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Linearization of Nonlinear Models

Introduction

One of the approaches to obtain the models for the control system design is
based on analysis of the system dynamics using first principles, such as mass
balance, Newton’s laws, current law and voltage law. The majority of these types
of models are nonlinear in nature.

Thus, in order to use them for the PID controller design or other linear time
invariant controller design, these nonlinear models need to be linearized around
the operating conditions of the system.
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Linearization of Nonlinear Models

The General Principle

Assume that the nonlinear models have the general form:

ẋ(t) = f [x(t), u(t), t ] (1)

where f [.] is a nonlinear function. The purpose of linearization is to find a linear
function (a set of linear functions) to describe the dynamics of the nonliear model
at a given operating condition.

Note that this linear model is obtained at a given operating condition.
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Linearization of Nonlinear Models

Linearization of Nonlinear Functions (i)

We will use Taylor series expansion to approximate a nonlinear function.

A single variable case. A function with variable x , f (x) can be expressed in
terms of Taylor series expansion as

f (x) = f (x0) +
df (x)

dx
|x=x0(x − x0) +

1
2

d2f (x)

dx2
(x − x0)2 + . . . (2)

if the function f (x) is smooth and its derivatives exist for all the orders.

Using first two terms in the Taylor series expansion leads to the approximation of
the original function f (x) at the specific point x0,

f (x) ≈ f (x0) +
df (x)

dx
|x=x0(x − x0) (3)

This first order Taylor series approximates the original nonlinear function f (x)
using the function evaluated at x0 and its first derivative at x = x0.

The approximation holds well in the vicinity of x = x0.
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Linearization of Nonlinear Models

Illustration of Linearization
Figure 1 illustrates an example of linear approximation of a nonlinear function where
x0 = 5.3, f (x0) = 140 and df (x)

dx |x=x0 = 85. It is seen that within the region where x is
close to x0, f (x) is closely approximated by the first order Taylor series expansion (3).
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Figure 1: Approximation of a nonlinear function at x0 = 5.3.
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Linearization of Nonlinear Models

Linearization of Nonlinear Functions (ii)

Intuitively, we can think of the original variable x as a ’large’ variable because it
covers a large region, and the perturbed variable x − x0 as a ’small’ variable
because it covers a small region around x0.

The term of ’linear’ comes from the second term of the right-hand side of the
equation for its linear relationship between f (x) and x − x0.

The first term is a constant, f (x0). If it is not zero, then it is not truly linear
because it violates the homogeneity and additivity conditions required for
linearity. In this case, on the (̇x − x0) and x − x0 plane, the function is a straight
line between (̇x − x0) and x − x0, but it will not pass through the origin.
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Linearization of Nonlinear Models

Linearization of Nonlinear Functions with Multiple
Variables (i)

If the nonlinear function f (x) contains n variables, meaning that
x =

[

x1 x2 . . . xn
]T

is a vector with dimension n, then the function is
approximated using the first n + 1 terms in the multivariable Taylor series expansion as

f (x1, x2, x3, . . . , xn) ≈ f (x0
1 , x0

2 , x0
3 , . . . , x0

n ) +
∂f (x)

∂x1
|x1=x0

1 ,x2=x0
2 ,...

(x1 − x0
1 )

+
∂f (x)

∂x2
|x1=x0

1 ,x2=x0
2 ,...

(x2 − x0
2 ) + . . . +

∂f (x)

∂xn
|x1=x0

1 ,x2=x0
2 ,...

(xn − x0
n ) (4)
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Linearization of Nonlinear Models

Linearization of Nonlinear Functions with Multiple
Variables (ii)

(4) is not linear, because it has a constant offset, which violates the homogeneity
and additivity conditions required for linearity.

In some applications, by appropriate selection of operating conditions, the
constant is equal to zero.

If this constant is not zero, it is regarded as a constant disturbance.

This is one of the important reasons why integrator is often required in a
feedback control system, which will overcome the effect of the offset in the
system.
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Linearization of Nonlinear Models

Linearization of Nonlinear Model(i)

The nonlinear models obtained from using first principles of the physical laws are
differential equations.

We assume that the nonlinear differential equation used to describe a physical
system takes the general form:

ẋ(t) = f (x(t), u(t), t) (5)

where x(t) is a vector that represents the state variables of dimension n and u(t)
is a vector for the control signals of dimension m.
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Linearization of Nonlinear Models

Linearization of Nonlinear Model(ii)

In the linearization of a nonlinear dynamic system, we will firstly choose the
constant vectors x0 =

[

x0
1 x0

2 . . . x0
n

]T
, and u0 =

[

u0
1 u0

2 . . . u0
m

]T
, and

apply the linearization procedure of the nonlinear functions as outlined in the
previous section.

The linearization of differential equations is basically to apply the linearization of
functions as outlined in the previous section to each term in the differential
equation.
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Linearization of Nonlinear Models

Steady-state Solutions

The constant vectors x0 and u0 play an important role in the linearized model.

To make the linearized system truly linear, these vectors need to be selected
carefully. The point of interest is called an equilibrium point These equilibrium
points in control system design and implementation are often referred to as
stationary points, which represent a steady-state solution to the dynamic
equation (5).

The equilibrium points satisfy the following steady-state solution of the nonlinear
differential equation (5):

ẋ(t) = f (x0, u0) = 0 (6)
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Linearization of Water Tank Model

Case Study: Nonlinear Water Tank Model (i)
Two cubic water tanks are connected in series. Water flows into the first tank
and flows out from the second tank. A pump controls the water in-flow rate
u1(t) to the first tank; and another pump controls the water out-flow rate u2(t)
from the second tank. Water flows from tank A to tank B, with a flow rate
fab(t). The units for the flow rate is m/sec and the units for the water level is
m.

Figure 2: Schematic of a double tank
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Linearization of Water Tank Model

Case Study: Nonlinear Water Tank Model (ii)

Using mass balance, the rate of change of water volume V1(t) in tank A is

dV1(t)
dt

= u1(t) − fab(t) (7)

The water volume can also be expressed as V1(t) = S1L1(t), where S1 is the
cross-sectional area of the tank A, and L1(t) is the water level in tank A.

The dynamic equation to describe the rate of change in the water level L1(t)
(tank A) is

S1
dL1(t)

dt
= u1(t) − fab(t) (8)

Likewise, the rate of change in the water level L2(t) is

S2
dL2(t)

dt
= fab(t) − u2(t) (9)

where S2 is the cross-sectional area for tank B.
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Linearization of Water Tank Model

Case Study: Nonlinear of Water Tank Model (iii)

Applying Bernoulli’s principle for small orifice, the flow rate fab is related to the
difference between the two water tank levels by

g(L1(t) − L2(t)) =
1
2

fab(t)
2 (10)

where g is acceleration due to gravity (= 9.81m/sec2); fab is the flow rate
(m/sec), leading to

fab(t) =
√

2g(L1(t) − L2(t)) (11)
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Linearization of Water Tank Model

Case Study: Nonliner Water Tank Model (iii)

By substituting (11) into (8) and (9), we obtain

dL1(t)
dt

= − 1
S1

√

2g(L1(t) − L2(t)) +
1
S1

u1(t) (12)

dL2(t)
dt

=
1
S2

√

2g(L1(t) − L2(t)) −
1
S2

u2(t) (13)

Both of these models are nonlinear.
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Linearization of Water Tank Model

Solution: Linearization of Water Tank Model (i)

In the linearization, the independent variables are L1(t), L2(t), u1(t) and u2(t).
We will linearize the two equations (12) and (13) separately in terms of those
independent variables.

We let L0
1 and L0

2 denote the operating points for the tanks.

The coefficients γ1 =

√
2g

S1
and γ2 =

√
2g

S2
are used to simplify the notation in both

(12) and (13).
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Linearization of Water Tank Model

Solution: Linearization of Water Tank Model (ii)

The first term in (12) is approximated by the first order Taylor series expansion as

γ1

√

L1(t) − L2(t) ≈ γ1

√

L0
1 − L0

2

+ γ1
∂(

√

L1(t) − L2(t))
∂L1

|L0
1,L0

2
(L1(t) − L0

1)

+ γ1
∂(

√

L1(t) − L2(t))
∂L2

|L0
1,L0

2
(L2(t) − L0

2) (14)

Note that

∂(
√

L1(t) − L2(t))
∂L1

|L0
1,L0

2
=

1
2

1
√

L0
1 − L0

2

(15)

∂(
√

L1(t) − L2(t))
∂L2

|L0
1,L0

2
= −1

2
1

√

L0
1 − L0

2

(16)
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Linearization of Water Tank Model

Solution: Linearization of Water Tank Model (iii)

Therefore, (14) is written as

γ1

√

L1(t) − L2(t) = γ1

√

L0
1 − L0

2 +
γ1

2
1

√

L0
1 − L0

2

(L1(t) − L0
1)

− γ1

2
1

√

L0
1 − L0

2

(L2(t) − L0
2) (17)

The second term in the differential equation (12) is already linear in relation to
u1(t), therefore, we keep it unchanged.
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Linearization of Water Tank Model

Solution: Linearization of Water Tank Model (iv)

By substituting the Taylor series approximation (17) into the differential equation
(12), we obtain the linearized model for water tank A (do not forget that there is a
negative sign):

dL1(t)
dt

= −γ1

√

L0
1 − L0

2 −
γ1

2
1

√

L0
1 − L0

2

(L1(t) − L0
1)

+
γ1

2
1

√

L0
1 − L0

2

(L2(t) − L0
2) +

1
S1

u1(t) (18)

Firstly, we notice that in order for the linearization to be valid, the operating
points L0

1 > L0
2.

Secondly, the first term is a constant that is not zero because L0
1 6= L0

2.

We can choose the steady-state value of u1(t) according to this constant.
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Linearization of Water Tank Model

Linearized Model for Water Tank

For this purpose, we re-write (18) as

dL1(t)
dt

= −γ1

2
1

√

L0
1 − L0

2

(L1(t) − L0
1)

+
γ1

2
1

√

L0
1 − L0

2

(L2(t) − L0
2) +

1
S1

(u1(t) − S1γ1

√

L0
1 − L0

2) (19)

To find the small signal model for the Tank A, we define the deviation variables as

L̃1(t) = L1(t) − L0
1; L̃2(t) = L2(t) − L0

2; ũ1(t) = u1(t) − S1γ1

√

L0
1 − L0

2

This leads to the linearized model for the Tank A as

dL̃1(t)
dt

= −γ1

2
1

√

L0
1 − L0

2

L̃1(t) +
γ1

2
1

√

L0
1 − L0

2

L̃2(t) +
1
S1

ũ1(t) (20)

Linearization of Tank B is left as an exercise
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Linearization of Water Tank Model

Discussions: Linearization of Water Tank Model

The coefficients to represent the operating conditions of the two tanks must be
positive and L0

1 > L0
2 in order for the linear models to be valid.

Note that the steady-state value of the control signal S1γ1

√

L0
1 − L0

2 is a function
of the system parameters S1, γ1. If there are errors in these parameters, then
there is an error in the steady-state value of the control signal. This error could
be modelled as an input disturbance. This is one of the important reasons why
integrator is needed in control system.
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Linearization of Water Tank Model

Steps in Linearization of Nonlinear Plant Model

Choose the operating conditions for the plant model.

Use Taylor series to approximate each nonlinear term in the plant model by
taking the derivative of the nonlinear function and calculate its value at the
operating points.

Collecting all the approximated linear terms to form the linearized model.
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Linearization of Water Tank Model

Exercise: Linearization of PMS Motor

A Permanent Magnetic Synchronous Motor (PMSM) is described by the differential
equations in the d-q rotating reference frame

did(t)
dt

=
1
Ld

(vd (t) − Rid(t) + ωe(t)Lq iq(t)) (21)

diq(t)
dt

=
1
Lq

(vq(t) − Riq(t) − ωe(t)Ld id(t) − ωe(t)φmg) (22)

dωe(t)
dt

=
p
J

(Te − B
p

ωe(t) − TL) (23)

Te =
3
2

pφmg iq (24)

where ωe is the electrical speed and is related to the rotor speed by ωe = pωm with p
denoting the number of pole pairs, vd and vq represent the stator voltages in the d-q
frame, id and iq represent the stator currents in this frame, and TL is load torque that is
assumed to be zero if no load is attached to the motor.
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