

Fieldbus Universal Bridge

SNAOJELE NI LSXILE FEV/05

DFI302

FOUNDATION

smar

BRASIL

Smar Equipamentos Ind. Ltda. Rua Dr. Antonio Furlan Jr., 1028 Sertãozinho SP 14170-480 Tel.: +55 16 3946-3599 Fax: +55 16 3946-3528 e-mail: dncom@smar.com.br

ALEMANHA

Smar GmbH Rheingaustrasse 9 55545 Bad Kreuznach Germany Tel: + 49 671-794680 Fax: + 49 671-7946829 e-mail: infoservice@smar.de

EUA

Smar International Corporation 6001 Stonington Street, Suite 100 Houston, TX 77040 Tel.: +1 713 849-2021 Fax: +1 713 849-2022 e-mail: sales@smar.com

ARGENTINA

Smar Argentina Soldado de La Independencia, 1259 (1429) Capital Federal – Argentina Telefax: 00 (5411) 4776 -1300 / 3131 e-mail: smarinfo@smarperifericos.com

MEXICO

Smar México Cerro de las Campanas #3 desp 119 Col. San Andrés Atenco Tlalnepantla Edo. Del Méx - C.P. 54040 Tel.: +53 78 46 00 al 02 Fax: +53 78 46 03 e-mail: ventas@smar.com

Smar Laboratories Corporation

10960 Millridge North, Suite 107 Houston, TX 77070 Tel.: +1 281 807-1501 Fax: +1 281 807-1506 e-mail: smarlabs@swbell.net

CHINA

web: www.smar.com.br

Smar China Corp. 3 Baishiqiao Road, Suite 30233 Beijing 100873, P.R.C. Tel.: +86 10 6849-8643 Fax: +86-10-6894-0898 e-mail: info@smar.com.cn

Para atualizações mais recentes veja o site da smar acima.

Especificações e informações estão sujeitas a modificações sem prévia consulta.

CINGAPURA

Smar Singapore Pte. Ltd. 315 Outram Road #06-07, Tan Boon Liat Building Singapore 169074 Tel.: +65 6324-0182 Fax: +65 6324-0183 e-mail: info@smar.com.sg

Smar Research Corporation

4250 Veterans Memorial Hwy. Suite 156 Holbrook , NY 11741 Tel: +1-631-737-3111 Fax: +1-631-737-3892 e-mail: sales@smarresearch.com

FRANÇA Smar France S. A. R. L. 42, rue du Pavé des Gardes F-92370 Chaville Tel.: +33 1 41 15-0220 Fax: +33 1 41 15-0219 e-mail: smar.am@wanadoo.fr

Prevenindo Descargas Eletrostáticas

ATENÇÃO

Descargas eletrostáticas podem danificar componentes eletrônicos semicondutores presentes nas placas de circuitos impressos. Em geral, ocorrem quando esses componentes ou os pinos dos conectores dos módulos e racks são tocados, sem a utilização de equipamentos de prevenção de descargas eletrostáticas.

Recomendam-se os seguintes procedimentos:

- ✓ Antes de manusear os módulos e racks descarregar a carga eletrostática presente no corpo através de pulseiras próprias ou mesmo tocando objetos que estejam aterrados;
- Evite o toque em componentes eletrônicos ou nos pinos dos conectores de racks e módulos.

INTRODUÇÃO

O DFI302 é um componente de hardware multifunção integrado ao SYSTEM302 que incorpora o que há de mais atualizado em hardware e software para gerenciar, monitorar, controlar, manter e operar uma planta industrial. Uma vez instalado, o DFI302 executa a maioria das funções exigidas pelo sistema de controle, resultando em um número reduzido de componentes adicionais.

Estas são algumas características do DFI302:

- Parte integrante do SYSTEM302;
- Unidade totalmente integrada com as funções de interface, linking device, bridge, controlador, gateway, fonte de alimentação para Fieldbus e subsistema de E/S distribuído.
- Interoperável com instrumentos e softwares de diferentes fabricantes devido à utilização de padrões abertos como Foundation™ Fieldbus e OPC.
- Conecta-se a equipamentos já existentes através de módulos E/S convencionais e comunicação Modbus via EIA-232 ou Ethernet.
- Redundância em vários níveis e prevenção à falhas para maior segurança e ininterrupção da operação;
- Arquitetura limpa baseada em tecnologia de componentes.
- Alta capacidade de transferência de dados entre chão de fábrica e rede corporativa.

ÍNDICE

Introdução	IV
maice	······ V
Secão 1 - VISÃO GERAL	
Principais Características	
Arquitetura Distribuída	
Primeiro sistema Fieldbus em uma unidade totalmente integrada	
Integração do Sistema	
DF50 – Fonte de Alimentação para o Backplane	
DF51 – Módulo Processador (CPU)	
DF52 - Módulo Fonte para Fieldbus	
DF49/DF53 – Impedância para Fonte de Alimentação Fieldbus	
Protocolos Abertos	
Alta Contiabilidade	
Supervisao	
Secão 2 - Instalando	
Fixando os Racks e os Módulos	
Encaixe do Módulo ao rack	
Encaixe do Rack ao Trilho DIN	
Encaixe entre os Racks	
Dicas para a Montagem	2.2
Instalando o Hardware	2.4
Utilizando o Relé de Falha	
Jumpers Existentes na Placa	
Melhorando o Sinal de Terra do DFI302	
Racks Nao-Adjacentes	
Racks Adjacentes	
Instalando o System 302	۲.۵ ۲ ۵
Configuração do DELOLE Server	
Conectando o DFI302 na sua Sub-Rede	
Seção 3 - CONFIGURANDO	
Atualizando o Firmware	
Alterando o Endereço de IP	
Configurando o DFI302 via Software	
Criando uma Nova Planta	
Atribuindo o Device Identification (Device ID) às Bridges	
Atribuindo o Device ID aos Dispositivos de Campo	
Verificação da Comunicação	
Atribuindo Tags	
Download de Conliguração	
Download Parcial para Dispositivos do Campo	
Download Parcial para a Bridge	3 11
Otimizando a Supervisão	3 12
Tempo de Background	3 13
MVC (Multiple Variable Containers)	
Tempo de Supervisão	
Tempo de Atualização	
Taxa de Atualização OPC	
Redundância da Rede de Controle	
Casão A. Continumendo o DELOUE OEDVED	
Seçao 4 - Configurando o DFI ULE SERVER	
Initiodução	
Arquitetura Ullente / Servidor VIa ULE	
FialalUIIIId WIII02 Conformidado ODC	
Ol E para Configuração Fieldhus	4.1. ۱۸
OPC – OI F for Process Control	
	····· ··· ··· ··· ··· ··· ··· ··· ···

Visão Geral	
Local versus Servidores Remotos	
Configuração Mínima do DCOM	
Cliente e Servidor Funcionando na Mesma Máquina	
Cliente e Servidor Funcionando em Máquinas Diferentes	
Criando Conexão Cliente/Servidor Com Segurança	
Criando Conexão Cliente/Servidor Sem Segurança	
Detalhes sobre DFI OLE Server	
Detalhes sobre HSE OLE Server	
Definição de Equipamentos HSE	
Configuração do SmarOLEServer.ini	
Aplicação Smar ServerManager	
Seção 5 - Solucionando Problemas	5.1
Seçao 6 - Especificações Tecnicas	6.1
Especificações do DFI302	
Especificações do DF51	
Especificação do Cabo Ethernet	
Especificação do Cabo Serial	
Especificaçao do Cabo de Conexão do DFI302 ao CPU-700	
Seçao 7 - Adicionando Fontes de Alimentação	
Introdução.	
DF50 - Módulo Fonte de Alimentação para o Backplane (Redundante)	
Descrição	
Especificações Técnicas	
DF56 – Módulo Fonte de Alimentação para o Backplane	
DESCRIÇÃO	
Especificações Tecnicas	
Calculo do Consumo de Energia.	
Sistema de Alimentação do DFI302	
Para adicionar um novo Modulo Fonte de Alimentação	
DF52 / DF60 – Modulo Fonte de Alimentação para Fieldbus	
Descrição	
Especificações l'ecnicas.	
DF49/DF3 – Módulo de Impedância para o Fieldbus	
Descriçao	
Especificações Tecnicas	
DF47 – Barreira de Segurança Intrinseca	
Descrição	
Instalação	
Especificações l'ecnicas	
DF48 – H1 Fieldbus Repeater	
Especificações lechicas	
Casão O. Adisionando Interforma	
Seçao o - Adicionando Intertaces	
Introdução	
DF58 – Interface RS232/RS485	
Descriçao	
Ajustes da Interface	
Especificações Lechicas.	
Droi – Ethernet Switch 10/100 Mbps	
Sação O Adisionando Plaços Euroiansis	~ 4
Seçao y - Adicionando Biocos Funcionais	
Introdução	
Criando um Novo Bioco	
Inserindo um Novo Bioco	

Seção 10 - Adicionando Módulos de E/S	10.1
Introdução	
RES – Resource Block	
HCI – Hardware Configuration Transducer	
TEMP – Transducer de Temperature	
Conniguração do CHANNEL	10.7
DE1 - Back	10.0
Descrição	10.9
Especificações Técnicas	10.9
DE11/DE12/DE13/DE14 - Módulos de Entradas DC	
Descrição	
Especificações Técnicas	10.10
DF15 - Módulos de Entradas DC	10.12
Descrição	10.12
Especificações Técnicas	10.12
DF16/DF17 - Módulo de Entradas AC	10.14
Descrição	10.14
Especificações Técnicas	10.14
DF18/DF19 - Módulo de Entradas AC	10.16
Especificações lechicas	
DE20 - Modulo com Chaves de Entrada	
Descrição	
Especificações Techicas DE44/DE57 - Módulos de Entradas Analógicas Tensão/Corrente	10.10
DE 44/DE 57 - Modulos de Entradas Analogicas Tensao/Contente	
Especificações Técnicas	10.19
DF45 – Módulo de Entradas de Sinal de Baixo Nível e Temperatura.	
Descrição	
Especificações Técnicas	
DF21 - Módulo de Saídas Coletor Aberto	10.24
Descrição	10.24
Especificações Técnicas	10.24
DF22 – Módulo de Saídas Transistorizadas (Source)	10.26
Descrição	10.26
Especificações Técnicas	10.26
DF23 - Módulo de Saídas AC	10.28
Especificações Lecnicas	
DF24 - Modulo de Saldas AC	
Descrição	
L'appointagues i ou illuas DE25/DE26/DE20/DE30/DE31/DE71/DE72 - Mádulas com Palás da Saída	
Descrição	10.32
Especificações Técnicas	
DF28/DF69 - Módulos de Saídas de Relés de Alta Densidade	
Descrição	
Especificações Técnicas	
DF46 – Módulo de Saídas Analógicas de Tensão e Corrente	10.36
Descrição	10.36
Especificações Técnicas	10.37
DF32 ao DF40 - Módulos de Saídas de Relés e Entradas DC	10.38
Descrição	10.38
Especificações Técnicas	10.38
DF41/DF42/DF64 – Modulos de Entradas Pulsadas	10.41
Especificações l'echicas	
Dror - Modulo de Entradas de Puiso	
Descrição Especificações Técnicas	
Lopoliilagues i cuillao	10.43
Seção 11 - Adicionando Modbus	11 1
Introducão	
Passos para Configurar o Modbus	

MBCS (Modbus Control Slave) – Escravo de Controle Modbus	
Entradas e Saídas	
Parâmetros de Conversão de Escala	
Tipo de Dados	
MBSS (Modbus Supervision Slave) – Escravo de Supervisão Modbus	
MBCM (Modbus Control Master) – Mestre de Controle Modbus	
Ajustando as entradas e saídas do bloco MBCM	
MBSM (Modbus Supervision Master) - Mestre de Supervisão Modbus	
Endereços Modbus do Escravo	11.23
Comandos Modbus	
Conversão de Escala	
Seçao 12 - Criando uma Nova Configuração Fieldbus	
Introdução	
Iniciando um Projeto	
Projeto da Planta Fisica	
Organizando a Janeia do Fieldbus.	
Adicionando Equipamentos Fieldbus	
Adicionando os Biocos Funcionais	
Crianda um ERApplication	
Unation util FDApplication Inserindo os Blocos No EBAD	
IIISTIIIUU US DIULUS INU FDAF Configurando a Estratágia do Controlo	
Adicionando Blocos na Janola Stratogu	12.10 40.44
Ligando os Blocos	
Eigendo os Diocos Fazendo a Caracterização dos Blocos	12.12
Secão 13 - Considerações sobre Limites	13 1
No Fieldhus	13.1
No Fieldbus	13.2
No Modbus	13.2
Seção 14 - Adicionando Configuração Lógica usando Módulos Co-processado	res 14.1
Introducão.	
Configuração do DF65	
Configuração de Comunicação Serial	
Camada Física e Timeout	
Alterando as configurações de comunicação do DF65	
Download da configuração Lógica	
Configurando os blocos Modbus no DF51	
Supervisionando dados do Co-processador DF65 através do bloco MBSM	
Troca de dados entre Co-processador DF65 e o DF51 através do bloco MBCM	
Exemplo de Comunicação entre DF51 e DF65 com lógica ladder envolvida	
Resumo de como configurar a comunicação e troca de dados entre DF65 e DF51	
DF65 - Módulo Co-processador	
Descrição	
Especificações Técnicas	
Canais de Comunicação	
Baud rate da Comunicação e Endereço do Device	
Modos De Operação	
DF65 com Tres Canais Modbus RTU.	
DF65 Mestre em um Sistema com E/S Remota	
Factory Init	
DF66 - Intenace De Comunicação De E/S Remota	
Adicionando unidado do E/S Pomoto	
Aucionando unidade de E/S Remota	
Aiuste do Baud rate e dos Enderecos	
DE65R/DE65ER – Módulo Co-processador Redundante	14.14 ب 1۸ 1۶
Terminologia e Descrições Iniciais	1/1 15 1/1 15
Arquitetura	
Següência de Power-Up	
Comunicação com os Módulos de Entrada e Saída Remota (RIO)	
LEDs para Indicação de Status	
· · ·	

o 15 - Adicionando Redundância	
Introdução	····· · · · · · · · · · · · · · · · ·
Redundância Hot Standby	
Redundância Link Active Scheduler (LAS)	
Arquitetura de um sistema redundante	
Pré-requisitos do sistema	
Configurando a redundância de rede	
Configurando a workstation	
Configurando o DFI OLE Server	
Configurando Redundância Hot Standby	
Configurando o sistema pela primeira vez	
Trocando a configuração	
Substituição de um módulo com falha	
Correção de uma falha de cabo H1	
Atualização do firmware sem interrupção do processo	
Adição de redundância em um sistema em operação	
Configurando Redundância LAS	
Configurando o sistema pela primeira vez	
Substituição de um módulo Active com falha	
Substituição de um módulo Backup com falha	
Colocando o sistema em operação após uma falha geral de energia	
Correção de uma falha de cabo H1	
Atualização do firmware sem interrupção do processo	
dice - Otimizando o acesso do DFI às sub-redes	A
O arquivo SmarOleServer.ini	
Informação Adicional	
Cenários Típicos suportados de acordo com a configuração	

VISÃO GERAL

Este Manual apresenta instruções sobre como configurar e instalar o DFI302.

Sistema DFI302 básico (vista frontal - fechado)

O DFI302 é totalmente modular e apresenta a seguinte configuração básica:

Hardware

DF01 - Rack com 4 slots (Backplane);

DF02 - Terminador para o último rack;

DF50 - Fonte de alimentação para o Backplane;

DF51 - Processador do DFI302 com 1x Ethernet de 10 Mbps, 1x RS-232, 4x Canais H1;

DF52 - Fonte de Alimentação para o Fieldbus;

DF53 - Fonte de Alimentação de Impedâncias do Fieldbus (4 portas);

DF54 - Cabo par trançado, padrão para Ethernet (100Base-TX) - Comprimento 2 metros;

Software

DFI OLE Server; System302; Servidor de DHCP (opcional).

Principais Características

DFI302 é o mais flexível Controlador Fieldbus Foundation, Interface e Sistema Host.

DFI302 (*Fieldbus Universal Bridge*) é um elemento chave na arquitetura distribuída dos Sistemas de Controle de Campo. Alia poderosas características de comunicação com acesso direto de E/S e controle avançado para aplicações contínuas e discretas. Graças ao seu conceito modular, o DFI302 pode ser inserido dentro de painéis de salas de controle ou em caixas seladas no campo. É altamente expansível e indicado para pequenas aplicações e/ou grandes e complexas plantas.

O DFI302 é um equipamento modular multifunção, montado em um *backplane*, conectado a um trilho DIN, onde todos os módulos são instalados, incluindo as Fontes Principal (DF50) e Fieldbus (DF52), Processador (DF51) e Impedância de Linha (DF53). Os módulos são fixados usando conectores industriais e fixados por um robusto parafuso de metal. Opcionalmente, um subsistema de E/S convencional, com módulos para entradas e saídas analógicas e discretas, pode ser conectado. A modularidade é a chave para a flexibilidade do DFI302. Ainda, considerando que todos os equipamentos estão em módulos e em um mesmo *backplane*, inclusive o subsistema Fieldbus, pode-se considerar DFI302 totalmente integrado.

As conexões das fontes e dos canais Fieldbus H1 são feitas usando-se conectores *plug-in*, tornando a remoção e inserção mais fácil e segura. Uma das vantagens dos conectores é que não podem ser conectados de maneira errada devido aos formatos diferentes, prevenindo assim a aplicação de alta tensão em um terminal de baixa tensão.

O módulo da fonte possui *LEDs* de diagnóstico que indicam operação normal e condições de falhas, o que facilita na solução de problemas e diagnósticos, especialmente em um sistema com muitas unidades. É possível a troca do fusível (acessível externamente e localizado ao lado das linhas de alimentação) sem a necessidade de se remover o módulo da fonte ou desconectar qualquer fio.

É importante observar que:

- Um Backplane é requerido para cada quatro módulos;
- Um Flat Cable é requerido entre seções de Backplanes;
- É requerido um terminador para cada DFI302;
- Uma Fonte para *Backplane* e um Módulo Processador, no mínimo, é requerido para cada DFI302;
- Fontes adicionais para Fieldbus podem ser solicitadas;
- A Licença para o DFI OLE Server está disponível em diferentes níveis, com diferentes capacidades para supervisão de blocos funcionais;

Arquitetura Distribuída

O DFI302 permite a integração de estratégias de controle discreto e contínuo, explorando o potencial do protocolo Fieldbus Foundation. Ele provê serviços de comunicação para controle de *links*, supervisão via OPC, configuração e manutenção usando OLE.

O conceito modular do DFI302 executa o perfeito casamento dos componentes do sistema. Toda a configuração e manutenção do sistema podem ser realizadas, com alta eficiência e interoperabilidade.

A distribuição das tarefas de controle entre os equipamentos de campo e múltiplos sistemas DFI302 aumenta a segurança e eficiência do sistema total.

Primeiro sistema Fieldbus em uma unidade totalmente integrada

Ponte H1-H1; Ponte H1-HSE; Fonte de Alimentação H1; Barreira H1; *Gateway* Modbus; *Gateway* Ethernet; E/S Convencional.

Integração do Sistema

As avançadas características de comunicação encontradas no **DFI302** garantem alta integração do sistema:

PONTE FIELDBUS

- Comunicação transparente entre portas Fieldbus:
 - H1 (31.25 kbps)

REDUNDÂNCIA

DFI302 suporta redundância hot-standby em vários níveis:

- Servidor OLE
- LAS (Link Active Scheduler)
- Ethernet
- Function Blocks
- Links H1
- Gateway Modbus

EXPANSÍVEL

Cada DFI302 pode acessar diretamente 256 pontos de E/S distribuídos entre módulos de E/S locais. Explorando características do Fieldbus como interoperabilidade, Bridge e Ethernet, o sistema DFI302 torna-se uma solução ilimitada para a Indústria de Automação.

DF50 – Fonte de Alimentação para o Backplane

É uma fonte de tensão AC de entrada universal e saídas 5 Vdc (alimentação para o *backplane*) e 24 Vdc (uso externo). Uma série de características a coloca como a melhor opção dentre as fontes existentes no mercado, sendo a escolha ideal para uso em aplicações de controle.

O módulo tem funções de diagnóstico e LEDs dedicados que indicam operação normal, o que faz com que os possíveis problemas sejam facilmente detectados, especialmente em sistemas com diversas unidades. Torna-se fácil verificar um módulo de fonte defeituoso em um painel com centenas de módulos.

É possível a troca do fusível (acessível externamente e localizado ao lado das linhas de alimentação) sem a necessidade de se remover o módulo da fonte ou desconectar qualquer fio. A saída é protegida contra curto-circuito e não é danificada mesmo com curtos prolongados.

DF51 – Módulo Processador (CPU)

Baseado em um processador 32-bit RISC e programa armazenado em memória Flash, esse módulo lida com comunicação e tarefas de controle.

- 1 Porta Ethernet @ 10Mbps
- 4 Portas Fieldbus H1@ 31,25 kbps
- 1 Porta EIA232 @ 115,2 kbps
- CPU clock @ 25 MHz, 2 MB NVRAM

DF52 - Módulo Fonte para Fieldbus

É um equipamento de segurança não-intrínseca composto por uma fonte AC de entrada universal e uma saída 24 Vdc isolada. Possui proteção contra curto-circuito e sobrecorrente além de indicação de falha. A redundância desse módulo é permitida sem a necessidade de acoplar qualquer componente às saídas.

O módulo possui um contato auxiliar de saída que indica falha e que pode ser usado para ativação de um alarme remoto ou alguma proteção independente. Possui também um fusível ao lado das linhas de alimentação, acessível externamente, que pode ser trocado sem a remoção do módulo ou desconexão de qualquer ligação. A saída possui proteção contra curtos-circuitos e não é danificada mesmo em curtos prolongados.

DF49/DF53 – Impedância para Fonte de Alimentação Fieldbus

O módulo Impedância para Fonte Fieldbus (*Power Supply Impedance*) – 2 portas (DF49) ou 4 portas (DF53) – promove um casamento de impedância na rede Fieldbus, evitando curto-circuito entre a fonte de alimentação e o sinal de comunicação na rede Fieldbus.

Essas fontes de alimentação não podem ser utilizadas diretamente em áreas perigosas que necessitem de especificações quanto a normas de segurança intrínseca.

O módulo tem funções de diagnóstico e LEDs dedicados que indicam operação normal e condições de falha, o que faz com que os possíveis problemas sejam facilmente detectados, especialmente em sistemas com diversas unidades. Torna-se fácil verificar um módulo de fonte defeituoso em um painel com centenas de módulos.

É possível a troca do fusível (acessível externamente e localizado ao lado das linhas de alimentação) sem a necessidade de se remover o módulo da fonte ou desconectar qualquer fio. A saída é protegida contra curtos-circuitos e não é danificada mesmo com curtos prolongados.

A Impedância para Fonte possui um terminador de barramento interno para cada canal Fieldbus. Este terminador pode ser habilitado ou desabilitado por meio de micro-chaves (*Dip-switches*), reduzindo o número de componentes, complexidade e custos.

Protocolos Abertos

DFI302 é uma solução completa e aberta para integração de sistemas, oferecendo diversos protocolos padrões, isto é, alta integração com os componentes do Sistema de Controle de Campo.

Fieldbus

Suporta o protocolo Fieldbus Foundation™, um dos mais completos padrões disponíveis para Indústrias de Automação.

Ethernet

Os protocolos *Foundation™ Fieldbus High Speed Ethernet* (FF-HSE) e Smar Ethernet (SE) são baseados em TCP/IP, portanto permitem ao DFI302 se conectar a outros sistemas.

EIA232

Usando essa porta adicional, o protocolo Modbus, conecta dados do Fieldbus, virtualmente, para qualquer outro equipamento ou sistema.

Alta Confiabilidade

A arquitetura distribuída do **DFI302** garante alta confiabilidade mesmo em ambientes industriais hostis: sem discos rígidos, sem partes mecânicas móveis. No nível de execução do *software*, as tarefas internas (comunicação, blocos funcionais, supervisão, etc) são controladas por sistema multitarefa, garantindo assim, operação em tempo real e determinística.

Configuração

O **DFI302** é completamente configurado através dos Blocos Funcionais disponíveis no padrão Fieldbus Foundation. Isto permite que o sistema todo (**DFI302** e equipamentos de campo) possa ser completamente configurado por um único aplicativo.

Os Blocos Funcionais são uma linguagem ideal para o controle de processos, pois representam todas as funções de processos tão bem conhecidas pelos profissionais de automação: controle de processos, lógica de intertravamento, receitas, alarmes, cálculos e equações. Tudo pode ser configurado em um único ambiente.

Supervisão

O **DFI302** é projetado com as tecnologias mais recentes. O uso dessas tecnologias, como OPC (*OLE for Process Control*), faz do **DFI302** a mais flexível Interface Fieldbus no mercado.

O servidor OPC permite que o **DFI302** seja conectado a qualquer pacote de supervisão. O único requisito é a existência de um cliente OPC para o pacote. O **DFI302** pode ser conectado com as melhores Interfaces de Supervisão disponíveis customizando o SYSTEM302 às suas necessidades.

INSTALANDO

ATENÇÃO

A não observância de qualquer etapa descrita neste capítulo poderá ser a causa de um mal funcionamento do sistema.

Fixando os Racks e os Módulos

Observe as figuras do Módulo e do rack e proceda conforme as instruções:

- Emenda do Rack Ao montar mais de um rack em um mesmo trilho DIN, use a emenda do Rack para prender um rack a outro. O uso da emenda dará mais firmeza ao conjunto e possibilitará a conexão do terra digital (K);
- **b.** Jumper W1 Quando conectado, permite que o rack seja alimentado pela fonte DC do rack precedente;
- c. Lingueta Encaixe localizado na parte superior do rack;
- d. Trilho DIN Base para fixação do rack. Deve estar firmemente fixado ao local de montagem do rack;
- e. Conector do Flat Cable Permite que dois racks sejam interligados através do flat cable (J). Quando existir mais de um rack em um mesmo trilho DIN, deve-se usar um flat cable (J) ligado ao conector do Flat Cable Inferior (I) e Superior (E), para interligar os racks;
- f. Conector do Módulo Encaixe inferior do módulo ao rack;
- **g.** Chave de Endereçamento Quando houver mais de um rack em um mesmo trilho DIN, as chaves de endereçamento permitem que seja atribuído um endereço distinto para cada rack;
- h. Presilhas Metálicas As presilhas metálicas, situadas na parte inferior do rack, permitem a fixação desse no trilho DIN. Devem ser puxadas antes de se encaixar o rack no trilho DIN e depois empurradas para a fixação das peças;
- Conector do Flat Cable (Inferior) Permite que dois racks sejam interligados através do flat cable (j). Quando existir mais de um rack em um mesmo trilho DIN, deve-se usar um flat cable (J) ligado ao conector do Flat Cable (BUS) (I) e (E), para interligar os racks;
- j. Flat Cable Cabo usado para conexão do barramento de dados entre os racks;
- K. Terra Digital Quando houver mais de um rack em um mesmo trilho DIN, a conexão entre os terras digitais (K) deve ser reforçada através do encaixe metálico apropriado;
- I. Encaixe do Trilho Suporte que faz o encaixe entre o rack e o trilho DIN (D).

Encaixe do Módulo ao rack

- Encaixe a parte superior do módulo (com uma inclinação aproximada de 45°) na lingüeta plástica (C), localizada na parte superior do rack;
- 2. Dirija o módulo, de modo a encaixá-lo no conector (F);
- 3. Fixe o módulo o rack através do parafuso de fixação.

Encaixe do Rack ao Trilho DIN

- 1. Caso exista somente um rack, esta fixação pode ser feita como primeira etapa, mesmo antes de encaixar qualquer módulo ao rack;
- 2. Posicione (puxe) as presilhas metálicas (H) do rack;
- 3. Incline o rack e encaixe sua parte superior ao trilho DIN;
- 4. Dirija o rack à parte inferior do trilho até obter o contato das partes;
- 5. Fixe o rack ao trilho, empurrando as presilhas metálicas (H).

Encaixe entre os Racks

- Para o caso de existir mais de um rack no mesmo trilho, observe as conexões do *flat cable* (J) no conector superior do primeiro rack e no conector inferior do segundo rack, antes de encaixar o módulo do *slot* 3 do primeiro rack;
- 2. Fixe um rack a outro através da emenda do rack (A). Passe o encaixe metálico de um rack a outro e fixe através de parafusos;
- 3. Faça a conexão do terra digital (K), usando uma conexão metálica fixada por parafusos;
- Observe a colocação do terminador para o último rack da montagem. O terminador deve ser plugado no conector do *flat cable* superior (E);
- 5. Selecione o endereço do novo rack rotacionando a chave de endereçamento.

Dicas para a Montagem

Caso esteja trabalhando com mais de um rack:

- Deixe para fazer a fixação no trilho DIN ao final da montagem;
- Mantenha o slot 3 do rack livre para poder interligá-lo ao módulo seguinte pelo conector do flat cable;
- Verifique atentamente a configuração dos endereços (chave de endereçamento), bem como o Jumper W1 e o cabo do barramento;
- Lembre-se que para dar continuidade à alimentação DC do rack anterior é preciso que o jumper W1 esteja conectado;
- Faça a emenda dos racks e reforce o terra digital do conjunto.

Instalando o Hardware

Observe os detalhes da vista frontal dos módulos:

Sistema DFI302 básico (vista frontal aberta)

Um cabo de par trançado blindado é usado para conectar o DFI302 ao HUB. O DFI302 tem conectores RJ-45 simples. Não é requerida qualquer ferramenta ou habilidade especiais para a conexão. A instalação é simples e muito rápida.

O DFI302 possui LEDs que indicam comunicação ativa ou falha. Você pode conectar e desconectar os módulos sem ter que desligá-los. Com o uso de hub/switches pode-se desconectar dispositivos sem interromper o controle ou a comunicação de outros nós.

Os dois tipos de cabos existentes viabilizam a conexão do DF51 ao HUB (cabo DF54) ou a conexão direta do DF51 ao PC (cabo DF55). Veja o Capítulo 5 para maiores detalhes.

Para uma instalação básica, execute os seguintes passos:

- 1. Conecte os quatro módulos (DF50, DF51, DF52, DF53) mais o terminador (DF2) no *backplane* (DF1);
- 2. Conecte a tensão de alimentação na entrada do DF50 e DF52;
- 3. Conecte a saída do DF52 à entrada do DF53;
- 4. Plugue o cabo Ethernet (cabo Par Trançado), ligando o DF51 ao HUB ou Switch;
- 5. Conecte o barramento Fieldbus H1 às portas FF H1 do DF51 e do DF53;
- 6. O DFI302 obterá automaticamente um endereço IP do DHCP Server, mas se este servidor não estiver disponível, inicialmente terá um IP fixo (este endereço IP fixo inicial poderá ser mudado através do FBTools (veja o Tópico "Conectando o DFI302 na sua Sub-Rede").

Observe na figura seguinte:

No **Detalhe A** são apresentadas as conexões elétricas citadas acima, porém sem a visão do rack (*backplane* DF1) e do terminador (DF2).

No **Detalhe B**, tem-se as micro-chaves (*dip-switches*) que habilitam o terminador interno para cada canal Fieldbus H1. Neste exemplo, como temos somente um canal Fieldbus H1, a chave correspondente ao canal 1 está na posição habilitada (ON).

Utilizando o Relé de Falha

Os terminais 1B e 2B, disponíveis no DF51, podem ser utilizados em aplicações que exijam indicações de falha. Na verdade, estes terminais são um Relé NC.

O Relé NC suporta:

0.25 A @ 250 Vac 2.00 A @ 30 Vdc	0.50 A @ 125 Vac
2.00 A @ 30 Vdc	0.25 A @ 250 Vac
	2.00 A @ 30 Vdc

* dados válidos para carga resistiva

Normalmente, o DF51 força esse Relé a permanecer em aberto, mas se a CPU entrar em qualquer condição de falha, o *hardware* fechará o Relé. Esta indicação de falha pode ser utilizada em situações de redundância nas quais o processador backup lê estes contatos e notifica a falha. Outra possibilidade seria utilizar esses contatos para acionar um alarme.

Jumpers Existentes na Placa

O *jumper* W1 (do DF51) ou *Simulate jumper* deve estar habilitado para possibilitar simulações nos parâmetros simulate (SIMULATE _D ou SIMULATE _P) dos blocos de função de entrada e saída.

Não use os jumpers W2 e W3. Eles são utilizados somente para gravação de programa na fábrica.

Melhorando o Sinal de Terra do DFI302

Embora o rack do sistema DFI302 seja conectado por *flat cables* para transporte de sinal e alimentação, é possível que ocorra degradação do nível do sinal de terra para aplicações que utilizem vários módulos. Uma solução para manter o sinal de terra estável e o sistema mais imune a ruídos elétricos é a adição de um cabo extra entre os racks. Esses cabos devem seguir o caminho do *flat cable* para evitar *loops* de terra. Os fios devem ser reforçados e possuir bitola de pelo menos 18 AWG.

Para racks adjacentes use o conector extensor do rack localizado no lado esquerdo. Obviamente, é possível ter um sistema com racks adjacentes e não adjacentes.

IMPORTANTE
Sempre use a placa do Terminador no último rack.

Racks Não-Adjacentes

A figura acima mostra como o sinal de terra é conectado entre os racks.

Detalhe de conexão do cabo de terra

Racks Adjacentes

Conectando Racks Adjacentes

Instalando o System302

Execute a instalação dos aplicativos a partir do CD de instalação do System302. Verifique se ao final da instalação é criada a seguinte pasta:

Seu acesso a todos os aplicativos pode ser feito pelo atalho "System302 Browser".

Esses atalhos darão acesso aos principais aplicativos do System302.

Obtendo a Licença para o DFI OLE Server

Existem duas maneiras de se obter uma licença para uso do DFI OLEServer. Uma versão é com proteção via Hard Lock (HardKey) e outra via Software (SoftKey).

A versão *HardKey* já vem pronta para uso, bastando conectar o dispositivo na porta apropriada (paralela ou USB) do computador.

Para uso da proteção via *software* é necessário obter uma *License Key*, entrando em contato com a SMAR. Para tanto use o aplicativo **GetLicense.exe**, localizado no diretório de trabalho da Smar (geralmente, "drive:\Program Files\Smar\OLEServers\GetLicense.exe") ou diretamente pelo atalho "Get License" no navegador do System302 (veja figura anterior).

A partir das informações geradas por este aplicativo preencha o formulário FaxBack.txt e envie à SMAR utilizando o apropriado Fax Number.

License Code:	48533827	77		
Syscon License Key:	Not Licen	sed		Remove
PCI OLE Server License	Licensed	to 8 Blocks - DEMO		Remove
DFI OLE Server License	Licensed	to 8 Blocks - DEMO		Remove
Generate F	FaxBack	Grant License Keys	Use DE	MO Keys
Generate F	FaxBack	Grant License Keys	Use DE	MO Keys

Ao obter o retorno da SMAR com as *Licenses Keys*, digite os códigos nos campos em branco (veja na figura anterior).

Pressione o botão "Grant License Key". Caso os códigos tenham sido aceitos, serão geradas mensagens confirmando o sucesso da operação. Em seguida, o SYSCON, PCI OLEServer e/ou DFI OLEServer estarão prontos para serem usados.

Configuração do DFI OLE Server

Após obter a licença, o usuário deve ajustar alguns parâmetros relacionados ao DFI OLEServer. Veja o Apêndice A, para maiores detalhes sobre SMAR OLEServers.

Conectando o DFI302 na sua Sub-Rede

O ambiente para trabalhar com o **DFI302** envolve uma rede (Sub-Rede) que deverá ter endereços IP para cada equipamento conectado.

A solução automática para atribuição desses endereços consiste em ter um servidor DHCP (*Dinamic Host Configuration Protocol Server*).

Esse servidor DHCP fará a atribuição de endereços IP dinamicamente para cada equipamento, evitando assim qualquer problema como a atribuição de endereços iguais para dois equipamentos distintos.

1- Conecte o cabo Ethernet (DF54) do módulo DF51 ao *Switch* (ou HUB) da sub-rede da qual o DFI302 fará parte;

ΝΟΤΑ

Para conexão ponto-a-ponto (o módulo DFI302 ligado diretamente ao microcomputador) utilize o cabo cruzado DF55.

- 2- Ligue o módulo DF51. Assegure-se que os LEDs ETH10 e RUN estejam acesos;
- 3- Mantenha pressionado firmemente o *Push-Bottom (Factory Init/Reset)* da esquerda e, em seguida, clique três vezes no *Push-Bottom* da direita. O LED FORCE piscará três vezes consecutivas.

NOTA

Se você perder a conta do número de vezes que o *Push-Bottom* da direita foi pressionado, basta verificar o número de vezes que o LED FORCE está piscando a cada segundo. Ele voltará a piscar uma vez por segundo depois do quarto toque (a função é cíclica).

4- Libere o *Push-Bottom* da esquerda e o sistema executará o RESET e passará à execução do irmware com os valores padrões para o endereço IP e máscara de Sub-Rede.

Para Redes COM SERVIDOR DHCP

5- Se sua rede possui um servidor DHCP (consulte o administrador da sua rede), o DF51 já estará conectado à sua sub-rede. Neste caso os passos estão terminados.

Para Redes SEM SERVIDOR DHCP

6- Se a sua rede não possui servidor DHCP, o DF51 estará com o endereço IP 192.168.164.100 e os seguintes passos deverão ser executados (baseando-se em sistemas que utilizam Windows 2000):

O endereço IP do microcomputador do usuário deverá ser momentaneamente alterado (é necessário conhecimentos de administração de rede). Clique no menu Iniciar→ Painel de Controle, e dê um duplo clique na opção Conexões Rede e *Dial-Up* (Network and Dial-Up Connections) ou algo similar;

OBSERVAÇÃO

Clique nas Conexões de Área Locais e Propriedade. Se na lista de componentes existir Protocolo TCP/IP, vá para o passo 10 ou, então, proceda com a instalação usando o botão Instalar.

7- Clique no botão Instalar (Install);

Local Area Connection	Properties	<u>? ×</u>
General		
Connect using:		
Intel(R) PRO/10	0+ Management Adaj	pter
		Configure
Components checked	are used by this conn	ection:
Client for Micro	soft Networks Sharing for Microsoft	Networks
Install	Uninstall	Properties
Allows your compute network.	er to access resources	s on a Microsoft
Show icon in taskb	ar when connected	
		OK Cancel

8- Escolha Protocolos (**Protocols**) e clique Adicionar (Add). Veja figura abaixo:

9- Selecione Protocolos de Internet (TCP/IP) e clique no botão OK.

Local Area Connection Properties
General
Connect using:
Intel(R) PRO/100+ Management Adapter
Configure
Components checked are used by this connection:
Cleftin for Microsoft Networks P. She and Printer Sharing for Microsoft Networks Tinternet Protocol (TCP/IP)
Install Uninstall Properties
Description Transmission Control Protocol/Internet Protocol. The default wide area network protocol that provides communication across diverse interconnected networks. Show icon in taskbar when connected
Close

- 10-Selecione Protocolos de Internet (TCP/IP) e clique no botão Propriedades (Properties);
- 11-Anote os valores originais de endereço IP e da máscara de Sub-Rede de seu microcomputador para poder restaurá-los ao final da operação.

OBSERVAÇÃO

Se o endereço de IP do é algo do tipo: 192.168.164.XXX, pule para o passo 14.

12-Altere o endereço IP e a máscara de Sub-Rede de seu computador, para que ele esteja na mesma Sub-Rede do DFI302 (164). Preferencialmente, os endereços IP que vão ser usados devem ser fornecidos pelo administrador da rede.

OBSERVAÇÃO

Os valores deverão ser algo do tipo: Endereço IP (*IP Address*) 192.168.164.XXX e Máscara da Sub-Rede (*Sub-Net Mask*) 255.255.255.0. Mantenha o valor do *Gateway* padrão (*Default Gateway*);

ATENÇÃO

Não use o endereço 192.168.164.100 uma vez que este é o endereço padrão usado pelo DFI302. Assegure-se que o endereço escolhido não está em uso.

13- Clique no botão Aplicar (Apply button).

- 14- Execute o FBTools Wizard, no menu Iniciar → Programas → System302 → FBTools Wizard;
- 15-Selecione o módulo DF51 e clique Next.

16-A janela do *Dfi Download* aparecerá. Selecione o caminho para o DFI OLEServer (*Local* é o caminho padrão) e pressione o botão "*Connect*";

🚆 Dfi Download 👘			
- Server Location			
• Local			
C Remote			Connect
- Download Options -			
Module:		_	P Properties
Installed Firmware	Version:]
Installed Firmware	Date:		1
Firmware:			
	Hold	<u>B</u> un Download]
Progress			
			Close

17-Selecione o módulo DF51 desejado na opção "Module". Use como referência o número de série, localizado na etiqueta lateral, no próprio DF51.

A Hao-obseivancia		nplical en g	aves consequencia
🚆 Dfi Download			
Server Location			
Cocal			
C Remote			Refresh
Download Options			
Module:	Model DE51 - SNIT 994	Ţ	IP Properties
			<u>p</u> + roponicom
Installed Firmware Versio	n: JDF51VCF3732WDF04		
Installed Firmware Date:	09/12/03 07:09:38		
Firmware:			
riniwaic. j			
	<u>H</u> old <u>B</u> un	Download	

18-Para prosseguir, será necessário interromper a execução *Firmware* no módulo DF51, pressionando o botão "**Hold**". Após isto, o *Firmware* não estará mais em execução e toda a atividade na linha Fieldbus irá parar. Confirme a operação clicando "**Yes**".

Dfi Down	oad	×
⚠	Do you really want to hold the selected module This will stop all fieldbus activity.	?
	<u>Y</u> es <u>N</u> o	

ATENÇÃO

Este passo será necessário somente se o botão "**Hold**" estiver habilitado, indicando que o Firmware está sendo executado.

- 19-Certifique-se que o LED *HOLD* esteja aceso. Clique no botão "**IP Properties**" para configurar o endereço de IP do módulo. A janela do *IP Address* aparecerá.
- 20-A opção padrão para endereçamento é a atribuição do endereço através de um Servidor DHCP. Clique na opção "**Specify an IP address**" para especificar um outro endereço de IP.

IP Address	×
An IP address can be automatically assigned to the selected module by a DHCP server. If your network does not have a DHCP server, ask your network administrator for an address, and then type it in the space below.	
O Obtain an IP address from a DHCP server	
Specify an IP address	
IP Address: 192 168 164 36	
Subnet Mask: 255 255 255 0	
Default Gateway: 192 168 164 1	
OK Cancel]

21-Digite o endereço de IP, a máscara da Sub-Rede e o Gateway padrão, que serão atribuídos ao DFI302. A máscara de Sub-Net deve ser a mesma de seu endereço padrão (Passo 11). Desta forma, você estará apto a restaurar as configurações e ver os DFI302s na sua rede.

ATENÇÃO

Não use o endereço 192.168.164.100, uma vez que este é o endereço padrão usado pelo DFI302. Assegure-se que o endereço escolhido não está em uso.

DICA

Anote os endereços de IP que serão atribuídos e relacione-os aos Números de Série de cada módulo DF51. Isso ajudará bastante na identificação e diagnóstico de possíveis falhas.

22-Clique "**OK**" para finalizar a operação e fechar a janela. Retorne à tela de propriedades TCP/IP de seu computador e restaure os valores originais de endereço de IP e máscara de Sub-Rede.

- 23-Clique "Run" para colocar o Firmware novamente em execução no DFI302.
- 24-Uma mensagem aparecerá confirmando a operação. Clique "Yes" para continuar.

Dfi Down	load 🔀
⚠	Do you really want to run the selected module?
	<u>Y</u> es <u>N</u> o

25-O procedimento de Conexão do DFI302 na sua Sub-Rede para o módulo selecionado está completo. Repita este procedimento para os outros módulos.

OBSERVAÇÃO

Caso seja necessário configurar mais de um DFI302, execute o seguinte comando para **limpar a tabela ARP**, antes de configurar o próximo DFI302.

C:\>arp -d 192.168.164.100 < enter >

26-No prompt do DOS, tecle "C:\>arp -d 192.168.164.100 <enter>".

CONFIGURANDO

Atualizando o Firmware

- 1. Assegure-se que o DFI302 esteja ligado e que tenha sido conectado à sua Sub-Rede, conforme o procedimento "Conectando o DFI302 à sua Sub-Rede".
- 2. Execute o FBTools Wizard, localizado no menu *Iniciar → Programas → System302→ FBTools Wizard*.
- 3. Selecione o módulo desejado do DFI302 e pressione "Next".

4. A janela do *Dfi Download* aparecerá. Selecione o caminho para o DFI OLEServer (*Local* é o caminho padrão) e pressione o botão "*Connect*".

🏺 Dfi Download		_ 🗆 X
Server Location C Local C Remote		Connect
Download Options		
Module:		IP Properties
Installed Firmware	Version:	
Installed Firmware	Date:	
Firmware:		
	Hold <u>H</u> un Download	
Progress		
		Close

5. Selecione o módulo DF51 desejado na opção "Module". Use como referência o número de série, localizado na etiqueta lateral, no próprio DF51.

🗧 Dfi Download	
┌ Server Location	
C Local	
O Remote	Refresh
Download Options	
Module: Model DF51 - SN# 994	IP Properties
Installed Firmware Version: DF51VCF3732WDF04	
Installed Firmware Date: 09/12/03 07:09:38	
Firmware:	
Hold Bun Download	
Progress	
	_
	Close

- 6. Para prosseguir, será necessário interromper a execução do *Firmware* no módulo DF51. Pressione o botão "**Hold**".
- Após este passo, o *Firmware* não será mais executado e toda a atividade na linha Fieldbus irá parar. Confirme a operação clicando "Yes".

Dfi Down	pad	×
⚠	Do you really want to hold the selected modul This will stop all fieldbus activity.	e?
	<u>Y</u> es <u>N</u> o	

ATENÇÃO Para os passos abaixo é necessário, que o botão "Hold" esteja habilitado, indicando que o *Firmware* está sendo executado.

- 8. Certifique-se que o LED HOLD esteja aceso.
- 9. Note que na janela do *Dfi Download* é mostrada a versão do Firmware instalado e a data do Firmware atual no módulo DF51.
- 10. Pressione o botão "Browse..." para selecionar qual arquivo de *Firmware* será carregado (arquivo *DF51**.ABS).

🚝 Dfi Download		_ 🗆 🗵
Server Location		
Cocal		
C Remote		Refresh
- Download Options		
Module:	Model DF51 - SN# 994	IP Properties
Installed Firmware Version:	DF51VCF3732wDF04	
Installed Firmware Date:	09/12/03 07:09:38	
Firmware:		
<u><u> </u></u>	old <u>B</u> un Download	
Progress		
		_
		Close

- 11. Após selecionar o arquivo do *Firmware*, o botão "**Download**" ficará habilitado. Clique neste botão para iniciar o *download* do novo firmware.
- 12. Uma mensagem aparecerá, confirmando a operação. Clique "Yes" para continuar.

Dfi Download 🔀	
	Do you really want to download firmware to the selected module?
	Yes <u>N</u> o

13. As barras na parte inferior da janela indicam o progresso da operação.

Progress	
Downloading Firmware	
	1
Total	

 Quando o download estiver concluído, uma mensagem de status aparecerá confirmando o sucesso da operação. Clique "OK" e espere alguns minutos enquanto as informações são atualizadas. O DFI302 estará no "Modo Run". (Verifique se o LED RUN está aceso).

DfiDownle	oad 🗙
٩	Program Downloaded Successfully - Time: 00:02:42
	OK

15. Clique "Close" para fechar a janela Dfi Download.

Alterando o Endereço de IP

- 1. Assegure-se que o DFI302 esteja ligado e conectado à sua Sub-Rede, conforme o procedimento "Conectando o DFI302 à sua Sub-Rede".
- 2. Execute o **FBTools Wizard**, localizado no menu *Iniciar → Programas → System302 → FBTools Wizard*.
- 3. Selecione o módulo desejado do DFI302 e pressione "Next ".

A janela do DFI Download aparecerá. Selecione o caminho para o DFI OLEServer (Local é o caminho padrão) e pressione o botão "Connect".

🗧 Dfi Download	
Server Location	
O Remote	
Download Options	
Module:	IP Properties
Installed Firmware Version:	
Installed Firmware Date:	
Firmware:	
Hold Bun Download	
Progress	
Г	
	Liose

5. Selecione o módulo DF51 desejado na opção "**Module**". Como referência, use o número de série, localizado na etiqueta lateral, no próprio DF51.

ATENÇÃO
A não observação deste passo pode implicar em conseqüências graves.
🖗 Dfi Download
Server Location C Locat Remote Refresh
Download Options Module: Model DF51 · SN# 994 Installed Firmware Version: DF51VCF3732WDF04 Installed Firmware Date: 09/12/03 07:09:38
Firmware:
Progress Close

- 6. Pressione o botão "Hold"; para interromper a execução do Firmware no módulo DF51.
- 7. Após este passo, o módulo não estará mais executando o Firmware e toda a atividade na linha Fieldbus irá parar. Confirme a operação clicando "Yes".

Dfi Down	load			×
⚠	Do you really want to This will stop all fieldt	o hold the ous activity	selected mo /.	dule?
	<u>Y</u> es	<u>N</u> o		

ATENÇÃO

Este passo será necessário somente se o botão "**Hold**" estiver habilitado, indicando que o Firmware está sendo executado.

- 8. Certifique-se que o LED HOLD esteja aceso.
- 9. Clique no botão "IP Properties" na janela Dfi Download. A janela "IP Address" aparecerá.
- 10. A opção padrão para endereçamento é a atribuição do endereço através de um Servidor DHCP. Clique na opção "**Specify an IP address**" para especificar um outro endereço de IP.

P Address	ſ
An IP address can be automatically assigned to the selected module by a DHCP server. If your network does not have a DHCP server, ask your network administrator for an address, and then type it in the space below.	
O Obtain an IP address from a DHCP server	
Specify an IP address	
IP Address: 192 168 164 36	
Subnet Mask: 255 255 255 0	
Default Gateway: 192 168 164 1	
	4
OK Cancel	

11. Digite o endereço de IP, a máscara da Sub-Rede e o *Gateway* padrão (fornecidos pelo administrador de rede) que serão atribuídos ao DFI302.

ATENÇÃO	
Não use o endereço 192.168.164.100, uma vez que esse é o DFI302. Assegure-se que o endereço escolhido n	endereço padrão usado pelo ão está em uso.
DICA	
Anote os endereços de IP que serão atribuídos e relacione-os a módulo DF51. Isso ajudará bastante na identificação e diagr	aos números de série de cada nóstico de possíveis falhas.

- 12. Clique "OK" para finalizar a operação.
- 13. Após atribuir o novo endereço de IP, o processo retornará para a janela Dfi Download.
- 14. Clique "Run" para colocar o Firmware novamente em execução no DFI302.
- 15. Clique "Close" para fechar a janela Dfi Download.

Configurando o DFI302 via Software

ATENÇÃO

Para que o DFI302 possa ser configurado pelo Syscon, deve-se assegurar que o procedimento "Conectando o DFI302 à sua Sub-Rede" tenha sido concluído com sucesso.

O **DFI302** é completamente configurado através de *Function Blocks* disponíveis no padrão *Fieldbus Foundation*. Isso permite que o sistema como um todo (**DFI302** e equipamentos de campo) possa ser completamente configurado por um único aplicativo. As funções de Controle de Processo, Lógica de Intertravamento, Receitas, Alarmes, Cálculos e Equações podem ser totalmente configuradas em um único ambiente.

Veja a planta graficamente, navegue pelos equipamentos da rede e estratégias de controle no software SYSCON.

O DFI302 trabalha junto com o SYSCON, software de configuração e manutenção para se utilizar à característica de operação *plug-ín'-play* podendo então, detectar, identificar e atribuir os endereços aos dispositivos conectados, removidos ou que tenham tido problemas. Uma vez conectado ao barramento Ethernet ou a uma estação de trabalho, o DFI302 é detectado e é atribuído a ele um endereço IP fixo ou variável dependendo do procedimento realizado via FBTools, eliminando qualquer problema com micro-chaves (*Dip-switches*) ou duplicação de endereços.

Criando uma Nova Planta

	~	
SEDV		
SERV		
	AOAC	

Certifique-se de ter instalado o pacote do System302 que contém o Syscon.

- 1. Uma vez instalado o Syscon, execute-o;
- 2. Na janela principal escolha **Project File** \rightarrow **New**;

Syscon Project File Edit View Communication Window Help	
New	
Open Close	
Save As	
Printer Setup Brint Print to Eile Print Pre⊻iew	
1 D:\Program Files\Smar\Syscon\Work\TesteDFI\TesteDFI.ffp 2 D:\Program Files\Smar\Syscon\Work\Configuração (LD-FI)\Configuração (LD-FI).ffp 3 D:\Program Files\Smar\Syscon\Work\TesteONLINE_EQUIP.V4.07\TesteONLINE_EQUIP.V4.07.ffp 4 D:\Program Files\Smar\Syscon\TESTE ROSE\TESTE ROSE.ffp	
Exit	Alt+F4
Creates a new drawing	

- 3. Escolha Projects e atribua um nome à nova planta;
- 4. Primeiramente, configura-se o aplicativo para usar o DFI OLEServer;

5. Na Janela Principal escolha Communication → Settings;

6. Selecione o nome Smar.DFIOLEServer.0 no parâmetro Server Id e pressione OK;

Communication Settings	
Server Id :	
Smar.DFIOLEServer.0	_
Server Context	
O Inprocess	C Remote
C Local	• All
Node Name :	
This Node	
OK Cancel	Help

Ao iniciar a comunicação online, a animação mostrada abaixo deve aparecer por alguns segundos. Durante este tempo, o *Syscon* irá identificar e anexar quaisquer bridges instaladas à configuração.

Init Communication	
<u>e</u>	
Elapsed Time : 00:02	Abort

Veja o manual do SYSCON para maiores detalhes.

Atribuindo o Device Identification (Device ID) às Bridges

Neste momento, se todos os procedimentos anteriores estiverem corretos, será mostrado um X vermelho ao lado esquerdo superior de cada ícone de dispositivo e de bridge. Isso significa que
Syscon - Methanol nunication Window Help Edit <u>Mas Xhri to a si si ka os su s</u> - OX - 🗆 × 🖹 ch1 Methanol Methanol Ð Fieldbus Networks **Delete Bridge** Th ch2 ė SB3 0 FB-700-1_C1 Cursor: X = 975, Y = 295 R: 255, G: 255, B: 255

nenhum device ID foi associado aos dispositivos. Selecione **Attributes**, clicando com o botão direito do mouse sobre o ícone da *bridge* e escolha o **Device ID** adequado.

Atribuindo o Device ID aos Dispositivos de Campo

Siga os mesmos procedimentos descritos acima para atribuir o *Device ID* aos dispositivos de campo.

Verificação da Comunicação

Para verificar a comunicação, clique com o botão direito do *mouse* no ícone *Fieldbus* e selecione *Live List*. Aparecerá uma nova janela com todos os dispositivos conectados ao segmento.

			 _10	
Tag	Id	Address		
DFI121	0003020007:SMAR-PCI12:121	0x10		
FT-01_SB1_C1	0003020001:SMAR-LD 302-2620	0x18		_
FT-107_S82_C1	0003020002 SMAR-TT302 800754	0x1B		_
LT-01_SB1_C1	0003020001:SMAR-LD 302:801111	0x19		_
FY-03_SB2_C1	0003020003 SMAR IF302 801536	0x21		_
TY-01_583_C1	0003020005 SMAR-F1302 33	Dx23		_
TT-03_S82_C1	0003020002 SMAR-TT 302:45	0x20		_
PT-01_SB3_C1	0003020002 SMAR-TT 302 801029	0x1C		_
PT-02_SB3_C1	0003020002 SMAR-TT302 800425	0x1D		_
TT-01_SB3_C1	0003020002:SMAR-TT 302:32	0x22		_
FB-700-1_C1	0003020009 SMAR-FB700-800220	0x24		_
FT-03_SB2_C1	0003020001:SMAR-LD 302:000800510	0x1A		_
LY-01_S81_C1	0003020004 SMAR-FP302 800203	0x1E		_
FV-01_SB1_C1	0003020006:SMAR-FY302:800665	0x1F		_
				_

Atribuindo Tags

Após atribuir endereços a cada dispositivo *Fieldbus*, é necessário atribuir os *tags* a cada dispositivo e interface. Assim, clique com o botão direito do *mouse* sobre cada dispositivo e *bridge*, e selecione *Assign Tag*. Os *tags* escritos na configuração serão enviados aos dispositivos. Veja a figura seguinte:

Para maiores detalhes sobre os procedimentos descritos acima, veja o Capítulo 11 ou o manual do SYSCON.

Download de Configuração

Download para Rede Fieldbus

- 1. Tenha certeza de que a *Live List* está mostrando todos os dispositivos de campo com os *tags* e endereços menores que **0x30**. Caso contrário, refaça o procedimento *Atribuindo Tags*;
- 2. Pressione o botão direito do *mouse* sobre a rede Fieldbus desejada e execute o comando *Update*;

- 3. Espere a *Live List* ser completada;
- 4. Pressione o botão direito do *mouse* sobre a rede Fieldbus desejada e execute o comando **Download**;
- 5. Salve a configuração do SYSCON.

Download Parcial para Dispositivos de Campo

- 1. Abra a configuração ativa.
- Tenha certeza de que a *Live List* mostra o dispositivo de campo desejado com o *tag* e Endereço menor que **0x30.** Caso contrário, execute o passo Atribuindo Tags.
- Pressione o botão direito do mouse sobre o dispositivo de campo desejado e execute o comando Update;

- 4. Espere a *Live List* ser completada,
- 5. Pressione o botão direito do mouse sobre o dispositivo desejado e execute o comando Download.

Download Parcial para a Bridge

- 1. Abra a configuração ativa.
- 2. Pressione o botão direito do mouse sobre a Bridge desejada e execute o comando Update;
- 3. Espere a *Live List* ser completada;
- 4. Pressione o botão direito do mouse sobre a Bridge desejada e execute o comando Download;
- 5. Neste momento será necessário transferir a tabela de escalonamento (*schedule*) para a *Bridge*. Para completar esta tarefa, execute *download schedule* em cada porta fieldbus.
- 6. Pule este passo caso o passo anterior já tenha sido efetuado. Esta é uma maneira alternativa para obter o schedule direto da rede para a Bridge. Escolha OnLine Characterization para o bloco transducer da Bridge e mude o parâmetro SCHEDULE_UPDATE para Update Req. Clique em End Edit. O parâmetro SCHEDULE_UPDATE não ficará em Update Req. permanentemente, ele irá para Updating e, posteriormente, para Update.

arameter	Value	Quality	Changed Diffect	Handing
SUP UPDATE CONFIGURED_mo	5000	Good: Non Specific: Not Limited	26	EW/
-SUP UPDATE SUGGESTED mo	1359	Good:Non Specific:Not Limited	27	FO
-NO_DATA_CHANGE_TIMEDUT_ms	4000	Good Non Specific Not Limited	28	FW/
-RESOURCE_FAULT	Ok.	Good:Non Specific:Not Limited	29	FO
-MYC ENABLE	Disable.	Cod:Non Specific Not Limited	30	FW
SCHEDULE_UFDATE	Lindation	Grood: Non Specific Not Limited	31	FW.
-T1_ms	Cipbering.	Good: Non Specific Not Limited	32	EW.
-12 m	- ailed.	Good Non Specific Not Limited	33	EW
-13_ms	Lipdate Rec	Good Non Specific Not Limited	34	FW/
FIRST UNPOLLED ADDRESS	Updated	Good Non Specific Not Limited	35	EW.
N_UNFOLLED_ADDRESS	Updaking.	Good Non Specific Not Limited	36	FW/
SLOT_TIME_octet	10	Good:Non Specific Not Limited	37	FW/
MAX RESPONSE DELAY octet	8	Good Non Specific Not Limited	38	EW
MIN_INTER_PDU_DELAY_octet	12	Good Non Specific Not Limited	39	FW
TARGET ROTATION TIME ms	1000	Good:Non Specific:Not Limited	40	EW
MAX CONFIRM DELAY ON DATA m	s 0	Good Non Specific Not Limited	41	EW
LOCAL VCR SELECT	None.	Good: Non Specific Not Limited	42	EW
L VCR ID	14	Good:Non Specific:Not Limited	43	RW
UTR TYPE AND ROLF	Invalid.	Good Non Specific Not Limited	11	E0.

Otimizando a Supervisão

Existem alguns passos importantes, na configuração do DFI302, para melhorar o tempo de supervisão. Antes dos procedimentos, será apresentada uma breve descrição da arquitetura do System302, para melhor compreensão do funcionamento de cada parâmentro configurado.

Analisando a arquitetura anterior, o usuário pode acompanhar o fluxo de dados desde a fonte (Dispositivos de Campo) até o destino (HMI). Começando pelo dispositivo de campo, a fonte de dados é coletada pelo DFI302 durante o tempo de *Background* incluído no *Fieldbus Macrocycle*. Ao utilizar o **MVC** (*Multiple Variable Container*), esses dados são otimizados. O tempo de supervisão (*Supervision Time*) controla a taxa que o MVC é lido do dispositivo de campo. A cada tempo de atualização (*Update Time*), o DFI302 envia os dados para o DFI OLEServer, no qual atualiza seu banco de dados. Todos os grupos OPC serão atualizados de acordo com a taxa de atualização OPC (*OPC Update Rate*).

A seguir serão apresentados os passos a serem configurados, afim de se obter um melhor tempo para cada sistema.

Tempo de Background

Ajustar o tempo de *background* (ou tráfego de *background*) é um dos primeiros passos a ser realizados. O configurador SYSCON calcula o *Macrocycle* de acordo com o número de *links* na configuração e possibilita ao usuário inserir o tempo de *Background*. Embora o SYSCON insira automaticamente um valor mínimo, é necessário calcular o *Background* ideal para cada *Fieldbus Network*. Existe uma regra para calcular o tempo de *Background* baseando-se na fómula utilizada para calcular o *Fieldbus Macrocycle*. O *Macrocycle* é composto pelos tráfegos de *Background* e Operacional.

O Macrocycle ideal para sistemas não-redundantes é:

Macrocycle Ideal Não-Redundante = [(30 * NDEV) + (30 * NEL)] * 1.2

O Macrocycle ideal para sistemas redundantes é:

```
Macrocycle Ideal Redundante = [(60 * NDEV) + (30 * NEL)] * 1.2
```

Onde: NDEV é o número de dispositivos de campo na Rede Fieldbus. NEL é o número de *links* externos (entre os dispositivos de campo).

Bkgnd Traffic : 100

ΟK

Cancel

Help

Conhecendo o *Macrocycle* ideal, vá para Fieldbus Attributes no SYSCON e ajuste o tempo de *background* até que o SYSCON mostre o *Macrocycle* desejado na tela.

IMPORTANTE					
Após terminar o ajuste em todos os canais Fieldbus, faça um <i>download</i> de configuração completo.					
Syscon - AdjustSup - [Fieldbus Project <u>File</u> <u>E</u> dit <u>S</u> earch <u>View</u> Help	Communication Window				
FB VFD	Paste Device New Bridge Live List Set App Time Browse MIB Update Download Upload NM Parameters				
Fieldbus Tag : Fieldbus1 Upstream Port : 1					

MVC (Multiple Variable Containers)

Multiple variable containers são blocos de dados que possuirão todos os dados de um dispositivo. Se este parâmetro estiver desabilitado, os dados são enviados através de *Views*. Cada bloco possui 4 *Views*, melhorando, assim, a comunicação.

Os MVCs otimizam esta comunicação enviando somente um pacote completo por dispositivo, ao invés de 4 pacotes menores por bloco. Configure o parâmetro MVC_ENABLE dentro do bloco *Transducer* do DF51 para habilitar essa característica. Todas as mudanças neste parâmetro entram em funcionamento após o início de uma nova Supervisão.

01	Line: DFI 21 - Transducer - DFI-TRD-	21	<u>_ 0 ×</u>
[s > < 🚯 🗗 🖉 🔍 🖉	📆 🔞 🐺 📑 🛃	
	Parameter	Value	Quality C 🔺
	-SUP_UPDATE_CONFIGURED_ms	1000	Good:Non Spec
	-SUP_UPDATE_SUGGESTED_ms	2374	Good:Non Spec
	NO_DATA_CHANGE_TIMEOUT_ms	0	Good:Non Spec
	RESOURCE_FAULT	Ok.	Good:Non Spec
	MVC_ENABLE	Enable. 🔻	Good:Non Spec
	SCHEDULE_UPDATE	Diaphla	Good:Non Spec
	T1_ms	Enable	Good:Non Spec
	T2_ms	Doodo	Good:Non Spec
	T3_ms	8000	Good:Non Spec 🛛 🔽
	1		Þ
	Cancel Edit	End Edit Close	Help

Tempo de Supervisão

O tempo de Supervisão é o tempo necessário para o DFI302 adquirir toda a informação do dispositivo de campo para a estação de supervisão. Lembre-se que essa informação é parte do tempo de *Background* que está incluso no tempo total (*Macrocycle*).

Durante o tempo de Supervisão o dispositivo de interface atualiza completamente seu banco de dados. Assim, só faz sentido executá-lo em um sistema em funcionamento com todos os *softwares* HMI (Interface Homem Máquina).

O bloco *transducer* do DFI302 possui três outros parâmetros que também são utilizados para otimizar a supervisão no System302.

- Parâmetro 1: SUP_UPDATE_CONFIGURED_ms
- **Parâmetro 2**: SUP_UPDATE_SUGGESTED_ms

Esses dois parâmetros definem o tempo que a *bridge* tem para apurar os dados de supervisão dos dispositivos. Comece configurando o SUP_UPDATE_CONFIGURED_ms em duas vezes o *Macrocycle* ideal. Após 10 minutos, aproximadamente, o parâmetro SUP_UPDATE_ SUGGESTED_ms indicará um tempo bastante favorável e pode-se realizar uma outra mudança novamente.

• Parâmetro 3: NO_DATA_CHANGE_TIMEOUT_ms

On Data Change é um mecanismo para otimizar a transferência de dados entre a *bridge* e o *software* HMI. Com este mecanismo, a *bridge* enviará somente dados que foram modificados. O HMI possui um *timeout* para os dados, ou seja, se ele não receber um sinal de comunicação após um certo período, ele indicará falta de comunicação. O NO_DATA_CHANGE_TIMEOUT_ms definirá um *timeout* para a *bridge*, se um certo valor não mudar durante o período em que estiver sendo enviado para a HMI, evitando que o *timeout* do HMI expire.

NOTAS

- Valores adequados para o parâmetro NO_DATA_CHANGE_TIMEOUT_ms estão na faixa de 2500 a 6000, dependendo da configuração.
- Todas as mudanças neste parâmetro entram em funcionamento após o início de uma nova Supervisão.

Tempo de Atualização

O UPDATE_TIME é utilizado pelo DFI302 para atualizar o banco de dados do DFI OLE Server. Normalmente, somente os dados dinâmicos são atualizados nesta faixa. Dados estáticos são atualizados cada NO_DATA_CHANGE_TIMEOUT.

Utilizando o SYSCON, abra o **Online characterization** para o bloco *Transducer* do DF51 e ajuste os parâmetros UPDATE_TIME e NO_DATA_ CHANGE_TIMEOUT para os valores desejados. Tenha em mente que ajustando o UPDATE_TIME para 200ms, o DF51 atualizará os dados mais frequentemente do que o valor *default* (1000 ms) e aumentará um pouco mais o tráfego da Ethernet.

0	n Line: DFI 21 - Transducer - DFI-TRD	-21	
	< > < 🚯 🗗 🖉 🔍	😨 🔞 🛒 🛃	
	Parameter	Value	Quality C 🔺
	⊡-BLOCK_ALM		
		0	Good:Non Spec
		<undefined></undefined>	Good:Non Spec
	-XD_ERROR	None.	Good:Non Spec
	COLLECTION_DIRECTORY	0	Good:Non Spec
	FUNCTION_IDS	Active.	Good:Non Spec
	UPDATE_TIME	200	Good:Non Spec
	ACTUAL_LINK_ADDRESS_1	0	Good:Non Spec
	CONF_LINK_ADDRESS_1	0	Good:Non Spec 🗾
			Þ
	Cancel Edit	End Edit Clo	ise Help

Taxa de Atualização OPC

O cliente (HMI) pode especificar uma "taxa de atualização" para cada grupo. Ela determinará o tempo entre as verificações dos eventos. Em outras palavras, se o grupo for configurado com 1 segundo, mas o dado muda a cada 500ms, o cliente só será avisado a cada 1 segundo. A taxa de atualização é um pedido do cliente e o servidor responderá com uma taxa de atualização mais próxima possível da exigida.

Cada cliente possui modos específicos para configurar esta taxa. Consulte o manual para a HMI e configure quando necessário.

Redundância da Rede de Controle

Para aplicações críticas a rede Ethernet pode ser redundante. Para uma Rede Fieldbus Ethernet redundante a instalação elétrica é simplesmente duplicada. São conectados todos os dispositivos de Ethernet inclusive as *workstations* a ambos os barramentos de Ethernet. Também são duplicados os *HUBs/Switches* da rede.

O DFI302 e *workstations*, continuamente, monitoram ambas as redes Fieldbus e Ethernet. Caso qualquer um dos dois falhe, o usuário será informado e fará uso somente da rede boa. O chaveamento é totalmente seguro e transparente para o resto do sistema. Assim, é evitado qualquer transtorno e o controle continua como sempre. LEDs indicam quais das redes Ethernet estão operacionais ou falharam.

A SMAR comercializa *HUBs* e *switches* comerciais ou industriais para par trançado ou fibra óptica. HUBs de nível industrial podem ser montados em trilho DIN e podem ter fonte redundante.

Veja maiores detalhes sobre redundância no Capítulo "Adicionando Redundância".

Sistema não redundante vs. Solução Redundante: A interface DFI302 redundante possibilita 2 caminhos.

CONFIGURANDO DFI OLE SERVER

Introdução

Utilizando todos os benefícios do OLE (Object Linking and Embedding) e OPC (OLE for Process Control), o usuário pode estabelecer aplicações Fieldbus client para sistemas cliente / servidor em um nível mais elevado de programação, sem ter que lidar com detalhes específicos do protocolo Fieldbus. O OLE SERVER para interfaces Fieldbus da SMAR fornece um conjunto de funções para supervisão e configuração. Este grupo de funções minimiza as mudanças de códigos que o usuário precisará fazer caso o protocolo principal mude.

Arquitetura cliente / servidor via OLE

É uma arquitetura de processamento distribuído que fornece uma única visualização do sistema aos usuários e aplicações e possibilita a utilização de serviços em um ambiente de rede, independente da localização, da arquitetura de máquina ou do ambiente de implementação.

Baseado na plataforma Win32

O servidor foi desenvolvido para sistemas de 32 bits. As aplicações cliente/servidor devem ser executadas na plataforma Windows™.

Conformidade OPC

Uma vez que o servidor tenha uma interface OPC, qualquer cliente pode acessar dispositivos de campo de forma padrão. O OLE for Process Control (OPC) "une" os fornecedores de hardware com os desenvolvedores de software.

OLE para Configuração Fieldbus (OFC)

A fim de usufruir os benefícios do OPC, a SMAR desenvolveu um conjunto de funções para configuração de plantas via OLE. Assim, a supervisão e configuração cliente podem operar ao mesmo tempo remotamente ou não.

OPC – OLE for Process Control

OLE for Process Control (OPC [™]) é uma tecnologia através do qual aplicações de supervisão e administrativas podem acessar dados de "chão de fábrica" de forma consistente. Com grande aceitação industrial e arquitetura aberta, o OPC fornece muitos benefícios como, por exemplo, o servidor OPC, no qual os fabricantes de hardware só precisam implementar um conjunto de componentes de software para que os clientes possam utilizá-lo em suas aplicações. Outro benefício é o cliente OPC, no qual os fabricantes de software não precisam reescrever drivers devido às mudanças de características em um novo hardware. Com o OPC, a integração de sistemas em um ambiente de processamento heterogêneo se torna simples. Através do OLE / COM, o usuário pode implementar o ambiente mostrado a seguir.

Visão Geral

O OPC é baseado na tecnologia OLE/COM da Microsoft. Um cliente OPC pode conectar-se a um servidor OPC fornecido por outro fabricante.

O código escrito por um fabricante determina o dispositivo e os dados que cada servidor tem acesso, o modo que cada dado é nomeado e os detalhes sobre como o servidor acessará fisicamente estes dados.

Dentro de cada servidor o cliente pode definir um ou mais grupos OPC. Com os grupos OPC, o usuário pode organizar os dados que realmente lhe interessa. Por exemplo, este grupo pode representar itens em um relatório ou em uma tela de operação particular. Os dados podem ser lidos ou escritos. Conexões baseadas em exceções podem ser criadas entre o cliente e os itens do grupo e podem ser habilitadas ou desabilitadas quando necessário. O tempo de resolução do dado no grupo pode ser especificado e o cliente pode definir um ou mais itens OPC.

Os itens OPC representam conexões com as fontes de dados no servidor. Associado com cada item existe um valor, uma máscara de qualidade (quality mask) e um time stamp. A máscara de qualidade é semelhante àquela especificada no Fieldbus. Note que os itens não são fontes de dados e sim, conexões entre eles. Por exemplo, os tags em um sistema DCS existem independente se um cliente OPC está acessando-os.

Servidores locais e servidores remotos

Existem duas possibilidades de conexão entre clientes e servidores OPC. O cliente pode se conectar a um servidor local, instalado na mesma máquina. A outra possibilidade é a conexão através da rede a um servidor remoto, utilizando a tecnologia DCOM.

Configuração mínima do DCOM

- 1. Certifique-se que o hardware foi corretamente instalado de acordo com o manual.
- 2. Conecte-se com direitos administrativos na máquina local.
- 3. Certifique-se que você possui TCP/IP e os protocolos RPC estão instalados no seu computador.
- 4. Certifique-se de usar o sistema operacional Windows 2000 ou Windows XP.
- 5. Faça a instalação utilizando o setup do System302.

Cliente e servidor executando na mesma máquina

A configuração padrão é suficiente para obter acesso local, no caso do Windows 2000. Para Windows XP, talvez a configuração padrão não seja suficiente (ver detalhes específicos na seção sobre Windows XP). Configurações extras são necessárias somente se você pretende ter pontos de segurança.

De qualquer modo, para ter certeza de que seu computador funcionará adequadamente, verifique a seguir as configurações necessárias:

- 1. Execute o programa dcomcnfg.exe:
- 1.1 Clique em Iniciar na barra de tarefas do Windows e escolha a opção Executar.
- 1.2 Preencha o campo de edição com *dcomcnfg* e pressione **OK**.
- 2. Selecione a pasta **Propriedades padrão** e configure os seguintes campos:
- 2.1 Z Ativar COM neste computador.
- 2.2 Nível de autenticação padrão: Conectar-se.
- 2.3 Nível de representação padrão: Identificar.
- 3. Selecione a pasta Segurança padrão:
- 3.1 Pressione o botão Editar padrão localizado em Permissões padrão de acesso.
- 3.1.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir acesso.
- 3.2 Pressione o botão Editar padrão localizado em Permissões padrão para iniciar.
- 3.2.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir inicialização.
- 4. Selecione a pasta Aplicativos e clique duas vezes sobre Smar OPC & Conf Server for DFI302
- 5. Na pasta Geral, configure Nível de autenticação para Padrão.
- 6. Selecione a pasta Local e verifique Executar o aplicativo neste computador.
- 7. Selecione agora a pasta Segurança:
- 6.1 Verifique a opção Utilizar permissões padrão de acesso.
- 6.2 Verifique a opção Utilizar permissões padrão para iniciar.
- 6.3 Selecione a pasta Identidade e verifique O usuário interativo.

Cliente e servidor executando em máquinas diferentes

O usuário deve executar dois tipos de configurações diferentes para conectar-se através do DCOM: a configuração do cliente e a configuração do servidor. No lado cliente o usuário pode ter um programa final como o Syscon e alguns componentes do software Smar OLE Server (arquivos CONFPrx.dll, Iproxy.dll e OPCProxy.dll, bem como, informações necessárias para o registro do Windows). No lado servidor o usuário deve possuir todo o programa Smar OLE Server para estabelecer comunicação entre softwares clientes e hardware conectados ao computador.

Criando conexão cliente/servidor com segurança

Passo 1 - Configurando os servidores de rede

O usuário possui duas possibilidades para configurar sua máquina para comunicação DCOM. Pode-se usar somente estações de trabalho (standalone) ou estações de trabalho em um domínio com um servidor.

As vantagens de uma sobre a outra dependem da arquitetura da rede local. Ambas necessitam de um administrador de rede. Para escolher uma opção lembre-se que arquiteturas baseadas em domínios possuem uma única base de dados de segurança, portanto, elas são as mais simples para utilização.

Opção 1 - Rede baseada em estações de trabalho standalone

- 1. Através do gerenciador de usuários do Windows, crie em cada máquina um grupo para seu sistema Fieldbus (sugestão: chame-o de *FFGroup*).
- 2. Continue no gerenciador de usuários e crie em cada máquina um novo usuário para seu sistema Fieldbus (sugestão: chame-o de *FFUser*).
- 3. Ainda no gerenciador de usuários, insira todos os usuários (incluindo o usuário criado anteriormente) que devem possuir acesso aos serviços Fieldbus (configuração, supervisão, etc...) no grupo criado no item 1.
- 4. Após a inserção dos usuários no grupo, é necessário reiniciar a máquina.

Opção 2 - Rede baseada em domínio Windows

- 1. Execute o gerenciador de usuários do Windows na máquina controladora de domínio (PDC) e crie um novo grupo para o seu sistema Fieldbus (sugestão: chame-o de *FFGroup*).
- 2. Continue no gerenciador de usuários e crie um novo usuário para seu sistema Fieldbus (sugestão: chame-o de *FFUser*).
- 3. Ainda no gerenciador de usuários, insira todos os usuários criados (incluindo o usuário criado anteriormente) que devem possuir acesso aos serviços Fieldbus (configuração, supervisão, etc...) no grupo criado no item 1.
- 4. Certifique-se que todas as estações de trabalho são membros do domínio Windows.

Passo 2 - Lado cliente

- 1. Execute o programa *dcomcnfg.exe*;
- 1.1 Pressione o botão Iniciar na barra de tarefas do Windows e escolha a opção Executar.
- 1.2 Preencha o campo de edição com *dcomcnfg* e clique **OK**.
- 2. Selecione a pasta **Propriedades padrão** e configure os seguintes campos:
- 2.1 Z Ativar DCOM neste computador.
- 2.2 Nível de autenticação padrão: Conectar-se.
- 2.3 Nível de representação padrão: Identificar.
- 3. Selecione a pasta Segurança padrão.
- 3.1 Pressione o botão Editar padrão localizado em Permissões padrão de acesso.
- 3.1.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir acesso.
- 3.2 Pressione o botão Editar padrão localizado em Permissões padrão para iniciar.
- 3.2.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir inicialização.
- 4. Selecione a pasta Aplicativos e clique duas vezes sobre Smar OPC & Conf Server for DFI302.
- 5. Selecione a pasta Local e verifique a opção Executar aplicativo neste computador.
- Se sua aplicação cliente não possui a opção conexão remota, verifique Executar o aplicativo no seguinte computador, preenchendo com o nome do computador ou o IP que será o do lado servidor para este lado cliente.

Passo 3 - Lado Servidor

- 1. Execute o programa *dcomcnfg.exe*:
- 1.1 Clique no botão Iniciar, na barra de tarefas do Windows, e escolha a opção Executar.
- 1.2 Preencha o campo de edição com *dcomcnfg* e pressione o botão **OK**
- 2. Selecione a pasta **Propriedades padrão** e configure os seguintes campos:
- 2.1 **Ativar DCOM neste computador**.
- 2.2 Nível de autenticação padrão: Conectar-se.
- 2.3 Nível de representação padrão: Identificar.
- 3. Selecione a pasta Aplicativos e clique sobre Smar OPC & Conf Server for DFI302.
- 4. Selecione a pasta Local e verifique a opção Executar o aplicativo neste computador.
- 5. Selecione agora a pasta Segurança.
- 5.1 Verifique a opção Utilizar permissões personalizadas de acesso e clique em Editar.
- 5.1.1 Somente os grupos SYSTEM e FFGROUP devem possuir **Permitir acesso**.
- 5.2 Verifique a opção permissões personalizadas para iniciar e clique em Editar.
- 5.2.1 Somente os grupos SYSTEM e FFGROUP devem possuir Permitir inicialização.
- 6. Selecione a pasta Identidade e verifique a opção O usuário interativo.

Criando conexão cliente/servidor sem segurança

Passo 1 - Configurando os Usuários

1. Execute gerenciador de usuários em cada máquina e crie os usuários envolvidos no processo.

Passo 2 - Lado Cliente

- 1. Execute o programa *dcomcnfg.exe*:
- 1.1 Clique no botão Iniciar, localizado na barra de tarefa, e esclha a opção Executar.
- 1.2 Preencha o campo de edição com *dcomcnfg* e pressione o botão **OK**.
- 2. Selecione a pasta **Propriedades padrão** e configure os seguintes campos:
- 2.1 Z Ativar DCOM neste computador.
- 2.2 Nível de autenticação padrão: Conectar-se.
- 2.3 Nível de representação padrão: Identificar.
- 3. Selecione a pasta Segurança padrão.
- 3.1 Pressione o botão Editar padrão localizado em Permissões padrão de acesso.
- 3.1.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir acesso.
- 3.2 Pressione o botão Editar padrão localizado em Permissões padrão para iniciar.
- 3.2.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir inicialização
- 4. Selecione a pasta Aplicativos e selecione Smar OPC & Conf Server for DFI302.
- 5. Selecione a pasta Local e verifique a opção Executar aplicativo neste computador.
- Se sua aplicação cliente não possui a opção conexão remota, verifique Executar o aplicativo no seguinte computador, preenchendo com o nome do computador ou o IP que será o do lado servidor para este lado cliente.

Passo 3 - Lado Servidor

- 1. Execute o programa dcomcnfg.exe:
- 1.1 Pressione o botão **Iniciar** localizado na barra de tarefas, e escolha a opção **Executar**.
- 1.2 Preencha o campo de edição com *dcomcnfg* e pressione o botão OK
- 2. Selecione a pasta **Default Properties** e configure os seguintes campos:
- 2.1 Z Ativar DCOM neste computador.
- 2.2 Nível de autenticação padrão: Conectar-se.
- 2.3 Nível de representação padrão: Identificar.
- 3. Selecione a pasta Segurança padrão.
- 3.1 Pressione o botão Editar padrão localizado em Permissões padrão de acesso.
- 3.1.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir acesso.
- 3.2 Pressione o botão Editar padrão localizado em Permissões padrão para iniciar.
- 3.2.1 Tenha certeza que Administradores, INTERATIVO, SYSTEM e Todos estão adicionados com Permitir inicialização.
- 4. Selecione a pasta Aplicativos e selecione Smar OPC & Conf Server for DFI302.
- 5. Selecione a pasta Local e verifique a opção Executar o aplicativo neste computador.
- 6. Selecione a pasta **Segurança.**
- 6.1 Verifique a opção Utilizar permissões padrão de acesso.
- 6.2 Verifique a opção Utilizar permissões padrão para iniciar.
- 7. Selecione a pasta Identidade e verifique a opção O usuário interativo.

Configurações específicas para Windows XP

Além das configurações descritas acima, usuários do Windows XP necessitam realizar configurações adicionais.

- 1. Pressione o botão **Iniciar** localizado na barra de tarefas, escolha a opção **Configurações** e então **Painel de Controle**.
- Escolha a opção Ferramentas Administrativas, em seguida Diretiva de Segurança Local, em seguida Diretivas Locais e então Opções de segurança.
- 3. Procure pela entrada Acesso á rede: Compartilhamento e modelo de segurança para contas locais.
- 4. Mude a configuração da entrada para Clássico os usuários são autenticados como eles próprios.

Detalhes sobre DFI OLE Server

O DFI OLE Server é um software para lado do servidor (server-side) utilizado para conectar o software do lado cliente com o DFI302 instalado na rede.

- Certifique que o DFI302 esteja instalado corretamente na rede.
- Arquivo: DFISvr.exe
- ProgID: Smar.DFIOLEServer.0
- Nome: Smar OPC & Conf Server for DFI302

Detalhes sobre HSE OLE Server

O HSE OLE Server é um software para lado do servidor (server-side) utilizado para conectar o software do lado cliente (por exemplo, OPC Client) e qualquer equipamento HSE instalado na rede.

Definição de Equipamentos HSE

Qualquer dispositivo Fieldbus Foundation conectado diretamente a um HSE Media. Todos os equipamentos HSE contêm um FDA Agent, um HSE SMK e um HSE NMA VFD. Como exemplo podemos citar *Linking Devices*, *Gateways* de E/S e Equipamentos de Campo HSE. O DFI302 é um *Linking Device*.

• Certifique que o DFI302 ou qualquer equipamento HSE estejam instalados corretamente na rede.

- Arquivo: HseSvr.exe
- ProgID: Smar.HSEOLEServer.0
- Nome: Smar OPC & Conf Server for HSE

Configuração do SmarOLEServer.ini

O arquivo SmarOleServer.ini, localizado na pasta OLEServers, fornece algumas opções de SECTIONS e KEYS que permitem habilitar ou desabilitar logs, ajustar timeout, configurar detalhes de rede, etc. Veja a descrição destas seções a seguir:

 Nas seções LOG e LOGForOPC é possível habilitar algumas características de log e ver os resultados nos arquivos Events.log e EventOPC.log respectivamente. Ambos possuem arquivos (.log#) que são utilizados para "trocas" (swap).

[Log] GENERAL=0 DEBUG=0 MEMORY=0 INIT=1 DRIVER=0 TRANSFER=0 TRANSACTION=0 CONF=0 OPC=0 OPCDEBUG=0

IDSHELL=0

- ;=0 (Default) Log desabilitado
- ;=1 Habilita o log e vê os resultados em Events.log e Events.log#

[LogForOPC] GENERAL=0

;=0 (Default) Log desabilitado

- ;=1 Habilita o log e vê os resultados em EventOPC.log e EventOPC.log#
- Na seção Adapter NIC, caso mais de um NIC adapter estiver instalado na máquina, escolha o NIC adapter desejado para ser conectado ao DFI OLE Server local.

[NIC Adapter]

- ; Mais de um NIC (Network Interface Card) está instalado na máquina local
- ; Ajuste o NIC que está conectado a rede onde o DFI302 se encontra.

; Na chave NIC (próxima linha), coloque o IP e remova ';' para ativar a chave ;NIC=xxx.yyy.www.zz

 Na seção de ajustes de tempo do DFI, coloque o melhor tempo de startup que o DFI OLE Server leva para procurar o DFI302 na rede. O tempo default costuma ser suficiente quando não se utiliza roteadores.

[DFI Time Settings]

; Define um atraso no qual o servidor irá esperar até completar a conexão com o DFI. ;=3 (Default) 3 segundos antes de concluir a conexão do server com os DFI's. NETWORK_STARTUP=3

 Na seção Remote DFI, ao utilizar roteadores na topologia da rede, insira os IP's localizados fora da subnet local. Não esqueça de ajustar o tempo do DFI (explicado acima), ou seja, o melhor tempo necessário para o DFI OLE Server.

[Remote DFI]

- ; Especifique nesta seção os IP's a serem encontrados na rede remota.
- ; Lembre-se de ajustar o Default Gateway em ajustes do DFI utilizando o FBTools.
- ; Format: xxx.yyy.zzz.sss=1 habilita o polling de IP.
- ; xxx.yyy.zzz.sss=0 desabilita o polling de IP.
- ;192.168.164.100=0
- Na seção de Supervisão, é possível mudar o Servidor (PCI ou DFI) para emulação. Este modo é utilizado somente para debug.

[Supervision]

; Esta seção é utilizada para Supervisão.

; OPC_TIMEOUT é o tempo máximo na qual o Servidor espera para atualização de dados.

; EMULATION inicia a Emulação.

; EMULATION_RATE especifica a taxa para renovação de emulação.

OPC_TIMEOUT=30

;=30 (Default) 30 segundos

EMULATION=OFF

;=ON Ativa o modo Emulação para Supervisão

;=OFF (Default) Modo Normal

EMULATION_RATE=1000

;=1000 (Default) 1000 segundos, válido quando EMULATION=ON

 Na seção de Configuração, é possível configurar timeouts para cada procedimento de configuração do Syscon. Não mude nenhum valor nesta seção sem recomendação da Smar.

[Configuration] ;Default Timeout 10 segundos Timeout.Default=30 Timeout.MULTILINKTOPOLOGYREQ=60

Aplicação Smar Server Manager

O Smar ServerManager Application foi desenvolvido para trabalhar com todas as características configuráveis disponíveis no Smar OLE Servers, como por exemplo, aquela apresentada na seção de configuração SmarOLEServer.ini.

Muitas características já estão disponíveis e muitas outras estão sendo desenvolvidas.

 Um bom exemplo seria mudar o Server para o modo Emulation utilizando o aplicativo ServerManager ao invés de usar o arquivo de configuração SmarOLEServer.ini.

🗟 Smar - ServerMa	nager		×
<u>File Edit View Opt</u>	tions <u>H</u> elp E <u>x</u> it		
Smar OLE Server	Name	Data	
E- Supervision Properties Log T- Configuration	EMULATION OPC_TIMEOUT	OFF 30	
	•	EMULATION	ок
For Help, press F1		Emulation OFF OFF ON	Cancel

 Uma outra característica implementada pelo ServerManager é carregar os servidores no startup quando configurados e localizados no Startup do Windows. Para isto, vá em Options, clique no servidor que se deseja carregar no startup e mova o atalho do ServerManager para a pasta Windows Startup.

SOLUCIONANDO PROBLEMAS

O DFI302 disponibiliza alguns recursos de inicialização para solucionar determinados problemas. Estes recursos são:

Dois pequenos botões estão disponíveis para o usuário, para que este possa executar algumas ações de reset do processador (maiores detalhes são apresentados na figura a seguir, mostrando os dois pequenos botões localizados acima do conector de RS-232).

A tabela seguinte mostra as opções existentes para Reset.

Nome	Procedimento efetuado nos botões	Ação executada pelo processador
Reset	O processador executará o Reset levando alguns segundos para a inicialização correta do sistema. Um novo IP será atribuído automaticamente (quando disponível o DHCP Server na rede) ou será mantido o último IP fixo configurado, de acordo com o procedimento efetuado via FBTools e/ou Modo 3. O processador deverá iniciar em modo de execução (<i>RUN</i>), caso haja um <i>firmware</i> válido.	
Mode 1 – Factory Init	Mantenha pressionado o <i>Push-Bottom</i> da esquerda e, em seguida, clique o <i>Push-Bottom</i> da direita garantindo que o LED FORCE esteja piscando uma vez a cada segundo. Libere o <i>Push-Bottom</i> da esquerda.	O Processador executará um procedimento de inicialização de fábrica apagando todas as configurações efetuadas pelo Syscon. Um novo IP será atribuído automaticamente (quando disponível o <i>DHCP Server</i> na rede) ou será mantido o último IP fixo configurado, de acordo com o procedimento efetuado via FBTools e/ou Modo 3. O processador deverá iniciar em modo de execução (<i>RUN</i>), caso haja um <i>firmware</i> válido.
Mode 2 – HoldMantenha pressionado o Push-Bottom da esquerda e, em seguida, clique o Push-Bottom da direita duas vezes garantindo que o LED FORCE esteja piscando 2 vezes a cada segundo. Libere o Push-Bottom da esquerda.		Com o DFI302 neste modo, você poderá usar o FBTools Wizard para atualização do firmware ou alteração do endereço IP. Utilize o <i>Reset</i> novamente, caso queira retornar para o modo de execução (<i>Run</i>).
Mode 3 – IP Automatic Assign	Mantenha pressionado o <i>Push-Bottom</i> da esquerda e, em seguida, clique o <i>Push-Bottom</i> da direita três vezes garantindo que o LED FORCE esteja piscando 3 vezes a cada segundo. Libere o <i>Push-Bottom</i> da esquerda.	Um novo endereço IP será atribuído automaticamente (se um <i>DHCP Server</i> estiver disponível) ou será atribuído um IP default (192.168.164.100). O processador deverá iniciar em modo de execução (<i>RUN</i>), caso haja um <i>firmware</i> válido.

DICAS

- Qualquer um dos modos (Factory Init e Modo HOLD) pode ser evitado uma vez iniciados, mantendo-se pressionado o Push-Bottom da direita e liberando-se o o Push-Bottom da esquerda primeiro.
- Se você perder a conta do número de vezes que o Push-Bottom da direita foi pressionado, basta verificar o número de vezes que o LED FORCE está piscando a cada segundo. Ele voltará a piscar uma vez por segundo depois do quarto toque, ou seja. a função é rotativa.
 - Para "clicar" no Push-Bottom do Factory Init/Reset é adequado o uso de algum instrumento pontiagudo (ex. caneta esferográfica).

Quando Usar os Procedimentos de Factory Init/Reset

- 1. Como resetar o DFI302 sem desligá-lo? Use o procedimento de RESET.
- 2. O LED HOLD permanece aceso, como devo proceder?
 - Caso após o DFI302 ser ligado (ou resetado) o LED HOLD permaneça aceso, é provável que o *Firmware* esteja corrompido. Deve-se proceder a um *Firmware Download* para carregar um *Firmware* novamente. Para isso siga os seguintes passos:
- 2.1- Assegure-se que o DFI302 esteja ligado e que já tenha sido conectado à sua Sub-Rede. Caso contrário, use o procedimento "Conectando o DFI302 à sua Sub-Rede". Certifique-se de que o LED HOLD esteja aceso;
- 2.2- Execute o FBTools Wizard localizado no menu Iniciar → Programas → System302 → FBTools Wizard;
- 2.3- Selecione o módulo desejado do DFI302 e pressione "Next";
- 2.4- A janela do *Dfi Download* aparecerá. Selecione o caminho para o DFI OLEServer (*Local* é o caminho padrão) e pressione o botão "*Connect*";
- Selecione o módulo DF51 desejado na opção "Module". Como referência, use o número de série, localizado na etiqueta lateral, no próprio DF51;
- Clique no botão "Browse..." para selecionar qual arquivo de *firmware* será carregado (arquivo DF51*.ABS);
- 2.7- Após selecionar o arquivo, clique no botão "Download" para iniciar o download do firmware;
- 2.8- Durante o download será apresentada a tela de progresso da operação;
- 2.9- Ao final da operação, uma mensagem de status aparecerá confirmando o download. Clique "OK" e espere alguns minutos enquanto as informações são atualizadas. O DFI302 estará no "Modo Run". (Assegure-se que o LED RUN esteja aceso);
- 2.10-Para encerrar, clique "Close".
- 3. O FBTools Wizard não consegue colocar o DFI302 em HOLD, como devo proceder?

Use o procedimento do Modo HOLD. Colocado o DFI302 em HOLD, execute o procedimento de atualização do firmware usando os passos descritos no item 2.

Se mesmo assim o problema persistir, é possível que esteja relacionado à conexão TCP/IP (verificar os cabos e o LED ETH10).

4. O *firmware* inicia a execução, mas depois de um certo tempo trava, como devo proceder?

Pode ser um problema da configuração. Use o procedimento do Factory Init e reconfigure o DFI302.

Caso o problema persista, será necessário fazer um novo download de firmware no DFI302.

5. O LED ETH10 não acende, como devo proceder?

Verificar se o cabo foi conectado corretamente ou se o cabo não está rompido. Lembre-se que da especificação dos cabos:

DF54 - Cabo Padrão. Para ser usado em uma rede entre DFI302 e Switch/HUB.

DF55 – Cabo Cruzado (Cross). Para ser usado ponto-a-ponto entre PC e DFI302.

6. O LED FORCE está piscando, como devo proceder?

Use o procedimento de RESET.

7. O FBTools não mostra todos os DFI302's que estão na Sub-Rede, como devo proceder?

Provavelmente está havendo conflito de endereço IP nessa Sub-Rede. Para solucionar este tipo de problema deve-se desconectar todos os DFI302s dessa Sub-Rede e executar o procedimento "Conectando o DFI302 à sua Sub-Rede" para cada módulo, assegurando que o endereço a ser usado não esteja associado a outro equipamento da rede.

8. O FBTools não encontra o DF51.

- Certifique-se de que o procedimento inicial de conexão foi realizado corretamente, ou seja, inicialmente foi colocado o IP *Default* via Modo 3 de *Reset* e o computador foi colocado com IP 192.168.164.101.
- O cabo Ethernet utilizado deve ser DF54 quando usando HUB ou Switch. Use o cabo DF55 para conexão direta entre computador e DF51.
- Teste a placa de rede do computador executando o comando *ping* para o IP do próprio computador via DOS Prompt.
- Teste a conexão Ethernet executando o comando ping para o DF51.

9. O DF51 estava operando corretamente, desliguei e liguei novamente e agora nenhum tipo de reset funciona e o LED Hold fica constantemente aceso e/ou piscando.

Algumas versões de *hardware* dos DF51, anteriores à Revisão 2 e Emissão 1, não possuíam proteção de escrita em área de *firmware* e monitor. Eventuais problemas com a configuração e *bugs* de *software* podiam corromper o firmware e o monitor. Deve-se, neste caso, fazer o uso da *Boot Flash*.

10. Preciso usar a Boot Flash para recarregar o Programa Boot?

Utilize o procedimento de Fábrica "Carregando o programa Boot no DF51".

11. Durante a operação do SYSCON, no "Online Characterization" de alguns blocos, perdi a conexão com o DF51.

Versões do System302 5.0 (anteriores ao Service Pack 8), possuíam um bug que podiam gerar o efeito acima. Neste caso, feche o SYSCON e abra-o novamente. Em alguns casos é necessário "resetar" o DF51.

12. A licença não é aceita pelo programa Get license.

Siga os procedimentos a seguir:

- 1. Tente registrar a licença DEMO. No *Get License* há um botão "*Use DEMO keys*", caso funcione, o problema deve ser algum erro na digitação da chave.
- Se ainda assim não funcionar, verifique a existência da variável SmarOlePath no ambiente. Use My Computer → Properties → Advanced Tab → Environment Variables e verifique se existe uma variável SmarOlePath. Caso não exista, execute o programa "Interface Setup" da pasta de trabalho da Smar e ela será criada.

OBSERVAÇÃO

Use somente caracteres que sejam números e traços "-". NÃO use espaços e caracteres símbolos "! @ # \$ % ^ & * () _ + ~ < > , . / ? \ | { } [] ;;"

- Execute o registro do servers novamente. Na pasta de trabalho da Smar ("Program Files\Smar\OleServers\" execute o programa Register.Bat.
- 4. Caso as opções anteriores tenham falhado, pode-se gerar o arquivo de licença manualmente:

Use um editor de texto ASC (por exemplo, notepad) pois o arquivo não pode conter caracteres de formatação. O nome de cada arquivo e seu conteúdo são apresentados a seguir:

Arquivo: Syscon.dat SMAR-MaxBlocks-55873-03243-22123-04737-10406

Arquivo: OleServer.dat #PCI OLE Server SMAR-OPC_NBLOCKS8-23105-23216-11827-2196

Arquivo: DfiOleServer.dat #DFI OLE Server SMAR-DFIOPC_NBLOCKS8-19137-32990-37787-24881-12787

As chaves mostradas são para a licença DEMO, você pode usar as suas chaves.

13. Não consigo chavear os blocos Modbus para "Auto", mesmo colocando o Mode Block target para "Auto" o Mode Block Actual continua em "O/S".

Para que os blocos Modbus sejam colocados em "AUTO" é necessário que o MODE_BLOCK do Bloco *Resource* do DFI302 seja primeiramente, colocado em "AUTO" e que os LOCAL_MOD_MAP de cada bloco Modbus sejam diferentes de 255.

14. Defino um valor diferente de 255 para o LOCAL_MOD_MAP de um bloco Modbus, mas ele permanece em 255.

Dentro de um mesmo tipo de bloco Modbus (MBCM, MBCS, MBSS, MBSM) não podem existir dois blocos com o mesmo LOCAL_MOD_MAP, sendo que o valor deve estar entre 0 e 15.

15. Tento mudar um valor estático de um bloco Modbus, mas o valor não é atualizado.

Para que um valor estático de um bloco Modbus seja atualizado, primeiramente é necessário que o bloco seja colocado em "O/S", isto permite que os valores estáticos possam ser mudados.

16. Após mudar algum valor estático de um bloco e colocar o Mode Block target para "AUTO" o atual não vai para "AUTO".

Se algum parâmetro estático de um bloco Modbus for alterado, o bloco só irá para "AUTO" após realizar o "**On_Apply**" no bloco MBCF.

ESPECIFICAÇÕES TÉCNICAS

Especificações do DFI302

CONDIÇÕES AMBIENTES				
Operação	0~60 °C, 20~90% RH não-condensado.			
Armazenamento	 -20~80 °C, 20~90% RH não-condensado. Exceto o módulo DF51 -20~25 °C, 20~90% (Para permitir 10 anos de armazenamento sem consumo excessivo da bateria). 			

Especificações do DF51

DF51				
Тіро	32-bit RISC.			
Desempenho sustentado	50 MIPS			
Memória para código	2MB, Memória Flash de 32	-bit (firmware atualizável).		
Memória para dados	2MB, NVRAM de 32-bit (Re	etenção de dados e configuração).		
Interface para Fieldbus	Número de Portas Physical Layer Standard Baud Rate Tipo de MAU Segurança Intrínseca Isolação	4, independentes com DMA ISA-S50.02-1992 31,25 Kbps (H1) Passivo (barramento não energizado) Não compatível 500 Vac (cada canal)		
Operação Tensão/Corrente	+5V ± 5% / 0,95 A (típico).			
Conector Ethernet	RJ-45.			
Conector EIA-232	RJ-12.			

Especificação do Cabo Ethernet

Caso seja necessária a montagem de um novo cabo Ethernet, tem-se aqui as especificações do cabo Par Trançado, conforme o Código do Pedido para DF54 ou DF55.

DF54 – Cabo Padrão. Para ser usado em uma rede entre DFI302 e *Switch*/HUB. DF55 – Cabo Cruzado (Cross). Para ser usado ponto a ponto entre PC e DFI302.

OBS: As cores são apenas sugestões. O importante é usar os pares (cor XXX e branco/cor XXX);

Especificação do Cabo Serial

Para conectar DF51 (módulo CPU) e DF58 (Interfaces RS232/RS485) será necessário um cabo DF59 ou monte um de acordo com o seguinte esquema:

Os jumpers no lado DB9 são recomendados, mas não necessários, depende da aplicação que está sendo executada no PC.

Especificação do Cabo de Conexão do DFI302 ao CPU-700

Para conectar o **DF51 (Processador) ao módulo CPU-700** será necessário um cabo DF68 ou monte um de acordo com o seguinte esquema:

ADICIONANDO FONTES DE ALIMENTAÇÃO

Introdução

Existem algumas recomendações que devem ser consideradas ao adicionar fontes de alimentação.

Primeiramente, é necessária uma visão geral de todo o sistema para melhor escolher os módulos de fonte de alimentação, impedância, etc. Cada módulo controlador necessita de pelo menos uma fonte de alimentação para o backplane, porém ao adicionar módulos de E/S, é necessário calcular a potência necessária.

A tabela a seguir mostra os módulos usados como fonte de alimentação, barreira intrínsica e impedâncias para fieldbus.

	FONTES					
MODELO	DESCRIÇÃO	TIPO E/S				
DF50	Fonte de alimentação para o Backplane 90-264VAC	Sem I/O				
DF56	Fonte de alimentação para o Backplane 20–30 VDC	Sem I/O				
DF52	Fonte de alimentação para Fieldbus 90-264VAC	Sem I/O				
DF60	Fonte de alimentaçao para Fieldbus 20-30VDC	Sem I/O				
DF49 Impedância para Fieldbus (2 portas) Sem I/O		Sem I/O				
DF53	Impedância para Fieldbus (4 portas)	Sem I/O				
DF47	Barreira de Segurança Intrínseca para Fieldbus	Sem I/O				
DF48	Repetidor para Fieldbus	Sem I/O				

DF50 - Módulo Fonte de Alimentação para o Backplane (Redundante)

Descrição

Esta Fonte de Alimentação Redundante trabalha independente ou em conjunto com outro Módulo Fonte de Alimentação Redundante para garantir um fornecimento constante de energia para a aplicação.

Quando duas Fontes de Alimentação são usadas em redundância, no caso de falha de uma delas, a outra assume automaticamente o fornecimento de energia. Cada Fonte de Alimentação apresenta um relé para indicar falhas, proporcionando ao usuário a substituição da fonte danificada.

Este Módulo apresenta duas saídas de tensão:

5 Vdc @ 3A: distribuídos pelas Power Lines no Inter-Module-Bus (IMB) através dos Racks para alimentar os circuitos dos módulos;

24 Vdc @ 300mA: para uso externo através dos terminais 1B e 2B.

A tensão de alimentação AC, os 5 Vdc e os 24 Vdc são isolados entre si.

Existem três maneiras de utilizar este módulo:

Não redundante: quando são necessários menos que 3 A.

Existe uma restrição de endereçamento quanto à localização da Fonte de Alimentação. A restrição é que o primeiro Rack (endereço 0) deve sempre conter um Módulo Fonte de Alimentação no primeiro *slot*.

O jumper "CH1" deve ser colocado na posição E.

Não redundante: quando são necessários mais que 3 A:

As fontes devem ser sempre colocadas no primeiro *slot* de seus respectivos racks. O jumper W1, no rack que contém a nova Fonte de Alimentação, deve ser cortado. Desta forma, toda nova Fonte de Alimentação somente fornecerá energia ao rack onde está localizada e aos posteriores (não fornecerá para os racks anteriores).

Em todos os módulos o jumper "CH1" deve ser colocado na posição "E".

Modo Redundante :

Há dois modos de redundância:

- Conceito de Divisão de Energia ("splitting power"): Neste caso de redundância, o usuário pode ter dois módulos Fonte de Alimentação em paralelo (primeiro e terceiro slots), o jumper "CH1" deve estar na posição "R" em ambos os módulos e o jumper "W1" deve estar aberto em ambos os módulos. Nesta situação, as duas fontes fornecem energia ao barramento.

- Conceito Stand by: Neste caso, o módulo principal pode ser colocado no primeiro slot e o módulo backup no terceiro slot. Em ambos os módulos, o jumper "CH1" deve estar na posição "R" e "W1" deve ser posicionado somente no módulo backup.

000000000000000000000000000000000000000	+5VDC STAND BY +24VDC	DF1302 AC FOWER SUPPLY TOT DACKPRAIRE	AC Power Supply for Backplane	§() () () () () () () () () () () () () (Construct Construct	000000000000000000000000000000000000000	000000	
	See Smanual	ar		FUSE 1.25A	(€	00		

Módulo Fonte de Alimentação AC: DF50

Especificações Técnicas

	ENTRADAS
DC	127 a 135 Vdc
AC	90 a 264 VAC, 50/60 Hz (nominal), 47 a 63 Hz (faixa)
Máxima Corrente de "Rush" (Inrush Current)	< 36 A @ 220 Vac. [∆T < 740 us]
Tempo até o "Power Fail"	6 ms @ 102 Vac (120 VAC – 15%) [Carga Máxima]
Tempo até o "Shutdown"	> 27 ms @ 102 Vac; > 200ms @ 220 Vac [Carga Máxima]
Consumo Máximo	72 VA
Indicador	AC LINE (LED verde)

SAÍDAS		
a) Saída 1 (uso interno)	5,2 Vdc +/-2%	
Corrente	3 A Máximo	
Ripple	100 mVpp Máximo	
Indicador	+5VDC (LED verde)	
Hold up Time	> 40 ms @ 120 Vac [Carga Máxima]	
b) Saída 2 (uso externo)	24 Vdc +/- 10%	
Corrente	300 mA Máximo	
Ripple	200 mVpp Máximo	
Corrente de Curto-circuito	700 mA	
Indicador	+24VDC (LED verde)	

Tempo de Operação

Tempo de Descarga Isolação Óptica

Dimensões (A x L x P)

Peso

ISOLAÇÃO			
Sinal de entrada, saídas internas e a saída externa são isoladas entre si			
Entre as saídas e o terra	1000 Vrms		
Entre a entrada e a saída	2500 Vrms		
	PROTEÇAO		
Tipo de Saída	Relé de Estado Sólido, Normalmente Fechado (NF)		
Limites	12 VA, 115VAC Máx, 200mA Máx.		
Resistência de Contato Inicial Máxima	<13Ω		
Proteção à Sobrecarga	Deve ser prevista externamente		

5 ms máximo 5 ms máximo

DIMENSÕES E PESO

3750 Vrms 60 segundos

39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)

CABOS			
Um fio	14 AWG (2 mm ²)		
Dois fios	20 AWG (0,5 mm ²)		

0,450 kg

NOTAS

 Se a potência consumida exceder a potência fornecida, o sistema DFI302 pode operar de forma imprevisível podendo resultar em danos ao equipamento ou até danos pessoais. Por isso, deve-se calcular corretamente o consumo de energia e instalar mais Módulos Fonte de Alimentação, se necessário.

 Para aumentar a vida útil dos contatos e proteger o módulo de tensões reversas, conectar externamente um diodo de proteção em paralelo com cada carga DC indutiva ou conectar um circuito Snubber RC em paralelo com cada carga AC indutiva.

DF56 – Módulo Fonte de Alimentação para o Backplane

Descrição

Este módulo é utilizado para alimentar o Backplane e todos os módulos conectados a ele.

Duas tensões de saída são fornecidas:

5 Vdc @ 3A: distribuído pelo IMB para todos os módulos no sistema DFI302.

24 Vdc @ 300 mA: para uso externo através dos terminais 1B e 2B.

A tensão DC aplicada, os 5 Vdc e os 24 Vdc são todos isolados.

Existe uma restrição de endereçamento quanto à localização das Fontes de Alimentação. A restrição é que o primeiro rack (endereço 0) deve sempre conter um Módulo Fonte de Alimentação no primeiro *slot*. Se for necessária mais de uma fonte de alimentação, elas devem ser sempre colocadas no primeiro *slot* do rack. O *jumper* W1 do rack que contém a nova fonte de alimentação deve ser cortado. Com W1 cortado, a fonte fornecerá alimentação para o rack onde está localizada e aos Racks posteriores, não fornecerá para os racks anteriores.

Módulo Fonte de Alimentação DC: DF56

Especificações Técnicas

ENTRADAS			
DC	20 a 30 Vdc		
Máxima Corrente de "Rush" (Inrush Current)	< 20,6 A @ 30 Vdc [∆T < 430 us]		
Consumo Máximo	42 W		
Indicador	DC LINE (LED verde)		

SAÍDAS			
a) Saída1 (uso interno)	5,2 Vdc +/- 2%		
Corrente	3 A Máximo		
Ripple	100 mVpp Máximo		
Indicador	+5VDC (LED Verde)		
Hold up Time	> 47 ms @ 24 Vdc [Carga Máxima]		
b) Saída 2 (uso externo)	24 Vdc +/- 10%		
Corrente	300 mA Máximo		
Ripple	200 mVpp Máximo		
Corrente de Curto-circuito	700 mA		
Indicador	+24VDC (LED Verde)		

ISOLAÇÃO			
Sinal de entrada, saídas internas e a saída externa são isoladas entre si.			
Entre as saídas e o terra 500 Vrms			
Entre a entrada e a saída 1500 Vrms			

DIMENSÕES E PESO				
Dimensões (A x L x P) 39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)				
Peso	0,450 kg			

CABOS			
Um Fio	14 AWG (2 mm ²)		
Dois Fios	20 AWG (0,5 mm ²)		

ΝΟΤΑ

Se a potência consumida exceder a potência fornecida, o sistema DFI302 pode operar de forma imprevisível podendo resultar em danos ao equipamento ou até danos pessoais. Por isso, deve-se calcular corretamente o consumo de energia e instalar mais Módulos Fonte de Alimentação, se necessário.

Cálculo do Consumo de Energia

Uma vez que a potência disponível da Fonte de Alimentação é limitada, é necessário calcular a potência consumida pelos módulos em utilização. Uma maneira de fazer isto é construir uma planilha para resumir todas as correntes fornecidas e necessárias por módulo e equipamentos associados (tais como interfaces).

Feito isto, calcula-se a corrente máxima necessária e a corrente máxima fornecida. Se a corrente máxima necessária for maior que a corrente fornecida, o consumo de energia será excedido. Se for o caso, não será seguro utilizar esta configuração e o sistema deve ser redimensionado ou deve-se adicionar mais Módulos Fonte de Alimentação nos racks.

Sistema de Alimentação do DFI302

Se o DFI302 necessitar de mais Módulos Fonte de Alimentação, cada Fonte fornecerá corrente apenas aos Módulos localizados do seu lado direito. Os passos a seguir ajudarão a entender quantos Módulos Fonte de Alimentação são necessários para o Sistema DFI302:

- 1. Observe os valores máximos de corrente da especificação do Módulo Fonte de Alimentação.
- 2. Tenha certeza de que o consumo dos módulos à direita da Fonte de Alimentação NÃO excede o valor máximo.
- 3. Siga os passos do próximo tópico se o consumo de energia exceder o limite.

Para adicionar um novo Módulo Fonte de Alimentação

- 1. Determine o rack onde o novo Módulo Fonte de Alimentação será instalado.
- 2. Corte o *jumper* W1 localizado no Rack.
- 3. Conecte a nova fonte de alimentação no primeiro slot do rack (Slot 0).
- 4. Nesse caso, o jumper CH1 em todos os módulos DF50 devem estar na posição "E".

DFI302 Balanço de Consumo										
Módulo	Descrição	Qtd.	Cons Unidad	Consumo Corrente Total Inidade (mA) (mA)		Fornec. Unidade (mA)		Corrente Total (mA)		
			@24 V	@5 V	@24 V	@5 V	@24 V	@5 V	@24 V	@5 V
DF51		1	0	950	0	950				
DF11	2*8 DI 24 VDC		0	80	0	0				
DF12	2*8 DI 48 VDC		0	80	0	0				
DF13	2*8 DI 60 VDC		0	80	0	0				
DF14	2*8 DI 125 VDC		0	80	0	0				
DF15	2*8 DI 24 VDC (sink)		0	80	0	0				
DF16	2*4 DI 120 VAC		0	50	0	0				
DF17	2*4 DI 240 VAC		0	50	0	0				
DF18	2*8 DI 120 VAC		0	87	0	0				
DF19	2*8 DI 240 VAC	2	0	87	0	174				
DF20	8 switches		0		0	0				
DF43	8 AI		0	340	0	0				
DF44	8 AI		0	340	0	0				
DF45	8 entradas Temperatura		0	55	0	0				
DF21	16 DO (transistor)		65	70	0	0				
DF22	2*8 DO (transistor)		65	70	0	0				
DF23	8 DO (triac)		0	70	0	0				
DF24	2*8 DO (triac)		0	115	0	0				
DF25	2*4 DO (relé)		134	20	0	0				
DF26	2*4 DO (relé)		134	20	0	0				
DF27	2*4 DO (relé)		134	20	0	0				
DF28	2*8 DO (relé)		180	30	0	0				
DF29	2*4 DO (relé)		134	20	0	0				
DF30	2*4 DO (relé)		134	20	0	0				
DF31	2*4 DO (relé)		134	20	0	0				
DF46	4 AO		180	20	0	0				
DF32	8 DI 24 VDC, 4 DO (relé)		67	60	0	0				
DF33	8 DI 48 VDC, 4 DO (relé)		67	60	0	0				
DF34	8 DI 60 VDC, 4 DO (relé)		67	60	0	0				
DF35	8 DI 24 VDC, 4 DO (relé)		67	60	0	0				
DF36	8 DI 48 VDC, 4 DO (relé)		67	60	0	0				
DF37	8 DI 60 VDC, 4 DO (relé)		67	60	0	0				
DF38	8 DI 24 VDC, 4 DO (relé)		67	60	0	0				
DF39	8 DI 48 VDC, 4 DO (relé)		67	60	0	0				
DF40	8 DI 60 VDC, 4 DO (relé)		67	60	0	0				
DF49	2 Impedâncias para Fieldbus		750	0	0	0				
DF53	4 Impedâncias para Fieldbus	1	1500	0	1500	0				
TOTAL		4			1500	1074				
DF50		1					300	3000	300	3000
DF52		1					1500	0	1500	0
TOTAL		6							1800	3000

DF52 / DF60 – Módulo Fonte de Alimentação para Fieldbus

Descrição

Estes módulos foram especialmente desenvolvidos para alimentar as redes fieldbus. A principal diferença entre eles é a tensão de entrada:

DF52 (90 ~ 264 VAC) DF60 (20 ~ 30 VDC)

A Fonte de Alimentação **DF52** é um equipamento de segurança não-intrínseco com uma entrada AC universal (90 a 264 Vac, 47 a 63 Hz ou 127 a 135 Vdc), e uma saída de 24Vdc isolada, com proteção contra sobrecorrente e curto-circuito além de indicação de falha, apropriada para alimentar os elementos do Fieldbus.

A Fonte de Alimentação **DF60** é um equipamento de segurança não-intrínsico com uma entrada DC (20 a 30Vdc) e uma saída de 24Vdc isolada, com proteção contra sobrecorrente e curto-circuito e, também, indicação de falha, apropriada para alimentar os elementos do Fieldbus.

A interconexão dos elementos do Fieldbus com as unidades **DF52/DF60** deverá ser feita como mostra a figura abaixo. Não existe overshoot quando chaveado ON ou OFF. O DF52/DF60 pode alimentar até 4 redes fieldbus totalmente carregadas.

Observação

Os cabos que interconectam os módulos DF52/DF60 aos DF49/DF53 devem ter comprimento máximo de 3 metros.

Se alguma condição anormal ocorrer na saída, como sobrecarga ou curto-circuito, as chaves internas do **DF52/DF60** são automaticamente desligadas (portanto, os circuitos estão protegidos). Quando as saídas retornarem à condição normal de operação, o circuito é automaticamente ligado.

O **DF52/DF60** permite redundância sem a necessidade de nenhum componente acoplado à sua saída.

Fonte de Alimentação para o Fieldbus: DF52/DF60

Especificações Técnicas

ENTRADAS DF52				
DC	127 a 135 Vdc			
AC	90 a 264 VAC, 50/60 Hz (nominal), 47 a 63 Hz (faixa)			
Máxima Corrente de "Rush" (Inrush Current)	< 30 A @ 220 Vac [∆T < 640 us]			
Consumo Máximo	93 VA			
Indicador	AC LINE (LED verde)			

ENTRADAS DF60				
DC	20 a 30 VDC			
Máxima Corrente de "Rush" (Inrush Current)	< 24 A @ 30 Vdc [ΔT < 400 us]			
Consumo Máximo	34 W			
Indicador	DC LINE (LED verde)			

SAÍDAS				
Saída	+24 Vdc ± 1%			
Corrente	DF52	DF60		
	1,5 A Máximo	850 mA Máximo		
Ripple	20 mVpp Máximo			
Indicadores	+24 VDC (LED Verde)			
	Fail (LED Vermelho)			

ISOLAÇÃO		
Sinal de entrada, entradas internas e a saída externa estão isoladas entre si.	DF52	DF60
Entre as saídas e o terra	1000 Vrms	500 Vrms
Entre a Entrada e a Saída	2500 Vrms	1500 Vrms

DIMENSÕES E PESO		
Dimensões (A x L x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,450 kg	

TEMPERATURA		
Operação	0 °C a 60 °C	
Armazenamento	-30 °C a 70 °C	
DF49/DF53 – Módulo de Impedância para o Fieldbus

Descrição

Estes módulos foram especialmente projetados para fornecer uma impedância ideal para as redes de Fieldbus. A diferença entre eles é a quantidade de portas para Fieldbus:

DF49 (2 portas) DF53 (4 portas)

A função de uma impedância é implementar um circuito de saída no qual a impedância seja maior que 3 K Ω e, em paralelo com dois terminadores de 100 $\Omega \pm 2\%$ cada, resulte em uma impedância de linha de aproximadamente 50 Ω . Esta impedância pode ser implementada de modo passivo (resistência de 50 Ω em série com uma indutância de 100 mH) ou de modo ativo (através de um circuito para o ajuste da impedância).

A Impedância Fieldbus é um instrumento de controle de impedância ativo, não-isolado, de acordo com o padrão IEC 1158-2. Este instrumento apresenta uma impedância de saída que, em paralelo com os dois terminadores de barramento (um resistor de 100 Ω em série com um capacitor de 1 μ F) atendendo ao padrão, resulta em uma impedância de linha puramente resistiva para uma ampla faixa de freqüência.

O DF49/DF53 não pode ser utilizado em áreas que exijam especificações de segurança intrínseca.

A figura a seguir mostra o diagrama de blocos deste instrumento. O DF49/DF53 pode ser utilizado em redundância, conectando sua saída (+ e -) em paralelo. Quando for adotada esta configuração, utilize um terminador de barramento externo (BT302) para que, em caso de falhas, possam ocorrer mudanças no DF49/DF53 sem interrupção do Fieldbus.

O **DF49/DF53** tem LEDs de indicação de sobrecorrente e fonte de alimentação. O bloco terminal de entrada possui dois terminais (1A e 2A), que são conectados aos 24Vdc externos. O LED de indicação da fonte de alimentação é verde e mantém-se energizado enquanto houver uma tensão de alimentação de 24Vdc.

O LED de indicação de sobrecorrente é vermelho e mantém-se energizado somente em casos de sobrecorrente causados por um curto-circuito na planta ou por um número excessivo de aparelhos conectados.

DF49: **Quatro terminais** (3A a 6A) implementando 2 portas Fieldbus independentes, 2 Dip Switches para acionamento da Terminação do Barramento, 1 LED verde para status de energia e dois LEds vermelhos para sobrecorrente no barramento.

DF53: **Oito terminais** (3A a 10A) implementando 4 Portas Fieldbus independentes, 4 Dip Switches para o acionamento da Terminação do Barramento, 1 LED verde para status de energia e 4 LEDs vermelhos para sobrecorrente no barramento.

Módulos de Impedância para o Fieldbus: DF49/DF53

ENTRADA		
DC	24 a 32 Vdc +/- 10%	
SAÍD	DA	
Corrente	340 mA por canal	
FILTRO DE E	ENTRADA	
Atenuação	10dB no ripple de entrada @60 Hz	
DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,300 kg	

TEMPERATURA		
Operação	0 °C a 60 °C	
Armazenamento	-30 °C a 70 °C	

DF47 – Barreira de Segurança Intrínseca

Descrição

A tecnologia de segurança intrinsecamente incorporada no DF47 isola totalmente a rede de controle no lado de risco da barreira. Ela também fornece até 100mA para os instrumentos de campo localizados em áreas de risco. Os valores I.S. da fonte de alimentação são projetados para instrumentos de campo que estão de acordo com o modelo FISCO.

A incorporação de um repetidor fieldbus de acordo com IEC 1158-2 - 31.25 kbits/s essencialmente limpa e aumenta o sinal de comunicação transmitindo-o para ambientes de risco sem comprometer as exigências de segurança de prova de explosão. As redes dos lados de risco e proteção do DF47 são completamente independentes entre si.

Em adição, a terminação do barramento para a rede de risco é incorporada dentro do DF47, ou seja, somente um único terminador externo é necessário.

- Barreira Isolada H1 e Fonte de Alimentação I.S. de acordo com o modelo FISCO;
- Repetidor de sinal Fieldbus H1 intrínseco;
- Fornece até 100mA com 14V para redes de risco (para instrumentos de campo);
- Atende ao padrão IEC 1158-2, 31,25 Kbits/s para Fieldbus. (Foundation Fieldbus e PROFIBUS PA);
- FM & CENELEC Intrinsic Safety standards certified;
- Baseado no PTB Report W-53, "Investigations into Intrinsic Safety of Fieldbus Systems";
- Terminador de barramento no lado não seguro;
- Instalação pode ser feita em áreas seguras, Div. 2/Zone 2 ou Div. 1/ Zone 1.

Instalação

A seleção ou instalação de equipamento, incluindo o DF57, deve ser sempre realizada por pessoal técnico competente. Favor entrar em contato com a Smar ou nosso representante local para maiores informações.

É crucial que o instalador de segurança intrínseca atenda às exigências locais das autoridades responsáveis na região de instalação. Nos Estados Unidos as referências devem ser tomadas de acordo com o Artigo 504 do Código Nacional Elétrico, o ISA RP 12.6 e projeto Smar.

Princípios de Instalação (de acordo com a ISA)

- Assegure-se de que exista uma separação adequada entre os circuitos de segurança intrínseca e não-intrínseca assim a energia de ignição do circuito de segurança não-intrínseca não interfere nos circuitos de segurança intrínseca.
- 2. Assegure-se de que os parâmetros limites do sistema como indutância total e capacitância, na qual a aprovação do sistema está baseada, não sejam excedidos.
- Assegure-se de que uma falha no sistema de alimentação e diferenças no aterramento não gerem ignição no sistema.

Localização

A barreira é normalmente instalada em um invólucro NEMA 4 ou 12 livre de poeira e umidade, em uma área segura. O invólucro deve estar o mais perto possível da área de risco para reduzir efeito do cabo e aumento de capacitância. Se a barreira estiver instalada em área de risco, ela deve estar em um invólucro adequado para este tipo de área. Somente os terminais de segurança intrínseca estão na saída da barreira.

Fiação

Os circuitos de segurança intrínseca podem ser "cabeados" da mesma maneira que os circuitos convencionais instalados em localidades não-classificadas com duas exceções sintetizadas como separação e identificação. Os condutores de segurança intrínseca devem ser separados de todos os outros fios através de condutos ou separados por um espaço de 5,08 cm. Os condutos, leitos para cabose fios livres, e as caixas de terminais devem ser rotulados "Cabeamento Intrinsecamente Seguro" para evitar interferência com outros circuitos.

POTÊNCIA		
Entrada da Fonte de Alimentação	Tensão: 24Vdc ± 5%	
	Corrente (máx.): 350mA em 24Vdc	
	•	
	ÁREA DE RISCO	
	Tensão Máxima disponível nos terminais da barreira para corrente máxima: 13,8Vdc	
Fonte de Alimentação	Corrente Máxima: 100mA	
	Resistência DC (típica): 191 Ohms	
Destinations de Oceanisme (faires de Dises)	Tensão de circuito aberto(Voc): 15V	
	Corrente de curto-circuito(Isc): 190mA, Ik = 110 mA	
Falamenos de Segulariça (Aleas de Nisco)	Capacitância Máx. Permitida: Referir-se ao FISCO	
	Indutância Máx. Permitida: Referir-se ao FISCO	
Dissipação Interna	3W máximo em 24V de entrada, condições nominais	
Comprimento do Cabo, Número de Instrumentos	Os comprimentos máximos dos cabos são determinados pela norma da IS e dependem do número de instrumentos inseridos e da queda de tensão máxima aceitável ao longo do cabo.	
Transmissão de Sinal Digital	Compatível com 31,25 kbps – Sistema Fieldbus	
Fusível	Fonte de Alimentação para Áreas Seguras: 400mA	
	Áreas de Risco: 160mA	
	Fieldbus de Área Segura: 100mA	
Terminais	até 2,5 mm ² (22 AWG)	
Isolação	Isolação galvânica 2500V entre entrada, saída e terminais da fonte. Testada até 1500 Vrms mínimos entre os terminais de áreas de risco e de segurança.	

Econocific	20000	Tácn	ione
Lapecinic	açoca	I CUII	1043

MEIO FÍSICO	
Temperatura Ambiente	-20° a +60° C (operação contínua)
	-40° a +80° C (armazenamento)
Umidade	-5% a 95% Umidade relativa
Localização	Fieldbus Devices
	Zone 0, IIC, t4-6 áreas de risco se certificado corretamente
	DF47 - Barreira I.S.
	Deve estar localizado em uma área segura.

DF48 – H1 Fieldbus Repeater

Descrição

A partir de um certo comprimento de cabo, o sinal que trafega por ele pode se deteriorar e chegar ilegível aos dispositivos de campo. Para evitar a deterioração do sinal em longas distâncias, podese utilizar um repetidor.

O DF48 recebe um sinal de entrada de um segmento da rede e lhe proporciona um ganho, ou seja, melhora a qualidade do sinal, transmitindo-o para o próximo segmento da rede. O DF48 executa esta função de forma bi-direcional, atendendo às características de fieldbus.

De acordo com a definição de níveis físicos IEC1158-2/ISA-S50.02, utilizada para fieldbus, uma rede fieldbus H1 com fonte DC pode alimentar segmentos da rede com comprimento até 1900 metros. Até 4 repetidores podem ser utilizados em série, proporcionando um aumento no comprimento total de cabo do tronco e spurs de até 5 vezes o comprimento de cabo de um segmento. Isto permite que um dispositivo fieldbus localize-se a até 9,5 Km de distância da sala de controle.

Localização

O módulo deve ser instalado em uma área segura sem possibilidade de explosão. Se for necessário instalá-lo em uma área de risco, colocá-lo em um invólucro a prova de explosão que possua selo de aprovação contra explosão.

Topologias

DF48 permite diversos tipos de aplicações de redes como descrito abaixo:

Topologia em Série

Este tipo de arquitetura permite uma série de até 4 repetidores ao longo do tronco da rede fieldbus ou dos segmentos. Como pode ser visto abaixo, o diagrama mostra dois DF48 em série. Cada um expande a rede em até 1900 metros.

Power Supply Impedance

Topologia em Paralelo

Este tipo de arquitetura permite um número quase ilimitado de repetidores em paralelo ao longo do tronco, sujeito às limitações descritas na definição de níveis físicos da IEC1158-2/ISA-S50.02. De acordo com a figura a seguir, os repetidores estão sendo utilizados para expandir o comprimento do cabo de cada derivação da rede em até 1900 metros.

Topologia Mista

Este tipo de arquitetura possibilita uma combinação de topologia em série e paralelo, proporcionando um número ilimitado de configuração de rede.

O diagrama abaixo mostra três DF48 em paralelo, oriundos do tronco, com DF48 adicionais em série para expandir o comprimento dos cabos dos spurs da rede. O HOST é conectado em paralelo para cada DF48 no tronco. Embora somente dois DF48 são mostrados em série no diagrama abaixo, até quatro podem ser utilizados em cada spur da rede para expandir o comprimento do cabo em até 9,5 Km do tronco.

OBSERVAÇÕES

Como descrito na definição de níveis físicos IEC1158-2/ISA-S50.02, as distâncias e especificações de configuração de redes podem variar de acordo com as características das aplicações e dos dispositivos de campo. As representações de rede descritas acima são simples exemplos para ilustrar os tipos de configuração que podem ser implementados. Favor consultar as especificações apropriadas ao projetar uma aplicação de rede fieldbus.

A fim de se preservar a isolação fornecida pelo DF48, cada segmento da rede precisa de uma fonte de alimentação própria e uma impedância para energizar os dispositivos de campo conectados a um determinado segmento da rede. Todos os exemplos de topologia apresentados consideram que a PSI302 - Módulo Impedância está operando com todos os terminadores internos habilitados.

O DF48 sai da fábrica sem nenhum terminador interno. Portanto é necessário colocar terminadores em ambos os lados da Rede Fieldbus, como mostrado abaixo.

	POTÊNCIA
Entrada Fonte de Alimentação	Tensão: 24 Vdc \pm 5%
Dissipação Interna	0,72 W max. em 24 V de entrada

LIMITAÇÕES		
Comprimento de cabo e número de dispositivos	De acordo com a definição de níveis físicos IEC61158-2, o comprimento máximo dos cabos para um segmento de rede fieldbus é 1900 metros, conectando de 2 a 12 dispositivos.	
Número de Repetidores	Número máximo para repetidores em um barramento principal ou derivação da rede fieldbus H1: Preâmbulo de 8 bit pode utilizar 4 repetidores Preâmbulo de 16 bit pode utilizar 8 repetidores Note que isto se aplica somente a redes em série.	
Transmissão de Sinal Digital	Sistemas Fieldbus de 31,25 kbps (como definido na norma IEC61158-2 para níveis físicos)	

	LIMITAÇÕES
Fusível	Fonte de Alimentação: 250 mA Entrada do Fieldbus: 100 mA
Terminais	Acomodam condutores até 4 mm ² (12AWG)
Isolação	250 Vac entre a entrada, saída e os terminais da fonte de alimentação. Testes de fábrica até 1500 Vrms mínimo

MEIO FÍSICO	
Faixa de Temperatura Ambiente	-20 °C a 60 °C (operação contínua)
Umidade	5% a 95% de umidade relativa
Montagem	Montagem fácil no trilho DIN

ADICIONANDO INTERFACES

Introdução

Existem alguns tipos de módulos de interface disponíveis para o DFI302. O objetivo principal é fornecer uma ampla conectividade com muitas mídias disponíveis e utilizadas na Indústria de Controle de Processo e Automação.

Para aquelas aplicações em que estão conectados Modbus RTU com DFI302 e mais de um Modbus *Device* precisa ser conectado a uma mesma Rede Modbus, é necessária a utilização de módulos de interface RS232/RS485 para prover uma comunicação multi-ponto.

Em casos em que somente um Modbus *Device* é utilizado e a distância entre os instrumentos é superior a 15 metros, será necessário utilizar também um módulo de inteface RS232/RS485.

Originalmente, o DF51 (módulo da CPU) foi projetado para fornecer uma porta Ethernet de 10Mbps. Para conectá-lo à uma Rede Local Ethernet 100 Mbps, adicione o módulo Ethernet Switch 10/100 Mbps.

A tabela a seguir mostra os tipos de módulos de interface disponíveis.

INTERFACE		
MODELO	DESCRIÇÃO	TIPO E/S
DF58	Interface RS232/RS485	Sem E/S
DF61	Ethernet Switch 10/100 Mbps	Sem E/S

A seguir veja as especificações para cada módulo.

DF58 – Interface RS232/RS485

Descrição

Este módulo converte as características elétricas do sinal de comunicação de especificação EIA/RS232 para especificação EIA/RS485. Devido a diferença fundamental entre os propósitos dos RS232 e RS485, sendo o primeiro ideal para aplicações ponto-a-ponto, esse módulo foi implementado para trabalhar automaticamente.

Nenhum sinal de controle é necessário para controlar o barramento do lado RS485. É necessário somente conectar as linhas de transmissão e recepção em ambos os lados, a fim de colocar a interface em funcionamento.

O circuito conversor provê uma isolação de sinal para garantir uma conexão segura entre dois sistemas. Este módulo foi projetado para utilizar plataforma DFI/LC, portanto, nenhuma fonte de alimentação foi inserida na placa. Ele consome uma tensão de +5Vdc do rack para energizar o circuito.

Ajustes da Interface

Existem dois ajustes de inteface, localizados no painel central, para adaptá-la a diversas aplicações: Modo RS232 e RS485 *Bus Terminator*.

Modo RS232: Half-Duplex/Full-Duplex

Este Modo RS-232 adapta a interface RS-232/RS-485 ao *driver* de comunicação no lado RS-232. Normalmente, nas interfaces deste tipo, que conectam barramentos unidirecionais com bidirecionais, o barramento unidirecional poderá apresentar características Full-Duplex causadas por reflexão da mensagem transmitida (ecos).

Se o *driver* não operar simultaneamente com a recepção e transmissão das mensagens, por incapacidade de recepção ou por descarte da mensagem refletida, é necessário selecionar a opção *Half-Duplex*. Se a mensagem refletida não causar pertubações nas aplicações, pode-se selecionar a opção *Full-Duplex*.

RS-485 Bus Terminator: On/Off

O RS-485 é um barramento tipo *Multi-Drop.* Logo, o *driver* transmissor é colocado sob alta impedância (Hi-Z) quando não houver mensagem a ser transmitida. Por isso, o barramento RS-485 necessita de um terminador de barramento para evitar problemas de ruído durante o funcionamento sem carga. Para um correto casamento de impedância da linha é necessário ativar somente um terminador por barramento. Deixe os outros terminadores desativados.

Conectores

Existem dois conectores no painel central para interconectar dois sistemas de comunicação. O primeiro, um conector do tipo RJ-12, usado para sistemas RS-232 e, o outro, um conector tipo bloco terminal, utilizado em sistemas RS-458.

Pinos do RJ-12

PINOS	DESCRIÇÃO
1	Conectado ao pino 6.
2	Não utilizado
3	RxD: RS-232 sinal de entrada - recepção
4	TxD: RS-232 sinal de saída - transmissão
5	GND: RS-232 sinal do terra
6	Conectado ao pino 1

NOTA

Os pinos 1 e 6 estão interconectados para permitir a intercomunicação dos sinais do modem quando exigidos por *drivers* de comunicação, como *Clear-To-Send* (CTS) com *Request-To-Send* (RTS).

Pinos do Bloco Terminal

PINOS	DESCRIÇÃO
1	+: RS-485 sinal não-invertido
2	-: RS-485 sinal invertido
3	GND: Referência para sinal de comunicação RS-485.

NOTA

O pino GND é usado para garantir uma tensão de referência para todos os nós RS-485 no mesmo barramento. O lado RS-485 da interface RS-232/RS-485 é isolado e está no estado flutuante. Para evitar altas tensões de modo comum, recomenda-se colocar todos os nós RS-485 na mesma referência de tensão, conectando todos os pinos GND juntos e aterrando-os em um mesmo ponto.

Cabeamento e Aplicações

Existe um conjunto de cabos SMAR para ser utilizados de acordo com as suas aplicações.

Para conectar *DF51 (módulo da CPU) e DF58 (RS-232/RS-485 Interface)*, será necessário um cabo DF59 ou a montagem de um cabo de acordo com o seguinte esquema.

Os *jumpers* no lado DB9 são recomendados, porém não são necessários. Dependem da aplicação que está sendo executada no computador.

Para montar um cabo entre **DF58 (Interface RS-232/RS485) e o computador**, siga as seguintes instruções mostradas na figura abaixo para uma conexão entre RJ-12 (usada no DF58) e DB9 fêmea:

Os *jumpers* no lado DB9 são recomendados, porém não são necessários. Dependem da aplicação que está sendo executada no computador.

CARACTERÍSTICAS GERAIS		
Número de canais de comunicação	1	
Interface de comunicação de dados	RS-232 / RS-485	
Taxa de dados	Acima de 200 Kbps	
Lado RS-232	Possibilita o Modo RS-232 Half-Duplex ou Full-Duplex	
Lado RS-485	Possibilita ativar o terminador do barramento	
Isolamento	1600 Vrms @ 1 minuto, típico	
Alimentação	Fornecida pelo barramento IMB, +5 Vdc, @ 60 mA Típico	

DF61 – Ethernet Switch 10/100 Mbps

Esse módulo permite conectar o módulo DF51 (CPU) diretamente a uma Rede Local Ethernet 100 Mbps (LAN).

O único procedimento para isto é:

1 – Instale no rack um DF61; e

2 – Utilizando o cabo DF54, conectar a porta 10 Mbps do DF61 com a porta 10 Mbps do DF51. Feito isto, a porta 100 Mbps está pronta para ser conectada à LAN.

Tenha certeza de que a Ethernet está operando normalmente, veja se os LEDs (ETH10 e ETH100) estão acesos (*links* conectados) e (ETH10TX e ETH100TX) piscando de acordo com o envio de dados do DF51.

ADICIONANDO BLOCOS FUNCIONAIS

Introdução

O DFI302 utiliza os mesmos blocos funcionais que os instrumentos Fieldbus - mesmo bloco PID, AI, etc. Isto significa que o SYSCON pode ser usado para configurar todas as partes do sistema - transmissores, posicionadores e controladores – em uma mesma linguagem.

Utilizando o SYSCON (para maiores detalhes consulte o manual SYSCON), siga os passos abaixo para criar um novo bloco na sua estratégia.

Criando um novo Bloco

Crie uma nova *Process Cell*, selecionando o ícone *Area*, indo ao menu *Edit* e clicando em *New Process Cell*.

Crie um novo **Control Module**, abrindo a janela **Process Cell** e selecionando o ícone **Process Cell**. Vá ao menu **Edit** e clique em **New Control Module**.

Para criar um novo Bloco Funcional, selecione o ícone *Control Module* na janela *Process Cell*, vá ao menu *Edit* e clique em *New Block*.

Você também pode ativar o **Control Module**, clicando no seu ícone com o botão direito do *mouse*. Clique no item **New Block**. Veja a figura a seguir:

A caixa de diálogo Function Block Characterization irá aparecer:

- Selecione um Block Manufacturer da lista.
- Selecione um *Device Type* fornecido pelo fabricante que você selecionou.
- Selecione o Device Revision.
- Selecione o DD Revision.
- Selecione um *Block Type*.
- Digite um *tag* para o bloco. Clique **OK**.

nction Block C	haracterization
Manufacturer :	Smar
Device Type :	FB 700
Device Rev. :	02 DD Rev. : 01
Block Type :	Analog Alarm
Block Tag : 🕈	
	OK Cancel Help

Se você não digitar um *tag*, será designado o *tag default* **Block1**. O SYSCON utiliza a última revisão do **Device Revision** e o **DD Revision** como o valor default para o novo **Block**. Mude estes valores de acordo com o **Device** que você está utilizando na sua planta e sua revisão. Nos arquivos de **Device Description** dos DFI302s, nem todos os blocos estão descritos em uma mesma **Device Revision/DD Revision**. Tenha certeza de escolher a revisão correta para cada grupo de blocos desejado. Uma lista dos Blocos Funcionais típicos disponíveis em cada grupo está resumida na tabela a seguir:

	Device	Revision 4.x / DD Revision 1			Device Revision 4.x / DD Revision 2
	MBCF	Modbus Configuration		RS	Resource
	MBSS	Modbus Supervision Slave		AO	Analog Output
	MBSM	Modbus Supervision Master		AI	Analog Input
	MBCS	Modbus Control Slave		PID	Pid Control
	MBCM	Modbus Control Master		ARTH	Arithmetic
	AEQU	Advanced Equation		SPLT	Splitter
			-	CHAR	Signal Characterize
				INTG	Integrator
				AALM	Analog Alarm
)				ISEL	Input Selector
				SPG	Setpoint Ramp Generator
				TIME	Timer and Logic
1				LLAG	Lead Lag
				MDI	Multiple Discrete Input
5				MDO	Multiple Discrete Output
;				MAI	Multiple Analog Input
				MAO	Multiple Analog Output
				OSDL	Output Signal Selector & Dynamic Lim
				DENS	Density
				APID	Advanced Pid
				DIAG	Diagnostics Transducer
				EPID	Enhanced Pid
1				СТ	Constant
				DI	Discrete Input
				DO	Discrete Output
;				FFET	Flip-Flop And Edge Trigger
				STEP	Step Output Pid
				PUL	Pulse Input
				HC	Hardware Configuration Transducer
				TEMP	Temperature Transducer
1				TRD	IDShell Transducer

A sua janela *Process Cell* parecerá com a figura abaixo:

Inserindo um Novo Bloco

Se você adicionou pelo menos um bloco ao seu **Projeto Lógico**, você pode inserir este bloco no *Device* no **Projeto Físico**:

Na janela Fieldbus, selecione o ícone *FB VFD* para inserir o bloco. Vá ao menu *Edit* e clique em *Attach Block*. Veja a figura a seguir:

Ou você pode ativar o menu *FB VFD*, clicando no seu ícone com o botão direito do *mouse*. Clique no item *Attach Block*. Veja a figura a seguir:

Pieldbus1	
🖃 🗟 🛱 Fieldbus1	
占 - 🗑 Device1	
SM NM	VFD
B VFD	New Block M
	Attach Block
	Information
	Browse Resources Browse OD
	Attributes

A caixa de diálogo Attach Block irá aparecer.

Clique na seta para baixo para selecionar o bloco que será inserido. Clique *OK* para adicionar o bloco ao **Projeto Físico**.

Attach Block		
Tag :		
Block2		
ОК	Cancel	Help

Se você não quiser mais inserir o bloco, clique em Cancel.

ADICIONANDO MÓDULOS DE E/S

Introdução

O DFI302 foi especialmente desenvolvido para operar com instrumentos Fieldbus. Todos os tipos mais comuns de instrumentos de campo estão disponíveis nas versões Fieldbus, por isso a quantidade de pontos E/S necessários em um sistema é drasticamente reduzida e eventualmente serão eliminados. Entretanto, como muitas aplicações exigem conexão de antigos ou novos equipamentos que não possuem comunicação Fieldbus, o DFI302 pode ser conectado a E/S analógicas e convencionais sobre um backplane extendido. Cada módulo controlador pode ser conectado a subsistemas-E/S com até 256 pontos.

Existem muitos tipos de módulos disponíveis para o DFI302. Além da lista apresentada, muitos outros módulos estão sendo desenvolvidos para atender à uma grande faixa de aplicações na Indústria de Controle de Processo e Automação.

A tabela a seguir mostra os tipos de módulos de E/S disponíveis.

ENTRADAS DISCRETAS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF11	2 Grupos de 8 entradas (isoladas) de 24Vdc	16 entradas discretas	
DF12	2 Grupos de 8 entradas (isoladas) de 48Vdc	16 entradas discretas	
DF13	2 Grupos de 8 entradas (isoladas) de 60Vdc	16 entradas discretas	
DF14	2 Grupos de 8 entradas (isoladas) de 125Vdc	16 entradas discretas	
DF15	2 Grupos de 8 entradas (Sink) (isoladas) de 24Vdc	16 entradas discretas	
DF16	2 Grupos de 4 entradas (isoladas) de 120Vac	8 entradas discretas	
DF17	2 Grupos de 4 entradas (isoladas) de 240Vac	8 entradas discretas	
DF18	2 Grupos de 8 entradas (isoladas) de 120Vac	16 entradas discretas	
DF19	2 Grupos de 8 entradas (isoladas) de 240Vac	16 entradas discretas	
DF20	1 Grupo de 8 Chaves On/Off	8 entradas discretas	

SAÍDAS DISCRETAS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF21	1 Grupo de 16 Saídas Coletor em Aberto	16 saídas discretas	
DF22	2 Grupos de 8 Saídas a Transistor (fonte) (Isoladas)	16 saídas discretas	
DF23	2 Grupos de 4 Saídas de 120/240 Vac	8 saídas discretas	
DF24	2 Grupos de 8 Saídas de 120/240 Vac	16 saídas discretas	
DF25	2 Grupos de 4 Saídas Relés NO	8 saídas discretas	
DF26	2 Grupos de 4 Saídas Relés NC	8 saídas discretas	
DF27	1 Grupo de 4 Saídas Relés NO e 4 NC	8 saídas discretas	
DF28	2 Grupos de 8 Saídas Relés NO	16 saídas discretas	
DF29	2 Grupos de 4 Saídas Relés NO (Sem RC)	8 saídas discretas	
DF30	2 Grupos de 4 Saídas Relés NC (Sem RC)	8 saídas discretas	
DF31	1 Grupo de 4 Saídas Relés NC e 4 NO (Sem RC)	8 saídas discretas	
DF71	2 Grupos de 4 Saídas Relés NO (Sem R/C)	8 saídas discretas	
DF72	2 Grupos de 4 Saídas Relés NC (Sem R/C)	8 saídas discretas	
DF69	2 Grupos de 8 Saídas Relés NO (RC)	16 saídas discretas	

ENTRADAS E SAÍDAS DISCRETAS COMBINADAS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF32	1 Grupo de 8 entradas 24Vdc e 1 Grupo de 4 Relés NO	8 entradas discretas/4 saídas discretas	
DF33	1 Grupo de 8 entradas de 48Vdc e 1 Grupo de 4 Relés NO	8 entradas discretas/4 saídas discretas	
DF34	1 Grupo de 8 entradas de 60Vdc e 1 Grupo de 4 Relés NO	8 entradas discretas/4 saídas discretas	
DF35	1 Grupo de 8 entradas de 24Vdc e 1 Grupo de 4 Relés NC	8 entradas discretas/4 saídas discretas	
DF36	1 Grupo de 8 entradas de 48Vdc e 1 Grupo de 4 Relés NC	8 entradas discretas/4 saídas discretas	
DF37	1 Grupo de 8 entradas de 60Vdc e 1 Grupo de 4 Relés NC	8 entradas discretas/4 saídas discretas	
DF38	1 Grupo de 8 entradas de 24Vdc, 1 Grupo de 2 Relés NC e NO	8 entradas discretas/4 saídas discretas	
DF39	1 Grupo de 8 entradas de 48Vdc, 1 Grupo de 2 Relés NC e NO	8 entradas discretas/4 saídas discretas	
DF40	1 Grupo de 8 entradas de 60Vdc, 1 Grupo de 2 Relés NC e NO	8 entradas discretas/4 saídas discretas	

ENTRADAS PULSADAS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF41	2 Grupos de 8 entradas pulsadas – baixa freqüência	16 entradas pulsadas	
DF42	2 Grupos de 8 entradas pulsadas – alta freqüência	16 entradas pulsadas	
DF64	2 Grupos de 8 entradas pulsadas – alta freqüência	16 entradas pulsadas	
DF67	2 Grupos de 8 entradas pulsadas – alta freqüência (AC)	16 entradas pulsadas	

ENTRADAS ANALÓGICAS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF44	1 Grupo de 8 entradas analógicas com resistores em shunt	8 entradas analógicas	
DF57	1 Grupo de 8 entradas analógicas diferenciais com resistores em shunt	8 entradas analógicas	
DF45	1 Grupo de 8 entradas de temperatura	8 entradas de temperatura	

SAÍDAS ANALÓGICAS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF46	1Grupo de 4 saídas analógicas	4 saídas analógicas	

ACESSÓRIOS			
MODELO	DESCRIÇÃO	TIPO E/S	
DF1	Rack com 4 Slots	Sem E/S	
DF2	Terminador para o último rack	Sem E/S	
DF3 ~ DF7	Flat Cables para conectar dois racks	Sem E/S	

Passos para Configurar Módulos de E/S

O primeiro passo para configurar o DFI302, para a utilização de E/S, é conhecer o processo de como adicionar um bloco funcional usando Syscon (ferramenta de configuração). Ver capítulo "Adicionando Blocos Funcionais" para melhor entender este processo.

Uma vez na janela *Strategy* no Syscon, adicionar um bloco *Resource*, um *Hardware Configuration Tranducer* (HCT) e um ou mais *Temperature Transducers* (quando utilizando módulos de temperatura).

Após o *Resource* e esses *transducers*, deve-se adicionar os blocos (AI, MAI, AO, MAO, DI, MDI, DO, MDO), de acordo com a necessidade.

A ordem da criação do *Resource, transducers* e dos blocos é muito importante, pois quando o SYSCON faz o *download* de configuração, verificações de consistência são feitas dentro do DFI302.

Por exemplo, um bloco Al não aceitará uma configuração de canal se o *Hardware* especificado não foi declarado anteriormente no *Hardware Configuration Transducer*.

Uma documentação completa sobre os blocos do Fieldbus Foundation e seus parâmetros podem ser encontrados no **Manual de Blocos Funcionais (Function Blocks Manual)** na pasta de documentação do System302. Os passos a seguir estão mais relacionados com detalhes sobre o DFI302 e todas as descrições completas sobre os blocos não serão encontradas aqui.

RES – Resource Block

Crie este bloco e ajuste o MODE_BLK.TARGET para AUTO.

Function Block	Character	zation	
Manufacturer :	Smar		
Device Type :	DFI 302	▼	
Device Rev. :	02	▼ DD Rev.: 02	
Block Type :	Resource	Dff Line: No Device - Resource Block - MyRes	
Block Tag :	Setpoint Signal Cł Splitter Step Out Tempera Timer	Parameter Value 	0 H 1 R0 2 RW 3 RW 4 RW 5
		ACTUAL PERMITTE NORMAI	.1 RW .2 R0 .3 RW 4 RW ▼
		Cancel Edit End Edit Close	Help

HCT – Hardware Configuration Transducer

Esse transducer configura o tipo de módulo para cada *slot* no DFI302. O método de execução deste bloco transducer escreverá para todos os módulos de saída e lerá todos os módulos de entrada.

Se algum módulo de E/S falhar nesta verificação, será indicado no BLOCK_ERR e também no MODULE_STATUS_x. Assim fica mais fácil encontrar o módulo ou, até mesmo, o sensor danificado. Portanto, crie este bloco, ajuste o MODE_BLK para AUTO e preencha os parâmetros IO_TYPE_Rx com os respectivos módulos utilizados.

PARÂMETRO	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
ST_VER		0	
TAG_DESC		Spaces	
STRATEGY		0	
ALERT_KEY	1 a 255	0	
MODE_BLK		O/S	Ver Parâmetro Mode
BLOCK_ERR			
REMOTE_IO		Remote I/O Master	Reservado
IO_TYPE_R0		0	Selecione o tipo de módulo para o rack 0
IO_TYPE_R1		0	Selecione o tipo de módulo para o rack 1
IO_TYPE_R2		0	Selecione o tipo de módulo para o rack 2
IO_TYPE_R3		0	Selecione o tipo de módulo para o rack 3
IO_TYPE_R4		0	Selecione o tipo de módulo para o rack 4
IO_TYPE_R5		0	Selecione o tipo de módulo para o rack 5
IO_TYPE_R6		0	Selecione o tipo de módulo para o rack 6
IO_TYPE_R7		0	Selecione o tipo de módulo para o rack 7
IO_TYPE_R8		0	Selecione o tipo de módulo para o rack 8
IO_TYPE_R9		0	Selecione o tipo de módulo para o rack 9
IO_TYPE_R10		0	Selecione o tipo de módulo para o rack 10
IO_TYPE_R11		0	Selecione o tipo de módulo para o rack 11
IO_TYPE_R12		0	Selecione o tipo de módulo para o rack 12
IO_TYPE_R13		0	Selecione o tipo de módulo para o rack 13
IO_TYPE_R14		0	Selecione o tipo de módulo para o rack 14
MODULE_STATUS_R0_3			Status do módulo no rack 0-3.
MODULE_STATUS_R4_7			Status do módulo no rack 4-7.
MODULE_STATUS_R8_11			Status do módulo no rack 8-11.
MODULE_STATUS_R12_14			Status do módulo no rack 12-14.
UPDATE_EVT			Este alerta é gerado para qualquer mudança nos dados estáticos
BLOCK_ALM			O block alarm é usado para todas as configurações, hardware, falhas de conexão ou problemas com o sistema no bloco. The cause of the alert is entered in the subcode field. O primeiro alerta a se tornar ativo acionará o Active status no atributo Status.

TEMP – Transducer de Temperature

Este é o bloco transducer para o módulo DF-45, um módulo de oito entradas de baixo sinal para RTD, TC e resistências (Ω).

Ao utilizar Esse Módulo, é necessário o TEMP Transducer que deve ser adicionado ao Syscon Configuration antes do Bloco Funcional na qual proverá a interface com a E/S. Assim, crie este bloco, ajuste o MODE_BLK para AUTO e preencha os parâmetros com range, sensor, etc, que foram utilizados pelo Módulo de Temperatura.

PARÂMETROS	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
ST_REV		0	
TAG_DESC		Spaces	
STRATEGY		0	
ALERT_KEY	1 a 255	0	
MODE_BLK		O/S	Ver Parâmetro Mode
BLOCK_ERR			
CHANNEL			O rack e o número do slot do módulo45 associado codificado como RRSXX.
TEMP_0			Temperatura do ponto 0.
TEMP_1			Temperatura do ponto 1.
TEMP_2			Temperatura do ponto 2.
TEMP_3			Temperatura do ponto 3.
TEMP_4			Temperatura do ponto 4.
TEMP_5			Temperatura do ponto 5.
TEMP_6			Temperatura do ponto 6.
TEMP_7			Temperatura do ponto 7.
VALUE_RANGE_0		0-100%	Se ele estiver conectado ao bloco AI, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever nesta escala.
SENSOR_CONNECTION_0	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 0.
SENSOR_TYPE_0	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 0.
VALUE_RANGE_1		0-100%	Se ele estiver conectado ao bloco AI, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever escala.
SENSOR_CONNECTION_1	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 1.
SENSOR_TYPE_1	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 1.
VALUE_RANGE_2		0-100%	Se ele estiver conectado ao bloco AI, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever nesta escala.
SENSOR_CONNECTION_2	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 2.
SENSOR_TYPE_2	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 2.
VALUE_RANGE_3		0-100%	Se ele estiver conectado ao bloco AI, será uma cópia do XD_SCALE. Caso contrário o usuário pode nesta escala.
SENSOR_CONNECTION_3	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 3.

DFI302 - Manual do Usuário

PARÂMETROS	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
SENSOR_TYPE_3	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 3.
VALUE_RANGE_4		0-100%	Se ele estiver conectado ao bloco Al, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever nesta escala.
SENSOR_CONNECTION_4	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 4.
SENSOR_TYPE_4	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 4.
VALUE_RANGE_5		0-100%	Se ele estiver conectado ao bloco AI, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever nesta escala.
SENSOR_CONNECTION_5	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 5.
SENSOR_TYPE_5	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 5.
VALUE_RANGE_6		0-100%	Se ele estiver conectado ao bloco Al, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever nesta escala.
SENSOR_CONNECTION_6	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 6.
SENSOR_TYPE_6	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 6.
VALUE_RANGE_7		0-100%	Se ele estiver conectado ao bloco Al, será uma cópia do XD_SCALE. Caso contrário o usuário pode escrever nesta escala.
SENSOR_CONNECTION_7	1 : diferencial 2 : 2-fios 3 : 3-fios	3	Conexão do sensor 7.
SENSOR_TYPE_7	Ver tabela abaixo	Pt 100 IEC	Tipo do sensor 7.
UPDATE_EVT			Este alerta é gerado para qualquer mudança nos dados estáticos
BLOCK_ALM			O block alarm é usado para todas as configurações, hardware, falhas de conexão ou problemas com o sistema no bloco. A causa do alerta estará acessível no campo subcode. O primeiro alerta a se tornar ativo acionará o Active status no atributo Status.

Criando Blocos Funcionais

O DFI302 utiliza os mesmos blocos funcionais que os instrumentos Fieldbus, o mesmo bloco PID, o mesmo bloco AI, etc. Isto significa que o Syscon pode ser utilizado para configurar todas as partes do sistema, transmissores, posicionadores e controladores, todos na mesma linguagem. Uma vez elaborada a estratégia de controle e escolhidos os blocos funcionais para serem alocados no DFI302, configurar o parâmetro do canal para este bloco funcional que faz a interface com os módulos E/S.

Configuração do CHANNEL

Utilizando DFI302, o usuário pode configurar o número de módulos E/S bem como o tipo E/S (entrada ou saída, discretas, analógica, pulso...). O DFI302 é o único equipamento classificado como um equipamento E/S configurável. Todos módulos E/S têm os pontos de E/S agrupados como a seguir:

Rack	0 ~ 14
Slot	0 ~ 3
Grupo	0 ~ 1
Ponto	0 ~ 7

O valor no parâmetro Channel é composto pelos elementos na forma RRSGP.

Rack (R): cada rack tem quatro slots. O rack é numerado de 0 (primeiro rack) até 14 (último rack). Por isso um único ponto E/S no DFI302 pode ser identificado especificando o rack (R), *slot* (S), grupo (G) e ponto (P). Como o parâmetro *CHANNEL* nos blocos de múltiplas E/S (MIO) deve especificar todo o grupo (8 pontos), o ponto deve ser 9, que significa o grupo todo.

Slot (S): Um slot sustenta um módulo E/S e é numerado de 0 (primeiro slot no rack) até 3 (último slot no rack).

Grupo (G): Número ordinal de grupo no módulo E/S especificado, ele é numerado de 0 (primeiro grupo) até o número de grupos menos 1.

Ponto (P): Número ordinal de pontos de E/S em um grupo, é numerado de 0 (primeiro ponto) a 7 (último ponto no grupo), e 9 significa o grupo todo de pontos.

Por exemplo, um parâmetro CHANNEL igual a 1203, significa rack 1, *slot* 2, grupo 0 e ponto 3. Se o parâmetro CHANNEL de um bloco MAI é 10119, significa rack 10, *slot* 1, grupo 1 e ponto 9 (grupo inteiro). Antes de ajustar o parâmetro CHANNEL, é recomendado configurar o hardware no bloco HCT. Checagens de escrita verificarão se o tipo de E/S configurado no bloco HCT é adequado para o tipo de bloco. Será rejeitado o ajuste do parâmetro CHANNEL do bloco AI para acessar um tipo E/S diferente de entrada analógica.

0	Off Line: No Device - Analog Input - ai 📃 🔲 🗙				
	S 📀 🔇	\$ <mark>-} 100 </mark>	🔁	<u> </u>	•
	Parameter	Value		0	H 🔺
	⊡-GRANT_DEI			12	
	IO_OPTS			13	RW
	-STATUS_OF)		14	RW
	CHANNEL	1203		15	RW
	L_TYPE			16	RW
	-LOW_CUT			17	BW 🖵
				10	
	Cancel Edi	t End Edit	Close		Help

Formato de Especificação de Módulo

As especificações do módulo são mostradas em um formato similares ao exemplo abaixo. Todas as especificações dos módulos explicam funcionamento, conexão de campo, características elétricas e mostram um esquema simplificado do circuito de interface para um melhor entendimento.

DF1 - Rack

DF1 (Rack com 4 slots)

Descrição

O rack é, basicamente, um suporte plástico para o circuito IMB que contém barramento onde os módulos são conectados. Os conectores são chamados *Slots*.

Novos racks podem ser adicionados ao sistema DFI302 de acordo com a necessidade. Até 15 racks são permitidos. Os racks podem ser conectados entre si (expandindo o barramento) utilizando um flat cable (DF3 ~DF7).

É importante lembrar que a distância entre o primeiro módulo e o último módulo de um sistema DFI302 expandido por um flat cable não pode exceder 6m.

Cada rack possui uma chave para selecionar um endereço. Os endereços possíveis são 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, e E. Note que o endereço "F" não é permitido.

Existem algumas restrições para a alocação do módulo no Rack:

- 1. O primeiro slot do rack 0 é sempre reservado para Módulos de Fonte de Alimentação.
- 2. O segundo s*lot* do rack 0 é sempre reservado ao Módulo Processador.
- **3.** Todas as Fontes de Alimentação adicionais precisam ser colocadas no s*lot* 0 do Rack desejado (o *jumper* W1 do Rack tem que ser cortado antes de conectar a Fonte).
- 4. O último Rack deve possuir um terminador DF2 instalado.

DIMENSÕES E PESO		
Dimensões (L x A x P)	148,5 x 25 x 163 mm; (5,85 x 0,98 x 6,42 pol.)	
Peso	0,216 kg	

DF11/DF12/DF13/DF14 - Módulos de Entradas DC

- DF11 (2 grupos de 8 entradas isoladas de 24Vdc)
- DF12 (2 grupos de 8 entradas isoladas de 48Vdc)
- DF13 (2 grupos de 8 entradas isoladas de 60Vdc)
- DF14 (2 grupos de 8 entradas isoladas de 125Vdc)

Descrição

O módulo detecta uma tensão DC de entrada e a converte em um sinal lógico Verdadeiro (ON) ou Falso (OFF). Possui dois grupos opticamente isolados.

ARQUITETURA		
Número de entradas	16	
Número de grupos	2	
Número de pontos por grupo	8	

ISOLA	ÇÃO	
Os Grupos são individualmente isolados.		
Isolação Óptica até	5000 Vac	

POTÊNCIA EXTERNA		
Fonte de Tensão para as Entradas	DF11: 18 – 30Vdc DF12: 36 – 60Vdc DF13: 45 - 75 Vdc DF14: 95 – 140 Vdc	
Consumo Típico por Grupo	65 mA	
Indicador de fonte	LED Verde	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 80 mA Máximo	
Dissipação Máxima Total	0,4 W	
Indicador de fonte	Nenhum	

ENTRADAS		
ON State Level (True Logic)	20 - 30 Vdc (DF11) 30 - 60 Vdc (DF12) 38 - 75 Vdc (DF13) 95 - 140 Vdc (DF14)	
OFF State Level (False Logic)	0 - 5 Vdc (DF11) 0 - 9 Vdc (DF12) 0 - 12 Vdc (DF13) 0 - 25 Vdc (DF14)	
Impedância Típica	3K9 Ω (DF11) 7K5 Ω (DF12) 10K Ω (DF13) 39K Ω (DF14)	
Display de Status	LED Amarelo	
Corrente de entrada por Ponto	7,5 mA (típica)	

INFORMAÇÕES DE CHAVEAMENTO		
Tensão Mínima (0 a 1)	20 Vdc (DF11) 30 Vdc (DF12) 38 Vdc (DF13) 95 Vdc (DF14)	
Tensão Máxima (1 a 0)	5 Vdc (DF11) 9 Vdc (DF12) 12 Vdc (DF13) 25 Vdc (DF14)	
Tempo de "0" a "1"	30 μs	
Tempo de "1" a "0"	50 μs	

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)
Peso	0,285 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF15 - Módulos de Entradas DC

DF15 (2 grupos de 8 entradas de 24Vdc - sink - isoladas)

Descrição

O módulo detecta uma tensão DC de entrada e a converte em um sinal lógico Verdadeiro (ON) ou Falso(OFF). Possui 2 grupos, isolados opticamente, de 8 entradas.

ARQUITETURA	
Número de entradas	16
Número de grupos	2
Número de pontos por grupo	8

ISOLAÇÃO	
Grupos são individualmente isolados	
Isolação Óptica até 5000 Vac	

POTÊNCIA EXTERNA		
Fonte de Tensão	20 – 30 Vdc	
Consumo Típico por Grupo	65 mA	
Indicador de Fonte	LED verde	

POTÊNCIA INTERNA		
Fornecida pelo barramento IMB	5 Vdc @ 80 mA Máximo	
Dissipação Máxima Total	0,4 W	
Indicador de Fonte	Nenhum	

ENTRADAS	
ON State Level (True Logic)	$0-5 \text{ Vdc} < 200 \Omega$
OFF State Level (False Logic)	20 – 30 Vdc > 10 KΩ
Impedância Típica	3K9 Ω
Display de Status	LED Amarelo
Corrente de Entrada por Ponto	7,5 mA (típica)
Tempo de "0 "a "1"	30 μs
Tempo de "1" a "0"	50 μs

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)
Peso	0,285 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF16/DF17 - Módulo de Entradas AC

DF16 (2 grupos de 4 entradas digitais de 120 Vac) DF17 (2 grupos de 4 entradas digitais de 240 Vac)

Descrição

Esse módulo detecta a tensão AC de entrada e a converte em um sinal lógico Verdadeiro (ON) ou Falso (OFF). Possui dois grupos, isolados opticamente, de 4 entradas para detectar 120/240 Vac (DF16/DF17, respectivamente).

ARQUITETURA	
Número de Entradas	8
Número de Grupos	2
Número de Pontos por Grupo	4

ISOLAÇÃO	
Grupos são individualmente isolados	
Isolação Óptica até	5000 Vac

POTÊNCIA EXTERNA	
Fonte de Tensão para Entradas	120 Vac (DF16) 240 Vac (DF17)
Consumo Típico por Ponto	10 mA
Indicador de Fonte	Nenhum

POTÊNCIA INTERNA	
Fornecida pelo Barramento IMB	5 Vdc @ 50 mA Máximo
Dissipação Máxima Total	0,25 W
Indicador de Fonte	LED Verde

ENTRADAS	
ON State Level (True Logic)	100-140 Vac (DF16) 200-264 Vac (DF17)
OFF State Level (False Logic)	0-30 Vac (DF16) 0-50 Vac (DF17)
Corrente de Entrada Típica	10 mA
Display de Status	LED Amarelo

INFORMAÇÕES DE CHAVEAMENTO	
Tensão Mínima (0 a 1)	100 Vac (DF16), 45 a 60 Hz 200 Vac (DF17), 45 a 60 Hz
Tensão Máxima (1 a 0)	30 Vac (DF16), 45 a 60 Hz 50 Vac (DF17), 45 a 60 Hz
Histerese Típica	70 Vac (DF16) 150 Vac (DF17)
Tempo de 0 a 1	5 ms
Tempo de 1 a 0	42 ms

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)
Peso	0,285 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF18/DF19 - Módulo de Entradas AC

DF18 (2 grupos de 8 entradas digitais de 120 Vac) DF19 (2 grupos de 8 entradas digitais de 240 Vac)

Descrição

Esse módulo detecta a tensão de entrada AC e a converte em um sinal lógico Verdadeiro (ON) ou Falso(OFF). Possui 2 grupos isolados opticamente de 8 entradas de 120/240 Vac (DF18/DF19 respectivamente).

ARQUITETURA	
Número de entradas	16
Número de grupos	2
Número de pontos por grupo	8

ISOLAÇÃO
Grupos são individualmente isolados.
Isolação Óptica até 5000Vac

POTÊNCIA EXTERNA	
Fonte de Tensão para Entradas	120 Vac (DF18) 240 Vac (DF19)
Consumo Típico por Ponto	10 mA
Indicador de Fonte	Nenhum

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 87 mA Máxima	
Dissipação Máxima Total	0,435 W	
Indicador de Fonte	LED Verde	
ENTRADAS		
-------------------------------	--	--
ON State Level (True Logic)	100-140 Vac (DF18) 200-264 Vac (DF19)	
OFF State Level (False Logic)	0-30 Vac (DF18) 0-50 Vac (DF19)	
Corrente Típica de Entrada	10 mA	
Display de Status	LED Amarelo	

INFORMAÇÕES DE CHAVEAMENTO	
Tensão Mínima (0 a 1)	100 Vac (DF18), 45 a 60 Hz 200 Vac (DF19), 45 a 60 Hz
Tensão Máxima (1 a 0)	30 Vac (DF18), 45 a 60 Hz 50 Vac (DF19), 45 a 60 Hz
Histerese Típica	70 Vac (DF18) 150 Vac (DF19)
Tempo de 0 a 1	5 ms
Tempo de 1 a 0	42 ms

DIMENSÕES E PESO	
Dimensão (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)
Peso	0,300 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF20 - Módulo com Chaves de Entrada

DF20 (1 grupo com 8 chaves On/Off)

Descrição

Esse Módulo simula 8 entradas discretas através do uso de chaves.

O Módulo pode ser usado como um grupo de chaves comum. A chave pode ser útil para interagir com a lógica do programa ou no processo de "debug" para verificação do funcionamento e otimização.

POTÊNCIA INTERNA		
Fornecida pelo barramento IMB	5 Vdc @ 45 mA Máximo	
Dissipação Máxima Total	0,225 W	
Indicador de Fonte	LED Verde	

CHAVES	
Display de Status	LED Amarelo
Indicador Lógico	Quando ativado

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)
Peso	0,250 kg

DF44/DF57 - Módulos de Entradas Analógicas Tensão/Corrente

DF44 (8 entradas analógicas Tensão/Corrente com resistor Shunt interno) DF57 (8 entradas analógicas Tensão/Corrente Diferenciais com resistor Shunt interno)

Descrição

Estes módulos lêem 8 sinais analógicos de Tensão ou Corrente. As entradas são isoladas do IMB. Somente o módulo 57 é diferencial (sem terra comum).

DF44: As entradas são individualmente configuradas para lerem:

- \pm 10 V; \pm 5 V; 0-5 V ou 1-5 V com o resistor shunt interno na posição "V".
- \bullet \pm 20 mA; 0-20 mA, 4-20 mA, com o resistor shunt interno na posição "I".

DF57: As entradas são diferenciais (sem terra comum) e são individualmente configuradas para lerem:

- \pm 10 V; \pm 5 V; 0-5 V ou 1-5 V com o resistor shunt interno na posição "V".
- ± 20 mA; 0-20 mA, 4-20 mA com o resitor shunt interno na posição "I"

NOTA

- Deve-se utilizar cabo blindado nas linhas de sinal e a blindagem deve ser aterrada no painel somente em um dos lados do cabo.

- A escala para módulos com entradas e saídas analógicas é feita utilizando o parâmetro XD_SCALE nos blocos AI e AO, respectivamente. Ao utilizar MAI ou MAO, é assumida uma faixa default, 4-20mA ou 1-5 V sem possibilidade de mudança. Para MAI e MAO, os parâmentros de entrada e saída estão disponíveis em porcentagem da faixa default.;

Observação: Na figura acima, não é obrigatória a existência de um Amperímetro para o módulo DF57.

ARQUITETURA	
Número de entradas	8
Número de grupos	1
Número de pontos por grupo	8

ISOLAÇÃO	
Canal para Barramento	Isolação até 1500 Vrms

POTÊNCIA INTERNA	
Fornecida pelo barramento IMB	5 Vdc @ 340 mA Máximo
Dissipação Máxima Total	1,7 W
Indicador de Fonte	LED Verde

ENTRADAS	
Faixa de Medição Linear	0-20 mA, 4-20 mA, 0-5 V, 1-5 V, 0-10 V, ± 10 V.
Impedância de Entrada Típica	1 M Ω para entrada de tensão 250 Ω para entrada de corrente

CONVERSÃO A/D	
Tempo de conversão	20 ms/canal
Taxa de amostragem	5 Hz
Resolução	16 bits

EXATIDÃO EM 77 °F (25 °C)			
Faixa: 0-5 V, 1-5 V, 0-10 V	± 0,1% de erro (Linearidade/Interferência).		
Faixa: 0-20 mA, 4-20 mA	± 0,12% de erro (Linearidade/Interferência).		
Faixa: ±10 V	± 0,2% de erro (Linearidade/Interferência).		

EFEITO DA TEMPERATURA AMBIENTE			
Faixa: 0-20 mA, 4-20 mA, 0-5V, 1-5 V, 0-10 V	± 0,2% de erro / 77 °F (25 °C)		
Faixa: ± 10V	± 0,1% de erro / 77 °F (25 °C)		

DIMENSÕES E PESO			
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)		
Peso	0,201 kg		

CABOS			
Um Fio	14 AWG (2 mm ²)		
Dois Fios	20 AWG (0,5 mm ²)		

DF45 – Módulo de Entradas de Sinal de Baixo Nível e Temperatura

DF45 (8 entradas de baixo sinal para TC, RTD, mV e Ohm)

Descrição

Esse módulo é capaz de medir temperatura de uma grande variedade de Termopares(TC) e RTD's, bem como milivolts e resistências com alta precisão. As medições de temperatura são internamente linearizadas e no caso dos TC's foi construída uma compensação de junta fria próxima aos terminais do módulo.

NOTAS

 - A escala para o Módulo Temperatura é feita utilizando o parâmetro XD_SCALE nos blocos AI e AO respectivamente e uma cópia desta escala é feita no TEMP transducer, nos parâmetros VALUE_RANGE_x. Neste caso particular, o acesso a estes parâmetros é somente para leitura. Ao utilizar MAI ou MAO, os parâmetros VALUE_RANGE_x são usados para configuração e escrita.

- Deve-se utilizar cabo blindado nas linhas de sinal e a blindagem deve ser aterrada no painel somente em um dos lados do cabo.

ARQUITETURA			
Número de Entradas	8		
Número de Grupos	1		
Número de Pontos por Grupo	8		

ISOLAÇÃO			
Canal para Barramento	Isolação até 1500 Vrms		

POTÊNCIA INTERNA			
Fornecida pelo Barramento IMB	5 Vdc @ 35 mA Máximo, durante operação 5 Vdc @ 55 mA Máximo, durante configuração		
Dissipação Máxima Total	0.250 W		
Indicador de fonte	LED Verde		

ENTRADAS			
Impedância Típica de Entrada	1 MΩ		

CONVERSÃO A/D			
Tempo de Conversão	90 ms		
Resolução	16 bits		
Precisão a 77°F (25°C)	0,05% do span para as faixas 3 e 6 *		
Efeito da Temperatura Ambiente	0,004% do span máximo /ºC		

DIMENSÕES E PESO			
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)		
Peso	0,202 kg		

CABOS			
Um fio	14 AWG (2 mm ²)		
Dois fios	20 AWG (0,5 mm ²)		

* 0,15% do span para as faixas 2 e 5.

Nota Para atender os requisitos das normas de EMC, deve-se utilizar cabos blindados.

	2 ou 3 FIOS		DIFERENCIAL		
SENSOR	TIPO	FAIXA °C	FAIXA °F	FAIXA °C	FAIXA °F
	Cu10 GE	-20 a 250	-4 a 482	-270 a 270	-486 a 486
	Ni 120 DIN	-50 a 270	-58 a 518	-320 a 320	-576 a 576
	Pt50 IEC	-200 a 850	-328 a 1562	-1050 a 1050	-1890 a 1890
RTD	Pt100 IEC	-200 a 850	-328 a 1562	-1050 a 1050	-1890 a 1890
	Pt500 IEC	-200 a 450	-328 a 842	-650 a 650	-1170 a 1170
	Pt50 JIS	-200 a 600	-328 a 1112	-800 a 800	-1440 a 1440
	Pt100 JIS	-200 a 600	-328 a 1112	-800 a 800	-1440 a 1440
	B NBS	+100 a 1800	+212 a 3272	-1700 a 1700	-3060 a 3060
	E NBS	-100 a 1000	-148 a 1832	-1100 a 1100	-1980 a 1980
	J NBS	-150 a 750	-238 a 1382	-900 a 900	-1620 a 1620
	K NBS	-200 a 1350	-328 a 2462	-1550 a 1550	-2790 a 2790
TERMO-	N NBS	-100 a 1300	-148 a 2372	-1400 a 1400	-2520 a 2520
PARES	R NBS	0 a 1750	32 a 3182	-1750 a 1750	-3150 a 3150
	S NBS	0 a 1750	32 a 3182	-1750 a 1750	-3150 a 3150
	T NBS	-200 a 400	-328 a 752	-600 a 600	-1080 a 1080
	L DIN	-200 a 900	-328 a 1652	-1100 a 1100	-1980 a 1980
	U DIN	-200 a 600	-328 a 1112	-800 a 800	-1440 a 1440

*Não aplicável abaixo de 440 °C.

Sensor	2 ou 3 fios	Diferencial	Faiya
001301	Range	Range **	
	-6 a 22 mV	-28 a 28 mV	1
MV	-10 a 100 mV	-110 a 110 mV	2
	-50 a 500 mV	-550 a 550 mV	3
	0 a 100	-100 a 100	4
Ω	0 a 400	-400 a 400	5
	0 a 2000	-2000 a 2000	6

** Cada sensor deve respeitar a faixa única

DF21 - Módulo de Saídas Coletor Aberto

DF21 (1 grupo de 16 Saídas com Coletor em Aberto)

Descrição

Esse módulo é projetado com transistores NPN com coletor em aberto que são capazes de acionar relés, lâmpadas incandescente, solenóides e outras cargas com até 0,5A por saída. Ele possui um grupo de 16 saídas com coletor em aberto isoladas opticamente. Isto significa que todas elas funcionam com um mesmo terra.

ARQUITETURA		
Número de saídas	16	
Número de grupos	1	
Número de pontos por grupo	16	

ISOLAÇÃO	
Isolação Óptica até	5000 Vac

POTÊNCIA EXTERNA		
Fonte de tensão para as Saídas	20 a 30 Vdc	
Consumo máximo	65 mA	
Indicador de Fonte	LED Verde	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 70 mA Máximo	
Dissipação Máxima Total	0,35 W	
Indicador de Fonte	Nenhum	

SAÍDAS		
Tensão Máxima de Chaveamento	30 Vdc	
Tensão Máxima de Saturação	0,55 V @ 0,5 A	
Corrente Máxima por Saída	0,5 A	
Display de Status	LED Amarelo	
Indicador Lógico	ON quando o transistor estiver conduzindo	
Máxima Corrente de Fuga	10 μA @ 35 Vdc	
Capacidade de chaveamento (lâmpada)	15 W	

INFORMAÇÕES DE CHAVEAMENTO		
Tempo de 0 a 1	250 μs	
Tempo de 1 a 0	3 μs	

PROTEÇÃO INDEPENDENTE POR SAÍDA		
Desligamento Térmico	165 °C	
Histerese Térmica	15 °C	
Proteção contra Sobrecorrente	1,3 A @ 25 Vdc máximo	

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,260 kg	

CABOS	
Um fio	14 AWG (2 mm ²)
Dois fios	20 AWG (0,5 mm ²)

DF22 – Módulo de Saídas Transistorizadas (Source)

DF22 (2 grupos de 8 saídas transistorizadas (source)

Descrição

Esse módulo é projetado com transistores NPN capazes de acionar relés, lâmpadas incandescentes, solenóides, e outras cargas com até 1A por saída. Possui dois grupos de oito saídas transistorizadas opticamente isoladas.

ARQUITETURA		
Número de Saídas	16	
Número de Grupos	2	
Número de Pontos por Grupo	8	

ISOLAÇÃO		
Isolação Óptica até	5000 Vac	

POTÊNCIA EXTERNA	
Fonte de Tensão para as Saídas	20 a 35 Vdc
Consumo Máximo	65 mA
Indicador de Fonte	LED Verde

POTÊNCIA INTERNA	
Fornecida pelo Barramento IMB	5 Vdc @ 70 mA Máximo
Dissipação Máxima Total	0,35 W
Indicador de Fonte	Nenhum

SAÍDAS	
Tensão Máxima de Chaveamento	35 Vdc
Tensão Máxima de Saturação	0,3 V @ 1 A
Corrente máxima por Saída	1 A
Display de Status	LED Amarelo
Indicador Lógico	ON quando o transistor estiver conduzindo
Corrente Máxima de Fuga	200 μA @ 35 Vdc
Capacidade de chaveamento (lâmpada)	15 W

INFORMAÇÕES DE CHAVEAMENTO	
Tempo de 0 a 1	600 μs
Tempo de 1 a 0	300 μs

PROTEÇÃO INDEPENDENTE POR SAÍDA	
Proteção contra sobrecorrente	5,3 A

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)
Peso	0,260 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF23 - Módulo de Saídas AC

DF23 (2 grupos isolados de 4 saídas de120/240 Vac)

Descrição

Esse módulo é projetado para acionar relés, lâmpadas piloto, válvulas e outras cargas até 1A por saída. Possui 2 grupos opticamente isolados de 4 saídas. Estas saídas são capazes de chavear qualquer tensão de 20 a 240 Vac.

ARQUITETURA	
Número de saídas	8
Número de Grupos	2
Número de Pontos por Grupos	4

ISOLAÇÃO	
Grupos são individualmente isolados.	
Isolação Óptica até	2500 Vac

POTÊNCIA EXTERNA		
Fonte de Tensão	20 a 240 Vac, 45 a 65 Hz	
Consumo Máximo por Grupo	4 A	
Indicador de Fonte	Nenhum	
Proteção	Um fusível por grupo	

POTÊNCIA INTERNA	
Fornecida pelo Barramento IMB	5 Vdc @ 70 mA Máximo
Dissipação Máxima Total	0,35 W
Indicador de Fonte	LED Verde

SAÍDAS	
Saída Controlada	20 a 240 Vac, 45-65 Hz
Corrente Máxima por Saída	1 A
Corrente Máxima Total por Grupo	4 A – 32 °F – 104 °F (0° – 40 °C) 2 A – 104 °F – 140 °F (40° – 60 °C)
Corrente de Surto Máxima	15 A / 0,5 ciclo, máximo 1 surto por minuto
Display de Status	LED Amarelo
Indicador de Lógica	Quando ativado
Off state Voltage Leakage Current	500 μA @ 100 Vac
On state Voltage drop	1,5 Vac rms máximo
Proteção contra Sobrecarga por Saída	Deve ser fornecida externamente (fusível de atuação rápida ao atingir 1,5 vezes da corrente nominal).

INFORMAÇÕES DE CHAVEAMENTO		
Zero cross operation; Ton, Toff	1/2 ciclo	
Circuito de Proteção RC	62 Ω em série com 0,01 μ F	

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)
Peso	0,295 kg

CABOS		
Um Fio	14 AWG (2 mm ²)	
Dois Fios	20 AWG (0,5 mm ²)	

DF24 - Módulo de Saídas AC

DF24 (dois grupos isolados de 8 saídas 120/240 Vac)

Descrição

Esse módulo é projetado para acionar relés, lâmpadas piloto, válvulas e outras cargas até 1A por saída. Possui 2 grupos opticamente isolados de 8 saídas. Estas saídas são capazes de chavear qualquer tensão de 20 a 240 Vac.

ARQUITETURA	
Número de Saídas	16
Número de Grupos	2
Número de Pontos por Grupo	8

ISOLAÇÃO	
Os Grupos são individualmente isolados	
Isolação Óptica até	2500 Vac

POTÊNCIA EXTERNA	
Fonte de Tensão para Saídas	20 a 240 Vac, 45 a 65 Hz
Consumo Máximo por Grupo	4 A
Indicador de Fonte	Nenhum
Proteção	Um fusível por grupo

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 115 mA Máximo	
Dissipação Máxima Total	0,575 W	
Indicador de Fonte	LED Verde	

SAÍDAS	
Saída Controlada	20 a 240 Vac, 45-65 Hz
Corrente Máxima por saída	1 A
Corrente Total Máxima por Grupo	4 A – 32 °F – 104 °F (0° – 40 °C) 2 A – 104 °F – 140 °F (40° – 60 °C)
Máxima Corrente de Surto	15 A / 0,5 ciclo, Máximo 1 Surto Por Minuto
Display de Status	LED Amarelo
Indicador Lógico	Quando ativado
Off state Voltage Leakage current	500 μA @ 100 Vac
On state voltage drop	1,5 Vac rms Máximo
Proteção contra Sobrecarga	Deve ser fornecida externamente (fusível de atuação rápida de 1,5 vezes a corrente nominal)

INFORMAÇÕES DE CHAVEAMENTO		
Zero cross operation Ton, Toff	1/2 ciclo	
Circuito de Proteção RC	62 Ω em série com 0,01 μ F	

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)
Peso	0,330 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF25/DF26/DF27/DF29/DF30/DF31/DF71/DF72 - Módulos com Relés de Saída

- DF25 (2 grupos de 4 saídas a relé NO)
- DF26 (2 grupos de 4 saídas a relé NC)
- DF27 (1 grupos de 4 saídas a relé NO e 4 saídas a relé NC)
- DF29 (2 grupos de 4 saídas a relé sem proteção RC)
- DF30 (2 grupos de 4 saídas a relé NC sem proteção RC)
- DF31 (1 grupos de 4 saídas a relé NO e 4 saídas a relé NC sem proteção RC)
- DF71 (2 grupos de 4 saídas a relé NO sem proteção RC)
- DF72 (2 grupos de 4 saídas a relé NC sem proteção)

Descrição

Esse Módulo é projetado para chavear lâmpadas pilotos, válvulas e bobinas de relés até 5A por saída. Os relés podem acionar cargas de 20 a 110 Vdc ou de 20 a 250 Vac. Dois teminais tipo parafuso são reservados para cada saída de relés. Os dois grupos possuem terras separados.

ARQUITETURA		
Número de Saídas	8	
Número de Grupos	2	
Número de Pontos por Grupos	4	

ISOLAÇÃO	
8 contatos para relés individualmente isolados	
O <i>driver</i> para cada relé é opticamente isolado do <i>Backplane</i> até	5000 Vac

POTÊNCIA EXTERNA		
Fonte de Tensão para cada Grupo	20 – 30 Vdc	
Corrente Máxima por Grupo	67 mA	
Consumo Máximo por Grupo	16,8 mA	
Indicador de Fonte por Grupo	LED Verde	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 20 mA, Máximo	
Dissipação Máxima Total	0,1 W	
Indicador de Fonte	Nenhum	

SAÍDAS		
	DF25/DF26/DF27/DF29/DF30/DF31	DF71/DF72
	20 – 250 Vac	30 – 250 Vac
Faixa Vdc	20 – 110 Vdc	10 – 220 Vdc
Corrente Máxima para 30 Vdc/250 Vac	5 A (resistivo); 2 A (indutivo)	10 mA
Corrente Mínima	10 mA	1 mA
Máxima Resistência Inicial de Contato	30 mΩ	75 mΩ
Display de Status	LED Amarelo	LED Amarelo
Indicador Lógico	ON se a bobina do relé estiver energizada	ON se a bobina do relé estiver energizada
Corrente de Fuga	DF25/DF26/DF27: 500 μA @ 100 Vac DF29/DF30/DF31: nenhum	Nenhuma
Proteção contra sobrecarga por Saída	Deve ser fornecida externamente	Deve ser fornecida externamente

INFORMAÇÕES DE CHAVEAMENTO		
	DF25/DF26/DF27/DF29/DF30/DF31	DF71/DF72
Circuito de Proteção RC	62 Ω em série com 0,01 μF (somente válidos nos DF25/DF26/DF27)	Nenhum
Tempo de Operação	10 ms Máximo	4 ms Máximo
Tempo de Disparo	10 ms Máximo	4 ms Máximo

VIDA ÚTIL ELÉTRICA		
	DF25/DF26/DF27/DF29/DF30/DF31	DF71/DF72
Ciclos de Chaveamento Mecânicos	Mínimo de 100.000 operações @ 5 A 250 Vac	100.000.000 operações

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,305 kg	

CABOS		
Um Fio	14 AWG (2 mm ²)	
Dois Fios	20 AWG (0,5 mm ²)	

NOTA

Para aumentar a vida útil dos contatos e proteger o módulo de danos provocados por tensões reversas, conectar externamente um diodo de proteção em paralelo com cada carga DC indutiva ou conectar um circuito Snubber RC em paralelo com cada carga AC indutiva.

DF28/DF69 - Módulos de Saídas de Relés de Alta Densidade

DF28 (2 grupos de 8 saídas a relé NO) DF69 (2 grupos de 8 saídas a relé NO com RC)

Descrição

Esse módulo de saída a relé de alta densidade é projetado para chavear lâmpadas piloto, válvulas, bem como bobinas de relés até 5A por saída. Os relés podem acionar cargas de 20 a 110 Vdc ou de 20 a 250 Vac. Todos grupos de 8 relés possuem um terminal comum e somente um terminal tipo parafuso é reservado para cada saída a relé.

ARQUITETURA	
Número de Saídas	16
Número de Grupos	2
Número de Pontos por Grupo	8

ISOLAÇÃO		
O driver de cada relé é opticamente isolado do barramento IMB até	5000 Vac	
Cada grupo de 8 relés têm um contato comum.		

POTÊNCIA EXTERNA		
Fonte de Tensão para cada Grupo	20 – 30 Vdc	
Corrente Máxima por Grupo	90 mA @ 24 Vdc	
Consumo Máximo por Ponto	11,3 mA @ 24 Vdc	
Indicador de Fonte por Grupo	LED Verde	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 30 mA Máximo	
Dissipação Máxima Total	0,15 W	
Indicador de Fonte	Nenhum	

SAÍDAS		
Faixa Vac	20 – 250 Vac	
Faixa Vdc	20 – 110 Vdc	
Corrente Máxima para 250 Vac	5A (resistivo); 2A (indutivo)	
Corrente Máxima para 30Vdc	5A (resistivo); 2A (indutivo)	
Corrente Total Máxima por Grupo	10 A	
Máxima Resistência de Contato Inicial	100 mΩ	
Display de Status	LED Amarelo	
Indicador Lógico	ON se a bobina do relé estiver energizada	
Fuga	DF28: 0 DF69: 500 μA @ 100 Vac	
Proteção contra sobrecarga por saída	Deve ser fornecida externamente	

INFORMAÇÕES DE CHAVEAMENTO		
Tempo de Operação	10 ms máximo	
Tempo de Disparo	10 ms máximo	

VIDA ÚTIL ELÉTRICA		
Ciclos de Chaveamento Mecânicos	Mínimo de 20.000.000 operações @ 5 a 250 Vac	

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,301 kg	

CABOS		
Um Fio	14 AWG (2 mm ²)	
Dois Fios	20 AWG (0,5 mm ²)	

NOTA

Para aumentar a vida útil dos contatos e proteger o módulo DF28 de danos provocados por tensões reversas, conectar externamente um diodo de proteção em paralelo com cada carga DC indutiva ou conectar um circuito *Snubber* RC em paralelo com cada carga AC indutiva.

DF46 – Módulo de Saídas Analógicas de Tensão e Corrente

DF46 (1 grupo de 4 saídas analógicas - Corrente ou Tensão)

Descrição

Esse módulo provê 4 saídas analógicas; reserva 4 terminais para corrente e outros 4 terminais para os mesmos sinais representados em tensão. As correntes de saída podem ser configuradas individualmente na faixa de 0-20 mA ou 4-20 mA. As faixas de tensão de saída são; +/-10 V, 0-10V, +/-5 V, 0-5 V e 1-5 V.

ΝΟΤΑ

Ao utilizar o Modo Tensão, configure o Grupo de Faixas via *Dip-Switches* localizadas acima e abaixo dentro da caixa.

Dip-Switch 1 - Lado de Cima: Configura o grupo de Faixas do Canal 0 (I0/V0) **Dip-Switch 2 - Lado de Cima:** Configura o grupo de Faixas do Canal 1 (I1/V1) **Dip-Switch 1 - Lado de Baixo:** Configura o grupo de Faixas do Canal 2 (I2/V2) **Dip-Switch 2 - Lado de Baixo:** Configura o grupo de Faixas do Canal 3 (I3/V3)

Veja nas Especificações Técnicas abaixo (Faixa de Saída) o Grupo de Faixas.

NOTA

- A escala para os Módulos de Entrada e Saída Analógicas é feita utilizando o parâmetro XD_SCALE nos blocos AI e AO, respectivamente. Ao utilizar MAI ou MAO, será assumida uma faixa default, 4-20mA ou 1-5V sem possibilidade de mudança. Para MAI e MAO, os parâmetros de entrada e saída estão disponíveis em porcentagens da faixa default.
- Deve-se utilizar cabo blindado nas linhas de sinal e a blindagem deve ser aterrada no painel somente em um dos lados do cabo.

ARQUITETURA		
Número de Saídas	4	
Número de grupos	1	
Número de Pontos por Grupos	4	

ISOLAÇÃO		
Canal para Barramento	Isolação Óptica até 3700 Vrms	
Canal para Alimentação Externa	1500 Vac	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 20 mA Máximo	
Dissipação Máxima Total	0,1 W	

POTÊNCIA EXTERNA		
Fonte de Tensão	20 – 30 Vdc	
Corrente Máxima	180 mA	
Indicador de Fonte	LED Verde	

SAÍDAS		
Tipo de Saída	Single ended (1 commom)	
Impedância da carga	5 V: 2 kΩ mínimo; 10 V: 5 kΩ mínimo; 20 mA: 750 Ω máximo	

	FAIXA 1	FAIXA 2	FAIXA 3
TENSÃO DE SAÍDA DIP SWITCH OFF	1 V a 5 V	0 a 5 V	-5 V a 5 V
TENSÃO DE SAÍDA DIP SWITCH ON	2 V a 10 V	0 a 10 V	-10 V a 10 V
CORRENTE DE SAÍDA	4 mA a 20 mA	0 a 20 mA	0 a 20 mA

CONVERSÃO A/D		
Velocidade de Conversão	8 ms	
Resolução	12 bits	
Exatidão em 77 ° F (25 ° C)	± 0,5% do Span	

DIMENSÕES E PESO	
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)
Peso	0,330 kg

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

DF32 ao DF40 - Módulos de Saídas de Relés e Entradas DC

- DF32 (1 grupo de 8 entradas de 24Vdc e 1 grupo de 4 relés NO)
- DF33 (1 grupo de 8 entradas de 48Vdc e 1 grupo de 4 relés NO)
- DF34 (1 grupo de 8 entradas de 60Vdc e 1 grupo de 4 relés NO)
- DF35 (1 grupo de 8 entradas de 24Vdc e 1 grupo de 4 relés NC)
- DF36 (1 grupo de 8 entradas de 48Vdc e 1 grupo de 4 relés NC)
- DF37 (1 grupo de 8 entradas de 60Vdc e 1 grupo de 4 relés NC)
- DF38 (1 grupo de 8 entradas de 24Vdc e 1 grupo de 2 relés NO e 2 NC)
- DF39 (1 grupo de 8 entradas de 48Vdc e 1 grupo de 2 relés NO e 2 NC)
- DF40 (1 grupo de 8 entradas de 60Vdc e 1 grupo de 2 relés NO e 2 NC)

Descrição

Este grupo de Módulos com Entradas DC e Saídas a Relés é projetado para acionar relés, lâmpadas piloto, vávulas e outras cargas até 5A. Ele detecta a tensão de entrada DC e a converte em um sinal lógico Verdadeiro ou Falso.

Possui 1 grupo de 8 entradas de 24/48/60 Vdc opticamente isoladas (DF32, DF35, DF33, DF36, DF39, DF37, DF40) e 4 saídas a relés (DF32 ao DF40).

Os relés podem acionar cargas variando de 24 a 110 Vdc ou de 24 a 250 Vac. Dois terminais do tipo parafuso são reservados para cada saída a relé, embora estejam isolados entre eles.

Especificações Técnicas

ARQUITETURA	
Número de Grupo	2
Número de Entradas Vdc	8
Número de Saídas	4

ISOLAÇÃO		
Os grupos são individualmente isolados. As fontes de alimentação para os grupos são individualmente isoladas.		
8 Contatos Relés individualmente isolados.		
O driver para cada Relé é opticamente isolado do barramento IMB até	5000 Vac	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB	5 Vdc @ 60 mA Típico	
Dissipação Máxima Total	0,3 W	
Indicador de Fonte	Nenhum	

Para as Entradas Vdc

ARQUITETURA		
Número de Pontos	8	

ISOLAÇÃO	
Isolação até	5000 Vac

POTÊNCIA EXTERNA		
Fonte de Tensão para as Entradas	20-30 Vdc (DF32, DF35, DF38) 36-60 Vdc (DF33, DF36, DF39) 45-75 Vdc (DF34, DF37, DF40)	
Consumo Típico	65 mA	
Indicador de Fonte	LED Verde	

ENTRADAS	
ON State Level (True Logic):	20-30 Vdc (DF32, DF35) 30-60 Vdc (DF33, DF36) 38-75 Vdc (DF34, DF37, DF40)
OFF State Level (False Logic):	0-5 Vdc (DF32, DF35, DF38) 0-9 Vdc (DF33, DF36, DF39) 0-12 Vdc (DF34, DF37, DF40)
Impedância Típica	3K9 Ω (DF32, DF35, DF38) 7K5 Ω (DF33, DF36, DF39) 10K Ω (DF34, DF37, DF40)
Display de Status	LED Amarelo
Indicador Lógico	On quando ativado
Corrente de Entrada Típica	7,5 mA

INFORMAÇÕES DE CHAVEAMENTO		
Tensão Mínima (0 a 1)	15 Vdc (DF32, DF35, DF38) 30 Vdc (DF33, DF36, DF39) 38 Vdc (DF34, DF37, DF40)	
Tensão Máxima (1 a 0)	5 Vdc (DF32, DF35, DF38) 9 Vdc (DF33, DF36, DF39) 12 Vdc (DF34, DF37, DF40)	
Histerese Típica	10 Vdc (DF32, DF35, DF38) 21 Vdc (DF33, DF36, DF39) 26 Vdc (DF34, DF37, DF40)	
Tempo de 0 a 1	18 ms	
Tempo de 1 a 0	40 ms	

Para as Saídas com Réles

ARQUITETURA	
Número de Saídas	4

ISOLAÇÃO	
Grupo é individualmente isolado	Cada relé possui dois terminais dedicados
Isolação Óptica até	5000 Vac.

POTÊNCIA EXTERNA	
Fonte de Tensão para cada Grupo	20 – 30 Vdc
Corrente Máxima por Grupo	67 mA
Consumo Máximo por Ponto	16,8 mA
Indicador de Fonte por Grupo	LED Verde

SAÍDAS		
Faixa Vac	20 – 250 Vac	
Faixa Vdc	20 – 110 Vdc	
Corrente Máxima para 250Vac	5 A	
Corrente Máxima para 30 Vdc	5 A	
Display de Status	LED Amarelo	
Indicador Lógico	ON se a bobina do relé estiver energizada	
Corrente de Fuga	500 μA @ 100 Vac	

INFORMAÇÃO DE CHAVEAMENTO		
Circuito de Proteção RC	62 Ω em série com 0,01 μ F	
Tempo para Ativar	10 ms	
Tempo para desativar	10 ms	

VIDA ÚTIL ELÉTRICA		
Ciclos de Chaveamento Mecânico	Mínimo de100.000 operações @ 5 a 250 Vac	

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,298 kg	

CABOS	
Um Fio	14 AWG (2 mm ²)
Dois Fios	20 AWG (0,5 mm ²)

NOTA

Para aumentar a vida útil dos contatos e proteger o módulo de danos provocados por tensões reversas, conectar externamente um diodo de proteção em paralelo com cada carga DC indutiva ou conectar um circuito *Snubber* RC em paralelo com cada carga AC indutiva.

DF41/DF42/DF64 – Módulos de Entradas Pulsadas

DF41 (2 grupos de 8 entradas de 24Vdc para contagem de pulso de baixa velocidade – sink) DF42 (2 grupos de 8 entradas de 24Vdc para contagem de pulso de alta velocidade – sink) DF64 (2 grupos de 8 entradas de 24Vdc para contagem de pulso de alta velocidade – sink)

Descrição

Esse módulo possui dois grupos de 8 entradas para contar os pulsos e acumulá-los até a leitura do módulo processador. Logo após a leitura do processador, todos os contadores são apagados e o Hardware está preparado para não perder nenhum pulso de entrada neste processo de aquisição.

Um Bloco Funcional PULSE associado, foi especificamente projetado para usufruir desse módulo no System 302. Veja detalhes deste bloco na documentação sobre Blocos Funcionais.

O DF41 é dedicado para capturar frequências até 100Hz e pode ser acionado por um contato mecânico de um relé ou um reed-switch. Um filtro unipolar interno têm a frequência de corte em aproximadamente 200Hz.

Os módulos DF42 e DF64 são dedicados para captura de altas freqüências isentas de ruídos. Podem ler de 0 a 10 KHz. Um filtro interno discarta freqüências em torno de 20 kHz para eliminar ruídos.

ARQUITETURA		
Número de Entradas	16	
Número de Grupos	2	
Número de Pontos por Grupo	8	

ISOLAÇÃO	
Os Grupos são individualmente isolados	
Isolação Óptica até	5000 Vac

POTÊNCIA EXTERNA	
Fonte de Tensão	20-30 Vdc
Consumo Típico por Grupo até	65 mA @ 24Vdc
Indicador de Fonte	LED Verde

POTÊNCIA INTERNA		
	DF41	DF42/DF64
Fornecida pelo Barramento IMB	90 mA	130 mA
Dissipação Máxima Total	0,425W	,.650W
Indicador de Fonte	Nenhum	Nenhum

ENTRADAS		
ON State Level (True Logic)	0-5 Vdc; <200Ω (DF41/DF42) 0-1 Vdc (DF64)	
OFF State Level (False Logic)	20-30 Vdc; >10 KΩ (DF41/DF42) 4–24 Vdc (DF64)	
Impedância Típica	3,9 kΩ	
Display de Status	LED Amarelo	
Corrente de Entrada por Ponto	7,5 mA (típico)	
Frequência Máxima de Entrada	DF41: 0-100 Hz DF42/DF64: 0-10 KHz	

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm ; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,342 kg	

CABOS			
Um Fio	14 AWG		
Dois Fios	20 AWG		

Nota					
Para atender os requisitos das normas de EMC, utilizar	cabos blindados para entradas de sinais e cabos				
menores do que 30 metros para as entradas de alimentação.					

DF67 - Módulo de Entradas de Pulso

DF67 (2 Grupos de 8 entradas de pulso 0-10 KHz - AC).

Descrição

Esse módulo foi projetado para ser conectado diretamente a sensores geradores de sinal AC. Esses módulos possuem dois grupos de 8 entradas para contar pulsos e acumulá-los até que o módulo da CPU os leia. O DF67 pode ler de 0 até 10 KHz. Um filtro de um pólo interno corta em torno de 20 KHz para eliminar ruído de altas freqüências.

ARQUITETURA			
Número de entradas	16		
Número de grupos	2		
Número de pontos por grupo	8		

	ISOLAÇÃO		
Os grupos são isolados separadamente			
isolamento óptico até	5000 Vac		

POTÊNCIA EXTERNA		
Fonte	20-30 Vdc	
Maximo consumo por grupo @24 Vdc	12 mA Tipico	
Indicador de Fonte	LED Verde	

POTÊNCIA INTERNA		
Fornecida pelo Barramento IMB (5 VDC)	130 mA	
Máximo total de dissipação	650 mW	
Indicação de Fonte	Não há	

ENTRADAS		
Tensão máxima de entrada	Vin = 30 Vac	
Nivel de estado ON (Verdadeiro Lógico)	Vin < -1.5 V	
Nivel de estado OFF (Falso Lógico)	Vin > +1.5 V	
Status do display	LED Amarelo	
Impedância	3,9 kΩ Típico	
Frequência máxima de entrada	10 KHz	

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm; (1,57 x 5,39 x 5,57 pol.)	
Peso	0,342 kg	

	CABOS
Um Fio	14 AWG
Dois Fios	20 AWG

ADICIONANDO MODBUS

Introdução

Algumas das características do DFI302, permitem que plantas já existentes migrem para Fieldbus, sem muito investimento em novos equipamentos. Uma destas características é a porta de comunicação serial (EIA-232), existente no módulo controlador que permite a conexão a uma larga faixa de equipamentos, comuns em plantas já existentes, utilizando o protocolo Modbus.

Recentemente o protocolo Modbus tem sido um dos mais populares padrões utilizados na indústria. Plantas já existentes, freqüentemente, possuem muitos instrumentos e subsistemas utilizando esse protocolo.

O DFI302 pode atuar como Mestre ou Escravo e pode ser conectado utilizando através de portas RS-232 ou Ethernet, utilizando no último caso, Modbus TCP/IP. A porta serial RS-232 está integrada ao módulo da CPU. Assim sendo, a utilização de um módulo à parte (DF58) é necessária somente se for preciso uma porta RS-485.

No modo Mestre, o DFI302 pode ler e escrever dados nos equipamentos Modbus escravos.

O DFI302 utiliza os comandos Modbus padrões para ler e escrever, fazendo com que os dados dos equipamentos estejam disponíveis para serem utilizados na estratégia de controle ou para visualização e histórico na estação de trabalho do operador. O operador pode também atuar nos instrumentos escravos e executar outras funções supervisórias. As entradas estão disponíveis como parâmetros normais, nas quais podem ser utilizadas como parte da estratégia de controle ou simplesmente para monitoramento, alarme e histórico.

A maioria dos sistemas pré-existentes, tais como DCS ou PLC, possuem módulos de interface serial que suportam Modbus. Isto pode ser usado para supervisionar instrumentos Fieldbus através do DFI atuando como *gateway*.

Os dados no DFI302 podem ser lidos ou escritos por um mestre quando o DFI302 operar no modo escravo. Os dados podem ser acessados em formato binário (funções 1, 2, 5 e 15) ou através de registradores (funções 3, 4, 6 e 16).

Através do DFI302, instrumentos Fieldbus podem ser conectados a um sistema de controle já existente, possibilitando a este último acessar algumas das capacidades fornecidas pelos instrumentos Fieldbus. Variáveis de processo tradicionais e ganhos de controladores podem ser mapeados do Fieldbus para a base de dados do sistema existente, mas obviamente, esse sistema não possuirá todos os benefícios oferecidos da tecnologia Fieldbus. Entretanto, é considerado como uma solução para um período de transição em um sistema aberto.

A porta Modbus é facilmente utilizada. Ela pode ser configurada sem o acionamento de nenhuma *dip-switch*. Um LED de *status* no painel frontal indica comunicação ativa.

Passos para Configurar o Modbus

DFI302 utiliza o SYSCON para criar todas as funcionalidades que você precisa, incluindo Modbus. Primeiramente, veja o capítulo "Adicionando Blocos Funcionais" para aprender alguns passos rápidos de como adicionar Blocos Funcionais à sua configuração do SYSCON. Lembre-se de que os blocos funcionais Modbus estão disponíveis em Revisões de DD diferentes.

1) Para incluir funções Modbus dentro do DFI302, crie primeiro um bloco MBCF (Bloco de Configuração Modbus).

		ΝΟΤΑ	
Vale lembrar que, assim como em todos equipamentos Fieldbus, o bloco <i>Resource</i> já deve ter sido criado e colocado em AUTO.			
Fu	nction Block	Characterization	
	Manufacturer :	Smar	
	Device Type :	DFI 302	
	Block Type :	Modbus Configuration	
	Block Tag :	MyMBCF	
		OK Cancel Help	

2) Ajuste os parâmetros de acordo com a mídia desejada, taxa de transmissão, endereços, etc.

Off Line: No Device - Modbus Configu	uration - MyMB 📕	⊐×
۵ 💊 🕲 🚮 🖉 🗠 🕲	1	- 🛃
Parameter	Value	
ST_REV TAG_DESC STRATEGY ALERT_KEY ALERT_KEY BLOCK_ERR MEDIA MASTER_SLAVE DEVICE_ADDRESS BAUD_RATE STOP_BITS PARITY TIMEOUT NUMBER_RETRANSMISSIONS SLAVE_ADDRESSES RESTART_MODBUS TIME_TO_RESTART RTS_CTS ON_APPLY	Serial TCP/IP	
1		▶
Cancel Edit End Edit	Close Help	

DFI302 - Manual do Usuário

PARÂMETRO	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
ST_VER		0	
TAG_DESC		Spaces	
STRATEGY		0	
ALERT_KEY	1a 255	0	
MODE_BLK		O/S	
BLOCK_ERR			
MEDIA	0:Serial, 1:TCP/IP	Serial	Define o tipo de canal Modbus.
MASTER_SLAVE	0:Mestre, 1:Escravo	Escravo	Define se o DFI é mestre ou escravo.
DEVICE_ADDRESS	0-247	1	Define o endereço DFI Modbus (somente para escravo DFI).
BAUD_RATE	0:110, 1:300, 2:600, 3:1200, 4:2400, 5:4800, 6:9600, 7:19200, 8:38400, 9:57600, 10:115200	19200	Define a taxa de transmissão (somente para mídia serial).
STOP_BITS	0:1, 1:2	1	Define o número de stop bits (somente para mídia serial).
PARITY	0:None, 1:Even, 2:Odd.	Even	Define a paridade (somente para mídia serial).
TIMEOUT	0-65535	1000	Tempo para espera de resposta de um escravo (para DFI mestre) ou tempo para esperar as saídas serem atualizadas (para DFI escravo). Valor 0 é utilizado para desabilitar.
NUMBER_RETRANSMISSIONS	0-255	1	Número de retransmissão se o DFI não receber resposta do escravo.
SLAVE_ADDRESSES			Número de IP e endereço Modbus de escravos (somente para DFI mestre em mídia TCP/IP);
RESTART_MODBUS		FALSO	Indica se depois de uma falha de comunicação com o escravo, haverá uma nova transmissão depois do tempo definido em TIME_TO_RESTART (somente para DFI mestre).
TIME_TO_RESTART	1-65535	1	Tempo para reiniciar comunicação com escravo
RTS_CTS		FALSO	Possibilita ou não handshaking.
ON_APPLY	0:Nenhum, 1:Aplicar	Nenhum	Atribui as mudanças feitas aos blocos Modbus.
UPDATE_EVT			Este alerta é gerado por qualquer mudança nos dados estáticos.
BLOCK_ALM			O block alarm é utilizado para toda falha na configuração, hardware e conexão ou problemas no sistema dos blocos. A causa do problema é acessada no campo subcode. O primeiro alerta a se tornar ativo acionará o status Active no atributo Status

Ao utilizar RS-232, instale o DF58 (Módulo de interface RS232/RS485) se for necessário comunicação com mais de um instrumento Modbus, ou seja, uma rede Multi-Ponto. Veja capítulo "Adicionando Interfaces".

 Agora, crie os blocos que forem necessários. Os blocos disponíveis são MBSS (Escravo de Supervisão Modbus), MBSM (Mestre de Supervisão Modbus), MBCS (Escravo de Controle Modbus), MBCM (Mestre de Controle Modbus).

Function Block Characterization				
Manufacture	r: Smar			
Device Type	: DFI 302			
Device Rev.	: 02 DD Rev.: 01			
Block Type :	Modbus Configuration			
Block Tag :	ModBus Control Master ModBus Supervision Master Modbus Configuration			
	Modbus Control Slave			
	Modbus Supervision Slave			
	OK Cancel Help			

Ao criar esses blocos, ajuste o MODE_BLK.TARGET para AUTO.

IMPORTANTE

Após o *download* de toda configuração para o DFI302, todos os blocos Modbus manterão o elemento MODE_BLK.ACTUAL em **Out of Service**. Essa é uma proteção que permite ao usuário criar todos os blocos necessários, ajustando todos os parâmetros, mesmo O*nline Characterization* e, somente, no final do processo de configuração, o usuário muda todos os parâmetros MODE_BLK dos blocos para AUTO, simultaneamente, através do bloco MBCF e escrevendo no parâmetro ON_APPLY.

Outro parâmetro importante, que você precisa definir para todos os blocos, é o LOCAL_MOD_MAP (0 ~ 15). Dezesseis blocos são aceitos para cada tipo de função e essa variável identifica cada um. Para o MBSS e MBCS, o LOCAL_MOD_MAP especifica também os endereços Modbus. Um valor 255 (*default*) não permite que o bloco funcione.

Os cenários a seguir, resumem algumas das aplicações nas quais podem ser utilizadas Funções Modbus do DFI302.

MBCS (Modbus Control Slave) – Escravo de Controle Modbus

Um instrumento Mestre Modbus precisa ler e/ou escrever alguns registradores Modbus do DFI302, mapeados diretamente em variáveis de entrada e saída da rede fieldbus.

Utilizando o SYSCON, crie um bloco MBCF (1 a 16 blocos MBCS são aceitos). Na janela *Strategy*. *Link* esse bloco com outros blocos Fieldbus Foundation.

Ao criar esses parâmetros, defina LOCAL_MOD_MAP (0 ~ 15). Os parâmetros de Entrada e Saída apontarão para endereços Modbus pré-definidos. Veja a seção LOCAL_MOD_MAP para conhecer esses endereços.

Descrição dos Parâmetros (para detalhes veja Manual de Blocos Funcionais do System302)

PARÂMETRO	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
ST_VER		0	
TAG_DESC		Spaces	
STRATEGY		0	
ALERT_KEY	1 a 255	0	
MODE_BLK		O/S	Veja Parâmetro Mode
BLOCK_ERR			
LOCAL_MOD_MAP	0 a 15	0	Define os endereços modbus.
IN1			Entrada Analógica 1
SCALE_CONV_IN1			Informação para gerar constantes A e B na equação Y=A*X+B.
IN2			Entrada Analógica 2
SCALE_CONV_IN2			Informação para gerar constantes A e B na equação Y=A*X+B.
IN3			Entrada Analógica 3
SCALE_CONV_IN3			Informação para gerar constantes A e B na equação Y=A*X+B.
IN4			Entrada Analógica 4
SCALE_CONV_IN4			Informação para gerar constantes A e B na equação Y=A*X+B.
IN_D1			Entrada Discreta 1
IN_D2			Entrada Discreta 2
IN_D3			Entrada Discreta 3
IN_D4			Entrada Discreta 4
OUT1			Saída Analógica 1
SCALE_CONV_OUT1			Informação para gerar constantes A e B na equação Y=A*X+B mais status de saídas.
OUT2			Saída Analógica 2
SCALE_CONV_OUT2			Informação para gerar constantes A e B na equação Y=A*X+B mais status de saídas.
OUT3			Saída Analógica 3
SCALE_CONV_OUT3			Informação para gerar constantes A e B na equação Y=A*X+B mais status de saídas.
OUT4			Saída Analógica 4
SCALE_CONV_OUT4			Informação para gerar constantes A e B na equação Y=A*X+B mais status de saídas.
OUT_D1			Saída Discreta 1
STATUS_OUT_D1			Status para OUT_D1 se o Mestre não atualizar.
OUT_D2			Saída Discreta 2
STATUS_OUT_D2			Status para OUT_D2 se o Mestre não atualizar.
OUT_D3			Saída Discreta 3
STATUS_OUT_D3			Status para OUT_D3 se o Mestre não atualizar.
OUT_D4			Saída Discreta 4
STATUS_OUT_D4			Status para OUT_D4 se o Mestre não atualizar.
UPDATE_EVT			Este alerta é gerado por qualquer mudança nos dados estáticos.
BLOCK_ALM			O block alarm é utilizado para toda falha na configuração, hardware e conexão ou problemas no sistema dos blocos. A causa do problema é acessada no campo subcode. O primeiro alerta a se tornar ativo acionará o status Active no atributo Status

NOTAS

Os elementos STATUS_OUT_Dx e STATUS_OUTPUT, utilizados nos parâmetros de saída, definem as seguintes regras para os parâmetros OUTPUT STATUS:

- Quando o usuário definir este elemento como 'Set by master", o status de cada saída se comportará exatamente como o protocolo Fieldbus, ou seja, o status refletirá o valor no qual o Mestre está escrevendo, mas se após o TIMEOUT (definido no bloco MBCF), o status não for atualizado, ele será forçado a BAD COMMUNICATION.
- Quando o usuário definir este elemento com algo diferente de "Set by master", esse valor será refletido no status de saída, enguanto a comunicação estiver boa. Caso contrário, o status vai para BAD COMMUNICATION.

Entradas e Saídas

Esse bloco possui 4 entradas digitais, 4 entradas analógicas, 4 saídas digitais e 4 saídas analógicas que podem ser conectadas a outras dos blocos Fieldbus ou Modbus.

- IN1, IN2, IN3 e IN4 são entradas analógicas.
- IN_D1, IN_D2, IN_D3 e IN_D4 são entradas digitais.
- OUT1, OUT2, OUT3 e OUT4 são saídas analógicas.
- OUT_D1, OUT_D2, OUT_D3 e OUT_D4 são saídas digitais.

As saídas e entradas digitais são do tipo DS-66, portanto, elas contém um valor e um status (ambos Unsigned 8). As saídas e entradas analógicas são do tipo DS-65 e também possuem *status* e valor. O tipo dos valores é FLOAT.

Parâmetros de Conversão de Escala

Cada entrada ou saída analógica possui um parâmetro extra que precisa ser ajustado para utilizar o bloco MBCS corretamente. Isto é feito via parâmetros SCALE_CONV_INn e SCALE_CONV_OUTn. Esses parâmetros são dados do tipo DS-256 e DS-257 e, portanto, possuem elementos que precisam ser ajustados.

A estrutura de dado DS-256 possui 5 elementos a serem ajustados:

- From EU 100 %
- From EU 0 %
- To EU 100 %
- To EU 0 %
- Data Type

A estrutura do dado DS-257 possui 6 elementos a serem ajustados:

- From EU 100 %
- From EU 0 %
- To EU 100 %
- To EU 0 %
- Data Type
- Output Status

Tipo de Dados

É necessário configurar o tipo de dado para informar o tipo do valor (*Data Type*) que está sendo lido, pois as variáveis Modbus possuem formatos diferentes.

Esse parâmetro só mostra o número referente a um formato específico.

NÚMERO DATA TYPE	SIGNIFICADO DATA TYPE
1	Float
2	Unsigned 8
3	Unsigned 16
4	Unsigned 32
5	Integer8
6	Integer16
7	Integer32

NÚMERO DATA TYPE	SIGNIFICADO DATA TYPE
8	Swapped Float
9	Swapped Unsigned 8
10	Swapped Unsigned 16
11	Swapped Unsigned 32
12	Swapped Integer 8
13	Swapped Integer 16
14	Swapped Integer 32

Os tipos de dados *Swapped* foram criados de forma a oferecerem recursos para comunicação entre os equipamentos Modbus e Profibus. Normalmente, temos os seguintes casos::

4 Bytes (2 Registers - Word)

```
Normal Datatype:Dentro da Word – Motorola<br/>Dentro do Registro – IntelSwapped Datatype:Dentro da Word – Motorola<br/>Dentro do Registro – Motorola
```

2 Bytes

Swapped Datatype: A informação de Status esta na parte mais significativa do byte (MSB)

1 Byte

Swapped Data type: Valor (MSB) e Status (LSB - parte menos significativa) estão no mesmo registro.

No caso do tipo de dado Swapped Integer 16 nenhuma mudança é necessária.

Procedimento para conversão do parâmetro FF para variável MODBUS:

Carregue INn_VALUE. Calcule Y = A * INn_VALUE + B. Converta Y para DATA_TYPE_IN, gerando MOD_VAR_IN. Armazene MOD_VAR_IN.

Procedimento para conversão da variável MODBUS para parâmetro FF:

To_EU_0% -----→ X

from_EU_0% from_EU_100%

INn_VALUE, OUTx_VALUE: parâmetro FF. MOD_VAR_IN, MOD_VAR_OUT: variável Modbus. Y: variável *float* auxiliar

Status de Saída

Se as saídas não forem atualizadas pelo Mestre Modbus, no tempo especificado pelo usuário (parâmetro TIMEOUT em MBCF), será gerado um "BAD STATUS". Se TIMEOUT < *Macrocycle*, TIMEOUT = *Macrocycle*.
MBSS (Modbus Supervision Slave) – Escravo de Supervisão Modbus

Um instrumento Mestre Modbus precisa ler e/ou escrever alguns registradores Modbus DFI302, mapeados diretamente em qualquer variável na rede Fieldbus. Utilizando o Syscon, crie um MBCF mais 1 a 16 blocos MBSS. Na janela de caracterização, configure estes blocos ajustando os parâmetros com TAG, Relative Index e Sub-Index dos outros parâmetros incluídos nos blocos FF.

MBSS

Ao ajustar esses parâmetros, defina LOCAL_MOD_MAP (0 ~ 15). Os parâmetros de Entrada e Saída apontarão para endereços Modbus pré-definidos. Veja a seção LOCAL_MOD_MAP para conhecer estes endereços.

Descrição de Parâmetros (para detalhes veja Manual de Blocos Funcionais do System302)

PARÂMETRO	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
ST_VER		0	
TAG_DESC		Spaces	
STRATEGY		0	
ALERT_KEY	1a 255	0	
MODE_BLK		O/S	Veja Parâmetro Mode
BLOCK_ERR			
LOCAL_MOD_MAP	0 a 15	0	Define os endereços Modbus.
F_ID1			Informação para localizar parâmetro float.
FVALUE1		0	Valor do parâmetro float requisitado.
F_ID2			Informação para localizar parâmetro float.
FVALUE2		0	Valor do parâmetro float requisitado.
F_ID3			Informação para localizar parâmetro float
FVALUE3		0	Valor do parâmetro float requisitado.
F_ID4			Informação para localizar parâmetro float
FVALUE4		0	Valor do parâmetro float requisitado.
F_ID5			Informação para localizar parâmetro float
FVALUE5		0	Valor do parâmetro float requisitado.
F_ID6			Informação para localizar parâmetro float
FVALUE6		0	Valor do parâmetro float requisitado.
F_ID7			Informação para localizar parâmetro float
FVALUE7		0	Valor do parâmetro float requisitado.
F_ID8			Informação para localizar parâmetro float
FVALUE8		0	Valor do parâmetro float requisitado.
I_ID1			Informação para localizar o parâmetro integer.
IVALUE1		0	Valor do parâmetro integer requisitado.
I_ID2			Informação para localizar o parâmetro integer.
IVALUE2		0	Valor do parâmetro integer requisitado.
I_ID3			Informação para localizar o parâmetro integer.
IVALUE3		0	Valor do parâmetro integer requisitado.
I_ID4			Informação para localizar o parâmetro integer.
IVALUE4		0	Valor do parâmetro integer requisitado.
B_ID1			Informação para localizar o parâmetro boolean.
BVALUE1		TRUE	Valor do parâmetro boolean requisitado.
B_ID2			Informação para localizar o parâmetro boolean.
BVALUE2		TRUE	Valor do parâmetro boolean requisitado.
B_ID3			Informação para localizar o parâmetro boolean.
BVALUE3		TRUE	Valor do parâmetro boolean requisitado.
B_ID4			Informação para localizar o parâmetro boolean.
BVALUE4		TRUE	Valor do parâmetro boolean requisitado.
UPDATE_EVT			Este alerta é gerado por qualquer mudança nos dados estáticos.
BLOCK_ALM			O block alarm é utilizado para toda falha na configuração, hardware e conexão ou problemas no sistema nos blocos. A causa do problema é acessada no campo subcode. O primeiro alerta a se tornar ativo acionará o status Active no atributo Status.
BAD_STATUS			Este parâmetro indica se o status do valor correspondente é ruim (bad) ou não.

ΝΟΤΑ

Toda vez que um parâmetro Modbus for alterado, é preciso mudar o parâmetro ON_APPLY do bloco MBCF para **APPLY**. Caso contrário, as alterações não terão efeito.

Parâmetros I_IDn, F_IDn, D_IDn

Os I_IDn são variáveis "*Integer*", F_IDn são variáveis "*Float*" e D_IDn são variáveis *Booleanas*. Esses parâmetros são do tipo DS-262. Este tipo de dado possui 3 elementos:

- **Block Tag:** Informa o *Tag* do bloco que contém a variável a ser visualizada. Por exemplo, se o usuário precisa visualizar o ganho do bloco PID, deve insirir o tag do bloco, que contém o parâmetro **ganho** a ser visualizado no Mestre Modbus.
- Relative Index: Todos os parâmetros de um bloco de função possuem este index. O index relativo está na primeira coluna de todas as tabelas de parâmetros dos blocos funcionais. Insira o index relativo para o parâmetro a ser monitorado. No caso acima, para monitorar o parâmetro "ganho" do bloco PID, o index relativo é 23.
- **Sub index:** O sub index é utilizado para parâmetros que possuem uma estrutura. Neste caso, é preciso indicar qual elemento da estrutura está sendo referenciado.

Parâmetros BVALUEx e IVALUEx

Os parâmetros BVALUEx podem endereçar os parâmetros FF dos seguintes tipos de dados: **boolean**, **integer8** e **unsigned8**. Estes tipos de dados são automaticamente convertidos para bit (0 ou 1) e vice-versa para supervisão Modbus e, também, podem ser convertidos para parâmetro booleano (BVALUEx).

Os parâmetros IVALUEx podem endereçar parâmetros FF dos seguintes tipos de dados: *Integer8*, *Integer16*, *Integer32*, *Unsigned8*, *Unsigned16* e *Unsigned32*.

Cada parâmetro analógico (IVALUEx) é mapeado como dois registradores analógicos em Modbus, isto é, quatro bytes. Assim, ao endereçar um parâmetro FF com um ou dois bytes, tal parâmetro será mudado para **Unsigned32** ou **Integer32**.

Se o Index Relativo for igual a 5 (MODE_BLK) e Sub Index igual a "zero", será feita uma escrita no Sub Index 1 e uma leitura no Sub Index 2.

Parâmetro BAD_STATUS

Esse parâmetro indica se a comunicação com dispositivos mestres está funcionando corretamente. Se o bit correspondente está no estado lógico 1 significa que um erro ocorreu durante a escrita/leitura do respectivo parâmetro. A tabela abaixo mostra os valores para os parâmetros de *Status*. Se a comunicação está boa, não há nenhuma indicação no BAD_STATUS. Entretanto, se a comunicação está ruim, BAD_STATUS indicará qual parâmetro está falhando na comunicação.

BIT	VARIAVEL
0	FVALUE1
1	FVALUE2
2	FVALUE3
3	FVALUE4
4	FVALUE5
5	FVALUE6
6	FVALUE7
7	FVALUE8
8	IVALUE1
9	IVALUE2
10	IVALUE3
11	IVALUE4
12	BVALUE1
13	BVALUE2
14	BVALUE3
15	BVALUE4

Relação entre os bits do parâmetro BAD_STATUS e os endereços Modbus

ΝΟΤΑ

Cada bit corresponde a uma função OU entre o valor e o *Status*, indicando se a comunicação com o Mestre está boa ou ruim.

MBCM (Modbus Control Master) – Mestre de Controle Modbus

Um instrumento Escravo Modbus precisa receber e/ou reescrever alguns registradores Modbus DFI302, mapeados diretamente em variáveis de entrada e saída na rede Fieldbus.

Utilizando o Syscon, crie um MBCF mais 1 a 16 blocos MBCM. Na janela Strategy, link estes blocos com outros blocos FF. Esta aplicação é também muito útil com intrumentos com displays instalados na indústria.

МВСМ

Ajuste a opção Master no parâmetro MASTER_SLAVE abaixo do bloco MBCF. Defina LOCAL_MOD_MAP (0 ~ 15).

Descrição de Parâmetros (para detalhes veja Manual de Blocos Funcionais do System302)

PARÂMETRO	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO	
ST_VER		0		
TAG_DESC		Spaces		
STRATEGY		0		
ALERT_KEY	1a 255	0		
MODE_BLK		O/S	Veja Parâmetro Mode	
BLOCK_ERR				
COMM_STATUS		0	Indica se a comunicação do escravo é boa ou não (cada bit corresponde a uma variável Modbus).	
IN1			Entrada Analógica 1	
SCALE_LOC_IN1			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
IN2			Entrada Analógica 2	
SCALE_ LOC_IN2			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
IN3			Entrada Analógica 3	
SCALE_ LOC_IN3			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
IN4			Entrada Analógica 4	
SCALE_ LOC_IN4			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
IN_D1			Entrada Discreta 1	
LOCATOR_IN_D1			Endereços em um instrumento escravo.	
IN_D2			Entrada Discreta 2	
LOCATOR_IN_D2			Endereços em um instrumento escravo.	
IN_D3			Entrada Discreta 3	
LOCATOR_IN_D3			Endereços em um instrumento escravo.	
IN_D4			Entrada Discreta 4	
LOCATOR_IN_D4			Endereços em um instrumento escravo.	
OUT1			Saída analógica 1	
SCALE_ LOC_OUT1			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
OUT2			Saída analógica 2	
SCALE_ LOC_OUT2			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
OUT3			Saída analógica 3	
SCALE_LOC_OUT3			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
OUT4			Saída analógica 4	
SCALE_LOC_OUT4			Informação para gerar as constantes A e B na equação Y=A*X+B mais os endereços em um instrumento escravo.	
OUT_D1			Saída Discreta 1	
LOCATOR_OUT_D1			Endereços em um instrumento escravo.	
OUT2_D2			Saída Discreta 2	
LOCATOR_OUT_D2			Endereços em um instrumento escravo.	
OUT_D3			Saída Discreta 3	
LOCATOR_OUT_D3			Endereços em um instrumento escravo.	
OUT_D4			Saída Discreta 4	
LOCATOR_OUT_D4			Endereços em um instrumento escravo.	
UPDATE_EVT			Este alerta é gerado por qualquer mudança nos dados estáticos.	
BLOCK_ALM			O block alarm é utilizado para toda falha na configuração, hardware e conexão ou problemas no sistema dos blocos. A causa do problema é acessada no campo subcode. O primeiro alerta a se tornar ativo acionará o status Active no atributo Status.	

NOTA

Os elementos MODBUS_ADDRESS_OF_STATUS definem as seguintes regras para os parâmetros OUTPUT STATUS:

- Quando o usuário definir este elemento com um valor diferente de Zero, o *status* de saída se comportará exatamente como o protocolo de saída, ou seja, o *status* refletirá o valor que o Mestre está lendo, mas se após o TIMEOUT (definido no bloco MBCF) o *status* não for atualizado, ele será forçado a BAD COMMUNICATION.

- Quando o usuário definir esse elemento com um valor igual a Zero, o *status* de saída irá, automaticamente, para GOOD e também aceitará uma caracterização via SYSCON (ex: GOOD_CASCADE, etc.). Mas, se após o TIMEOUT (definido no bloco MBCF) a comunicação com o *device* Modbus não estiver boa, o *status* será forçado para BAD COMMUNICATION.

NOTA

Toda vez que um parâmetro Modbus for alterado, é necessário mudar o parâmetro ON_APPLY, do bloco MBCF, para "APPLY". Caso contrário, as alterações não terão efeito.

Parâmetro LOCAL_MODE_MAP

Todos os blocos MBCM adicionados à estratégia, devem possuir valores diferentes para LOCAL_MODE_MAP. Caso contrário, o bloco não funcionará corretamente.

Entradas e Saídas

Este bloco possui 4 entradas e saídas digitais e 4 entradas e saídas analógicas. Estas entradas e saídas podem ser conectadas a outros blocos de função FIELDBUS a fim de se conectar módulos de entrada e saída MODBUS ou registradores.

INn: Entrada analógica do tipo DS-65. Valor e *Status*. Nesse parâmetro, o usuário visualizará o valor do parâmetro ajustado para essa entrada e seu status.

IN_Dn: Entrada digital do tipo DS-66. Valor e *Status*. Nesse parâmetro, o usuário visualizará o valor do parâmetro ajustado para essa entrada e seu status.

OUTn: Saída analógica do tipo DS-65. Valor e *Status*. Nesse parâmetro, o usuário visualizará o valor do parâmetro ajustado para essa saída e seu status.

OUT_Dn: Saída digital do tipo DS-66. Valor e *Status*. Nesse parâmetro, o usuário visualizará o valor do parâmetro ajustado para essa saída e seu status.

Parâmetros SCALE_LOC_INn e SCALE_LOC_OUTn

Esses parâmetros são do tipo de dado DS-259. Eles convertem o valor para unidade de Engenharia e endereçam a variável na rede MODBUS. As entradas e saídas INn e OUTn possuem os parâmetros SCALE_LOC_INn e SCALE_LOC_OUTn associados. É necessário configurar esses parâmetros para que o monitoramento e troca de dados sejam feitos corretamente.

Cada parâmetro consiste dos seguintes elementos:

- From Eu 100 %
- From Eu 0 %
- To Eu 100 %
- To Eu 0 %

Veja a seguir como configurar estes elementos:

Data Type: É necessário informar o tipo de dado da variável. Esse parâmetro, somente mostra o número a que se refere um formato específico.

NÚMERO DATA TYPE	SIGNIFICADO DATA TYPE	
1	Float	
2	Unsigned 8	
3	Unsigned 16	
4	Unsigned 32	
5	Integer8	
6	Integer16	
7	Integer32	
8	Swapped Float	
9	Swapped Unsigned 8	
10	Swapped Unsigned 16	
11	Swapped Unsigned 32	
12	Swapped Integer 8	
13	Swapped Integer 16	
14	Swapped Integer 32	

Os tipos de dados *Swapped* foram criados de forma a oferecerem recursos para comunicação entre os equipamentos Modbus e Profibus. Normalmente, temos os seguintes casos:

4 Bytes (2 Registers - Word)

Normal Datatype:	Dentro da Word – Motorola
	Dentro do Registro – Intel
Swapped Datatype:	Dentro da Word – Motorola
	Dentro do Registro – Motorola

2 Bytes

Swapped Datatype: A informação de Status esta na parte mais significativa do byte (MSB)

1 Byte

Swapped Data type: Valor (MSB) e Status (LSB - parte menos significativa) estão no mesmo registro.

No caso do tipo de dado Swapped Integer 16 nenhuma mudança é necessária.

Slave Address: Informa o endereço do escravo necessário para a entrada IN. Por exemplo, suponha a CPU-700 com "endereço de equipamento" (*Device Address*) igual a 3 e tenha que se conectar a uma de suas entradas ou saídas. Assim, o endereço escravo deve ser igual a 3.

Modbus Address of Value: Informa o endereço Modbus da variável que será referenciada para a entrada ou saída. No exemplo do elemento anterior, suponha que o endereço Modbus da variável seja 40032. Assim, esse elemento deverá receber esse endereço.

Modbus Address of Status: Nesse parâmetro o usuário informa o endereço Modbus onde o *status* será lido ou escrito. Cada entrada ou saída possui um *status* correspondente. A interpretação do *status* atende aos padrões Fieldbus Foundation.

O tratamento das entradas e saídas é descrito na tabela abaixo:

ENTRADA/SAÍDA	STATUS CONFIGURADO (Modbus_Address_Of_Status ≠ 0)	STATUS NÃO-CONFIGURADO (Modbus_Address_Of_Status = 0)	
Entradas (IN_n , IN_Dn)	O bloco envia para o dispositivo Modbus escravo o s <i>tatus</i> correspondente à sua entrada. (O s <i>tatus</i> possui formato FF).	Nenhuma informação de status é enviada para o dispositivo escravo.	
Saídas (OUT_n, OUT_Dn)	O bloco lê do dispositivo escravo o status correspondente. (O bloco interpreta que a variável Modbus possui o mesmo formato do <i>status</i> Fieldbus Foundation).	 O bloco atualiza o status para "Good Non Cascade" quando a comunicação com o dispositivo Modbus escravo estiver OK. O bloco atualiza o status para "Bad No Communication with last value" quando a comunicação com o dispositivo Modbus escravo não estiver OK. 	

Valores float utilizam dois registradores Modbus, mas é necessário informar somente o primeiro.

Procedimento para conversão do parâmetro FF para variável Modbus:

Carregue INx_VALUE Calcule Y = (A * Inx_VALUE + B) Converta Y para DATA_TYPE_IN, gerando MOD_VAR_IN Escreva MOD_VAR_IN

Procedimento para conversão de variável MODBUS para parâmetro FF: Leia MOD_VAR_OUT Converta MOD_VAR_OUT para float, gerando Y Calcule OUTx_VALUE = (A * Y + B) Armazene OUTx_VALUE

IN_VALUE, OUT_VALUE: parâmetros FF MOD_VAR_IN, MOD_VAR_OUT: variáveis MODBUS Y = variável float auxiliar

Ajustando as entradas e saídas do bloco MBCM

Para ler uma variável Modbus, conecte-a a uma saída do bloco funcional MBCM. Para escrever em um registrador Modbus, conecte-o a uma entrada do bloco MBCM.

O padrão do protocolo Modbus especifica a divisão da faixa de endereço para as variáveis.

- 00001 até 09999 → Saídas Digitais
- 10001 até 19999 → Entradas Digitais
- 30001 até 39999 → Entradas Analógicas
- 40001 até 49999 → Saídas Analógicas

Quando as variáveis que precisam ser mapeadas forem definidas e referenciadas no bloco MBCM, o usuário pode configurar sua estratégia. É possível conectar as variáveis a outros blocos Fieldbus (conecte a saída ou entrada dos blocos a outros blocos na estratégia) para escrever nos registradores Modbus (conecte a entrada do bloco MBCM ao registrador Modbus). Para trocar dados entre dois escravos, configure a entrada do bloco MBCM com o endereço do escravo e especifique o endereço Modbus onde o valor será escrito e configure a saída do bloco MBCM com o endereço escravo e Modbus da variável onde o valor será lido. Veja a aplicação a seguir:

Parâmetro BAD_STATUS

Este parâmetro indica se a comunicação entre escravos foi estabelecida corretamente. Se o bit correspondente estiver em nível lógico 1, significa que houve um erro durante a leitura/escrita do respectivo parâmetro. A tabela abaixo apresenta os valores para estes status. Se a comunicação com o parâmetro específico estiver boa, não haverá nenhuma indicação no BAD_STATUS, entretanto, se a comunicação estiver ruim, o BAD_STATUS indicará qual parâmetro falhou na comunicação.

Relação entre os bits em BAD_STATUS e endereços MODBUS.

Bit	Variável
0	IN1
1	IN2
2	IN3
3	IN4
4	IN_D1
5	IN_D2
6	IN_D3
7	IN_D4
8	OUT1
9	OUT2
10	OUT3
11	OUT4
12	OUT_D1
13	OUT_D2
14	OUT_D3
15	OUT_D4

NOTA

Cada bit corresponde a um OU entre o valor e o *status*, indicando se a comunicação com o escravo está boa ou ruim.

Se somente o valor for usado, o status é considerado zero.

Se somente o status for usado, o valor é considerado zero.

MBSM (Modbus Supervision Master) - Mestre de Supervisão Modbus

Um sistema supervisório conectado ao DF51, via OPC Server, precisa ler e/ou escrever alguns parâmetros, mapeados diretamente em alguns registradores Modbus. Utilizando o Syscon, crie um MBCF mais 1 a 16 blocos MBSM. Na janela de Caracterização, configure estes blocos ajustando os parâmetros com Endereço Escravo e Endereço do Parâmetro.

MBSM

Ajuste a opção Mestre no parâmetro MASTER_SLAVE abaixo do MBCF. Defina LOCAL_MOD_MAP (0 ~ 15).

Descrição de Parâmetros (para detalhes veja Manual de Blocos Funcionais do System302)

PARÂMETRO	FAIXA VÁLIDA/ OPÇÕES	VALOR DEFAULT	DESCRIÇÃO
ST_VER		0	
TAG_DESC		Spaces	
STRATEGY		0	
ALERT_KEY	1 a 255	0	
MODE_BLK		O/S	Veja Parâmetro Mode
BLOCK_ERR			
COMM_STATUS		0	Indica se a comunicação do escravo é boa ou não (cada bit corresponde a uma variável Modbus).
FLOCATOR1			Informação para localizar parâmetro float.
FVALUE1		0	Valor dos endereços requisitados
FLOCATOR2			Informação para localizar parâmetro float.
FVALUE2		0	Valor dos endereços requisitados
PLOCATOR1			Informação para localizar parâmetro percentage
PVALUE1		0	Valor dos endereços requisitados
PLOCATOR2			Informação para localizar parâmetro percentage
PVALUE2		0	Valor dos endereços requisitados
ILOCATOR1			Informação para localizar o parâmetro integer.
ILENGTH1	1,2,4	2	Comprimento do dado.
IVALUE1		0	Valor dos endereços requisitados
ILOCATOR2			Informação para localizar o parâmetro integer.
ILENGTH2	1,2,4	2	Comprimento do dado.
IVALUE2		0	Valor dos endereços requisitados
BLOCATOR1			Informação para localizar o parâmetro boolean.
BVALUE1		TRUE	Valor dos endereços requisitados
BLOCATOR2			Informação para localizar o parâmetro boolean.
BVALUE2		TRUE	Valor dos endereços requisitados
BLOCATOR3			Informação para localizar o parâmetro boolean.
BVALUE3		TRUE	Valor dos endereços requisitados
BLOCATOR4			Informação para localizar o parâmetro boolean.
BVALUE4		TRUE	Valor dos endereços requisitados
BLOCATOR5			Informação para localizar o parâmetro boolean.
BVALUE5		TRUE	Valor dos endereços requisitados
BLOCATOR6			Informação para localizar o parâmetro boolean.
BVALUE6		TRUE	Valor dos endereços requisitados.
BLOCATOR7			Informação para localizar o parâmetro boolean.
BVALUE7		TRUE	Valor dos endereços requisitados
BLOCATOR8			Informação para localizar o parâmetro boolean.
BVALUE8		TRUE	Valor dos endereços requisitados.
UPDATE_EVT			Este alerta é gerado por qualquer mudança nos dados estáticos.
BLOCK_ALM			O block alarm é utilizado para toda falha na configuração, hardware e conexão ou problemas no sistema nos blocos. A causa do problema é acessada no campo subcode. O primeiro alerta a se tornar ativo acionará o status Active no atributo Status

Parâmetro LOCAL_MODE_MAP

Todos os blocos MBSM adicionados à estratégia deve possuir valores diferentes para LOCAL_MODE_MAP, caso contrário, o bloco não funcionará corretamente.

Parâmetros FVALUEn, PVALUEn, IVALUEn e BVALUEn

O usuário pode selecionar estes parâmetros de acordo com sua necessidade. Se a variável que precisa ser monitorada for "FLOAT", é necessário um parâmetro FVALUE. Se for uma porcentagem, o PVALUE funcionará. O IVALUE refere-se a valores *Integer* e BVALUE refere-se a valores booleanos.

Para cada um destes parâmetros estão associados outros parâmetros para endereçá-los na rede MODBUS, assim o bloco MBSM conhecerá o seu local.

Parâmetro FLOCATORn

Esse parâmetro refere-se ao parâmetro FVALUE. Esse parâmetro é do tipo DS-260, portanto, é necessário configurar dois elementos para ele.

Slave Address: Insira o endereço do escravo onde está localizada a variável para ser monitorada. Por exemplo, em uma aplicação onde o LC700 foi configurado com Device Address igual a 1, o endereço escravo (*Slave Address*) deverá ser 1.

Modbus Address of Value: Digite o endereço MODBUS da variável que será monitorada no bloco MBSM. Suponha que o usuário precise monitorar a variável de endereço MODBUS 40001, localizada em um módulo E/S do escravo com Device Address igual a 1. Assim, o MODBUS Address of Value deve ser igual a 1.

Os parâmetros FVALUEn mostrará os valores das variáveis configuradas em FLOCATORn. Valores FLOAT usam dois registradores MODBUS, mas é preciso informar somente o primeiro registrador.

Endereços Modbus:

- 00001 até 09999 → Saídas digitais
- 10001 até 19999 → Entradas digitais
- 30001 até 39999 → Entradas analógicas
- 40001 até 49999 → Saídas analógicas

Parâmetro PLOCATORn

Este parâmetro refere-se aos parâmetros PVALUEn e são do tipo DS-258. Eles convertem os valores para unidade de engenharia e endereçam a variável na rede MODBUS.

É necessário configurar estes parâmetros para que a monitoração seja executada corretamente. Cada parâmetro consiste dos seguintes elementos:

- From Eu 100 %
- From Eu 0 %
- To Eu 100 %
- To Eu 0 %
- Data Type

Veja abaixo como configurar esses parâmetros.

Data Type: É necessário informar o tipo de dado da variável. Esse parâmetro somente mostra o número a que se refere um formato específico.

NÚMERO <i>DATA TYPE</i>	SIGNIFICADO DATA TYPE	
1	Float	
2	Unsigned 8	
3	Unsigned 16	
4	Unsigned 32	
5	Integer8	
6	Integer16	
7	Integer32	
8	Swapped Float	
9	Swapped Unsigned 8	
10	Swapped Unsigned 16	
11	Swapped Unsigned 32	
12	Swapped Integer 8	
13	Swapped Integer 16	
14	Swapped Integer 32	

Os tipos de dados *Swapped* foram criados de forma a oferecerem recursos para comunicação entre os equipamentos Modbus e Profibus. Normalmente, temos os seguintes casos:

4 Bytes (2 Registers - Word)

Normal Datatype:	Dentro da Word – Motorola
	Dentro do Registro – Intel
Swapped Datatype:	Dentro da Word – Motorola
	Dentro do Registro - Motorola

2 Bytes

Swapped Datatype: A informação de Status está na parte mais significativa do byte (MSB)

1 Byte

Swapped Data type: Valor (MSB) e *Status* (LSB - parte menos significativa) estão no mesmo registro.

No caso do tipo de dado Swapped Integer 16 nenhuma mudança é necessária.

Slave Address: Informa o endereço do escravo necessário para o parâmetro PVALUEn. Por exemplo, suponha um LC700 com Device Address igual a 3 e que seja necessário monitorar uma variável específica. Assim, o Slave Address será igual a 3.

Modbus Address of Value: Informa o endereço Modbus da variável que será monitorada. No exemplo do elemento acima, suponha que o endereço Modbus da variável a ser monitorada seja igual 40032. Assim, este elemento deve receber este endereço.

Procedimento para conversão do parâmetro FF para variável Modbus:

Carregue VALUEn Calcule y = (A*VALUEn + B) Converta Y para DATA_TYPE_IN, gerando MOD_VAR_IN Escreva MOD_VAR_IN

Procedimento para conversão da variável MODBUS para parâmetro FF:

Leia MOD_VAR_OUT Converta MOD_VAR_OUT (do DATA TYPE) para Float, gerando Y Calcule PVALUE = (A*Y + B) Armazene OUTx_VALUE

PVALUEn: Parâmetro FF MOD_VAR_IN, MOD_VAR_OUT: Variáveis MODBUS Y: Variável *float* auxiliar

Parâmetro ILOCATORn

Refere-se ao parâmetro IVALUEn

Slave Address: Insira o endereço do escravo onde está localizada a variável a ser monitorada. Por exemplo, se em uma aplicação com CPU-700 foi configurada com *Device Address* igual a 1. Assim, o *Slave Address* deverá ser 1.

Modbus Address of Value: Digite o endereço Modbus da variável a ser monitorada no bloco MBSM. Suponhamos que seja necessário monitorar a variável com endereço Modbus 40001, localizada em um módulo de entrada e saída do escravo com *Device Address* igual a 1. Assim, o *Modbus Address of Value* deverá ser igual a 40001.

Os parâmetros IVALUEn mostrarão os valores das variáveis configuradas em ILOCATORn.

Parâmetro BLOCATORn

Refere-se ao parâmetro BVALUEn.

Esse parâmetro é do tipo DS-260. Portanto, o usuário terá que configurar dois elementos para esse parâmetro.

Slave Address: Insira o endereço do escravo onde está localizada a variável a ser monitorada. Por exemplo, se em uma aplicação com CPU-700 foi configurado com *Device Address* igual a 1. Assim, o *Slave Address* deverá ser igual a 1.

Modbus Address of Value: Digite o endereço Modbus da variável a ser monitorada no bloco MBSM. Suponha que seja necessário monitorar a variável com endereço Modbus 40001 localizada em um módulo de entrada e saída com *Device Address* igual a 1. Assim, o *Modbus Address of Value* deverá ser igual a 40001.

Os parâmetros BVALUEn mostrarão os valores das variáveis configuradas em BLOCATORn.

Parâmetro BAD_STATUS

Este parâmetro indica se a comunicação entre escravos foi estabelecida corretamente. Se o bit correspondente estiver em nível lógico 1, significa que houve um erro durante a escrita/ leitura do respectivo parâmetro. A tabela abaixo mostra os valores para estes status:

BIT	VARIÁVEL
0	B1
1	B2
2	B3
3	B4
4	B5
5	B6
6	B7
7	B8
8	l1
9	12
10	P1
11	P2
12	F1
13	F2

Relação entre os bits em BAD_STATUS e endereços MODBUS

Endereços Modbus do Escravo

MBCS			
	LOCAL_MOD_MAP = x	Exemplo	
PARÂMETRO	OFFSET = 40 * x	LOCAL_MOD_MAP	
	x = 0 ~ 15	=1	
IN1-Value	40001+ OFFSET	40041	
	40002+ OFFSET	40042	
IN2-Value	40003+ OFFSET	40043	
	40004+ OFFSET	40044	
IN3-Value	40005+ OFFSET	40045	
	40000+ OFFSET	40040	
IN4-Value	40007+ OFFSET	40047	
	40009+ OFFSET	40049	
OUT1-Value	40010+ OFFSET	40050	
	40011+ OFFSET	40051	
OUI2-Value	40012+ OFFSET	40052	
	40013+ OFFSET	40053	
0015-Value	40014+ OFFSET	40054	
OUT4-Value	40015+ OFFSET	40055	
	40016+ OFFSET	40056	
IN1-Status	40017+ OFFSET	40057	
IN2-Status	40018+ OFFSET	40058	
IN3-Status	40019+ OFFSET	40059	
IN4-Status	40020+ OFFSET	40060	
OUT1-Status	40021+ OFFSET	40061	
OUT2-Status	40022+ OFFSET	40062	
OUT3-Status	40023+ OFFSET	40063	
OUT4-Status	40024+ OFFSET	40064	
IN D1-Status	40025+ OFFSET	40065	
IN D2-Status	40026+ OFFSET	40066	
IN_D2 Status	40020+ OFFEET	40067	
IN_D3-Status	40027+ OFFSET	40007	
IN_D4-Status	40028+ OFFSET	40068	
OUT_D1-Status	40029+ OFFSET	40069	
OUT_D2-Status	40030+ OFFSET	40070	
OUT_D3-Status	40031+ OFFSET	40071	
OUT_D4-Status	40032+ OFFSET	40072	
IN_D1-Value	1+ OFFSET	41	
IN_D2-Value	2+ OFFSET	42	
IN_D2-Value	3+ OFFSET	43	
IN_D2-Value	4+ OFFSET	44	
OUT D1-Value	5+ OFFSET	45	
OUT D2-Value	6+ OFFSFT	46	
	7+ OFFSET		
		71	
OUI_D4-Value	8+ OFFSEI	48	

MBSS							
LOCAL_MOD_MAP = x	Exemplo						
OFFSET = 40 * x	LOCAL_MOD_MAP						
x = 0 ~ 15	=1						
42601+ OFFSET	42641						
42602+ OFFSET	42642						
42603+ OFFSET	42643						
42604+ OFFSET	42644						
42605+ OFFSET	42645						
42606+ OFFSET	42646						
42607+ OFFSET	42647						
42608+ OFFSET	42648						
42609+ OFFSET	42649						
42610+ OFFSET	42650						
42611+ OFFSET	42651						
42612+ OFFSET	42652						
42613+ OFFSET	42653						
42614+ OFFSET	42654						
42615+ OFFSET	42655						
42616+ OFFSET	42656						
42617+ OFFSET	42657						
42618+ OFFSET	42658						
42619+ OFFSET	42659						
42620+ OFFSET	42660						
42621+ OFFSET	42661						
42622+ OFFSET	42662						
42623+ OFFSET	42663						
42624+ OFFSET	42664						
2601+ OFFSET	2641						
2602+ OFFSET	2642						
2603+ OFFSET	2643						
2604+ OFFSET	2644						
	MBSS LOCAL_MOD_MAP = x OFFSET = 40 * x x = 0 - 15 42601+ OFFSET 42602+ OFFSET 42603+ OFFSET 42604+ OFFSET 42607+ OFFSET 42608+ OFFSET 42601+ OFFSET 42610+ OFFSET 42607+ OFFSET 42610+ OFFSET 42610+ OFFSET 42611+ OFFSET 42611+ OFFSET 42612+ OFFSET 42613+ OFFSET 42614+ OFFSET 42614+ OFFSET 42615+ OFFSET 42617+ OFFSET 42618+ OFFSET 42620+ OFFSET 42621+ OFFSET 42622+ OFFSET 42623+ OFFSET 42624+ OFFSET 42624+ OFFSET 42624+ OFFSET 42623+ OFFSET 42624+ OFFSET 42623+ OFFSET 42624+ OFFSET 2601+ OFFSET 2602+ OFFSET 2603+ OFFSET 2604+ OFFSET						

MBCS

A segunda coluna da tabela anterior mostra os valores que são atribuídos às entradas e saídas do bloco MBCS, de acordo com o valor configurado para o LOCAL_MODE_MAP. Por exemplo, se o LOCAL_MODE_MAP for configurado igual a 1, resultará na faixa de endereços Modbus da terceira coluna. Deve ficar claro que, quando este parâmetro for configurado, toda faixa será selecionada.

ΝΟΤΑ

Os valores INn e OUTn utilizam dois registradores Modbus (por exemplo IN1, 40041 e 40042) pois seus tipos de dados são float. Os valores IN_Dn e OUT_Dn utilizam um registrador Modbus (por exemplo IN_D1, 41). O s valores de status também utilizam somente um registrador. Uma vez definida a faixa Modbus, será possível configurar como o mestre Modbus irá lê-los.

MBSS

Quando os valores para LOCAL_MODE_MAP forem configurados, endereços Modbus serão dados às variáveis a serem monitoradas. Assim, cada variável Integer, Float ou Boolean terá um endereço Modbus.

Por exemplo, suponha LOCAL_MODE_MAP = 1 e que a variável float será monitorada. Configurando os parâmetros de F ID1. teremos:

F ID1.Tag = Tag do parâmetro float para monitoração.

F_ID1.Index = Index da primeira coluna do parâmetro para monitoração.

F_ID1.Subindex = O subindex é utilizado para parâmetros que possuem uma estrutura.

Neste caso, é necessário indicar qual elemento da estrutura está sendo referenciado.

Veja a tabela acima. Os endereços MODBUS atribuídos para este parâmetro (valores Float utilizam dois registradores MODBUS) são 42641 e 42642.

Comandos Modbus

O DFI302 atuando como Mestre, ou seja, realizando leitura de pontos, utiliza os comandos 1 (endereços 1 a 9999), 2 (endereços 10001 a 19999), 3 (endereços 40001 a 49999) e 4 (endereços 30001 a 39999).

Quando realizando escrita em pontos, ele utiliza, no caso do bloco MBCM os comandos 15 (endereços 0 a 9999) e 16 (endereços 40001 a 49999) e no caso do bloco MBSM os comandos 5 (endereços 0 a 9999) e 6 (endereços 40001 a 49999).

Já atuando como Escravo, o DFI302 responde a qualquer um dos comandos acima.

Conversão de Escala

Esta estrutura de dados consiste de dados utilizados para gerar as constantes A e B na equação Y= A*X+B

E	ELEMENTO	DATATYPE	TAMANHO
1	From EU 100%	Float	4
2	From EU 0%	Float	4
3	To EU 100%	Float	4
4	To EU 0%	Float	4
5	Data Type (Use esse parâmetro para converter Fieldbus para Modbus ou Modbus para Fieldbus, onde o Modbus deve ser) Float = 1 Unsigned8 = 2 Unsigned16 = 3 Unsigned32 = 4 Integer8 = 5 Integer16 = 6 Integer32 = 7 Swapped Float = 8 Swapped Unsigned8 = 9 Swapped Unsigned16 = 10 Swapped Integer8 = 12 Swapped Integer16 = 13 Swapped Integer32 = 14	Unsigned8	1

CRIANDO UMA NOVA CONFIGURAÇÃO FIELDBUS

Introdução

Neste capítulo, vamos mostrar passo a passo a configuração de um projeto em Fieldbus Foundation, utilizando como *Bridge* o sistema DFI302. Conforme a malha de controle mostrada abaixo:

O objetivo do processo é controlar a temperatura de saída do fluido utilizando vapor para aquecêlo. A temperatura do fluido será enviada para o controlador Mestre onde será comparada com o *Set Point* de temperatura.

A saída do Mestre será o Set Point do controlador Escravo, que enviará um sinal para a válvula, que, por sua vez, controlará a vazão de vapor para o trocador de calor.

Iniciando um Projeto

Passo 1

Para criar um projeto novo, vá para o menu *File*, item *New*, ou use o botão *New*, *D*, na barra de ferramentas.

Na caixa de diálogo, temos as opções de Documento. Selecione a opção *Plants*. Veja a figura a baixo:

Options:	
Plants	
Templates	

Observe a janela de diálogo:

New Project	? ×
Save jn: 🔄 Syscon	💽 🖻 💼 🏢
Doc .	
FBlockBmp	
Resource	
File name: Proj 00	Save
Save as type: Plants(*.ffp)	Cancel

Digite o nome do Projeto no box *File Name* e, então, clique *Save*. Uma nova pasta será criada com o nome do Projeto mais a extensão FFP.

Uma nova janela aparecerá. Dentro dela, veja o ícone para a Área 1(Planta Lógica) e outra para *Fieldbus Networks* (Planta Física).

Projeto da Planta Física

Passo 2

Na janela principal, chamada Proj_00, clique no ícone *Fieldbus Networks*, ¹ , usando o botão direito do *mouse*.

Clique na opção **New Fieldbus**. Não esqueça que um **New Fieldbus** é um novo barramento físico. Veja a figura:

Uma caixa de diálogo irá aparecer, coloque o *tag* no box. Se você quiser um nome específico para a sua planta, escreva aqui. Senão, aperte o botão **OK** e um *tag default* vai ser colocado para o Fieldbus:

Fieldbus		
Tag :		🏉 🔶
		•
40 –	Cancel	Help

Na janela Proj_00, veja a inscrição "Canal_00" na figura a seguir:

Organizando a Janela do Fieldbus

Passo 3

Clique no ícone Canal_00 usando o botão direito do mouse e selecione a opção *Expand*. Uma nova janela irá aparecer.

Para organizar a tela, clique na janela do projeto. Então, vá para o menu *Window* e selecione a opção Tile.

Adicionando Equipamentos Fieldbus

Passo 4

Agora você poderá adicionar os equipamentos Fieldbus que serão usados no projeto.

Primeiramente você irá adicionar a *Bridge* DFI302. Na janela **Canal_00**, clique no ícone **Canal_00** usando o botão direito do *mouse*. Selecione o item *New Brigde*, veja a figura a seguir:

🖹 CANAL_00						
중孟 <u>CANAL_00</u>	New Device Paste Device					
	New Bridge					
	Live List					
	Init Communication Set App Time Browse MIB Download Upload					
-	NM Parameters Attributes					

Aparecerá um nova nova caixa de diálogo de Brigde.

Na caixa "*Manufacturer*", aperte a seta para baixo e escolha "SMAR". Na caixa *Device Type*, aperte a seta para baixo e escolha o *device* "DFI302".

Na caixa *Device Tag*, escreva "DFI" ou algum outro *tag* e clique "OK". Observe a figura abaixo:

N	ew Bridge	
	Manufacturer :	Smar
	Device Type :	DFI 302
	Device Rev. :	03 DD Rev. : 02
	Device Id :	
	Device Tag :	DFI
	Upstream Port :	1
		OK Cancel Help

Visualizando a nova tela, ir no símbolo de "Brigde", DFI302, clique com o botão direito do mouse e selecione o item "Atributes"...

Ir na caixa "*BOF Class*" (*Boot Operation Function Class*), selecione a opção "*Brigde*" e clique "OK". Observe a figura a seguir:

Bridge		
Manufacturer :	Smar	
Device Type :	DFI 302	
Device Rev. :	03 DD Rev. :02	
Device Id :		-
Device Tag :	DFI	-
BOF Class	Bridge	-
Upstream Port :	🔽 💿 Root Brid	lge
	OK Cancel Help	

Passo 5

Faça agora o mesmo procedimento para adicionar um transmissor de temperatura Smar - TT302.

Na janela "Canal_00", clique no ícone Canal_00 e utilizando o botão direito do *mouse* selecione o item "*New Device*".

Aparecerá uma nova caixa de diálogo de "*Device*". Na caixa *Device Type*, aperte a seta para baixo e selecione o *device* "**TT302**". Na caixa *Device Tag*, escreva "**TIC001**" ou algum outro **tag**. Observe na figura abaixo:

D	evice	
	Manufacturer :	Smar
	Device Type :	TT 302
	Device Rev. :	01 DD Rev. : 03
	Device Id :	
	Device Tag :	110001
		OK Cancel Help

Faça o mesmo procedimento para adicionar um transmissor LD302 e o conversor (FI302) para a válvula de controle de vazão.

Depois de terminado o processo de configuração dos dispositivos (ex. de aplicação), a janela ficará como mostra a figura abaixo:

CANAL_00
E

Adicionando os Blocos Funcionais

Passo 6

Agora você poderá adicionar os Blocos Funcionais.

Para adicionar um novo FB (*Function Block*), clique no sinal de expansão, ^{†+}, então clique no ícone VFD2 (*Virtual Field Device*) usando o botão direito do *mouse* e selecione o item *New Block*.

O VFD1 é responsável pelo gerenciamento de dados.

A caixa de diálogo dos *Function Block* irá aparecer. Na opção *Block Type* você poderá selecionar o FB Smar existente.

Selecionar no Device Type, o device desejado e então, escreva um nome na caixa Block Tag.

Fu	Inction Block	Characterization
[
	Manufacturer :	Smar
	Device Type :	TT 302
	Device Rev. :	03 DD Rev.: 02
	Block Type :	Analog Input
	Block Tag :	TT100_AI
		OK Cancel Help

Neste exemplo, poderemos usar os blocos AI, o PID e o AO para construir a configuração de um controle em cascata.

					ΝΟΤΑ					
É	necessário	configurar	para	qualquer	tipo	de	equipamento	(somente	em	"Fieldbus
Ν	<i>etworks</i> ") os	seguintes bl	ocos:	Transduce	r (TRD)	, <i>R</i> e	esourse Block	(RES) e Di	splay	′ (DSP).

CANAL_00 _ 🗆 🗵 - ă∰ CANAL_00 ⊕ **9** DFI ⊟ **9** TT100 SM NM VFD 🗄 🗔 TT100_AI ⊕---**:..** TT100_RS 🗄 -- 📒 TT100_DSP 🗑 FT101 ÷ MIB VFD ⊕....**€**, FT101_TR 🗄 📲 🚛 FT101_RS - 🗑 FCV102 ÷ SM NM VFD 🗄 📲 FCV102_DSP

Veja como ficou a sua janela Canal_00 na figura a seguir:

Agora, poderá ser desenvolvida a **Área 1** (**Planta Lógica**) na ordem de sua estratégia de controle. Primeiramente, é necessário estabelecer uma nova área.

Criando Novas Áreas

Passo 7

Você pode dividir o Logical Project em várias áreas, de acordo com sua planta.

Para criar uma nova Área você tem que apertar o botão direito do mouse no ícone Área 1, e selecionar o item "New *Process Cell*".

Veja a caixa de "Process Cell" na figura abaixo:

Process Cell				
Tag:				
FBAP_01				
				-
(ЭК 🔤	Cancel	Help	

Se você deseja colocar um nome específico, escreva na caixa de tag e clique OK.

Para criar mais áreas, você deve repetir o procedimento já visto. Veja a figura abaixo:

SYSCON. Em uma Área pode conter vários *FBApplications*, mas um *FBApplications* no pode estar em mais de uma Área

Criando um FBApplication

Passo 8

Prosseguindo com o projeto, vamos agora criar um *Function Block* (FB) *application* na área. Clique no ícone Área usando o botão direito do mouse. Selecione o item *Expand*.

Para organizar a tela, clique na janela do "FBAP_01". Então, vá para o menu *Window* e selecione a opção "*Tile*".

Em seguida, vá para a janela "FBAP_01", clique em FBAP_01 e com o botão direito do *mouse*, selecione "*New Control Module*".

FBAP_01		Proj_00	
•••••• FBAP_01	New Control Module Paste Control Module	□ 🌆 Proi_00 □ 🎯 Area 1 □ 🚱 FBAP_01	
	Schedule	FBAP_02	
	Download Upload		
	Attributes		

Aparecerá a caixa de diálogo do **New Control Module**. Escreva um *Tag* correspondente a Área de Aplicação. Para continuar, aperte OK.

Control Module		
Tag:		
FBAP_01.0		
·		
OK	Cancel	Help

Neste ponto, sua janela de projeto ficará exatamente como a figura acima, a menos que você tenha digitado outros *Tags*.

Inserindo os Blocos No FBAP

Passo 9

Agora você está pronto para inserir (*attaching*) os blocos, para os equipamentos correspondentes, na *Logical Plant*. Clique sobre o "FBAP_01.0" com o botão direito do *mouse* e escolha a opção "*Attach Block*", como mostra a figura abaixo:

Veja a caixa de diálogo do "Attach Block" na figura abaixo:

Attach Block	
Tag:	
TICOOL TRD1	
OK Cancel	Help

No caixa "*Tag*", você visualizará o bloco desejado para ser adicionado à aplicação. Considerando seu exemplo, o bloco poderá ser o *default*. Aperte o botão OK.

O bloco será adicionado na Planta Lógica no **FBAP_01.0**. Para acrescentar novos blocos, repita o procedimento anterior. É necessário acrescentar também os blocos TRD, RES e DSP de cada device neste processo.

No final do processo de "Attach Block", o FBApplication ficará como mostra a figura abaixo:

Outra maneira de efetuar este processo é utilizar os recursos do Windows, visualizando as janelas FBAP_01 e CANAL_00. Executar função *Drag and Drop*, ou seja, clicar e arrastar até o local desejado.

Configurando a Estratégia de Controle

Passo 10

Agora você está pronto para desenvolver sua estratégia de controle.

Primeiro, clique sobre o ícone FBAP usando o botão direito do mouse e selecione o item estratégia (*Strategy*). A janela de *Strategy* irá aparecer.

Neste momento você já tem 3 ou 4 janelas no SYSCON. Minimizar a janela Proj_00. Para organizar estas janelas, clique sobre o título da janela *FBApplication* e, então, sobre a janela Proj01, vá para o menu *Window* e escolha a opção *Tile*.

Se você não tiver um monitor de vídeo maior que 17 ", sugerimos que você maximize a janela de Estratégia. Deste modo, você verá seu projeto inteiro ao mesmo tempo, agora você terá bastante espaço para desenvolvê-lo.

A Janela de Estratégia lhe oferece muitas possibilidades de desenho. Para saber mais detalhes sobre eles, dê uma olhada no menu de Ajuda.

Durante esse exemplo você usará somente as ferramentas que pertencem a esse desenvolvimento de projeto específico.

Neste caso, você ativará a caixa de ferramentas necessária.

Em primeiro lugar, verifique se a janela aberta é a janela de Estratégia – FBAP_01.0. Se não for, clique nela para abrir.

Vá para o menu **Tools** (ferramentas) e escolha a opção **Tool Boxes** (caixas de ferramentas). Nela, escolha o item **Drawing** (desenhando). Um **Toolbar** de desenho aparecerá no lado esquerdo da janela de aplicação do SYSCON.

Clique em cada botão, deste quadro, para ver a sua função:

Adicionando Blocos na Janela Strategy

Passo 11

Agora você poderá adicionar os blocos funcionais na janela de estratégia FBAP1.

Em ordem, clique sobre o primeiro blocc 🕄 TIC001_Al1 , e puxe-o para dentro da janela de estratégia. Um bloco de função será criado automaticamente.

Veja a figura a seguir:

Repita o mesmo procedimento para os demais blocos.

Ligando os Blocos

Passo 12

Vamos finalmente ligar os blocos.

Existe uma ferramenta para fazer esta tarefa, é o botão *Link*, **1**, no *Toolbar Strategy*.

Aperte este botão e clique sobre o bloco funcional TT100. Uma caixa de diálogo aparecerá, selecione a opção Output e aperte o botão OK, conforme a figura a seguir.

Você pode também usar o procedimento de link rápido, clicando sobre o bloco funcional com o botão direito do mouse.

Repita este procedimento para os demais blocos existentes.

Veja como ficou a configuração:

Fazendo a Caracterização dos Blocos

Passo 13

Para mudar o parâmetro do Bloco de Função, considere os tópicos seguintes:

1. Na janela de Estratégia.

Selecione o bloco que você quer fazer a caracterização. Clique em cima dele com o botão direito do mouse e selecione a opção Caracterização, ou clique duas vezes no bloco com o botão esquerdo do mouse. Observe a figura a seguir:

2. Na janela de Canal_00.

Clique em cima do bloco, que você escolheu usando o botão direito do mouse, e selecione a opção *Off Line Characterization*, como visto abaixo:

0	ff Line: TICOO1 - Tran	sducer - TIC001_TRD1	
Γ	s 🔉 🔷 🛞 🚮	🗸 🕰 😰 🗔 🔞 🛒	+
	Parameter	Value	Relativ 🔺
	ST_REV TAG_DESC STRATEGY ALEBT_KEY		1 2 3 4
	H-MODE BLK		5
	BLOCK_ERR		6 7
			9 10
	XD_ERROR		11
			12 13
	H-PRIMARY_VALUE III-PRIMARY_VALUE ↓		14 15 -
	Cancel Edit	Edit Close	Help

Em ambos os casos, aparecerá a caixa de diálogo do Bloco Caracterização:

Clique duas vezes no lado direito do parâmetro que você deseja modificar.

Você também pode clicar só uma vez e apertar o botão *Edit* para começar a edição do valor do parâmetro. No final da edição aperte o botão *End Edit*.

0	ff Line: TICOO1 - Trar	sducer - TIC001_TRD1		_ 🗆 🗙
[< > < 🚯 🔂	I 🛆 🕑 🗔 🔞	END S	*
	Parameter	Value		Relativ 🔺
	;ST_REV			1
	TAG_DESC			2
				3
				5
	TARGET	□ B0ut		.1
	ACTUAL			.2
	PERMITTED			.3
		I Y yuo I Man		.4
				7
	BLOCK_ALM	·		8
	- TRANSDUCER_DIR			9
	I - TRANSDUCER_TYP			10
	Cancel Edit	End Edit Close		Help

Veja a seguir uma lista de parâmetros para serem configurados neste projeto:

FT101 - LD302

FT101_TR

MODE_BLK - TARGET= AUTO

FT101_RS

MODE_BLK - TARGET= AUTO

FT101_DSP

MODE_BLK - TARGET= AUTO BLOCK_TAG_PARAM_1= FT101_AI INDEX_RELATIVE_1= 8 MNEMONIC_1= VAZAO ACCESS_1= MONITORING ALPHA_NUM_1= MNEMONIC DISPLAY_REFRESH= UPDATE DISPLAY - UNITS_INDEX= % OUT_SCALE - EU_100= 100 - EU_0= 0 - UNITS_INDEX= % GAIN= 0,5 RESET= 1 RATE= 0

TT100 - TT302

TT100_TR

MODE_BLK - TARGET= AUTO SENSOR_TYPE= PT100IEC SENSOR_CONNECTION= THREE WIRES SENSOR_TRANSDUCER_NUMBER= 1

TT100_RS

MODE_BLK - TARGET= AUTO

TT100_DSP

MODE_BLK - TARGET= AUTO BLOCK_TAG_PARAM_1= TT100_AI INDEX_RELATIVE_1= 8 MNEMONIC_1= TEMP ACCESS_1= MONITORING ALPHA_NUM_1= MNEMONIC DISPLAY_REFRESH= UPDATE DISPLAY

TT100_AI

TT100_PID

MODE_BLK - TARGET= AUTO PV_SCALE - EU_100= 100 - EU_0= 0 - UNITS_INDEX= % OUT_SCALE - EU_100= 100 - EU_0= 0 - UNITS_INDEX= %

SP= 50

GAIN= 0,5 RESET= 1 RATE= 0

FCV102 - FI302

FCV102_TR

MODE_BLK - TARGET= AUTO TERMINAL_NUMBER= 1

FCV102_RS

MODE_BLK - TARGET= AUTO

FCV102_DSP

MODE_BLK - TARGET= AUTO BLOCK_TAG_PARAM_1= FCV102_AO INDEX_RELATIVE_1= 9 MNEMONIC_1= VALVULA ACCESS_1= MONITORING ALPHA_NUM_1= MNEMONIC DISPLAY_REFRESH= UPDATE DISPLAY

FCV102_AO

MODE_BLK - TARGET= CAS PV_SCALE- EU_100= 100 - EU_0= 0 - UNITS_INDEX= % XD_SCALE - EU_100= 20 - EU_0= 4 - UNITS_INDEX= mA

PROJ_01_DFI

No projeto 01 vamos ter a mesma aplicação que no projeto 00, só que iremos agora configurar blocos no DFI302 e também configurar I/O analógicos e digitais. Veja a configuração da estratégia a seguir:

Parâmetros

FT101 - LD302

FT101_TR

MODE_BLK - TARGET= AUTO

FT101_RS

MODE_BLK - TARGET= AUTO

FT101_DSP

MODE_BLK - TARGET= AUTO BLOCK_TAG_PARAM_1= FT101_AI INDEX_RELATIVE_1= 8 MNEMONIC_1= VAZAO ACCESS_1= MONITORING ALPHA_NUM_1= MNEMONIC DISPLAY_REFRESH= UPDATE DISPLAY

FT101_AI

/ \1		
MODE_BLK	- TARGET= AUTO	
XD_SCALE	- EU_100= 100	
	- EU_0= 0	
	- UNITS_INDEX= inH2O $(4^{\circ}C)$	
OUT_SCALE	- EU_100= 100	
	- EU_0= 0	
	- UNITS_INDEX= %	
CHANNEL= 1		
L_TYPE= INDIRECT		
DFI - DFI302 DFI_RS MODE_BLK - TARGET= AUTO DFI_HC MODE BLK - TARGET= AUTO IO_TYPE_R1 - SLOT_0= 8 TEMPERATURE - SLOT_1= 4 ANALOG OUTPUT - SLOT_2= 8 DISCRET OUTPUT - SLOT_3= 8 DISCRET INPUT DFI_TEMP MODE_BLK - TARGET= AUTO CHANNEL= 1009 SENSOR_CONNECTION_0= 3 WIRE DFI AO MODE_BLK - TARGET= CAS IO_OPTS= FAULTSTATE TYPE CHANNEL= 1100 DFI_PID_TIC MODE_BLK - TARGET= AUTO STATUS_OPTS= IFS IS BAD IN GAIN=1 RESET= 0.1 RATE= 0 DFI_EPID_FIC MODE_BLK - TARGET= CAS GAIN=1 RESET= 0.1 RATE= 0 DFI_AI MODE_BLK - TARGET= AUTO CHANNEL= 1000 DFI_ALL MODE_BLK - TARGET= AUTO OUT_ALM_SUM= HI HI LIM= 90 DFI_DO MODE_BLK - TARGET= CAS CHANNEL= 1200

PROJ_02_DFI

Este projeto é igual ao anterior, estamos somente adicionando uma comunicação com a CPU-700, via protocolo RS-232 – Modbus. Veja a estratégia abaixo:

Os blocos MBCM (*Modbus Control Master*) e MBCF (*Modbus Configuration*) não estão acessíveis na configuração da parte física, temos então que configurar estes blocos na parte lógica.

Na parte lógica temos acesso à *DD Revision* do dispositivo, que deve ser 1, para permitir acesso à configuração dos dois blocos Modbus. Depois de configurados estes blocos devem ser anexados à parte física da configuração.

Parâmetros

Utilizamos todos os parâmetros do projeto anterior e a configuração de mais 2 blocos será acrescentada.

DFI_MBCM

MODE_BLK - TARGET= AUTO LOCAL_MOD_MAP= 0 LOCATOR_IN_D - SLAVE_ADDRESS= 1 - MODBUS_ADDRESS_OF_VALUE= 9

DFI_MBCF

MODE_BLK - TARGET= AUTO MEDIA= SERIAL MASTER_SLAVE= MASTER BAUD_RATE= 9600 STOP_BITS= 2 PARITY= EVEN

Configuração na CPU-700:

Quando o contado do ponto virtual (VM.0) for para nível "1", a saída física digital do LC700 vai também para nível "1".

O ponto virtual esta sendo acionado via comunicação Modbus pelo bloco MBCM, configurado no Syscon. Lembre-se de que o endereço Modbus do ponto virtual é 9 e foi configurado no bloco MBCM.

CONSIDERAÇÕES SOBRE LIMITES

No Fieldbus

Foundation Fieldbus utiliza o modelo *Publisher/Subscriber* para comunicação entre os dispositivos. Quando configuramos um *link* entre dois blocos de função, o dispositivo com o bloco que envia os dados é chamado de *Publisher* e o dispositivo que possui o bloco que recebe os dados é chamado de *Subscriber*. Veja figura seguinte:

a) Para *links* internos ao DFI302 utilizamos somente 1 *Object Link* (OL) e para *links* externos utilizamos 1 OL + 1 VCR *Publisher* (para o bloco que está enviando dados) ou 1 OL + 1 VCR *Subscriber* (para o bloco que está recebendo dados). Baseado nisto, devemos levar em consideração alguns limites para o DFI 302, como por exemplo, o DF51 pode suportar 300 Ols (*object links*), 64 VCR *publisher* e 64 VCR *subscriber*.

 b) O DFI302 é responsável por executar a tabela de LAS (Link Active Scheduler) nas redes em que ele está instalado. Existe um número máximo de links que este é capaz de gerenciar, que é igual a 70 links entre equipamentos distintos na rede.

c) Quando utilizando os equipamentos de campo Smar como Mestres Backup, o limite que estes suportam para a tabela de LAS é igual a 50. Portanto, coordene bem cada rede fieldbus tentando se adequando ao limite de 50 links entre equipamentos distintos, quando utilizando Mestre backup.

Na Supervisão

Para supervisão cada DF51 pode supervisionar simultaneamente até 400 *Tags* e suportar até 16 OPC *Servers* conectados. A topologia tipica e recomendada utiliza 2 *OPC Servers*.

No Modbus

O DF51 pode suportar até 16 blocos de cada tipo (MBSS, MBSM, MBCS e MBCM).

O DFI possui quatro tipos de blocos de função Modbus, que trabalham com informação Modbus: Modbus Control Master, Modbus Control Slave, Modbus Supervision Master e Modbus Supervision Slave.

Primeiramente, é necessário definir se o DFI será Mestre ou Escravo. O DFI pode ter até 16 tipos de blocos Modbus. Caso o DFI seja Mestre, pode-se ter até 16 blocos de cada Mestre, além de 16 *Modbus Control Master* e 16 *Modbus Supervision Master*. Cada bloco possui um número diferente de entradas/saídas. Levando isto em consideração, temos os seguintes números de entradas/saídas:

Modbus Control Master (MBCM)

- 16×4 entradas digitais = 64
- 16 x 4 saídas digitais = 64
- 16 x 4 entradas analógicas = 64
- 16 x 4 saídas analógicas = 64

Modbus Supervision Master (MBSM)

- 16×2 valor de float = 32
 - 16 x 2 valor de porcentagem = 32
 - 16×2 valor inteiro = 32
 - 16 x 8 valor booleano = 128

Os números acima, são para o caso de o DFI302 ser mestre. Portanto, o limite é o número de blocos Modbus e o número de entradas e saídas.

ADICIONANDO CONFIGURAÇÃO LÓGICA USANDO MÓDULOS CO-PROCESSADORES

Introdução

Como já foi visto em capítulos anteriores, o sistema DFI302 permite a instanciação de vários blocos de função, que podem acessar todos os módulos de entrada e saída. Porém, em algumas aplicações, a lógica através de blocos funcionais não é a mais adequada.

Através do uso do DF65 (módulo co-processador), é possível programar a lógica via linguagem ladder e também interagir com todos os outros módulos do sistema DFI302. Veja na figura a seguir a visão geral do sistema:

Sistema DFI302 incluindo o Co-processador

Configuração do DF65

O co-processador DF65 da SMAR utiliza o software Logic View para sua configuração. Lembre-se de que na comunicação Processador (DF51) e Co-Processador (DF65), o DF51 é configurado como Mestre e o DF65 como Escravo. A conexão física entre eles é feita via DF68, quando a porta RS-232 estiver sendo usada. Uma outra opção seria utilizar o módulo DF58 para uma conexão RS-485.

Para ajustar os parâmetros de configuração do DF65 é preciso localizar e colocar a chave de comunicação do coprocessador DF65 na posição *default*, caso o usuário tenha esquecido de como o DF65 foi configurado ou se for a primeira vez que esta comunicação é testada.

Configuração de Comunicação Serial

No DF65, entre as portas de comunicação, existe um grupo de 4 chaves. Usando uma chave de fenda deve ser assegurado que a chave mais inferior esteja deslizada apontando para a esquerda. Nesta posição o co-processador está com os parâmetros *default* de comunicação MODBUS, isto é, o *Device ID*, também chamado *Device Address*, é 1, *baud rate* igual a 9600 bps e a paridade é par. Posteriormente esses parâmetros podem ser mudados usando o Logic View mas eles só terão efeito se a chave de comunicação estiver na posição de Não-*Default* (chave à direita).

Camada Física e Timeout

Para fazer com que o Logic View enxergue o DF51 é preciso configurar os parâmetros de configuração do Logic View.

Através do FBTools, verifique o endereço de IP do DF51 para que ele possa ser configurado no Logic View, assim toda configuração feita será enviada para o DF65 via DF51, ou seja, o DF51 realizará um *bypass* Modbus.

Lembre-se que o baud rate do DF65 deverá ser o mesmo do DF51 (9600 bps default).

No menu **Tools** do Logic View selecione **Comm. Settings** e, em seguida, (Modbus/TCP). Digite o endereço IP do DF51 com o qual o Logic View comunicará. Veja figura a seguir.

📕 Communication Settings 🛛 🗙			
Interface Time out			
- Serial Communication			
Network Pavel Pater			
Communication Port: 2			
Parity: EVEN 🔽			
C RS-232			
RTS/CTS Time-Out: 0 ms (0=Disable RTS/CTS)			
C RS-485 (Half-Duplex)			
Echo will be received by the computer Automatic control of the RTS by the interface			
Ethernet (Modbus/TCP)			
IP Address: 192 168 161 119			
Desitnation port: 502			
OK Cancel			

Em seguida clique na etiqueta de *Time out*. São exibidos o *Time out* adicional e o número de vezes que o computador deve tentar no caso de falha na comunicação.

📕 Communication Settings 🛛 🛛 🛛
Interface Time out
- Additional time-out
200 ms
200
Number of orbits
Number or retries
Less More
3
OK Cancel

Agora o usuário está pronto para criar a configuração da rede ladder e enviá-la ao DF65. Veja o manual do **Logic View** para maiores detalhes.

Alterando as configurações de comunicação do DF65

Abrindo a caixa de diálogo DF65 **Online** através do menu: **Tools ->Online** ou clicando em ^{•••}, o Logic View tentará conectar-se com o DF65 tão logo o modo online for chamado. Se o Logic View não puder detectar a presença do DF65, ele entrará em estado de time out e esperará com a caixa de diálogo DF65 *Online* aberta. Isso possibilita que o usuário modifique alguns parâmetros para configurar corretamente a comunicação. No caso do Logic View encontrar uma CPU que se encaixe aos parâmetros já configurados, adicionará em *Device, Version, Release, Configuration Name* e *Status.*

É importante lembrar que o co-processador **DF65** possui uma chave de comunicação, indicando que os parâmetros default de comunicação estão ativos. Neste caso o endereço é 1, baud rate é 9600 bps e a paridade é par.

O modo mais fácil de atingir estas condições é selecionar a opção **Default** embaixo de **Communication Parameter.** Nesta condição não é possível fazer mudanças no frame da porta serial. Verifique o manual do Logic View para maiores detalhes.

Download da configuração Lógica

Certifique-se de que todos os passos anteriores foram realizados corretamente, isto é:

- Conexão Física (cabos).
- Localização do DF51 na su rede via Fbtools.
- Correta configuração da comunicação serial entre DF65 e DF51 (dip switches do DF65, baudrate, paridade, canal de comunicação serial, etc).
- Correta configuração da comunicação entre Logic View/DF65, isto é, através da Ethernet utilizando o DF51 como uma bridge realizando bypass dos dados Modbus.

No Logic View crie uma nova configuração de Lógica Ladder ou carregue uma estratégia de controle já estabelecida e salva. Envie a configuração para o DF65.

Configurando os blocos Modbus no DF51

Para que ocorra a comunicação entre co-processador e o DF51 é preciso adicionar blocos Modbus que controle a comunicação, monitoração e troca de dados entre o DF65 e o DF51. Para tal utilizam-se os blocos Modbus disponíveis no sistema DFI302.

Para adicionar estes blocos Modbus no SYSCON, o usuário deverá trabalhar com duas versões de DD. Para adicionar blocos Modbus, o usuário deve escolher Dev Rev = 02 e DD Rev= 01. O usuário deverá anexar os blocos inseridos dentro da **Process Cell**. Para isso basta clicar com o botão direito do mouse sobre FB VFB do DFI adicionado a **Fieldbus Networks** e selecionar "**Attach Block**", ou o usuário pode optar pela opção "drag and drop" (arrastar os blocos).

No SYSCON, na planta lógica Area 1, clique em Area1 → New Process Cell e escolha os blocos Modbus necessários para sua configuração.

Para maiores informações de como inserir os blocos Modbus, o usuário deverá consultar o capítulo **Adicionando Modbus** do manual do DFI302. O usuário deve incluir um bloco *Resource* e um bloco MBCF (Bloco de Configuração Modbus) antes de iniciar a configuração dos blocos de supervisão (MBSM) e controle (MBCM).

Supervisionando dados do Co-processador DF65 através do bloco MBSM

Uma vez instanciado o bloco MBSM é necessário obter os endereços Modbus das variáveis de entrada e saída a serem monitoradas.

No Logic View clique em Modbus Address, leia e anote o(s) endereço(s) Modbus desejado(s).

Na planta lógica do Syscon, crie um bloco MBSM e configure os parâmetros necessários atribuindo os endereços Modbus das variáveis.

O usuário poderá então monitorar variáveis Modbus no SYSCON.

Troca de dados entre Co-processador DF65 e o DF51 através do bloco MBCM

Adicione a planta lógica um bloco MBCM. Obtenha os endereços Modbus das variáveis a serem controladas e monitoradas.

O bloco MBCM pode ser configurado para ler variáveis Modbus e escrevê-las no DF51, pode também ler variáveis Fieldbus e escrevê-las no DF65. Este bloco permite que se estabeleça comunicação peer-to-peer entre dois escravos Modbus. Considere a figura abaixo:

A figura acima mostra como devem ser configurados os parâmetros do bloco MBCM.

Variáveis de entrada Modbus, isto é, dados lidos de transmissores, sensores discretos, etc., são mapeados para o mundo Fieldbus através do bloco MBCM. O usuário insere o endereço Modbus da variável nos parâmetros de configuração do bloco MBCM, certificando-se de que o endereço seja inserido em um parâmetro de saída do bloco.

Variáveis de saída Modbus, isto é, dados a serem mapeados para o mundo Modbus como por exemplo um sinal de alarme, uma temperatura lida em um instrumento Fieldbus, etc., podem ser enviados para o sistema do Co-processador Lógico através do bloco MBCM. O usuário deverá inserir o endereço Modbus onde deseja escrever o valor da variável em um parâmetro de entrada do bloco MBCM.

Peer-to-Peer, isto é, pode-se ler uma variável de um módulo conectado ao DF65 e escrever seu valor em outro módulo através do bloco MBCM. No exemplo a seguir, descrevemos uma aplicação simples destas funcionalidades. Para facilitar a explicação utilizamos módulos de entrada e saída discretos, porém é possível fazer o mesmo para variáveis analógicas.

Exemplo de Comunicação entre DF51 e DF65 com lógica ladder envolvida

No exemplo acima temos dois módulos. Um DF20, módulo de entrada digital com botoeira, e um módulo de saída digital a relé. Duas configurações serão feitas para implementar a comunicação, supervisão e troca de dados entre DF65 e DF51.

No Logic View, inicie uma nova configuração. Adicione os módulos DF20, DF27 e um módulo virtual. Em seguida, insira esta lógica ladder simples.

Os botões 1 e 2 do módulo DF20 estão conectados aos contatos e as saídas destes contatos estão ligadas a duas bobinas, conectadas às saídas do módulo DF27. Similarmente, uma variável virtual foi associada a um terceiro contato. Os endereços Modbus destas variáveis são então:

- DF20_1 → 10001
- DF20_2 → 10002
- DF27_1 → 1
- DF27_2 → 2
- DF27_2 → 3
- VM1 → 02001

No SYSCON crie uma nova configuração. Insira blocos *Resource*, MBCF, MBSM e MBCM. Lembre-se de que uma variável de entrada Modbus é sempre inserida em um parâmetro de saída do bloco MBCM. Assim inserimos o endereço Modbus 10001 em LOCATOR_OUT_D1.MODBUS_ADRESS_OF_VALUE. Assim fazemos uma cópia da variável Modbus da entrada DF20_1. Em seguida, LOCATOR_OUT_D1.MODBUS_ ADRESS_OF_ VALUE deve ser igual a 02001. Isto fará com que o valor na entrada do bloco MBCM seja escrito no endereço 02001 que, no caso presente, é uma variável virtual associada a um contato.

Para finalizar, no SYSCON abra a estratégia (parte lógica) da configuração estabelecida e conecte a entrada IN_D1 com a saída OUT_D1.

No exemplo presente foram utilizados módulos e variáveis discretas, mas podem ser utilizadas variáveis e módulos de entrada e saída analógicas, bem como conectar outros módulos Fieldbus com módulos e variáveis Modbus. Por exemplo, a saída de um bloco de alarme pode ser associado

à saída de um módulo conectado ao DF65. A saída de bloco de PID pode ser associada à saída de um módulo de saída analógica conectado ao DF65. Assim é possível dividir o controle da planta: o DF65 realiza o controle discreto enquanto que o DF51 faz o controle dos processos.

Resumo de como configurar a comunicação e troca de dados entre DF65 e DF51

No Logic View

- ✓ No Logic View, no menu Tools → Comm Settings selectione Ethernet Modbus e insira o IP do DF51 com qual o DF65 se comunicará.
- ✓ Teste a comunicação entre Logic View e DF65, que é feita via Ethernet e conexão serial entre DF65 e DF51. Este último faz bypass da informação Modbus. Em caso de falha, verificar através do Fbtools se o IP do DFI está correto. Verificar se as chaves de comunicação do DF65 estão corretas. A quarta chave de cima para baixo (olhando de frente para o módulo) deve estar posicionada à esquerda. Verificar se os cabos estão conectados corretamente.
- No Logic View, crie uma nova configuração ou abra uma já existente. Faça o download da configuração para o DF65.

No SYSCON

- ✓ Abra o SYSCON. No menu Project File → New, selecione Project. O SYSCON abrirá uma janela para que você salve a configuração. Salve-a.
- ✓ Com o botão direito do mouse clique sobre Area1 e selecione New Process Cell. Atribua um tag para esta célula. Com o botão direito do mouse clique sobre Process Cell e selecione Expand. Na nova janela aberta clique com o botão direito do mouse e selecione New Control Module atribuindo ao mesmo um tag.
- Com o botão direito do mouse clique sobre Control Module e através da opção New Block selecione os blocos Resource e MBCF configurando-os conforme mostrado neste manual. Adicione em seguida os blocos MBSM e MBCM conforme a necessidade do seu projeto. Com o botão direito do mouse clique em Fieldbus Networks e selecione New Fieldbus.
- Com o botão direito do mouse clique sobre New Fielbus e selecione Expand. Clicando em "Fieldbus" com o botão direito do mouse selecione, New Bridge. Selecione Smar, DFI302 certificando-se de que a DD suporta os blocos Modbus. Com o botão direito do mouse clique em FB VD e selecione Attach Block. Anexe todos os blocos criados anteriormente e caso seu projeto necessite, insira outros blocos funcionais Modbus.
- Com o botão direito do mouse selecione *Strategy* clicando sobre *Control Module*. Arraste os blocos que precisam ter duas entradas configuradas na estratégia para esta janela recém criada. Lembre-se de que os blocos *Resource*, MBCF e MBSM não precisam ser incluídos na estratégia.
- ✓ Na janela onde se lê o nome do arquivo salvo, clique com o botão da direita sobre o nome do arquivo e selecione *Export Tags*. Aceite a pergunta de salvar ou não o arquivo "TagInfo. Ini".
- ✓ Com o botão direito do mouse clique sobre *Fieldbus Networks* e selecione *Comm. Settings*. Certifique-se de que a Server ID seja Smar.DFIOLEServer.0.
- ✓ Com o botão direito do mouse clique no DFI na janela onde se lê o nome do arquivo. Certifiquese de que o Device ID esteja correto.
- ✓ Faça o Download da configuração.
- No bloco MBCF, selecione On Line Characterization e altere o parâmetro ON_APPLY para Apply.
- O usuário poderá monitorar simultaneamente via Logic View e SYSCON. Maiores detalhes sobre as configurações são fornecidos neste manual.

DF65 - Módulo Co-processador

DF65 - 28 kbytes de memória não volátil para configuração de usuário, relógio de tempo real, 15 MHz e Mestre de E/S Remota.

DF65R - 23 kbytes de memória não volátil para configuração de usuário, relógio de tempo real, 15 MHz e Mestre Redundante de E/S Remota.

DF65E - 52 kbytes de memória não volátil para configuração de usuário, relógio de tempo real, 15 MHz e Mestre de E/S Remota.

DF65ER - 44 kbytes de memória não volátil para configuração de usuário, relógio de tempo real, 15 MHz e Mestre Redundante de E/S Remota.

	DF65	DF65R	DF65E	DF65ER
Tamanho da memória para	28K	23K	52K	44K
configuração				
Pontos discretos (físico + virtual)	1024	1024	2000	2000
Pontos Analógicos	1024	1024	1024	1024

Descrição

O DF65 é o co-processador lógico do sistema DFI302. É o módulo que executa a configuração programada e interage com todos os outros módulos do sistema DF65.

Módulo do Co-Processador

Ele deve sempre ser plugado no segundo slot do rack endereçado como 0 (zero). O número do rack é ajustado por uma chave rotativa no circuito eletrônico do rack. O primeiro slot no rack 0 é sempre reservado para o módulo da fonte de alimentação.

Nota: A atualização do firmware da DF65 é feita pelo software DF65Tools da Smar.

NOTAS

 O DF65 pode ler todos os Módulos de E/S que possuem o circuito de ID desde que a opção "Use Módulo com ID" no LogicView esteja habilitado. É necessário desabilitar a opção no LogicView se o sistema possuir módulos que não suportem esta característica.

- Caso a conexão com a porta DB9 seja permanente, deverá ser utilizado o cabo DB9-EXT que possibilita o fechamento da tampa do painel frontal do módulo.

Especificações Técnicas

		MEMÓRIA		
Tipo	Mem	ória não volátil		
Tamanha Diananíval	DF6	65 - 28 kbytes, DF65R – 23 kbytes		
		5E - 52 kbytes, DF65ER – 44 kbytes		
	00			
Pacote de Software	LOG	ICVIEW Verao 6.50 ou superior.		
Sistema de operação	VVind	lows N1, Windows 2000, Windows XP		
	F	PORTA DE COMUNICAÇÃO		
Quantidade	3			
	1-El/	A-232-C (P1)		
Tipos	2-EI/	A-485 (multidrop, P2 e P3)		
Capactorea	Fêm	ea DB9 para EIA-232-C (P1)		
Conectores	Bloce	o de terminais para EIA-485, E/S remota		
Etiqueta	Veja	módulos e acessórios		
Baud Rate/Endereco	P1: 9	9600-57600 bps (até 9600 bps para DF65-R)		
	P2/P	3: 9600-115200 bps		
Protocolo	Mode	bus RTU (Escravo)		
Endereço do Escravo	2 a 1	27, designado pelo usuário (1 é o endereço <i>default</i>)		
Número Máximo de Sistem	ias 31			
DF65 por Rede				
		FONTE INTERNA		
Fornecida pelo barramento	IMB 5 Vd	c, @ 320 mA		
Dissipação total máxima	1,6 V	V		
Indicador de Fonte	LED	verde, +5Vdc		
	· · · ·			
Tiss de Osíde		CIRCUITO DE FALHA		
lipo de Salda	Rele	de Estado Sólido, Normalmente Fechado (NF)		
Limites de Tensão de Con	ato 20-1	15 Vac/Vdc		
Corrente de Contato Maxin	na 200 r	۱A		
Resistência de Contato Ini	rial			
Máxima	<130	3Ω		
Indicação do Status		d Vermelho - Fail		
Lógica da Indicação		aceso (contato fechado)		
Proteção a Sobrecarga Dev		e ser prevista externamente		
Tempo de Operação	5 ms	s máximo		
Tempo de descarga	5 ms	máximo		
Isolação Óptica 3750		Vrms 60 segundos		
DUN		OUTROS LEDS		
RUN		Lea verae - Indica que o programa esta sendo executado		
HOLD		Led amarelo - indica que o programa está em hold		
FORCE		Led vermeino - indica que estas entradas e/ou saídas estão forçadas		
Rx (Led amarelo)	P 1	RX- mostra a recepção da comunicação Modbus (EIA-232)		
Tx (Led Verde)	ļ	TX- mostra a transmissão da comunicação Modbus (EIA-232)		
Rx (Led amarelo)	P 2	RX- mostra a recepção da comunicação Modbus (EIA-485)		
Ix (Led Verde)		IX- mostra a transmissão da comunicação Modbus (EIA-485)		
Rx (Led amarelo)	P 3	KX- mostra a recepção da comunicação Modbus (EIA-485)		
IX (Leu Verde)	L	IX- mostra a transmissao da comunicação Modbus (EIA-485)		
FAIL		Leu vermeino - indicação de laina		

DIMENSÕES E PESO		
Dimensões (L x A x P)	39,9 x 137,0 x 141,5 mm (1,57 x 5,39 x 5,57 pol.)	
Peso	0,286 kg	
CABO		
Um Cabo	14 AWG (2 mm ²)	
Dois Cabos	20 AWG (0,5 mm ²)	
NOTAS		

Para aumentar a durabilidade do contato da saída de falha e para proteger o módulo de danos da tensão reversa, externamente conecte um diodo *clamping* em paralelo com cada carga indutiva DC ou externamente conecte um circuito RC *snubber* em paralelo com cada carga indutiva AC.

Canais de Comunicação

O DF65 possui três canais de comunicação que proporcionam ao usuário 3 canais independentes (portas) identificadas por P1 (EIA-232), P2 (EIA-485) e P3 (EIA-485).

Os três canais do co-processador podem ser utilizados ao mesmo tempo com as seguintes características:

- P1 (EIA-232c) é usada para programação e monitoração, conexões de curta distância ponto a ponto.
- P2 (EIA-485) é usada para programação e monitoração, conexões ponto a ponto ou multidrop em longas distâncias em ambientes industriais.
- P3 pode funcionar como P2 ou atuar como canal mestre para módulos de E/S remotos (DF66). Uma chave rotativa no módulo do co-processador seleciona o comportamento da porta P3.
- o Qualquer uma das portas pode ser conectada ao gateway ENET-700 (Ethernet/Serial).

Por razões de comunicação o DF65 possui um ID Modbus que é único e um baud rate para P1 e outro para P2 e P3. Os baudrates MODBUS são configuráveis através do software LogicView.

Restrições:

- Apenas um canal pode ser usado para monitorar a rede através do LOGICVIEW. Os outros canais serão bloqueados após a monitoração começar no primeiro canal.
- Todos os canais são referidos pelo mesmo endereço.
- O canal P2 e o canal P3 compartilham o mesmo baud rate. O canal P1 possui um baud rate dedicado.

Canais de Comunicação da DF65

Na figura anterior:

- 1- É a porta P1 da DF65. Trata-se de uma porta serial EIA-232-C.
- 2- É a porta SSIO utilizada apenas pela DF65R redundante. (Veja o item Módulo Co-processador redundante para maiores detalhes). Na DF65 esta porta não é utilizada.
- 3- São as *Dip-Switches* utilizadas para alterar os parâmetros de comunicação da Coprocessador.
- 4- Portas P2 e P3 da DF65. São canais seriais EIA-485.

Existem 3 portas de comunicação serial na DF65. Uma porta P1 (EIA-232) e duas portas EIA-485 (P2 e P3). O usuário poderá configurar para cada uma dessas portas o baud rate, paridade e outros parâmetros específicos.

Porta P1

Baud rate (9600 a 57600 bps) para DF65. Baud rate (9600 bps) para DF65R. Paridade (Par ou ímpar).

RTS/CTS Timeout

CTS: É um sinal discreto que indica dispositivo pronto para transmissão. RTS: Sinal de solicitação para transmitir os dados.

O PC faz uma pergunta ao Coprocessador que trata esta requisição. Daí, o Co-processador envia o sinal de RTS ficando na espera pelo sinal de CTS durante o período de tempo configurado no parâmetro RTS/CTS Timeout.

Off Duty

É o tempo disponível para comunicação quando o Co-processador não estiver executando um diagrama Ladder. Quanto maior for o valor de Offduty maior o tempo disponível para comunicação.

Time Delay

O PC envia um frame para a DF65, diz-se que ele está enviando uma "pergunta". O DF65 espera o valor configurado em Time Delay para processar o "frame-pergunta" e enviar uma resposta ao PC.

NOTAS

Para que seu sistema possua melhor performance recomenda-se que:

- O valor de Time Delay depende do processador da estação de trabalho do usuário. Se o
 processador for superior a um Pentium MMX 233 MHz recomenda-se que Time delay seja
 configurado como 5 ms. Caso contrário, recomenda-se deixar Time Delay ajustado com um
 valor mais alto.
- Quando a chave 4 das DIP-Switches estiver na posição default ou se o valor de OffDuty for configurado para 0 (zero), o valor real do OFFDUTY será de 20% do ciclo (varredura dos módulos de E/S e execução da rede Ladder).
- OFFDUTY e Time Delay tem seus valores setados para zero. Esta configuração ajustará os valores para default (20% para OffDuty e 7ms para Time Delay).

Baud rate da Comunicação e Endereço do Device

O módulo da DF65 tem uma chave onde o usuário pode selecionar os parâmetros de comunicação default (DCP, *Switch* 4 ON) ou os parâmetros de comunicação programados (PCP, *Switch* 4 OFF). Os parâmetros *default* são endereço 1 e baud rate de 9600 bits/s.

Na posição PCP o usuário pode selecionar novos endereços e/ou baud rate, usando o software LogicView. O novo ajuste dos parâmetros será aceito somente após a chave ser movida para a posição PCP. Na posição PCP, o usuário também está apto a alterar os parâmetros de comunicação. Neste caso, eles serão aceitos imediatamente após terem sido enviados através do LogicView.

Os valores default se aplicam a todos os três canais: P1, P2 e P3. O usuário pode ajustar as *Dip-Switches* utilizando uma chave como mostra a figura abaixo:

Ajustando os Parâmetros de Comunicação da DF65

Modos De Operação

O DF65 pode atuar como:

- Co-processador comum com três canais MODBUS/RTU.
- Co-processador mestre em um sistema com E/S Remoto, onde 2 canais (P1 e P2) funcionam como Modbus/RTU e P3 como canal remoto mestre.

Para alterar o modo de operação do DF65, o usuário deve mudar a posição da *Rotary Switch* localizada na parte inferior do módulo Co-processador. Veja a figura abaixo para localizá-la (vista inferior da DF65).

Para ajustar a *Rotary Switch* do DF65, o usuário precisa de uma chave e deve utilizá-la como mostra a figura abaixo:

Localizando a Rotary Switch da DF65. No detalhe: A Rotary Switch.

DF65 com Três Canais Modbus RTU

Quando a DF65 é usada como um Co-processador comum isto implica que nenhum módulo de E/S remoto está sendo usado. Isto também implica que P3 juntamente com P1 e P2 estão disponíveis como canais escravos Modbus/RTU. Note que nenhum deles pode atuar como mestre MODBUS.

P1, P2 e P3 são canais escravos Modbus/RTU independentes. Eles podem ser usados ao mesmo tempo. P1 é recomendado para conexões ponto a ponto enquanto que P2 e P3 podem ser utilizados em duas redes diferentes (mestre-escravo) para aumentar a acessibilidade do Coprocessador através de dois computadores (mestres) ou em uma arquitetura redundante onde o usuário pode alternar entre os canais em uma situação de falha.

Configuração:

- A rotary switch deve estar na posição 8;
- Um MODBUS ID para P1, P2 e P3 configuradas através do LogicView;
- O baud rate de P1, P2 e P3 são configurados através do LogicView.

DF65 Mestre em um Sistema com E/S Remota

O DF65 é mestre em um sistema de E/S remoto. Isto significa que o DF65 atua como a unidade principal de processamento reunindo os dados dos módulos de E/S em seu próprio IMB e também de qualquer módulo de E/S remoto conectado a ele.

Neste caso, a porta P3 é completamente dedicada para comunicação de dados de entrada e saída (E/S) remotos. P1 e P2 são canais escravos MODBUS/RTU independentes. P1 é usado em uma aplicação ponto a ponto enquanto que P2 pode ser usado em uma rede multidrop.

Configuração:

- A rotary switch deve estar na posição zero;
- Um ID Modbus para P1 e P2 configuráveis através de software;
- O baud rate de P1 e P2 são configurados através de software;
- P3, o canal de entrada e saída remoto dedicado, possui baud rate próprio, ajustado pela DIP-Switch frontal.

Factory Init

O usuário pode realizar um procedimento para que o DF65 assuma a configuração de fábrica. Este procedimento é chamado de *factory-init*.

Para realizar o Factory Init:

- 1. Retirar a alimentação do DF65;
- 2. Colocar a Rotary Switch na posição 7;
- 3. Colocar a Dip Switch 4 na posição Default;
- 4. Alimentar o DF65 e esperar o LED HOLD começar a piscar;
- 5. Retirar a alimentação do DF65;
- 6. Configurar a Rotary Switch.

NOTA

Após o Factory Init, para um novo download, a rotary switch deve ser configurada.

DF66 - Interface De Comunicação De E/S Remota

DF66 - 28 kbytes de memória não volátil e 15 MHz. E/S remota (Escravo). DF66E - 52 kbytes de memória não volátil e 15 MHz. E/S remota (Escravo).

Descrição

Os módulos de E/S Remota estão localizados perto dos devices de campo e proporcionam uma arquitetura flexível do sistema. As unidades de E/S remota usam os mesmos módulos de E/S designados p/ o sistema DF65 regular em combinação com o módulo DF66.

O módulo DF66 deve ser utilizado em conjunto com os módulos DF65 e DF65R. O módulo DF66E deve ser utilizado em conjunto com os módulos DF65E e DF65ER.

ΝΟΤΑ	
A atualização do firmware da DF65 é feita pelo software DF65Tools da SMAR.	

Adicionando unidade de E/S Remota

Para adicionar sistema de E/S remota, primeiramente clique no botão Ir para Página de Módulos e, em seguida, clique no botão Add/Delete Remote E/S System. Será mostrada a seguinte página:

Escolha um sistema de E/S Remota e clique no botão correspondente.

Arquitetura de E/S Remota

O sistema de E/S Remota é basicamente composto de uma unidade Mestre e até 6 unidades escravas, que são conectadas por um cabo *multidrop* que pode alcançar um comprimento de 1200m. O comprimento do cabo e o *baud rate* dependem do nível de ruído no meio ambiente da aplicação.

O número total de módulos por sistema será limitado pelo rack/slot disponível e pelo número de pontos analógicos e discretos tratados pelo DF65. Cada E/S Remota necessita de pelo menos uma fonte de alimentação. A estrutura do sistema de E/S Remota do DF65 é mostrada a seguir:

Arquitetura de um sistema de E/S Remota

Ajuste do Baud rate e dos Endereços

Configuração do Baud Rate

Cada E/S Remota (Mestre ou Escravo) tem uma chave dip switch para ajustar o baud rate (taxa de comunicação). A chave dip switch está localizada no painel frontal do módulo e pode ser acessada com uma pequena chave de fenda.

Certifique-se de ter desligado o módulo enquanto ajusta a chave. Também observe que tanto o Módulo Interface Mestre quanto o Escravo devem estar configurados com o mesmo baud rate.

Configuração do Endereço da Interface E/S Remota

Também tem uma chave rotativa dedicada embaixo do módulo Escravo para ajustar o endereço do device escravo. Cada unidade Remota conectada à unidade Mestre tem que ter um único endereço. Endereços disponíveis: 1, 2, 3, 4, 5 ou 6.

14.14

DF65R/DF65ER – Módulo Co-processador Redundante

Introdução

A redundância da DF65 é baseada em um mecanismo *hot-standby.* Assim, apenas um Coprocessador executa a lógica ladder e também a comunicação com a interface HMI em um momento específico. O Co-processador ativo monitora as E/S remotas enquanto que o Coprocessador passivo monitora o status da Coprocessador ativa através de uma outra porta (SSIO).

Entretanto, existe comunicação entre os Co-processadores de modo a manter a sincronização da configuração e também fornecer dados dinâmicos atualizados ao Co-processador passivo. Por exemplo: As variáveis Modbus.

O algoritmo responsável pela escolha do Co-processador ativo tenta minimizar o número de chaveamentos de controle. Assim, se o Co-processador está executando o papel de ativo, ele permanece neste estado a menos que algo aconteça colocando este Co-processador em "piores condições".

Terminologia e Descrições Iniciais

Co-processadores Principal e Backup

O status da redundância depende de vários fatores como: configuração do Co-processador, status da comunicação através do canal SSIO, comunicações com os módulos de entrada e saída remotos DF66. Este status define se o Co-processador executará a lógica ladder, bem como a varredura de todos os módulos DF66.

O Coprocessador pode assumir dois estados: (ativo) e (passivo). O Coprocessador ativo executa a lógica ladder e faz a varredura das variáveis Modbus. O Co-processador passivo verifica periodicamente o Co-processador ativo para verificar se é necessário assumir o controle.

A configuração do papel de cada Co-processador é configurado através da *rotary switch* localizada no módulo Co-processador:

- Rotary Switch na posição 0 (Principal): Quando ambos os Co-processadores estão ligados simultaneamente e o estado de ambos é ou "ambos ativos" ou "ambos passivos" ao mesmo tempo antes do último desligamento, o algoritmo verifica a posição da rotary switch (de ambos os Coprocessadores) para escolher qual Co-processador será ativo e qual será o passivo.
- Rotary Switch na posição 9 (Backup): O Co-processador, quando configurado como backup, garante o controle a outro Co-processador quando ambos são simultaneamente ligados e o estado de ambos é ou "ambos ativos" ou "ambos passivos" ao mesmo tempo antes do último desligamento. Esta configuração é utilizada somente quando os Co-processadores são ligados ao mesmo tempo e quando ambos são passivos ou ativas antes do último desligamento.

Transferência de Configuração

Quando energizamos o sistema, a configuração do Co-processador ativo é passado para Coprocessador passivo.

Esta transferência é sempre feita da ativa para passiva, nunca na direção contrária, e utiliza a porta de entrada e saída síncrona (SSIO) do Co-processador. Este canal serial de comunicação síncrono é usado exclusivamente para transferir a configuração.

Durante este processo dois novos termos precisam ser definidos:

- **Sender**: Este é o Co-processador responsável pela comunicação. O Co-processador Sender gerencia a transferência entre os Co-processadores.

- Addresser: Este é o Co-processador que recebe a configuração.

Sincronismo de Configuração entre Co-processadores

Isto é feito em duas fases principais:

Fase 1- Transferência de Configuração

Quando um power-up sequencial acontecer, o primeiro Co-processador a ser ligado se torna ativo e ele transferirá a configuração para outro Co-processador.

Fase 2- Atualizando a transferência

Após a fase de transferência de configuração é necessário transferir apenas as variáveis dinâmicas e as configurações que podem ser feitas sem o *download* da configuração.

ATENÇÃO

Isto se refere à variáveis Modbus, configuração das chaves no módulo do Co-processador e configurações de comunicação.

Regras para selecionar Sender e Addresser

Quando o Co-processador detecta a presença de outro Coprocessador através do canal SSIO, eless trocam informações de *status* para decidir qual Co-processador enviará (Sender) a configuração:

Três casos principais podem ocorrer:

#	REGRA	CENÁRIO
0	Se o nome da configuração, data e hora de ambos os Coprocessadore são iguais e os status é Good-Config, as regras para selecionar o Co-processador ativo serão aplicadas e o Coprocessador ativo também se torna o Co-processador Sender.	Power up do sistema configurado
1	Se as configurações forem diferentes e um procedimento de ligar sequencial aconteceu e o Co-processador possui <i>status Good-</i> <i>Config</i> , então o primeiro Co-processador R a ser ligado será o Coprocessador sender.	Troca do módulo Co-processador
2	Todos os outros casos (configurações diferentes e ligação simultânea ou um ou ambos com <i>status Bad-Config</i>) implicarão em: Os Coprocessadores não transferirão a configuração.	Primeiro power up do sistema após um download do firmware ou casos anormais.

Diagrama da Porta SSIO

O canal SSIO da DF65R

Para transferir a configuração do Co-processador ativo para o passivo, é preciso usar um cabo especial entre os dois Co-processadores. O código de pedido deste cabo é DF76.

Este cabo é um cabo de 4 fios que implementa um canal *full-duplex* cujo baudrate é 1.875 Mbits/segundo.

Arquitetura

Considere a figura abaixo:

A arquitetura acima mostra um exemplo do hardware usado na redundância da DF65R

- Dois caminhos Ethernet
- Dois módulos DF51 permitem redundância completa
- Dois Co-processadores: main e backup
- Um módulo DF66 lê as variáveis MODBUS

NOTA

Os módulos de entrada e saída são somente conectados nos racks onde estão presentes os módulos DF66.

Seqüência de Power-Up

Disjuntores

- Um disjuntor para o Co-processador principal
- Um disjuntor para Co-processador backup
- Um disjuntor para os módulos DF66

Seqüência de Ligação

A seqüência de ligação (power-up) se refere à ordem pela qual cada Co-processador é ligado. Existe uma configuração específica para os disjuntores:

- 1. Primeiro o disjuntor das fontes de alimentação dos módulos DF66 são ligados.
- 2. Em seguida os dois disjuntores de cada Co-processador são ligados.
- 3. Antes dos Co-processadores começarem a procurar outro Co-processador, o estado de ambos se torna passivo.
- Após um Co-processador ser ligado e se ele não encontrar outro Co-processador ativo então, durante ∆t = 2s o Co-processador vai procurar por outro Co-processador.
- 5. Se o Co-processador não encontrar outro Co-processador ativo, ele se torna o Coprocessador ativo.
- I O algoritmo verifica qual Co-processador estava ativo no último procedimento de powerdown. O Co-processador ativo no último power-down se torna o Co-processador ativo. O Co-processador passivo no último power-down se torna o passivo atual.
- II Se ambos os Co-processadores estavam ativos ou passivos ao mesmo tempo no último procedimento de power-down, o algoritmo verifica as *rotary-keys* para definir qual Co-processador será o Co-processador ativo. Se a *rotary key* estiver na posição Main (0), então o Co-processador é considerada ativo. Se a *rotary key* estiver na posição Backup (9) então o algoritmo considera este Co-processador como passivo.

Para maiores detalhes veja o diagrama em blocos na próxima página.

Diagrama de blocos representando o algoritmo que decide qual Co-processador ficará ativo

Diagrama de blocos representando o procedimento de verificar condições

Comunicação com os Módulos de Entrada e Saída Remota (RIO)

Os módulos de E/S Remota, DF66, são lidos somente se o nome da configuração e data são as mesmas no Co-processador Main (principal) e Co-processador backup. O Co-processador passivo envia comandos cíclicamente para verificar se é necessário assumir o controle.

Os módulos DF66 são conectados ao sistema através de dois canais diferentes redundantes.

Existem duas portas a serem consideradas:

Porta ativa do DF66: É a porta sendo lida pelo Co-processador ativo, i.e., através desta porta as variáveis MODBUS são lidas e escritas.

Porta passiva do DF66: Nesta porta o Co-processador passivo verifica as condições das portas ativa e passiva.

Procedimento de Switch

Durante o funcionamento normal do sistema, existe um procedimento de chaveamento. Ele é baseado no número de DF66s com as quais o Co-processador ativo pode se comunicar (NRIO active) e o número de DF66 com as quais o Co-processador passivo pode se comunicar (NRIO passive).

Se NRIO active for menor que NRIO passive, então haverá um procedimento de *switching over* que faz o Co-processador ativo atual se tornar o Co-processador passivo e o antigo Co-processador passivo, o Co-processador ativo atual. Este procedimento garante que o sistema leia sempre o maior número de variáveis de entrada e saída Modbus.

LEDs para Indicação de Status

- Um LED RUN (verde, ON ou OFF) indica se o Co-processador está no estado ativo enquanto o LED RUN piscando indica que o Coprocessador está no estado passivo.
- Um LED HOLD (amarelo, ON ou OFF) indica se o Co-processador foi configurado corretamente enquanto que um LED HOLD piscando indica que não foi.
- Um LED FORCE (vermelho, ON ou OFF) indica se o Co-processador está no modo Force-IN, Force-Out ou Safe-Out, ou não.
- O LED FORCE está piscando. Isto significa que as configurações de hardware não estão corretas (rotary switch, BR para RIO ou versão de firmware).

ADICIONANDO REDUNDÂNCIA

Introdução

A melhor solução para tolerância a falhas é ter equipamentos em redundância. Com o DFI302 é possível trabalhar em modo de redundância *Hot Standby**, o qual oferece redundância para todas as funcionalidades e bases de dados. Também existe a opção de se trabalhar com o modo legado de redundância *LAS (Link Active Scheduler)*. Este capítulo apresenta as características de cada modo e os procedimentos para a configuração do sistema com redundância.

A seguir, uma breve descrição de ambos modos.

Redundância Hot Standby

No modo Hot Standby, redundância completa é alcançada, aumentando consideravelmente a segurança e disponibilidade da planta. Este modo oferece redundância para todas as funcionalidades e bases de dados do DFI302:

- Gateway: 1 porta Ethernet ↔ 4 portas H1;
- Link Active Scheduler (LAS);
- Controlador (executando blocos funcionais);
- Modbus Gateway.

ΝΟΤΑ

Um equipamento *Link Active Scheduler* (LAS) é o responsável na rede FF H1 por coordenar a comunicação, ou seja, coordena o instante em que cada equipamento de campo a ele conectado deve publicar ou receber o dado na rede FF H1.

Assim, a mesma capacidade de redundância obtida com o modo legado "LAS" também é alcançada com o modo Hot Standby.

Este modo atende melhor nos casos em que o DFI302 possui blocos funcionais em sua configuração. Blocos funcionais no DFI302 podem ser interessantes em dois casos:

- Integração com sistemas legados através do protocolo Modbus (usando blocos Modbus);
- Blocos funcionais (ou estratégias) avançados (DFI302 executa blocos funcionais com desempenho superior ao de equipamentos de campo).

Os procedimentos para configuração e manutenção são tão simples quanto para sistemas não redundantes, economizando tempo na hora de colocar o sistema em funcionamento. Apenas um download de configuração é necessário para configurar o par redundante. Em caso de substituição de um módulo danificado, não é necessário download de configuração ou intervenção do usuário. O novo módulo inserido é automaticamente reconhecido, recebendo toda a configuração do módulo em operação.

O sistema suporta módulos dispostos separadamente (mesmo distantes um do outro). Com isso, fontes comuns de falha são evitadas. Ou seja, com os módulos processadores em *backplanes* diferentes (ou até mesmo em salas diferentes) uma falha em um dos *backplanes* (ou em uma das salas) não afetará ambos os módulos.

Hot Standby: "Estratégia de redundância onde o módulo Standby trabalha sincronizado com o módulo Active, permanecendo pronto para assumir o sistema caso necessário".

OBSERVAÇÕES

- O 4º. Canal FF H1 é usado como canal de sincronismo entre os módulos. Portanto, este canal não será usado normalmente como um canal FF H1 e não deverá ter equipamentos a ele conectado.

- O DFI302 no modo Hot Standby usa o *flat address* **0x05** no instante da publicação. Como equipamentos de terceiros não suportam o *flat address*, os mesmos não suportam *links* com blocos que estejam no DFI302 em modo Hot Standby.

- A Redundância Hot Standby só está disponível a partir da versão 6.1.7 do System302.

Redundância Link Active Scheduler (LAS)

Este é um modo legado de redundância recomendado apenas para o caso em que o DFI302 não possui blocos funcionais. Ou seja, trata-se da estratégia onde os blocos funcionais estão nos equipamentos de campo. Esta é uma filosofia de controle completamente distribuída, na qual o DFI302 tem duas funções principais:

- Gateway: 1 porta Ethernet \leftrightarrow 4 portas H1;
- Link Active Scheduler (LAS).

Para este cenário, com o modo LAS, a redundância de controle, operação e supervisão são também garantidas.

Arquitetura de um sistema redundante

Para que se tenha um sistema realmente redundante, não apenas todos os equipamentos devem ser redundantes, mas a topologia do sistema como um todo deve ser projetada como redundante. Quanto mais elementos com capacidade de redundância o sistema tiver, maior a confiabilidade e disponibilidade do sistema. Um exemplo típico de topologia redundante baseada no DFI302 pode ser visto na figura 15.1.

Figura 15.1

Pré-requisitos do sistema

Os requisitos aqui listados aplicam-se a ambos os modos de redundância.

A versão de firmware para sistemas redundantes possui a terminação "R". Isto designa um firmware próprio para aplicações em redundância. Com o firmware redundante, o módulo inicializa em modo Hot Standby por default, em um estado de segurança chamado "Sync_Idle". O usuário poderá mudar o modo de redundância, conforme será visto posteriormente.

A configuração no SYSCON deverá ser criada do mesmo modo que para um sistema nãoredundante (em caso de dúvidas, veja o capítulo 3 deste manual). A única diferença é a necessidade de acrescentar um bloco transdutor à bridge. Este transdutor será usado para inicializar a redundância.

Na configuração do SYSCON, o tag para o bloco transdutor pode ter qualquer nome, preferencialmente, que seja relacionado ao tag do DFI302 ou à planta. Deve-se precaver a não usar tags que já estejam em uso na mesma planta.

Mais infomações a respeito do SYSCON podem ser encontradas no seu próprio manual.

Para qualquer modo de redundância é necessário, antes de tudo, configurar a redundância de rede. A próxima seção explica como isto dever ser feito.

Configurando a redundância de rede

Para que todas as ferramentas OPC-Client possam funcionar com redundância de rede, é necessário configurar as workstations e o DFI OLE Server.

Configurando a workstation

É possível ter uma ou duas workstations (redundância de workstation). Seguem os passos para configuração.

- 1. Cada workstation deve ter uma HMI instalada.
- 2. Cada workstation deverá ter duas Placas de Interface de Rede (Network Interface Card NIC).
- 3. Cada NIC deverá ser configurada em uma diferente faixa de sub-rede (ex.: NIC1, IP=192.168.164.50 / Subnet Mask 255.255.255.0 e NIC2, IP=192.168.163.50 / Subnet Mask 255.255.255.0).
- 4. Configure também um default gateway de acordo com suas necessidades.
- 5. Instale dois HUBs ou switches. Cada NIC deve ser conectada a um deles de forma que duas redes locais (LAN) sejam montadas isoladas uma da outra.
- 6. Desta forma, cada um dos módulos DF51 pode ser conectado a um dos HUBs obedecendo as faixas pré-definidas de sub-rede (ex.: Primeiro DF51, IP=**192.168.164**.51 / Subnet Mask 255.255.255.0 e Segundo DF51, IP=**192.168.163**.51 / Subnet Mask 255.255.255.0).
- 7. Para testar a rede, use o comando *ping* no prompt do DOS, chamando pelos IP's de cada módulo DF51 para confirmar a comunicação.

Configurando o DFI OLE Server

Existem duas maneiras de configurar o OLE Server para redundância de rede. A seguir, os passos para a configuração em cada caso.

O HMI Client seleciona o DFI OLE Server (local e remoto).

Para este caso, o Server local possui um NIC adapter específico e o cliente seleciona qual servidor será usado (ver figura 15.2).

Figura 15.2

- 1. Configure no arquivo SmarOleServer.ini, o *NIC adapter* que será usado em cada workstation (por exemplo: Primeira workstation, NIC=192.168.164.50 e a Segunda workstation, NIC=192.168.163.50).
- 2. Desta forma, cada DFI OLE Server selecionará o NIC adapter especificado.
- 3. Na hora de configurar a IHM, configure cada TAG a ser monitorado, o que pode ser feito de duas formas:
 - a) Primeira: usando o DFI OLE Server Local,
 - b) Segunda: usando o DFI OLE Server Remoto (algumas IHM não permitem este tipo de configuração, e será necessária a ajuda de algum outro software auxiliar).
- Para validar a conexão remota entre o *Client* e o *Server*, certifique-se de configurar o DCOM e NT Security. Estes passos estão descritos no **Apêndice A** deste manual.

O DFI OLE Server está conectado a ambas sub-redes onde os módulos redundantes estão.

Neste caso, o cliente emprega apenas um Server. O Server escolhe dinamicamente qual NIC adapter será usado (ver figura 15.3).

1 - Configure no arquivo SmarOleServer.ini os NIC adapters desejados. Por exemplo:

NIC = 192.168.164.50

NIC2 = 192.168.163.50

2 - Desta forma, o DFI OLE Server terá informação através de ambos os NIC adapters.

O último dado atualizado será selecionado pelo DFI OLE Server para ser encaminhado para o *client*. Quando a DFI302 está em modo Hot Standby, o DFI OLE Server selecionará preferivelmente o dado que vem do módulo *Active*, para ser encaminhado para o *client*.

Configurando Redundância Hot Standby

Para habilitar redundância Hot Standby e monitorar seu status, alguns parâmetros disponíveis no *DFI302 transducer block* devem ser usados.

A maioria dos parâmetros de redundância possui um sufixo. O sufixo "*L*" significa *Local*, ou que o parâmetro traz informações do módulo que está sendo monitorado diretamente através do DFI OLE Server. O sufixo "*R*" significa *Remote*, ou que o parâmetro traz informações sobre o outro módulo, conhecidas pelo módulo *Local*, através do canal de sincronismo.

Aqui é apresentada uma descrição funcional destes parâmetros para se entender como a redundância Hot Standby funciona. Para maiores informações sobre estes parâmetros veja a tabela descritiva do bloco transdutor (manual de Blocos Funcionais, seção 2.4).

FUNCTION_IDS

Este é o único parâmetro a ser configurado. O usuário deve designar um módulo para ser o *Main* escolhendo o valor <u>Sync Main</u>. Através do canal de sincronismo, o outro módulo automaticamente será inicializado como *Backup*. Isto designa fisicamente o módulo processador Preferencial e o Redundante, respectivamente. Desta forma, *Main* e *Backup* podem ser entendidos simplesmente como *labels*.

RED_ROLE_L / RED_ROLE_R

Reflete a configuração feita em FUNCTION_IDS, identificando o *Role* (papel) do módulo, <u>Sync_Main</u> ou <u>Sync_Backup</u>.

RED_STATE_L / RED_STATE_R

Active - executa todas as tarefas e gera toda a informação.

<u>Standby</u> – não executa as tarefas, apenas recebe toda a informação gerada pelo <u>Active</u> e permanece pronto para assumir, se necessário.

Not Ready - redundância não disponível.

As diferentes falhas que podem ocorrer no sistema levam-no a um *switch over*, quando o *Standby* assume o estado de *Active* e vice-versa numa forma sem sobressaltos. A seguir, as possíveis causas de *switch over* divididas em dois tipos:

Falhas gerais

Quando todo um módulo falha, o que compreende:

- Falha de Hardware
- Falha na alimentação
- Remoção do módulo processador do backplane.

Falhas de má condição

Quando uma das interfaces de um módulo falha:

- Falha na comunicação Modbus (hardware ou cabos; no caso de estar operando como mestre).
- Falha em um canal FF H1 (hardware ou cabos).

O sistema é capaz de checar qual módulo está em melhores condições, elegendo-o como Active.

É assegurada a recuperação de uma falha por vez. Ou seja, uma vez ocorrida uma falha, uma segunda falha só poderá ser recuperada pela redundância caso a primeira falha já tenha sido corrigida. Enquanto a falha não for corrigida, a redundância não estará totalmente disponível (em caso de *Falha de má condição*), ou mesmo indisponível (no caso de *Falha geral*).

Para o caso de *Falha geral*, assim que o módulo em falha se recupera, ou é substituído, os módulos se tornam automaticamente um par redundante, ou seja, o sistema reconhece automaticamente um novo módulo inserido.

RED_SYNC_STATUS_L / RED_SYNC_STATUS_R

Este parâmetro informa todos os estados possíveis de sincronismo entre os módulos.

SYNC STATUS	DESCRIÇÃO
Stand Alone	Há apenas um módulo operando. Se o sistema sincronizou pelo menos uma vez, e este valor aparece, indica que o outro módulo teve uma <i>Falha</i> <i>geral</i> .
Synchronizing	Os módulos estão checando as configurações entre si para chegarem ao estado de <i>Synchronized</i> . Pode levar um tempo de até 9 min. no máximo (enquanto o sistema aguarda que o módulo em "Not Ready" complete suas <i>Live Lists</i>).
Updating Remote	Logo após um download de configuração, o módulo transfere toda a configuração para o outro através do canal de sincronismo.
Maintenance	O módulo está sendo configurado pelo outro módulo através do canal de sincronismo ou pelo SYSCON. Caso apareça para ambos o parâmetro " L " e " R ", indica que nenhum dos módulos foi configurado ainda.
Synchronized	Os módulos estão em perfeito sincronismo. O módulo Active atualiza continuamente as bases de dados da Standby.
Warning: Role Conflict	Se um segundo módulo é conectado no painel, com o mesmo <i>Role</i> (papel) daquele que já está em operação, essa mensagem é mostrada. O procedimento para corrigir este conflito é executar um <i>Factory Init</i> no novo módulo e aguardar que o sincronismo do sistema.
Warning: Sync Cable Fail	Caso ocorra uma falha no cabo de sincronismo, essa mensagem é exibida. O sistema não terá a redundância até que a falha no cabo de sincronismo seja corrigida.
Warning: Updating Remote Fail	Se uma falha ocorre na transferência de configuração do <i>Active</i> para o <i>Standby</i> , essa mensagem é mostrada. O procedimento é executar um <i>Factory Init</i> no módulo que não está em <i>Active</i> e aguardar até que a transferência seja completada com sucesso.

RED_BAD_CONDITIONS_L / RED_BAD_CONDITIONS_R

Pode apresentar um ou mais valores concatenados como segue:

BIT	BAD CONDITION	DESCRIÇÃO	
0	Modbus	Quando trabalhando como mestre e não houver resposta do escravo Modbus significa que a comunicação Modbus está em más condições. A causa pode ser uma falha no caminho de comunicação, ou até mesmo falha no módulo escravo.	
1	H1-1		
2	H1-2	Indica falha no canal H1, especificando qual canal teve a falha.	
3	H1-3	1	
4	LiveList	Indica que alguma Live List não foi completada.	

O valor desejável e mais provável é *<none>* para ambos os módulos (*L* e *R*), o que assegura boas condições para ambos, ou seja, redundância completamente disponível. Este parâmetro pode ter duas funções:

Uma *falha de má condição* para o módulo em *Active* leva o sistema a um *switch over*. Neste caso, este parâmetro atua como um registro da causa do último *switch over*.

Quando uma *falha de má condição* ocorre para o módulo em *Standby* este parâmetro mostra esta condição como um alarme. Assim, advertindo o operador que o módulo em *Standby* apresenta um determinado problema, permite manutenção pró-ativa para que se tenha a redundância completamente disponível.

RED_MAIN_WDG / RED_BACKUP_WDG

São watchdogs que indicam o status de comunicação entre a IHM e os módulos processadores. Enquanto seus valores estiverem incrementando num intervalo de 2 segundos, as respectivas conexões com a rede (*Main* e *Backup*) estão funcionando bem.

Em resumo, a redundância está completamente disponível, SOMENTE se os módulos estão em *Synchronized* e têm o valor *<none>* nos parâmetros de *Bad Conditions* (*L* e *R*).

As seguintes operações podem ser realizadas sem interrupção do processo da planta: substituição de um módulo com falha, correção de uma falha de cabo H1, atualização do firmware e adição de redundância em um sistema em operação.

NOTA

Os módulos mais novos do DF51 possuem um LED identificado como "*Standby*" no frontal, para indicar o estado da redundância do módulo.

Quando o LED está aceso, significa que o módulo está em *Standby*. Quando o LED está apagado, o módulo pode estar em *Active* ou *Not Ready*. Se um dos módulos está em *Standby*, o outro estará em *Active*.

Seguem os passos para a configuração e manutenção da redundância Hot Standby. Recomenda-se que os passos sejam todos lidos e entendidos antes de serem executados.

Configurando o sistema pela primeira vez

Este é o procedimento para configurar o sistema pela primeira vez com redundância Hot Standby, no *start up* da planta.

- Com o conector dos canais H1 desconectado, execute um Factory Init em ambos módulos para garantir o estado default.
- 2 Conecte ambos módulos através dos canais FF H1 (1 a 4).
- 3 Abra a configuração desejada no SYSCON e coloque-o em modo On-line. Clique com o botão direito no ícone bridge e com a opção Attributes escolha um dos módulos listados no campo Device Id. O módulo escolhido será aquele a ser configurado como Main. No menu principal do SYSCON vá ao menu Export e clique Tags.
- 4 Ainda no ícone da *bridge*, clique com o botão direito em *FB VFD* e então clique em *Block List*. Uma nova janela será aberta mostrando todos os blocos que estão pré-instanciados no módulo. Então, nesta janela, clique com o botão direito no *transdutor* realizando um *Assign Tag* com o *tag* que está previsto na configuração. Feche a janela *Block List*.
- 5 Clique com o botão direito no ícone do *transdutor* da *bridge* e escolha On Line Characterization. Configure o parâmetro FUNCTION_IDS como Sync_Main. Através do canal de sincronismo o outro módulo será automaticamente inicializado como Backup. Após isto, ambos os parâmetros RED_SYNC_STATUS (*L* e *R*) devem indicar Maintenance, o que significa que nenhum dos módulos foi configurado ainda.
- 6 Caso necessário, realize Assign Tag para todos os field devices. Aguarde até que as Live Lists de todos os canais estejam completas. Então, configure o sistema a partir do módulo Active executando todos os downloads de configuração necessários, da mesma forma que para um sistema DFI302 não-redundante.
- 7 Assim que os downloads forem completados com sucesso, o transdutor apresentará as seguintes fases:
 - O Active irá transferir toda a configuração para o outro módulo (RED_SYNC_STATUS_L como Updating Remote e RED_SYNC_STATUS_R como Maintenance).
 - Após a configuração ter sido transferida, os módulos podem levar algum tempo para sincronizar (parâmetros RED_SYNC_STATUS (*L* e *R*) como Synchronizing). Este é o tempo necessário para que os módulos chequem a configuração um com o outro.
 - Finalmente, os módulos irão sincronizar (parâmetros RED_SYNC_STATUS (*L* e *R*) como Synchronized e RED_STATE_R como Standby. Com o sistema nestas condições, o Active estará atualizando constantemente o Standby.

Trocando a configuração

Apenas siga os passos 6 e 7 da seção "Configurando o sistema pela primeira vez".

Substituição de um módulo com falha

- 1 Com o conector dos canais H1 desconectado, insira o novo módulo no backplane.
- 2 Atualize o firmware do novo módulo, caso seja necessário. Execute um *Factory Init* no novo módulo para garantir o estado default.
- 3 Conecte o conector H1 ao novo módulo.
- 4 O novo módulo será automaticamente reconhecido pelo Active e ambos irão permanecer em Synchronizing por algum tempo. Assim que o sistema tiver o status Synchronized e <none> nos parâmetros Bad Conditions, a redundância estará totalmente disponível e simulações de falhas podem ser feitas.

Correção de uma falha de cabo H1

Se uma falha ocorrer em um segmento de cabo H1 de tal forma que afete somente um dos módulos, a redundância irá cobrir esta falha. No entanto, se o cabo H1 for reconectado de uma vez, o ruído introduzido na linha irá causar problemas de comunicação por algum tempo.

Para que este problema seja evitado, o procedimento abaixo deve ser seguido.

- 1 Coloque o módulo afetado pela falha no cabo H1 em modo Hold.
- 2 Corrija a conexão do cabo H1.
- 3 Execute um Reset no módulo afetado para retornar a operação. O módulo será automaticamente reconhecido pelo Active e ambos irão permanecer em Synchronizing por algum tempo. Assim que o sistema tiver o status Synchronized e <none> nos parâmetros Bad Conditions, a redundância estará totalmente disponível e simulações de falhas podem ser feitas.

Atualização do firmware sem interrupção do processo

Este procedimento descreve como atualizar o firmware de ambos os módulos sem interromper o processo da planta.

- Certifique-se de que o sistema tenha o status Synchronized e <none> nos parâmetros Bad Conditions. Então, usando o FBTools atualize o firmware do módulo em Active. Neste momento, o outro módulo irá assumir a planta.
- 2 Após a atualização do firmware ter sido finalizada, os módulos irão sincronizar um com o outro, com o Active transferindo toda a configuração para o outro. Aguarde o sistema ter o status Synchronized e <none> nos parâmetros Bad Conditions.
- 3 Usando o FBTools, atualize o firmware do módulo em Active. Neste momento, o outro módulo irá assumir a planta.
- 4 Após a atualização do firmware ter sido finalizada, os módulos irão sincronizar um com o outro, com o Active transferindo toda a configuração para o outro. Assim que o sistema tiver o status Synchronized e <none> nos parâmetros Bad Conditions, a redundância estará totalmente disponível e simulações de falhas podem ser feitas.

Adição de redundância em um sistema em operação

Se um sistema não redundante tem como requisito se tornar redundante no futuro, no *start up* da planta as seguintes condições devem ser obedecidas:

- 1 O 4º canal H1 deve ser reservado como canal de sincronismo. Ou seja, este canal não deve ter *devices* conectados.
- 2 Prever o cabeamento dos canais H1 considerando que o módulo *Backup* será acrescentado no futuro (os canais H1 do módulo *Main* devem ser conectados em paralelo com os respectivos canais do módulo *Backup*).
- 3 Prever que a arquitetura de rede LAN possa ser expandida de tal forma a atender a arquitetura descrita na seção "Arquitetura de um sistema redundante".
- 4 O módulo single deve empregar um firmware redundante (versão terminada em R). O parâmetro FUNCTION_IDS deve ser configurado como Sync_Main. Desta forma, o módulo irá operar no estado Stand Alone e estará pronto para reconhecer, a qualquer momento, um outro módulo inserido.

Seguindo estas condições, redundância pode ser acrescentada posteriormente sem interrupção do processo da planta. O procedimento para adicionar redundância ao sistema é apenas seguir os passos descritos na seção "Substituição de um módulo com falha".

Configurando Redundância LAS

Seguem os passos para a configuração e manutenção deste modo legado de redundância. Recomenda-se que os passos sejam todos lidos e entendidos antes de serem executados.

Configurando o sistema pela primeira vez

Este é o procedimento para configurar o sistema pela primeira vez com redundância LAS, no start up da planta.

Módulo Active

- 1 Com o conector dos canais H1 desconectado, execute um *Factory Init* em ambos módulos para garantir o estado default.
- Conecte o conector H1 ao módulo Active. Mantenha o módulo Backup com o conector H1 desconectado por enquanto.
- 3 Abra a configuração desejada no SYSCON e coloque-o em modo On-line. Clique com o botão direito no ícone bridge e com a opção Attributes escolha o módulo a ser configurado como Active no campo Device Id.
- 4 Ainda no ícone da *bridge*, clique com o botão direito em *FB VFD* e então clique em *Block List*. Uma nova janela será aberta mostrando todos os blocos que estão pré-instanciados no módulo. Então, nesta janela, clique com o botão direito no *transdutor* realizando um *Assign Tag* com o *tag* que está previsto para o *Active* na configuração. Feche a janela *Block List*. No menu principal do SYSCON vá ao menu *Export* e clique *Tags*.
- 5 Clique com o botão direito no ícone do *transdutor* da *bridge* e escolha On Line Characterization. Configure o parâmetro FUNCTION_IDS como Active.
- 6 Ainda no transdutor, configure o parâmetro SYSTEM_OPERATION como Redundant.
- 7 Caso necessário, realize Assign Tag para todos os field devices. Aguarde até que as Live Lists de todos os canais estejam completas. Então, configure o sistema a partir do módulo Active executando todos os downloads de configuração necessários, da mesma forma que para um sistema DFI302 não-redundante.

Módulo Backup

IMPORTANTE - antes de conectar o conector H1 ao módulo Backup, siga os passos a seguir.

- Clique com o botão direito no (cone *bridge* e com a opção *Attributes* escolha o módulo a ser configurado como *Backup* no campo *Device Id*.
- 2 Na configuração mude temporariamente o tag do transdutor (o *Backup* deve ter um tag do transdutor diferente daquele usado para o *Active*). No menu principal do SYSCON vá ao menu *Export* e clique *Tags*.
- 3 Ainda no ícone da *bridge*, clique com o botão direito em *FB VFD* e então clique em *Block List*. Uma nova janela será aberta mostrando todos os blocos que estão pré-instanciados no módulo. Então, nesta janela, clique com o botão direito no *transdutor* realizando um *Assign Tag* com o *tag* que está previsto para o *Backup* na configuração. Feche a janela *Block List*.
- 4 Clique com o botão direito no ícone do *transdutor* da *bridge* e escolha On Line Characterization. Configure o parâmetro FUNCTION_IDS como Passive.
- 5 Somente então, conecte o conector H1 ao novo módulo e somente após isto, configure o parâmetro FUNCTION_IDS como Backup.
- 6 Ainda no transdutor, configure o parâmetro SYSTEM_OPERATION como Redundant. Aguarde até que as Live Lists de todos os canais estejam completas.
- 7 Para cada um dos canais utilizados na configuração clique com o botão direito no ícone da Fieldbus e escolha a opção Download Schedule.

NOTA

O parâmetro SCHEDULE_UPDATE do *transdutor* não deve mais ser utilizado. Em seu lugar, use a opção de *Download Schedule* como descrito no passo acima.

Substituição de um módulo Active com falha

Se o modulo Active falhar, o Backup assume como LAS (Link Active Scheduler).

Este procedimento descreve como substituir o módulo Active.

- 1 Com o conector dos canais H1 desconectado, insira o novo módulo no backplane.
- 2 Atualize o firmware do novo módulo, caso seja necessário. Execute um *Factory Init* no novo módulo para garantir o estado default.
- 3 IMPORTANTE antes de conectar o conector H1 ao novo módulo, siga os passos a seguir.
- 4 Abra a configuração desejada no SYSCON e coloque-o em modo On-line. Clique com o botão direito no ícone bridge e com a opção Attributes escolha o módulo a ser configurado como Active no campo Device Id.
- 5 Ainda no ícone da *bridge*, clique com o botão direito em *FB VFD* e então clique em *Block List*. Uma nova janela será aberta mostrando todos os blocos que estão pré-instanciados no módulo. Então, nesta janela, clique com o botão direito no *transdutor* realizando um *Assign Tag* com o *tag* que está previsto para o *Active* na configuração. Feche a janela *Block List*. No menu principal do SYSCON vá ao menu *Export* e clique *Tags*.
- 6 Clique com o botão direito no ícone do *transdutor* da *bridge* e escolha On Line Characterization. Configure o parâmetro FUNCTION_IDS como Passive.
- 7 Somente então, conecte o conector H1 ao novo módulo e somente após isto, configure o parâmetro FUNCTION_IDS como Active Not Link Master.
- 8 Ainda no *transdutor*, configure o parâmetro SYSTEM_OPERATION como *Redundant*. Aguarde até que as *Live Lists* de todos os canais estejam completas.
- 9 Para cada um dos canais utilizados na configuração clique com o botão direito no ícone *Fieldbus* e escolha a opção *Download Schedule*.
- 10 Mude o parâmetro FUNCTION_IDS de Active Not Link Master para Active.

Substituição de um módulo Backup com falha

Se o modulo Backup falhar, o Active assume como LAS (Link Active Scheduler).

Este procedimento descreve como substituir o módulo Backup.

- 1 Com o conector dos canais H1 desconectado, insira o novo módulo no backplane.
- 2 Atualize o firmware do novo módulo, caso seja necessário. Execute um *Factory Init* no novo módulo para garantir o estado default.
- 3 IMPORTANTE antes de conectar o conector H1 ao novo módulo, siga os passos a seguir.
- 4 Clique com o botão direito no ícone bridge e com a opção Attributes escolha o módulo a ser configurado como Backup no campo Device Id.
- 5 Na configuração mude temporariamente o tag do transdutor (o *Backup* deve ter um tag do transdutor diferente daquele usado para o *Active*). No menu principal do SYSCON vá ao menu *Export* e clique *Tags*.
- 6 Ainda no ícone da *bridge*, clique com o botão direito em *FB VFD* e então clique em *Block List*. Uma nova janela será aberta mostrando todos os blocos que estão pré-instanciados no módulo. Então, nesta janela, clique com o botão direito no *transdutor* realizando um *Assign Tag* com o *tag* que está previsto para o *Backup* na configuração. Feche a janela *Block List*.
- 7 Clique com o botão direito no ícone do *transdutor* da *bridge* e escolha On Line Characterization. Configure o parâmetro FUNCTION_IDS como Passive.
- 8 Somente então, conecte o conector H1 ao novo módulo e somente após isto, configure o parâmetro FUNCTION_IDS como Backup.
- 9 Ainda no *transdutor*, configure o parâmetro SYSTEM_OPERATION como *Redundant*. Aguarde até que as *Live Lists* de todos os canais estejam completas.
- 10 Para cada um dos canais utilizados na configuração clique com o botão direito no ícone da *Fieldbus* e escolha a opção *Download Schedule*.

Colocando o sistema em operação após uma falha geral de energia

Há também um procedimento para colocar os módulos em operação após ambos terem sido desligados. Se ambos forem ligados ao mesmo tempo, haverá colisões nos canais H1, pois ambos os módulos (*Active* e *Backup*) irão tentar se tornar o LAS. Isto causará um atraso para se estabelecer uma perfeita comunicação. Para que este problema seja evitado, ligue primeiro o módulo *Active* e aguarde até que fique on-line. Após isto, ligue o módulo *Backup*.
Correção de uma falha de cabo H1

Se uma falha ocorrer em um segmento de cabo H1 de forma que afete somente um dos módulos, a redundância irá cobrir esta falha. No entanto, se o cabo H1 for reconectado de uma vez, o ruído introduzido na linha irá causar problemas de comunicação por algum tempo.

Para que este problema seja evitado, o procedimento abaixo deve ser seguido.

- 1 Coloque o módulo afetado pela falha no cabo H1 em modo Hold.
- 2 Corrija a conexão do cabo H1.
- 3 Execute um *Reset* no módulo afetado para retornar a operação. A redundância estará totalmente disponível e simulações de falhas podem ser feitas.

Atualização do firmware sem interrupção do processo

Este procedimento descreve como atualizar o firmware de ambos os módulos sem interromper o processo da planta.

- 1 Usando o FBTools atualize o firmware do módulo *Active*. Neste momento, o módulo *Backup* irá assumir a planta.
- 2 Após a atualização do firmware ter sido finalizada, siga os passos de 4 a 9 da seção "Substituição de um módulo Active com falha".
- 3 Aguarde em torno de um minuto para que o módulo *Active* se torne o LAS novamente (o *Active* é sempre o preferencial neste modo de redundância).
- 4 Usando o FBTools atualize o firmware do módulo Backup.
- 5 Após a atualização do firmware ter sido finalizada, siga os passos de 1 a 6 da seção "Configurando o sistema pela primeira vez – Módulo Backup".

OTIMIZANDO O ACESSO DO DFI ÀS SUB-REDES

Uma vez instalado o System302, os parâmetros default trabalham adequadamente para a maioria dos casos, quando se tratando do DFI302 conectado à Ethernet. Principalmente, quando o sistema montado consta de 1 computador, um Adaptador de Interface de Rede (NIC) e uma Sub-rede. Se a topologia for diferente, alguns passos são necessários para otimizar o acesso e para permitir que o DFI302 trabalhe.

O arquivo SmarOleServer.ini

Na pasta OleServers, o arquivo SmarOleServer.ini é usado para configurar muitos parâmetros relacionados ao acesso à Sub-rede.

Para melhor compreensão sobre este arquivo, veja os itens abaixo:

[NIC Adapter]

Se mais que um NIC (Network Interface Card) está instalado na estação de trabalho local, é necessário informar o DFI OLE Server para usar 1 ou 2 (NIC1 e NIC2) adaptadores. Na NIC key, ajuste o IP que está configurado para cada NIC e remova ';'.

NIC=192.168.164.20 NIC2=192.168.165.17

[DFI Time Settings]

O parâmetro NETWORK_STARTUP define o tempo de atraso que o Server aguardará até que o DFI complete a conexão. O valor de 13 segundos (valor default) é o valor de tempo que se aguarda para concluir a conexão do Server com os DFIs.

NETWORK_STARTUP=13

O parâmetro LOCAL_POLLING habilita ou Desabilita conexões locais com os DFIs. Se este parâmetro estiver ON (valor default), as conexões com todos os DFIs estarão habilitadas na mesma sub-rede. Se este parâmetro estiver OFF, desabilita as conexões de todos os DFIs disponíveis na mesma sub-rede. Somente os IPs listados no DFI Remoto serão pesquisados.

LOCAL_POLLING=ON

[Remote DFI]

São especificados os IPs a ser buscados nas redes remotas pelo NIC que possuem redundância. Especifica também os IPs locais desejados, quando o parâmetro LOCAL_POLLING=OFF. Lembrese de configurar o Default Gateway através do FBTools.

No formato xxx.yyy.zzz.sss pode ser habilitada ou não a pesquisa de IP:

- 1 habilita a pesquisa de IP
- 0 desabilita a pesquisa de IP

192.168.161.72=1 192.168.164.197=0

[Remote DFI2]

São especificados nesta seção os IPs a ser buscados nas redes remotas pelo NIC2 que possuem redundância. Especifica também o IP local requerido quando o parâmetro LOCAL_POLLING=OFF. Lembre-se de configurar o Default Gateway através do FBTools.

No formato xxx.yyy.zzz.sss pode ser habilitada ou não a pesquisa de IP:

- 1 habilita a pesquisa de IP
- 0 desabilita a pesquisa de IP

192.168.164.71=1 192.168.161.19=1

Informação Adicional

Se o sistema operacional usado for o Windows XP, é necessário certificar-se de que o firewall interno do XP está desabilitado, para os DFIs conseguirem a conexão TCP do OPC Server.

Através da configuração do LOCAL_POLLING, localizado na seção [DFI Time Settings], é possível habilitar a pesquisa local pelos DFIs (mesma sub-rede). O valor default é ON e nesta Situação, qualquer DFI Local ou qualquer outro configurado remotamente [Remote DFI] ou [Remote DFI2] poderão ser pesquisados.

Se somente um NIC está instalado na estação de trabalho, somente a seção [Remote DFI] será considerada.

Usando 2 NICs, configurados na mesma sub-rede, o parâmetro LOCAL_POLLING DEVE ser OFF.

Cenários Típicos suportados de acordo com a configuração

NICs available	Polled DFIs		NIC2 set	LOCAL POLLING	Remote DFI	Remote DFI2
		set				
	All local	-	-	ON	-	-
	None	-	-	OFF	-	-
Only one NIC installed	List1	-	-	OFF	List1	-
	All local + List1 List1	NIC	-	ON	List1	-
		NIC	-	OFF	List1	-
	All local + List2 List2	-	NIC2	ON	-	List2
		-	NIC2	OFF	-	List2
	All local	NIC	NIC2	ON	-	-
	All local	NIC	NIC2	ON	List1	-
	All local	NIC	NIC2	ON	-	List2
Two Nics installed	All local + List1	NIC	NIC2	ON	List1	List2
	+ List2 None	NIC	NIC2	OFF	-	-
	List1	NIC	NIC2	OFF	List1	-
	List2	NIC	NIC2	OFF	-	List2
	List1 + List2	NIC	NIC2	OFF	List1	List2