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Learning Objectives

Learning Objectives

Case study of permanent magnetic synchronous motor (PMSM) control

Configuration of a cascade feedback control system

selection of inner-loop and out-loop systems
design of inner-loop control system (secondary control system)
design of outer-loop control system (primary control system)

Use of multiple PID controllers for multi-input and multi-output systems

neglecting the interactions between the inputs and outputs
feedforward using the interactions
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Learning Objectives

Key Reference

Chapter two in "PID and Predictive Control of Electrical Drives and Power Converters
using MATLAB/Simulink" (Wiley-IEEE Press).
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Cascade control systems
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Cascade control systems

System suitable for cascade control

A typical system suitable for cascade control is shown in Figure 1.

The variable between the transfer functions, x1(t), is measurable.

+

+u(t)

di(t) x1(t)

y(t)Gs(s) Gp(s)

Figure 1: Block diagram for a system suitable for cascade control
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Cascade control systems

Cascade control structure

+r(t)

-
+

x∗

1 (t)

-

di(t)

+
+ x1(t) y(t)

Cp(s) Cs(s) Gs(s) Gp(s)

Figure 2: Block diagram of a cascade control system

Secondary and primary systems

The inner-loop system is the secondary system and the outer-loop system is the
primary system. The link between these two loops is the reference signal X∗

1 (s).
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Design examples
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Design examples

Design Example: PI +PI

Gs(s) =
5

s + 10
; Gp(s) =

0.005
s + 0.05

Design a cascade control system with two PI controllers. For simplicity, we select the
damping coefficient ξ = 0.707 for both inner and outer-loop control systems and use
the bandwidths wns and wnp as the tuning parameters of the inner (secondary) and
outer-loop (primary) systems respectively.
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Design examples

Solution I

For the inner-loop control system, we choose wns = 5 × 10 = 50 leading to a pair of
closed-loop poles at −35.35 ± j35.3607, and for the outer-loop system, we choose
wnp = 4 × 0.05 = 0.2 leading to a pair of closed-loop poles at −0.1414 ± j0.1414.
These selections give us the ratio of inner-loop bandwidth to outer-loop bandwidth of
250.
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Design examples

The inner-loop control system

Controller parameters

Kcs =
2ξwns − a

b
=

2ξwns − 10
5

= 12.14;

τIs =
2ξwns − a

w2
ns

=
2ξwns − 10

w2
ns

= 0.0243

Closed-loop transfer function

The closed-loop transfer function between the reference signal X∗

1 (s) and the output
signal X1(s) is calculated as

X1(s)

X∗

1 (s)
=

(2ξwns − 10)s + w2
ns

s2 + 2ξwnss + w2
ns

(1)
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Design examples

The outer-loop control system

To design the outer-loop controller, we consider the transfer function between X∗

1 (s)
and the output Y (s), which is

Y (s)

X∗

1 (s)
=

(2ξwns − 10)s + w2
ns

s2 + 2ξwnss + w2
ns

0.005
s + 0.05

(2)

We neglect the inner-closed-loop system by considering

X1(s)

X∗

1 (s)
=

(2ξwns−10)

w2
ns

s + 1

1
w2

ns
s2 + 2ξ

wns
s + 1

≈ 1 (3)

Kcp =
2ξwnp − 0.05

0.005
= 46.56; τIp =

2ξwnp − 0.05
w2

np
= 5.82

where wnp = 0.2.
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Design examples

Closed-loop poles

One can verify that there are four closed-loop poles with the following values:
−35.2335± j35.4441 and −0.1415 + ±j0.1415.

The pair of dominant closed-loop poles are almost equal to the performance
specifications from the outer-loop control system and the remaining pair is close
to the performance specification from the inner-loop control system.
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Design examples

Design example: P+ PID

Secondary system

The secondary system in a cascade control system is a motor which has the transfer
function

Gs(s) =
0.03

s(s + 30)
(4)

where the output of the motor is angular position.

Primary system

The primary system is an undamped oscillator with the transfer function

Gp(s) =
0.6

s2 + 1
(5)
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Design examples

Specification

Design a cascade control system with inner-loop proportional and outer-loop PID
control. The outer-loop control system is specified with ξ = 0.707 and wnp = 1 and the
remaining poles are placed at −2.
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Design examples

Solution

Secondary P controller design

The secondary system is approximated by the following integral model: Gs(s) ≈ 0.001
s

where the stable mode is neglected.

Controller parameter

Because the primary control system is required to have the natural frequency wnp = 1,
we select the closed-loop pole for the secondary control system at −10, leading to the
proportional controller Kcs = 10000.

Liuping Wang (RMIT) Part VI: Cascade Control System Design 17 / 57



Design examples

Primary Controller Design

The PID controller with filter is designed using the MATLAB function pidplace.m.

In the design of PID controller, the desired closed-loop polynomial is selected as

Acl(s) = (s2 + 2ξwnps + w2
np)(s + 2)2

where wnp = 1 and ξ = 0.707.

Kcp = 1.0784; τIp = 0.8758; τDp = 2.5717; τfp = 0.1847
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Design examples

Closed-loop control results

0 10 20 30 40
−500

0

500

1000

1500

C
on

tr
ol

Time (sec)

(a) Control signal

0 10 20 30 40
0

0.5

1

1.5

O
ut

pu
t

Time (sec)

(b) Output

Figure 3: Cascade closed-loop response signals (Primary controller PID and
secondary controller P).
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Case Study: AC Motor Control

Mathematical Model of PMSM

PMS machine is described by the differential equations in the d-q rotating
reference frame

did(t)
dt

=
1
Ld

(vd (t) − Rid(t) + ωe(t)Lq iq(t)) (6)

diq(t)
dt

=
1
Lq

(vq(t) − Riq(t) − ωe(t)Ld id(t) − ωe(t)φmg) (7)

dωe(t)
dt

=
p
J

(Te −
B
p

ωe(t) − TL) (8)

Te =
3
2

p[φmg iq + (Ld − Lq)id (t)iq(t)] (9)

vd and vq represent the stator voltages in the d-q frame, id and iq represent the
stator currents in this frame, and TL is load torque that is assumed to be zero if
no load is attached to the motor.

The electromagnetic torque Te consists of two parts: that produced by the flux of
the permanent magnet φmg and that by id and iq, respectively.

Liuping Wang (RMIT) Part VI: Cascade Control System Design 21 / 57



Case Study: AC Motor Control

Velocity Control of PMSM

ωe is the electrical speed and is related to the rotor speed by ωe = pωm with p
denoting the number of pole pairs. Thus, the output for the velocity control
problem is ωe (or ωm).

vd and vq are the manipulated variables or the input variables for this control
problem.

TL is the input disturbance to the system. In addition to tracking the reference
signal of the velocity, the closed-loop control system will also maintain its
operation at the steady-state when the load torque TL changes.
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Configuration of Cascade Control

How Should the Control System Be Configured? (i)

In the mathematical model, Equations (6) and (7) describe the dynamics of the
electrical part of the machine.

Equation (8) describes the dynamics of the mechanical part of the machine.

Equation (9) presents the link between the electrical system and the mechanical
system.

It is reasonable to assume that the response times of the electrical system are
much faster than the mechanical counter-part, namely, R

Ld
>> B

J , R
Lq

>> B
J .
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Configuration of Cascade Control

How Should the Control System Be Configured? (ii)

Because there are large differences between the time constants between the
electrical systems and the mechanical system and because the d-axis and
q-axis currents are measurable, this system is a candidate for a cascade
feedback control system.

We will choose the systems with faster dynamics as the inner-loop systems.
Here the electrical systems are the inner-loop systems.

The systems with slower dynamics are chosen as the outer-loop systems. Here
the mechanical system is the outer-loop system.
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Advantages and Disadvantages of Cascade Control Systems
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Advantages and Disadvantages of Cascade Control Systems

Advantages of Cascade Control Systems (i)

In the design of cascade control system, the inner-loop control system will have
a much wider bandwidth than the outer-loop control system because it has a
smaller time constant to begin with. Namely, the inner-loop control system must
have a much faster closed-loop response time.

As a result, the disturbances occur at the inner current loop will be rejected in a
much faster speed.

The configuration of cascade control system allows the designer to use different
sampling intervals ∆t for the implementation. For instance, sampling interval for
the inner-loop current control can be selected as 50µs and the outer-loop
velocity control can be 200µs.
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Advantages and Disadvantages of Cascade Control Systems

Advantages of Cascade Control Systems (ii)

Simplification of control system design for a higher order or a complex system
because the higher order dynamics components are decomposed into a series
of lower order units. For instance, the AC motor velocity control design problem
is converted into control problems of current and velocity, which are two first
order systems suited to PI controllers.

For a nonlinear system, the inner-loop control will lead to a linearized system so
that the overall nonlinear system is better controlled.
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Advantages and Disadvantages of Cascade Control Systems

Disadvantages of Cascade Control Systems

We need to have sensors to measure all secondary variables for the inner-loop
feedback control.

For some applications, these sensors are not available or too expensive so that
the configuration of a cascade control system is not possible.
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Advantages and Disadvantages of Cascade Control Systems

Design of a Cascade Control System

We will design the inner-loop control systems first.

The outer-loop control systems are designed based on the outer-loop dynamics
and the dynamics from the inner-loop feedback control system.

So, the inner-loop control systems need to be considered when we design the
outer-loop control system.
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Inner-loop Controller Design
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Inner-loop Controller Design

Inner-loop Current Controller Design (i)

There are nonlinear cross-coupling terms in (6) and (7) by ωe iq , ωe id and ωe.

These cross-coupling terms can be eliminated using a technique called
feedforward linearization and also decoupling in this application.
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Inner-loop Controller Design

How to Design Feedforward Control

The central idea in the feedforward control is to use auxiliary variables v̂d and v̂q such
that

1
Ld

v̂d =
1
Ld

(vd + ωeLq iq) (10)

1
Lq

v̂q =
1
Lq

(vq − ωeLd id − ωeφmg) (11)
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Inner-loop Controller Design

Inner-loop Current Controller Design (ii)

By substituting these equations into (6) and (7), we obtain the first order models
for the electrical part of the machine dynamics as

did
dt

= −
R
Ld

id +
1
Ld

v̂d (12)

diq
dt

= −
R
Lq

iq +
1
Lq

v̂q (13)

Based on (12) and (13), two feedback controllers can be designed for the stator
current control by manipulating the auxiliary stator voltages in the d-q frame.

These are two first order models. So we can use model based design methods.
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Inner-loop Controller Design

Inner-loop Current Controller Design (iii)

Once v̂d and v̂q are calculated, the true stator voltages in the d-q frame are computed
through (10) and (11):

vd = v̂d − ωeLq iq (14)

vq = v̂q + ωeLd id + ωeφmg (15)
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Inner-loop Controller Design

Choices of Inner-loop Current Controllers

We can use the proportional controller for q-axis current control and use PI
controller for d-axis current control. This is

because there will be an outer-loop PI controller for the velocity via
the q-axis current. In the case of cascade control, the accuracy of
inner-loop control system at the steady-state is less important than
the consideration of response speed and robustness of the
closed-loop system against parameter variations;
there is no outer-loop control for the d-axis (flux) current. Therefore,
in order to maintain the correct steady-state value of the flux current
(id ), we need to use PI controller for the d-axis current control.

The industrial controllers have PI for the inner-loop control systems.

If the steady-state operation of the inner-loop control system is very important in
the design, then PI controller is better suited.
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Inner-loop Controller Design

Block Diagram

Figure 4: Nonlinear cascade control of PMS motor
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Inner-loop Controller Design

Design for id Current Control

By assuming a damping coefficient ξ(= 0.707) and a natural frequency wn, the
PI controller parameters for the control of d-axis current are calculated using the
pole-assignment control method:

K d
c =

2ξwn −
R
Ld

1
Ld

= 2ξwnLd − R (16)

τ
d
I =

2ξwn −
R
Ld

w2
n

=
2ξwnLd − R

Ld w2
n

(17)
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Inner-loop Controller Design

Implementation of id Current Control

Using the relationship between v̂d and vd , the d-axis and q-axis voltages is calculated:

vd (t) = K d
c (i∗d (t) − id(t)) +

K d
c

τ d
I

∫ t

0
(i∗d (τ ) − id(τ ))dτ − ωe(t)Lq iq(t)
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Inner-loop Controller Design

Design for iq Current Control (P) (i)

For proportional gain K q
c , the closed-loop transfer function between the set-point

signal I∗q (s) and the actual current Iq(s) are written as

T iq(s) =
Iq(s)

I∗q (s)
=

K q
c

Lq

s + R
Lq

+
K q

c
Lq

(18)

The closed-loop pole for the q-axis current control is at − R
Lq

−
K q

c
Lq

.

The larger K q
c is, the faster the inner-loop current responses will be.

The steady-state gains of the current control-loops are calculated by setting

s = 0 (18) as
K q

c
Lq

R
Lq

+
K q

c
Lq

for the q-axis.
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Inner-loop Controller Design

Design for iq Current Control (P) (ii)

The factors affecting the choice of the proportional gain for the current control
loop include the dynamic response speed, the closed-loop steady-state gain,
and the noise level in the system.

On one hand, we desire a faster closed-loop response speed and a higher
closed-loop steady-state gain, and on the other hand, we will try to avoid
amplification of the noise in the inner-loop system which will be the consequence
of higher gain and faster response speed.

Because the steady-state gain in the inner-loop control systems will be used in
the design of outer-loop control system, it is convenient to directly specify their
desired values, then incorporate them later on in the design.
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Inner-loop Controller Design

Design for iq Current Control (P) (iii)

For this purpose, for the q-axis current control, we let the parameter 0 < α < 1
represent the steady-state gain for the current control loop, so that

α =

K q
c

Lq

R
Lq

+
K q

c
Lq

(19)

By solving this steady-state equations, we obtain the proportional gain for the
q-axis current control loop:

K q
c =

α

1 − α
R (20)

where α 6= 1.
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Inner-loop Controller Design

Design for iq Current Control (P) (iv)

By substituting the proportional controller gain into the closed-loop transfer
function, we obtain

T iq(s) =
Iq(s)

I∗q (s)
=

α
1−α

R
Lq

s + 1
1−α

R
Lq

(21)
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Inner-loop Controller Design

Implementation of Inner-loop P Controller

Upon deciding the values of the proportional gain, the control signal for the q-axis
current-loop is calculated using the feedback and feedforward configurations:

vq(t) = K q
c (i∗q (t) − iq(t)) + ωe(t)Ld id (t) + ωe(t)φmg (22)
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Outer-loop Controller Design
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Outer-loop Controller Design

Design for the Outer-loop Control System (i)

The design of outer-loop control system is based on the equations (8-9) that
have been used in describing the mechanical part of the system and the link
between the mechanical and electrical systems.

By substituting (9) into (8), we obtain

dωe(t)
dt

=
p
J

Te(t) −
B
J

ωe(t) −
P
J

TL

=
3
2

p2φmg

J
iq(t) +

3
2

p2

J
(Ld − Lq)id(t)iq(t) −

B
J

ωe(t) −
p
J

TL (23)

Note that the second term on the right-hand side of (23) is bilinear and contains
a factor Ld − Lq.

For the class of surface mounted PMS machines, Ld = Lq , thus this bilinear term
vanishes. However, if Ld 6= Lq , the set-point signal for the current control of
d-axis is chosen to be zero in the majority of the applications, namely i∗d = 0,
then in the steady-state, this term equals zero. Therefore, in the control system
design for the outer-loop system, this bilinear term is neglected.
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Outer-loop Controller Design

Design for the Outer-loop Control System (ii)

The fourth term in (23) is proportional to the load torque, which is considered as
a disturbance in control system design and should be rejected by the outer-loop
control system as long as it is a constant or varies in a step signal manner.

It is worthwhile to emphasis that because of the existence of load torque, without
exception, the outer-loop controller should contain an integrator in order to
completely reject the disturbance caused by the load torque.

By neglecting the bilinear term, we re-write (23) in a first order differential
equation:

dωe(t)
dt

= −
B
J

ωe(t) +
3
2

p2φmg

J
iq(t) −

p
J

TL (24)
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Outer-loop Controller Design

Design for the Outer-loop Control System (iii)

From control system design point of view, the output variable is ωe(t) and the
input variable is current iq(t). However, because iq(t) is the output variable for
the inner-loop control system, it is not available for the manipulation needed for
the outer-loop. What is available and free is the set-point signal i∗q to the
inner-loop control of the q-axis current.

The relationship between iq and i∗q is characterized by the inner-loop control of
the q-axis current and is, in Laplace transform,

Iq(s) =

α
1−α

R
Lq

s + 1
1−α

R
Lq

I∗q (s) (25)

The Laplace transform of (24) in regarding the relationship between Ωe(s) and
Iq(s) is

(s +
B
J

)Ωe(s) =
3
2

p2φmg

J
Iq(s) (26)
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Outer-loop Controller Design

Design for the Outer-loop Control System (iv)

By substituting (25) into (26), we obtain the transfer function between Ωe(s) and
I∗q (s) as,

Ωe(s) =
3
2

p2φmg
J

s + B
J

K q
c

Lq

s + R
Lq

+
K q

c
Lq

I∗q (s) (27)

=
3
2

p2φmg
B

J
B s + 1

α

(1 − α)
Lq
R s + 1

I∗q (s) (28)

This is the model for the design of the outer-loop velocity control system.
Because it is a second order, a PID controller could be appropriate.

However, if we closely examine the model, then we find that the closed-loop time
constant for the electrical system Lq

R is far smaller than the time constant for the
mechanical system J

B .
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Outer-loop Controller Design

Design for the Outer-loop Control System (v)

In addition, with the proportional feedback control gain K q
c being large (see

K q
c = α

1−α
R), the dynamics from the inner-loop control of the q-axis current is

ensured to be much faster than the dynamics from the mechanical system
((1 − α)

Lq
R >> J

B .

Therefore, second order model (27) is simplified to a first order system by
neglecting the dynamics from the inner-loop control of q-axis current by letting
(1 − α)

Lq
R = 0, which is

Ωe(s)

I∗q (s)
=

3
2

p2φmg
B α

J
B s + 1

=
3
2

p2φmg
J α

s + B
J

(29)
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Outer-loop Controller Design

Design for the Outer-loop Control System (vi)

With this first order model, the design of a PI controller leads to analytical
solution of the controller parameters using the technique of pole-assignment
controller design.

To simplify the notation, we let

a =
B
J

; b =
3
2

p2φmg

J
α

Here, by choosing a pair of desired closed-loop poles −ξwn ± wnj
√

1 − ξ2,
where the damping coefficient ξ = 0.707, the proportional gain Kc is calculated
as

Kc =
2ξwn − a

b
(30)

and the integral time constant is calculated as

τI =
2ξwn − a

w2
n

(31)
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Outer-loop Controller Design

Implementation of Outer-loop Controller

The control signal i∗q (t) is calculated using the PI controller as

i∗q (t) = Kc(ω
∗

e (t) − ωe(t)) +
Kc

τI

∫ t

0
(ω∗

e (τ ) − ωe(τ ))dτ (32)

where ω∗

e (t) is the set-point signal for the electrical velocity.

Mechanical velocity ωm(t) is related to ω∗

e (t) by the relationship: ωe = pωm.
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Outer-loop Controller Design

Simulation Results

In this simulation example, the parameters for the nonlinear model are given as
φmg = 0.125, Ld = 7e − 3, Lq = 7e − 3, R = 2.98, B = 11e − 5, p = 2, J = 0.47e − 4.
The closed-loop steady-state gain is at α = 0.9 for the inner-loop.
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Outer-loop Controller Design

Output Response Plots
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Figure 5: Closed-loop response of the angular electrical velocity. Key: line (1)
the actual velocity; line (2) the reference velocity.
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Outer-loop Controller Design

Control Signal Plots
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Figure 6: Closed-loop control signal responses (the d-axis and q-axis
voltages)
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Outer-loop Controller Design

Examples
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Outer-loop Controller Design

Summary of This Lecture

Configuration of control systems in terms of cascade control system;

Inner-loop control system design;

Outer-loop control system design;

Feedforward compensation.
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