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One-degree and Two-degree of Freedom Control Systems

Learning Objectives

One degree of freedom and two degrees of freedom control systems.

The sensitivity functions and the relationship between the complementary
sensitivity function and sensitivity function.

Understand how sensitivity functions are used to describe closed-loop
performance in terms of reference following, disturbance rejection and
measurement noise attenuation.

Understand how closed-loop bandwidth is used in a trade-off relationship
between disturbance rejection and measurement noise attenuation.
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One-degree and Two-degree of Freedom Control Systems

One Degree of Freedom Control System Structure
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Figure: One-degree of freedom control system structure. Only one-degree of
freedom is available in the controller structure to influence the output
response Y (s) to the reference signal R(s) and to the disturbance Do(s).
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One-degree and Two-degree of Freedom Control Systems

Closed-loop Signals

The Laplace transform of the error signal E(s) is expressed as

E(s) = R(s) − Y (s) = R(s) − G(s)U(s) − Do(s)

= R(s) − G(s)C(s)E(s) − Do(s) (1)

Therefore, the error signal is expressed as

E(s) =
R(s)

1 + G(s)C(s)
−

Do(s)

1 + G(s)C(s)
(2)

Then, the output of the control system is

Y (s) = R(s) − E(s) = (1 −
1

1 + G(s)C(s)
)R(s) +

Do(s)

1 + G(s)C(s)

=
G(s)C(s)

1 + G(s)C(s)
R(s) +

Do(s)

1 + G(s)C(s)
(3)

The control signal is

U(s) = C(s)E(s) =
C(s)

1 + G(s)C(s)
R(s) −

C(s)

1 + G(s)C(s)
Do(s) (4)
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One-degree and Two-degree of Freedom Control Systems

The Closed-loop Transfer Functions

The transfer function between the set-point signal and the plant output is

Y (s)

R(s)
=

G(s)C(s)

1 + G(s)C(s)
(5)

The set-point signal and the control signal is

U(s)

R(s)
=

C(s)

1 + G(s)C(s)
(6)

The transfer functions between the output disturbance and the output, and the
output disturbance and the control signal are

Y (s)

Do(s)
=

1
1 + G(s)C(s)

(7)

U(s)

Do(s)
= −

C(s)

1 + G(s)C(s)
(8)
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One-degree and Two-degree of Freedom Control Systems

One-degree of Freedom Design:Summary

In this controller structure, once the controller C(s) is selected, all four closed-loop
transfer functions are fixed, only one-degree of freedom is available to influence the
output response Y (s) to the reference signal R(s) and to the disturbance Do(s). This
is called one-degree of freedom design.
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One-degree and Two-degree of Freedom Control Systems

Two Degrees of Freedom Control System Structure
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Figure: Two-degrees of freedom control system structure. An extra
component H(s) is placed after the reference signal R(s), which will be used
in the design.
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One-degree and Two-degree of Freedom Control Systems

Closed-loop Transfer Functions

With the assumption that Di(s) = 0 and Dm(s) = 0, we calculate the output
response Y (s) in relation to the reference signal R(s) and the output
disturbance Do(s),

Y (s) =
G(s)C(s)H(s)

1 + G(s)C(s)
R(s) +

Do(s)

1 + G(s)C(s)
(9)

From this, we have the two transfer functions

Y (s)

R(s)
=

G(s)C(s)H(s)

1 + G(s)C(s)
(10)

Y (s)

Do(s)
=

1
1 + G(s)C(s)

(11)

(12)

Here, in comparison to one degree of freedom control system, we have the
transfer function H(s) act on the reference signal R(s).
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One-degree and Two-degree of Freedom Control Systems

Two Degrees of Freedom Control System: Summary

Transfer function H(s) provides one more degree of freedom to shape the output
response to the reference signal R(s).

This extra degree of freedom plus the original one degree of freedom gives the
two degrees of freedom in the design.

If the control system is configured as a two degrees of freedom, then we can
shape, independently, the output response to the reference signal and to the
disturbance.
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One-degree and Two-degree of Freedom Control Systems

Two Degrees of Freedom Design of PI Controllers (i)

The Laplace transform of the control signal, U(s), is expressed as the function of
feedback error signal E(s) using the relation

U(s) = C(s)E(s) =
c1s + c0

s
E(s) (13)

where E(s) = R(s) − Y (s).

The closed- loop transfer function between the set-point signal R(s) and the
output signal Y (s) is then

Y (s)

R(s)
=

G(s)C(s)

1 + G(s)C(s)
=

b(c1s + c0)

s(s + a) + b(c1s + c0)
(14)

where G(s) is the first order transfer function b
s+a .

The closed-loop transfer function becomes:

Y (s)

R(s)
=

(2ξwn − a)s + w2
n

s2 + 2ξwns + w2
n

=
w2

n ( 2ξwn−a
w2

n
s + 1)

s2 + 2ξwns + w2
n
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One-degree and Two-degree of Freedom Control Systems

Two Degrees of Freedom Design of PI Controllers (ii)

By choosing the reference filter H(s) = 1
2ξwn−a

w2
n

s+1)
, with the two degrees of

freedom structure, the relationship between the reference signal and the output
response is

Y (s)

R(s)
=

w2
n

s2 + 2ξwns + w2
n

(15)

Note that the parameter 2ξwn−a
w2

n
= τI , thus, the set-point filter is H(s) = 1

τI s+1)
.

This closed-loop transfer function is equivalent to what we obtained from the
alternative PI controller structure.

However, in the two degree of freedom design, we can choose any reference
filter H(s), as long as it is stable, to reflect the requirement of desired reference
following.
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One-degree and Two-degree of Freedom Control Systems

Two Degrees of Freedom Design of PI Controllers (iii)
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Figure: Two-degrees of freedom PI control system structure: H(s) = 1
τIs+1 ,

C(s) = Kc(1 + 1
τIs

).
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Sensitivity Functions

Sensitivity Functions (i)

We calculate the feedback error of the closed-loop system firstly as

E(s) = H(s)R(s) − (Y (s) + Dm(s))

= H(s)R(s) − [G(s)(U(s) + Di(s)) + Do(s) + Dm(s)]

= H(s)R(s) − G(s)C(s)E(s) − G(s)Di(s) − Do(s) − Dm(s) (16)

The closed-loop feedback error by re-arranging (16) is

E(s) =
H(s)

1 + G(s)C(s)
R(s)−

G(s)

1 + G(s)C(s)
Di(s)−

Do(s)

1 + G(s)C(s)
−

Dm(s)

1 + G(s)C(s)

The expression of the closed-loop output Y (s) is

Y (s) =
G(s)C(s)H(s)

1 + G(s)C(s)
R(s) +

Do(s)

1 + G(s)C(s)
+

G(s)

1 + G(s)C(s)
Di(s)

−
G(s)C(s)

1 + G(s)C(s)
Dm(s) (17)

Liuping Wang (RMIT) Part VII: Sensitivity Functions and Frequency Response Analysis 16 / 64



Sensitivity Functions

Sensitivity Functions (ii)

Also, from the feedback error (16), we calculate the closed-loop control signal as

U(s) = C(s)E(s) =
C(s)H(s)

1 + G(s)C(s)
R(s) −

C(s)G(s)

1 + G(s)C(s)
Di(s)

−
C(s)

1 + G(s)C(s)
Do(s) −

C(s)

1 + G(s)C(s)
Dm(s) (18)
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Sensitivity Functions

Definitions of Sensitivity Functions

Based on these relationships, the following sensitivity functions are defined:

Sensitivity function.

S(s) =
1

1 + G(s)C(s)

Complementary sensitivity function.

T (s) =
G(s)C(s)

1 + G(s)C(s)

Input disturbance sensitivity.

Si(s) =
G(s)

1 + G(s)C(s)

Control sensitivity.

Su(s) =
C(s)

1 + G(s)C(s)
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Sensitivity Functions

Relationships between Sensitivity Functions

The sensitivity plus complementary sensitivity equals to one:

S(s) + T (s) =
1

1 + G(s)C(s)
+

G(s)C(s)

1 + G(s)C(s)
= 1 (19)

The input disturbance sensitivity is related to sensitivity:

Si(s) =
G(s)

1 + G(s)C(s)
= S(s)G(s) (20)

The control sensitivity is related to sensitivity:

Su(s) =
C(s)

1 + G(s)C(s)
= S(s)C(s) (21)
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Sensitivity Functions

Expressions of Input and Output

With the sensitivity functions, we re-write the output of the closed-loop system (17) as

Y (s) = H(s)T (s)R(s) + +S(s)Do(s) + Si(s)Di(s) − T (s)Dm(s) (22)

and the control signal (18) as

U(s) = H(s)Su(s)R(s) − Su(s)Do(s) − Su(s)G(s)Di(s) − Dm(s) (23)
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Sensitivity Functions

Example of Sensitivity Functions (Proportional
Control)
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(a) Complementary sensitivity
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(b) Sensitivity

Figure: Magnitude of complementary sensitivity and sensitivity functions
using proportional control. Key: line(1) steady-state gain α = 0.9, line(2)
α = 0.7, line(3) α = 0.3.
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Sensitivity Functions

Implications of the Sensitivity Functions

The complementary sensitivity function T (s) represents the effect of both
reference signal and measurement noise on the output. If we want a fast
response speed to a reference signal, then the closed-loop bandwidth will be
wider (larger wn). As a consequence, the closed-loop control system will amplify
the measurement noise.

The sensitivity S(s) represents the effect of output disturbance on the output.

The input sensitivity Si(s) represents the effect of input disturbance on the
output.
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Sensitivity Functions

Disturbance Rejection and Noise Attenuation (i)

There are both noise and disturbance existed in a physical system. A good
closed-loop performance requires minimization of the effects of both disturbance
rejection and noise. Or we call it disturbance rejection and noise attenuation.

For minimization of the effects of both input and output disturbances, we will
make the magnitude of the output in frequency response

|Yd (jω)| = |S(jω)(Do(jω) + G(jω)Di(jω))| (24)

as small as possible.

For minimization of the measurement noise, we will make the magnitude of the
output in frequency response

|Ym(jω)| = |T (jω)Dm(jω)| (25)

as small as possible.
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Sensitivity Functions

Disturbance Rejection and Noise Attenuation (ii)

We can not alter the disturbances and noise, because they already existed in the
system. What we will do is to make

the magnitude of sensitivity S(jω) (|S(jω)|) small for disturbance rejection;

the magnitude of complementary sensitivity T (jω) (|T (jω)|) small for noise
attenuation.

These are the basic design principles for control systems.
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Sensitivity Functions

Disturbance Rejection and Noise Attenuation (iii)

Noting that the relationship between the sensitivity and complementary
sensitivity is constrained by

S(jω) + T (jω) = 1 (26)

which says that we can not make both |S(jω)| and |T (jω)| small over the same
frequency bands.

In other words, if the disturbance is minimized in a given frequency region where
|S(jω)| is small, then inevitably the measurement noise is not attenuated in the
same frequency region where |T (jω)| is large.
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Sensitivity Functions

Disturbance Rejection and Noise Attenuation (iv)

So how are we going to design a closed-loop control system that will minimize
the effects of disturbance and the measurement noise?

Note that the disturbances existed in the system correspond to slow movement
of the variables or slow changes, therefore, the frequency contents of the
disturbance term |Do(jω) + G(jω)Di(jω)| are concentrated in the low frequency
region.

In contrast, the measurement noise corresponds to fast movement of the
variables or fast and frequent changes of the variables, therefore, the frequency
contents of the measurement noise |Dm(jω)| are concentrated in the higher
frequency region.
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Sensitivity Functions

Disturbance Rejection and Noise Attenuation (v)

The strategies for disturbance rejection and noise attenuation are

to achieve disturbance rejection by choosing the sensitivity function S(jω) ≈ 0 at
the low frequency region, implying T (jω) ≈ 1 at the low frequency region,
because S(jω) + T (jω) = 1.

This is not too bad for noise attenuation because |Dm(jω)| is small in the low
frequency region.

At the high frequency region, to avoid the amplifcation of measurement noise,
we choose |T (jω)| ≈ 0, which implies |S(jω)| ≈ 1.

This is not too bad for disturbance rejection because |Do(jω) + G(jω)Di(jω)| is
small in the high frequency region.

Essentially, we will adjust the closed-loop bandwidth to compromise disturbance
rejection with measurement noise attenuation.
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Sensitivity Functions

Summary of Disturbance Rejection and Noise
Attenuation

The parameter wn corresponds to the desired closed-loop bandwidth.

Larger wn leads to a wider bandwidth for |T (jω)|, which implies a faster
disturbance rejection and higher noise amplification.

On the other hand, smaller wn leads to a more narrow bandwidth for |T (jω)|,
which implies a slower disturbance rejection and lower noise amplification.

Larger wn will also lead to faster reference response.
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Nyquist Stability Criterion

Nyquist Stability Criterion (i)

Nyquist diagram

When using the Nyquist stability criterion, we examine the frequency response of the
loop transfer function (M(jω) = C(jω)G(jω)) that contains the transfer functions for the
plant and the controller. We plot this frequency response in a complex plane.

Stability Criterion

The criterion states that a feedback control system with single input and single output
is stable if and only if, for the frequency response of the loop transfer function, number
of counter clockwise encirclements of the (−1, 0) point is equal to the number of poles
of this loop transfer function with positive real parts.
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Nyquist Stability Criterion

Nyquist Stability Criterion (ii)

For majority of the control problems, this loop transfer function M(s) does not
contain any poles that have positive real parts.

For this type of systems, the closed-loop system will be stable if and only if the
frequency response M(jω) is not encircle (−1, 0) point on the complex plane.
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Nyquist Stability Criterion

Example

−0.5 0 0.5
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Figure: Nyquist loci with with KT 1 = 0.04. on which o is the estimated value at
ω1 = 2π

T .
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Nyquist Stability Criterion

Gain Margin

Definition

Gain margin is defined as GM = 1
kg

, where kg is the distance between the origin of the

complex plane and the point that M(jω) intersects the real axis.

What does it mean

It means that if the loop gain were to exceed the reciprocal of kg , then the closed-loop
system would become unstable.
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Nyquist Stability Criterion

Phase Margin

Definition

It is the angle between the negative real axis and the line that intersects the circle
|M(jω)| = 1 (see Figure 6).

What does it mean

Phase margin indicates the additional phase lag that could be associated with M(jω)
before the closed-loop system became unstable.

Good design

A good design should have reasonable gain and phase margins to ensure that the
closed-loop system is robustly stable in the presence of factors known and unknown.

Liuping Wang (RMIT) Part VII: Sensitivity Functions and Frequency Response Analysis 34 / 64



Nyquist Stability Criterion

Example of Phase Margin
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Figure: Nyquist plots with a unit circle. Key: line (1) with Jm = J0
m, line (2)

Jm = 0.5J0
m, line (3) Jm = 3J0

m where J0
m = 0.00214 kg · m2.
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Nyquist Stability Criterion

Summary

Configuration of control systems in terms of one degree of freedom and two
degrees of freedom design;

Sensitivity functions, the relationship between them and their roles in control
system analysis;

The trade-off relationship between disturbance rejection and noise attenuation.

Nyquist stability criterion with gain margin and phase margin.
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Example for Two Degree of Freedom Control System
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Example for Two Degree of Freedom Control System

Example (i)

Derive closed-loop transfer functions for the following PI control system.

-
�

��

- Kc(1 + 1
τI s

) -
�

��

-
?

G(s) -
�

��?

-

?

�

��

�

6

+
+ +

+ +

+
+

-

R(s) E(s) U(s)

Din(s) Do(s)

Dmea(s)

Y (s)

R(s) is the reference signal
Din(s) is the input disturbance
Do(s) is the output disturbance
Dmea(s) is the measurement noise
Y (s) is the output signal
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Example for Two Degree of Freedom Control System

Example (ii)

Second configuration of the PI controller
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Example for Two Degree of Freedom Control System

Example (iii)

Given Kc = 0.56, τI = 8
and the plant transfer function G(s) = 1

s(s+3)3 .

Find the following transfer functions:

Y (s)

R(s)
,

Y (s)

Din(s)
,

Y (s)

Dout(s)
,

Y (s)

Dmea(s)

for both controller configurations.

Discuss the differences.
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Example for Two Degree of Freedom Control System

Solution I
System diagram for reference and output signals in first configuration.

-
�

��

- Kc(1 + 1
τI s

) - G(s) -

6

+

-

R(s) E(s) U(s) Y (s)

The transfer function

Y (s)

R(s)
=

C(s)G(s)

1 + C(s)G(s)
=

KcτI s+Kc
τI s

G(s)

1 + Kc τI s+Kc
τI s

G(s)
=

KcτIsG(s) + KcG(s)

τIs + KcτIsG(s) + KcG(s)

=
KcτIs 1

s(s+1)3 + Kc
1

s(s+1)3

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

=
KcτIs + Kc

τIs2(s + 1)3 + KcτIs + Kc

=
4.48s + 0.56

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Solution II
Block Diagram of Y (s) and R(s) in the second configuration of the PI controller

-
�

��

- Kc
τI s

-
�

��

-

6

G(s)

Kc

-

6

+ +

- -

R(s) E(s) U(s) Y (s)

The transfer function is shown as following

Y (s)

R(s)
=

Kc
τI s

G(s)
1+KcG(s)

1 + Kc
τI s

G(s)
1+Kc G(s)

=
KcG(s)

τIs + KcτIsG(s) + KcG(s)

=
Kc

1
s(s+1)3

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

=
Kc

τIs2(s + 1)3 + KcτIs + Kc

=
0.56

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Solution III
System diagram for input disturbance and output signals in first configuration.

-
�

��

-

Kc(1 + 1
τI s

)

-G(s)

6

+

-

Din(s) Y (s)

The transfer function of input disturbance is

Y (s)

Din(s)
=

G(s)

1 + KcτI s+Kc
τI s

G(s)
=

τIsG(s)

τIs + KcτIsG(s) + KcG(s)

=
τIs 1

s(s+1)3

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

=
τIs

τIs2(s + 1)3 + KcτIs + Kc

=
8s

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56

Liuping Wang (RMIT) Part VII: Sensitivity Functions and Frequency Response Analysis 43 / 64



Example for Two Degree of Freedom Control System

Solution IV
Block Diagram of Y (s) and Din(s) in the second configuration of the PI controller
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The transfer function of input disturbance in second configuration is

Y (s)

Din(s)
=

G(s)
1+G(s)Kc

1 + G(s)
1+G(s)Kc

Kc
τI s

=
τIsG(s)

τIs + KcτIsG(s) + KcG(s)

=
τIs 1

s(s+1)3

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

=
τIs

τIs2(s + 1)3 + KcτIs + Kc

=
8s

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Solution V
System block diagram for output disturbance and output signals in first configuration.

-
�

��

-

Kc(1 + 1
τI s

)G(s)

6

+

-

Dout(s) Y (s)

The transfer function in this case is

Y (s)

Dout(s)
=

1
1 + G(s)C(s)

=
1

1 + KcτI s+Kc
τI s

G(s)
=

τIs
τIs + KcτIsG(s) + KcG(s)

=
τIs

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

=
τIs2(s + 1)3

τIs2(s + 1)3 + KcτIs + Kc

=
8s5 + 24s4 + 24s3 + 8s2

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Solution VI
After simplifying, the system block diagram for Dout(s) and Y (s) in second
configuration is shown below

-
�

��

�

��

- -

Kc
τI s

G(s)

6
G(s) Kc

6

+

-

+

-

Dout(s) Y (s)

The transfer function in this case is

Y (s)

Dout(s)
=

1
1+KcG(s)

1 + 1
1+KcG(s)

G(s) Kc
τI s

=
τIs

τIs + KcτIsG(s) + KcG(s)

=
τIs

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

=
τIs2(s + 1)3

τIs2(s + 1)3 + KcτIs + Kc

=
8s5 + 24s4 + 24s3 + 8s2

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Solution VII
System block diagram for measurement noise and output signals in first configuration.

-
�

��

- -1 - Kc(1 + 1
τI s

) - G(s) -

6

+

+

Dmea(s) Y (s)

The transfer function in this case is

Y (s)

Dmea(s)
=

−C(s)G(s)

1 − (−C(s)G(s))
=

− KcτI s+Kc
τI s

G(s)

1 + KcτI s+Kc
τI s

G(s)
= −

KcτIsG(s) + KcG(s)

τIs + KcτIsG(s) + KcG(s)

= −
KcτIs 1

s(s+1)3 + Kc
1

s(s+1)3

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

= −
KcτIs + Kc

τIs2(s + 1)3 + KcτIs + Kc

= −
4.48s + 0.56

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Solution VIII
After the simplifying rule of the block diagram, the system for measurement noise and
output signals in second configuration become

-
�

��

- (−Kc) + (− Kc
τI s

) - G(s) -

6

+

+

Dmea(s) Y (s)

The transfer function is identical to the previous case

Y (s)

Dmea(s)
=

− KcτI s+Kc
τI s

G(s)

1 + KcτI s+Kc
τI s

G(s)
= −

KcτIsG(s) + KcG(s)

τIs + KcτIsG(s) + KcG(s)

= −
KcτIs 1

s(s+1)3 + Kc
1

s(s+1)3

τIs + KcτIs 1
s(s+1)3 + Kc

1
s(s+1)3

= −
KcτIs + Kc

τIs2(s + 1)3 + KcτIs + Kc

= −
4.48s + 0.56

8s5 + 24s4 + 24s3 + 8s2 + 4.48s + 0.56
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Example for Two Degree of Freedom Control System

Conclusions

From the transfer functions before, we can obtain that the transfer functions for
both controller configurations are different only for the Reference signal, other
disturbance cases have identical transfer function.

That’s because the second configuration of PI controller is designed to reduce
the overshoot of the set-point change during the transient.

However, the second configuration does NOT affect the transfer function of the
disturbances, which means the configuration will only change the response of
the reference signal change.
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Example for Two Degree of Freedom Control System

Exercise

Given Kc = −4.5, τI = 1.68
and the plant transfer function G(s) = s−2

(s+1)(s+2)(s+3)
.

Find the following transfer functions:

Y (s)

R(s)
,

Y (s)

Din(s)
,

Y (s)

Dout(s)
,

Y (s)

Dmea(s)

for both controller configurations.

Discuss the differences.
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Design Examples

Outline
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Design Examples

Two degree of freedom Design Example

Two degrees of freedom pole-assignment controller design.
Suppose that the plant transfer function is given by:

G(s) =
3

s2 − s
=

3
s(s − 1)

The block diagram of the control system is shown as following:

α · h(s)-R(s) - m - 1
L(s)

- B(s)
A(s)

- m? -

P(s)

6

+
+

+

-

R̄(s) E(s)

Do(s)

Y (s)
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Design Examples

Two degree of freedom Design Example

we wish to obtain the output response to a set-point input as

T (s) =
Y (s)

R(s)
=

ω2
n

s2 + 2ξωns + ω2
n

where we choose that ω2
n = 2.44 and ξ = 0.768.

Therefore,

T (s) =
2.44

s2 + 2.4s + 2.44

=
2.44

(s + 1.2 − j1)(s + 1.2 + j1)

The closed-loop transfer function is derived from the

Y (s)

R(s)
=

αB(s)h(s)

L(s)A(s) + B(s)P(s)
=

αB(s)

Âcl(s)

Here Âcl(s) = s2 + 2ξωns + ω2
n .

Liuping Wang (RMIT) Part VII: Sensitivity Functions and Frequency Response Analysis 53 / 64



Design Examples

Two degree of freedom Design Example

By applying the Final Value Theorem,

α ×
B(0)

Âcl(0)
= 1

Therefore,

α =
Âcl(0)

B(0)
=

ω2
n

3
=

2.44
3

= 0.813

h(s) does not affect set-point response, but affects disturbance rejection. Let
h(s) = s + h0.
Question: How h0 affects the controller L(s) and P(s) for h0 = 0.2, 2 and 20? (where
C(s) = p1s+p0

s+l0
)
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Design Examples

Two degree of freedom Design Example

Case A: h0 = 0.2
The Diophantine Equation:

L(s)A(s) + B(s)P(s) = Âcl(s)h(s)

(s + l0)(s(s − 1)) + 3(p1s + p0) = (s2 + 2.4s + 2.44)(s + 0.2)

s3 + (l0 − 1)s2 − l0s + 3p1s + 3p0 = s3 + 2.6s2 + 2.92s + 0.488

By comparing the coefficients, we have

l0 − 1 = 2.6

−l0 + 3p1 = 2.92

3p0 = 0.488

Therefore, the solution of the controller design is:






l0 = 3.6
p1 = 2.17
p0 = 0.163
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Design Examples

Two degree of freedom Design Example

Case B: h0 = 2
The Diophantine Equation:

L(s)A(s) + B(s)P(s) = Âcl(s)h(s)

(s + l0)(s(s − 1)) + 3(p1s + p0) = (s2 + 2.4s + 2.44)(s + 2)

By comparing the coefficients, the solution of the controller design is derived:






l0 = 5.4
p1 = 4.21
p0 = 1.63

Case C: h0 = 20
The Diophantine Equation:

L(s)A(s) + B(s)P(s) = Âcl(s)h(s)

(s + l0)(s(s − 1)) + 3(p1s + p0) = (s2 + 2.4s + 2.44)(s + 20)
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Design Examples

Two degree of freedom Design Example

By comparing the coefficients, the solution of the controller design is derived:






l0 = 23.4
p1 = 24.61
p0 = 16.26

By comparing the controller parameters solution from case A, B and C, we see that as
h0 increases, l0, p1 and p0 increases.

In other words, as we move the closed-loop poles h0 further away from the origin of
the complex plane, the gain of the controller increases. Higher controller gain will
result in the faster disturbance rejection response.
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Design Examples

Two degree of freedom Design Example

Implementation of two-degree of freedom control system.
Previously, we proposed the design based on the diagram as following:

α · h(s)-R(s) - m - 1
L(s)

- B(s)
A(s)

- m? -

P(s)

6

+
+

+

-

R̄(s) E(s)

Do(s)

Y (s)

However, this structure of the feedback control system is not good for implementation.
That’s because the sectors of h(s) = s + h0 and P(s) = pnsn + pn−1sn−1 + . . . p0

involve the differentiation operation.
Question: How can we modify the configuration so that the control system is
realizable?
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Design Examples

Two degree of freedom Design Example
Solution: The modified configuration is displayed as following:

α-R(s) - m - h(s)
L(s)

- B(s)
A(s)

- m? -

P(s)
h(s)

6

+
+

+

-

R̄(s) E(s)

Do(s)

Y (s)

Proof This is equivalent because the closed-loop transfer functions for output from
both reference signal and output disturbance signal are the same as before.

Y (s)

R(s)
=

α
h(s)
L(s)

B(s)
A(s)

1 + h(s)
L(s)

P(s)
h(s)

B(s)
A(s)

=
αh(s)B(s)

L(s)A(s) + P(s)B(s)
=

αh(s)B(s)

Âcl(s)h(s)

=
αB(s)

Âcl(s)
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Design Examples

Two degree of freedom Design Example

Y (s)

Do(s)
=

1

1 + h(s)
L(s)

P(s)
h(s)

B(s)
A(s)

=
L(s)A(s)

L(s)A(s) + P(s)B(s)

=
L(s)A(s)

Âcl(s)h(s)
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Design Examples

Use of Sensitivity Function in Design

Suppose that a model of plant has Laplace transfer function:

G(s) =
4

(s + 1)(s + 2)2

the plant has output disturbance

do(t) = k + dv (t)

where dv (t) is a zero mean signal with energy in the band Bd : [0, 4] rad/s, k is a
constant.
If we choose the complementary sensitivity

T (s) =
α

(s2 + 1.2ωns + ω2
n)(τs + 1)2

Question: How should we design a feedback controller to reject the disturbance by
choosing α, ωn and τ?
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Design Examples

Use of Sensitivity Function in Design

Solution:
(1) The constant disturbance with unknown amplitude k has frequency content at
ω = 0. In order to reject a constant disturbance we want to choose S(0) = 0, which
makes

Yd (0) = S(0)Do(0) = 0

at zero frequency.
This choice implies T (0) = 1, because of S(jω) + T (jω) = 1.
Therefore, α = ω2

n .

(2) How do we reject dv (t)?
We want S(jω) to be small in [0, 4] rad/s to reject dv (t).
For a second order system, this means we need to choose ωn � 4 rad/s.
Let us select ωn = 10 rad/s.
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Design Examples

Use of Sensitivity Function in Design

(3)How to choose τ?
We select τ value to be small, so that, it’s not to interfere with ωn.
So we have τ = 0.01.

Therefore, the complementary sensitivity transfer function is:

T (s) =
100

(s2 + 12s + 100)(0.01s + 1)2
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Design Examples

Exercise

If the complementary sensitivity is given as:

T (s) =
C(s)G(s)

1 + C(s)G(s)

C(s)G(s) =
T (s)

1 − T (s)

C(s) =
T (s)

1 − T (s)
G−1(s)

By using the information given in the part A, find the controller structure and
parameters based on the last equation above.
Question:
(1) Does C(s) have an integrator? If yes, where was it generated?
(2) What are the orders of the numerator and denominator of the controller? Do you
think the orders are reasonable choices?

Liuping Wang (RMIT) Part VII: Sensitivity Functions and Frequency Response Analysis 64 / 64


	One-degree and Two-degree of Freedom Control Systems
	Sensitivity Functions
	Nyquist Stability Criterion
	Example for Two Degree of Freedom Control System
	Design Examples

