3.71- Configurando o Canal EIA-232: Parâmetros

Em seguida clique na etiqueta de "Time Out" e número de vezes que o computador deveria tentar no caso de falha na comunicação.

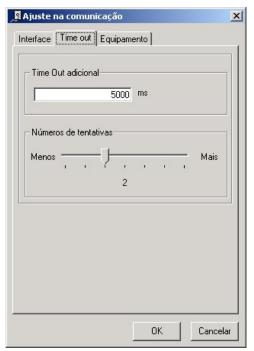


Fig 3.72- Configurações de Comunicação: Time Out

Alterando as Configurações de Comunicação do DF65

Considerando que a conexão entre o PC e a DF65 seja estabelecida através do canal serial EIA-232 e o PC executando LOGICVIEW. Deve-se certificar que o cabo serial esteja instalado, o LOGICVIEW é configurado para EIA-232 e a chave de comunicação está colocada na posição default.

Abrindo a caixa de diálogo DF65 ON-LINE através do menu: Ferramentas/Online ou clicando em

O LOGICVIEW tentará conectar com a CPU do DF65 tão logo o modo on-line é chamado. Se o LOGICVIEW não puder detectar a presença do DF65, ele entrará em estado de time out e esperará com a caixa de diálogo DF65 ON-LINE aberta. Isso possibilita que o usuário modifique alguns parâmetros para corretamente configurar a comunicação.

No caso da LOGICVIEW encontrar uma CPU que se encaixe aos parâmetros já configurados, adicionará em Device, Version, Release, Configuration Name e Status presente como mostra a caixa de diálogo abaixo.

Fig 3.73- Configurações de Comunicação do DF65

É importante lembrar que o módulo CPU possui a chave de comunicação, indicando que os parâmetros default de comunicação estão ativos. Neste caso o endereço é 1, baud rate é 9600 bps e a paridade é par. O modo mais fácil de atingir estas condições é selecionar a opção "Default" embaixo de "Communication Parameter" na figura acima. Nesta condição não é possível fazer mudanças no frame da porta serial.

Alterando os Parâmetros de Comunicação do DF65

Para alterar os parâmetros de comunicação do DF65 vá até "Prm Com", clique nesta opção e trabalhe na seguinte caixa de diálogo.

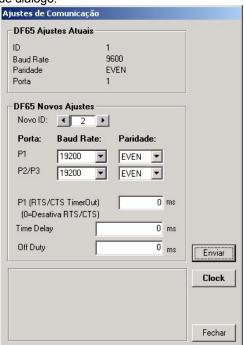


Fig 3.74- Parâmetros de Comunicação do DF65

Após serem alterados os parâmetros, o botão "Enviar" deverá ser acionado. O DF65 receberá a informação e informará que estas modificações vão ocorrer apenas quando o usuário mudar a chave de comunicação no módulo DF65 para a posição não default.

Existem 3 portas de comunicação serial no DF65. Uma porta P1 (EIA-232) e duas portas EIA-485 (P2 e P3). O usuário poderá configurar para cada uma dessas portas o baud rate, paridade e outros parâmetros específicos.

Porta P1

- Baud rate (9600 a 57600 bps)
- Paridade (Par, ímpar ou sem paridade)
- RTS/CTS Timeout:

CTS: É um sinal discreto que indica dispositivo pronto para transmissão.

RTS: Sinal de solicitação para transmitir os dados.

O PC faz uma pergunta ao DF65 que trata esta requisição. Em seguida, o DF65 envia o sinal de RTS ficando na espera pelo sinal de CTS durante o período de tempo configurado no parâmetro RTS/CTS Timeout.

- Off Duty: É o tempo disponível para comunicação quando o DF65 não estiver executando um diagrama Ladder. Quanto maior for o valor de Off duty maior o tempo disponível para comunicação.
- **Time Delay:** O PC envia um frame para o DF65, diz-se que ele está enviando uma "pergunta". O DF65 espera o valor configurado em Time Delay para processar o "frame-pergunta" e enviar uma resposta ao PC.

NOTA:

Para que seu sistema possua melhor performance recomenda-se que:

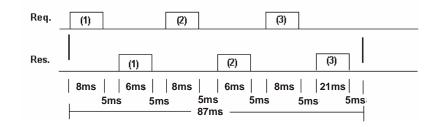
- OFFDUTY seja configurado como 20 % do ciclo de execução da Ladder e que seja feito um ajuste fino de acordo com o desempenho da comunicação.
- O valor de Time Delay depende do processador da estação de trabalho do usuário. Se o processador for superior a um Pentium MMX 233 MHz recomenda-se que Time delay seja configurado como 4 ms. Caso contrário, recomenda-se ajustar o Time Delay com um valor superior ao valor default.

Importante

Se o Time Delay ou o OffDuty estiver configurado com o valor "0", a CPU trabalhará com os valores default para o parâmetro em questão.

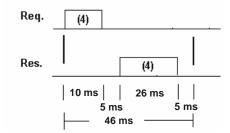
Portas P2 e P3

A porta P2 é um canal serial EIA-485 que tem dois parâmetros configuráveis: baud rate (9600 a 115200 bps) e paridade (par, ímpar ou sem paridade). P3 é a outra porta serial EIA-485. Quando esta porta é utilizada na comunicação Modbus (ver item de modo de operação do DF65 no manual do DFI302 – Manual do Usuário), os parâmetros baud rate e paridade também são válidos para esta porta.


Otimização da Comunicação

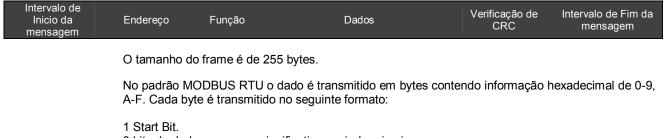
O método mais otimizado de comunicação é com a utilização de Block View. A View é uma lista dos pontos da Configuração (AI, DI, AO e DO). Ela é configurada internamente no DF65 e pode otimizar a velocidade de comunicação, pois compacta em um mesmo frame os pontos configurados.

Abaixo, tem-se uma comparação entre a leitura dos pontos sem utilização da View e com utilização da View.


Leitura sem View:

- 1) Leitura DF20 8Pts (req:8 bytes res: 6 bytes)
- 2) Leitura DF22 8Pts (req:8 bytes res: 6 bytes)
- 3) Leitura DF45 8Pts (req:8 bytes res: 21bytes)

Leitura com View:


4)Mesma leitura acima (req:10 bytes - res: 26 bytes)

Observação: O Time Delay programado é igual a 5 ms.

O framing da mensagem MODBUS

O protocolo MODBUS RTU possui o frame basicamente começando com um intervalo silencioso seguido de um endereço, função, dados, verificação de CRC (Verificação Cíclica de Redundância) e outro intervalo para indicar o fim da mensagem.

8 bits de dados, o menos significativo enviado primeiro.

1 bit para paridade par ou impar. (se houver paridade)

1 Stop Bit

Start Bit 8 bits de dados Paridade Stop bit

Lista de Comandos Modbus Implementados

Número da Função	Nome da Função	Descrição	Implementação
1/01H	Read Coil Status	Lê o status On/Off das saídas discretas (referências 0xxxx, bobinas) no escravo.	ок
2/02H	Read Input Status	Lê o status On/Off das entradas (referências 1xxxx, bobinas) no escravo.	ок
3/03H	Read Holding Registers	Lê o conteúdo binário dos registros de holding (referências 4xxxx) no escravo	ок
4/04H	Read Input Registers	Lê o conteúdo binário dos registros de entrada (referências 4xxxx) no escravo	ок
5/05H	Force Single Coil	Força uma bobina simples (referência 0xxxx) para On ou OFF	ок
6/6H	Preset Single Coil	Preseta um valor para registro holding (referências 4xxxx).	ок
15/0FH	Force Multiple Coils	Força cada bobina (referência 0X) em uma seqüência de bobinas para ON ou OFF.	**OK

Número da Função	Nome da Função	Descrição	Implementação
16/10H	Preset Multiple Regs	Preseta uma valores em uma seqüência de registros holding (referências 4xxxx)	*ОК
17/11H	Report Slave ID (o ID do DF65 é igual a 2)	Retorna a descrição do tipo de controlador presente no endereço do escravo, o status atual do indicador de RUN do escravo, e outras inforamações específicas para o dispositivo escravo.	ок
22/16H	Mask Write 4xxxx Register	Usado para setar ou apagar bits individuais em um registrador 4xxxx	*OK
23/17H	Read/Write 4xxxx Register	Realiza a combinação de uma operação de leitura e uma operação de escrita em uma transferência simples Modbus. A função pode escrever novos contéudos em um grupo de registros 4xxxx, e então retornar o conteúdo de outro grupo de registros 4xxxx.	ок

^{*} Somente implementado nas versões de firmware 1.30xx ou superior

Configurações de Comunicação para Ethernet

Time Out para LAN

Para conexão em Ethernet o time out será bastante dependente do ciclo de execução da DF65 e o tráfego na rede. Uma boa dica é começar com 5000 ms e 3 tentativas de comunicação antes da notificação de erro. Vá até o menu: Ferramentas-Ajustes de Comunicação e clique na etiqueta Time out.

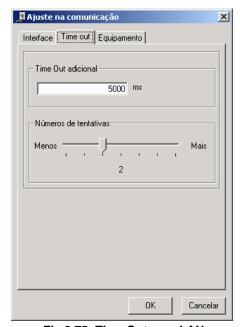


Fig 3.75- Time Out para LAN

Endereço IP do ENET-700/ ENET-710

Para conectar o PC ao sistema DF65 através da Ethernet será preciso um módulo ENET-700/ ENET-710 e um cartão adaptador Ethernet no PC. A próxima figura mostra onde o módulo ENET-700/ ENET-710 é inserido. A comunicação através da Ethernet é baseada no protocolo MODBUS/TCP. A porta configurada para esta comunicação é 502, mas se necessário, esta porta pode ser alterada. Vá até menu: Ferramentas→Ajustes de Comunicação.

^{**} Somente implementado nas versões de firmware 2.31.03 ou superior

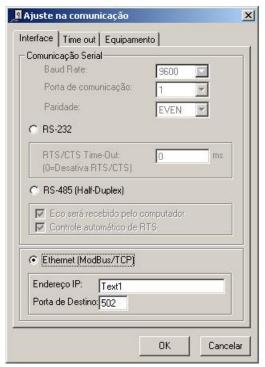


Fig 3.76- Configurando o Endereço IP do ENET-700/ ENET-710

Usando ENET-700

O ENET-700 precisa ser preparado de acordo com as configurações da rede estabelecida pelo admistrador da rede. O melhor a ser feito é consultar o administrador da rede onde se deseja conectar o módulo ENET-700 para maiores detalhes antes de prosseguir.

O módulo ENET-700 vem com um endereço IP configurado de fábrica, mas que pode ser alterado pelo usuário. A aplicação do Windows TELNET permite fazer todas as configurações iniciais no ENET-700 usando o endereço IP de fábrica e se referindo à porta 9999 (configuração). O endereço IP de fábrica é fixado num rótulo localizado no lado do módulo ENET-700. A figura seguinte mostra o que basicamente deve ser feito no TELNET quando tenta-se fazer a conexão.

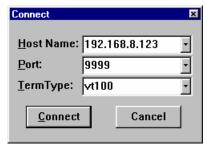


Fig 3.77- Conectando-se ao ENET700

Tão logo usuário tenha clicado no botão de Connect e a configuração do computador do usuário esteja compatível para comunicar com o ENET-700 uma mensagem é enviada. Pressionando ENTER para iniciar a configuração, uma tela como a abaixo será mostrada.

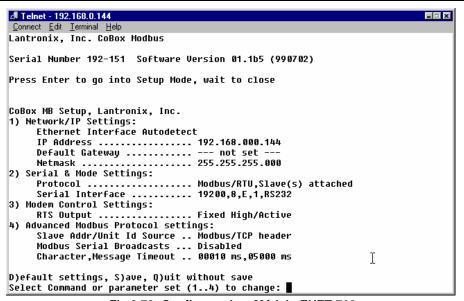


Fig 3.78- Configurando o Módulo ENET-700

Digite o número do item que se deseja alterar e siga a seqüência de parâmetros. Ao final pressione "S" para salvar ou "Q" para sair sem salvar.

Item 1: São as configurações do ENET-700 com relação à rede.

Observação: Para a Classe C, a faixa de endereços IP disponíveis é **192.0.1.1** a **223.255.254.254**, sendo que os endereços com final 0 e 255 são reservados.

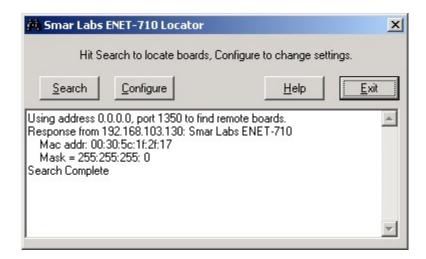
Item 2: São as configurações para a compatibilidade da porta serial do DF65.

Item 3: Não precisa ser alterado.

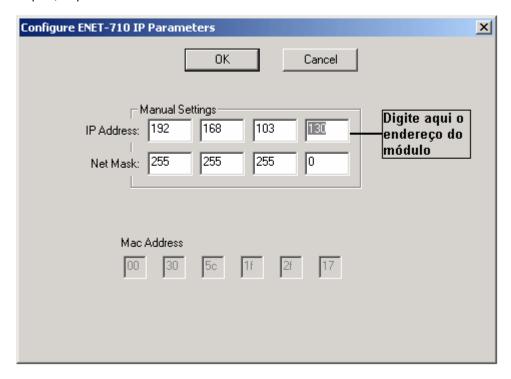
Item 4:

Slave Addr/Unit Id Source . . Modbus/TCP header (default)

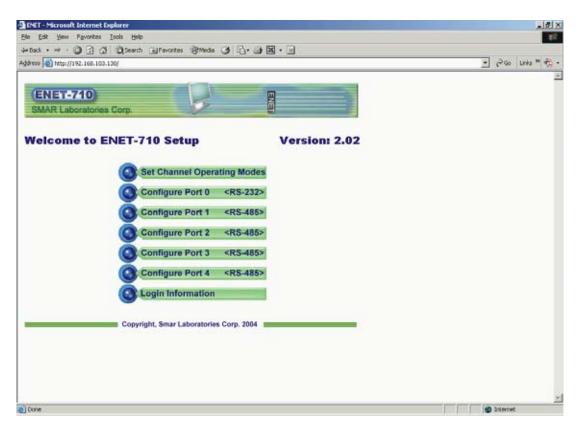
Modbus Serial Broadcasts . . . Disable (default)


Character, Message Timeout . . . 00010 ms, 00500ms (recomendado)

Usando ENET-710

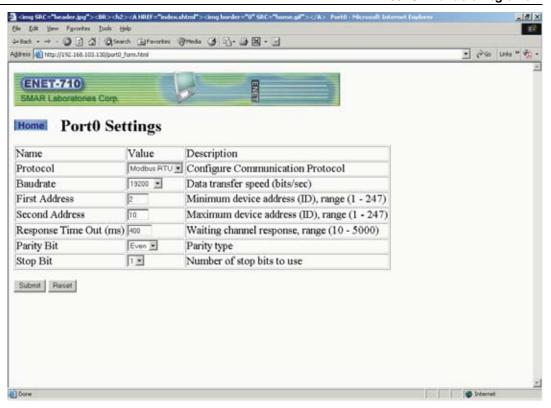


Dê um duplo clique sobre o ícone


para abri-lo. A janela abaixo será exibida:

Clique no botão Configure para configurar o endereço do módulo ENET-710 que será usado. Depois, clique em OK.

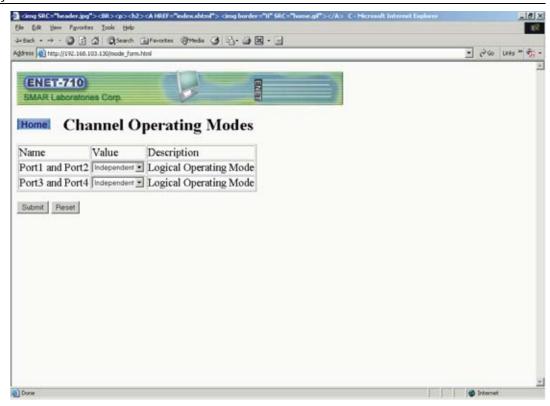
Abra o web browser e insira o endereço IP do módulo na barra de endereços do web browser. Uma visualização do menu de configuração do nível superior é mostrada a seguir:



Menu de Configuração

Os botões de configuração username/password são protegidos. Após a seleção inicial de qualquer um dos botões, uma caixa de diálogo aparecerá perguntando o username e password. Uma vez que o username e a password foram inseridos corretamente, o ENET-710 irá relembrar deles durante o resto da sessão. Note que o username e password são Case sensitive (por exemplo, se o username e a password forem configurados com letras maiúsculas, deverão ser escritos com letras maiúsculas, caso contrário não serão reconhecidos pelo ENET-710. O mesmo vale para username/password configurados com letras minúsculas).

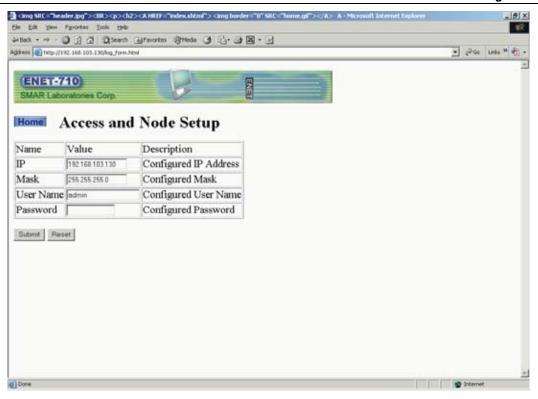
Configuração da Porta Serial


Para configurar qualquer uma das cinco portas seriais, clique em um dos botões Configure Port X (no qual X pode ser 0, 1, 2, 3 ou 4) no menu principal. O menu de configuração das portas é mostrado abaixo (para todas as cinco portas é semelhante). Escolha o protocolo serial Modbus/RTU. Selecione o baud rate serial e o formato do caracter (paridade, stop bit). A apridade pode ser par, ímpar ou sem paridade. O usuário pode escolher 1 ou 2 stop bits. Selecione as faixas de endereços dos equiapmentos seriais inserindo o endereço inferior da faixa,na primeira caixa de endereços e o endereço superior da faixa, na segunda caixa de endereços. Insira o time out de resposta dsejado na caixa timeout. Finalmente, clique no botão Submit para salvar a nova informação.

Configurando as portas do ENET-710

Modos de Operação da Porta RS-485

Para configurar os modos de operação da porta RS-485, selecione o botão Set Channel Operating Modes no menu de configuração principal. Aqui há um modo redundante de configuração para as portas RS-485 que pode ser habilitado. Os pares 1-2 e 3-4 de portas seriais podem fornecer operação redundante no caso da conexão de um dos membros falhar. Os modos incluem Independente (sem redundância), Paralelo (Parallel) e Anel (Ring). O menu é mostrado a seguir:



Para ambos modos paralelo e anel, a operação é a seguinte: se a comunicação está dirigida para um endereço que está configurado para ser uma porta no par, mas não há resposta, o ENET-710 tentará comunicar-se com o equipamento usando a outra porta no par.

Escolha o modo desejado de operação e clique no botão Submit para habilitar a configuração.

Mudando o Endereço IP e Username/Password

Para mudar o username/password ou o endereço IP do módulo, selecione o botão Login Information no menu principal. Este abre a página para ajustar o endereço IP desejado e a máscara de subrede, além do username e password. Note que o username e password são Case sensitive. Para alterar qualquer um destes, insira a nova informação e clique no botão Submit. Veja a figura a seguir:

Alterando Username e Password

Maiores informções sobre configuração/solução de problemas podem ser obtidas no manual do ENET-710.

Ajustando o Timeout para ENET-700/ENET-710

Para a questão de timeout, quando se usa o LOGICVIEW em Ethernet, deve ser considerado o quão ocupado é o tráfego da rede. Na maioria das vezes a melhor maneira de avaliar é tentar valores diferentes e ver como serão o download e o upload. Estes testes serão feitos usando "Times Of Retry" igual a 0 (zero). Deste modo, é possível avaliar com qual frequência os erros de comunicação ocorrem. Para uma boa performance em downloads e uploads, os esforços devem ser na direção de pequenos timeout. Normalmente um valor entre 500 ms e 5000 ms é esperado.

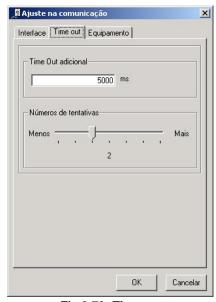


Fig 3.79- Time-out

Trabalhando ON-Line

O modo ON-LINE permite que o usuário faça o download da configuração, opere o DF65, monitore, verifique erros, otimize a configuração, etc. Clique no ícone ON-Line, certificando-se que os parâmetros de comunicação selecionados estejam de acordo com aqueles na DF65 e que o cabo esteja conectado.

O DF65 será localizado e identificado. A versão da CPU, nome da configuração e status serão indicados.

Fig 3.80- A Janela DF65 ON-LINE

Fazendo o Download da Configuração

É uma prática segura salvar a configuração quando ela está pronta. O usuário pode também verificar erros rodando o procedimento Check Configuration. Para ativar vá até o menu e selecione Configuração/Verificar Configuração.

Se a verificação vier sem mensagens de erro já é possível enviar a configuração para a DF65. A configuração também pode ser salva mesmo se não estiver totalmente limpa de erros, para edição futura.

Os Processos de Download

Clique no botão de "Download" na caixa de diálogo DF65 ONLINE para enviar a configuração para a DF65. Neste ponto o LOGICVIEW prepara todos os dados que precisam ser enviados para os buffers através de uma compilação especial e começa a enviar. Uma barra gráfica horizontal indicará o progresso.

Quando a DF65 começar a receber a informação do download as saídas serão congeladas com os últimos valores e, também, a memória não volátil será apagada para substituir o seu conteúdo com a NOVA configuração. Quando a nova configuração estiver completamente transferida, a DF65 substituirá as saídas congeladas com os valores de segurança que acabaram de ser enviados e perguntará ao usuário se ele deseja começar a rodar a configuração ou permanecer no modo HOLD.

Não importa qual opção em que se começa, modo RUN ou HOLD, a CPU inicia no modo valores de segurança como configurado. O usuário possui a responsabilidade de remover o modo Safe Value pressionando o botão SAFE na caixa de diálogo abaixo

Fig 3.81- O LOGICVIEW Conectado ao DF65

Clique no botão RUN para alterar a execução do programa entre run e hold. RUN, um LED verde indica o modo; HOLD, um LED amarelo indica (pausa). RUN é o modo normal onde a aplicação do usuário é executado. No modo HOLD a aplicação do usuário não está sendo executada.

Entradas Freeze

Clique no botão Freeze para alterar a execução do programa entre scanning e froze. No modo FREEZE todas as entradas não são escaneadas e o programa do usuário é executado baseado no status das entradas no tempo de congelamento das entradas.

Saídas Freeze

Clique no botão Freeze para alterar as saídas entre updating e congeladas. Um LED vermelho indica o modo freeze. No modo FREEZE as saídas não são atualizadas, mas o programa do usuário é executado normalmente. Uma vez que o modo retorna para normal, as saídas serão atualizadas de acordo.

Saídas Force fail-safe

Clique no botão SAFE para alternar entre atualizando e SAFE. O LED vermelho indica o modo fail-safe forçado. No modo fail-safe as saídas são forçadas para o valor pré-definido configurado na tabela global.

Monitoração ON-LINE

Esta é uma ferramenta importante para verificar como o controle de estratégia está funcionando em relação completa com a DF65.

Monitorar é somente possível se o LOGICVIEW estiver ON-LINE. Se o botão ir ON-LINE estiver habilitado, clique neste botão. Caso contrário, é necessário fazer o upload da configuração presente na CPU.

A DF65 deve estar no modo RUN para objetivos de monitoração. Veja se o LED RUN está em ON, caso contrário, clique em

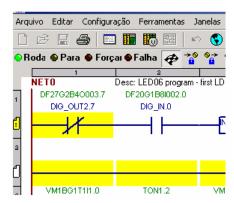


Fig 3.82- O LED RUN

A CPU em Modo RUN

A monitoração permite visualizar como cada rede individual está atuando e certificar-se que ela está funcionando do modo desejado durante a programação. Entradas e saídas dos blocos de função também podem ser monitorados. No modo Monitoring, clique no ícone (adicionar este ícone) . Deste modo o LOGICVIEW passa a mostrar na tela os valores numéricos das entradas e saídas dos blocos de função.

Após o download estar completo vá até o menu: Ferramentas/Monitorar ou clique em

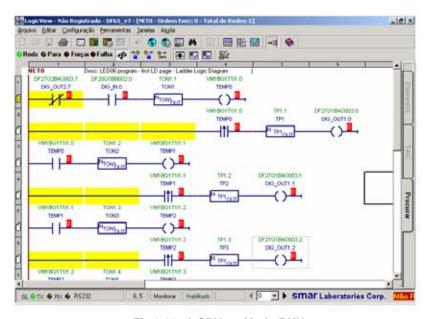


Fig 3.83- A CPU no Modo RUN

Monitorando Blocos de Função e Elementos Ladder

O usuário poderá monitorar automaticamente os valores das entradas e saídas dos blocos de função e também dos elementos Ladder (contatos e bobinas) na Net atual clicando nos botões

abaixo. Eles são habilitados tão logo o DF65 estiver ON-LINE com a sua estação de trabalho e o usuário selecionar a monitoração.

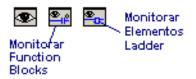


Fig 3.84- Botões de Monitoração

Monitorando Velocidade

Vá até o menu: Ferramentas/Preferências e clique na etiqueta Misc. Dentro do frame Online selecione "Período de Monitoração da Rede". Dependendo da performance do computador e do modo que a conexão é configurada com a DF65, pode ser impossível atingir a velocidade desejada.

Fig 3.85- Configurando a Velocidade de Monitoração

Monitorando blocos de E/S

Também é possível visualizar os valores analógicos das entradas e saídas dos blocos de função, clicando no bloco de função e na caixa diálogo que aparecer no botão YES. Isto ativará a monitoração dos links de E/S analógicos do bloco de função específico.

Outros blocos de função podem, de maneira similar, ser selecionados para monitoração.

De maneira análoga a monitoração do bloco de função pode ser desabilitada. Quantos mais blocos de função forem selecionados para serem monitorados maior será o período de monitoração.

O usuário pode também utilizar o botão para habilitar a monitoração dos blocos de função.

Forçando Elementos

Para forçar um elemento discreto como um relé ou uma bobina basta clicar sobre ele enquanto estiver no modo de monitoração. Uma caixa de diálogo dará a opção para forçar de 0 (false) para 1 (true) durante um ciclo da rede lógica do DF65. Após isso, o sinal assumirá o valor de acordo com a lógica ou o estado natural do ponto forçado.

Por exemplo, se uma entrada é forçada, após o ciclo em que ela é forçada, o seu valor estará de acordo com o scan de entrada. Se a variável forçada é virtual, que não está sendo usada na lógica e não foi mudada através de comunicação, o valor ficará igual ao valor forçado.

Usando a Ferramenta de Monitoração na Página Endereços MODBUS

Usando esta ferramenta o usuário poderá monitorar os valores dos pontos de E/S, variáveis de blocos de função, parâmetros e valores de registradores especiais na página de endereços MODBUS. O usuário deve estar ON-LINE para utilizar esta ferramenta para visualizar os valores

dos pontos. Para monitorar os pontos desejados, clique no botão Endereços MODBUS na barra de ferramentas ou no menu Configuração. A seguinte janela aparecerá:

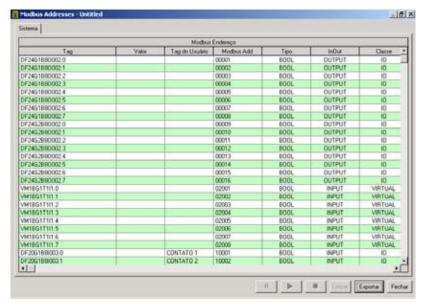


Fig 3.86- Usando o Botão de Monitoração para Monitorar Variáveis MODBUS na Janela Endereços MODBUS

Os botões de monitoração na janela acima estão desabilitados. Isto ocorre porque o usuário deve antes selecionar ao menos um ponto para que este botão esteja habilitado.

Selecione os pontos desejados para ver seus valores. Isto é feito clicando-se com mouse à esquerda de cada linha. O cursor é alterado para um arco quando o usuário aponta o mouse neste botão. Para cancelar a seleção dos pontos basta clicar à esquerda da linha novamente. Para apagar os pontos selecionados clique no botão Limpar.

Para monitorar os valores clique no botão Monitorar Valores

A janela agora mostra somente os pontos sendo monitorados juntamente com seus valores.

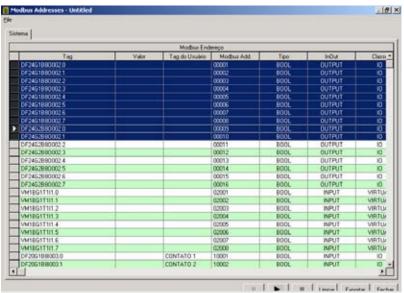


Fig 3.87- Monitorando Variáveis na página Endereços MODBUS

Para temporariamente interromper a monitoração clique no botão de Pausa

Para reiniciar a monitoração clique novamente no botão de Pausa.

Para interromper a monitoração clique no botão de Parar . Isto leva o usuário de volta a antiga janela que mostra todos os pontos disponíveis.

Os pontos selecionados anteriormente permanecem selecionados de modo que o usuário não tenha que selecioná-los novamente se for necessário monitorá-los.

Mesmo se o usuário fechar a janela e voltar mais tarde, os pontos estarão ainda selecionados para conveniência do usuário. Clique no botão Limpar para apagar a seleção.

Fig 3.88- Variáveis MODBUS Selecionadas

O usuário pode também selecionar pontos múltiplos usando a tecla Shift. Selecione um ponto, pressione Shift e selecione outro ponto. Todos os pontos no meio destes dois serão selecionados.

Modo ON-LINE

O controlador DF65 possui dois modos de edição on-line: "Editar Online" e "Edição Online Completa". Estes dois modos são bem distintos e concorrentes entre si, sendo que a opção de uso entre um modo ou o outro depende do tipo de alteração a ser efetuada.

- Editar Ladder On-line
 Edição On-line Completa
- Para facilitar a visualização da configuração do Ladder nos dois modos On-line, o usuário pode configurar duas cores de fundo diferentes para o Ladder de cada modo on-line. Na barra de ferramentas, clique na opção Ferramentas e depois escolha Preferências, dê um clique na paleta Cor. A sequinte figura será mostrada:

Fig. 3.89 - Alterando a cor de fundo da rede Ladder

Opção Editar Ladder On-line

Neste modo o usuário poderá:

- Alterar elementos lógicos;
- Alterar tag's destes elementos lógicos;
- Alterar parâmetros de blocos;
- Alterar blocos de função;
- Visualizar o comportamento do processo de controle após a alteração (através da monitoração da rede lógica);
- Desfazer alterações, quando ainda não foram salvas no controlador;
- Editar apenas uma rede lógica por vez.

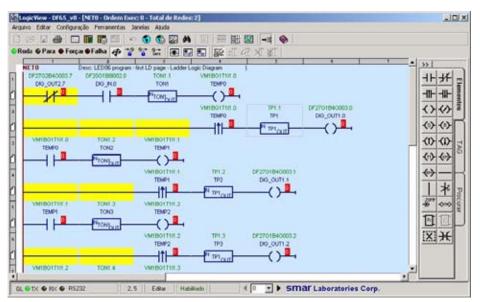


Fig. 3.90 - O Modo Editar ON-LINE

Como funciona?

Durante a edição On-Line, o DF65 aloca uma área de memória separada somente para novas mudanças. A rede lógica que estiver sendo editada será executada durante todo o processo de edição. Deste modo, o usuário pode progressivamente observar a resposta do sistema para cada uma das mudanças.

Muitas modificações podem ser feitas antes de ser decidido salvar estas alterações e enviá-las para o DF65. Será possível ainda cancelar todas as modificações enviadas para o DF65 se elas não foram salvas na NVRAM.

Para modificar um elemento lógico, seu TAG correspondente ou parâmetro do bloco de função, clica-se com o botão da direita na célula onde está o objeto. Muitas outras modificações podem ser feitas na mesma lógica antes de parcialmente enviar esta configuração para o DF65.

Após várias mudanças parciais, o usuário pode finalmente decidir confirmar uma nova configuração salvando-a na NVRAM do DF65. Pode ser uma boa idéia salvar as modificações em um disco.

Os botões para opção Editar Ladder On-line

Envia todas as alterações temporárias para o DF65. Mudanças temporárias são indicadas no DF65 por uma marca (tc), temporary change, próxima ao objeto.

Salva todas as mudanças anteriores na NVRAM do DF65. As mudanças anteriores são representadas por uma marca (pc), permanent change. O objeto lógico tem esta marca somente quando a modificação foi enviada para o DF65, mas ainda não foi salva.

Volta para a original ou para a última rede lógica salva. A rede lógica será trocada pela última configuração salva na NVRAM do DF65.

Apaga a mudança temporária que estiver selecionada na rede. Para selecionar a mudança temporária, deve-se clicar no elemento alterado utilizando o botão esquerdo do mouse.

IMPORTANTE

O bloco FIFO não pode ter seus parâmetros alterados no modo Editar Ladder On-line.

Opção Edição On-line Completa

A opção Edição On-line Completa permite ao usuário alterar uma configuração, enquanto o controlador lógico executa o ciclo de controle, sem que o processo seja interrompido, garantindo a continuidade sem alterações bruscas na planta.

Neste modo, o usuário poderá, além de realizar as alterações no modo Editar On-line, também:

- Adicionar/ Apagar redes;
- Adicionar/ Apagar módulos;
- Adicionar/ Apagar módulos E/S virtuais;
- Adicionar/ Apagar Interfaces RIO;
- Adicionar/ Apagar Função de usuário.
- Alterar configuração de módulos;
- Mover módulos:
- Desfazer alterações que já foram para o controlador;
- Visualizar o comportamento do processo de controle após a atualização (através da monitoração da rede lógica);

Informações importantes a serem consideradas antes de utilizar o modo Edição On-line Completa

Após a execução de um procedimento de alteração no modo Edição On-line Completa, deve-se salvar o arquivo de configuração e gerar novamente a lista de tags e programação da tabela MCT, através do software TagList Generator. Este procedimento é necessário, pois existe a possibilidade de tags terem sido incluídos, eliminados ou alterados.

Durante a edição on-line completa de uma configuração, não devem ser efetuadas alterações em parâmetros de blocos de função via programas supervisórios. Isto porque, após o envio da configuração para a CPU, os parâmetros que foram obtidos via upload da configuração é que estarão válidos.

Utilizando o Modo Edição On-line Completa

O modo Edição On-line Completa pode ser acessado de três maneiras, quando o usuário já estiver on-line:

- Clicando sobre o botão, que já estará habilitado na barra de ferramentas
- Clicando sobre a opção Ferramentas→ Edição On-line Completa→Editar;

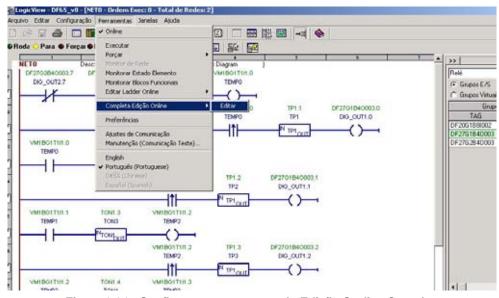


Figura 3.91 - Opção para entrar no modo Edição On-line Completa

Na página da Ladder, dê um clique com o botão direito sobre esta e a opção Edição On-line Completa aparecerá.

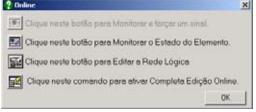


Figura 3.92 - Opção para entrar no modo Edição On-line Completa

A seguinte caixa de mensagem aparecerá indicando que o usuário escolheu o modo Edição On-line Completa.

Figura 3.93 - Edição On-line Completa Ativada

A página de rede ficará com o fundo configurado anteriormente pelo usuário e no canto inferior direito ficará indicado que o usuário está no modo "Edição On-line Completa". A configuração estará em estado de edição.

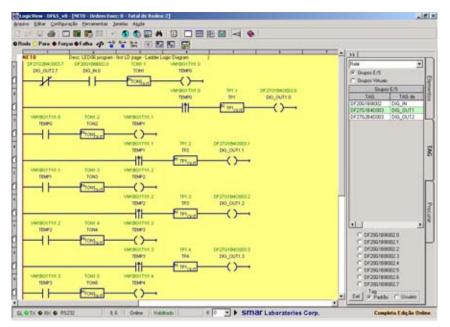


Figura 3.94 - Figura da Ladder

Após a realização da primeira alteração na configuração, não será possível efetuar qualquer tipo de monitoração. Esta inibição é devida ao fato da configuração em processamento no DF65 ser diferente da configuração que é exibida pelo LOGICVIEW. Se existir alguma monitoração, esta será desativada e a seguinte mensagem será exibida:

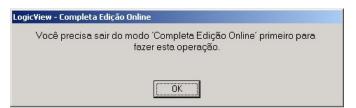


Figura 3.95 - Parada de Monitoração

Adicionando/Alterando Elementos na Ladder

Os elementos da Ladder, como relés e bobinas, podem ser inseridos, substituídos ou apagados. Quando um elemento é inserido, uma indicação (N) (Novo) aparece ao lado deste elemento. Veja a figura a seguir:

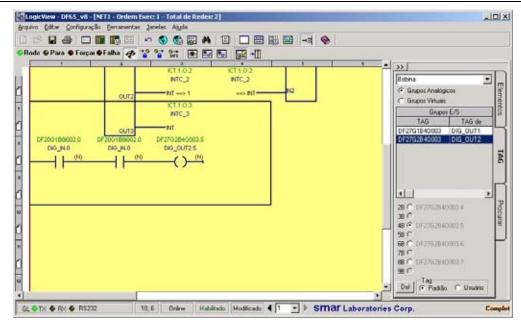


Figura 3.96 - Adição de Novos Elementos

Quando um elemento é substituído ou modificado, a indicação (tc - alteração temporária) aparecerá.

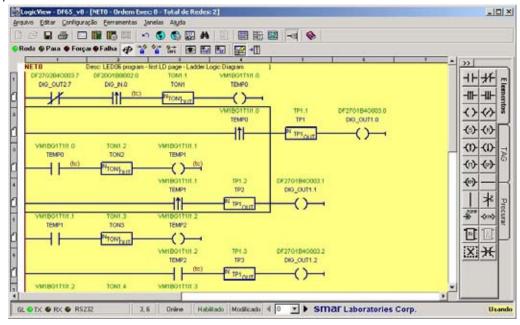


Figura 3.97 - Substituindo Elementos

Adicionando/Apagando Redes

Com esta opção, o usuário pode adicionar ou apagar redes no modo ON-LINE. Para isto, clique sobre o botão Adicionar Rede Lógica . Uma nova rede será criada. Para visualizar a rede anterior e a nova, clique sobre o botão Tile Horizontally . A figura a seguir mostra duas redes na mesma tela.

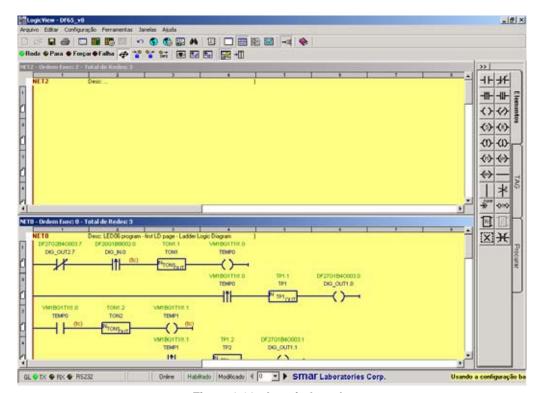


Figura 3.98 - Inserindo redes

Se for necessário remover uma rede Ladder, clique no botão Gerenciamento Rede Lógica , a janela abaixo será aberta, nela o usuário poderá apagar a rede Ladder desejada clicando sobre a linha que está a rede e depois sobre o botão Remover.

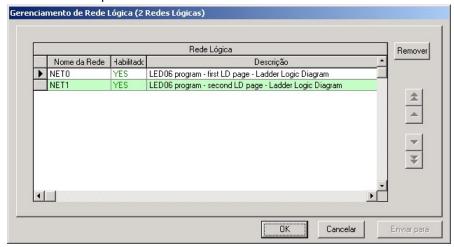


Figura 3.99 - Remoção de Redes no modo Edição On-line Completa

Adicionando/Apagando Módulos

No modo Edição On-line Completa pode-se adicionar, apagar ou substituir módulos de hardware na Página de Módulos.

Quando um novo módulo é inserido, a indicação de Novo aparecerá, como visto na sequinte figura.

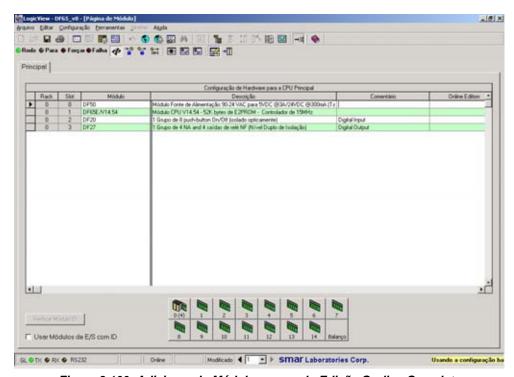


Figura 3.100- Adicionando Módulos no modo Edição On-line Completa

Quando um módulo existente for removido, haverá uma indicação de módulo apagado.

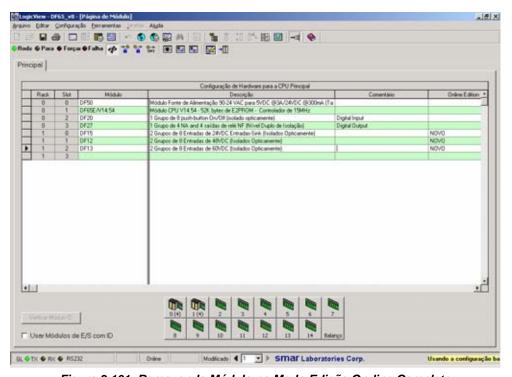


Figura 3.101- Removendo Módulo no Modo Edição On-line Completa

Quando um módulo for substituído, a indicação de SUBSTITUÍDO aparecerá.

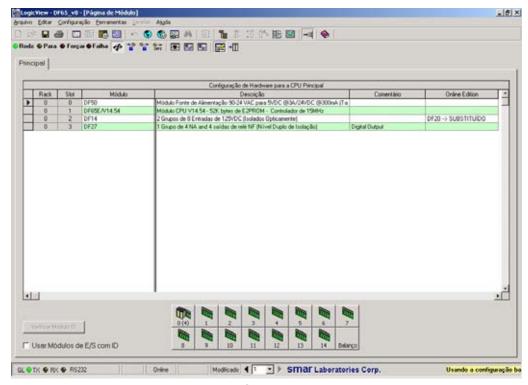


Figura 3.102 -Substituição de Módulo no Modo Edição On-line Completa

Adicionando/Apagando Módulos Virtuais

Módulos virtuais podem ser adicionados ou apagados neste modo. Proceda da mesma forma que a usada no modo OFFLINE.

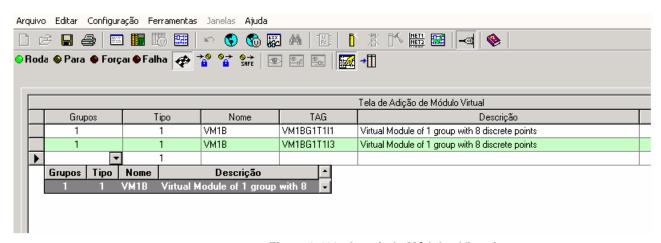


Figura 3.103 - Inserindo Módulos Virtuais

Adicionando/Apagando Interface RIO

O usuário poderá, neste modo de edição, adicionar ou retirar Interfaces RIO's.

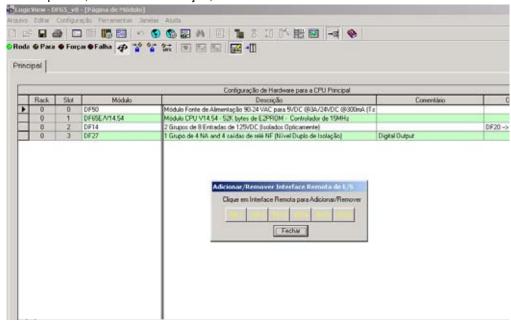


Figura 3.104 - Inserindo Interface RIO

Adicionando/Apagando Funções de Usuário

Funções de Usuário podem ser adicionadas ou eliminadas da Ladder.

Figura 3.105- Inserindo Funções de Usuário

Nota
É importante lembrar o usuário de que apenas uma instância pode ser feita para cada Função de Usuário.

Alterar configuração de módulos

No modo Edição On-line Completa pode-se alterar a configuração dos módulos de hardware na Página de Módulos. Após a alteração de configuração do módulo de hardware, a nota "MODIFICADO" será exibida: no campo 'Edição On-line' da página de hardware para o módulo de hardware alterado, conforme mostra a figura a seguir:

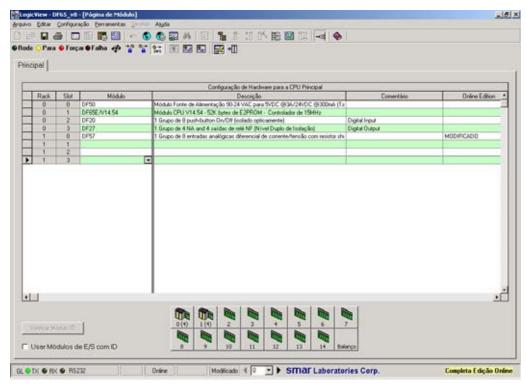


Figura 3.106 - Alterando Módulos de Hardware na Página de Módulos

Mover módulos na página de hardware

Com a opção Edição On-line Completa ativado o usuário poderá mover módulos entre quaisquer sistemas Principal e Interface Remota.

Após ter movido o módulo, será exibida no campo 'Edição Online' da página de hardware a nota: "MOVIDO DE <SRS ORIGEM> PARA <SRS DESTINO>", conforme mostra a figura 3.107. SRS – Sistema Rack Slot

Sistema: 0 – Principal

1 a 6 - Interfaces Remotas

Figura 3.107 - Módulo Movido na Página de Módulos

Atualizações no Modo Edição On-line Completa

Após as alterações desejadas serem feitas, é possível fazer a atualização no DF65. Para isto, no menu Ferramentas selecione a opção Edição On-line Completa → Enviar, ou faça isto através da barra de ferramentas ...

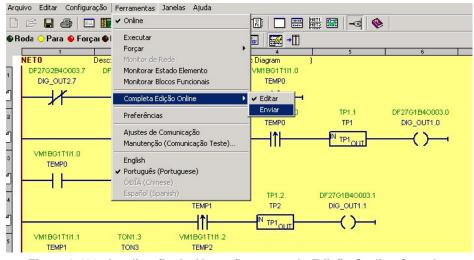


Figura 3.108- Atualização de Alterações no modo Edição On-line Completa

A seguinte janela será exibida mostrando os dados atuais da CPU do DF65 e os botões para início da atualização "Atualizar" e para retorno ao modo de edição "Fechar".

Figura 3.109 - Atualização da Configuração

Caso a opção Atualizar seja selecionada, a configuração alterada será atualizada na CPU. A indicação do progresso da atualização é indicada, conforme mostrado a seguir:

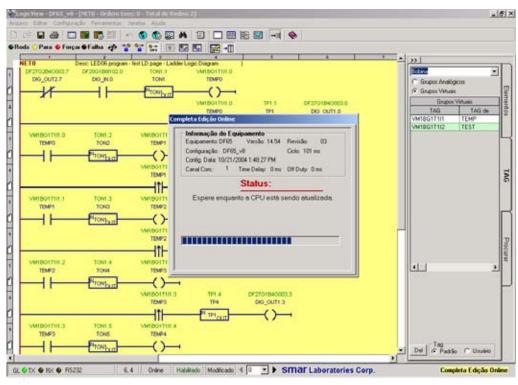


Figura 3.110 - Atualização em processo

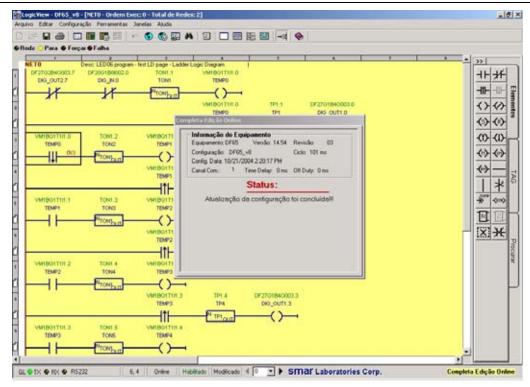


Figura 3.111 - Atualização Concluída

Nota

Após a atualização ser concluída com sucesso, o LOGICVIEW mostra os valores dos parâmetros Config Data e ciclo da nova configuração.

No caso de ter havido falha na comunicação ou falha na transferência do controle para a nova configuração, o DF65 continuará executando o controle referente à configuração original e o LOGICVIEW exibirá a seguinte mensagem:

Figura 3.112 - Atualização Cancelada

Teste do Sistema após as atualizações

Após as atualizações terem sido realizadas com sucesso, o LOGICVIEW permanece em estado de "teste". Neste estado, as monitorações estão novamente habilitadas e o usuário pode observar o comportamento do sistema com as alterações efetuadas, assim, o usuário pode escolher uma das seguintes opções:

 Confirmar as alterações efetuadas. Desta forma, o sistema passa a efetuar definitivamente o controle com a nova configuração e a configuração antiga é descartada. Cancelar as alterações efetuadas, preservando os valores atuais das variáveis dinâmicas.
 Neste caso, o sistema retorna à execução do controle com a configuração antiga e descarta a nova configuração. As variáveis dinâmicas existentes na configuração antiga, são atualizadas com os valores atuais.

Para confirmar as alterações, deve-se selecionar na barra de ferramentas a opção Edição On-line Completa → Aceitar Mudanças, ou clique sobre este botão presente na barra de ferramentas

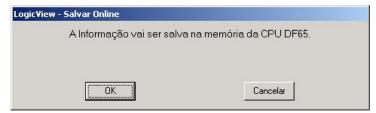


Figura 3.113- Salvar On-line

Para cancelar as alterações, deve-se selecionar na barra de ferramentas a opção Edição On-line Completa → Remover Tudo, ou clique sobre este botão na barra de ferramentas

Figura 3.114- Removendo as Mudanças na Configuração

Caso o usuário não efetue nenhuma das duas opções e vá para o modo Off-line, o DF65 automaticamente aceitará as mudanças após 5 minutos.

Download Diferencial

O Download Diferencial é uma maneira de atualizar a configuração do DF65, sendo que a edição da configuração foi feita no modo off-line.

Se o usuário precisar editar off-line uma configuração em uma estação de trabalho localizada distante do processo, poderá utilizar a opção Usar Configuração Base. Para isso, basta editar a mesma configuração enviada para o DF65, fazer as alterações e atualizar o DF65 que estiver executando o controle.

Um exemplo abaixo será mostrado de uma configuração editada utilizando esta opção.

1.º Passo

Garantir que a configuração a ser editada seja a mesma que está sendo executada na CPU. Portanto, a CPU não deverá sofrer nenhuma alteração em sua configuração.

Nota:

Se a configuração executada na DF65 não for a mesma editada pelo usuário na estação distante do processo, não será possível enviar a configuração para a DF65 sem que o processo seja interrompido.

Tabela de Condições

- O arquivo de configuração possui duas datas:
- 1) Data de salvamento (DataSave): data do último salvamento
- 2) Data de referência (DataRef): data que será enviado para a DF65 e também será referência para possibilitar o download diferencial.

DateOfDF65: data da configuração que está na DF65.

Regras:

Tipo de Ação	Opção	Algoritmo
Download Normal	Somente Download	IF FILE_MODIFIED THEN DateRef ← Now ELSE DateRef←DateSave END
Download Normal	Salvar e Download	DateRef ← Now
Upload		DateRef ←DateOfDF65
Salvar Salvar como		IF OFFLINE AND FILE_MODIFIED_AFTER_DOWNLOAD AND NOT_USING_BASE_CONFIGURATION THEN DateRef ← NULL END
Atualização ou Download Diferencial		DateRef ← Now

Nota

Se o campo DateRef = Null indica que a configuração mudou desde o último download para a DF65, desta forma não será permitido habilitar a opção Usar Configuração Base.

2º Passo:

Através da barra de ferramentas, selecione a opção Ferramentas → Definir configuração base.

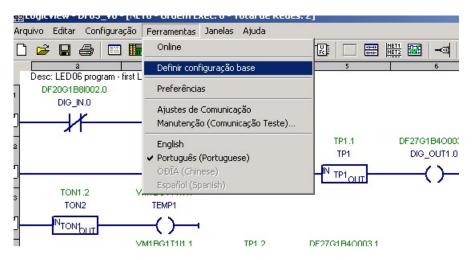


Figura 3.115 - Setando a Opção Usando Configuração Base

No canto inferior direito ficará indicado que a Configuração Base está sendo usada.

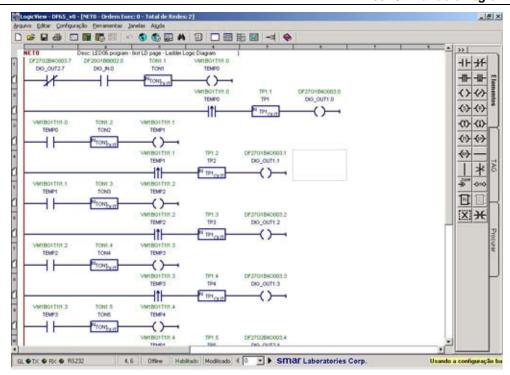


Figura 3.116- Opção Usando a Configuração Base Setada

3º Passo:

Fazer as alterações necessárias na configuração.

4º Passo:

Caso 1: A DF65 está conectada ao computador.

Após fazer todas as alterações na configuração, clique sobre o botão Online. A opção de Download Diferencial estará habilitada.

Caso 2: A DF65 não está conectada ao computador ou for desejado fazer o envio da alteração mais tarde.

Neste caso, deve-se salvar a configuração a qual será aberta quando for fazer o Download Diferencial estando em um computador conectado ao DF65.

Nota

A opção Dwl Diferencial somente será habilitada se a condição DateRef = DateOfDF65, ou seja a data de referência do arquivo de configuração for a mesma da DF65.

Figura 3.117- Opção de Download Diferencial Habilitada

Fazendo um Download Diferencial, as alterações que foram feitas off-line serão enviadas para a CPU.

Figura 3.118 - Atualização das Alterações

Uma mensagem de atualização da CPU será mostrada.

Figura 3.119 - Atualização em progresso

O LOGICVIEW irá para o modo Edição On-line Completa com a configuração já atualizada na CPU.

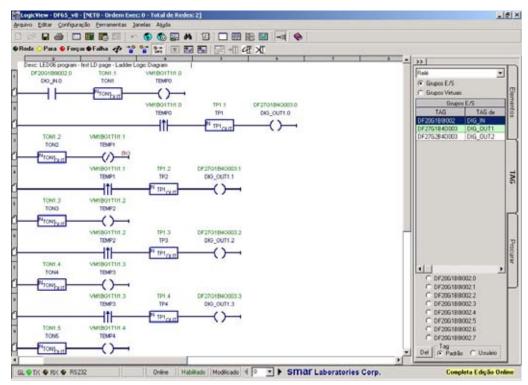


Figura 3.120 - Modo Edição On-line Completa

Após a atualização, o LOGICVIEW estará no modo on-line em estado de teste.

Diferenças entre Editar On-line e Edição On-line Completa

Quando o usuário está no modo Editar On-line, ele apenas pode alterar os tags dos elementos, parâmetros de blocos e tipos de relés/bobinas. Com a opção da Edição On-line Completa, todas as alterações, que antes seria necessário estar no modo off-line para efetuá-las, podem ser feitas on-line, de maneira fácil para observação do usuário.

No modo Editar On-line existe a ferramenta "desfazer", quando o usuário não quer salvar aquela alteração, já no modo **Edição On-line Completa**, o usuário dispõe da opção Remover Tudo e também da ferramenta "Desfazer" durante a edição da Rede Lógica.

Vantagens do Modo Edição On-line Completa

A maior vantagem do modo **Edição On-line Completa** é que o usuário pode realizar as alterações sem a necessidade de interromper o processo, pois na passagem do controle para a configuração alterada, todos os valores de E/S e de variáveis de bloco de função são preservados.

É possível editar uma configuração no modo Off-line com a opção de efetuar a atualização (de forma on-line) do DF65 posteriormente.

As alterações podem ser feitas com a DF65 em qualquer modo de funcionamento: Run, Hold, Freeze ou Safe.

Observações:

- Após a transferência do controle para a nova configuração, os módulos de saída digitais e analógicos adicionados (ou movidos) serão inicializados com os valores de segurança (definidos na tabela global).
- A ativação do modo Edição Online Completa automaticamente desabilita o modo Editar Online e vice-versa.
- -Quando são efetuadas atualizações de configurações via Edição Online Completa em sistemas com CPUs redundantes (DF65-E3R), a CPU passiva acompanha a CPU ativa na troca de configuração, pois há sincronismo entre as duas CPUs. Para que isto ocorra é necessário que as duas CPUs não tenham o cabo inter-CPU desconectado durante todo o processo de atualização.
- Os endereços Modbus das entradas, saídas e blocos funcionais são mantidos (quando utilizado o modo automático de designação de endereços Modbus), com exceção dos seguintes casos:
- Módulos movidos para outro sistema (da master para uma RIO ou de uma RIO para a master ou outra RIO);
- -Módulos FB-700-1S e FB-700 que tiverem grupos adicionados e não existe uma quantidade suficiente de endereços Modbus vagos e subsequentes;
- Blocos funcionais que tiverem o tipo de número alterados de inteiro (INT) para real (REAL) ou ANY_NUM.
- O bloco FIFO pode ter o endereço Modbus alterado.

Nota para módulo DF45

O módulo DF45 possui uma configuração interna. Quando um módulo DF45 existente na configuração original tiver sua configuração alterada no modo Edição On-line Completa, o DF65 irá interromper a leitura deste módulo a partir do instante da recepção do comando contendo a nova configuração. Após a transferência de controle para a nova configuração, o módulo volta a ser lido normalmente.

No caso de cancelamento das alterações, serão recuperadas, após o retorno à configuração antiga, as configurações dos módulos DF45 que foram removidos ou que tiveram alteração.

Nota para o módulo FB-700

Os módulos E/S Fieldbus (FB-700-1S e FB-700) também possuem configuração interna. No caso de alteração de módulos existentes na configuração original, as leituras/escritas dos módulos não serão efetuadas enquanto as configurações internas não coincidirem com a configuração da CPU do DF65. Por isto, a parada da leitura/escrita poderá ocorrer antes ou depois da transferência do controle para a nova configuração, dependendo se a alteração da configuração interna dos módulos foi feita antes ou depois da atualização do DF65.

Nota para comunicação via BlockView

Durante a atualização via Edição On-line Completa, as BlockViews que estão configuradas no DF65 são preservadas. Entretanto, pontos que tiveram o endereço Modbus alterado não serão supervisionados corretamente.

Problemas de Comunicação

a) Antes do botão Send

Se a comunicação entre o LOGICVIEW e o DF65 for perdida, durante a edição, o DF65 executará o número de tentativas determinado no item Parâmetros de Comunicação – Número de tentativas. Se a comunicação não for reestabelecida durante este tempo, a seguinte mensagem aparecerá.

Figura 3.121 - Alerta de ausência de Equipamento/ Problemas na Comunicação

Com a comunicação reestabelecida, o usuário tem duas opções: clicar sobre o botão Tentativa ou sobre o botão Ir Offline.

- Se a opção Tentativa for escolhida, o LOGICVIEW retorna à configuração on-line, aguardando o usuário clicar sobre o botão Send.
- Se a opção Ir Offline for escolhida, o LOGICVIEW vai para Offline e no canto inferior direito fica indicado "Usando a Configuração Base", com a possibilidade de fazer um download diferencial, já citado anteriormente.

b) Após o botão Send

Após clicar sobre o botão Send e se houver problemas de comunicação entre o LOGICVIEW e o DF65, duas situações são possíveis:

b.1) A CPU ainda não tem a configuração nova.

A seguinte mensagem será mostrada.

Figura 3.122 – Alerta de reconhecimento incompleto da configuração

Esta mensagem indica que houve problemas no envio da Configuração. Clicando sobre o botão OK, a seguinte mensagem aparecerá.

Figura 3.123 – Cancelamento da Atualização da Cofiguração

O LOGICVIEW permanecerá no modo Edição On-line Completa, aguardando a configuração modificada ser atualizada na CPU.

b.2) A CPU já está com a nova configuração.

A seguinte mensagem será mostrada.

Figura 3.124 - Alerta de ausência de Equipamento/ Problemas na Comunicação

Com a comunicação reestabelecida, o usuário novamente terá duas opções: Tentativa e Ir Offline. - Se a opção Tentativa for escolhida, o LOGICVIEW retornará ao modo Edição Online Completa e ficará aguardando que o usuário clique sobre o botão Aceitar Mudanças ou Remover Tudo.

- Se a opção Ir Offline for escolhida, a seguinte mensagem aparecerá indicando para o usuário que ele perderá as opções de Remover todas as alterações feitas na configuração e que o Download Diferencial não poderá ser realizado. Se realmente o usuário escolher esta opção, as alterações realizadas antes da perda da comunicação serão salvas no DF65.

Figura 3.125 - Opções Remover Tudo e Download Diferencial Desabilitadas

c) Após o Aceitar Mudanças

Quando houver problemas de comunicação entre o LOGICVIEW e o DF65 após clicar sobre o botão Aceitar Mudanças, a seguinte mensagem aparecerá:

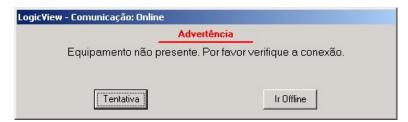


Figura 3.126 - Alerta de ausência de Equipamento/ Problemas na Comunicação

O LOGICVIEW não estará mais no modo Edição On-line Completa, mas continuará on-line. Clicando sobre o botão Tentativa, com a comunicação reestabelecida entre o LOGICVIEW e o DF65, pode-se proceder de maneira normal para novamente escolher entre os modos Editar Online e Edição Online Completa.

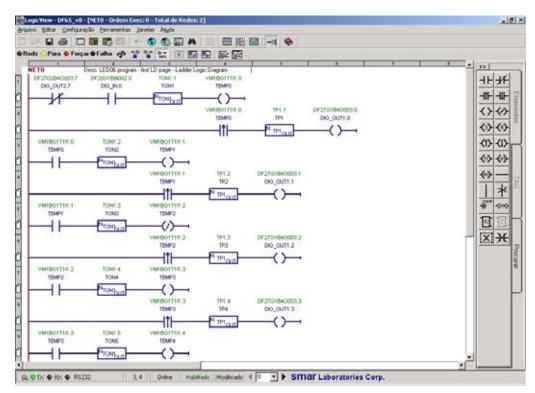


Figura 3.127 - Aceitar Mudanças

É importante salientar que mesmo que a comunicação entre o DF65 e o LOGICVIEW seja perdida, mas o botão "Aceitar as Mudanças" já tenha sido selecionado, estas mudanças já estarão salvas na CPU, independentemente da opção escolhida após o reestabelecimento da comunicação.

Desistência de Atualizações no Modo Edição On-line Completa

Para se desistir de fazer as atualizações realizadas na configuração, o usuário deverá clicar na barra de ferramentas, no botão Edição Online Completa para sair deste modo. A seguinte janela será mostrada, oferecendo ao usuário três opções:

Figura 3.128 - Desistência de atualização

Se a opção Remover Tudo for escolhida, todas as alterações que foram feitas na configuração serão removidas. O LOGICVIEW permanecerá on-line e o usuário poderá escolher entre Editar Online e Edição On-line Completa.

Se o usuário escolher Ir Off-line, a seguinte mensagem será exibida.

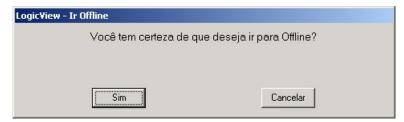


Figura 3.129 - Indo para modo Offline

Se o usuário escolher Sim, ele sairá do modo Edição On-line Completa, ficando off-line, mas permanecendo no modo Usando Configuração Base com a possibilidade de fazer um Download Diferencial sem interromper o processo, retornando, deste modo, ao modo Edição Online Completa.

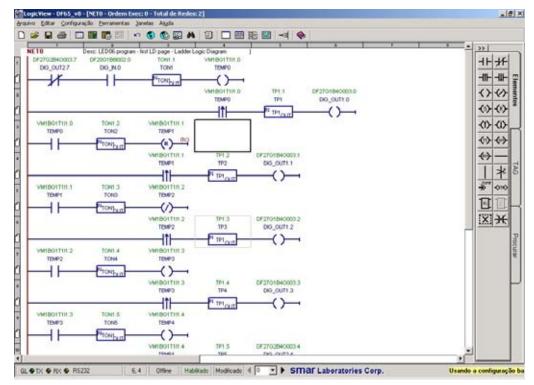


Figura 3.130 - LOGICVIEW no modo Off-line

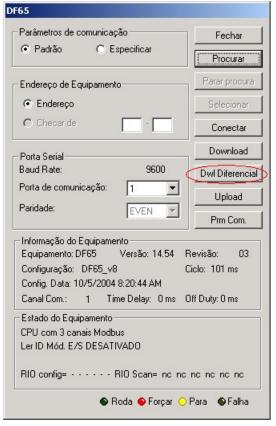


Figura 3.131 - Opção Download Diferencial Habilitada

Nota

Após a atualização com sucesso, é altamente recomendável salvar o arquivo de configuração, pois não é executado salvamento automático e o DF65 já está com nova configuração.

Exemplos para a opção Edição On-line Completa

a) Exemplo 1:

Partindo de uma uma configuração já existente, pode-se inserir módulos, páginas de rede e novas configurações.

- 1. Faça o download da configuração.
- 2. Escolha a opção Edição On-line Completa.

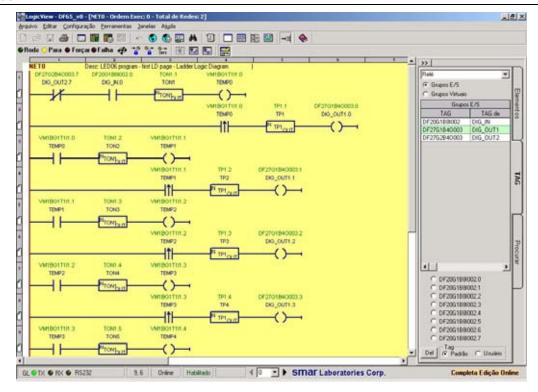


Figura 3.132 – Configuração no Modo Edição On-line Completa

3. Vá à página de módulos e insira um novo rack e um novo módulo.

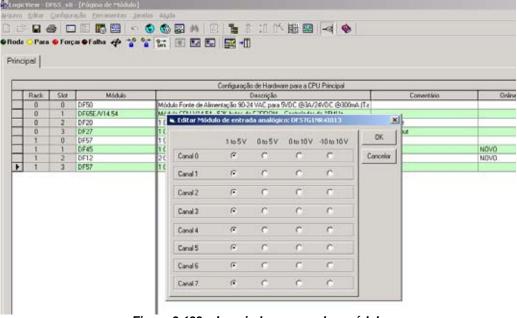


Figura 3.133 – Inserindo novo rack e módulo

٠

LogicYiew - DF65_ytt - [Pilgina de Módula] ●Rode ○Para ● Forçai ●Falha 💠 🚏 😭 📻 🖅 📆 🚮 Principal DF65_v0: Tabela Global Tabela de Grupo de Módulo DF50 TAG de Usuário R E/S Rack Slot Descrição de G -DF65E.N14.54 Grupo de 8 Chaves On/Off de Entradas Grupo 1/2 de 4 Bobinas NA de Saídas (Nív DF20G188002 DIG_OUT1 DF27G1840003 DF27G2840003 DF27G2840003 DF57G1NR4010 DF57G2NR4010 DF45G1800011 DF45G2NR00011 DF12G1880012 Grupo 2/2 de 4 Bobrias NF de Saidas (NIV Grupo 1/2 de 4 Entrados Analógicas Grupo 2/2 de 4 Entrados Analógicas Grupo 1/2 de 9 Entradas Digitais de Indicaç DIG_DUT2 DF45 NOVO Grupo 2/2 de 8 Entradas Analógicas de Ter Grupo 1/2 de 8 Entradas de 48 VDC (Isolad 4 Detahe de Portos Limpar Preencher OK. Tabela de Canal O DF27G1840003.0 Tag do Usuário Descrição do Canal Valor de Segurança DIG_OUT1.0 DIG_OUT1.1 DIG_OUT1.2 led0 DF27G1B40003.1 DF27G1B40003.2 DIG_OUT1. DIG OUT24 DIG OUT25 DIG OUT26 DF27G2840003.4 led4 DF27G2B40003.6 DF27G2B40003.7 DIG_OUT2.7 led7

4. Insira outro módulo e configure os valores de segurança.

Figura 3.134 – Inserindo um módulo DF46

5 - Clique sobre a opção Página de Módulos Virtuais e insira um novo módulo.

1

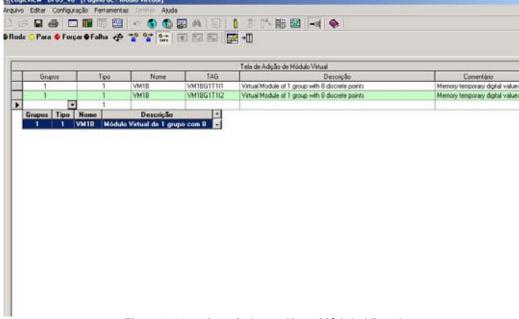


Figura 3.135 - Inserindo um Novo Módulo Virtual

6. Vá para a Página de Rede e insira outra Rede Lógica. Insira a nova configuração.

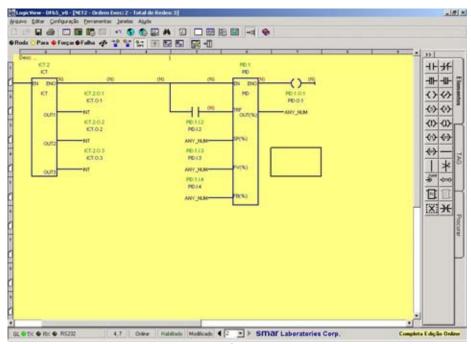


Figura 3.136 – Inserindo Nova Página de Rede e Nova Configuração

7. Inserir um módulo de Temperatura (DF45).

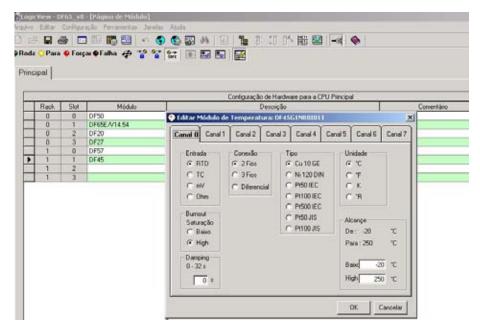


Figura 3.137 – Inserindo Módulo de Temperatura

8. Na Página de Rede, insira outra rede. Coloque um bloco de função GE para fazer a comparação entre as temperaturas.

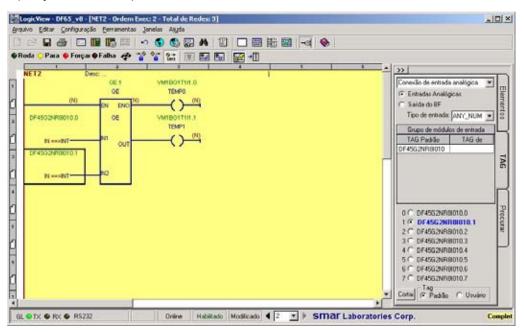


Figura 3.138 - Nova Página de Rede com bloco de função GE

9. Clique sobre o botão Send para enviar a nova configuração para o DF65.

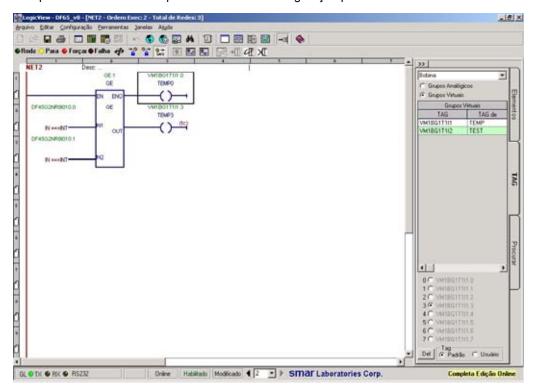


Figura 3.139 - Após o botão Send

b)Exemplo 2:

Partindo de uma configuração já existente, pode-se fazer a substituição de interfaces remotas.

- 1. Faça o download da configuração.
- 2. Escolha a opção Edição On-line Completa.

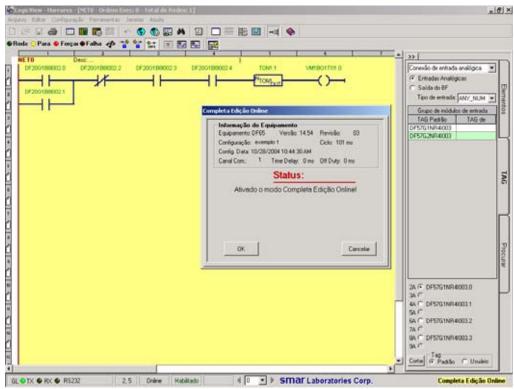


Figura 3.140 – Ativado o modo Edição On-line Completa

3. Vá para a Página de Módulos. Esta configuração é composta de uma CPU principal e uma interface remota.



Figura 3.141 – Página de Módulos

4. Insira outra interface remota.

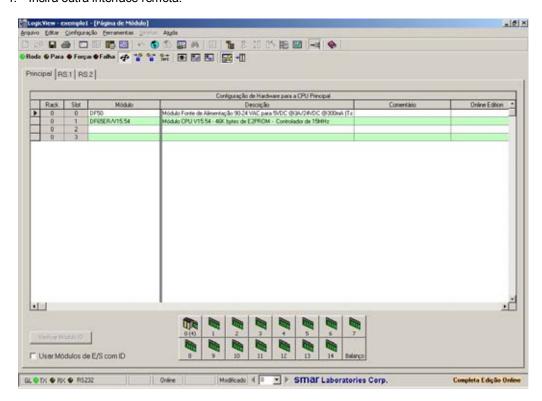


Figura 3.142 – Inserindo outra Interface Remota

5. Mova os módulos presentes na interface remota 1 para a interface remota 2.

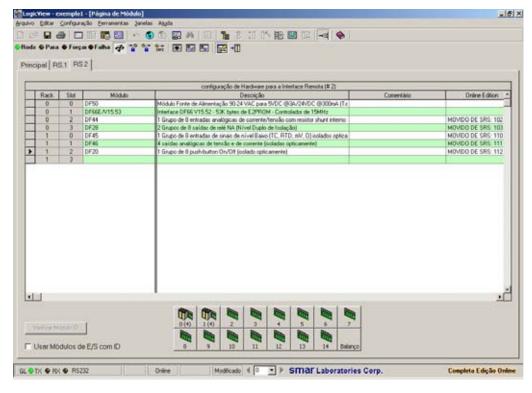


Figura 3.143 – Movendo Módulos da Interface Remota 1 para a Interface Remota 2

 Após mover os módulos da interface remota 1 para a interface remota 2, pode-se, realmente, remover a RIO1. Na figura a seguir, aparece uma mensagem de confirmação da remoção de interface remota.

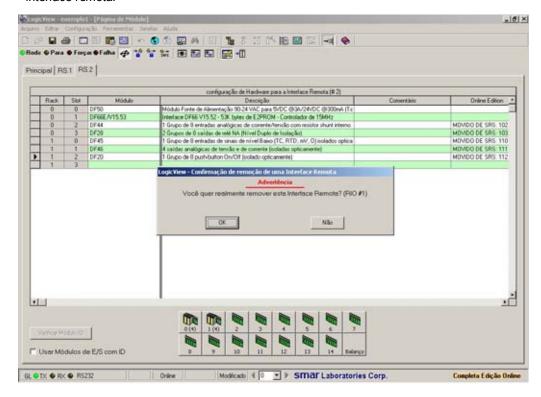


Figura 3.144 – Confirmação de Remoção de Interface Remota

7. A Página de Módulos, após a remoção de interface remota 1, ficará como a figura abaixo.

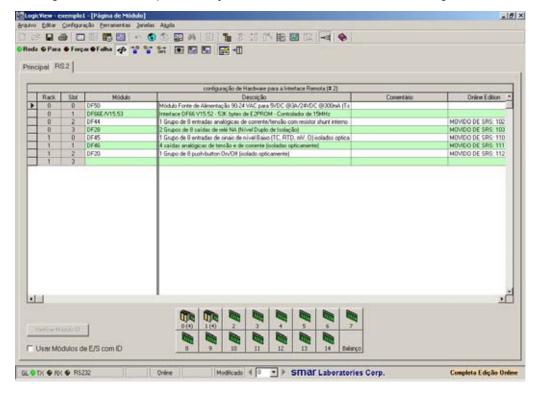


Figura 3.145 – Página de Módulos após Remoção da Interface Remota 1

[LogicView - exemplo1 - [NETO - Ordern Exect 0 - Total de Redest 1] - 6 X 6 5 M A **三能図 →** ⊕Para ● Força: ●Falha 😝 🚏 ⊕ Grupos E/S. DF20G1BB212.1 DF20G1B8I212.2 DF20G1BB212.3 DF20G188I212.4 DF20G1BBI212.5 DF20G1BB212.6 Del F Packso C Usua Habikado Modificado 4 □ • > SMar Laboratories Corp. Completa Edição Onl GL OTX O FX O R5232 8,6 Online

8. Retorne à Página de Rede e continue o procedimento de atualização da configuração.

Figura 3.146 – Após o botão Send

Conectando o DF65 a HMI

Para conectar um computador host a um ou mais DF65 pode ser feito usando a porta serial ou adaptador Ethernet. A aquisição das variáveis/parâmetros pode ser feita com drivers padrão Modbus/RTU ou Modbus/TCP que funcionam diretamente com o software de aplicação para atuar como uma HMI (human machine interface).

Outra técnica é selecionar uma HMI pronta para trabalhar como um cliente OPC baseado nos TAGs das variáveis e, então, instalar o DF65 OPC Server para diretamente comunicar com as unidades do sistema DF65.

OPC (OLE for Process Control)

O que é OPC?

OPC é um padrão industrial cliente –servidor amplamente aceito para troca de parâmetros entre aplicações e possibilitar que variáveis dos dispositivos estejam disponíveis em um modo padrão no qual múltiplos clientes podem simultaneamente acessá-los, não importando se o servidor está localizado em uma mesma estação de trabalho ou remotamente em um padrão Microsoft. A tecnologia OPC roda em Windows NT ou Windows 2000.

Benefícios do DF65 OPC Server

A tecnologia OPC habilita um banco de dados simples Fieldbus ser compartilhado entre estações de trabalho, eliminando inconsistências.

Após a configuração para todos os DF65s do sistema ter sido criada e verificada, todos os tags das variáveis, seus endereços correspondentes na CPU e endereços Modbus de referência são exportados como uma "Tag List" para o DF65 OPC Server.

O DF65 OPC Server tem todas as informações necessárias para acessar qualquer Tag no DF65 correspondente e, portanto, fornecer todos os parâmetros/variáveis baseadas somente no tag para requisições vindas do cliente OPC. Considerando este fato, nem o usuário nem o software HMI precisam lidar com todo acesso, mas somente com os tags. Assim o sistema se torna totalmente transparente, o usuário não precisa se preocupar com endereços. De fato não precisa nem mesmo saber que eles existem.

Mesmo se o registro de endereços Modbus mudem devido a mudanças de configuração, isto não afetará os clientes OPC e, portanto, nenhuma configuração é necessária porque o cliente OPC sempre se refere à variável através do TAG e não através de seu endereco.

No caso da configuração mudar, uma nova Tag List será recompilada e registrada no DF65 OPC Server novamente. Esta tarefa é bastante rápida e pode ser literalmente feita em questão de minutos.

O software na estação de trabalho dever ser uma aplicação cliente OPC compatível e deve acessar os dados do DF65 através do DF65 OPC server. É muito comum nas HMIs do mercado estarem prontas para o OPC.

A figura abaixo mostra um relação típica entre componentes diferentes da arquitetura OPC.

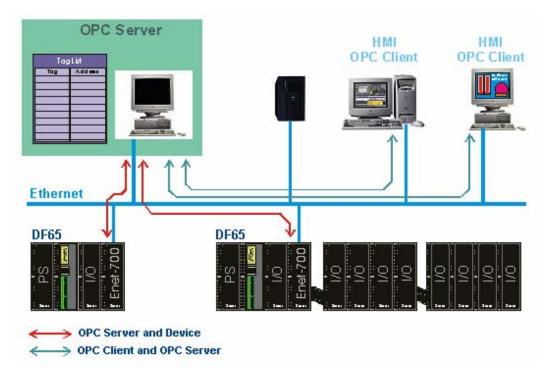


Figura 3.147 -O OPC Server

Smar DF65 OPC Server

O DF65 OPC Server é uma aplicação para Windows desenvolvida pela SMAR o qual baseado numa dada Tag List, podem ser acessíveis de uma ou mais CPUs DF65 e disponibilizam os dados para qualquer cliente OPC dentro da rede. O DF65 OPC server pode pegar dados dos módulos DF65 através das portas seriais ou das conexões Ethernet.

Smar DF65 Tag List Generator

O Tag List Generator é uma aplicação para Windows que pode colocar juntas uma ou mais configurações de sistemas DF65 e criar uma lista de tags com os endereços dos dispositivos (Modbus ID ou endereço IP para Modbus/TCP) e endereços Modbus para cada variável/parâmetro da configuração selecionada. O Tag List Generator é também responsável por registrar a lista de Tags no computador onde o DF65 OPC Server vai rodar.

Configurando um cliente OPC

O cliente OPC na estação de trabalho normalmente possui um browser OPC que permite o usuário navegar até o tag que ele deseja mostrar.

Primeiro seleciona-se OPC Server "Smar.DF65Server.0", então a configuração, neste exemplo "mn_700" seguido do tag do usuário, por exemplo "FIC-123.PV". Isto é, o mesmo Tag que foi configurado no LOGICVIEW é usado por todas a aplicações dentro do sistema, sem a necessidade de redigitar ou renomear. Deve se lembrar de escrever os valores em blocos ICT (por exemplo, set points) para os parâmetros internos, não para a saída. Da mesma forma, a saída do PID deve , manualmente, ser escrita na saída do bloco SMPL.

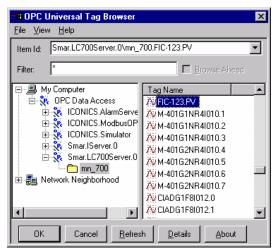


Figura 3.148 - Um Cliente OPC

No DF65 os valores analógicos são representados em uma escala de porcentagem com um inteiro de 0-10.000. Para obter o resultado em unidades de engenharia no software cliente OPC deve ser feito o escalonamento dos valores.

Usando Drivers de Comunicação com MODBUS

Comunicação Modbus

Um software HMI que não possua OPC não pode usar o OPC server para obter dados para e do DF65. Assim eles precisam comunicar diretamente com o DF65 utilizando o números do registro Modbus para endereçar os dados na memória da DF65.

O software LOGICVIEW automaticamente atribui endereços de registros de memória Modbus para todos os elementos e parâmetros dos blocos de função e também gera uma referência cruzada para todos os números de registros Modbus. Isto faz o mapeamento dos dados dentro da aplicação mais fácil. Selecione no menu: Configuração/Endereços MODBUS para chamar a listagem a tela. Esta listagem também pode ser impressa conforme a conveniência. Vá até o menu Arguivo/Imprimir e selecione a opção Endereço de Variáveis Modbus.

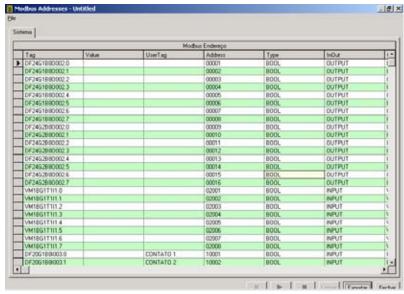


Figura 3. 149 - Endereços MODBUS

Como o LOGICVIEW é desenvolvido para trabalhar com o padrão Windows de sistema operacional, ele se beneficia das mais recentes informações tecnológicas integrando-se com o pacote MS Office. A listagem de registros Modbus pode ser exportada para o MS-Excel clicando no botão "Exportar" que está no canto direito da tela.

Esta flexibilidade e abertura fazem os dados disponíveis para outras aplicações. No Excel, o usuário pode facilmente classificar e filtrar a informação para obter apenas a parte em que ele esteja interessado. Clique em "Save" e selecione o tipo de arquivo que deseja exportar não se esquecendo de dar um nome para o novo arquivo.

Figura 3.150- Exportando Endereços Modbus

Um exemplo de uma lista de endereços Modbus aberta no Excel:

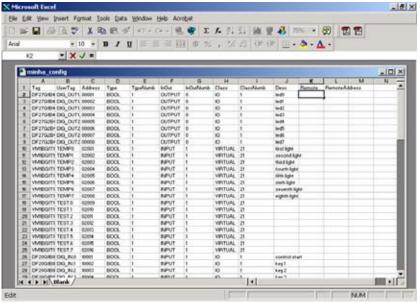


Figura 3.151- Abrindo os Endereços Modbus no MS Excel

Código de Endereços Modbus

O DF65 usa os protocolos abertos industriais padrão Modbus/RTU e Modbus/TCP para comunicação. No padrão Modbus a informação é mapeada em registros. Existem 4 referências (grupos):

0xxxx (Bobinas de Saída), Saídas discretas 1xxxx (Contatos de entrada), Entradas discretas, Fieldbus status 3xxxx (Registros de Entrada), Entradas analógicas 4xxxx (Registros de espera), Saídas analógicas

O LOGICVIEW automaticamente atribui estes endereços Modbus para as E/S, elementos de ladder, parâmetros de blocos, etc., eliminando o trabalho tedioso e erros humanos. Se o OPC

server for usado, o usuário não precisa se preocupar com os registros Modbus, pois estes serão gerenciados pelo OPC server.

Implicações Quando se Altera Configuração do DF65

Em versões anteriores do DF65 os endereços dos registros Modbus eram alterados toda vez que o usuário alterava a configuração. Na versão atual, os endereços dos registros são mantidos. Fisicamente as variáveis Modbus são armazenadas em ordem sequencial de endereço absoluto, começando da E/S principal depois RIO1 até RIO6. A diferença é que as áreas Modbus tem uma separação lógica de faixas para especificamente relacioná-las com a principal ou com qualquer unidade de E/S remota.

Deste modo, quando o usuário adicionar um novo módulo, a área anterior de registros Modbus continuará na mesma posição. O LOGICVIEW apenas insere as posições novas na área reservada sem haver deslocamento. O usuário não precisará se preocupar com esta alocação de memória pois o LOGICVIEW a realiza automaticamente.

Mapa de Memória Digital

Tipo Unidade	Endereço MODBUS	Número de Pontos
Entradas	Faixa 1x xxx	
DI – MASTER	10 001 – 13 000	3000
DI – RIO #1	13 001 – 13 500	500
DI – RIO #2	13 501 – 14 000	500
DI – RIO #3	14 001 – 14 500	500
DI – RIO #4	14 501 – 15 000	500
DI – RIO #5	15 001 – 15 500	500
DI – RIO #6	15 501 – 16 000	500
Saídas	Faixa 0x xxx	
DO - MASTER	00 001 – 02 000	2000
Variáveis Virtuais Discretas	02 001 – 03 000	1000
DO – RIO #1	03 001 – 03 500	500
DO – RIO #2	03 501 – 04 000	500
DO – RIO #3	04 001 – 04 500	500
DO – RIO #4	04 501 – 05 000	500
DO – RIO #5	05 001 – 05 500	500
DO – RIO #6	05 501 – 06 000	500
Variáveis Virtuais Discretas *	06 001 – 07 000	1000

^{*} Faixa Adicional

Mapa de Memória Analógico

Tipo Unidade	Endereço MODBUS	Número de Pontos
Entradas	Faixa 3x xxx	
AI - MASTER	30 001 – 31 000	1000
AI – RIO #1	31 001 – 31 250	250
AI – RIO #2	31 251 – 31 500	250
AI – RIO #3	31 501 – 31 750	250
AI – RIO #4	31 751 – 32 000	250
AI – RIO #5	32 001 – 32 250	250
AI – RIO #6	32 251 – 32 500	250
Reservado	32 501 – 34 000	1500
Saídas	Faixa 4x xxx	
AO – MASTER	40 001 – 41 000	1000
7.00		
AO – RIO #1	41 001 – 41 125	125
		125 125
AO – RIO #1	41 001 – 41 125	
AO – RIO #1 AO – RIO #2	41 001 – 41 125 41 126 – 41 250	125
AO – RIO #1 AO – RIO #2 AO – RIO #3	41 001 – 41 125 41 126 – 41 250 41 251 – 41 375	125 125
AO – RIO #1 AO – RIO #2 AO – RIO #3 AO – RIO #4	41 001 – 41 125 41 126 – 41 250 41 251 – 41 375 41 376 – 41 500	125 125 125
AO – RIO #1 AO – RIO #2 AO – RIO #3 AO – RIO #4 AO – RIO #5	41 001 - 41 125 41 126 - 41 250 41 251 - 41 375 41 376 - 41 500 41 501 - 41 625	125 125 125 125
AO – RIO #1 AO – RIO #2 AO – RIO #3 AO – RIO #4 AO – RIO #5 AO – RIO #6	41 001 - 41 125 41 126 - 41 250 41 251 - 41 375 41 376 - 41 500 41 501 - 41 625 41 626 - 41 750	125 125 125 125 125 125

Registros Especiais

O LOGICVIEW possui alguns registros especiais que podem ser acessados por uma interface HMI através dos endereços MODBUS destes registros. Para acessar estes registros, no LOGICVIEW clique em Endereços Modbus.

A tabela abaixo mostra quais são estes registros especiais.

Registro Especial	Endereço Modbus	Descrição
RTC_Sec	49951	Clock de tempo real: Segundos (00-59)
RTC_Min	49952	Clock de tempo real: Minutos (00-59)
RTC_Hour	49953	Hora (00-23)
RTC_Dweek	49994	Dia da Semana (01-07)
RTC_Day	49955	Dia do Mês (01-31)
RTC_Mon	49956	Mês (01-12)
RTC_Year	49957	Ano (00-99)
ScanCicleTime	49958	Tempo real de execução do programa
TimeOutPort01	49959	Timeout de comunicação da porta P1 (múltiplo de 10 milisegundos)
TimeOutPort02	49960	Timeout de comunicação da porta P2 (múltiplo de 10 milisegundos)
TimeOutPort03	49961	Timeout de comunicação da porta P3 (múltiplo de 10 milisegundos)
TransferState	49962	Reservado
ReadyScanRio (*)	49963	Status da comunicação entre CPU mestre e CPU RIO (válido somente sistemas redundantes)
SSIO Status (*)	49964	O Status da comunicação entre a CPU Main e CPU Backup (válido somente para sistemas redundantes)
Bat Status	49965	Status da bateria 1 – Não Está Ok 0- Está Ok

^(*) Referente às CPUs redundantes.

ReadyScanRio (RIO)

Se o bit está em 1, isto significa que é possível comunicar-se com o módulo de interface RIO e a configuração é a mesma tanto na CPU principal quanto no módulo RIO.

Bit	Descrição	Esta	dos
Ы	Descrição	0	1
0	Não utilizado	-	-
1	Pronto para scan da RIO 1	Não	Sim (RIO 1)
2	Pronto para scan da RIO 2	Não	Sim (RIO 2)
3	Pronto para scan da RIO 3	Não	Sim (RIO 3)
4	Pronto para scan da RIO 4	Não	Sim (RIO 4)
5	Pronto para scan da RIO 5	Não	Sim (RIO 5)
6	Pronto para scan da RIO 6	Não	Sim (RIO 6)
7	Não utilizado	-	-

SSIOStatus

Bit	Descrição	Esta	los	
ы	Descrição	0	1	
0	Conexão Good no canal SSIO	Não	Sim	
1	Buffer de redundância está ocupado	Não	Sim	
2	Check de Configuração	Os títulos das CPUS Main e Backup são iguais	Os títulos das CPUs Main e Backup são diferentes	
3	Identificação da CPU	Backup	Main	
4		Há ou duas CPUs Main ou duas Backup	Há CPUs Main e Backup	
5	Estados das Chaves (rotary key e dip switch)	As chaves na CPU Main estão diferentes da CPU Backup	As chaves nas CPUs Main e Backup estão iguais	
6	Check da versão do Firmware	As versões nas CPUS Main e Backup estão diferentes	As versões nas CPUs Main e Backup estão iguais	
7	Status recebido da outra CPU pelo canal SSIO	Não	Sim	

Nota: Estes dados são do tipo Word ("MSB LSB"). Os oito bits menos significativos (LSB) representam estes status.

Atribuição manual dos endereços Modbus

Cada módulo de E/S e bloco de função incluído em uma configuração aloca espaço de memória na CPU. Este espaço de memória possui um endereço MODBUS associado.

O usuário possui a opção de alocar memória manualmente ou deixar que a aplicação aloque memória automaticamente. Assim que o endereço MODBUS é fixado, o endereço MODBUS não é fixado a não ser que o usuário faça uma mudança.

No modo automático a aplicação fornece o endereço MODBUS para todos os pontos e o usuário pode alterar o endereço de qualquer ponto se mudar em seguida para o modo manual. O usuário pode mudar de automático para manual e vice-versa escolhendo a opção "M. Addr" na janela Preferências que está localizada no menu Ferramentas.

Figura 3.152- Configurando o Endereçamento MODBUS Manual ou Automático.

Alocação Automática de Endereços Modbus

Selecione Preferências no menu Ferramentas. Clique na opção "M. Addr". Se a opção "Auto" estiver selecionada clique em Cancelar, se não estiver selecionada, clique na opção Auto e confirme clicando em OK. Endereços Modbus atribuídos a todos os pontos agora serão feitos automaticamente.

O LOGICVIEW o faz sequencialmente bastando que o usuário selecione o primeiro *slot* disponível nos quais todos os pontos de um módulo ou bloco de função se encaixem. Ele segue uma faixa de endereços diferentes para tipos de dados diferentes como explicado anteriormente.

Alocação Manual de Endereços Modbus

Selecione o menu Ferramentas → Preferências. Clique na opção "M.Addr". Se a opção manual estiver selecionada clique em Cancelar. Caso contrário selecione a opção Manual e clique em OK. Neste modo o usuário deverá escolher o endereço Modbus toda vez que um módulo ou bloco de função for incluído.

Alocação de Endereços MODBUS de Módulos de E/S

Quando o usuário inserir um módulo de entrada e saída na Página de Hardware a janela de endereços MODBUS será mostrada. Esta janela possui as seguintes propriedades como mostra a figura a seguir. Ela apresenta os endereços MODBUS para o módulo DF38, que possui um grupo de oito entradas e um grupo de quatro saídas.

- Tipo de E/S: Indica que os pontos s\u00e3o do tipo Entrada Digital (DI), Sa\u00edda Digital (DO), Entrada Anal\u00f3gica (AI) ou Sa\u00edda Anal\u00f3gica (AO).
- Pontos: Número de pontos do tipo de Entrada e Saída do módulo
- Tipo de Dado: Tipo de dado dos pontos deste módulo
- Endereço MODBUS: Endereços MODBUS padrão atribuídos automaticamente pelo LOGICVIEW.

Figura 3.153- Configurando os Endereços MODBUS Manualmente

Para alterar o endereço Modbus para uma posição desejada clique em "Trocar Endereço". Isto fornece uma lista dos endereços Modbus disponíveis como mostra a figura abaixo.

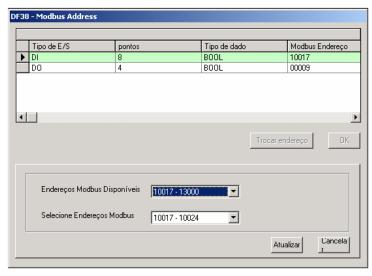


Figura 3.154- Selecionando a Faixa de Endereços Modbus

Selecione um *slot* da lista "Endereços Modbus disponíveis" e a lista "Selecione Endereços Modbus" apresenta a lista de endereços disponíveis em cada *slot*. Selecione o endereço Modbus desejado. Para aceitar o novo endereço clique em Atualizar. Para manter os endereços antigos clique em Cancelar. Se o usuário deseja mudar o endereço novamente clique em Mudar Endereço. Caso contrário, clique em OK para fechar a janela de endereços Modbus.

Alocação de Endereços Modbus para Bloco de Função

Quando o usuário insere um bloco de função na Página da Rede a janela Endereço Modbus será aberta. Esta janela possui as seguintes opções como mostra a próxima figura.

- Bloco de Função: Tipo de Bloco de Função
- Nº de Registros: Número de registros alocados na memória para este bloco de função.
- Endereços Modbus: Endereços Modbus padrão.

Figura 3.155- Configurando Endereços MODBUS de Blocos De Função

Para mudar o endereço Modbus para uma posição desejada clique em Mudar Endereço. Isto fornece uma lista de endereços Modbus como mostrado na figura abaixo.

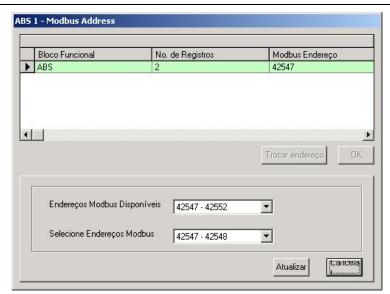


Figura 3.156- Configurando a Faixa de Endereço dos Blocos de Função

Selecione um *slot* da lista "Endereços Modbus disponíveis" e a lista "Selecione Endereços Modbus" apresenta a lista de endereços disponíveis em cada *slot*. Selecione o endereço Modbus desejado. Para aceitar o novo endereço clique em Atualizar. Para manter os endereços antigos clique em Cancelar. Se o usuário deseja mudar o endereço novamente clique em Mudar Endereço. Caso contrário, clique em OK para fechar a janela de endereços Modbus.

Blocos de Função Criados pelo Usuário

Introdução

As funções criadas pelo usuário (Função de usuário, UF) são funções booleanas criadas pelo usuário para simular a combinação de relés Normalmente Fechados (NF), normalmente abertos (NO) e bobinas.

Para criar funções do usuário, é preciso ter um ou mais módulos na Hardware Page ou um ou mais variáveis auxiliares na Virtual Variable Page. Uma vez que as funções são criadas elas estarão disponíveis para uso dentro do projeto de lógica Ladder.

As funções definidas pelo usuário podem ser usadas apenas uma vez na lógica de configuração ladder.

O LOGICVIEW utiliza o método "Click to Write" para desenvolver equações booleanas para a UF. Isso fornecerá um template para que o usuário selecione as variáveis e operadores de maneira escrever as equações. O formato da equação é definido como sendo:

$$\left\{ \begin{array}{c} Saída \; Real \\ Saída \; Da \; Função \\ Variável \; Temporária \\ \end{array} \right\} := FUNÇÃO DE \left\{ \begin{array}{c} Entradas/Saídas \; Reais \\ Saídas \; das \; Funções \; Definidas \\ Variáveis \; temporárias \; prévias \\ \end{array} \right\}$$

O lado esquerdo (Left Hand Side, LHS) da equação especifica a saída real, a saída da função ou as variáveis temporárias. O símbolo := é o que define o sinal de igualdade. O lado direito da equação (Right Hand Side, RHS) é E/S real, ou váriaveis temporárias prévias ou a combinação entre elas através de operadores booleanos. O lado RHS da equação booleana pode também ser função de variáveis temporárias do LHS das saídas reais.

Criando uma Função de usuário

1. Na janela principal do LOGICVIEW clique no ícone: ou no menu Editar, selecione Editar Função do Usuário. A seguinte caixa de diálogo será aberta:

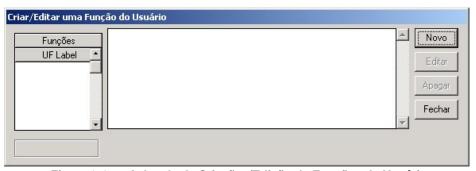


Figura 3.157- A Janela de Criaçãoa/Edição de Funções do Usuário

- 2. Clique no botão Novo. Esta ação fará com que o cursor se mova para a coluna UF Label. Digite em seguida um nome para esta UF.
- 3. Clique no botão Editar da janela de diálogo acima. O LOGICVIEW vai criar um nome de UF no começo do programa lógico e o comando END ao final do programa. O template de programas aparecerá como a seguir:

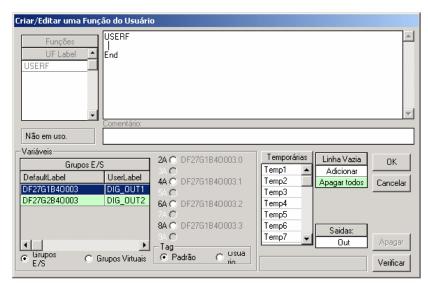


Figura 3.158- Programando uma Nova Função do Usuário: Variáveis, Entrada e Saída

Dentro da caixa Linha Vazia o usuário poderá apagar uma linha inteira clicando em Apagar todos ou adicionar uma linha clicando em Adicionar. Clicando sobre Verificar, verificará a sintaxe da lógica de programação.

O caixa de E/S permite que o usuário selecione um canal de um módulo de E/S para fazer parte da equação booleana.

Figura 3.159- Entradas e Saídas dos Módulos como Variáveis

De maneira análoga variáveis virtuais podem ser selecionadas, selecionando-se Grupos Virtuais.

Figura 3.160 - Variáveis Virtuais como Variáveis em uma Função do Usuário

A caixa Symbols permite que as operações lógicas sejam implementadas.

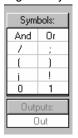


Figura 3.161 - Símbolos Utilizados na Criação de Equações Lógicas Dentro das Funções do Usuário

Os símbolos estão descritos na tabela abaixo:

Símbolo	Descrição
And	Operador Lógico AND (AND Binário)
Or	Operador Lógico OR (OR Binário)
1	Operador Lógico NOT (Negação Binária)
•	Final de uma sentença Lógica (Sintaxe de sentença), Fim de Linha, Fim de Operação.
(Abre Parênteses, para agrupar operações Lógicas
)	Fecha Parênteses, para agrupar operações Lógicas
!	Função de Lógica de Transição Negativa. Ex: X = ! A; onde X é 1 se A mudar de 1 para 0. (Transição de Borda de descida)
i	Função de Lógica de Transição Positiva. Ex: X = i A; onde X é 1 se A mudar de 0 para 1. (Transição de Borda de subida)
0	Constante Lógica Negativa (Falso)
1	Constante Lógica Positiva (Verdade)

O LOGICVIEW habilita 16 variáveis temporárias que podem ser utilizadas dentro da equação booleana.

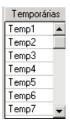


Figura 3.162 - Variáveis Temporárias

O usuário poderá configurar até 8 saídas. Para criar a saída o usuário deverá clicar na caixa Saídas. O LOGICVIEW adicionará uma linha com o valor para a saída, como mostrado abaixo.

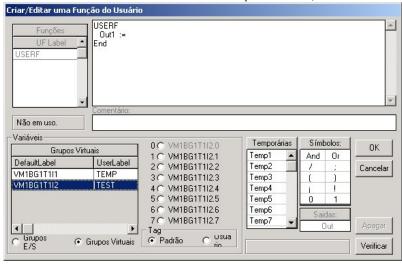


Figura 3.163 - Criando uma Função do Usuário

Caso seja necessário criar uma expressão para uma variável temporária o usuário deverá clicar na caixa Temporárias, e selecionar uma das 16 variáveis temporárias disponíveis.

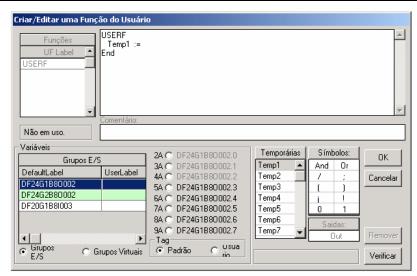


Figura 3.164 - Criando uma Função do Usuário

4. Clicando na caixa Saídas, insere-se uma linha Out1. Escolhe-se a primeira variável clicando sobre uma das entradas do módulo DF20 através da caixa de E/S. Na caixa de símbolos seleciona-se a função lógica AND. Seleciona-se, então, a segunda variável como outra entrada do Módulo DF20.

Para finalizar, insere-se um ponto em vírgula para indicar o final da expressão.

Em seguida, clicando na caixa Temporárias seleciona-se uma das 16 disponíveis. O LOGICVIEW insere esta variável na linha seguinte. Faz-se esta variável ser igual ao valor de uma entrada do módulo DF32, tomando cuidado para inserir o ponto e vírgula ao final. Em seguida clicando na caixa Saídas gera-se uma nova saída. O valor desta nova saída é o resultado da variável temporária 1 e um And lógico com a uma terceira entrada do módulo DF20.

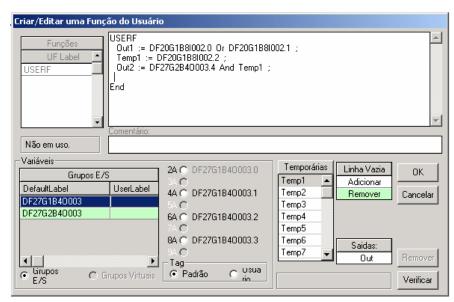


Figura 3.165 – Uma Nova Função do Usuário: Verificando a Equação Lógica

Clicando em Fechar, fecha-se a janela e a Função de usuário está disponível para uso dentro da ladder, basta que o usuário selecione UF na barra de ferramentas e insira a função do usuário criada.

Figura 3.166 - Uma Nova Função do Usuário Criada

Mensagens de Alerta

Se o usuário tentar deletar um elemento da programação lógica usando o backspace do teclado, a seguinte janela de aviso será mostrada.

Figura 3.167 - Mensagem de Alerta

Para remover um elemento dentro da lógica, deve-se clicar duas vezes sob o elemento e clicar no botão delete.

Se o usuário se esquecer de terminar uma linha da lógica com um ponto vírgula receberá a seguinte mensagem de alerta:



Figura 3.168 – Mensagem de Alerta

Caso o usuário tente remover uma saída receberá a seguinte mensagem de advertência.

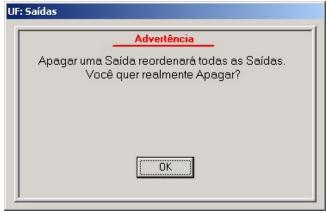


Figura 3.169 – Mensagem de Alerta

Ao contrário de quando se apagar uma entrada, apagar uma saída de uma função resultará na renumeração de todas as saídas.

Como estimar o espaço de memória para as Funções do Usuário

Cada função do usuário (UF) pode ser usada apenas uma vez em qualquer rede lógica. UF permite que a lógica seja inserida diretamente através de uma equação booleana através do método Click-And-Write.

Para calcular o tamanho de memória utilizado por uma configuração de modo a acomodar uma UF específica, são aplicadas as seguintes regras:

- Qualguer função por si só ocupa 20 bytes;
- 4 bytes para cada vez que uma variável temporária for usada (Tempn);
- 7 bytes para cada saída de função (Outn);
- 11 bytes para qualquer variável não precedida por um símbolo sensor de transição (^ ou !);
- 17 bytes para qualquer variável precedida por um símbolo sensível a transição (^ ou !);
- 4 bytes por cada operação "AND" ou "OR";
- 5 bytes por cada constante "0" ou "1";

Exemplo: A função SELECT . Esta função simula uma chave multiplexadora com quatro entradas (INA,INB,INC e IND) selecionadas por SEL1 e SEL2. OUT1 representa a saída da chave. OUT2 mostra se qualquer uma das entradas é zero. A função também prepara a bobina24 para indicar como a seleção de linha poderia tolerar qualquer mudança.

SELECT

TEMP1:=/SEL1*/SEL2*/INA;

TEMP2:=/SEL1*SEL2*INB:

TEMP3:=SEL1*/SEL2*INC;

TEMP4:= SEL1*SEL2*IND:

COIL24:=\SEL1+\SEL2+\SEL2;

OUT1:=TEMP1+TEMP2+TEMP3+TEMP4;

OUT2:=INA+INB+INC+IND;

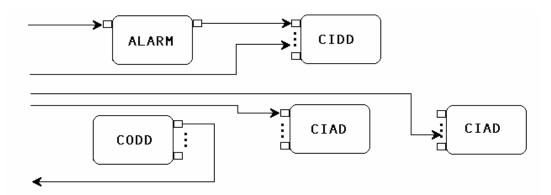
END_SELECT

Assim:

Regra	Descrição	Número de bytes
1	São precisos 20 bytes para a Função de usuário (UF)	20
2	Variáveis temporárias foram usadas 8 vezes	8x4
3	A UF possui duas saídas	2x7
4	12 variáveis sem usar o símbolo sensível a transição ^ ou !	12x11
5	4 variáveis usando símbolos sensíveis para transição	4x17
6	14 ANDs e ORs	14x4
7	Sem constantes	0
	Total de Bytes	322 bytes

Editar uma UF (Função do usuário)

Clicar no ícone ou no menu Editar=>Editar Funções do Usuário. Uma caixa de diálogo aparecerá. Escolha a UF clicando sobre ela. Clique em Editar. Seguindo os passos descritos, anteriormente, o usuário poderá editar a UF.


Otimizando o Hardware para uma aplicação

Como uma regra geral, quanto mais detalhes da aplicação são conhecidos, maior precisão da estimativa haverá.

É importante ter em mente que o hardware para um sistema DF65 não somente depende do número de E/S necessárias para interagir com o campo, mas também outros fatores importantes. Deve-se levar em conta a complexidade da lógica Ladder (requerimento para configuração de memória) e run time máximo aceitável.

Abaixo apresenta-se um exemplo onde se tenta estimar o hardware apenas baseado no número de E/Ss. Neste exemplo está sendo considerado o uso da CPU E3, que comportará até 2000 pontos digitais. Supondo que o DF65 não vai considerar nem quanto de espaço de memória será necessário para a lógica ladder nem o tempo de execução. Exemplo:

O usuário deseja lidar com 1100 entradas digitais, 600 saídas digitais e um canal fieldbus. Assumindo que o bloco fieldbus terá o seguinte uso de blocos:

Para estimar a quantidade de memória para o canal FB é preciso concentrar nos blocos usados, não no número de links. Os blocos de alarme não reservam nenhum espaço de memória enquanto que outros blocos reservam uma quantidade de pontos digitais ou pontos analógicos de acordo com a coluna direita da tabela no capítulo Fieldbus.

Em nosso exemplo, há um CIDD e um CODD, cada um precisa de 8+8 pontos digitais. Além disso, são usados dois CIAD, o que requer um espaço reservado de 16+16 sinais analógicos (Ponto Flutuante) e 8 + 8 pontos digitais.

A conclusão é que o módulo FB usará 48 pontos digitais e 32 sinais analógicos.

Em seguida estima-se os módulos que serão usados:

	Entradas Digitais	Saídas Digitais	Reminding Points
	1100 Pontos	600 Pontos	(DI-DO)
Sistema CLP 01	550	300	1150
Sistema CLP 02	550	300	1150

Sistema DF65 01:

Pontos Digitais	Entradas Digitais	Saídas Digitais	Total	Limites
Módulos de E/S de 16 pontos	430	100	530	
Módulos de E/S de 8 Pontos	120	150	270	
Módulos de E/S de 4 Pontos		50	50	
Módulos de E/S de 2 Pontos			0	
Módulos FB			48	
		Total	898	< 2000 Pontos Digitais

Pontos Analógicos	Entradas Analógicas	Saídas Analógicas	Total	Limites
Módulos de E/S de 16 pontos	0	0	0	
Módulos de E/S de 8 Pontos			0	
Módulos de E/S de 4 Pontos			0	
Módulos de E/S de 2 Pontos			0	
Módulos FB			32	
		Total	32	< 1024 Pontos Analógico s

Módulos	Entradas	Saídas	Total	Limites
Módulo CPU (250 mA)			1	
Módulos de 16 Pontos	28	7	35	
Módulos de 8 Pontos	16	10	26	
Módulos de 4 Pontos				
Módulos de 2 Pontos				
Módulos FB (300 mA)			1	
Módulos de Alimentação 5VDC@3A/24VDC@300mA			2	Aprox. 80 mA (5V)/ módulo
		Total	66	<120 módulos

Acessórios	Totais
Racks	17
Flat Cables	16
Terminador de Bus	1

TROUBLESHOOTING

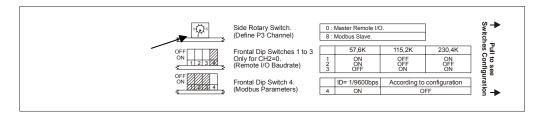
 Quando eu tento estabelecer a comunicação entre minha estação de trabalho e O DF65 recebo a seguinte mensagem "Unknown Device".

Solução: Fazer um novo download do firmware através da ferramenta de software DF65tools.

2. Quando eu tento enviar uma configuração para o DF65 recebo a seguinte mensagem "Ackowledgement for sending of the function block is incomplete".

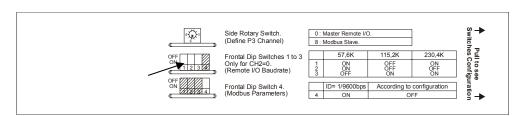
Solução: No menu Tools=>Comm. Settings altere o Timeout para 5000 ms.

3. Quando estou monitorando uma planta, esta monitoração parece ocorrer muito lentamente.


Solução: Para aumentar a velocidade de monitoração vá até o menu Tools=>Preferences clique na etiqueta Misc e altere o campo "Network Monitoring Period".

4. Falha na Comunicação Ponto a Ponto entre DF65 master e PC. Após tentar iniciar a comunicação e clicar em "Look", não consigo estabelecer a comunicação.

Solução:


Passo 1: Verificar se o cabo de comunicação foi conectado corretamente nas portas seriais do PC e do DF65.

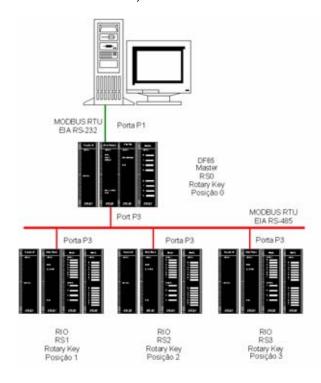
Passo 2: Verificar a Rotary Key localizada no DF65.

Esta chave deve ser colocada na posição 8 se a configuração não possui uma RIO. Caso contrário, isto é, com a presença de uma RIO conectada a master, a chave deve ser colocada na posição 0.

Passo 3: Colocar a Dip Switch do DF65 na posição default.

A posição default será configurada se a chave indicada acima for colocada na posição indicada acima na figura com a seta. No LogicView na janela DF65 ONLINE certifiquese de que o opção default esteja selecionada.

Passo 4: Se mesmo assim a comunicação não for estabelecida, o usuário deverá verificar qual porta serial de sua estação de trabalho foi conectada ao DF65. Existem 3 opções COM1, COM2 e COM3. O usuário deve verificar se a porta correta foi configurada. Basta verificar na janela DF65 ONLINE o campo **Communication Port.**


Passo 5: Vá no menu **Tools=>Comm. Settings** e selecione a opção RS-232. Certifique-se também de que os parâmetros CTS/RTS Timeout estejam configurados para zero.

5. Falha na comunicação entre DF65 master e DF65 remota

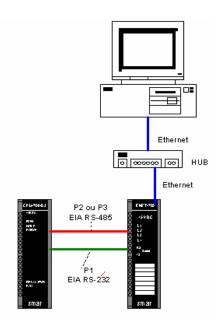
Solução:

Passo 1: Verificar a Rotary Switch de cada DF65 remota. A rotary switch deve estar na posição cuja numeração seja equivalente a disposição das RIOs dentro da configuração. Ou seja, se o usuário configurou 3 RIOs e as nomeou como RS1, RS2 e RS3, as rotary keys devem ser configuradas como 1, 2 e 3 respectivamente para cada unidade remota. O DF65 master requer que sua rotary switch seja colocada na posição 0.

Passo 2: As dip switches de cada DF65 (master e RIO) devem estar na mesma posição. Tanto as RIOs quanto o DF65 principal devem ter os parâmetros de comunicações da porta P3 iguais. A comunicação é feita através da porta P3 de cada DF65 (interface serial EIA-485).

6. Falha na comunicação entre LogicView e DF65 via rede Ethernet. Após tentar iniciar a comunicação e clicar em "Look", não consigo estabelecer a comunicação.

Solução:


Passo1: Conectar o DF65 ao PC através da porta P1 do DF65 configurando o baud rate da porta P2 (ou P3) e também os parâmetros de comunicação (Comm. Param). Em uma rede, certifique-se de configurar o DF65 com IDs diferentes dos demais presentes na rede.

Passo 2: Configurar os parâmetros de comunicação do ENET-700/ENET-710. Aconselha-se configurar o baud rate do ENET-700 para 19200 bps e do ENET-710 para 115200 bps.

Ligar o ENET-700/ ENET710 à CPU como mostrado abaixo através da porta P1, P2 ou P3.

Certifique-se de que a Dip Switch da CPU não estejam na posição default.

Passo 3: No LogicView no **menu Tools=>Comm. Param** selecionar a opção Ethernet (Modbus TCP/IP) inclusive digitando o endereço IP do ENET-700/ ENET-710 na rede Ethernet.

7. Falha na comunicação entre LogicView e DF65 via modem. Após tentar iniciar a comunicação e clicar em "Look", não consigo estabelecer a comunicação.

Solução:

Passo1: Conectar a estação de trabalho ao DF65 através da porta P1. Configurar os parâmetros de comunicação da CPU. RTS/CTS Timeout e baud rate.

RTS/CTS Timeout e baud rate.

Passo2: Certificar-se de que a Dip Switch não esteja na posição Default.

Passo3: No LogicView no menu **Tools=>Comm. Param**. Selecionar a opção RS-232 e configurar os valores de RTS/CTS Timeout (que não precisam necessariamente ser iguais aos da CPU). Os parâmetros de comunicação do LogicView devem ser os mesmos que os configurados no Passo1.

8. O DF65 não comunica com DF45 ou cartões nos racks.

Solução:

Passo 1: Verificar se a chave dos racks está na mesma posição do que mostra o LogicView. A chave no rack se localiza atrás do módulo da CPU. Certifique-se de que o número ali seja o mesmo da configuração estabelecida no LogicView. Por exemplo, tendo dois racks, o primeiro recebe a numeração zero no LogicView. Ao adicionar outro rack, o LogicView atribui um número a este rack conforme a seleção do usuário. Este número deve ser o mesmo que a chave dos racks indica.

Passo 2: Verificar conexão dos flat cables entre os racks.