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Discretization of PID controllers (Position Form)

Overview: Procedure

1 In the implementation using position form, steady-state values of the control
signal and the output will be determined.

2 The differential equation used to capture the dynamics of PID controller will be
discretized.

3 The control signal will be calculated at every sampling instant.
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Discretization of PID controllers (Position Form)

The Steady-state Information Needed

In position form, the control signal u(t) for a PID controller is computed using the
equation,

u(t) = Kce(t) +
Kc

τI

∫ t

0
e(τ )dτ − KcτD

yf (t)
dt

(1)

where e(t) = r(t) − y(t) is the feedback error signal between the reference
signal r(t) and the output y(t), and yf (t) is the filtered output signal.

It is important to make it clear that all the signals used in the computation are not
the actual physical variables in numbers, instead they are the deviation variables
from the physical variables in a steady-state operation.

In other words, the control signal u(t), the reference signal r(t) and the output
signal y(t) represent the changes to the corresponding physical variables in
steady-state operation.
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Discretization of PID controllers (Position Form)

Steady-state Values Assigned

We determine a plant steady-state operation conditions through either
mathematical analysis or experimental evaluation. For instance, through
experiments and sensor/ actuator calibration, we understand in the room
temperature control example that 40 percent of the valve opening of the gas
furnace will correspond to 18◦C in room temperature.

If we wish to maintain the room temperature at 18◦C, the steady-state value of
the control signal Uss = 40 and Yss = 18.

If we were happy with the room temperature (r(t) = 0) and the doors and
windows remained closed, then there was no change to the room temperature
y(t) = 0 due to the steady operation of the gas furnace.
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Discretization of PID controllers (Position Form)

Steady-state Values Added/Subtracted

The position form of the PID controller is to directly calculate the deviation
control variable u(t) based on the feedback error e(t).

Therefore, when using the position form of PID controller for implementation, it is
vital to have a priori knowledge about the steady-state information of the control
signal and the output signal, so that the actual control signal will be computed as
uact(t) = u(t) + Uss, in reverse, the output signal y(t) = yact(t) − Yss.
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Discretization of PID controllers (Position Form)

Discretization of PID Controller

For simplicity of expression, we let the control signal

u(t) = uP(t) + uI(t) − uD(t)

where uP(t), uI(t) and uD(t) represent the proportional, integral and derivative
control terms, respectively.

We assume that the discretization occurs in a uniformly sampling interval ∆t ,
and the continuous-time t is sampled as t = 0, t1, t2, . . . , ti−1, ti , ti+1, . . . , .
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Discretization of PID controllers (Position Form)

Discretization of Proportional Term

The proportional term is easiest to be discretized. At an arbitrary time ti , the
proportional control term uP(ti) is calculated as

uP(ti) = Kc(r(ti) − y(ti)) (2)
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Discretization of PID controllers (Position Form)

Discretization of Integral Term

The integral control term uI(ti) requires numerical approximation for the integral
function, which is written as

uI(ti) =
Kc

τI

ti∑
tk =0

e(tk)∆t (3)

where
∫ t

0 e(τ )dτ ≈
∑ti

tk =0 e(tk)∆t .

We know

lim
∆t→0

ti∑
tk =0

e(tk)∆t =

∫ t

0
e(τ )dτ (4)

Therefore, the accuracy of the approximation increases as the sampling interval
∆t reduces.
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Discretization of PID controllers (Position Form)

Discretization of Derivative Term (i)

To find the derivative control term, we examine the Laplace transform of the
filtered derivative control term UD(s) in relation to the output Y (s):

UD(s) =
KcτDs
τf s + 1

Y (s)

=
1
τf

KcτDs
s + 1

τf

Y (s)

=
KcτD

τf

s + 1
τf

− 1
τf

s + 1
τf

Y (s)

=
KcτD

τf
Y (s) −

Kc τD
τ

2
f

s + 1
τf

Y (s) (5)

The inverse Laplace transform of first term in (5) gives the time domain response
KcτD

τf
y(t), which is easy to be discretized as KcτD

τf
y(ti) at sample time ti .
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Discretization of PID controllers (Position Form)

Discretization of Derivative Term (ii)

Let uf
D(t) denote the time domain response of the second term.

duf
D(t)
dt

+
1
τf

uf
D(t) = −

KcτD

τ 2
f

y(t) (6)

The solution of this differential equation gives us the term uf
D(t).

Let the derivative duf
D(t)
dt be represented by the first order approximation:

duf
D(t)
dt

≈
uf

D(t + ∆t) − uf
D(t)

∆t
(7)
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Discretization of PID controllers (Position Form)

Discretization of Derivative Term (iii)

Then at time t = ti , by substituting (7) into the differential equation (6), we obtain

uf
D(ti + ∆t) = uf

D(ti) −
1
τf

uf
D(ti)∆t −

KcτD

τ 2
f

y(ti)∆t (8)

Finally, the derivative control term is computed using

uD(ti) =
KcτD

τf
y(ti) + uf

D(ti) (9)

where uf
D(ti) is updated using the equation (8).
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Discretization of PID controllers (Position Form)

Key Points

Position form of PID controller implementation is to directly calculate the control
signal u(t).

Numerical approximation of integration and differentiation of the feedback error
leads to the discretization of the continuous time controller for digital
implementation.

Steady-state value of the control signal Uss needs to be added to u(t) to form the
actual control signal. Steady-state value of the output signal Yss needs to be
subtracted from the measurement signal to form y(t) for computation.

Without specification of steady-state information, we implicitly assumed that they
are zero, which could be correct or could be wrong.
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Discretization of PID controllers (Velocity Form)
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Discretization of PID controllers (Velocity Form)

Overview

1 In the implementation using velocity form, the derivative of the control signal is
determined first analytically.

2 The derivative is then discretized to give the difference of the control signal.

3 The control signal is then calculated using the past control signal adding
together the difference of the control signal.

4 When implementing using velocity form, the steady-state information of the
control signal and output signal is not required, which is one of the advantages
for this type of implementation.

5 Proportional controller and proportional-plus-derivative controller do not have a
velocity form, because they do not have an integral term required for this type of
implementation.
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Discretization of PID controllers (Velocity Form)

Derivative of the Control Signal

The Laplace transfer function of the control signal U(s) is in relation to the
feedback error E(s):

U(s) = Kc(1 +
1

τIs
)E(s)

=
KcsE(s) + Kc

τI
E(s)

s
(10)

From (10), we have

sU(s) = KcsE(s) +
Kc

τI
E(s) (11)

The inverse Laplace transform of (11) leads to the following differential equation:

u̇(t) = Kc ė(t) +
Kc

τI
e(t) (12)

This is termed ’velocity’ form because on the left-hand side of the equation the
derivative of the control signal is computed.
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Discretization of PID controllers (Velocity Form)

Discretization of PI Controller

Approximate u̇(t) and ė(t) at sample time ti :

u̇(ti) ≈
u(ti) − u(ti − ∆t)

∆t
(13)

ė(ti) ≈
e(ti) − e(ti − ∆t)

∆t
(14)

We obtain

u(ti) − u(ti − ∆t) = Kc(e(ti) − e(ti − ∆t)) +
Kc

τI
e(ti)∆t (15)

The computation of the control signal becomes

u(ti) = u(ti − ∆t) + Kc(e(ti) − e(ti − ∆t)) +
Kc

τI
e(ti)∆t (16)
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Discretization of PID controllers (Velocity Form)

Alternative Structure of PI Controller

If the proportional control term is only implemented on the output signal, a small
modification of (16) is to replace the differenced feedback error e(ti) − e(ti − ∆t)
with the differenced output signal −y(ti) + y(ti − ∆t).

As a result, the implementation of the alternative PI controller structure is based
on the computational equation,

u(ti) = u(ti − ∆t) + Kc(−y(ti) + y(ti − ∆t)) +
Kc

τI
e(ti)∆t (17)
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Discretization of PID controllers (Velocity Form)

Considering Steady-state Information (i)

Same as position form, all the signals in the control signal computation are the
deviation signals. They are relative to their steady-state values.

To this end, with the steady-state values of Uss, Yss and Rss, the actual signals
corresponding to the plant operation are

uact(ti) = u(ti) + Uss (18)

yact(ti) = y(ti) + Yss (19)

ract(ti) = r(ti) + Rss (20)

Adding the steady- state value of Uss to both sides of (17), adding and
subtracting Yss to the second term that corresponds to the proportional control
lead to its equivalent expression:

u(ti) + Uss = u(ti − ∆t) + Uss + Kc(−y(ti) − Yss + Yss + y(ti − ∆t))

+
Kc∆t

τI
(r(ti) − y(ti)) (21)
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Discretization of PID controllers (Velocity Form)

Considering Steady-state Information (ii)

We assume that the steady-state of the setpoint signal Rss is equal to the
steady-state of the output signal Yss, which is realistic for plant operations.

This assumption means that

r(ti) − y(ti) = r(ti) + Yss − Yss − y(ti) = ract(ti) − yact(ti)

The computational equation for the actual implementation of PI controller is,

uact(ti) = uact(ti −∆t)+Kc(−yact(ti)+yact(ti −∆t))+
Kc∆t

τI
(ract(ti)−yact(ti)) (22)
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Discretization of PID controllers (Velocity Form)

Considering Steady-state Information (iii)

The extension to the original PI structure in (16) follows from the same
assumption that the steady-state of the setpoint signal Rss is equal to the
steady-state of the output signal Yss.

Thus, the implementation equation for the original PI structure is

uact(ti) = uact(ti − ∆t) + Kc(ract(ti) − yact (ti)

− ract(ti − ∆t) + yact (ti − ∆t)) +
Kc∆t

τI
(ract(ti) − yact (ti)) (23)

Here the proportional control will directly act on the set-point change.
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Discretization of PID controllers (Velocity Form)

Discretization of Derivative Term (i)

The Laplace transform of the PID controller is

U(s) = KcE(s) +
Kc

τIs
E(s) −

KcτDs
τf s + 1

Y (s) (24)

The question is how the third term corresponding to the derivative control will be
discretized. From the transfer function of the derivative control,

UD(s) =
1
τf

KcτDs
s + 1

τf

Y (s) (25)

The differential equation that governs the relationship between the variables
uD(t) and y(t) is obtained as

duD(t)
dt

+
1
τf

uD(t) =
KcτD

τf

dy(t)
dt

(26)
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Discretization of PID controllers (Velocity Form)

Discretization of Derivative Term (ii)

By approximating

duD(t)
dt

≈
uD(t) − uD(t − ∆t)

∆t
;

dy(t)
dt

≈
y(t) − y(t − ∆t)

∆t
(27)

at time ti , the differential equation (26) becomes

uD(ti) − uD(ti − ∆t)
∆t

= −
1
τf

uD(ti) +
KcτD

τf

y(ti) − y(ti − ∆t)
∆t

(28)

By multiplying ∆t on both sides of the equation, and re- arranging, we obtain

(1 +
∆t
τf

)uD(ti) = uD(ti − ∆t) +
KcτD

τf
(y(ti) − y(ti − ∆t)) (29)
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Discretization of PID controllers (Velocity Form)

Steady-state Information for the Derivative Term

The steady-state of uD(t) is taken as zero, because derivative of a constant term
(steady-state) is zero.

By adding and subtracting the steady-state of the output value to (29), we obtain
the computation of the derivative control term using the actual output
measurement,

uD(ti) =
τf

τf + ∆t
uD(ti − ∆t) +

KcτD

τf + ∆t
(yact (ti) − yact (ti − ∆t)) (30)
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Discretization of PID controllers (Velocity Form)

Expression of Discretized PID in Velocity Form

The derivative of the control signal is expressed as

u̇(t) = Kcė(t) +
Kc

τI
e(t)− u̇D(t) (31)

With the proportional term on the feedback error signal, the control signal is
calculated as

uact(ti) = uact(ti − ∆t) + Kc(ract(ti) − yact (ti) − ract(ti − ∆t)

+ yact (ti − ∆t)) +
Kc∆t

τI
(ract(ti) − yact (ti)) − uD(ti) + uD(ti − ∆t) (32)

When implementing the proportional control directly on the output, the control
signal is

uact(ti) = uact(ti − ∆t) + Kc(−yact(ti) + yact (ti − ∆t))

+
Kc∆t

τI
(ract(ti) − yact(ti)) − uD(ti) + uD(ti − ∆t) (33)
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Discretization of PID controllers (Velocity Form)

Choice of Sampling Interval (i)

PID controllers are continuous-time controllers, which are designed based on
continuous-time models such as Laplace transfer functions.

In the implementation of this type of controllers, a sampling interval ∆t is
selected to compute the discrete-time control signal for digital implementation.

When ∆t is too large, there will be large numerical errors between the
continuous-time control signal (designed for) and the discrete-time signal
(actually implemented) due to discretization of derivatives and integral
operations.

Those large numerical errors will lead to closed-loop performance degradation,
and in the worst case, closed-loop instability.
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Discretization of PID controllers (Velocity Form)

Choice of Sampling Interval (ii)

So, when a PID control system becomes unstable in the implementation, the first
thing to check is if the sampling interval ∆t is too large.

The rough rule is that we choose sampling interval ∆t in relation to the desired
closed-loop bandwidth wn, in the order of 1

10wn
. A smaller ∆t may be required

when some constants in the system are much smaller.
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Discretization of PID controllers (Velocity Form)

Example

A second order system is described by the transfer function

G(s) =
−0.1

(s + 1)2
(34)

Design a PID controller with filter to control this plant. The desired closed-loop
polynomial is specified as (s2 + 2ξwns + w2

n )(s + λ1), where ξ = 0.707, wn = λ1 = 5.

Simulate the unit step closed-loop response using the discrete PID computational
algorithm with sampling interval ∆t chosen as 1

10wn
= 0.02 and 1

5wn
= 0.04. Illustrate

that when ∆t is increased to 0.1, the closed-loop system becomes unstable although
the continuous-time PID controller design produced a stable closed-loop system.
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Discretization of PID controllers (Velocity Form)

Solution

Using the pole-assignment controller design algorithm, we obtain the PID controller
parameters as

Kc = −245.66; τI = 0.59; τD = 0.176; τf = 0.066

Figure 1 compares the closed-loop responses with the three cases of the sampling
intervals. It is seen that the difference between the closed-loop responses using
∆t = 0.02 and 0.04 is negligible. However, when the sampling interval is increased to
0.1, the closed-loop system becomes unstable as shown in Figure 1.

Liuping Wang (RMIT) Part III: PID Controller Implementation with Anti-windup Mechanisms 30 / 59



Discretization of PID controllers (Velocity Form)

Responses
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Figure: Closed-loop response. Key: line (1) Closed-loop response with
∆t = 0.02; line (2) closed-loop response with sampling interval ∆t = 0.04;
line (3) Closed-loop response with sampling interval ∆t = 0.1.
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Discretization of PID controllers (Velocity Form)

Key Points

Implementation of PID controllers using velocity form does not requirement
steady-state information of control signal and output signal.

The actual control signal is computed using the actual plant measurement and
the actual set-point signal.

Sampling interval ∆t is the parameter used in the implementation stage for the
PID controllers. Sampling interval ∆t needs to be chosen properly in order to get
the controller work well.
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Anti-windup mechanisms
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Anti-windup mechanisms

Learning Objectives

1 Understanding the scenario of integrator wind-up.

2 Ability to implement a PID controller using position form that has an anti-windup
mechanism.
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Anti-windup mechanisms

Scenario of Integrator Windup (i)

Consider the integrating plus delay plant with the transfer function,

G(s) =
1.8e−30s

s(10s + 1)2
. (35)

The PI controller for this plant has proportional gain Kc = 0.0065 and integral
time constant τI = 244.5.

Simulate the closed-loop response for this PI control system with a unit step
set-point signal.

Supposing that the control signal amplitude is not to exceed 1.5× 10−3, illustrate
the scenario of integrator wind-up.
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Anti-windup mechanisms

Scenario of Integrator Windup (ii)

The simulation set-up is illustrated in the Simulink diagram, where a saturation
block is used to simulate the scenario of limits of control amplitude.

Both proportional and integral terms are implemented on the feedback error
signal.

We first set the limits in the saturation blocks to be larger (±3) than the
maximum and minimum of the control signal amplitude. The closed-loop system
behaves well.

By reducing the allowable control amplitude to 1.5 × 10−3, the actual control
signal to the plant, u, is limited. When this happens, the closed-loop response
becomes oscillatory.
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Anti-windup mechanisms

Response Plots
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Figure: Closed-loop responses). Key: line (1) Closed-loop response without
saturation; line (2) closed-loop response with saturation.
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Anti-windup mechanisms

Investigation of Windup Scenario
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Figure: Error signal and control signal in integrator windup. The controller output
signal (u1) in the Simulink diagram continued to grow (see Key: solid line) after the
actual control signal to the plant was limited (see Key: dash-dot line) because the
feedback error is positive. The amplitude of u1 reached its maximum when the
feedback error e(t) changes sign from positive to negative (see the top plot). The
magnitude of the control signal was gradually reducing as the magnitude of the error
increases, which is in the negative region.
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Anti-windup mechanisms

Summary of Integrator Windup Scenario

Integrator windup occurs when the amplitude of control signal is limited, and the
calculated control signal exceeds this limit.

In the position form when implementing a PI controller, the control signal is
calculated using the equation,

u(t) = Kce(t) +
Kc

τI

∫ t

0
e(τ )dτ (36)

This integral term will continue to grow in magnitude as long as the sign of the
feedback error remains the same (integration is about calculation of the area of
the curve). As a result, the control signal u(t) calculated will continue to grow as
long as the sign of the feedback error remains the same.

Because of the saturation, the actual control signal implemented on the plant is
not the same as the output of the controller when the saturation limits are
reached. The controller is not informed of what is actually happening in the plant.
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Anti-windup mechanisms

How to Avoid Windup

The integral function should be stopped when the saturation limits are reached.
Namely, the integration should be implemented using a stable transfer function
so that the output of the controller should not grow when the saturation limits are
reached.

The controller should be informed of what is actually happening in the plant.
Namely, the controller output should equal to the actual input to the plant.
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Anti-windup mechanisms

Principles of Anti-windup Mechanisms

There are many anti-windup mechanisms in PI controllers.

More or less, they have the same principles by implementing the PI controller
with a stable transfer function and letting the controller know what is actually
happening in the plant.
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Anti-windup mechanisms

An Anti-windup Realization (i)

A PI controller with transfer function is assumed to have

C(s) =
c1s + c0

s

The assumption for using this implementation is that the controller has a stable
zero, namely the ratio c0

c1
> 0, or τI is positive.

Then the controller transfer function can be written as

U(s)

E(s)
=

c1

1 − c0c1
c1(c1s+c0)

=
c1s + c0

s
.

In this implementation, there is a positive feedback used in the system (positive
feedback is seldom used, but here is an example).
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Anti-windup mechanisms

An Anti-windup Realization (ii)

-
�
��

- c1 - Σ -

�c0
c1(c1s+c0)

6

e(t) u(t)u0(t)+

+

Figure: PI controller (position form) with anti-windup mechanism. Σ represents the
saturation nonlinearity, which is defined by the following computation. If
umin < u0(t) < umax , then u(t) = u0(t); if u0(t) ≤ umin, then u(t) = umin; if u0(t) ≥ umax ,
then u(t) = umax .
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Anti-windup mechanisms

An Anti-windup Realization (iii)

When the saturation limits are not reached, Σ is a unity gain (u(t) = u0(t)), then
the transfer function from the error signal e to the control signal u is

U(s)

E(s)
=

c1

1 − c0c1
c1(c1s+c0)

=
c1s + c0

s
.

The integral action in this configuration is achieved by putting positive feedback
around a stable transfer function.

If the control signal reaches a limit, for instance, u(t) = Umax , because the
transfer function c0

c1(c1s+c0)
is stable by the assumption made, the feedback signal

c0
c1(c1s+c0)

will become a constant after a transient response.

With this action, the integral action will be stopped, also the controller calculation
is fully informed what is actually happening by this feedback link.
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Anti-windup mechanisms

Example

We use the same example as the one to illustrate windup scenario.

The parameters required for the anti-windup implementation are

c1 = 0.0065;c0 = 2.6585e − 005

Using the anti-windup mechanism, we simulated the closed-loop response in the
same conditions as before.
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Figure: Closed-loop response. Key: line (1) Closed-loop response without
anti-windup mechanism; line (2) closed-loop response with anti-windup mechanism.
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Anti-windup mechanisms

Summary

Integrator windup scenario is to do with the control signal saturation and it
occurs when the PI controller implementation uses a unstable realization and
when the actual control signal is not equal to the computed control signal.

To avoid integrator windup is a necessary consideration in the implementation of
PID controllers.

There are many strategies available for anti-windup mechanisms. One of the
commonly used mechanisms is discussed here, which is to implement a PI
controller using a positive feedback loop.
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Anti-windup mechanisms

Learning Objectives

Ability to implement a PID controller using velocity form that has anti-windup
mechanisms for

constraining the amplitude of the control signal
constraining the rate of change of the control signal.
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Anti-windup mechanisms

Anti-windup Mechanisms in Velocity Form of
PID:Overview

It is much straightforward to implement anti-windup mechanisms in velocity form
of PID controllers.

In the velocity form of PID controllers, not only the anti-windup scheme can be
readily implemented on the amplitude of the control signal, but also on the
derivative of the control signal.

Similarly, the two key points in implementation of anti-windup are to stop integral
action when the control signal reaches saturation and to make sure that the
actual control signal equals the control signal computed.
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Anti-windup mechanisms

Anti-windup Mechanism on Amplitude of the Control
Signal (i)

We assume that the actual control variable to the plant is limited by Umin and
Umax :

Umin ≤ uact(t) ≤ Umax

The equation used to calculate the actual control signal is

uact(ti) = uact(ti − ∆t) + Kc(−yact(ti) + yact (ti − ∆t))

+
Kc∆t

τI
(ract(ti) − yact(ti)) − uD(ti) + uD(ti − ∆t) (37)

All actual measurements of the physical variables are used in the updating of the
control signal, and the control signal computed is the physical variable to be
implemented.

Thus, the implementation procedure naturally satisfies one of the requirements
in an anti-windup mechanism that the actual control signal equal to the
computed control signal.
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Anti-windup mechanisms

Anti-windup Mechanism on Amplitude of the Control
Signal (ii)

How about the second requirement?

In order to stop the integration, when the actual control signal reaches the limit,
we impose the limits on the actual control signal with the computation that if
uact(ti) < Umin, then uact(ti) = Umin; if uact(ti) > Umax , then uact(ti) = Umax .

When the sample time ti moves one step forward, the uact(ti − ∆t) carries the
information of saturation at the previous sample time and the control signal
computation is automatically informed of the saturation.
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Anti-windup mechanisms

Implementation Steps

1 Calculate the actual control signal using

uact(ti) = uact(ti − ∆t) + Kc(−yact(ti) + yact (ti − ∆t))

+
Kc∆t

τI
(ract(ti) − yact(ti)) − uD(ti) + uD(ti − ∆t) (38)

2 Check if the control signal is within the limits

Umin ≤ uact(ti) ≤ Umax

If the constraints are satisfied, then this is the actual control signal to the plant. If
not, go to the next step,

3 If uact(ti) < Umin, then uact(ti) = Umin; if uact(ti) > Umax , then uact(ti) = Umax .

Liuping Wang (RMIT) Part III: PID Controller Implementation with Anti-windup Mechanisms 51 / 59



Anti-windup mechanisms

Anti-windup Mechanism for u̇(t) (i)

This set of limits are typically specified as

DUmin ≤ u̇(t) ≤ DUmax

In the computation, we calculate u̇(t) using the approximation,

u̇(t) ≈
u(ti) − u(ti − ∆t)

∆t

=
uact(ti) − uact(ti − ∆t)

∆t
(39)

as the current sample uact(ti) and the past sample uact(ti − ∆t) share the same
steady-state value.
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Anti-windup mechanisms

Implementation Steps

1 Calculate the actual control signal using

uact(ti) = uact(ti − ∆t) + Kc(−yact(ti) + yact (ti − ∆t))

+
Kc∆t

τI
(ract(ti) − yact(ti)) − uD(ti) + uD(ti − ∆t) (40)

2 Check if the derivative of the control signal is within the limits

DUmin ≤
uact(ti) − uact(ti − ∆t)

∆t
≤ DUmax

If the constraints are satisfied, then this is the actual control signal to the plant. If
not, we calculate the control signal using one of following steps.

If uact (ti )−uact (ti−∆t)
∆t < DUmin, then

uact (ti ) = uact (ti − ∆t) + DUmin∆t;

if uact (ti )−uact (ti−∆t)
∆t > DUmax , then

uact (ti) = uact (ti − ∆t) + DUmax∆t.
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Anti-windup mechanisms

Example

A DC motor model is given by the transfer function

G(s) =
0.5

(s + 2)s
(41)

where the input is current and the output is the angular position.

The requirement is that the angular position follows a ramp signal of a unit slope
without steady-state error, and the operational requirements are that the control
signal is within the limits of (−7, 5), and the derivative of the control signal is
within the limits of ±20. Design a PID controller with anti-windup mechanism for
this system.

The desired closed-loop performance is determined using the desired
closed-loop polynomial (s2 + 2ξwns + w2

n )(s + λ1)
2, where ξ = 0.707 and

wn = λ1 = 3.

Also, investigate the approach that uses a smaller controller gain to reduce both
|u(t)| and |u̇(t)| and compare the results with the anti-windup control.
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Anti-windup mechanisms

Solution

With this desired closed-loop performance, we design the PID controller using
pole-assignment controller design technique and obtain the controller
parameters as

Kc = 19.9831;τI = 1.0167; τD = 0.2061; τf = 0.1213.

In order to eliminate steady-state error in tracking a ramp signal, it is necessary
to use the PID controller structure with both proportional and integral terms
implemented on the feedback error, while the derivative term implemented on
the output.

What would be the problem if we implement the proportional control on y(t)?
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Anti-windup mechanisms

Responses
The anti-windup mechanism takes effect and the results are compared in Figure 6.
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Figure: Closed-loop response. Key: line (1) Closed-loop response without
limits; line (2) closed-loop response using anti-windup control with wn = 3;
line (3) reference signal.
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Anti-windup mechanisms

Without Anti-windup Mechanism

Without anti-windup control, we need to reduce the parameters wn and λ1 to
reduce the magnitudes of the control signal and the derivative of the control
signal.

By selecting wn = λ1 = 1, both control signal and the derivative of the control
signal are within the operational limits specified in the design.

The track performance is significantly deteriorated in comparison with the results
obtained from anti-windup control.
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Anti-windup mechanisms

Comparison Results
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Figure: Closed-loop response. Key: line (1) Closed-loop response without
limits (wn = 1); line (2) closed-loop response using anti-windup control with
wn = 3; line (3) reference signal.
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Anti-windup mechanisms

Summary

Anti-windup mechanism of PID controllers is necessary in the implementation of
all practical and industrial controllers, in order to ensure safety of the equipment.

If without anti-windup mechanism, we need to reduce the closed-loop bandwidth
and the controller gain so that the control signal is within the limits of safe
operation.

However, the anti-windup control, if implemented properly, will allow us to use a
higher gain in closed-loop control, with safety protection of the equipment.
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