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Preface

PID control systems are the fundamental building blocks of classical and modern control
systems. They have been used in the majority of industrial applications from chem-
ical process control, mechanical process control, electro-mechanical process control,
aerial vehicle control to electrical drive control and power converter control. Under-
standing these control systems and having the capability to design and implement them
are paramount to a control engineer.

There are several key reasons for the continuing applications of PID controllers.
1. Simplicity in the design and analysis. There are three parameters to be chosen in the

control systems. These parameters are easily understood and tuned by engineers.
2. Simplicity in the implementation. Although the PID control systems are designed

and analyzed in the continuous-time, implementation is performed in discrete-time
with control signal limits imposed.

3. The majority of the physical systems in the electrical, mechanical, aerospace and civil
engineering fields can be decomposed in terms of components of first order or second
order systems. For these first order and second order systems, the PID controller
is a natural candidate because of its simplicity in design and implementation. For
chemical process control, a complex system is often approximated using a first order
plus delay model and a PID controller is commonly used.

This book is to present learning materials for students, instructors and engineers
in various fields who wish to learn design, implementation and automatic tuning of
PID control systems. The book begins with the basics in PID control systems (see
Chapter 1), introducing the various PID control structures and the PID controller
tuning rules. Chapter 2 presents the necessary tools for closed-loop stability and
performance analysis and explains the roles of sensitivity functions in relation to distur-
bance rejection, reference following and measurement noise attenuation. In Chapter 3,
pole-assignment controller design methods are introduced for PID controllers and
resonant controllers that will track a sinusoidal reference signal and reject a sinusoidal
disturbance. Feedforward compensation is introduced in this chapter. Many analytical
examples and two MATLAB tutorials are given in this chapter to show the details of
the designs. Chapter 4 discusses how a PID controller can be implemented in real-time
with the topics of discretization, integrator windup problem, anti-windup mechanisms,
and other implementation issues. A MATLAB real-time function is provided for PID
controller implementation with anti-windup mechanism. Chapter 5 examines the PID
controller design and resonant controller design from a different angle to the previous
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chapters. It introduces the integral mode and resonant modes through disturbance
estimation. With the disturbance observer based approaches, the implementations
of these control systems naturally incorporate anti-windup mechanisms when the
control signal reaches its limit. MATLAB real-time functions are provided for the
implementation of the PID controller and resonant controller with anti-windup
mechanisms. In Chapter 6, PID control of nonlinear systems is discussed, which
includes the topics of linearization, case study of a ball and plate balancing system
with experimental validation, gain scheduled PID control systems and gain scheduled
disturbance observer based control systems. Chapter 7 presents cascade PID control
systems with the topics of cascade control system design, its roles in disturbance
rejection and overcoming actuator’s nonlinearities. Chapter 8 considers PID controller
design for complex systems using frequency response data, which includes the topics
of PID controller design using gain and phase margins, PID controller design using
two frequency points with a specification on the desired sensitivity function, and
empirical rules derived for PID control of integrator with time delay systems that have
a performance specification and corresponding gain and phase margin measurement.
MATLAB functions are given for the computation of the PID controller parameters
using two frequency response points. Chapter 9 presents automatic tuning of PID
controllers using relay feedback control. MATLAB real-time functions are created for
relay feedback control and used for the Simulink simulations. The Fourier analysis and
frequency sampling filter model are used, as two different methods, for the estimation
of plant frequency response with the data generated from relay feedback control. The
auto-tuners are created by linking the estimation to the PID controllers designed in
the frequency domain as presented in Chapter 8. MATLAB functions are presented
in a step-by-step manner for the estimation algorithms and for the auto-tuners. As
case studies, Chapter 10 applies the PID control system design and the auto-tuner to
multi-rotor unmanned aerial vehicles. This chapter is supported with experimental
validations.

The book is self-contained with MATLAB/Simulink tutorials and supported with sim-
ulation and experimental results. Control system simulation and experimental imple-
mentation are emphasized in the book materials. The MATLAB real-time functions
written for the use in Simulink simulations could be converted into C-codes for con-
trol system implementation with micro-controllers. For each section, there is a set of
questions for us to reflect on. Some of them are easy and straightforward while others
may require some thinking. At the end of each chapter, there is a set of problems for
practicing the design and simulation of the control systems.

The book is suited for readers who have completed first three years engineering studies
with some basic knowledge in block diagrams and Laplace transforms.

Liuping Wang
Melbourne, Australia
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1

Basics of PID Control

1.1 Introduction

This chapter will introduce the basic ideas of PID control systems. It starts with an intro-
duction to the roles of proportional control, integral control, and derivative control,
followed by an introduction to the various tuning rules developed over the past several
decades. These tuning rules are mainly developed for first order plus delay systems and
are simple to use. However, they do not, in general, guarantee satisfactory control system
performance. Simulation examples will be used to illustrate closed-loop performance.

This chapter is suitable for those who want to understand the very basics of PID con-
trol systems. By utilization of the tuning rules, it is possible to have an application of a
PID control system without further exploration.

1.2 PID Controller Structure

There are four types of controllers that belong to the family of PID controllers: the
proportional (P) controller, the proportional plus integral (PI) controller, the propor-
tional plus derivative (PD) controller and the proportional plus integral plus derivative
(PID) controller. To understand the roles of the controllers, in this section we will dis-
cuss each of the structures and the PID controller parameters. From the discussions,
we will establish some basic knowledge about how to use these controllers in various
applications.

1.2.1 Proportional Controller

The simplest controller is the proportional controller. With this term proportional, the
feedback control signal u(t) is computed in proportion to the feedback error e(t) with
the formula,

u(t) = Kce(t) (1.1)

where Kc is the proportional gain and the feedback error is the difference between the
reference signal r(t) and the output signal y(t) (e(t) = r(t) − y(t)). The block diagram for
the closed-loop feedback control configuration is shown in Figure 1.1 where R(s), E(s),
U(s), and Y (s) are the Laplace transforms of the reference signal, feedback error, control

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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2 1 Basics of PID Control

Kc G(s)
R(s) E(s) Y(s)U(s)+

−

Figure 1.1 Proportional feedback control
system.

signal, and output signal, respectively. G(s) represents the Laplace transfer function of
the plant.

Because of its simplicity, the proportional controller is often used in the cases when
little information about the system is available and the required control performance in
steady-state operation is not demanding. As the controller only involves one parameter
to be determined, it is possible to choose Kc without detailed information about the
plant.

One of the limitations of a simple proportional controller is that the steady-state error
of the closed-loop control system will not be completely eliminated. We illustrate this
point with the following example.

Example 1.1 Suppose that the plant is a first order system with the following transfer
function,

G(s) = 0.3
s + 1

(1.2)

with proportional controller Kc (Kc > 0). Suppose that the reference signal is a step signal
with amplitude 1 and its Laplace transform is R(s) = 1

s
. Find the steady-state value of the

output with respect to the reference signal.

Solution. From Figure 1.1, the closed-loop control system from the reference signal to the
plant output has the transfer function,

Y (s)
R(s)

=
KcG(s)

1 + KcG(s)
=

0.3Kc

s + 1 + 0.3Kc
. (1.3)

With any positive Kc, the closed-loop system is stable where its pole is determined by the
solution of the polynomial equation1,

s + 1 + 0.3Kc = 0 (1.4)

which is −1 − 0.3Kc.
The Laplace transform of the output, Y (s), is

Y (s) =
0.3Kc

s + 1 + 0.3Kc
R(s) =

0.3Kc

s(s + 1 + 0.3Kc)
. (1.5)

where R(s) = 1
s
. Applying final value theorem to the stable closed-loop system, we

calculate

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s ×
0.3Kc

s(s + 1 + 0.3Kc)
=

0.3Kc

1 + 0.3Kc
. (1.6)

1 This polynomial equation is called a closed-loop characteristic equation.
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1.2 PID Controller Structure 3

Figure 1.2 Closed-loop step response of a
proportional control system (Example 1.1).
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For any value of 0 < Kc < ∞, limt→∞y(t) ≠ 1, i.e. not equal to the desired value at the
steady state response. Figure 1.2 shows the closed-loop step response with the proportional
controller Kc = 8 and Kc = 80, respectively. It is seen that with the increased proportional
gain Kc, the closed-loop response speed increases and the steady-state value becomes
closer to the desired value 1.

1.2.2 Proportional Plus Derivative Controller

In many applications, a proportional controller Kc is not sufficient to achieve a
particular control objective such as stabilization or producing adequate damping for
the closed-loop system. For instance, for a double integrator system with the transfer
function:

G(s) = K
s2 (1.7)

the closed-loop control system with a proportional controller Kc has a transfer function
Y (s)
R(s)

=
KcK

s2 + KcK
which has a pair of closed-loop poles determined by the solutions of the polynomial
equation:

s2 + KcK = 0.

These poles are at ±j
√

KcK . Thus, no matter what choice we make for Kc, the system
still behaves in a sustained oscillatory manner because the pair of closed-loop poles are
on the imaginary axis of the complex plane.

Now, assuming that we will additionally take the derivative of the feedback error signal
into the control signal calculation, this leads to

u(t) = Kce(t) + Kc𝜏Dė(t) (1.8)

where 𝜏D is the derivative control gain.
The Laplace transfer function of (1.8) is calculated as

U(s)
E(s)

= Kc + Kc𝜏Ds.



�

� �

�

4 1 Basics of PID Control

Kc +Kds G(s)
R(s) E(s) Y(s)U(s)+

−

Figure 1.3 Proportional plus derivative
feedback control system (Kd = Kc𝜏D).

This is what we called a proportional plus derivative (PD) controller.
The closed-loop feedback control configuration for a PD controller is shown in

Figure 1.3. For the double integrator system (1.7), with the derivative term included in
the controller, then the closed-loop transfer function becomes

Y (s)
R(s)

=
(Kc + Kc𝜏Ds)G(s)

1 + (Kc + Kc𝜏Ds)G(s)
(1.9)

=
KcK(1 + 𝜏Ds)

s2 + KcK𝜏Ds + KcK
. (1.10)

The closed-loop poles are determined by the solutions of the characteristic polynomial
equation as

s2 + KcK𝜏Ds + KcK = 0

which are

s1,2 =
−KcK𝜏D ±

√
(KcK𝜏D)2 − 4KcK

2
.

Clearly, we can choose the values of Kc and 𝜏D to achieve the desired closed-loop per-
formance.

It is worthwhile emphasizing that almost without exception, the derivative term is dif-
ferent from the original form Kc𝜏Ds in the implementation. This is because the derivative
term Kc𝜏D(

dr(t)
dt

− dy(t)
dt

) is not practically implementable and the differentiation of the
output signal y(t) leads to amplification of the measurement noise. Thus, there are a few
modifications with regard to the derivative terms. Firstly, in order to avoid the prob-
lem caused by a step reference trajectory change (the so-called derivative kick problem
(Hägglund (2012))), the derivative action is only implemented on the output signal y(t).
Secondly, in order to avoid amplification of the measurement noise, a derivative filter is
in a companionship with the derivative term Kc𝜏Ds.

A commonly used derivative filter is a first order filter and has its time constant linked
as a percentage to the actual derivative gain 𝜏D in the form:

FD(s) =
1

𝛽𝜏Ds + 1
(1.11)

where 𝛽 is typically chosen to be 0.1 (10%). 𝛽 is chosen to be larger if the measurement
noise is severe.

With the derivative filter FD(s), a typical PD controller output is calculated as

u(t) = Kc(r(t) − y(t)) − Kc𝜏D
dyf (t)

dt
(1.12)
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Figure 1.4 PD controller structure in
implementation. Kc G(s)

KcτDs

βτDs+1

R(s)
+

+

− −

Y(s)U(s)

where yf (t) is the filtered output response using (1.11). In a Laplace transform, the con-
trol signal is expressed as

U(s) = Kc(R(s) − Y (s)) −
Kc𝜏Ds
𝛽𝜏Ds + 1

Y (s). (1.13)

Figure 1.4 shows the block diagram used for implementation of a PD controller with a
filter.

If the derivative filter was not considered in the design, there is a certain degree of
performance uncertainty due to the introduction of the filter. This may not be ideal for
many applications. Designing a PD controller with the filter included will be discussed
in Section 3.4.1.

1.2.3 Proportional Plus Integral Controller

A proportional plus integral (PI) controller is the most widely used controller among
PID controllers. With the integral action, the steady-state error that had existed with the
proportional controller alone (see Example 1.1) is completely eliminated. The output of
the controller u(t) is the sum of two terms, one from the proportional function and the
other from the integral action, having the form,

u(t) = Kce(t) +
Kc

𝜏I ∫

t

0
e(𝜏)d𝜏 (1.14)

where e(t) = r(t) − y(t) is the error signal between the reference signal r(t) and the out-
put y(t), Kc is the proportional gain, and 𝜏I is the integral time constant. The parameter
𝜏I is always positive, and its value is inversely proportional to the effect of the integral
action taken by the PI controller. A smaller 𝜏I will result in a stronger effect of the integral
action.

The Laplace transform of the controller output is

U(s) = KcE(s) +
Kc

𝜏I s
E(s) (1.15)

with E(s) being the Laplace transform of the error signal e(t). With this, the Laplace
transfer function of the PI controller is expressed as

C(s) = U(s)
E(s)

=
Kc(𝜏I s + 1)

𝜏I s
(1.16)

Figure 1.5 shows a block diagram of the PI control system.
The example below is used to illustrate closed-loop control with a PI controller. For

comparison purpose, we use the same plant as that used in Example 1.1.
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Kc(τIs+1)

τIs
G(s)

R(s) E(s) Y(s)U(s)+

−

Figure 1.5 PI control system.

Example 1.2 Assume that the plant is a first order system with the transfer function:

G(s) = 0.3
s + 1

(1.17)

the PI controller has the proportional gain Kc = 8, and the integral time constant 𝜏I = 3
and 0.5 respectively. Examine the locations of the closed-loop poles. With the reference
signal r(t) as a unit step signal, find the steady-state value of the closed-loop output y(t).

Solution. We calculate the closed-loop transfer function between the reference and out-
put signals:

Y (s)
R(s)

= C(s)G(s)
1 + C(s)G(s)

. (1.18)

With C(s) given in (1.16) and G(s) in (1.17), we have

Y (s)
R(s)

=
0.3Kc𝜏Is + 0.3Kc

𝜏Is2 + 𝜏I(1 + 0.3Kc)s + 0.3Kc
. (1.19)

The closed-loop poles of this system are determined by the solutions of the closed-loop
characteristic equation,

𝜏Is2 + 𝜏I(1 + 0.3Kc)s + 0.3Kc = 0 (1.20)

which are

s1,2 = −
1 + 0.3Kc

2
± 1

2

√

(1 + 0.3Kc)2 −
1.2Kc

𝜏I
. (1.21)

If the quantity

(1 + 0.3Kc)2 −
1.2Kc

𝜏I
= 0

then there are two identical real poles located at

s1,2 = −
1 + 0.3Kc

2
.

If the quantity

(1 + 0.3Kc)2 −
1.2Kc

𝜏I
> 0

then there are two real poles located at

s1,2 = −
1 + 0.3Kc

2
± 1

2

√

(1 + 0.3Kc)2 −
1.2Kc

𝜏I
.
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If the quantity

(1 + 0.3Kc)2 −
1.2Kc

𝜏I
< 0

then there are two complex poles located at

s1,2 = −
1 + 0.3Kc

2
± j 1

2

√
1.2Kc

𝜏I
− (1 + 0.3Kc)2.

The closed-loop system is stable as long as Kc is positive and 0 < 𝜏I < ∞.
Applying the final value theorem, we calculate

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

s ×
0.3Kc𝜏Is + 0.3Kc

𝜏Is2 + 𝜏I(1 + 0.3Kc)s + 0.3Kc

1
s

=
0.3Kc

0.3Kc
= 1, (1.22)

where the steady-state value is equal to the reference signal, and it is independent of the
value of integral time constant 𝜏I. Figure 1.6 shows for the same Kc = 8 as in Example 1.1
the closed-loop step response with 𝜏I = 3 and 𝜏I = 0.5, respectively. It is seen that as 𝜏I
reduces, the closed-loop response speed becomes faster. Nevertheless, the steady-state
responses with both 𝜏I values are equal to one.

It is often the case that the output of a PI control system exhibits overshoot to a step
reference signal. The percentage of overshoot increases as higher control performance
demanded. This may cause a conflict in the PI control performance specifications: on
the one hand a fast control system response is desired, and yet on the other hand, the
overshoot is not desirable when step reference changes are performed. The overshooting
problem in reference change could be reduced by a small change in the configuration
of the PI controller. This small change is to put the proportional control on the output
signal y(t), instead of the feedback error e(t) = r(t) − y(t). More specifically, the control
signal u(t) is calculated using the following relation,

u(t) = −Kcy(t) +
Kc

𝜏I ∫

t

0
(r(𝜏) − y(𝜏))d𝜏. (1.23)

Figure 1.6 Closed-loop step response of a
PI control system (Example 1.2).
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G(s)

Kc

Kc

τIs

R(s)
+

+

− −

Y(s)U(s) Figure 1.7 IP controller structure.

Applying a Laplace transform to this equation leads to the Laplace transform of the
controller output in relation to the reference and the output as

U(s) = −KcY (s) +
Kc

𝜏Is
(R(s) − Y (s)). (1.24)

Figure 1.7 shows a block diagram of this PI closed- loop control configuration. This
type of implementation is called an IP controller in the literature, which is an alternative
PI controller configuration. In Section 2.4, this PI controller structure is examined in the
context of a reference filter within the framework of a two degrees of freedom control
system. To demonstrate how this simple modification in the PI controller configuration
can reduce the overshoot effect, we examine the following example.

Example 1.3 Assume that the plant is described by the transfer function:

G(s) = 1
s(s + 1)3 (1.25)

and the PI controller has the parameters: Kc = 0.56, 𝜏I = 8 2. Find the closed-loop transfer
function between the reference signal R(s) and the output signal Y (s) for the original PI
controller structure (see Figure 1.5) and the IP controller structure (see Figure 1.7), and
compare their closed-loop step responses.

Solution. With the PI controller in the original structure, the closed-loop transfer func-
tion between the reference signal R(s) and the output signal Y (s) is calculated using,

Y (s)
R(s)

= C(s)G(s)
1 + C(s)G(s)

. (1.26)

By substituting the plant transfer function (1.25) and the PI controller structure (1.16),
the closed-loop transfer function is

Y (s)
R(s)

=
Kc(𝜏Is + 1)

𝜏Is2(s + 1)3 + Kc(𝜏Is + 1)
. (1.27)

With the PI controller in the IP structure, the Laplace transform of the control signal U(s)
is defined by (1.24). By substituting this control signal into the Laplace transform of the
output Y (s) via the following equation,

Y (s) = 1
s(s + 1)3 U(s) (1.28)

re-grouping and simplification lead to the closed-loop transfer function:
Y (s)
R(s)

=
Kc

𝜏Is2(s + 1)3 + Kc(𝜏Is + 1)
. (1.29)

2 This PI controller was designed using frequency response data in Wang and Cluett (2000).
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Figure 1.8 Closed-loop step response of
PI control system (Example 1.3). Key: line
(1) response from the original structure;
line (2) response from the IP structure.
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By comparing the closed-loop transfer function (1.27) from the original PI controller struc-
ture with the one (1.29) from the alternative structure, we notice that both transfer func-
tions have the same denominator, however, the one from the original structure has a zero
at − 1

𝜏I
. Because of this zero, the original closed-loop step response may have an overshoot.

Indeed, the closed-loop step responses for both structures are simulated and compared
in Figure 1.8, which shows that the original PI closed-loop control system has a large
overshoot; in contrast, the IP closed-loop control system has reduced this overshoot. The
penalty for reducing the overshoot is the slower reference response speed.

The closed-loop transfer function obtained with IP controller structure can also be inter-
preted as a two degrees of freedom control system with a reference filter H(s) = 1

𝜏Is+1
. This

topic will be further discussed in Section 2.4.2.

Another form of PI controller, perhaps more convenient for model-based controller
design as in Chapter 3, is described by:

C(s) =
c1s + c0

s
(1.30)

This form of PI controller is identical to the original PI controller structure when the
parameters of Kc and 𝜏I are selected as

Kc = c1; 𝜏I =
c1

c0
(1.31)

1.2.4 PID Controllers

A PID controller consists of three terms: the proportional (P) term, the integral (I) term,
and the derivative (D) term. In an ideal form, the output u(t) of a PID controller is the
sum of the three terms,

u(t) = Kce(t) +
Kc

𝜏I ∫

t

0
e(𝜏)d𝜏 + Kc𝜏D

de(t)
dt

(1.32)

where e(t) = r(t) − y(t) is the feedback error signal between the reference signal r(t) and
the output y(t), and 𝜏D is the derivative control gain. The Laplace transfer function of
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the PID controller is
U(s)
E(s)

= Kc(1 + 1
𝜏I s

+ 𝜏Ds). (1.33)

If the design is sound, the sign of 𝜏D is positive. If the sign of 𝜏D is negative, the derivative
control term is to be neglected and instead a PI controller should be chosen.

Analogously to the proportional plus derivative controller described in Section 1.2.2,
for most of the applications the derivative control is implemented on the output only
with a derivative filter. For this reason, the control signal U(s) is expressed in the follow-
ing form:

U(s) = Kc(1 + 1
𝜏Is

)(R(s) − Y (s)) −
Kc𝜏Ds
𝛽𝜏Ds + 1

Y (s). (1.34)

Figure 1.9 shows the block diagram of the PID controller structure.
To reduce the overshoot in output response to a step reference change, the propor-

tional term in the PID controller may also be implemented on the plant output. In this
case, the control signal is calculated using

u(t) = −Kcy(t) +
Kc

𝜏I ∫

t

0
(r(𝜏) − y(𝜏))d𝜏 − Kc𝜏D

dyf (t)
dt

. (1.35)

Accordingly, the Laplace transform of the control signal is expressed as

U(s) = −KcY (s) +
Kc

𝜏Is
(R(s) − Y (s)) −

Kc𝜏Ds
𝛽𝜏Ds + 1

Y (s)

=
Kc

𝜏Is
(R(s) − Y (s)) −

Kc(𝜏D(𝛽 + 1)s + 1)
𝛽𝜏Ds + 1

Y (s). (1.36)

Figure 1.10 shows a block diagram of the alternative PID controller structure (called
an IPD controller).

The example below is used to illustrate the effect of the derivative term in the
closed-loop control. The starting point is the PI controller designed in Example 1.3,
based on which a derivative term is introduced.

Kc(1 + 1
τIs

) Plant

KcτDs

βτDs+1

R(s)

+
− −

Y(s)U(s)+ Figure 1.9 PID controller structure.

Plant

Kc(τD(β+1)s+1)

βτDs+1

R(s)

+
− −

Y(s)U(s)+Kc

τIs

Figure 1.10 IPD controller structure.
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Example 1.4 Suppose that the plant is described by the transfer function:

G(s) = 1
s(s + 1)3 (1.37)

and the PI part of the controller has the parameters: Kc = 0.56, 𝜏I = 8. Choosing 𝜏D =
0.1 and 1, find the closed-loop transfer function for the PID control system shown in
Figure 1.9 and simulate its closed-loop performance. Also, find the closed-loop transfer
function of the IPD control system shown in Figure 1.10 and simulate its closed-loop step
response.

Solution. The control signal from Figure 1.9 has the Laplace transform given by
Equation (1.34). Substituting U(s) into the following equation,

Y (s) = 1
s(s + 1)3 U(s) (1.38)

re-grouping and re-arranging lead to the closed-loop transfer function:

Y (s)
R(s)

=
Kc(𝜏Is + 1)(𝛽𝜏Ds + 1)

𝜏Is2(s + 1)3(𝛽𝜏Ds + 1) + Kc(𝜏Is + 1)(𝛽𝜏Ds + 1) + Kc𝜏I𝜏Ds2 . (1.39)

There are two zeros in the closed-loop transfer function: − 1
𝜏I

caused by the integral con-
trol, and − 1

𝛽𝜏D
caused by the derivative control. Figure 1.11(a) shows the closed-loop step

responses for 𝜏D = 0.1 and 𝜏D = 1 respectively. With the increase in 𝜏D, the oscillation
in the closed-loop response is reduced. However, there is a large overshoot in the output
response.

Using the IPD structure as shown in Figure 1.10, we calculate the closed-loop transfer
function by using the Laplace transform of the controller output given in Equation (1.36).
Substituting this control signal into the plant output (see Equation (1.38)), the closed-loop
transfer function is

Y (s)
R(s)

=
Kc(𝛽𝜏Ds + 1)

𝜏Is2(s + 1)3(𝛽𝜏Ds + 1) + Kc(𝜏Is + 1)(𝛽𝜏Ds + 1) + Kc𝜏I𝜏Ds2 . (1.40)
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Figure 1.11 Step responses of PID control system (Example 1.4). (a) Responses for PID structure.
(b) Responses for the IPD structure. Key: line (1) 𝜏D = 0.1, line (2) 𝜏D = 1 (Kc = 0.56, 𝜏I = 8).
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With this implementation, the denominator of the closed-loop transfer function is
the same; however, there is only one zero at − 1

𝛽𝜏D
caused by the derivative control.

Figure 1.11(b) shows the closed-loop step responses with an IPD controller. In comparison
with the responses from the previous case, it is seen that the overshoot in the closed-loop
responses has been eliminated, however their response speed becomes slower.

1.2.5 The Commercial PID Controller Structure

In the PID controller design, the following structure is commonly used for determining
the parameters Kc, 𝜏I and 𝜏D, where the controller transfer function C(s) is expressed as

C(s) = Kc(1 + 1
𝜏I s

+ 𝜏Ds). (1.41)

However, as demonstrated in this section, there are several variations in PID controller
structure available for the realization of the control system, and different realization
leads to different control system performance with the same set of PID controller
parameters.

In order to be more flexible to the users, the commercial PID controllers (see Alfaro
and Vilanova (2016)) from manufacturers such as ABB, Siemens, and National Instru-
ments take the following general form with the Laplace transform of the control signal:

U(s) = Kc

(
𝛾1R(s) − Y (s) + 1

𝜏Is
(R(s) − Y (s)) +

𝜏Ds
𝛽𝜏Ds + 1

(𝛾2R(s) − Y (s))
)
. (1.42)

where the coefficients 0 ≤ 𝛾1 ≤ 1 and 0 ≤ 𝛾2 ≤ 1 are for the weighting on the reference
signal, and as before, the coefficient 0 ≤ 𝛽 ≤ 1 determines the appropriate derivative
filtering action. There are several special combinations of the parameters 𝛾1, 𝛾2, and 𝛽
that are commonly encountered.

1. When 𝛾1 = 1, 𝛾2 = 0, and 0 ≤ 𝛽 ≤ 1, the PID controller becomes identical to the case
shown in Figure 1.9, where the derivative control with filter is implemented on the
output only.

2. When 𝛾1 = 0 and 𝛾2 = 0, the PID controller becomes the IPD controller shown in
Figure 1.10, where both the proportional control and derivative control are imple-
mented on the output only.

3. When 𝛾1 = 1, 𝛾2 = 1, and 0 ≤ 𝛽 ≤ 1, the implementation of the PID controller puts
proportional control, integral control, and derivative control with filter on the feed-
back error R(s) − Y (s).

4. When 𝛾1 = 1, 𝛾2 = 1, and 𝛽 = 0, the PID controller becomes the case where no deriva-
tive filter is used in the implementation. This will severely amplify the measurement
noise.

It is worthwhile emphasizing that the parameters 𝛾1 and 𝛾2 only affect the closed-loop
response to the reference signal R(s) and they play no role in the closed-loop stability.
We have examined the cases where 𝛾1 and 𝛾2 are either 0 or 1. However, we can extend
the results to the situations where the parameters are between 0 and 1 and expect a
compromised result. Upon understanding their roles, we can choose the appropriate
coefficients according to the actual applications.
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1.2.6 Food for Thought

1. The PID controllers are expressed in terms of the parameters Kc, 𝜏I and 𝜏D. What are
the possible signs of Kc, 𝜏I and 𝜏D?

2. When you increase the magnitude of Kc, do you expect the action of proportional
control to decrease or increase? When you increase 𝜏I , do you expect the action of
integral control to decrease or increase? when you increase 𝜏D, do you expect the
action of derivative control to decrease or increase?

3. What are the roles of integrator in a PID controller?
4. Can you implement the integrating control on output only? If not, explain the reason.
5. In many applications, we will put the proportional control on the feedback error,

which is the original PI controller. Can you reduce the overshoot by using a ramp
reference signal in the early part of the response?

1.3 Classical Tuning Rules for PID Controllers

This section will discuss the classical tuning rules that have existed for the past several
decades and have withstood the test of time. Although all tuning rules are rule-based,
there is still certain knowledge assumed for the system to be controlled.

1.3.1 Ziegler–Nichols Oscillation Based Tuning Rules

Ziegler–Nichols oscillation based tuning rules are to use closed-loop controlled testing
to obtain the critical information needed for determining the PID controller parameters.

In the closed-loop control testing, the controller is set to proportional mode without
integrator and derivative action. The sign of Kc must be the same as the steady-state gain
of the plant for the reason of introducing negative feedback in the control system. With
the proportional closed-loop control, the feedback gain Kc is set to be a very small value
in magnitude to begin the experiment. The value of Kc is gradually increased until the
control signal u(t) exhibits sustained oscillation (see Figure 1.12). There are two parame-
ters obtained from this test: the value of Kc that has caused the oscillation and the period
of the oscillation. We denote this particular Kc as Ko and the period as Po. With these
two parameters, the PID controller parameters are presented for the Ziegler–Nichols
tuning rules in Table 1.1.

Figure 1.12 Sustained closed-loop oscillation (control
signal).
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Table 1.1 Ziegler–Nichols tuning rule using
oscillation testing data.

Kc 𝝉I 𝝉D

P 0.5Ko

PI 0.45Ko
Po

1.2

PID 0.60Ko
Po

2
Po

8

A proportional control will not cause sustained oscillation for first order plant and
second order plant with a stable zero. Thus, the tuning rule is not applicable to these
two classes of stable plants. The following example is used to illustrate an application of
the tuning rule.

Example 1.5 Assume that a continuous time plant has the Laplace transfer function:

G(s) = s − 2
(s + 1)(s + 2)(s + 3)

. (1.43)

Find the PI and PID controller parameters using Ziegler–Nichols tuning rule and simu-
late the closed-loop control systems.

Solution. We build a Simulink simulation program for proportional control as
illustrated in Figure 1.1. Since this system has a negative steady-state gain of − 1

3
,

so the feedback control gain should be negative.3 Beginning the tuning process by
setting Kc = −1 and decreasing gradually to Kc = −7.5, the closed-loop control system
exhibits sustained oscillation as shown in Figure 1.12. From this figure, the period of
oscillation reads as 3.35. Based on Table 1.1, the proportional gain for the PI controller
is Kc = 0.45 × (−7.5) = −3.38 and the integral time constant 𝜏I =

3.35
1.2

= 2.79. The
proportional gain for the PID controller is Kc = 0.6 × (−7.5) = −4.5, 𝜏I =

3.35
2

= 1.68,
and 𝜏D = 3.35

8
= 4.2. The PI and PID control systems are simulated where the reference

signal is a unit step signal. Figure 1.13 compares the closed-loop output responses based
on the PI and PID controller structures. Here the derivative control is implemented on
the output only with a filter time constant 0.1𝜏D. It is seen that with the derivative term,
the closed-loop oscillation existing in the PI controller is reduced.

In general, the Ziegler and Nichols tuning rules using the oscillation method lead to
quite aggressive responses with oscillations in closed-loop responses that are undesir-
able for many control applications. In Tyreus and Luyben (1992), a smaller Kc and a
larger 𝜏I are recommended to reduce the oscillations, which have the following values:

Kc = 0.313Ko; 𝜏I = 2.2Po.

It is important to point out that generating sustained oscillation by increasing the con-
troller gain is not a safe operation because a small error in the tuning process could

3 We evaluate the steady-state gain of the transfer function by letting s = 0 and calculating the value of the
transfer function.
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Figure 1.13 Comparison of closed-loop
output response using Ziegler–Nichols rules
(Example 1.5). Key: line (1) PI control;
line (2) PID control.
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cause the closed-loop system to become unstable. This unsafe procedure is replaced by
using relay feedback control in Chapter 9, which also produces a sustained closed-loop
oscillation.

1.3.2 Tuning Rules based on the First Order Plus Delay Model

The majority of tuning rules existing in the literature are based on a first order plus delay
model, which has the following transfer function:

G(s) =
Ksse−ds

𝜏Ms + 1
(1.44)

where Kss is the steady-state gain of the system, d is the time delay, and 𝜏M is the time
constant. This is mainly because the primary applications of tuning rules are for process
control where typically the process is stable with time delay. There are many methods
available for obtaining a first order plus delay model. Among them is an incredibly simple
procedure that is called fitting a reaction curve. This reaction curve is the so-called step
response test.

The reaction curve is obtained by performing a plant step response test in open-loop
operation, therefore we assume that the plant is stable, although it could be applied to
integrating plant with caution. When performing this test, the plant input signal u(t)
takes a step change from an initial constant value U0 to a normal operation value, Us; the
measurement of the plant output signal y(t) in response to the step input change gives
us the plant step response test data or the reaction curve. The response test completes
when the value of the output signal reaches a constant or the signal fluctuates around
a constant value due to noise and disturbances. Figure 1.14 illustrates a typical set of
step response testing data, with the step change occurring at time t = 0. Figure 1.14(a)
shows that the input takes a step change from the initial value U0 to the final value Us and
Figure 1.14(b) shows the actual output response from the steady-state output position
Y0 to the steady-state output position Ys.

The plant information obtained from the test includes the steady-state gain, defined as

Kss =
Ys − Y0

Us − U0
. (1.45)
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Figure 1.14 Step response data. (a) Input signal. (b) Output signal. Key: line (1) the output response;
line (2) steady-state output position before the response (Y0); line (3) steady-state output position in
completion of the response (Ys).

The time delay d is shown in the figure, which is the delayed time when the output
responds to the change in the input signal. The parameter time delay d reflects the sit-
uation that the output response remains unchanged despite the step input signal being
injected. Thus, it is estimated using the time difference between when the step refer-
ence change occurred (t = 0 for this figure) and when the output response moved away
from its steady-state value (see the time interval in Figure 1.14(b) marked with the first
set of arrows). A line with maximum slope is drawn on Figure 1.14(b), which is inter-
sected with the line corresponding to the indicator of Ys. The intersecting point shown
in Figure 1.14(b) determines the value of 𝜏M that is a measurement of the dynamic
response time.

Alternatively, because the step response of a first order system (G(s) = Kss

𝜏Ms+1
) to a unit

step input signal can be expressed as

g(t) = Kss(1 − e
−t
𝜏M )

and when the variable time t = 𝜏M,

g(𝜏M) = Kss(1 − e−1) = 0.632Kss

thus, we can determine the time constant 𝜏M using 63.2% of the rising time in the step
response. This estimation of time constant gives a different value from the case when
using the maximum slope approach. For the majority of the applications, this will result
in a smaller time constant 𝜏M, and from the empirical tuning rules stated in the later part
of the section, a smaller proportional gain Kc will follow. One can evaluate this approach
as an exercise using Problem 1.2.

Essentially, the step response test gives the parameters in the first order plus delay
description of the process as in (1.44).

There is a second set of Ziegler–Nichols tuning rules that is based on the plant step
response test data. This is also called the Ziegler–Nichols tuning rules using reaction
curve. With these parameters, Ziegler–Nichols tuning rules using a reaction curve are
given in Table 1.2. By the nature of this testing procedure (open-loop testing), the tuning
rules should apply to stable systems.
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Table 1.2 Ziegler-Nichols tuning rules with
a reaction curve.

Kc 𝝉I 𝝉D

P
𝜏M

Kssd

PI 0.9
𝜏M

Kssd
3d

PID 1.2
𝜏M

Kssd
2d 0.5d

Table 1.3 Cohen–Coon tuning rules with a reaction curve.

Kc 𝝉I 𝝉D

P
𝜏M

Kssd

(
1 + d

3𝜏M

)

PI
𝜏M

Kssd

(
0.9 + d

12𝜏M

) d(30𝜏M + 3d)
9𝜏M + 20d

PID
𝜏M

Kssd

(
4
3
+ d

4𝜏M

) d(32𝜏M + 6d)
13𝜏M + 8d

4d𝜏M

11𝜏M + 2d

There is another set of tuning rules that are derived based on the reaction curve,
termed Cohen and Coon tuning rules. Table 1.3 gives the PID controller parameters
calculated from Cohen and Coon tuning rules.

For the estimation of time delay d, 𝜏M, and Kss when using MATLAB, it is a fairly
straight forward procedure to draw the lines and pinpoint the data points. The MATLAB
command for finding the point on a graph is called ginput. For example, by typing

[a,b]=ginput(1)

a cross hair will appear on the MATLAB figure and a double click on the point of
interest will yield the exact values we need. This graphic procedure will be demonstrated
in the example section (see Section 1.5).

1.3.3 Food for Thought

1. Can you apply Ziegler-Nichols oscillation tuning method to a first order system?
Why?

2. Can you apply the reaction curve based tuning rules to unstable systems? Why?
3. How do we decide the sign of the proportional feedback controller gain when using

the Ziegler-Nichols oscillation method?
4. Can you envisage any potential danger when using Ziegler- Nichols oscillation

method?
5. How do you design a step response experiment?
6. What information will the step response experiment provide?
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7. How do you determine steady-state gain, parameter 𝜏M and time delay d from a reac-
tion curve?

8. What are your observations when comparing Ziegler-Nichols and Cohen-Coon tun-
ing rules, in terms of signs and values of Kc, 𝜏I and 𝜏D?

9. Is there any desired closed-loop performance specification among the tuning rules?

1.4 Model Based PID Controller Tuning Rules

This section will discuss the PID controller tuning rules that are derived based on a first
order plus delay model. These tuning rules worked well in applications.

1.4.1 IMC-PID Controller Tuning Rules

The internal model control (IMC)-PID tuning rules (Rivera et al. (1986)) are proposed
on the basis of a first order plus delay model:

GM(s) =
Ksse−ds

𝜏Ms + 1
.

When using the IMC-PID tuning rules, a desired closed-loop response is specified by
the transfer function from the reference signal to the output:

Y (s)
R(s)

= e−ds

𝜏cls + 1

where 𝜏cl is the desired time constant chosen by the user. The PI controller parameters
are related to the first order plus delay model and the desired closed-loop time constant
𝜏cl, which are given as:

Kc =
1

Kss

𝜏M

𝜏cl + d
𝜏I = 𝜏M.

(1.46)

If the system has a second order transfer function with time delay in the following form:

GM(s) =
Ksse−ds

(𝜏1s + 1)(𝜏2s + 1)

then a PID controller is recommended. Assuming that 𝜏2 ≤ 𝜏1, then the PID controller
parameters are calculated as

Kc =
1

Kss

𝜏1

𝜏cl + d
𝜏I = 𝜏1

𝜏D = 𝜏2.

(1.47)

Later on, it was realized that the choice of 𝜏I basically led to a pole-zero cancellation
in the control system. Such a pole-zero cancellation will limit, as discussed in the
next chapter, the control system performance in the disturbance rejection, particularly
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when 𝜏1 is large4. In Skogestad (2003), the IMC-PID tuning rules are modified to reduce
the integral time constant as

𝜏I = min[𝜏1, 4(𝜏cl + d)] (1.48)

while Kc and 𝜏D are unchanged from (1.47).
The IMC-PID controller tuning rules are also extended to integrating systems in Sko-

gestad (2003). Although the system has an integrator as part of its dynamics, integral
control is still required for disturbance rejection (see Chapter 2).

Assuming that the system has the integrator with delay model:

GM(s) = Kss
e−ds

s
(1.49)

then a PI controller is recommended with the following parameters:

Kc =
1

Kss(𝜏cl + d)
𝜏I = 4(𝜏cl + d).

(1.50)

If the transfer function for the integrating system has the form:

GM(s) = Kss
e−ds

s(𝜏1s + 1)
(1.51)

then a PID controller is recommended to have the following parameters:

Kc =
1

Kss(𝜏cl + d)
𝜏I = 4(𝜏cl + d)
𝜏D = 𝜏1.

(1.52)

If the system has a double integrator with the transfer function

GM(s) = Kss
e−ds

s2 (1.53)

then a PID controller is recommended with the following parameters:

Kc =
1

Kss(𝜏cl + d)2

𝜏I = 4(𝜏cl + d)
𝜏D = 4(𝜏cl + d).

(1.54)

The IMC-PID controller tuning rules will be studied in Examples 2.1 and 2.2.

1.4.2 Padula and Visioli Tuning Rules

Several sets of tuning rules were introduced in Padula and Visioli (2011) and Padula and
Visioli (2012). These tuning rules are based on the first order plus delay model:

GM(s) =
Ksse−ds

𝜏Ms + 1
.

4 This slow disturbance rejection problem will be analyzed using sensitivity analysis in Problem 2.8.
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Table 1.4 Padula and Visioli tuning rules (PI controller).

Ms = 1.4 Ms = 2

Kc
1

Kss

(

0.2958
(

d
d + 𝜏M

)−1.014

− 0.2021

)
1

Kss

(

0.5327
(

d
d + 𝜏M

)−1.029

− 0.2428

)

𝜏I 𝜏M

(

1.624
(

d
𝜏M

)0.2269

− 0.5556

)

𝜏M

(

1.44
(

d
𝜏M

)0.4825

− 0.1019

)

Table 1.5 Padula and Visioli tuning rules (PID controller).

Ms = 1.4 Ms = 2

Kc
1

Kss

(

0.1724
(

d
d + 𝜏M

)−1.259

− 0.05052

)
1

Kss

(

0.2002
(

d
d + 𝜏M

)−1.414

+ 0.06139

)

𝜏I 𝜏M

(

0.5968
(

d
𝜏M

)0.6388

+ 0.07886

)

𝜏M

(

0.446
(

d
𝜏M

)0.9541

+ 0.1804

)

𝜏D 𝜏M

(

0.5856
(

d
𝜏M

)0.5004

− 0.1109

)

𝜏M

(

0.6777
(

d
𝜏M

)0.4968

− 0.1499

)

They were derived using optimization methods for minimizing an error function
together with the sensitivity peak in the frequency domain (see Chapter 2).

Here, we only include two sets of the tuning rules introduced for disturbance rejection
in their paper. Tables 1.4 and 1.5 present the tuning rules for PI and PID controllers,
respectively. Each table contains two sets of rules. For the specification of Ms = 1.4
(Ms corresponds to the sensitivity peak (see Chapter 2)), the set of tuning rules is
expected to produce a slower closed-loop response in comparison to that with Ms = 2.
It is worthwhile mentioning from Tables (1.4) and (1.5) that both PI and PID controller
parameters are invalid for the time delay d = 0 because as d → 0, the proportional
control gain Kc → ∞.

A frequency response analysis for the Padula and Visioli tuning rules based control
system will be presented in Chapter 2 where an example (see Example 2.4) will be given
to show the sensitivity functions and their Nyquist diagrams.

1.4.3 Wang and Cluett Tuning Rules

In Wang and Cluett (2000), a first order plus delay model was used to derive several
tuning rules for PID controllers. The rules were calculated using a frequency response
analysis based on the ratio of the time constant 𝜏M to the time delay d, which is defined as
L = 𝜏M∕d. A desired closed-loop time constant is chosen as a scale of the time delay d.
Among them, which works quite well in applications, is a particular choice with the
desired closed-loop time constant being equal to the time delay d. For this choice, the
PID controller parameters are presented in Table 1.6.
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Table 1.6 Wang–Cluett tuning rules with reaction curve (L = 𝜏M∕d).

Kc 𝝉I 𝝉D

P 0.13 + 0.51L
Kss

PI 0.13 + 0.51L
Kss

d(0.25 + 0.96L)
0.93 + 0.03L

PID 0.13 + 0.51L
Kss

d(0.25 + 0.96L)
0.93 + 0.03L

d(−0.03 + 0.28L)
0.25 + L

1.4.4 Food for Thought

1. In the IMC-PID controller tuning rules, if a faster closed-loop response is desired,
would you increase or decrease the desired closed-loop time constant 𝜏cl?

2. For the tuning rules derived by Padula and Visioli, are there any closed-loop perfor-
mance parameters chosen by the user?

3. Intuitively, would you increase the proportional controller gain Kc if the PID con-
trolled system is unstable when using the Padula and Visioli’s tuning rules?

4. Would you increase the integral time constant 𝜏I if the PID controlled system is oscil-
latory when using the Padula and Visioli’s tuning rules?

1.5 Examples for Evaluations of the Tuning Rules

Several examples are presented in this section for evaluation of the tuning rules that are
based on the first order plus delay model.

1.5.1 Examples for Evaluating the Tuning Rules

The first example is based on a first order plus delay plant and the second example is
based a high order plant so that an approximation is made during the graphic procedure.

Example 1.6 The unit step response of a continuous time transfer function model

G(s) = 0.5e−20s

30s + 1
(1.55)

is shown in Figure 1.15. Instead of using the first order plus delay model directly, we will
find the PI controller parameters using the values of 𝜏M, Kss, and delay d.

Solution. A Simulink simulator is built to collect the step response testing data and to
produce a figure for the step response. On this figure, a line is drawn to reflect the maxi-
mum slope of the reaction curve; there are two arrows marking the points of interest. Using
MATLAB command ginput(2), with a click on the bottom point, we find the coordinates
t1 = 21,Y0 = −0.02; and with a click on the top point, we find t2 = 58,Ys = 0.5.

From the readings of the two points, we find that

Kss =
Ys − Y0

Us − U0
≈ 0.5 (1.56)
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Figure 1.15 Unit step response (Example 1.6)

where Us − U0 is one since a unit step signal is used as the input. The time delay
d = t1 = 21, and the parameter 𝜏M = t2 − t1 = 58 − 21 = 37. With these parameters,
we calculate the PI controller parameters using the reaction curve based methods (see
Tables 1.2, 1.3, and 1.6). The PI controller parameters are summarized in Table 1.7.
Their closed-loop step responses are compared in Figure 1.16.

In reality, instead of a pure first order plus delay dynamics, there are more or less
additional dynamics in the system. The tuning rules are applicable for a more com-
plex system. We illustrate how to apply the tuning rules using the example below. This
example also illustrates the fact that we need to be cautious when applying the tuning
rules and be aware of their limitations.

Table 1.7 PI controller parameters with reaction curve.

Kc 𝝉I

Ziegler–Nichols 3.1714 63
Cohen–Coon 3.3381 32.7131
Wang–Cluett 2.0571 41.4811
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Figure 1.16 Closed-loop unit step
response with PI controller (Example 1.6).
Key: line (1) Ziegler–Nichols tuning rule;
line (2) Cohen–Coon tuning rule; line
(3) Wang–Cluett tuning rule.
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Example 1.7 A continuous time plant has the transfer function:

G(s) = 0.5e−20s

(30s + 1)3 (1.57)

The unit step response of this transfer function model is shown in Figure 1.17. In this
figure, a line is drawn to reflect the maximum slope of the reaction curve and the points
of interest are marked by two arrows.

Using MATLAB command ginput(2), with a click on the bottom point, we will find
the coordinates t1 = 36,Y0 = −0.0022 ≈ 0; and a click on the top point, we will find
t2 = 164,Ys = 0.4981 ≈ 0.5. Find the PI and PID controllers using the reaction curve
based tuning rules.

Solution. The steady state gain Kss =
Ys−Y0

1
= 0.5. The time delay is d = t1 = 36 and the

parameter 𝜏M = t2 − t1 = 164 − 36 = 128. The PI controller parameters are calculated
using the reaction curve based methods (see Tables 1.2, 1.3, and 1.6) and are summarized
in Table 1.8. The closed-loop control systems with the PI controllers are simulated using
the plant model (1.57). The unit closed-loop step responses are shown in Figure 1.18. From
this figure, we can see that both PI controllers from Ziegler–Nichols and Cohen–Coon
tuning rules failed to produce a stable closed-loop system. However, the PI controller using
Wang–Cluett tuning rule gives a stable closed-loop system.

The PI control systems will be subsequently used as examples for closed-loop stability
analysis. The Nyquist plots of the PI controllers used in this example are analyzed in
Example 2.3 of Chapter 2.

The following example illustrates the applications of the Padula and Visioli tuning
rules.

Figure 1.17 Unit step response (Example 1.7).
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Table 1.8 PI controller parameters with reaction curve.

Kc 𝝉I

Ziegler–Nichols 6.4 108
Cohen–Coon 6.5667 75.9231
Wang–Cluett 3.8867 127.2154
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Figure 1.18 Closed-loop unit step response
with PI controller (Example 1.7). Key:
line (1) Ziegler–Nichols tuning rule;
line (2) Cohen–Coon tuning rule;
line (3) Wang–Cluett tuning rule.

Example 1.8 Consider the same third order system with time delay used in
Example 1.7. Find the PI and PID controller parameters using Padula and Visioli tuning
rules and simulate their closed-loop step response.

Solution. The parameters used in the tuning rules are Kss = 0.5, d = 36, and 𝜏M = 128.
To evaluate the PI controller performance, Table 1.4 is used to calculate the controller
parameters. For Ms = 1.4, we have Kc = 2.3487 and 𝜏I = 84.7649. For Ms = 2, we have
Kc = 4.5861 and 𝜏I = 86.9015.

With sampling interval Δt = 1 (s), the closed-loop step responses are compared in
Figure 1.19, where the IP controller structure is used to reduce overshoot to the step
reference signal. It is clearly seen that the closed-loop system with Ms = 1.4 is stable;
however, with Ms = 2 it is not.

Now, we evaluate the closed-loop performance for a PID controller with filter, where the
filter time constant is chosen to be 0.1𝜏D. Based on Table 1.5, the PID controller param-
eters are calculated as for Ms = 1.4, Kc = 2.2253, 𝜏I = 41.8298, 𝜏D = 25.5365, and for
Ms = 2, Kc = 3.54, 𝜏I = 40.1098, 𝜏D = 27.0037.
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Figure 1.19 Comparison of closed-loop responses using Padula and Visioli PI controller (Example 1.8).
(a) Control signal. (b) Output. Key: line (1) tuning rule with Ms = 1.4; line (2) tuning rule with Ms = 2.
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Figure 1.20 Comparison of closed-loop responses using Padula and Visioli PID controller
(Example 1.8). (a) Control signal. (b) Output. Key: line (1) tuning rule with Ms = 1.4; line (2) tuning rule
with Ms = 2.

With the same sampling interval Δt = 1, and both proportional and derivative con-
trol on output only (IPD structure) where the derivative filter time constant is selected
as 0.1𝜏D, the closed-loop responses are simulated. Figure 1.20 compares the closed-loop
responses. Both tuning rules lead to stable closed-loop control systems. It is seen that there
are overshoots in both reference responses, which was caused by the quite large derivative
gains.

1.5.2 Fired Heater Control Example

A fired heater using gas fuel is a heating furnace that is typically used for household
heating in the winter times. In this case study, the input to the heating furnace is the feed
rate of the gas fuel and the output is the heater outlet or the room temperature in a house.
Because the temperature sensors are located away from the heating source, there is a
time delay in the measured temperature when the input feed rate changes. Additionally,
depending on the operating conditions of the input feed rate, the dynamic response
of the temperature is different. Two transfer function models are given in Ralhan and
Badgwell (2000) to describe the operations of a gas fired heater at a low fuel operation
and a high fuel operation. At the low fuel operating condition, the transfer function is
described as

GL(s) =
3e−10s

(4s + 1)2
degC
sm3∕s

(1.58)

and at the high fuel operating condition,

GH(s) =
e−5s

(5s + 1)2
degC
sm3∕s

(1.59)

where the time constant is in minutes. Note that there are dramatically differences in
time delay and the steady-state gain of the transfer function models.

In this study, we will introduce the effect of input disturbance in the closed-loop sim-
ulation by adding a step signal with negative magnitude to the control signal. This input
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disturbance represents a sudden change in the process that causes the output tempera-
ture drop. The effect of this disturbance is further discussed in Chapter 2.

Example 1.9 In this example, we will show how to use the tuning rules to find the
PID controller parameters for the fired heater at the lower operating condition using the
transfer function (1.58) and simulate the closed-loop response with a step reference signal
using sampling interval Δt = 5 (min) and a negative step disturbance entering at the half
of the simulation time.

The higher operating condition case is left as an exercise.

Solution. Figure 1.21 shows the unit step response with the lines drawn to identify the
time delay and time constant for a first order approximation. From the graph, the time
delay is found as 9.54 min and the time constant 𝜏M = 23 − 9.54 = 13.48 min. With the
steady-state gain equal to 3, the approximation using first order plus model leads to the
following transfer function:

G(s) = 3e−9.54s

13.48s + 1
(1.60)

Now, applying the Ziegler–Nichols tuning rules (see Table 1.2), Cohen–Coon tuning
rules (see Table 1.3) and Wang–Cluett tuning rules (see Table 1.6), we obtain the PI
controller parameters for the fired heater process shown in Table 1.9. The PI controller
parameters obtained are drastically different. The PI controllers using Ziegler–Nichols
and Wang–Cluett tuning rules produce stable closed-loop system for the fired heater
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Figure 1.21 Unit step response of the fired heater process.

Table 1.9 PI controller parameters with reaction curve.

Kc 𝝉I

Ziegler–Nichols 0.4239 28.6200
Cohen–Coon 0.4517 13.2353
Wang–Cluett 0.2835 15.7610
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Figure 1.22 Comparison of closed-loop responses using Ziegler–Nichols and Wang–Cluett tuning
rules (Example 1.9). (a) Control signal. (b) Output. Key: line (1) Ziegler–Nichols tuning rule;
line (2) Wang–Cluett tuning rule.

process, however the PI controller using Cohen–Coon tuning rules does not lead to a
stable closed-loop system, which was verified using closed-loop simulation. To evaluate
the closed-loop control performance, a unit step input signal is used as a reference and
a step input disturbance with magnitude of −0.5 is added to the closed-loop simulation
at half of the simulation time. Figure 1.22(a) shows the control signals generated by the
PI controllers and Figure 1.22(b) shows the output responses to the reference change and
the disturbance signal. Both closed-loop systems have oscillations, but in comparison,
the controller using Wang–Cluett tuning rules leads to a slightly better closed-loop
performance with less oscillations.

1.6 Summary

This chapter has introduced the basics in PID control systems. It is important for us to
understand the roles of proportional control, integral control and derivative control. The
simple modification with the implementation of PID controller by putting the propor-
tional control on output only reduces the overshoot in the step reference response. For
some applications, avoiding the overshoot is important because the requirement is asso-
ciated with the system’s operational constraints while for other applications the over-
shoot is preferred if the PID controller is used in an inner-loop system (see Chapter 7).
Additionally the derivative control should be implemented with a derivative filter to
avoid amplification of measurement noise and the derivative control should be imple-
mented on the output only to avoid the scenario of derivative ‘kick’.

Several sets of tuning rules have been introduced in this chapter. These tuning rules are
very simple and easy to use if the system can be approximated by a first-order-plus delay
model. However, they offer no guarantees on the closed-loop performance as demon-
strated by the simulation examples. Some of the examples used in this chapter will be
analyzed using the Nyquist stability criterion and sensitivity functions in Chapter 2.
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1.7 Further Reading

1. Text books in control engineering include, Franklin et al. (1998), Franklin et al. (1991),
Ogata (2002), Golnaraghi and Kuo (2010), Goodwin et al. (2000) and Astrom and
Murray (2008).

2. Process control books include Marlin (1995), Ogunnaike and Ray (1994), Seborg et al.
(2010).

3. There are many books published on PID control, including Astrom and Hagglund
(1995), Astrom and Hagglund (2006), Yu (2006), Johnson and Moradi (2005), Visioli
(2006), Tan et al. (2012). PID control of multivariable systems is discussed in Wang
et al. (2008).

4. Tuning rules are compiled as a book (O’Dwyer (2009)). PID controller tuning rules
with performance specifications derived from frequency response analysis are intro-
duced in Wang and Cluett (2000).

5. The survey and tutorial papers on PID control include Åström and Hägglund (2001),
Ang et al. (2005), Li et al. (2006), Knospe (2006), Cominos and Munro (2002) and
Visioli (2012), Blevins (2012).

6. A web-based laboratory for teaching PID control is introduced in Ko et al. (2001),
Yeung and Huang (2003).

7. The issues associated with derivative filters in PID controller are addressed in Luyben
(2001), Hägglund (2012), Hägglund (2013), Isaksson and Graebe (2002), Larsson and
Hägglund (2011).

8. Improving reference tracking and reducing overshoot is discussed for an existing
controller in an industrial environment (Visioli and Piazzi (2003)).

9. Ziegler-Nichols tuning formula is refined in Hang et al. (1991) and for unstable
systems with time delay in De Paor and O’Malley (1989). The ZieglerNichols step
response method is revisited from the point of view of robust loop shaping (Åström
and Hägglund (2004)). There is a set of tuning rules for integrating plus delay model
in Tyreus and Luyben (1992), which was extended to PID controllers in Luyben
(1996).

Problems

1.1 The following system is given to practice the Ziegler-Nichols tuning rules based on
oscillation testing data to determine the PID controller parameters:

G(s) = 10
(s + 1)3

1. Build a Simulink simulator using closed-loop proportional control with a con-
troller K for the system. The sampling interval Δt is chosen to be 0.1 sec.

2. Find the PI and PID controller parameters using Table 1.1.
3. Implement the PI and PID controllers in Simulink with a step reference signal by

putting both proportional and derivative control on the output only.
4. What are your observations with respect to the closed-loop performance of the

PI and PID control system?
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1.2 In the majority of the tuning rules, the key step is to find a first order plus delay
approximate model for step response testing data. Because the step response of a
first order system (G(s) = Kss

𝜏Ms+1
) to a unit step input signal can be expressed as

g(t) = Kss(1 − e
−t
𝜏M )

we can determine the time constant 𝜏M using 63.2 percent of the rising time in the
step response.
1. Why does the 6.32 percent of the rising time correspond to the time constant 𝜏M?
2. Construct a graphic method to find a first order plus time delay model for the

following system:

G(s) = 0.5e−20s

(30s + 1)3

3. Compare this first order plus delay model with that found in Example 1.7.
4. Find the PID controller parameters using Table 1.2 and compare the closed-loop

simulation results with the ones given in Example 1.7. What are your observa-
tions?

5. If the step response data contained severe measurement noise, would it be more
difficult to determine the rising time?

1.3 The transfer function for the fired heater system with high operating condition intro-
duced in Section 1.5.2 is given as

GH(s) =
e−5s

(5s + 1)2
degC
sm3∕s

(1.61)

1. Find the first order plus delay approximate model for this transfer function using
the graphic method in Section 1.3.2. The sampling interval Δt is chosen to be 1.

2. Determine the PID controllers using Tables 1.2–1.6.
3. Evaluate their closed-loop performance by simulating their closed-loop unit step

responses. What are your observations in terms of closed-loop performance with
respect to the tuning rules?

1.4 The transfer function for the fired heater system with low operating condition intro-
duced in Section 1.5.2 is given as

GL(s) =
3e−10s

(4s + 1)2
degC
sm3∕s

(1.62)

1. Design three PID controllers for this system using IMC-PID controller design
equations shown in (1.47) where the desired closed-loop time constant 𝜏cl = 20,
30 and 40 respectively.

2. Evaluate the closed-loop control system performance for the three PID con-
trollers by simulating the closed-loop unit step response with sampling interval
Δt = 0.1 sec.

3. What are your observations of the closed-loop performance when the desired
closed-loop time constant 𝜏cl increases?
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1.5 The two transfer functions obtained from the fired heater system are drastically
different at the two operating conditions (see (1.61)–(1.62)). Hence, the PID con-
trollers are different for the two operating conditions. Assume that we would only
use one PID controller for both operating conditions.
1. Design IMC-PID controller (CH(s)) for the fired heater system at high operating

condition using GH(s) with 𝜏cl = 30.
2. Evaluate the closed-loop performance by simulating the two PID control systems:

(1) CH(s) and GH(s); (2) CH(s) and GL(s), respectively.
3. Let CL(s) denote the PID controller found from Problem 1.4 with 𝜏cl = 30.

Evaluate the closed-loop performance by simulating the two PID control
systems: (1) CL(s) and GL(s); (2) CL(s) and GH(s).

4. Based on the simulation studies, which controller should we recommend?
5. Increase the desired time constant 𝜏cl to 40 and repeat the evaluations. What

would be the recommendations for the choice of 𝜏cl?
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2

Closed-loop Performance and Stability

2.1 Introduction

Because feedback control can cause a closed-loop system to become unstable, ensuring
closed-loop stability is paramount in control system design. In Section 2.2, we will
discuss closed-loop stability by examining the locations of closed-loop poles and the
applications of the Routh–Hurwitz stability criterion. In Section 2.3, the Nyquist
stability criterion is presented based on a frequency response analysis, which leads to
conclusions of closed-loop stability by examining the frequency response of the loop
transfer functions, particularly convenient for analysis of systems with time delay.

To understand the roles of external signals playing in a feedback control system,
Section 2.4 introduces control system structures with different degrees of freedom,
which are related to the topic of reducing overshoot in reference response discussed
in Chapter 1. Also in this section, the sensitivity functions are introduced in relation
to various external signals in the closed-loop system. In Sections 2.5 and 2.6, we
will examine the key issues existed in a feedback control system that are related to
reference following, disturbance rejection, and noise attenuation from the angles of
sensitivity analysis. The final section of this chapter will discuss the robust stability
using frequency response analysis. Many examples presented in this chapter use PID
controllers designed with the tuning rules given in Chapter 1.

2.2 Routh–Hurwitz Stability Criterion

Feedback control can cause a system to become unstable. Ensuring closed-loop stabil-
ity is the most important aspect in control system design. Therefore, for every control
system designed, its closed-loop stability is required to be checked as the top priority.

For linear time invariant systems, there are two main categories of methods that
have been widely used to check closed-loop stability. The first type is based on the
direct computation of the poles of the closed-loop transfer function. We call them the
closed-loop poles. If all the closed-loop poles have negative real parts, namely with all
poles strictly on the left half of the complex plane, then the closed-loop system is stable.
If there are one or more poles on the right half of the complex plane, having a positive
real component, then the closed-loop system is unstable. If there are one or more poles
with real part equal to zero, namely on the imaginary axis of the complex plane, we
call this type of system marginally stable. The second type is based on the open-loop

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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transfer function that includes the plant transfer function, sensor and actuator transfer
functions, and the controller transfer function. The Nyquist stability criterion is one
of the most widely used methods that is based on the open-loop frequency response
analysis.

2.2.1 Determining Closed-loop Poles

The first step in the computation of closed-loop poles is to calculate the closed-loop
transfer function. Once the closed-loop transfer function is determined, then the MAT-
LAB function roots.m is used to find the zeros of the denominator of the closed-loop
transfer function, which are the poles of the closed-loop transfer function.

Note that in the computation of the closed-loop transfer function, the sensor and actu-
ator dynamics will be considered in addition to the controller transfer function.

Example 2.1 Consider the process described by the transfer function:

G(s) = 1
(s + 1)(0.2s + 1)

(2.1)

where we assume that both sensor and actuator dynamics are included in the transfer
function. Use IMC-PI controller tuning rules to determine the PI controller parameters
and find the closed-loop poles.

Solution. From Skogestad (2003), the second order system (2.1) is approximated by the
first order plus delay model:

GA(s) =
e−ds

𝜏1s + 1
= e−0.1s

1.1s + 1

According to the IMC-PID controller tuning rules, the proportional gain and the integral
time constant are calculated as

Kc =
𝜏1

𝜏1 + d
= 0.9167; 𝜏I = min[𝜏1, 4(𝜏cl + d)] = 1.1

where the closed-loop time constant 𝜏cl is selected as 𝜏cl > 0.25𝜏1.
Now, to calculate the closed-loop poles, we write the original the transfer function as

G(s) = B(s)
A(s)

and the controller transfer function as

C(s) = P(s)
L(s)

=
Kcs + Kc

𝜏I

s
(2.2)

= 0.9167s + 0.8333
s

. (2.3)

Note that in the calculation of the closed-loop poles, we need to use the original process
model (2.1), not the first order plus time delay model. The closed-loop block diagram is
illustrated in Figure 2.1.
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Figure 2.1 Closed-loop control system in
transfer function form. P(s)

L(s)

B(s)

A(s)

R(s) E(s) Y(s)U(s)+

−

The closed-loop transfer function from the reference signal R(s) to the output Y (s) is
calculated as

Y (s)
R(s)

= P(s)B(s)
L(s)A(s) + P(s)B(s)

(2.4)

Clearly, the denominator of the closed-loop system is L(s)A(s) + P(s)B(s) and the
closed-loop poles are the solutions of the polynomial equation:

L(s)A(s) + P(s)B(s) = 0. (2.5)

This polynomial equation is called the closed-loop characteristic equation. For this
example, we have

L(s)A(s) + P(s)B(s) = s(s + 1)(0.2s + 1) + 0.9167s + 0.8333
= 0.2s3 + 1.2s2 + 1.9167s + 0.8333.

We use the MATLAB roots.m function as

den=[0.2000 1.2000 1.9167 0.8333];
roots(den)

and find the three closed-loop poles as −3.7304,−1.5482,−0.7214. Clearly, the
closed-loop IMC-PI control system is stable with all poles on the left half of the complex
plane. The closed-loop system has three closed-loop time constants. The dominant time
constant is the largest calculated using the smallest magnitude of the closed-loop pole as

𝜏 = 1
0.7214

= 1.3862.

We pay attention to the largest time constant because it determines how fast the
closed-loop response will be. For instance, this time constant is larger than the dominant
process time constant, which is equal to 1. We may conclude that the closed-loop
system response speed is slower than the open-loop process response speed because the
closed-loop dominant time constant is larger.

2.2.2 Routh–Hurwitz Stability Criterion

It would not be a straightforward task if we had to calculate the closed-loop poles
using pencil and paper for a third order system and above. The Routh–Hurwitz
stability criterion was introduced in the development of control systems early on so
that their closed-loop stability could be determined using pencil and paper. Without
involving complex computation, using the Routh–Hurwitz stability criterion enables us
to determine whether there are any closed-loop poles on the right half of the complex
plane and how many of them there are. This simple calculation is performed using the
coefficients of the denominator of the closed-loop transfer function.
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Table 2.1 Routh–Hurwitz table.
sn an an−2 an−4 …
sn−1 an−1 an−3 an−5 …
sn−2 r2,1 r2,2 r2,3 …
sn−3 r3,1 r3,2 r3,3 …
⋮ ⋮

s2 rn−2,1 rn−2,2

s rn−1,1

s0 rn,1

In general, for the denominator of the closed-loop transfer function with the
polynomial

A(s) = ansn + an−1sn−1 +…+ a0,

we use its coefficients to form the first two rows of the Routh–Hurwitz table (see
Table 2.1), and based on the first two rows complete the rest of the elements in the
table. The first element in the third row is

r2,1 = − 1
an−1

det

[
an an−2

an−1 an−3

]

where it is seen that we used the nearest two previous rows to form the determinant
scaled by the factor − 1

an−1
. The second element in the third row is

r2,2 = − 1
an−1

det

[
an an−4

an−1 an−5

]

which is the same scaling but with the replacement of the next column in the determi-
nant. With the same pattern,

r2,3 = − 1
an−1

det

[
an an−6

an−1 an−7

]

.

For the fourth row, we will use the elements in the nearest two rows (second and third
rows) with the same pattern, where

r3,1 = − 1
r2,1

det

[
an−1 an−3

r2,1 r2,2

]

r3,2 = − 1
r2,1

det

[
an−1 an−5

r2,1 r2,3

]

.

The remainder of the elements are expressed in a general form as

rk,j = − 1
rk−1,1

det

[
rk−2,1 rk−2,j+1

rk−1,1 rk−2,j+1

]

where j = 1, 2,….
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The elements in the first column of the Routh–Hurwitz table will determine whether
the closed-loop system is stable. The number of roots of the polynomial A(s) with
real part greater than zero is equal to the number of sign changes in the first column
of the Routh–Hurwitz table. Simply, if the first coefficient an in A(s) is positive, then
closed-loop stability will follow if all elements in the first column are positive.

Note that, in the calculation of the table, if an element in the first column becomes
zero, then the calculation continues by replacing the zero element with a variable |𝛿|. The
remainder of the elements will be expressed in the function of |𝛿|. Closed-loop stability
will be determined by examining the coefficients in the first row using |𝛿| → 0.

If the coefficients of the closed-loop transfer function are constant and known, the
closed-loop poles are simply calculated using the MATLAB function roots.m, as illus-
trated in Example 2.1. However, the Routh–Hurwitz stability criterion is very effective
in determining closed-loop stability when some of the controller or process parameters
have uncertainties.

Example 2.2 Continuing from Example 2.1, determine the minimum value of 𝜏I in the
IMC-PID tuning rule to produce a stable closed-loop system.

Solution. From the controller transfer function (2.3), we can express the 𝜏I variation in
the controller parameters as

C(s) =
0.9167s + 0.9167kI

s
where kI =

1
𝜏I

. Therefore, the closed-loop polynomial becomes

L(s)A(s) + P(s)B(s) = 0.2s3 + 1.2s2 + 1.9167s + 0.9167kI

From the closed-loop polynomial, we obtain the first two rows in the Routh–Hurwitz table
(see Table 2.2).

The parameter x1 is calculated using the following formulae:

x1 = − 1
1.2

det

([
0.2 1.9167
1.2 0.9167kI

])

= − 1
1.2

(0.2 × 0.9167kI − 1.2 × 1.9167).

To ensure closed-loop stability, we require x1 > 0, which means that

kI <
1.2 × 1.9167
0.2 × 0.9167

= 12.545.

Therefore 𝜏I > 1∕12.545 = 0.07971. The parameter x2 is calculated as

x2 = − 1
x1

det

([
1.2 0.9167kI

x1 0

])

= 0.9167kI.

Table 2.2 Routh–Hurwitz table
for the third order system.

s3 0.2 1.9167
s2 1.2 0.9167kI

s1 x1 0
s0 x2 0
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The requirement of x2 > 0 means that kI > 0.
Combining the imposed conditions from x1 and x2, we conclude that closed-loop sta-

bility is ensured if 𝜏I > 0.07971. One can verify using the MATLAB roots.m function that
when 𝜏I = 0.07971, the three closed-loop poles are: −6,±j3.0957. The closed-loop system
is marginally stable because a pair of its poles is on the imaginary axis of the complex
plane. For any 𝜏I less than 0.07971, the closed-loop system becomes unstable.

This example also indicates that there is a limit on what value we can select for the
parameter 𝜏cl in the IMC-PID controller tuning rules.

2.2.3 Food for Thought

1. For a given system, when the closed-loop poles are found to be −1, −2 and −3, what
kind of behavior do you expect the closed-loop output response to be?

2. When the closed-loop poles are found to be −0.1 ± j5, what kind of output response
do you expect?

3. Why do the complex poles always appear in a complex conjugate form?
4. Can we determine closed-loop stability if one of the coefficients in the leading column

of Routh-Hurwitz stability criterion is zero?
5. Can we apply Routh-Hurwitz stability criterion to systems with time delay?

2.3 Nyquist Stability Criterion

The Nyquist stability criterion is one of the most widely used tools in analyzing
closed-loop stability. Using MATLAB graphic tools, the Nyquist diagram is very easy
to produce by calculating the frequency response of the loop transfer function. The
gain margin, phase margin and delay margin provide valuable insight into closed-loop
stability with respect to parameter variations.

2.3.1 Nyquist Diagram

The Nyquist stability criterion uses the frequency response of an open-loop system,
including the plant, the sensors and the actuator, to determine closed-loop stability.
Here, the open-loop system M(s) is expressed as

M(s) = G(s)C(s)

where G(s) represents the system dynamics including the plant dynamics, the actuator
dynamics, and the sensor dynamics, and C(s) represents the controller transfer func-
tion. More specifically, it is a graphic approach using real and imaginary values of the
frequency response M(j𝜔) where M(j𝜔) is that of the loop transfer function. The ben-
efit of being a graphic approach lies in the intuition as well as both quantitative and
qualitative measures.

As an illustration, the Nyquist loci of a PI controlled system that has a stable open-loop
transfer function with time delay is shown in Figure 2.2, where the following loop trans-
fer function is used:

M(s) = 3187.4
s + 3355.2

594.9
s + 1.956

0.0271s + 0.2737
s

e−0.03s. (2.6)
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Figure 2.2 Nyquist plot with a unit circle for illustration of gain margin and phase margin. Solid line:
Nyquist loci; dashed lines: pointers for the gain margin and phase margin.

We can specify the frequency vector 𝜔 and use the MATLAB function freqs.m to cal-
culate the frequency response of the open-loop transfer function. The time delay com-
ponent e−j𝜔d is computed first using the MATLAB exponential function and multiplied
by the frequency response of the rest of the open-loop transfer functions. Tutorial 2.1
shows the MATLAB program for the Nyquist plot.

The Nyquist criterion states that a feedback control system with single input and single
output is stable if and only if, for the frequency response of the loop transfer function
M(s), number of counter clockwise encirclements of the (−1, 0) point is equal to the
number of poles of this loop transfer function with positive real parts. Note that this cri-
terion presents both necessary and sufficient conditions for closed-loop stability using
its open-loop transfer function. There are two comments related as below.

1. For the majority of PID controlled systems, this loop transfer function does not con-
tain any poles that have positive real parts. Thus, for closed-loop stability of these
classes of systems, the Nyquist stability criterion simply becomes that the frequency
response should not encircle the (−1, 0) point on the complex plane.

2. Because it uses the frequency response, closed-loop stability for systems with time
delay will be examined without approximation. This is one of the most important
advantages for using Nyquist loci to analyze control systems.

There are several quantitative, yet intuitive measurements that can be derived from
the Nyquist loci. These quantities, termed gain margin, phase margin, and delay mar-
gin, are frequently used to assess the performance of the designed control system using
the frequency information and safe-guard the closed-loop system against future model
uncertainties.
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2.3.1.1 Gain Margin
Gain margin is a quantity that is used to measure how much variation in gain the feed-
back control system could sustain before it became unstable. As illustrated in Figure 2.2,
the gain margin is defined as GM = 1

kg
, where kg is the distance between the origin of the

complex plane and the point that M(j𝜔) intersects the real axis (see the vertical dashed
line in Figure 2.2). This means that if the loop gain were to exceed 1

kg
, then the closed-loop

system would become unstable. The parameter kg can be easily determined from the
Nyquist loci. Using the following MATLAB command:

[x,y]=ginput(1)

a cross hair appears on the Nyquist plot. By overlaying the center of the cross hair
on the point that the Nyquist curve intersects the real axis, we obtain the coordinates
as x = −0.3226 and y = 8.8818e − 016. The distance is kg = 0.3226. Therefore, the gain
margin is determined as 1

kg
= 3.1. This means that if we were to increase the loop gain to

three times the original value, then the closed-loop system would become unstable. We
can associate this gain margin with the variations in the steady-state gain of the plant,
the sensor, the actuator, or the controller gain Kc. It is the net effect of all the combined
variations of gains.

2.3.1.2 Phase Margin
To identify the phase margin, we first draw a unit circle with its origin located at the
origin of the complex plane, as shown in Figure 2.2, and a straight dashed line that con-
nects the point when the circle intersects the Nyquist loci with the origin of the complex
plane. The phase margin 𝜃 is the angle between the negative real axis and the dashed
line. Clearly, it is the additional phase lag that could be associated with M(j𝜔) before the
closed-loop system became unstable. The phase margin 𝜃 can be calculated using the
following MATLAB function ginput.m. When using the following MATLAB function:

[x,y]=ginput(1)

a cross hair appears. Overlaying the center of the cross hair on the point that the unit
circle intersects the Nyquist loci, we obtain the coordinates of x and y for that point.
From Figure 2.2, the coordinates are x = −0.8018 and y = −0.5664. Then the phase mar-
gin 𝜃 is computed as

𝜃 = tan−1
( y

x

)
= tan−1

(−0.5664
−0.8018

)
= 0.6150 (rad).

2.3.1.3 Delay Margin
Although the phase margin 𝜃 represents how much additional phase lag can be added
to the feedback control system before it becomes unstable, it does not directly convey
the size of maximum time delay that can be added to the system. To determine the max-
imum time delay that can be tolerated, we let

e−j𝜃 = e−jdm𝜔p

where dm is the delay margin or the maximum delay to be tolerated and 𝜔p is the fre-
quency when the unit circle intersects with the Nyquist loci. This yields

dm = 𝜃

𝜔p

Clearly, a larger 𝜔p would lead to a smaller delay margin given the same phase margin
𝜃. Thus, the frequency 𝜔p is an important parameter. To determine the frequency 𝜔p,
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Figure 2.3 Magnitude of M(j𝜔) (solid line) together with dashed line to determine 𝜔p.

we will plot |M(j𝜔)|, as shown in Figure 2.3. Using the function ginput.m, we identify
the intersecting point of the dashed line with the solid line in Figure 2.3 that has the
coordinates x = 19.58 and y = 0.9998. Thus, 𝜔p = 19.58 rads−1. From the parameter 𝜔p
and the phase margin 𝜃, we calculate the delay margin as

dm = 𝜃

𝜔p
= 0.6150

19.58
= 0.0314 (s).

This means that the associated delay, which can be added to the system before it becomes
unstable, is 0.0314 s.

Tutorial 2.1 This tutorial is to illustrate how to produce a Nyquist diagram using MAT-
LAB functions. The open-loop transfer function used in the illustration is given by (2.6).

Step by Step
1. Create a new file called NyquistPlot.m.
2. We produce the transfer function M(s) using the three first order transfer functions

with time delay. Enter the following program into the file:
num1=3187.4;
den1=[1 3355.2];
num2=594.9;
den2=[1 1.956];
num3=[0.0271 0.2737];
den3=[1 0];
delay=0.03;

3. Define the frequency vector and calculate the frequency responses of the three first
order systems. Enter the following program into the file:
w=logspace(-1,3,1000);
G1=freqs(num1,den1,w);
G2=freqs(num2,den2,w);
G3=freqs(num3,den3,w);
G12=G1.*G2;
G123=G12.*G3;
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4. Add the component of time delay to the frequency response. Enter the following
program into the file:
j=sqrt(-1);
Ny=G123.*exp(-j*w*delay);

5. Present the two dimensional diagram with a unit circle that is centered at the origin
of the complex plane. Enter the following program into the file:
plot(real(Ny),imag(Ny),'b','linewidth',2)
hold on
th=[0:2*pi/60:(60)*2*pi/60];
R=exp(j*th);
plot(R)
axis([-4 4 -4 4])
xlabel('Real')
ylabel('Imag')

2.3.2 Rework of Tuning Rules based PID Controllers

Example 2.3 We examine the PI controllers presented in Example 1.7, where the con-
tinuous time plant has the transfer function:

G(s) = 0.5e−20s

(30s + 1)3 . (2.7)

Three sets of PI controller parameters were obtained by using the tuning rules
of Ziegler–Nichols, Cohen–Coon and Wang–Cluett, as shown in Table 1.8. In this
example, we analyze closed-loop stability for the three systems using Nyquist stability
criterion, and modify the controller parameters to achieve closed-loop stability.

Solution. With the PI controller parameters listed in Table 1.8, the loop frequency
response M(j𝜔) is computed and the Nyquist diagrams for the three PI controlled system
are compared in Figure 2.4. It is seen from their Nyquist diagrams that the first two
tuning rules produced the Nyquist loci encircling the (−1, 0) point on the complex
plane, hence they will lead to unstable closed-loop systems, which was confirmed by the
Simulink simulation in Example 1.7. However, the Nyquist loci from the third tuning rule
did not encircle the (−1, 0) point, hence it produced a stable closed-loop system, which
was also confirmed through simulation in Example 1.7. Using the MATLAB ginput
function with the cross hair we can identify the gain margin for the third Nyquist loci as

GM = 1
kg

= 1
0.8203

= 1.2191

and the phase margin as

𝜃 = tan−1
(−0.3068
−0.9309

)
= 0.3184 (rad)

The information derived from the Nyquist diagrams not only determines whether the
closed-loop system is stable or not, but also provides us with an intuitive means to modify
the controller parameters in order to achieve closed-loop stability. If we take 50% of the
proportional controller gains from the first two tuning rules (i.e. Kc = 3.2 and Kc = 3.26
respectively), then all three PI controllers will produce a stable closed-loop system
because all Nyquist plots will no longer encircle the (−1, 0) point on the complex plane
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Figure 2.4 Nyquist plots with a unit
circle (Example 2.3). Key: line (1) M(j𝜔)
using Ziegler–Nichols tuning rules; line
(2) Cohen–Coon tuning rules; and line
(3) using Wang–Cluett tuning rules.
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(see Figure 2.5). Table 2.3 summarizes the PI controller parameters and the associated
gain margin, phase margin, and delay margin for this example, where Figure 2.6 is used
to determine the delay margin.

Finally, the unit closed-loop step responses for the three PI control systems are com-
puted using Δt = 1 (s). Figure 2.7 compares the three closed-loop step responses. In this
set of closed-loop simulation studies, the proportional control is implemented on the out-
put only.

Figure 2.5 Nyquist plots for the
modified controller with a unit circle
(Example 2.3). Key: line (1) M(j𝜔) using
Ziegler–Nichols tuning rules; line
(2) Cohen–Coon tuning rules; and line
(3) using Wang–Cluett tuning rules.
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Table 2.3 Modified PI controller parameters with gain margin, phase margin, and delay margin.

Kc 𝝉I Gain margin Phase margin Delay margin

Ziegler–Nichols 3.2 108 1.4914 0.5305 23.5778
Cohen–Coon 3.26 75.9231 1.258 0.2879 11.9461
Wang–Cluett 3.8867 127.2154 1.2191 0.3184 12.585
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Figure 2.6 Magnitude of M(j𝜔) (solid
line) together with dashed line to
determine 𝜔p. Key: line (1) |M(j𝜔)|
using Ziegler–Nichols tuning rules
with reduced Kc; line (2) Cohen–Coon
tuning rules with reduced Kc; and line
(3) using Wang–Cluett tuning rules.
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Figure 2.7 Comparison of
closed-loop step responses
(Example 2.3). Key: line (1)
Ziegler–Nichols tuning rules with
reduced Kc; line (2) Cohen–Coon
tuning rules with reduced Kc; and line
(3) using Wang–Cluett tuning rules.

Overall, with the Nyquist diagrams and the closed-loop step response evaluations, the
Ziegler–Nichols tuning rules with the reduced Kc produced a slightly better control sys-
tem. However, the Wang–Cluett tuning rules were applied as they were derived and not
modified.

2.3.3 Food for Thought

1. What would happen to a closed-loop system if its gain margin is equal to 1?
2. Would you say that the Nyquist diagram is an effective means to check the perfor-

mance of the PID controller designed when using the tuning rules?
3. What would you do if the gain margin of the control system designed is too small?
4. How would you be able to increase the phase margin of a control system?

2.4 Control System Structures and Sensitivity Functions

This section introduces control system structures with one and two degrees of freedom,
which are related to the PID controller realization to reduce the overshoot in reference
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response discussed in Chapter 1. The external signals such as reference signal, distur-
bance signals and measurement noise are important in the analysis of control system
performance. This section discusses these signals in relationships with the sensitivity
functions.

2.4.1 One Degree of Freedom Control System Structure

A feedback control system of a one degree of freedom structure is represented by the
block diagram, shown in Figure 2.8, where R(s) is the reference signal, Y (s) is the output,
and U(s) is the control signal. There is also an output disturbance in the system, denoted
as Do(s). For simplicity, the transfer function G(s) includes the plant dynamics, actuator
dynamics, and sensor dynamics.

The Laplace transform of the error signal E(s) is expressed as

E(s) = R(s) − Y (s) = R(s) − G(s)U(s) − Do(s)
= R(s) − G(s)C(s)E(s) − Do(s). (2.8)

Therefore, the error signal is expressed as

E(s) = R(s)
1 + G(s)C(s)

−
Do(s)

1 + G(s)C(s)
. (2.9)

Then, the output of the control system is

Y (s) = R(s) − E(s) =
(

1 − 1
1 + G(s)C(s)

)
R(s) +

Do(s)
1 + G(s)C(s)

= G(s)C(s)
1 + G(s)C(s)

R(s) +
Do(s)

1 + G(s)C(s)
(2.10)

and the control signal is

U(s) = C(s)E(s) = C(s)
1 + G(s)C(s)

R(s) − C(s)
1 + G(s)C(s)

Do(s). (2.11)

Assuming that Do(s) is zero, the transfer function between the reference signal and the
plant output is

Y (s)
R(s)

= G(s)C(s)
1 + G(s)C(s)

(2.12)

and the transfer function between the reference signal and the control signal is
U(s)
R(s)

= C(s)
1 + G(s)C(s)

. (2.13)

C(s) G(s)
+

+

+

–

R(s) E(s) U(s)

Do(s)

Y(s)

Figure 2.8 One degree of freedom control system structure.
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Similarly, by assuming R(s) = 0, we derive the transfer functions between the output
disturbance and the output, and the output disturbance and the control signal:

Y (s)
Do(s)

= 1
1 + G(s)C(s)

(2.14)

U(s)
Do(s)

= − C(s)
1 + G(s)C(s)

. (2.15)

The properties of these closed-loop transfer functions are directly related to the
closed-loop performance, determining the behavior of the output signal and the control
signal in relation to reference signal R(s) and the output disturbance Do(s). In this
controller structure, once the controller C(s) is selected, all four closed-loop transfer
functions are fixed; only one degree of freedom is available to influence the output
response Y (s) to the reference signal R(s) and to the disturbance Do(s). This is called
one degree of freedom design.

2.4.2 Two Degrees of Freedom Design

A two degrees of freedom control system is shown in Figure 2.9. In this structure, an
extra component H(s) is placed after the reference signal R(s), which will be used in the
design. Do(s) denotes the output disturbance, Di denotes the input disturbance, Dm(s)
denotes the measurement noise. How does this structure offer two degrees of freedom in
the design? For this, with the assumption that Di(s) = 0 and Dm(s) = 0, we calculate the
output response Y (s) in relation to the reference signal R(s) and the output disturbance
Do(s),

Y (s) = G(s)C(s)H(s)
1 + G(s)C(s)

R(s) +
Do(s)

1 + G(s)C(s)
. (2.16)

From this, we have the two transfer functions
Y (s)
R(s)

= G(s)C(s)H(s)
1 + G(s)C(s)

(2.17)

Y (s)
Do(s)

= 1
1 + G(s)C(s)

. (2.18)

Transfer function H(s) provides one more degree of freedom to shape the output
response to the reference signal R(s). This extra degree of freedom plus the original
one degree of freedom gives the two degrees of freedom in the design. If the control
system is configured as a, then we can shape, independently, the output response to the
reference signal and to the disturbance.

H(s)
R(s)

C(s) G(s)
+

+ +

+ +

+

+

–

R̄(s) E(s) U(s)

Di(s) Do(s)

Dm(s)

Y(s)

Figure 2.9 Two degrees of freedom control system structure.
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R(s)
G(s)

+

+ +

+ +

+

+

–

R̄(s) E(s) U(s)

Di(s) Do(s)

Dm(s)

Y(s)1

τIs+1 s

c1s+c0

Figure 2.10 Two degrees of freedom PI control system structure, where Kc = c1 and 𝜏I =
c1

c0
.

2.4.2.1 Two degrees of freedom implementation of PI controllers
From Example 1.3, the IP controller structure illustrated in Figure 1.7 is in fact a two
degrees of freedom implementation of a PI controller with a reference filter H(s), where
the reference filter is H(s) = 1

𝜏Is+1
, which is illustrated in Figure 2.10. One may argue

that the choices of proportional controller gain Kc and the integral time constant 𝜏I
have cemented the characteristics of disturbance rejection; however, the value of 𝜏I has
provided an extra degree of freedom to influence reference response. The advantage of
using the IP controller is that the implementation procedure is simpler, because there
is no need for the implementation of reference signal filter. In the general framework of
two degrees of freedom controller implementation, H(s) may also be designed carefully
to achieve desired effect of reference response.

2.4.3 Sensitivity Functions in Feedback Control

To understand the sensitivity functions and their roles in feedback control, we examine
the block diagram of a closed-loop feedback control system illustrated in Figure 2.9.

Based on the block diagram, we calculate the feedback error of the closed-loop system
firstly as

E(s) = H(s)R(s) − (Y (s) + Dm(s))
= H(s)R(s) − [G(s)(U(s) + Di(s)) + Do(s) + Dm(s)]
= H(s)R(s) − G(s)C(s)E(s) − G(s)Di(s) − Do(s) − Dm(s). (2.19)

By re-arranging (2.19), the closed-loop feedback error is

E(s) = H(s)
1 + G(s)C(s)

R(s) − G(s)
1 + G(s)C(s)

Di(s) −
Do(s)

1 + G(s)C(s)
−

Dm(s)
1 + G(s)C(s)

.

(2.20)

Note that the feedback error is relation to the output via,

E(s) = H(s)R(s) − Dm(s) − Y (s). (2.21)

By substituting (2.21) into (2.20), we obtain the expression of the closed-loop output
Y (s) as

Y (s) = G(s)C(s)H(s)
1 + G(s)C(s)

R(s) +
Do(s)

1 + G(s)C(s)
+ G(s)

1 + G(s)C(s)
Di(s)

− G(s)C(s)
1 + G(s)C(s)

Dm(s). (2.22)
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Also, from the feedback error (2.20), we calculate the closed-loop control signal as

U(s) = C(s)E(s) = C(s)H(s)
1 + G(s)C(s)

R(s) − C(s)G(s)
1 + G(s)C(s)

Di(s)

− C(s)
1 + G(s)C(s)

Do(s) −
C(s)

1 + G(s)C(s)
Dm(s). (2.23)

Based on these relationships, the following sensitivity functions are defined.

• Sensitivity function:

S(s) = 1
1 + G(s)C(s)

.

• Complementary sensitivity function:

T(s) = G(s)C(s)
1 + G(s)C(s)

.

• Input disturbance sensitivity function:

Si(s) =
G(s)

1 + G(s)C(s)
.

• Control sensitivity function:

Su(s) =
C(s)

1 + G(s)C(s)
.

The sensitivity functions are related to each other in the following ways.

• The sensitivity plus complementary sensitivity is equal to one:

S(s) + T(s) = 1
1 + G(s)C(s)

+ G(s)C(s)
1 + G(s)C(s)

= 1. (2.24)

• The input disturbance sensitivity is related to sensitivity:

Si(s) =
G(s)

1 + G(s)C(s)
= S(s)G(s). (2.25)

• The control sensitivity is related to sensitivity:

Su(s) =
C(s)

1 + G(s)C(s)
= S(s)C(s). (2.26)

With the sensitivity functions, we re-write the output of the closed-loop system (2.22)
as

Y (s) = H(s)T(s)R(s) + +S(s)Do(s) + Si(s)Di(s) − T(s)Dm(s)
= H(s)T(s)R(s) + S(s)(Do(s) + G(s)Di(s)) − T(s)Dm(s) (2.27)

and the control signal (2.23) as

U(s) = H(s)Su(s)R(s) − Su(s)Do(s) − Su(s)G(s)Di(s) − Dm(s). (2.28)
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From these relationships, we can see that:

1. The complementary sensitivity function T(s) represents the effect of both reference
signal and measurement noise on the output.

2. The sensitivity S(s) represents the effect of output disturbance on the output.
3. The input sensitivity Si(s) represents the effect of input disturbance on the output.

2.4.4 Food for Thought

1. In the two-degrees-of-freedom control system structure, must the reference filter
H(s) be stable?

2. In many applications, instead of designing the reference filter, it is simpler to design
the reference signal by deploying a ramp signal between two constant references.
Assuming that at time t0 = 0, the reference signal r(t0) = 1, we would like the refer-
ence signal to be increased to 3 in a duration of 10 seconds. What does this reference
signal look on a piece of paper? If you would like to duplicate this signal using the
reference filter H(s), what would you do?

3. Can you think of a reason why we would use the IP controller instead of using the
two-degrees-of- freedom approach when we need to overcome the reference over-
shoot problem in PID control systems?

4. If the IP controller you designed still resulted in overshoot in reference response,
what would you do?

5. With respect to PID control, by examining the closed-loop transfer function (1.40)
in Example 1.4, which reference filter would you use to reduce the overshoot in the
closed-loop step response caused by the derivation control?

2.5 Reference Following and Disturbance Rejection

Aside from stabilization of unstable systems, the two most important purposes that a
feedback control system serves are reference following and disturbance rejection. In this
section, we will discuss these two topics in relation to the complementary sensitivity T(s)
and the sensitivity function S(s). Their effects on the output will be measured and ana-
lyzed in the frequency domain. One caution is that closed-loop stability is a pre-requisite
for the sensitivity analysis to be valid.

2.5.1 Closed-loop Bandwidth

For simplicity, we assume that H(s) = 1 to begin the discussion. From (2.27), the com-
plementary sensitivity T(s) represents the effect of reference following on the output
and the sensitivity S(s) represents the effect of disturbance rejection. Intuitively, for a
control system designed with good reference following properties, we would like to see
the complementary sensitivity |T(j𝜔)| = 1 so that the output |Y (j𝜔)| = |R(j𝜔)| for some
designated frequencies, where R(j𝜔) is the frequency response of the reference signal.
On the contrary, for disturbance rejection, intuitively, we would like the magnitude of
the sensitivity function |S(j𝜔)| = 0 so that the output |Y (j𝜔)| = 0 for some frequencies
contained in the output disturbance signal Do(j𝜔) or the input disturbance signal Di(j𝜔).
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As from (2.24), the sum of T(s) and S(s) is equal to one. Two observations follow imme-
diately.
1. If at a given frequency 𝜔 = 𝜔0, |T(j𝜔)| = 1, then |S(j𝜔)| = 0.
2. Similarly, if |T(j𝜔)| is large, then |S(j𝜔)| is small.

This basically says that the control objectives for reference tracking or disturbance
rejection using feedback can be achieved using the same qualitative and quantitative
measure of either complementary sensitivity function T(j𝜔) or sensitivity function S(j𝜔)
because S(j𝜔) + T(j𝜔) = 1. The implication is that if a feedback control system has a
good tracking performance for a reference signal, then it will also have a good distur-
bance rejection for the disturbance signals that have the identical frequency charac-
teristics. In other words, the reference following and disturbance rejection in feedback
control share the same goals in the design without conflicting.

We can also examine the reference tracking from feedback error analysis to reach
the same conclusions as above. Consider a unit negative feedback control system with
the reference pre-compensation H(s) = 1. The feedback error signal E(s) is simply com-
puted as

E(s) = R(s) − Y (s) = R(s) − T(s)R(s)
= (1 − T(s))R(s) = S(s)R(s). (2.29)

It is seen here that, for the reference tracking, the feedback error is directly related to the
sensitivity function S(s). Therefore, if |S(j𝜔)| is small over some frequency band, then the
feedback control system will yield, on the same frequency band, better reference track-
ing as well as disturbance rejection performance. This re-iterates that the control system
design objectives for reference following and disturbance rejection share the same char-
acteristics over either the complementary sensitivity or the sensitivity function.

One of the qualitative measures in sensitivity analysis is the characterization of
closed-loop bandwidth 𝜔b. The parameter bandwidth 𝜔b is a frequency parameter
either in the unit of Hertz (Hz) or rads−1, which corresponds to the frequency when the
complementary sensitivity function has the following value:

|T(j𝜔)| =
|T(j0)|
√

2
.

As illustrated in Figure 2.11, the magnitude of a complementary sensitivity function
T(j𝜔) is intersected with a dash-dotted horizontal line with a value of 1

√
2
≈ 0.707,

where the vertical dash-dotted line leads to the bandwidth of 𝜔b. As demonstrated
in Section 2.3, one can easily use the MATLAB ginput.m function to identify the
bandwidth from the plot of the complementary sensitivity function by putting the hair
cross line at the point when the dash-dotted line intersects the magnitude of comple-
mentary sensitivity. For reference following, the bandwidth 𝜔b is interpreted as if the
frequencies of the reference signal fall between 0 and 𝜔b, then the output signal will
have the capacity to closely duplicate this reference signal. For disturbance rejection,
because |S(j𝜔)| is small between 0 and 𝜔b, if the frequencies of a disturbance signal fall
into this range, then the output will have the capacity to suppress the disturbance.

Having said that minimization of the effect of disturbance will certainly lead to maxi-
mizing tracking performance of the same type of reference signals, in engineering appli-
cations there might be additional constraints on the reference tracking such as output
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Figure 2.11 Complementary
sensitivity function with bandwidth
illustration. Key: solid line: |T(j𝜔)|;
dash-dotted lines: illustration of
bandwidth.
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overshoot of the reference signal. The two degrees of freedom control system imple-
mentation provides an additional means in an open-loop manner to shape the reference
tracking properties by selecting the stable reference filter H(s).

One exception to the shared common ground of disturbance rejection and reference
following is the scenario when there is pole-zero cancellation in the controller structure.
Pole-zero cancellation is a commonly used technique for control system design because
it simplifies the controller parameter solutions. Assuming that the controller transfer
function is C(s) = P(s)

L(s)
and the model transfer function is G(s) = B(s)

A(s)
from Figure 2.9,

with H(s) = 1, the output response to the reference signal is

Y (s) =
P(s)
L(s)

B(s)
A(s)

1 + P(s)
L(s)

B(s)
A(s)

R(s) = T(s)R(s) (2.30)

and to the input disturbance is

Y (s) =
B(s)
A(s)

1 + P(s)
L(s)

B(s)
A(s)

Di(s) = Si(s)Di(s). (2.31)

Note that in the complementary sensitivity function T(s), P(s)
L(s)

and B(s)
A(s)

appear in pairs.
Therefore, the poles or zeros that have been canceled in the design will disappear
from the complementary sensitivity function, meaning that they will not affect the
closed-loop performance of reference tracking. However, in the input disturbance
sensitivity function Si(s),

P(s)
L(s)

and B(s)
A(s)

appear in pairs only for the denominator. Thus, if
a pole from the system transfer function G(s) is canceled in the controller design, it will
re-appear as the same pole in the input disturbance sensitivity function because P(s)

L(s)
does not appear in the numerator. This means that if a system pole is canceled in the
controller structure, a fast reference following response does not automatically imply
a fast input disturbance rejection, depending on the location of the canceled pole. A
detailed study of pole-zero cancellation on the effect of disturbance rejection is given
in Example 3.7.
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2.5.2 Reference Following and Disturbance Rejection with PID Controllers

PID controllers are the most widely used controllers in engineering applications. Their
successful applications are aligned with the most commonly encountered reference sig-
nals and disturbance signals. The reference signals for PID controller applications are a
step signal or a series of step signals. For instance, if we want to regulate a room tem-
perature to 20 ∘C from the current temperature of 15 ∘C, then the reference signal is a
step signal with amplitude of 5 ∘C. In other words, the output of a PID control system
is regulated to a constant value. Note that the Laplace transform of a unit step signal
is R(s) = 1

s
with the magnitude of frequency response |R(j𝜔)| = 1

|𝜔|
, which is infinity at

𝜔 = 0. Hence, for the output to follow a step reference signal perfectly, the complemen-
tary sensitivity function T(j0) = 1 at the zero frequency. This automatically implies that
the sensitivity function S(j0) = 0, which is required for tracking the step reference sig-
nal and rejecting a disturbance with its frequency contents concentrated at the zero
frequency.

Now, on a back envelope calculation, if the plant model does not contain a zero at
s = 0, the integrator contained in a PID controller will simultaneously yield T(j0) = 1
and S(j0) = 0 because the integrator in the controller creates an infinite gain for the loop
transfer function |C(j𝜔)G(j𝜔)| at 𝜔 = 0. The sensitivity function S(s) contains a zero at
s = 0 as long as the plant model G(s) does not contain a zero at s = 0.

Because the majority of the control systems are designed to track a constant reference
signal or regulate the output to a constant value, additionally, the most disturbances
occurred in the process control applications are rich in the low frequency region, the
PID controllers are adequate for the commonly encountered applications.

Example 2.4 Consider the first order plus time delay system described by the transfer
function

G(s) = 0.8e−20s

10s + 1
.

Use the Padula and Visioli tuning rules (Padula and Visioli (2011)) to determine the PID
controller parameters with consideration of two cases: Ms = 1.4 and Ms = 2, and analyze
their properties for reference following and disturbance rejection using the complemen-
tary sensitivity T(j𝜔) and sensitivity functions S(j𝜔).

Solution. Using the Padula and Visioli tuning rules presented in Table 1.5, we find two
sets of PID controller parameters. For Ms = 1.4, we have

Kc = 0.2959; 𝜏I = 9.9063; 𝜏D = 7.1749

and for Ms = 2, we have

Kc = 0.5207; 𝜏I = 10.4447; 𝜏D = 8.0639.

Because there is a derivative filter used in the PID controller, the controller transfer func-
tion C(s) becomes

C(s) = Kc(1 + 1
𝜏Is

+
𝜏Ds

0.1𝜏Ds + 1
)

where the derivative filter time constant is taken as 0.1𝜏D.
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Figure 2.12 Nyquist diagrams using
Padula and Visioli PID controller
(Example 2.4). Key: line (1) Ms = 1.4;
line (2) Ms = 2.
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Firstly, we verify closed-loop stability of the two PID controlled systems by plotting their
Nyquist diagrams shown in Figure 2.12. It is seen that the PID controllers produce suffi-
cient gain margins and phase margins.

Next, we present the magnitudes of the complementary sensitivity functions in
Figure 2.13 with illustration of the bandwidth. They are equal to 0.0403 rads−1 and
0.0657 rads−1, respectively. The bandwidth of the PID controller tuned using the Ms = 2
is larger among the two cases. The magnitudes of the sensitivity functions are presented
in Figure 2.14. It is interesting to note that the sensitivity peak for the Ms = 1.4 case is
close to the specification. However, for the Ms = 2 case, the sensitivity peak is less than
the specified value of 2, but it is higher than that obtained in the previous case.

To simulate the closed-loop response for reference following and disturbance rejection,
we use the two degrees of freedom PID implementation to avoid overshoot in output when
the reference signal is a unit step, where both the proportional control and the derivative
control are implemented on the output only. By selecting the sampling interval Δt = 1 s,

Figure 2.13 Complementary
sensitivity function using the Padula
and Visioli PID controller with
bandwidth illustration. Key: line (1)
Ms = 1.4; line (2) Ms = 2.
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Figure 2.14 Sensitivity function using
the Padula and Visioli PID controller.
Key: line (1) Ms = 1.4; line (2) Ms = 2.

the closed-loop simulation is performed with a unit step signal for the reference and a step
input disturbance with unknown amplitude entering the system at half of the simulation
time. Figure 2.15(a) shows the closed-loop control signals for the reference following and
disturbance rejection. It is seen that for the tuning rule with Ms = 2, the control amplitude
variations are larger. Figure 2.15(b) shows the closed-loop output response. It confirms
that the output from the tuning rule with Ms = 2 is faster among the two responses. The
time domain performances are consistent with the frequency response analysis that the
PID control system with the wider bandwidth produces a faster reference tracking as well
as disturbance rejection. It is worthwhile mentioning that the two degrees of freedom
implementation is crucial to reduce the overshoot for the reference change when using
the tuning rules produced by Padula and Visioli. As an exercise, one is encouraged to
implement the one degree of freedom PID controller and observe the substantial amount
of overshoot occurring in the closed-loop step response for the reference change.
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Figure 2.15 Comparison of closed-loop responses using Padula and Visioli PID controller
(Example 2.4). (a) Control signal. (b) Output. Key: line (1) tuning rule with Ms = 1.4; line (2) tuning rule
with Ms = 2.
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2.5.3 Reference Following and Disturbance Rejection with Resonant
Controllers

In the applications of control systems to power electronics, aerospace, and mechani-
cal engineering, it is often required for the output of the closed-loop control system to
track sinusoidal reference signal or to reject a sinusoidal disturbance. In these applica-
tions, we assume that the sinusoidal reference signal is r(t) = Am sin(𝜔0t) with known
parameters. However, for disturbance rejection, the disturbance signal is expressed as
d(t) = dm sin(𝜔0t), where the frequency 𝜔0 is known but the amplitude of the distur-
bance dm is unknown.

Note that the Laplace transform of the reference sinusoidal signal with frequency𝜔0 is

R(s) =
Am𝜔0

s2 + 𝜔2
0

with frequency response

R(j𝜔) =
Am𝜔0

(j𝜔)2 + 𝜔2
0
=

Am𝜔0

−𝜔2 + 𝜔2
0

Thus, as 𝜔→ ±𝜔0, |R(j𝜔)| → ∞.
From the sensitivity analysis, in order for the feedback control system to have a good

tracking performance for the sinusoidal reference signal, we need the complementary
sensitivity function |T(j𝜔)| = 1 at𝜔 = 𝜔0. Similarly, to reject the sinusoidal disturbance
signal with unknown amplitude, we need to have the sensitivity function |S(j𝜔)| = 0
at 𝜔 = 𝜔0. In order to achieve these characteristics for the feedback control system, a
quick calculation indicates that the feedback controller is required to embed the mode

1
s2+𝜔2

0
into its structure, assuming that the plant does not contain a pair of complex zeros

at ±j𝜔0. In the literature, this type of controller is called either resonant controller or
repetitive controller because of the periodic nature of the external signals.

We consider the case that r(t) is a multi-frequency periodic signal, defined as
r(t) = A0 sin𝜔0t + A1 sin𝜔1t +…+ Ak sin𝜔kt where the frequencies 𝜔1, 𝜔2, …, and
𝜔k are given. In order to track this multi-frequency periodic signal using a feedback
controller, the complementary sensitivity function is required to satisfy T(j𝜔) = 1 at
the frequencies 𝜔 = 𝜔0, 𝜔1,… , 𝜔k . As a result, the sensitivity function automatically
satisfies S(j𝜔) = 0 at the frequencies 𝜔 = 𝜔0, 𝜔1,… , 𝜔k . Therefore, the controller
designed for following the multi-frequency periodic reference signal will also reject a
periodic disturbance with the same frequencies. The controller is required to embed
the following components

1
(s2 + 𝜔2

0)(s2 + 𝜔2
1)… (s2 + 𝜔2

k)
into its structure in order to achieve T(j𝜔) = 1 or S(j𝜔) = 0 at the frequencies
𝜔 = 𝜔0, 𝜔1,… , 𝜔k . Here we need to assume that the plant does not have complex zeros
at the corresponding frequencies.

In Section 3.5, pole-assignment controller design techniques will be introduced for
the design of resonant controller. In Section 5.4, a resonant controller will be designed
using a disturbance estimation technique together with anti-windup implementation.
This disturbance estimation based design technique is extended to a multi-frequency
sinusoidal reference/disturbance signal in Section 5.5.
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2.5.4 Food for Thought

1. If the disturbance rejection is too slow, taking a long time for the output response to
recover, would you decrease the closed-loop bandwidth?

2. For a PID controlled system with Kc, 𝜏I and 𝜏D, if the bandwidth 𝜔b were too small,
would you increase Kc?

3. For the IMC-PID tuning rules (see Section 1.4.1), the original tuning-rules
(Equation (1.47)) will lead to a slow response to input disturbance. Can you explain
this using the characteristics of the input sensitivity function?

4. Why is the two-degrees-of-freedom PID controller implementation important in the
context of reference following and disturbance rejection?

5. In many applications, rejecting load disturbance is the primary objective of the con-
trol systems. Load disturbance is often modelled as a constant input disturbance. To
avoid a large disruption to the system when switching on a load is paramount. How
can we design such a load profile so that it can be switched gradually?

2.6 Disturbance Rejection and Noise Attenuation

Both noise and disturbance co-exist in a physical system. A good closed-loop perfor-
mance requires minimization of the effects of both disturbance and noise.

2.6.1 Conflict between Disturbance Rejection and Noise Attenuation

For minimization of the effects of both input and output disturbances, we make the
magnitude of the output in frequency response

|Yd(j𝜔)| = |S(j𝜔)(Do(j𝜔) + G(j𝜔)Di(j𝜔))|
= |S(j𝜔)||(Do(j𝜔) + G(j𝜔)Di(j𝜔))| (2.32)

as small as possible. For minimization of the measurement noise, we make the magni-
tude of the output in frequency response

|Ym(j𝜔)| = |T(j𝜔)Dm(j𝜔)| = |T(j𝜔)||Dm(j𝜔)| (2.33)

as small as possible, indicating that there is a conflict between disturbance rejection and
noise attenuation.

We cannot alter the disturbances and noise because they already existed in the system.
Thus, what we do is to make:

• the magnitude of sensitivity S(j𝜔) (|S(j𝜔)|) small for disturbance rejection;
• the magnitude of complementary sensitivity T(j𝜔) (|T(j𝜔)|) small for noise attenua-

tion.

These are the basic design principles for control systems. However, noting that the
relationship between the sensitivity and complementary sensitivity is constrained by

S(j𝜔) + T(j𝜔) = 1 (2.34)

which says that we cannot make both |S(j𝜔)| and |T(j𝜔)| small over the same frequency
bands. In other words, if the disturbance is minimized in a given frequency region
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where |S(j𝜔)| is small, then inevitably the measurement noise is not attenuated in
the same frequency region where |T(j𝜔)| is large. So how are we going to design
a closed-loop control system that will minimize the effects of disturbance and the
measurement noise?

Note that the disturbances existing in the system correspond to slow movement of
the variables or slow changes, therefore the frequency contents of the disturbance term
|Do(j𝜔) + G(j𝜔)Di(j𝜔)| are concentrated in the low frequency region. In contrast, the
measurement noise corresponds to fast movement of the variables or fast and frequent
changes of the variables, therefore the frequency contents of the measurement noise
|Dm(j𝜔)| are concentrated in the higher frequency region. This means that we can
achieve disturbance rejection by choosing the sensitivity function S(j𝜔) ≈ 0 at the
low frequency region, which implies T(j𝜔) ≈ 1 at the low frequency region, because
S(j𝜔) + T(j𝜔) = 1. This is not too bad for noise attenuation because |Dm(j𝜔)| is small
in the low frequency region. At the high frequency region, to avoid the amplification
of measurement noise, we choose |T(j𝜔)| ≈ 0, which implies |S(j𝜔)| ≈ 1. This is not
too bad for disturbance rejection because |Do(j𝜔) + G(j𝜔)Di(j𝜔)| is small in the high
frequency region. In short, to achieve a trade-off relationship between disturbance
rejection and noise attenuation, a closed-loop bandwidth 𝜔b should be carefully
selected.

2.6.2 PID Controller for Disturbance Rejection and Noise Attenuation

Two examples are given in this section to illustrate the relationship between disturbance
rejection and noise attenuation when using a PID controller.

Example 2.5 Consider the transfer function model given in Ralhan and Badgwell
(2000) to describe the operations of a gas fired heater at a low fuel operation:

GL(s) =
3e−10s

(4s + 1)2
degC
sm3∕s

. (2.35)

This transfer function was approximated using the first order plus delay model in
Section 1.5.2 as

G(s) = 3e−9.54s

13.48s + 1
(2.36)

Use the Padula and Visioli tuning rules to determine the PID controller parameters for
the fired heater system, and evaluate the PID controllers’ performance in disturbance
rejection and noise attenuation.

Solution. For the PID controller tuning rule that corresponds to Ms = 1.4, use of
Table 1.5 together with the first order approximate model (2.36) leads to the following
PID controller parameters:

Kc = 0.1574; 𝜏I = 7.2783; 𝜏D = 5.1449.

The PID controller parameters corresponding to the sensitivity peak Ms = 2 are

Kc = 0.2524; 𝜏I = 6.7547; 𝜏D = 5.6731.
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Figure 2.16 Nyquist diagrams using
the Padula and Visioli PID controller
(Example 2.5). Key: line (1) Ms = 1.4;
line (2) Ms = 2.

We evaluate the closed-loop stability by finding the Nyquist loci of the PID controllers
with the plant model (2.35) where the derivative filter time constant is selected as 0.1𝜏D.
As shown in Figure 2.16, the (−1, 0) point is not encircled, thus both PID control systems
are stable with sufficient gain and phase margins. To evaluate the closed-loop perfor-
mance for disturbance rejection, we examine the magnitude of the sensitivity functions
(see Figure 2.17(a)). It is seen that |S(j𝜔)| is smaller for the design corresponding to Ms = 2
in the lower frequency region; however, it becomes very large in the medium frequency
region with a peak greater than 2. We can conclude that the PID controller corresponding
to Ms = 2 will have better disturbance suppression in the lower frequency region, however
the performance will dramatically decay when the disturbance frequency increases to the
medium to higher frequency region.

To evaluate the closed-loop performance for noise attenuation, we examine the mag-
nitude of the complementary sensitivity function (see Figure 2.17(b)). It is seen that the
complementary sensitivity for the PID controller with Ms = 2 has a large spike at the
medium frequency region, also its magnitude is larger at the higher frequency region. It
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Figure 2.17 Sensitivity functions using Padula and Visioli PID controller (Example 2.5). (a) Sensitivity.
(b) Complementary sensitivity. Key: line (1) Ms = 1.4; line (2) Ms = 2.
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Figure 2.18 Closed-loop responses to disturbance and measurement noise using Padula and Visioli
PID controller (Example 2.5). (a) Control (Ms = 1.4). (b) Control (Ms = 2). (c) Output (Ms = 1.4).
(d) Output (Ms = 2).

is concluded that the PID controller with Ms = 2 is more sensitive to noise. Closed-loop
simulation is used to evaluate the time domain responses for disturbance rejection and
noise attenuation. The sampling interval Δt is selected to be 1 s. A unit input step distur-
bance enters the closed-loop control system at half of the simulation time and there is a
measurement noise with variance 0.01 added to the simulation. Figures 2.18(a) and (b)
compare the closed-loop control signal responses to the disturbance and measurement
noise. It is indeed seen that the control signal for the case Ms = 2 is more sensitive to the
noise. By comparing the output responses (see Figures 2.18(c) and (d)), we find that the
output response to the input disturbance is faster for the case that Ms = 2.

A derivative filter plays an important role in noise attenuation for a PID controlled
system because the derivative action will amplify the measurement noise. The follow-
ing example is used to show its significance in the presence of measurement noise in
conjunction with the choice of sampling interval in the implementation.

Example 2.6 To emphasize that a derivative filter is paramount in the application of
PID controllers, we continue from Example 2.5 by examining how the filter time constant
affects the noise attenuation in the closed-loop system. In the implementation of a PID
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Figure 2.19 Closed-loop responses to disturbance and measurement noise using Padula and Visioli
PID controller (Example 2.6). (a) Control (Ms = 1.4). (b) Control (Ms = 2). (c) Output (Ms = 1.4). (d)
Output (Ms = 2).

controller, we will reduce the filter time constant from 0.1𝜏D to 0.01𝜏D and reduce the
sampling interval accordingly. We leave the sensitivity function analysis as an exercise,
instead we will present the simulation studies.

Solution. With the filter time constant reduced, the sampling interval Δt needs to be
reduced accordingly to avoid numerical instability in the simulation. In this simulation,
Δt is reduced from 1 to 0.1. With the identical input disturbance and noise amplitude, the
closed-loop response is simulated for disturbance rejection and noise attenuation. From
Figures 2.19(a) and (b), it is seen that the control signal is completely distorted by the noise,
although the output is less distorted. The main cause of the noise amplification is because
the derivative term is particularly sensitive to the reduction of the filter time constant.
Since the PID controller is designed in continuous time, a smaller sampling interval is
required for a smaller time constant from the derivative filter.

2.6.3 Food for Thought

1. Would you increase the bandwidth of the closed-loop control system if a low quality
sensor is used in the measurement device and the measurement noise is severe?
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2. When using a resonant controller, if the frequency 𝜔0 embedded into the controller
is large, would you expect that the measurement noise will be amplified more than
that with a PID controller?

3. In the implementation of PID controller, if the measurement noise is severe, would
you decrease the derivative filter time constant?

4. Would you prefer to use a PI controller instead of a PID controller if the noise is
severe?

2.7 Robust Stability and Robust Performance

Robust stability and robust performance are two important issues for a control engineer
to consider when a feedback control system is designed and to be implemented. The
phrase “robust control” is used to imply that the control system designed can withstand
the uncertainties caused by the discrepancies between the model used for the controller
design and the actual plant model.

2.7.1 Modeling Errors

Many of us, as a control engineers, have experienced a feedback control system designed
using the correct methodologies and the closed-loop simulation has yielded satisfactory
performance; however, the control system failed to produce stable closed-loop opera-
tion when it was implemented. More than often, the key reason behind the discrepancy
between what is desired and what is reality is the existence of modeling errors between
the model used for the control system design and the behavior of the actual system at
specific operation conditions.

There are a few factors causing the existence of modeling errors in control system
design depending on how the mathematical model is derived. In electrical engineering
applications, such as electrical machine control and power converter control, the math-
ematical models are derived from physical laws using current and voltage (see Wang
et al. (2015)). Similarly physical laws are used to derive the mathematical models for
electro-mechanical systems such as unmanned aerial vehicles (see Chapter 10), and ball
and plate balancing systems (see Chapter 6). The mathematical models derived using
physical laws are referred mechanistical models, which are often in the form of nonlin-
ear differential equations (see Chapter 6). The modeling errors for the electrical systems
and the electro-mechanical systems are often caused by an inaccurate measurement of
the physical parameters and the variations of the operating conditions.

In chemical process control applications, due to the lack of clearly defined physical
laws or the complexities of the physical systems, the mathematical models are commonly
obtained by directly conducting identification experiments on the plant and estimating
a transfer function model based on the input and output measurement data (see the
fired heater system (Ralhan and Badgwell (2000)) in Section 1.5.2). The mathematical
models derived using the identification experiments (see Chapter 9) are referred empir-
ical models. The modeling errors for the chemical process control applications are often
caused by restricted identification experimental conditions including small input signal
amplitude, corruptions of large measurement noise and disturbances, model estimation
errors, as well as variations of operating conditions.
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Furthermore, when using a restricted controller structure such as a PID controller, the
mathematical models could be too complex for the design of a simple controller. Thus,
model order reduction is required, which leads to another source of modeling errors. In
the context of control system design, there is an unknown transfer function denoted by
G(s)true, which accurately describes the linear time invariant system at a given operat-
ing condition. However, for the various reasons discussed above, this G(s)true is seldom
available to us. Instead, a transfer function model G(s) is obtained from linearization (see
Chapter 6) or from identification experiments and used in the control system design.
This leads to the conceptual description of modeling errors that consist of the following
forms in the literature:

ΔG(s) = G(s)true − G(s) (2.37)

ΔGm(s) =
G(s)true − G(s)

G(s)
(2.38)

whereΔG(s) is called the additive modeling error andΔGm(s) is called the multiplicative
modeling error. We assume that the modeling errors are stable.

Except that in the case of model order reduction for PID controller design, G(s)true is
assumed unknown, thus the exact descriptions of ΔG(s) and ΔGm(s) may not be avail-
able. However, in robust control, it is often that the bounds on the frequency responses
are used to quantify the impact of the modeling errors, for 𝜔 ≥ 0,

|ΔG(j𝜔)| ≤ 𝛿(𝜔) (2.39)

|ΔGm(j𝜔)| ≤ 𝛿m(𝜔) (2.40)

In a simplified case, the modeling error bound may be chosen as a constant, which pro-
duces a conservative measure for the modeling errors.

2.7.2 Robust Stability

Robust stability for a control system is quantified and analyzed in the frequency domain
in terms of the additive and multiplicative modeling errors defined, with its origin
from the Nyquist stability criterion introduced in Section 2.3. The purpose is to assess
closed-loop stability when the controller C(s) is applied to the unknown system G(s)true.

To start, we consider that the open-loop system G(s)true is stable and assume the fol-
lowing conditions are satisfied.

• The controller C(s) is designed to stabilize the model G(s) with all closed-loop poles
strictly on the left half of the complex plane.

• The modeling errors, either additive or multiplicative, are stable.

Then, from the Nyquist stability criterion, the necessary and sufficient condition for
closed-loop stability when the controller C(s) is applied to the unknown system G(s)true

is that the frequency response of the loop transfer function G(j𝜔)trueC(j𝜔) will not
encircle the (−1, 0) point on the complex plane. This is translated into the following
inequality:

|1 + G(j𝜔)trueC(j𝜔)| > 0 (2.41)
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for all 𝜔 ≥ 0. Because G(j𝜔)true is unknown, in Equation (2.41) it is replaced by the
model G(j𝜔) and the additive modeling error ΔG(j𝜔), leading to

|1 + (G(j𝜔) + ΔG(j𝜔))C(j𝜔)| > 0 (2.42)

which is

0 < |(1 + G(j𝜔)C(j𝜔))(1 +
ΔG(j𝜔)C(j𝜔)

1 + G(j𝜔)C(j𝜔)
)|

≤ |(1 + G(j𝜔)C(j𝜔))||(1 +
ΔG(j𝜔)C(j𝜔)

1 + G(j𝜔)C(j𝜔)
)|. (2.43)

Now, since the controller C(s) is designed to stabilize the model G(s), the Nyquist loci
of G(j𝜔)C(j𝜔) will not encircle the (−1, 0) point, it ensures that

|1 + G(j𝜔)C(j𝜔)| > 0

for all 𝜔 ≥ 0.
Therefore, the inequality (2.41) is satisfied if

|1 +
ΔG(j𝜔)C(j𝜔)

1 + G(j𝜔)C(j𝜔)
| > 0.

Or, more conservatively, for all 𝜔 ≥ 0,

1 − |
ΔG(j𝜔)C(j𝜔)

1 + G(j𝜔)C(j𝜔)
| > 0.

This leads to the robust stability condition in the frequency domain as

|
ΔG(j𝜔)C(j𝜔)

1 + G(j𝜔)C(j𝜔)
| < 1 (2.44)

for all 𝜔 ≥ 0. This robust stability condition is a sufficient condition, which ensures the
Nyquist loci of the G(j𝜔)trueC(j𝜔) not to encircle the (−1, 0) point through the represen-
tation of additive modeling error.

The robust stability condition (2.44) can also be written in terms of the multiplicative
modeling error ΔGm by noting that

ΔG(j𝜔) = ΔGm(j𝜔)G(j𝜔)

leading to

|
ΔGm(j𝜔)G(j𝜔)C(j𝜔)

1 + G(j𝜔)C(j𝜔)
|

= |ΔGm(j𝜔)T(j𝜔)| < 1. (2.45)

With the multiplicative modeling error, the robust stability condition is expressed in
relation to the complementary sensitivity function T(j𝜔).

With the frequency response bound defined as 𝛿(𝜔) in (2.39), the robust stability con-
dition becomes:

|
C(j𝜔)

1 + G(j𝜔)C(j𝜔)
|𝛿(𝜔) < 1 (2.46)
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for all 𝜔 ≥ 0. Alternatively, with the multiplicative modeling error bound 𝛿m(𝜔) defined
in (2.40), it has the following representation:

|T(j𝜔)|𝛿m(𝜔) < 1 (2.47)

for all 𝜔 ≥ 0.
The first robust stability condition (2.46) is expressed in terms of the control sensi-

tivity function whilst the second stability condition (2.47) is expressed in terms of the
complementary sensitivity function, which is directly related to the closed-loop control
performance specifications.

The robust stability condition (2.47) says that if the multiplicative modeling error
𝛿m(𝜔) is larger than 1 at a given frequency 𝜔0, then |T(j𝜔0)| needs to be less than 1 to
ensure closed-loop stability. Conversely, if |T(j𝜔)| is large at a certain frequency region,
then a small modeling error is required in the same region to ensure closed-loop sta-
bility. Clearly, if the controller contains an integrator, then |T(j0)| = 1, which indicates
that 𝛿m(0) < 1 in order to guarantee closed-loop stability. Similarly, for the resonant
controller that has embedded a sinusoidal mode at 𝜔 = 𝜔0, |T(j𝜔0)| = 1, leading to the
condition that 𝛿m(𝜔0) < 1 in order to guarantee robust closed-loop stability.

In summary, the existence of modeling error gives an additional constraint on the
complementary sensitivity function. This constraint is translated into the selection of
the desired closed-loop bandwidth as demonstrated in the following case study.

2.7.3 Case Study: Robust Control of Polymer Reactor

Example 2.7 The mathematical model for the eighth reactor in a copolymerization
reactor train is described by the following transfer function model (Madhuranthakam
and Penlidis (2016)):

Y (s) =
[

Ks + 1
𝜏2

1 s2 + 2𝜏1𝜏2s + 1

]8

U(s) (2.48)

where the input is the flow rate of the chain transfer agent (CTA) to the first reactor in the
reactor train and the output is the weight-based average molecular weight (MWw). The
parameters in the transfer function for the reactor are given as K = 361.54, 𝜏1 = 106.84
and 𝜏2 = 1.72.

For this case study, we will perform the following tasks.

1. We will find the first order plus delay approximate model using the step response data,
and calculate the additive and multiplicative modeling errors.

2. Based on the IMC-PI controller tuning method, by choosing 𝜏cl = d, which is the time
delay of the first order approximate model, we will calculate the PI controller param-
eters and check if the closed-loop system is robustly stable. As a comparison, we will
increase 𝜏cl to 2d in order to observe its effect on the robustness of the control system.

Solution. With sampling intervalΔt = 1 s, the unit step response of the transfer function
(2.48) is calculated as shown in Figure 2.20. Clearly, it is seen that the steady-state gain
is 1 and the system has a large time delay.

By drawing a line to produce a maximum slope, which is then intersected with the
steady-state line as shown in Figure 2.20, the time delay for this reactor is estimated as
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Figure 2.20 Unit step response of the
eighth reactor with lines to assist
obtaining first order plus delay model.
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128.5 (min) and the time constant is 168.5 (min). This graphic approach leads to the first
order plus time delay model as

G(s) = e−ds

𝜏Ms + 1
= e−128.5s

168.5s + 1
. (2.49)

The additive modeling error is calculated as

ΔG(s) =
[

Ks + 1
𝜏2

1 s2 + 2𝜏1𝜏2s + 1

]8

− e−128.5s

168.5s + 1
and the multiplicative modeling error is

ΔGm(s) =
ΔG(s)
G(s)

.

Because the reactor’s transfer function model has eight stable zeros, which becomes a large
lead element in the dynamic response and has been neglected in the first order plus delay
model, there is a large discrepancy between the system and the approximate model. This
large discrepancy is reflected in the magnitudes of the frequency response of the modeling
error both additive and multiplicative, as shown in Figures 2.21(a) and (b). In particular,
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Figure 2.21 Magnitude of modeling errors with the first order plus delay model (Example 2.7).
(a) Additive modeling error. (b) Multiplicative modeling error.
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the magnitude ofΔGm(j𝜔) exceeds 3 at𝜔 = 0.01 radmin−1. This indicates that the desired
bandwidth of the closed-loop control system needs to be quite small in order to guarantee
closed-loop stability in the presence of a modeling error.

For systems with a large time delay, the desired time constant is commonly selected to
be larger than the time delay. We will start by choosing the desired time constant 𝜏cl = 128
(min), which leads to

Kc =
1

Kss

𝜏M

𝜏cl + d
= 0.7374

𝜏I = 𝜏M = 168.5 (2.50)

where Kss = 1, 𝜏M = 168.5 and d = 128.5. It can be checked using a Nyquist plot that this
PI controller will lead to a stable closed-loop system when it is used to control the first
order plus time delay model (2.49). So we check if the robust stability condition (2.47)
with respect to the multiplicative modeling error is satisfied. Figure 2.22(a) shows the
magnitude of the complementary sensitivity function. With the choice of 𝜏cl = d, the mag-
nitude of the complementary sensitivity decays rapidly (see the solid line), and as a result
the robust stability condition is satisfied where the quantity |T(j𝜔)|𝛿m(𝜔) is less than 1.
Therefore, we can conclude that the IMC-PI controller will produce a stable closed-loop
system for the polymer reactor model based on (2.48) when 𝜏cl = 128. As a compari-
son, we increase the desired closed-loop time constant 𝜏cl to 2d. Figures 2.22(a) and (b)
show the further reductions of the magnitude of the complementary sensitivity function
and the quantity |T(j𝜔)|𝛿m(𝜔). Finally, the performance of the closed-loop control sys-
tem is evaluated against the transfer function model (2.48) with the proportional con-
trol implemented on the output only. Figures 2.23(a) and (b) show the closed-loop step
response of the control signal and output signal respectively. It is seen that when 𝜏cl = d,
the closed-loop responses are severely oscillatory, however when 𝜏cl is increased to 2d, the
oscillation is almost overcome. In summary, increasing the desired closed-loop time con-
stant 𝜏cl, which essentially reduces the desired closed-loop bandwidth, will enhance the
robustness of the control system when the plant is stable.
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Figure 2.22 Complementary sensitivity function and graphic presentation of robust stability
condition (Example 2.7). (a) Magnitude of complementary sensitivity function. (b) |T(j𝜔)|𝛿m(𝜔).
Key: line (1) 𝜏cl = 128; line (2) 𝜏cl = 256.
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Figure 2.23 Closed-loop step responses (Example 2.7). (a) Control. (b) Output. Key: line (1) 𝜏cl = 128;
line (2) 𝜏cl = 256.

This process is to be studied again as an exercise (see Problem 8.3) using the frequency
response design technique introduced in Chapter 8, where closed-loop control perfor-
mance improvement is expected.

Note that many of the empirical tuning rules for PID controllers do not have a per-
formance tuning parameter to adjust the desired closed-loop performance in order to
account for the modeling errors. This is the biggest limitation for the empirical PID con-
troller tuning rules. For the IMC-PID controller, the desired closed-loop bandwidth is
selected by adjusting the desired closed-loop time constant 𝜏cl.

2.7.4 Food for Thought

1. If we neglected a time delay d in the design, what would be the multiplicative mod-
elling error?

2. If the Padula and Visioli PID controller tuning rules produced an unstable closed-loop
system, would you try to reduce the proportional control gain Kc or increase the inte-
gral time constant 𝜏I?

3. Is it correct to say that the modelling error limits the closed-loop bandwidth?
4. Is it correct to say that in general we need a model with higher accuracy for a higher

demand in the closed-loop performance for disturbance rejection and reference
following?

2.8 Summary

In this chapter, we have presented the commonly used tools for closed-loop stability and
performance analysis. Understanding the relationships between the closed-loop poles,
closed-loop stability, and performance is crucial in control system design and analysis.
In the later chapters, we will discuss model based controller design methods that specifi-
cally use the locations of the desired closed-loop poles as performance specification. The
important aspects discussed in this chapter are:
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• If the closed-loop transfer function is known with constant coefficients, then the
closed-loop poles can be simply determined by finding the solutions of the charac-
teristic equation. Numerically, this is achieved using MATLAB function root.m for
the denominator of the transfer function.

• The Routh-Hurwitz stability criterion explicitly determines whether a closed-loop
system is stable by examining the coefficients of the closed-loop characteristic poly-
nomial. This is particularly useful when we need to determine the effect of the varia-
tion of a parameter on the closed-loop system.

• Nyquist stability criterion is based on the frequency response of the open-loop trans-
fer function that includes the system, the controller, the actuator and the sensor. It
involves the presentation of the frequency response graphically with real and imagi-
nary parts (a two dimensional plot), revealing the important quantities such as gain
margin, phase margin and delay margin. Because it is based on the frequency domain,
time delay in the system can be easily captured.

• Sensitivity analysis based on the frequency domain is fundamental to the understand-
ing of the characteristics of closed-loop control systems. In the context of sensitivity
analysis, the parameter called closed-loop bandwidth is defined.

• Understanding the closed-loop performance in terms of disturbance rejection and
reference following is based on the frequency response of the sensitivity function and
complementary sensitivity function. Because the relationship between the comple-
mentary sensitivity function and sensitivity function is captured by:

T(s) + S(s) = 1

the performance requirements are consistent in the sense that a closed-loop system
that has a fast reference following will also have a fast disturbance rejection.

• Understanding the closed-loop performance in terms of disturbance rejection (or
reference following) and measurement noise attenuation is also based on the fre-
quency response of the sensitivity function and complementary sensitivity function.
However, the relationship

T(s) + S(s) = 1

captures the fundamental trade-off between disturbance rejection and measurement
noise attenuation. There is a conflict between the two requirements, meaning that
a fast disturbance rejection in a closed-loop control system will inevitably lead to
the amplification of measurement noise. The existence of measurement noise limits
the closed-loop control performance in terms of disturbance rejection and reference
following.

• Modelling errors are often present in the PID control system design. Because of
their existence, there is a difference in the closed-loop performance between what is
desired and what is actually achieved. Their effects on the closed-loop performance
are analyzed and quantified in the frequency domain using the errors and the
complementary sensitivity function. Furthermore, the Nyquist stability criterion
provides an effective means to access the information about gain margin, phase
margin and delay margin, which are important to assess the impact of modelling
errors on closed-loop stability.
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2.9 Further Reading

1. Text books in control engineering include, Franklin et al. (1998), Franklin et al. (1991),
Ogata (2002), Golnaraghi and Kuo (2010), Goodwin et al. (2000) and Astrom and
Murray (2008).

2. Disturbance rejection, reference following and robustness are discussed in Garpinger
et al. (2014), in Alcántara et al. (2013). Two-degrees-of-freedom PID controller
design is proposed in Gorez (2003) and Yukitomo et al. (2004), Araki and Taguchi
(2003). Load disturbance rejection with consideration on robustness of closed-loop
system is proposed in Panagopoulos et al. (2002). Effect of noise for tuning the
controller parameters is discussed in Fertik (1975).

3. The Ziegler-Nichols step response method is revisited from the point of view of
robust loop shaping in Åström and Hägglund (2004).

4. Tuning of PID controllers based on gain and phase margin specifications was pro-
posed in Ho et al. (1995), Ho and Xu (1998), Ho et al. (2000). The Ziegler-Nichols,
and Cohen-Coon tuning formulas that optimize for load disturbance response are
analyzed in Ho et al. (1996) for gain margin and phase margin. Gain and phase mar-
gins are used in selecting PID controller parameters with consideration of robustness
and closed-loop performance in Ho et al. (1998).

5. Disturbance rejection for the modified IMC tuning rules is specifically addressed in
Skogestad (2006). Robustness of IMC is discussed in Morari and Zafiriou (1989).
Further discussions of tuning guidelines and robustness for IMC can be found in
Vilanova (2008).

Problems

2.1 In Example 2.3, three PI controllers (see Table 2.3) were found using tuning-rules
together with analysis of Nyquist diagram for the following continuous-time system:

G(s) = 0.5e−20s

(30s + 1)3 (2.51)

1. Evaluate the closed-loop step response of the three PI control systems in
one-degree-of-freedom using a Simulink simulation.

2. Evaluate the closed-loop step response of the PI control systems in two-degrees-of-
freedom where the reference filter is selected as H(s) = 1

𝜏I s+1
, and compare the

output responses with the simulation results presented in Figure 2.7.

2.2 In Example 1.8, Padula and Visioli tuning rules were used to find PID controller for
the following system

G(s) = 0.5e−20s

(30s + 1)3

where Kc = 3.54, 𝜏I = 40.1098, 𝜏D = 27.0037.
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1. Find the closed-loop transfer function between R(s) and Y (s) with the control
signal U(s) defined as

U(s) = Kc(1 + 1
𝜏I s

+
𝜏Ds

0.1𝜏Ds + 1
)(R(s) − Y (s))

Simulate the closed-loop unit step response for this one-degree-of-freedom con-
trol system with sampling interval Δt = 1 (sec).

2. Find the closed-loop transfer function between R(s) and Y (s) with the control
signal U(s) defined as

U(s) =
Kc

𝜏I s
(R(s) − Y (s)) − KcY (s) −

Kc𝜏Ds
0.1𝜏Ds + 1

Y (s)

Simulate the closed-loop step response for this IPD control system and compare
the results with the ones from the one-degree-of-freedom controller structure.

3. Observing from the closed-loop transfer functions, what reference filter should be
chosen if the remainder of the overshoot from the IPD implementation were to be
eliminated? Verify the results using the selected reference filter.

2.3 Use Routh-Hurwitz stability criterion to determine the range of the proportional
controller Kc that will stabilize the systems with the following transfer functions.
1. G(s) = 0.1

(s + 1)(s + 3)
2. G(s) = (−5s + 1)

(s + 2)2(s + 10)
3. G(s) = s + 0.1

(s − 3)(s + 6)(s + 1)
4. G(s) = −s + 3)

(s + 3)(s2 + s + 5)

2.4 Use Routh-Hurwitz criterion to determine the range of the integral time constant
𝜏I that will produce a stable closed-loop system for the plant with transfer function
G(s) = 1

(s2+s+6)(s+1)
. Here we assume that the proportional gain Kc = 2.

2.5 Consider a system with the following transfer function:

G(s) = (s − 2)
(s + 2)3(s + 5)

.

1. Assuming that the integral time constant 𝜏I = 0.2, form the closed-loop charac-
teristic equation in terms of the proportional control Kc, and numerically deter-
mine the variations of closed-loop poles with respect to Kc (0 ≤ Kc ≤ 100). This
numerical procedure leads to root-locus analysis of the PI control system with
respect to the variations of Kc.

2. Alternatively, we can use MATLAB function ‘rlocus.m’ for the root-locus analysis
with the loop transfer function:

G(s)C(s) = Kc
(s − 2)

(s + 2)3(s + 5)
s + 5

s
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3. From the root-locus analysis, determine the range of the proportional gain Kc
that will produce a stable closed-loop system.

4. What are your observations on the closed-loop pole variations with respect to the
proportional gain Kc from the root-locus analysis?

2.6 This Problem is an extension to Example 2.7. Because the reactor’s transfer function
model has 8 stable zeros, it is difficult to design a PID controller using the PID tuning
rules without desired closed-loop performance adjustment.
1. Use Padula and Visioli PID controller tuning rules based on the first order plus

delay model shown in (2.49) to find two sets of PID controller parameters for
Ms = 1.4 and Ms = 2 (see Table 1.5).

2. Plot the Nyquist diagrams for both PID controlled systems using the original reac-
tor model (2.48) and verify if the closed-loop systems are stable.

3. Based on the Nyquist diagrams, propose what we would do to improve the gain
margin and phase margin for the two PID controlled systems, and modify the
PID controller parameters accordingly.

4. Simulate the closed-loop step response for both systems based on the original
reactor model (2.48) using the modified PID controllers.

2.7 One of the simple and yet effective approaches to model order reduction is to neglect
the small time constant 𝜖 in the transfer function model:

G(s) = e−2s

(10s + 1)(𝜖s + 1)
in order to obtain a first order plus delay model.
1. Determine the multiplicative modelling error ΔGm(s) when the approximate

model is taken as GA(s) =
e−2s

(10s+1)
.

2. Calculate ΔGm(j𝜔) for 𝜖 = 0.1, 1, 10 and compare their magnitudes in a dia-
gram. What are your observations?

3. Use Padula and Visioli PID controller tuning rules (Ms = 2) based on the first
order plus delay model to find two sets of PID controller parameters.

4. Calculate the complementary sensitivity function T(j𝜔) for the PID controller.
5. Determine the closed-loop robust stability using the relationship

|T(j𝜔)ΔGm(j𝜔)| < 1
for all 𝜔. Is the closed-loop system stable for 𝜖 = 0.1, 1, 10?

6. Compare the closed-loop step responses, which are simulated based on the orig-
inal second order plus delay model for 𝜖 = 0.1 and 𝜖 = 1 with sampling inter-
val Δt = 0.01 and derivative filter time constant equal to 0.1𝜏D. What are your
observations?

2.8 The original IMC-PI tuning rules are given for a first order plus delay system:

G(s) =
Ksse−ds

𝜏s + 1
where 𝜏cl is the desired closed-loop time constant and

Kc =
1

Kss

𝜏

𝜏cl + d
; 𝜏I = 𝜏 (2.52)



�

� �

�

70 2 Closed-loop Performance and Stability

1. Find the complementary sensitivity function T(s), the input disturbance sensitiv-
ity function Si(s) for the IMC-PI controlled system. What are your observations
in terms of the poles of the sensitivity functions?

2. For a system with d = 2, 𝜏 = 20, Kss = 0.5, calculate |T(j𝜔)| and |Si(j𝜔)| for
𝜏cl = 5, 10. Will |T(j𝜔)| change with respect to 𝜏cl? If so, what are the bandwidth
parameters? Will |Si(j𝜔)| change with respect to 𝜏cl?

3. Simulate the closed-loop step response for the two PI controlled systems with
sampling interval Δt = 0.01. Does 𝜏cl affect the closed-loop step response speed?

4. Simulate the closed-loop input disturbance response for the two PI controlled
systems, where the disturbance is a constant with magnitude of 3. Does 𝜏cl affect
the closed-loop disturbance rejection?

5. What if the disturbance occurred at the output, would 𝜏cl make a difference on
the disturbance rejection? Verify your intuition with the closed-loop simulation
of output disturbance.
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3

Model-Based PID and Resonant Controller Design

3.1 Introduction

The models used in the design of PID controllers are limited to two particular types.
One is a first order model while the other is a second order model. If the plant dynamics
yield a higher order model, an approximation is often involved to obtain a first order
or a second order model so that a PID controller can be designed using a model based
approach.

When using model based design methods, a desired closed-loop performance speci-
fication is required before commencing. The desired performance is chosen in terms of
the locations of the desired closed-loop poles, which reflect the closed- loop response
time to reference change and disturbance rejection or in the frequency domain the band-
width of the desired closed- loop control system. The desired closed-loop performance
is often adjusted several times using closed-loop simulation and experimental validation
before the designer finds the suitable closed-loop performance.

3.2 PI Controller Design

To design a PI controller, a first order model is used. Although the first order dynamics
is the basic unit to form a system, it can also be used to describe a number of commonly
encountered physical systems, such as the dynamic relationship between motor torque
and angular velocity in the motor control problem, and fluid in-flow rate and fluid level
in a fluid vessel control problem.

3.2.1 Desired Closed-loop Performance Specification

In the model-based design, a desired closed-loop performance is required to be
specified. In the PI controller case, a second order transfer function is used in the
specification,

T(s) =
𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

(3.1)

where 𝑤n and 𝜉 are the natural frequency and damping coefficient for the second order
transfer function. These are the free parameters to be selected by the designer as the
desired performance specification.

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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The parameter 𝜉 is often chosen as 1 or 0.707. When 𝜉 = 1, the poles of the desired
closed-loop transfer function (3.1) are the solutions of the polynomial equation,

s2 + 2𝑤ns +𝑤2
n = 0 (3.2)

which are s1 = s2 = −𝑤n. Namely, we have two identical poles when 𝜉 = 1. With the
second choice of 𝜉 = 0.707, the poles are a pair of complex conjugate numbers deter-
mined by

s1,2 =
−2𝜉𝑤n ±

√
4𝜉2𝑤2

n − 4𝑤2
n

2
= −0.707𝑤n ± j0.707𝑤n. (3.3)

With the parameter 𝜉 chosen (either 1 or 0.707), the natural frequency 𝑤n becomes
a closed-loop performance parameter that the user specifies according to the desired
closed-loop response requirement. In general, when𝑤n is larger, the desired closed-loop
response is faster. The parameter𝑤n is directly related to the closed-loop response time
and the band limit of the closed-loop system, which provide us with the guidelines on
its selection. These two aspects are examined.

From the simulation of a step response (3.1) (see Figure 3.1), the response time is
inversely proportional to the parameter 𝑤n. Figure 3.1(a) shows that with the damping
coefficient 𝜉 = 0.707, the total step response time is about 3

𝑤n
and with 𝜉 = 1, as shown

in Figure 3.1(b), the total step response time is about 5
𝑤n

. There is another estimate of
𝑤n that can be used as a guideline for the designer. Here the parameter 𝑤n is related to
the bandwidth of the desired closed-loop control system. For the desired closed-loop
transfer function given by (3.1), when 𝜉 = 0.707, it can be verified that |T(𝜔)| = 1

√
2

at the frequency 𝜔 = 𝑤n. Hence, with the special choice of the damping coefficient
𝜉 = 0.707, the natural frequency 𝑤n is the bandwidth of the closed-loop system, which
we can directly use for the closed-loop performance specification. With the choice of
𝜉 = 1, the bandwidth of the closed-loop system is slightly smaller.

3.2.2 Model and Controller Structures

For the first order model, we assume that a first order time constant 𝜏 and a steady state
gain K are known to form the Laplace transfer function,

G(s) = K
𝜏s + 1

(3.4)
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Figure 3.1 Step response of the desired closed-loop transfer function. (a) 𝜉 = 0.707. (b) 𝜉 = 1.
Key: line (1)𝑤n = 1; line (2)𝑤n = 10.
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which can also be expressed in the pole–zero form,

G(s) = b
s + a

(3.5)

where a = 1∕𝜏 and b = K∕𝜏.
For a PI controller, its transfer function is given by

C(s) = Kc

(
1 + 1

𝜏Is

)
(3.6)

which can be written in the transfer function form,

C(s) =
c1s + c0

s
(3.7)

where Kc = c1 and 𝜏I =
c1

c0
. We will first find the coefficients c1 and c0 based on the model

(3.5), then convert these coefficients into the standard PI controller parameters Kc and 𝜏I.
The key to the solution of the PI controller parameters is to equate the desired

closed-loop poles to the actual closed-loop poles. The locations of the closed-loop
poles determine whether the closed-loop system is stable, the closed-loop response
time, and the band limit of the closed-loop system.

To this end, we calculate the actual closed-loop system using the design model (3.5)
and the controller model (3.7) via the closed-loop transfer function

Tcl =
G(s)C(s)

1 + G(s)C(s)
=

b
s+a

c1s+c0

s

1 + b
s+a

c1s+c0

s

=
b(c1s + c0)

s(s + a) + b(c1s + c0)
. (3.8)

The closed-loop poles of the actual system are the solutions of the polynomial equation
with respect to s:

s(s + a) + b(c1s + c0) = 0. (3.9)

Equation (3.9) is called the closed-loop characteristic equation. Since the model param-
eters a and b are given, the free parameters in (3.9) are the controller parameters c1 and
c0. To find the controller parameters c1 and c0, the following polynomial equation is set:

s(s + a) + b(c1s + c0) = s2 + 2𝜉𝑤ns +𝑤2
n (3.10)

where the left-hand side of the equation (3.10) is the polynomial that determines the
actual closed-loop poles and the right-hand side is the polynomial that determines the
desired closed-loop poles. By equating these two polynomials, the actual closed-loop
poles are assigned to the desired closed-loop poles. This controller design technique is
called pole assignment controller design.

Now, we compare the coefficients of the polynomial equation (3.10) on both sides:
s2 ∶ 1 = 1 (3.11)
s ∶ a + bc1 = 2𝜉𝑤n (3.12)

s0 ∶ bc0 = 𝑤2
n. (3.13)

Solving (3.12) gives

c1 =
2𝜉𝑤n − a

b
(3.14)
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and solving (3.13) gives

c0 =
𝑤2

n

b
. (3.15)

With the relationships between c1, c0 and Kc, 𝜏I (see Equation (3.7)), we find the PI con-
troller parameters as

Kc = c1 =
2𝜉𝑤n − a

b
(3.16)

𝜏I =
c1

c0
=

2𝜉𝑤n − a
𝑤2

n
. (3.17)

Example 3.1 A first order system is used to describe the dynamic relationship between
voltage change and velocity of a DC motor. Assume that a particular motor has the
Laplace transfer function model,

G(s) = 0.1
10s + 1

. (3.18)

Find the PI controller parameters for velocity control, where the desired closed-loop per-
formance is specified by two performance levels: one fast response 𝑤n = 5 and one slow
response 𝑤n = 0.5; 𝜉 = 0.707 in both cases. Simulate the closed-loop step responses with
proportional control on the output only and compare the results.

Solution. The model parameters needed for the PI controller design are a = 1
10

= 0.1
and b = 0.1

10
= 0.01. With these parameters and the closed-loop performance specifica-

tion, based on equations (3.16 and 3.17) we find the controller parameters as, for𝑤n = 5
and 𝜉 = 0.707,

Kc = 697; 𝜏I = 0.2788,

for 𝑤n = 0.5 and 𝜉 = 0.707

Kc = 60.7; 𝜏I = 2.43.
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Figure 3.2 Closed-loop response (Example 3.1). (a) Control signal. (b) Output signal. Key: line (1)
𝑤n = 0.5; line (2)𝑤n = 5.
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As we can see, when 𝑤n is larger, the proportional gain Kc is larger whilst the integral
time constant 𝜏I is smaller.

We simulate the closed-loop unit step responses with the results shown in Figure 3.2.
The closed-loop response speed is much faster when 𝑤n = 5 in comparison with the case
of 𝑤n = 0.5, and the control signal has a much larger amplitude.

3.2.3 Closed-loop Transfer Functions for Different Configurations

With the PI controller designed, now we study the closed-loop transfer functions for
using the traditional PI controller configuration and the IP controller configuration.

For the traditional PI controller configuration (see Figure 1.5), the Laplace transform
of the control signal, U(s), is expressed as the function of feedback error signal E(s) using
the relation

U(s) = C(s)E(s) =
c1s + c0

s
E(s) (3.19)

where E(s) = R(s) − Y (s) and C(s) = c1s+c0

s
. The closed- loop transfer function between

the reference signal R(s) and the output signal Y (s) is then

Y (s)
R(s)

= G(s)C(s)
1 + G(s)C(s)

(3.20)

where G(s) is the first order transfer function b
s+a

. By substituting the transfer func-
tions of controller (C(s)) and the plant transfer function G(s) into (3.20), we obtain
the closed-loop transfer function for the PI control system using the traditional
implementation:

Y (s)
R(s)

=
b(c1s + c0)

s(s + a) + b(c1s + c0)
. (3.21)

Note that the denominator of (3.21) is used in the design of the PI controller (see
(3.10)), which is made equal to the desired closed-loop characteristic polynomial
s2 + 2𝜉𝑤ns +𝑤2

n. By substituting the controller parameters (see (3.14) and (3.15) and
the desired closed-loop characteristic polynomial into (3.21), the closed-loop transfer
function becomes:

Y (s)
R(s)

=
(2𝜉𝑤n − a)s +𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n
. (3.22)

Using the traditional PI controller configuration, the actual closed-loop transfer func-
tion between the reference signal and the output is not equal to the desired closed-loop
transfer function specified in the design (see T(s) in (3.8)). Instead, there is a zero in the
closed-loop transfer function at the location determined by the polynomial equation:

(2𝜉𝑤n − a)s +𝑤2
n = 0 (3.23)

which is at s = − 𝑤2
n

2𝜉𝑤n−a
. The existence of this zero could cause some overshoot in the step

response. One can verify that the closed-loop transfer function (3.22) has a bandwidth
larger than 𝑤n for the choice of 𝜉 = 0.707.
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For the IP controller configuration (see Figure 1.7), the control signal is expressed as

U(s) = −KcY (s) +
Kc

𝜏Is
E(s)

= −c1Y (s) +
c0

s
(R(s) − Y (s)). (3.24)

The output signal Y (s) is expressed as

Y (s) = b
s + a

U(s). (3.25)

By substituting (3.24) into (3.25), we find the closed-loop transfer function for the alter-
native configuration as

Y (s)
R(s)

=
bc0

s(s + a) + b(c1s + c0)
. (3.26)

By the design procedure, the denominator of this transfer function is s2 + 2𝜉𝑤ns +𝑤2
n

and the numerator bc0 = 𝑤2
n, therefore the closed-loop transfer function is

Y (s)
R(s)

=
𝑤2

n

s2 + 2𝜉𝑤ns +𝑤2
n

(3.27)

which is equal to the desired closed-loop transfer function we specified in the perfor-
mance specification (see (3.1)).

As for disturbance rejection and measurement noise attenuation, both PI control
system configurations have the identical closed- loop transfer function because the
structural change introduced in the alternative configuration is only related to how the
reference signal is introduced in the feedback loop. We illustrate this point by calculating
the closed-loop transfer function between input disturbance and the plant output.

Suppose that an input disturbance has a Laplace transform Di(s) and it enters the sys-
tem at the position of plant input. In this case, the plant output is expressed as

Y (s) = b
s + a

(U(s) + Di(s)). (3.28)

To derive the closed-loop transfer function between the input disturbance and the plant
output, we assume that the reference signal R(s) = 0 so to concentrate on the disturbance
rejection. When the reference signal R(s) = 0, the control signals from both configura-
tions (see (3.19) and (3.24)) become identical to the transform:

U(s) = −c1Y (s) −
c0

s
Y (s). (3.29)

Substituting (3.29) into (3.28), we obtain the closed-loop transfer function between the
input disturbance Di(s) and output Y (s) as

Y (s)
Di(s)

= bs
s(s + a) + b(c1s + c0)

= bs
s2 + 2𝜉𝑤ns +𝑤2

n
(3.30)

where we have used the design equation in (3.10).
Note that there is a factor s in the numerator of the closed-loop transfer function. This

factor ensures that the closed-loop control system will reject a step input disturbance



�

� �

�

3.2 PI Controller Design 77

without steady- state error. This point will be made clear through the examples in the
following section.

Example 3.2 A continuous-time system is described by the following differential
equation:

J d𝜔(t)
dt

+ B𝜔(t) = k𝑣(t) + TL(t) (3.31)

where 𝑣(t) and 𝜔(t) are the control and output signal, TL(t) is the unknown disturbance,
and J = 0.02, B = 0.001, k = 0.5 are the physical parameters. The control objective is
to maintain a desired output of the system while rejecting the disturbance. The desired
closed-loop band limit is specified as 𝑤n = 5 (rad s−1) with the damping coefficient
𝜉 = 0.707. Design a PI controller to achieve the control objective and simulate the
closed-loop response using both PI control system configurations.

Solution. In order to obtain the transfer function model between the input 𝑣 and the
output 𝜔(t), we take the Laplace transform of the dynamic model (3.31):

JsΩ(s) + BΩ(s) = kV (s) + TL(s) (3.32)
where Ω(s), V (s) and TL(s) are the Laplace transforms of the continuous time variables.

Equation (3.32) can also be expressed as

Ω(s) = k
Js + B

V (s) +
TL(s)
Js + B

=
k∕J

s + B
J

V (s) +
TL(s)∕J
s + B

J

. (3.33)

The PI controller parameters are calculated as

Kc =
2𝜉𝑤n − a

b
= 0.2808; 𝜏I =

2𝜉𝑤n − a
𝑤2

n
= 0.2808

where a = B
J
= 0.05 and b = k

J
= 25, 𝑤n = 5 and 𝜉 = 0.707.

The closed-loop response is simulated using Simulink. In the closed-loop simulation, a
unit step input signal is used as the reference change at time t = 0 and a step input sig-
nal with magnitude 1.5 is used as the input disturbance, which occurred at time t = 10.
Figures 3.3(a) and (b) compare the closed-loop output and control signals from the orig-
inal PI controller configuration with those from the IP controller configuration. It is seen
that the IP controller configuration avoids the overshoot that exhibits in the original
configuration; however, both controller configurations provide the same responses in dis-
turbance rejection.

3.2.4 Food for Thought

1. Would you use a second order model to design a PI controller?
2. If you found that the closed-loop response speed was too slow, would you decrease

the parameter 𝑤n?
3. Is it correct to say that the closed-loop bandwidth 𝜔b = 𝑤n when the closed-loop

system transfer function is characterized by 𝑤2
n

s2+2𝜉𝑤ns+𝑤2
n

if the damping coefficient
𝜉 = 0.707?
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Figure 3.3 Closed-loop response of PI control system (Example 3.2). (a) Control signal. (b) Output
response. Key: line (1) IP control system; line (2) PI control system.

4. Would you be able to list three physical systems that can be described by a first order
model?

5. Has the IP controller configuration changed the characteristics of disturbance rejec-
tion when comparing with the original PI controller?

3.3 Model Based Design for PID Controllers

Second order models are used directly for the design of a PD or a PID controller. In
addition, a first order plus delay model is approximated using a second order trans-
fer function model, where the irrational transfer function e−ds is approximated using a
rational transfer function −ds+2

ds+2
that is called first order Padé approximation. If the math-

ematical model is of higher order, then approximation is made to obtain a second order
model in order for the PID controller design to be carried out.

3.3.1 PD Controller Design

The combination of proportional and derivative (PD) control could be useful in the sit-
uation where stabilization of an unstable system is of main concern or in the situation
where the system is severely oscillatory.

Because the derivative action will amplify measurement noise (see Chapter 2), a
derivative filter is required for the implementation of a PD controller. Thus, the general
form of a PD controller is given as

C(s) = Kc +
Kds
𝜏f s + 1

(3.34)

where Kc, Kd and 𝜏f are the proportional gain, the derivative control gain and the filter
time constant, respectively.

For this type of controller design, we assume that the continuous time system is a
second order with the transfer function:

G(s) =
b1s + b0

s2 + a1s + a0
. (3.35)



�

� �

�

3.3 Model Based Design for PID Controllers 79

It is not a straightforward task to choose the parameters Kc, Kd and 𝜏f based on the
second order model (3.35). However, the PD controller can be converted into the clas-
sical lead-lag compensator that has the following form:

C(s) =
p1s + p0

s + l0
(3.36)

where the parameters Kc, Kd are 𝜏f are related to p1, p0 and 𝜏f via the relations below:

𝜏f =
1
l0

(3.37)

Kc =
p0

l0
(3.38)

Kd =
p1

l0
−

p0

l2
0
. (3.39)

The lead-lag compensator in (3.36) can be designed by positioning the desired
closed-loop poles on the left half of the complex plane.

With the lead-lag compensator, the actual closed-loop characteristic polynomial is a
third order, which is

Acl(s) = (s + l0)(s2 + a1s + a0) + (p1s + p0)(b1s + b0)
= s3 + (a1 + l0 + p1b1)s2 + (a0 + l0a1 + p0b1 + b0p1)s + (l0a0 + b0p0).

By choosing a third order desired closed-loop characteristic polynomial having the
following form,

Ad
cl(s) = s3 + acl

2 s2 + acl
1 s + acl

0

and letting Acl(s) = Ad
cl(s), we obtain the following linear equations:

a1 + l0 + p1b1 = acl
2

a0 + l0a1 + p0b1 + b0p1 = acl
1

l0a0 + b0p0 = acl
0 .

The parameters are found via the solution of the linear equations as

⎡
⎢
⎢
⎢
⎣

l0

p1

p0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 b1 0
a1 b0 b1

a0 0 b0

⎤
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎣

acl
2 − a1

acl
1 − a0

acl
0

⎤
⎥
⎥
⎥
⎦

. (3.40)

The polynomial equation Acl(s) = Ad
cl(s) is called Diophantine equation, which is the

essential step for finding the controller parameters in the pole assignment controller
design. The matrix with the dimensions 3 × 3 in (3.40) is called the Sylvester matrix,
which is required to be invertible in the pole assignment controller design.

The following tutorial summarizes the computational procedure for finding the
parameters for the PD controller with filter. We will use this program later on for
applications.

Tutorial 3.1 In this tutorial, we will write a simple MATLAB program to calculate
the PD controller parameters. The desired closed-loop characteristic polynomial is spec-
ified as

Acl = s3 + acl
2 s2 + acl

1 s + acl
0
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and the model is a second order system with the transfer function

G(s) =
b1s + b0

s2 + a1s + a0
.

Step by Step
1. Create a new file called PDplace.m for the MATLAB function.
2. Define the input and output variables for the MATLAB function, where a1, a0, b1,

and b0 are the model parameters and Acl is the desired closed-loop characteristic
polynomial. Enter the following program into the file:
function [Kc,Kd,tauf]=PDplace(a1,a0,b1,b0,Acl);

3. Find the closed-loop performance parameters. Continue entering the following pro-
gram into the file:
ac_2=Acl(2);
ac_1=Acl(3);
ac_0=Acl(4);

4. Form the following matrix and vector for the solution of the PD controller parameters,
and solve the linear equation. Continue entering the following program into the file:
S_matrix=[1 b1 0; a1 b0 b1; a0 0 b0];
Vec=[ac_2-a1;ac_1-a0;ac_0];
contr_p=inv(S_matrix)*Vec;

5. Convert the parameters into a PD controller with derivative filter. Continue entering
the following program into the file:
L0=contr_p(1);
p1=contr_p(2);
p0=contr_p(3);
tauf=1/L0;
Kc=p0/L0;
Kd=p1/L0-p0/L0 ̂ 2;

6. Test this program using the double integrator system presented in Example 3.3, where
we use the following codes:
a1=0;
a0=0;
b1=0;
b0=0.1;
Ac=conv([1 1],[1 1]);
Acl=conv(Ac,[1 1]);
[Kc,Kd,tauf]=PDplace(a1,a0,b1,b0,Acl)

For many applications, the second order model is simplified as

G(s) =
b0

s2 + a1s + a0
(3.41)



�

� �

�

3.3 Model Based Design for PID Controllers 81

and the PD controller parameters have the following solutions:

l0 = acl
2 − a1 (3.42)

p1 =
acl

1 − a0 − l0a1

b0
(3.43)

p0 =
acl

0 − l0a0

b0
. (3.44)

Example 3.3 A double integrator system is described by the Laplace transfer function

G(s) = 0.1
s2 .

Design a PD controller with filter to stabilize this system. All desired closed-loop poles are
positioned at −1.

Solution. From the double integrator model, we have a1 = a0 = 0, b1 = 0, and b0 = 0.1.
The desired closed- loop polynomial is

(s + 1)3 = s3 + 3s2 + 3s + 1

Therefore, acl
2 = 3, acl

1 = 3, and acl
0 = 1. The controller parameters are found using

⎡
⎢
⎢
⎢
⎣

l0

p1

p0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 0 0
0 0.1 0
0 0 0.1

⎤
⎥
⎥
⎥
⎦

−1
⎡
⎢
⎢
⎢
⎣

3
3
1

⎤
⎥
⎥
⎥
⎦

(3.45)

leading to l0 = 3, p1 = 30, and p0 = 10. Basically, the lead and lag compensator for this
system becomes

C(s) = 30s + 10
s + 3

.

For implementation of the PD controller, we use the equations (3.37)–(3.39) to find the
corresponding proportional, derivative gains and the filter time constant as

𝜏f =
1
3
;Kc =

10
3
;Kd = 80

9
; 𝜏D =

Kd

Kc
= 8

3
.

3.3.2 Analytical Examples for Ideal PID with Pole-zero Cancellation

When designing a PID controller, the pole–zero cancellation technique is widely used
in the application field. The main reason behind this practice is that with the pole–zero
cancellation technique, the controller parameter calculations become very simple and
can be performed using pencil on the back of an envelope. However, there are two
important rules regarding the pole–zero cancellation technique. Firstly, an unstable pole
or zero in the system should not be canceled because the cancellation will lead to an
internally unstable system, for the reason that the canceled pole or zero is still part of
desired closed-loop poles (see Section 2.5). Secondly, a stable pole close to the imaginary
axis, which is a pole corresponding to a large time constant, in the system should not
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be canceled because the slow pole will re-appear to become the dominant pole in the
closed-loop response to input disturbance, and as a result, slow disturbance rejection
will occur (see the sensitivity analysis in Chapter 2). As a general rule, a stable pole or
zero could be canceled if its position is on the left-hand side of the desired closed-loop
poles on the complex plane. Additionally, it is the faster stable pole in the plant model
that gets canceled.

We assume that there are two poles in a second order model and both are real, stable
poles. With these assumptions, the transfer function is expressed as

G(s) =
b0

(s + 𝛼1)(s + 𝛼2)
(3.46)

where 𝛼2 > 0 is positive and 𝛼2 ≥ 𝛼1.
The PID controller is assumed to have the ideal structure,

C(s) = Kc(1 + 1
𝜏Is

+ 𝜏Ds) (3.47)

and an implementation filter will be added at the implementation stage with a small 𝛽
parameter chosen by the designer (see Section 1.2). This means that the parameter 𝛽 will
not be considered in the design stage. We will deploy a technique called pole–zero can-
cellation in the PID controller design, and with this technique the controller parameter
solutions become very simple.

We re-write the PID controller given in (3.47) into the transfer function form,

C(s) =
c2s2 + c1s + c0

s
. (3.48)

By comparing (3.48) with (3.47), we have the relationships,

Kc = c1; 𝜏I =
c1

c0
; 𝜏D =

c2

c1
. (3.49)

Thus, we find the parameters in (3.48) first, then convert them into the PID controller
parameters required in the implementation stage.

When using the pole–zero cancellation technique, we assume that the numerator of
the controller C(s) is factored and the controller now has the form,

C(s) =
c2s2 + c1s + c0

s
=

c2(s + 𝛾1)(s + 𝛾2)
s

. (3.50)

By choosing the zero of the controller −𝛾2 equal to the pole of the model −𝛼2 (i.e.
𝛾2 = 𝛼2), we canceled the pole in the model with the zero in the controller. The net
effect of this is that the relationship G(s)C(s) is simplified into

G(s)C(s) =
b0c2(s + 𝛾1)
(s + 𝛼1)s

(3.51)

the closed-loop transfer function between the reference signal R(s) and the output Y (s)
becomes

Y (s)
R(s)

= C(s)G(s)
1 + C(s)G(s)

=
b0c2(s + 𝛾1)

s(s + 𝛼1) + b0c2(s + 𝛾1)
(3.52)



�

� �

�

3.3 Model Based Design for PID Controllers 83

Note that the free parameters in (3.52) are c2 and 𝛾1, respectively, and its denominator is
a second order polynomial. The design becomes identical to the case when we designed
the PI controller using pole assignment technique. Thus, by choosing the desired
closed-loop characteristic polynomial as

Acl(s) = s2 + 2𝜉𝑤ns +𝑤2
n (3.53)

with𝑤n > 0 and 𝜉 = 0.707 or 𝜉 = 1, and equating the desired closed-loop characteristic
polynomial with the denominator of (3.52), we obtain the polynomial equation,

s(s + 𝛼1) + b0c2(s + 𝛾1) = s2 + 2𝜉𝑤ns +𝑤2
n (3.54)

By comparing both sides of (3.54), the free parameters are determined as

c2 =
2𝜉𝑤n − 𝛼1

b0
; 𝛾1 =

𝑤2
n

c2b0
. (3.55)

With the parameters, the PID controller is re-constructed with the information
𝛾2 = 𝛼2 as

C(s) =
c2(s + 𝛾1)(s + 𝛼2)

s
. (3.56)

Its actual parameters are expressed using (3.49) as

Kc = c2𝛾1 + c2𝛼2 =
𝑤2

n

b0
+

(2𝜉𝑤n − 𝛼1)𝛼2

b0
(3.57)

𝜏I =
c1

c0
=

c2𝛾1 + c2𝛼2

c2𝛾1𝛼2
= 1
𝛼2

+
2𝜉𝑤n − 𝛼1

𝑤2
n

(3.58)

𝜏D =
c2

c1
= 1
𝛾1 + 𝛼2

=
2𝜉𝑤n − 𝛼1

𝛼2(2𝜉𝑤n − 𝛼1) +𝑤2
n
. (3.59)

Example 3.4 Assume that a dynamic system has the second order transfer function

G(s) = 2
(10s + 1)(0.5s + 1)

. (3.60)

Design a PID controller using the pole assignment controller design technique with
pole–zero cancellation. The closed-loop performance is specified by 𝜉 = 0.707 with
𝑤n = 1. Simulate the closed-loop response and observe the characteristics of input
disturbance rejection and the effect of measurement noise.

Solution. First, we write the transfer function model (3.60) in the form used for the
derivation of PID controller parameters:

G(s) = 0.4
(s + 0.1)(s + 2)

. (3.61)

From this equation, we find b0 = 0.4, 𝛼1 = 0.1, and 𝛼2 = 2. Therefore, in the pole–zero
cancellation, we will cancel the pole at s = −2. Using (3.57)–(3.59), we calculate the PID
controller parameters as

Kc = 9.07; 𝜏I = 1.814; 𝜏D = 0.3622.

With the implementation parameter 𝛽 = 0.1, in the closed-loop simulation a unit step sig-
nal as the reference signal is introduced at time t = 0 and an input step disturbance with
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Figure 3.4 Closed-loop response of PID control system (Example 3.4). (a) PID controller in a noise free
environment. (b) PID controller in noisy environment.

amplitude of 1.5 is introduced at t = 10. Figure 3.4 (a) shows the closed-loop response in
a noise-free environment. In order to observe the characteristics of the PID controller in a
noisy environment, a band limit white noise with variance 0.01 is added to the closed-loop
simulation and the closed-loop simulation results are shown in Figure 3.4 (b). In compar-
ison with the noise free case, it is seen that the measurement noise has caused significant
fluctuations in the control signal. This observation leads to some caution when we use a
PID controller in a noisy environment.

3.3.3 Analytical Examples for PID Controllers with Filters

As the system becomes more complicated, a derivative filter needs to be used as part
of the PID controller design to give an extra degree of freedom in the solution of the
controller parameters. This is important in eliminating the approximation introduced
by choosing a filter time constant in the implementation stage, hence enhancing the
robustness of the PID control system.

The general form of PID controller is defined by the transfer function

C(s) =
c2s2 + c1s + c0

s(s + l0)
(3.62)

where l0 is a parameter that needs to be utilized as part of the derivative filter. However,
the industrial control systems are often defined in terms of the PID controller parame-
ters, Kc, 𝜏I, 𝜏D, and a filter time constant 𝜏f . 1

Thus, we need to find PID controller parameters that lead to a completely identical
configuration between the controller C(s) defined by (3.62) and an industrial PID con-
troller. With this in mind, we will choose the PID controller parameters such that

C(s) = Kc(1 + 1
𝜏Is

+
𝜏Ds

𝜏f s + 1
) (3.63)

is identical to the PID controller in (3.62). The problem is solved using reverse engineer-
ing by expressing (3.63) as

C(s) =
Kc(𝜏Is(𝜏f s + 1) + (𝜏f s + 1) + 𝜏I𝜏Ds2)

𝜏Is(𝜏f s + 1)
(3.64)

1 This 𝜏f was previously linked to the derivative gain 𝜏D as 𝜏f = 𝛽𝜏D.
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which should be exactly equal to (3.62). By comparing these two expressions, we obtain,

c2 =
Kc(𝜏I𝜏D + 𝜏I𝜏f)

𝜏I𝜏f
(3.65)

c1 =
Kc(𝜏I + 𝜏f)

𝜏I𝜏f
(3.66)

c0 =
Kc

𝜏I𝜏f
(3.67)

l0 = 1
𝜏f

(3.68)

We solve the PID controller parameters using these four linear equations and their val-
ues are,

𝜏f =
1
l0

(3.69)

𝜏I =
c1

c0
− 𝜏f (3.70)

Kc = 𝜏I𝜏f c0 (3.71)

𝜏D =
c2𝜏f − Kc𝜏f

Kc
. (3.72)

Example 3.5 We consider the Padé approximation of irrational transfer function e−ds

for a first order plus delay model:

G(s) =
Kpe−ds

𝜏ps + 1
≈

Kp(−ds + 2)
(𝜏ps + 1)(ds + 2)

. (3.73)

Find the analytical solution of the PID controller parameters with filter using pole-zero
cancelation.

Solution. The first order plus delay model is stable with 𝜏p > 0. The transfer function
model (3.73) can also be written in a second order model pole–zero form,

G(s) =
b1s + b0

(s + 𝛼1)(s + 𝛼2)
(3.74)

where b1 = −Kp

𝜏p
, b0 = 2Kp

𝜏pd
.

To find the analytical solution of the PID controller with filter, we will use the pole–zero
cancellation technique. For this purpose, if 1

𝜏p
<

2
d

, then we choose 𝛼1 = 1
𝜏p

and 𝛼2 = 2
d

. In

the case of a plant with a dominant time delay when 1
𝜏p
>

2
d

, we let 𝛼1 = 2
d

and 𝛼2 = 1
𝜏p

.

Because the zero is unstable located at s = 2
d

, this zero should not be canceled in the con-
troller design. However, we will cancel the pole−𝛼2, which has a faster dynamics response.
The PID controller structure has the transfer function form,

C(s) =
c2s2 + c1s + c0

s(s + l0)
(3.75)

which is an ideal PID controller with a filter. The filter pole −l0 will be used in the design.
We also assume that the PID with filter has the zeros located at −𝛾1 and −𝛼2, where 𝛼2
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corresponds to one of the poles in the model. The open- loop transfer function has the
quantity,

L(s) = G(s)C(s) =
b1s + b0

(s + 𝛼1)(s + 𝛼2)
c2(s + 𝛾1)(s + 𝛼2)

s(s + l0)

=
c2(b1s + b0)(s + 𝛾1)

s(s + 𝛼1)(s + l0)
. (3.76)

The closed-loop transfer function is

T(s) = L(s)
1 + L(s)

=
c2(b1s + b0)(s + 𝛾1)

s(s + 𝛼1)(s + l0) + c2(b1s + b0)(s + 𝛾1)
. (3.77)

Note that the denominator of (3.77) is a third order polynomial and it has three unknown
controller parameters, l0, c2 and 𝛾1. Thus, the desired closed-loop characteristic polyno-
mial Acl(s) must be a third order polynomial with its order to match the denominator of
(3.77). To this end, we select

Acl(s) = (s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1) (3.78)

where 𝜆1 > 0 is a positive parameter. As before, we select the damping coefficient
𝜉 = 0.707 and the natural frequency 𝑤n to reflect the design requirements, such as
closed-loop response time and bandwidth. The extra pole located at −𝜆1 is often chosen
to be far away to the left of the dominant poles −𝜉𝑤n ± j

√
1 − 𝜉2𝑤n (𝜉 = 0.707). For

example, we could select 𝜆1 > 10𝑤n.
The closed-loop characteristic polynomial equation is expressed as

s(s + 𝛼1)(s + l0) + c2(b1s + b0)(s + 𝛾1) = (s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1) (3.79)

where the left-hand side of this equation is the closed-loop characteristic polynomial and
the right-hand side is the desired one. For an exercise, we work out the exact quantities
for both sides as

s3 + (𝛼1 + l0 + c2b1)s2 + (𝛼1l0 + c2(b0 + b1𝛾1))s + c2b0𝛾1

= s3 + (2𝜉𝑤n + 𝜆1)s2 + (𝑤2
n + 2𝜆1𝜉𝑤n)s + 𝜆1𝑤

2
n. (3.80)

By comparing the coefficients of the both sides of the polynomials, three linear equations
are obtained,

s2 ∶ 𝛼1 + l0 + c2b1 = 2𝜉𝑤n + 𝜆1 (3.81)
s ∶ 𝛼1l0 + c2b0 + c2b1𝛾1 = 𝑤2

n + 2𝜆1𝜉𝑤n (3.82)
s0 ∶ c2b0𝛾1 = 𝜆1𝑤

2
n. (3.83)

We solve for c2𝛾1 based on (3.83):

c2𝛾1 =
𝜆1𝑤

2
n

b0
. (3.84)

Then, the value of c2𝛾1 is substituted into (3.82), which becomes,

𝛼1l0 + c2b0 = 𝑤2
n + 2𝜆1𝜉𝑤n −

b1𝜆1𝑤
2
n

b0
. (3.85)
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Note that both (3.81) and (3.85) contain the same pair of unknown variables (𝛼1, c2), so
we will solve these two together using these two equations. From (3.81), we find the value
of l0,

l0 = −c2b1 + 2𝜉𝑤n + 𝜆1 − 𝛼1. (3.86)

Substituting this l0 into (3.85) and collecting the terms, we find c2 as

c2 =
−2𝜉𝑤n𝛼1 − 𝜆1𝛼1 + 𝛼2

1 +𝑤
2
n + 2𝜆1𝜉𝑤n −

b1𝜆1𝑤
2
n

b0

b0 − 𝛼1b1
(3.87)

where we assume that b0 − 𝛼1b1 ≠ 0. The value of l0 is found using (3.86) with c2 given by
(3.87). From c2, we also find 𝛾1 as

𝛾1 =
𝜆1𝑤

2
n

b0c2
. (3.88)

With the parameters c2, 𝛾1, and l0 calculated, the PID controller with filter is
re-constructed as,

C(s) =
c2(s + 𝛾1)(s + 𝛼2)

s(s + l0)
(3.89)

where 𝛼2 corresponds to the location of the pole in the model that we chose to cancel.
Equivalently, (3.89) is expressed in the more general form,

C(s) =
c2s2 + c1s + c0

s(s + l0)
(3.90)

where c2 is calculated using (3.87), c1 = c2(𝛾1 + 𝛼2) and c0 = c2𝛼2𝛾1.

Example 3.6 Given a first order plus delay system with the transfer function

G(s) = 10e−5s

10s + 1
(3.91)

find the PID controller parameters using the pole assignment design technique. The
desired closed-loop performance is specified by 𝜉 = 0.707, 𝜆1 = 1. To understand that
the approximation of time delay using the transfer function model causes error between
the actual plant and the model used for the design, find the PID controller parameters for
𝑤n = 0.4 and then reduce it to𝑤n = 0.2, and simulate the closed-loop performance with
a unit step reference signal and disturbance rejection of step signal with amplitude 0.2.

Solution. The first order plus delay model is approximated using Padé approximation,
leading to

G(s) ≈ −s + 0.4
(s + 0.1)(s + 0.4)

. (3.92)

In the design, we cancel the pole from the time delay, and assign the values of 𝛼1 and 𝛼2
as 𝛼1 = 0.1 and 𝛼2 = 0.4. Also from (3.92), we find b1 = −1 and b0 = 0.4.

In the calculation, we first use 𝑤n = 0.4. We calculate the value of c2 as

c2 =
−2𝜉𝑤n𝛼1 − 𝜆1𝛼1 + 𝛼2

1 +𝑤
2
n + 2𝜆1𝜉𝑤n −

b1𝜆1𝑤
2
n

b0

b0 − 𝛼1b1
= 1.9581 (3.93)



�

� �

�

88 3 Model-Based PID and Resonant Controller Design

0 50 100
−1

0

1

2

O
ut

pu
t

Time (sec)

0 50 100
−0.5

0

0.5

C
on

tr
ol

Time (sec)

(a)

0 50 100
−1

0

1

2

O
ut

pu
t

Time (sec)

0 50 100
−0.5

0

0.5

C
on

tr
ol

Time (sec)

(b)

Figure 3.5 Closed-loop response of PID control system (Example 3.6). (a) PID control with 𝜉 = 0.707,
𝜆1 = 1 and𝑤n = 0.4. (b) PID control with 𝜉 = 0.707, 𝜆1 = 1 and𝑤n = 0.2.

and l0 as

l0 = −c2b1 + 2𝜉𝑤n + 𝜆1 − 𝛼1 = 3.4237 (3.94)

c1 = c2(𝛾1 + 𝛼2) = 1.1832, and c0 = c2𝛼2𝛾1 = 0.16. From these parameters, we calculate
the PID controller parameters using (3.69)–(3.72):

Kc = 0.332; 𝜏I = 7.1; 𝜏D = 1.43; 𝜏f = 0.292.

Figure 3.5(a) shows the closed-loop responses. It is seen that both control signal and the
plant output signal are oscillatory, which is due to the modeling error introduced by the
approximation of the time delay. To demonstrate that reducing the desired bandwidth of
the closed-loop system will reduce the oscillation, we reduce the performance parameter
𝑤n from 0.4 to 0.2. Following the same procedure, we obtain the PID controller parameters
for 𝑤n = 0.2, as

Kc = 0.1793; 𝜏I = 8.0323; 𝜏D = 1.3375; 𝜏f = 0.5581.

Figure 3.5(b) shows the closed-loop responses with this reduced 𝑤n. It is seen indeed that
the closed-loop oscillation is eliminated.

The following example will examine the effect of pole–zero cancellation on reference
following and disturbance rejection.

Example 3.7 AC motor angular position control is required in the applications of high
precision machining. Assume that an AC motor has the Laplace transfer function model,

G(s) = 0.05
s(10s + 1)

(3.95)

where the input to the model is the torque current and the output is the angular position of
the motor. Design a PID controller with filter using the pole assignment design technique
with pole–zero cancellation, where all the desired closed-loop poles are placed at −1.
Verify that the output of the closed-loop control system will track a constant reference
input without steady- state error. Also investigate the dynamic response of the closed-
loop system to an input disturbance with unknown amplitude of dm.
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Solution. Write the model in a pole and zero form,

G(s) = 0.005
s(s + 0.1)

(3.96)

and the controller in the form,

C(s) =
c2s2 + c1s + c0

s(s + l0)
. (3.97)

Since we are going to cancel the pole −0.1 in the AC motor model, the controller is param-
eterized as

C(s) =
c2(s + 𝛾1)(s + 0.1)

s(s + l0)
. (3.98)

With this choice, we have the open-loop transfer function,

Lo(s) = C(s)G(s) =
c2(s + 𝛾1)(s + 0.1)

s(s + l0)
0.005

s(s + 0.1)

=
0.005c2(s + 𝛾1)

s2(s + l0)
. (3.99)

The closed-loop transfer function from the reference signal R(s) to the output Y (s) is

G(s)C(s)
1 + G(s)C(s)

=
0.005c2(s+𝛾1)

s2(s+l0)

1 + 0.005c2(s+𝛾1)
s2(s+l0)

=
0.005c2(s + 𝛾1)

s2(s + l0) + 0.005c2(s + 𝛾1)
. (3.100)

The denominator of (3.100) is a third order polynomial, which is the actual closed-loop
characteristic polynomial determining the closed- loop poles. Thus the number of
closed-loop poles is 3. With all closed-loop poles placed at −1, we select the desired
closed- loop polynomial as

Acl(s) = (s + 1)3 = s3 + 3s2 + 3s + 1. (3.101)

The actual closed-loop characteristic polynomial is made equal to the desired one:

s2(s + l0) + 0.005c2(s + 𝛾1) = s3 + 3s2 + 3s + 1. (3.102)

This equation is expressed as

s3 + l0s2 + 0.005c2s + 0.005c2𝛾1 = s3 + 3s2 + 3s + 1. (3.103)

Comparing both sides of the equation, we have
s2 ∶ l0 = 3 (3.104)
s ∶ 0.005c2 = 3 (3.105)

s0 ∶ 0.005c2𝛾1 = 1. (3.106)

These equations give the solution of the PID controller parameters, l0 = 3, c2 = 600, and
𝛾1 = 1

3
. The controller C(s) is constructed with these parameters and the canceled pole:

C(s) =
600(s + 1

3
)(s + 0.1)

s(s + 3)
= 600s2 + 260s + 20

s(s + 3)
. (3.107)
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The PID controller parameters are calculated based on C(s) as

Kc = 84.4; 𝜏I = 12.7; 𝜏D = 0.16; 𝜏f = 0.33.

The transfer function between the reference signal R(s) and the output signal Y (s) is
Y (s)
R(s)

= C(s)G(s)
1 + C(s)G(s)

. (3.108)

With the pole–zero cancellation, we obtain the closed-loop transfer function as
Y (s)
R(s)

=
0.005c2(s + 𝛾1)

s2(s + l0) + 0.005c2(s + 𝛾1)

= 3s + 1
(s + 1)3 (3.109)

where we have used the Diophantine equation (3.102).
Assume that the reference is a step signal with the Laplace transform 1

s
, then the out-

put is

Y (s) = 3s + 1
(s + 1)3

1
s
. (3.110)

Applying final value theorem, we calculate the final value of the output as

lim
t→∞

y(t) = lim
s→0

sY (s) = lim
s→0

3s + 1
(s + 1)3 = 1. (3.111)

So, the output of the closed-loop control system will follow the step reference signal with
zero steady-state error, and all closed- loop poles for this relationship are all positioned
at −1 as the design required.

Figure 3.6 shows the reference responses for the three different controller configurations.
Because the controller C(s) has a filter, the order of its denominator equals the order
of its numerator and it can be directly implemented on the feedforward path, namely
U(s) = C(s)(R(s) − Y (s)). The output is shown by line (1) in Figure 3.6. It is seen that there
is a large overshoot occurring in the output response. The output response illustrated
by line (2) is the closed-loop response by putting both the proportional and derivative
terms on the output only. In this implementation approach, there is no overshoot, but the
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Figure 3.6 Reference response of the
PID control system (Example 3.7). Key:
line (1) implementation using C(s)
directly; line (2) PID controller with
both proportional and derivative terms
on the output; line (3) PID controller
with derivative term on the output.
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response is slower than the first approach. When only the derivative term is implemented
on the output, the closed-loop response is shown by line (3), which has a smaller amount of
overshoot and the closed- loop response speed is faster than the case indicated by line (2).

To investigate the dynamic characteristics of the output response with respect to the
input disturbance, we write the closed-loop transfer function between the input distur-
bance Di(s) and the output Y (s) as

Y (s)
Di(s)

= G(s)
1 + G(s)C(s)

=
0.005

s(s+0.1)

1 + 0.005c2(s+𝛾1)
s2(s+l0)

(3.112)

which is, by substituting the values of c2, 𝛾1, and l0, and the Diophantine equation into
(3.112),

Y (s)
Di(s)

= 0.005s(s + 3)
(s + 1)3(s + 0.1)

. (3.113)

The denominator of (3.113) indicates that there are four poles for this closed-loop rela-
tionship: three of them are at the desired location −1 and one of them is at −0.1, which
is the plant pole we canceled in the design. This is not good because the plant pole has
re-appeared in the closed-loop system for input disturbance response and the magnitude
of the plant pole was 10 times smaller than the desired closed-loop poles we selected in
the design. This means that the actual closed-loop response speed for input disturbance
rejection is much slower than the closed-loop performance we designed for, despite that
the dynamic response to reference following has achieved the closed-loop performance we
have designed for.

At the steady-state, using the final value theorem, we can verify that

lim
t→∞

y(t) = lim
s→0

s 0.005s(s + 3)
(s + 1)3(s + 0.1)

dM

s
= 0. (3.114)

Therefore, the PID controller will completely reject the disturbance with zero steady-state
error. Figure 3.7 shows the dynamic response to an input disturbance with unknown
amplitude. The disturbance occurred at time 50 s, and it is seen that the closed-loop
response to the disturbance is very slow and it takes about 50 s to bring the output response
back to 0, which is the steady-state in this case.

Figure 3.7 Input disturbance rejection
(Example 3.7). All controller structures
produce identical disturbance responses.
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When the plant is underdamped, the pole–zero cancellation technique we used before
will be avoided for the reason that the plant pole that was canceled in the design will
re-appear in the closed-loop system for input disturbance rejection.

3.3.4 PID Controller Design without Pole–Zero Cancellation

We assume that the PID controller has the form,

C(s) =
c2s2 + c1s + c0

s(s + l0)
(3.115)

and the second order model has the form,

G(s) =
b1s + b0

s2 + a1s + a0
. (3.116)

Without pole–zero cancellation, the open-loop transfer function is

L(s) = C(s)G(s) =
c2s2 + c1s + c0

s(s + l0)
b1s + b0

s2 + a1s + a0
. (3.117)

The closed-loop transfer function is

T(s) = L(s)
1 + L(s)

=
(c2s2 + c1s + c0)(b1s + b0)

s(s + l0)(s2 + a1s + a0) + (c2s2 + c1s + c0)(b1s + b0)
. (3.118)

Note that the denominator of the closed-loop transfer function is a fourth order polyno-
mial and there are four unknown controller parameters to be determined in the design.
Thus, the desired closed-loop characteristic polynomial Acl(s) must be a fourth order
polynomial with all zeros on the left half of the complex plane. For instance, we can
assume that Acl(s) has the form,

Acl(s) = (s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1)2 (3.119)

where the dominant poles are −𝜉𝑤n ± j
√

1 − 𝜉2𝑤n (𝜉 = 0.707 or 1), and 𝜆1 ≥ 𝑤n > 0.
For simplicity, the desired closed-loop characteristic polynomial Acl(s) is denoted as
s4 + t3s3 + t2s2 + t1s + t0. To assign the closed-loop poles to the desired locations, we
solve the Diophantine equation,

s(s + l0)(s2 + a1s + a0) + (c2s2 + c1s + c0)(b1s + b0) = s4 + t3s3 + t2s2 + t1s + t0.

(3.120)
By multiplication and collecting terms, we find the exact quantity on the left-hand side
of (3.120), which is equal to its right-hand side:

s4 + (b1c2 + a1 + l0)s3 + (b1c1 + b0c2 + a0 + a1l0)s2

+ (b1c0 + b0c1 + l0a0)s + b0c0

= s4 + t3s3 + t2s2 + t1s + t0. (3.121)
By comparing both sides of (3.121), a set of linear equations is formed,

s3 ∶ b1c2 + a1 + l0 = t3 (3.122)
s2 ∶ b1c1 + b0c2 + a0 + a1l0 = t2 (3.123)
s ∶ b1c0 + b0c1 + l0a0 = t1 (3.124)

s0 ∶ b0c0 = t0. (3.125)
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This set of linear equations is expressed in matrix and vector form for convenience of
solution,

Sy

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎡
⎢
⎢
⎢
⎣

1 b1 0 0
a1 b0 b1 0
a0 0 b0 b1
0 0 0 b0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

l0
c2
c1
c0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

t3 − a1
t2 − a0

t1
t0

⎤
⎥
⎥
⎥
⎦

(3.126)

where we assume that the square matrix Sy (called the Sylvester matrix) is invertible.

Example 3.8 An inverted pendulum on a cart has external force as input f (t) and its
output is the angular position 𝜃(t). The Laplace transfer function to describe the dynamics
of a laboratory pendulum test bed has the form,

G(s) = −0.1
(s − 1)(s + 1)

. (3.127)

Design a PID controller for this test bed, where the closed-loop performance is specified
by 𝜉 = 0.707, and 𝑤n = 𝜆1 = 10. Simulate a closed-loop step response using a PID con-
troller with the configuration of the derivative term on output while the proportional and
integral terms are on the error signal, and with the configuration of both derivative term
and proportional term on the output while only the integral term is on the error signal.

Solution. For this example, b1 = 0, b0 = −0.1, a1 = 0, and a0 = −1. From (3.126), the
linear equation formulated based on the pole assignment controller design technique is

⎡
⎢
⎢
⎢
⎣

1 0 0 0
0 −0.1 0 0
−1 0 −0.1 0
0 0 0 −0.1

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

l0
c2
c1
c0

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

34
484

3414
10000

⎤
⎥
⎥
⎥
⎦

. (3.128)

Solution of this set of linear equations gives the controller designed using the pole assign-
ment technique: l0 = 34.14, c2 = −4834, c1 = −34481, c0 = −100000. We convert these
parameters into PID controller parameters as

𝜏f =
1
l0

= 0.0293 (3.129)

𝜏I =
c1

c0
− 𝜏f = 0.3155 (3.130)

Kc = 𝜏I𝜏f c0 = −904.2028 (3.131)

𝜏D =
c2𝜏I𝜏f − Kc𝜏I𝜏f

Kc𝜏I
= 0.1240. (3.132)

Note that the proportional gain Kc is negative, not positive, as one might think. This is
because the system is unstable with a pole on the right-hand side of the complex plane
and the proportional controller gain Kc does not follow the rules established for stable
systems.

The closed-loop step response is simulated for both structures. Figure 3.8 shows both
control signal and output signal for a unit step change at time t = 0. In comparison, the
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Figure 3.8 Closed-loop response (Example 3.8). (a) Control signal. (b) Output signal. Key: line (1) The
IPD controller structure; line (2) The original PID controller structure.

IPD controller structure by implementing the proportional term on the output only sig-
nificantly reduced the overshoot exhibited in the original structure.

3.3.5 MATLAB Tutorial on Solution of a PID Controller with Filter

Tutorial 3.2 In this tutorial, we will write a simple MATLAB program to calculate
the PID controller parameters. The desired closed-loop characteristic polynomial is spec-
ified as

Acl = s4 + ac3s3 + ac2s2 + ac1s + ac0

and the model is a second order system with the transfer function

G(s) =
b1s + b0

s2 + a1s + a0
.

Step by Step

1. Create a new file called PIDplace.m for the MATLAB function.
2. Define the input and output variables for the MATLAB function, where a1, a0, b1,

and b0 are the model parameters and Acl is the desired closed-loop characteristic
polynomial. Enter the following program into the file:

function [Kc,tauI,tauD,tauf]=PIDplace(a1,a0,b1,b0,Acl);

3. Find the closed-loop performance parameters. Continue entering the following pro-
gram into the file:

ac_3=Acl(2);
ac_2=Acl(3);
ac_1=Acl(4);
ac_0=Acl(5);
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4. Form the following matrix and vector for the solution of the PID controller parameters,
and solve the linear equation. Continue entering the following program into the file:

S_matrix=[1 b1 0 0; a1 b0 b1 0; a0 0 b0 b1; 0 0 0 b0];
Vec=[ac_3-a1;ac_2-a0;ac_1;ac_0];
contr_p=inv(S_matrix)*Vec;

5. Convert the parameters into a PID controller with derivative filter. Continue entering
the following program into the file:

L0=contr_p(1);
c2=contr_p(2);
c1=contr_p(3);
c0=contr_p(4);
tauf=1/L0;
tauI=c1/c0-tauf;
Kc=tauI*tauf*c0;
tauD=(c2*tauI*tauf-Kc*tauI*tauf)/(Kc*tauI);

6. Test this program using the inverted pendulum system presented in Example 3.8, where
we use the following codes:

b1=0;
b0=-0.1;
a1=0;
a0=-1;
Ac1=[1 0.707*20 100];
Ac2=[1 20 100];
Acl=conv(Ac1,Ac2);
[Kc,tauI,tauD,tauf]=PIDplace(a1,a0,b1,b0,Acl)

3.3.6 Food for Thought

1. Would you design a PD or a PID controller for a first order system?
2. If a system has a pole located on the right half of the complex plane (unstable pole),

can you choose a controller zero to cancel this unstable pole?
3. Is it correct to say that the open-loop pole that was cancelled in the design will

re-appear at the output response to input disturbance?
4. Is it correct to say that the open-loop pole that was cancelled will re-appear at the

output response to output disturbance?
5. Is it correct to say that the open-loop pole that was cancelled will re-appear at the

output response to reference signal?
6. How would you deal with time delay when using pole-assignment controller design

technique?
7. In the general pole-assignment controller design (without pole-zero cancellation),

what is the condition required to obtain unique solutions of controller parameters?



�

� �

�

96 3 Model-Based PID and Resonant Controller Design

3.4 Resonant Controller Design

The resonant controller, different from the PI or PID controller, incorporates the factor
s2 + 𝜔2

0 in the denominator of the controller. With the embedded mode, the closed-loop
feedback control system is designed to be stable, and at the steady-state the output of
the control system will completely track the sinusoidal signal and/or reject a sinusoidal
disturbance signal that contains the frequency 𝜔0 without any steady-state errors (see
Section 2.5.3).

3.4.1 Resonant Controller Design

Consider a first order transfer function that is used to describe the dynamics of an AC
motor with the form,

G(s) = b
s + a

= B(s)
A(s)

(3.133)

where the input is the torque current and the output is velocity. The task is to design
a controller C(s) to reject a sinusoidal disturbance with frequency 𝜔0 (rad s−1).
Pole-assignment controller design will be used here.

For the first order system, the controller structure is chosen as

C(s) =
c2s2 + c1s + c0

s2 + 𝜔2
0

= P(s)
L(s)

. (3.134)

Here, the denominator of the controller is second order (s2), the numerator is also cho-
sen to be second order to allow proportional control action. This choice leads to three
unknown coefficients c2, c1, and c0 to be determined. The actual closed-loop character-
istic polynomial is

L(s)A(s) + P(s)B(s) = (s2 + 𝜔2
0)(s + a) + b(c2s2 + c1s + c0). (3.135)

This is a third order polynomial. Therefore, the desired closed- loop characteristic poly-
nomial should be third order and the number of desired closed-loop poles should be
3 accordingly. For instance, we can assume that the desired closed-loop characteristic
polynomial Acl(s) has the form (𝜉,𝑤n, 𝜆1 > 0)

Acl(s) = (s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1) (3.136)

where the dominant poles are −𝜉𝑤n ± j
√

1 − 𝜉2𝑤n (𝜉 = 1 or 0.707), and 𝜆1 ≥ 𝑤n > 0.
For simplicity, the desired closed-loop characteristic polynomial Acl(s) is denoted as
s3 + t2s2 + t1s + t0.

With the pole assignment controller design technique, we let the actual closed-loop
characteristic polynomial equal the desired closed-loop characteristic polynomial,
which leads to,

L(s)A(s) + P(s)B(s) = Acl(s). (3.137)

This equation (3.137) is called the Diophantine equation. By substituting the expressions
of L(s), A(s), P(s), B(s), and Acl(s) into (3.137), the Diophantine equation is written as

s3 + (a + bc2)s2 + (𝜔2
0 + bc1)s + (a𝜔2

0 + bc0) = s3 + t2s2 + t1s + t0. (3.138)
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In order for the left-hand side of the equation to be equal to the right-hand side of the
equation, we have the following linear equations:

s2 ∶ a + bc2 = t2 (3.139)
s ∶ 𝜔2

0 + bc1 = t1 (3.140)
s0 ∶ a𝜔2

0 + bc0 = t0. (3.141)

Solving these linear equations gives the coefficients of the controller as

c2 =
t2 − a

b
(3.142)

c1 =
t1 − 𝜔2

0

b
(3.143)

c0 =
t0 − a𝜔2

0

b
. (3.144)

3.4.2 Steady-state Error Analysis

To show that the output of the closed-loop control system will follow a sinusoidal signal
with frequency𝜔0, we calculate the closed-loop feedback error signal E(s) = R(s) − Y (s)
in relation to the sinusoidal reference signal R(s). Here, the control signal is

U(s) =
c2s2 + c1s + c0

s2 + 𝜔2
0

E(s) (3.145)

and the output signal is

Y (s) = b
s + a

U(s) = b
s + a

c2s2 + c1s + c0

s2 + 𝜔2
0

E(s). (3.146)

Noting that Y (s) = R(s) − E(s), by substituting this into (3.146), we obtain

(1 + b
s + a

c2s2 + c1s + c0

s2 + 𝜔2
0

)E(s) = R(s). (3.147)

The relationship between the reference signal R(s) and the output signal Y (s) is

E(s) =
(s + a)(s2 + 𝜔2

0)
(s2 + 𝜔2

0)(s + a) + b(c2s2 + c1s + c0)
R(s)

=
(s + a)(s2 + 𝜔2

0)
(s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)
R(s) (3.148)

where we have used the Diophantine equation (3.137). When the reference signal r(t) =
Rm sin(𝜔0t), its Laplace transform is R(s) = Rm𝜔0

s2+𝜔2
0
. From (3.148), we have the Laplace

transform of the feedback error signal,

E(s) =
(s + a)(s2 + 𝜔2

0)
(s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)
Rm𝜔0

s2 + 𝜔2
0

=
(s + a)Rm𝜔0

(s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1)

(3.149)
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where we have canceled the factor s2 + 𝜔2
0. Since the denominator of (3.149) contains all

zeros on the left half of the complex plane, by applying final value theorem, we obtain

lim
t→∞

e(t) = lim
s→0

s
(s + a)Rm𝜔0

(s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1)

= 0. (3.150)

Because e(t) = r(t) − y(t) and limt→∞e(t) = 0, we conclude that the output y(t) will con-
verge to the reference signal r(t).

To show that the closed-loop control system will completely reject a sinusoidal dis-
turbance, we will find the relationship between the input disturbance and the output.
Here, the transfer function between the input disturbance Di(s) and the output Y (s) is

Y (s)
Di(s)

= G(s)
1 + G(s)C(s)

=
(s2 + 𝜔2

0)b
(s2 + 𝜔2

0)(s + a) + b(c2s2 + c1s + c0)

=
b(s2 + 𝜔2

0)
(s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)
. (3.151)

Assume that the disturbance signal is a sinusoidal signal di(t) = dm sin(𝜔0t) with
unknown amplitude dm, and it has the Laplace transform Di(s) =

dm𝜔0

s2+𝜔2
0
. Thus, the output

in response to the input disturbance Di(s) is

Y (s) =
b(s2 + 𝜔2

0)
(s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)
Di(s)

=
b(s2 + 𝜔2

0)
(s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)
dm𝜔0

s2 + 𝜔2
0

=
bdm𝜔0

(s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1)

. (3.152)

The zeros of the denominator are all on the left half of the complex plane as the parame-
ters 𝜆1 > 0, 𝜉 = 0.707, or 1 and𝑤n > 0. Thus, by applying final value theorem, we obtain

lim
t→∞

y(t) = lim
s→0

sY (s)

= lim
s→0

sbdm𝜔0

(s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1)

= 0 (3.153)

Therefore, the output y(t) in response to the input disturbance di(t) is zero at the
steady-state. This means that the input disturbance di(t) will be completely rejected by
the closed- loop feedback control system.

Example 3.9 For an AC motor with parameters a = 0.01 and b = 0.05, if the distur-
bance is at frequency𝜔0 = 0.1, and all three desired closed-loop poles are selected as−0.1,
design the feedback controller for this AC motor so that the closed-loop control signal will
reject the sinusoidal disturbance signal.

Solution. The desired closed-loop characteristic polynomial is

Acl(s) = (s + 0.1)3 = s3 + 0.3s2 + 0.03s + 0.001. (3.154)
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Figure 3.9 Closed-loop response of resonant control (Example 3.9). (a) Disturbance rejection.
(b) Reference following.

Here, t2 = 0.3, t1 = 0.03, and t0 = 0.001. From the equations given in (3.138), we find the
controller parameters as

c2 =
t2 − a

b
= 0.3 − 0.01

0.05
= 5.8 (3.155)

c1 =
t1 − 𝜔2

0

b
= 0.03 − 0.01

0.05
= 0.4 (3.156)

c0 =
t0 − a𝜔2

0

b
= 0.001 − (0.01)2

0.05
= 0.018. (3.157)

First, we simulate the closed-loop disturbance rejection by operating the system at the
steady-state value 0.3 and at time t = 0, inject a disturbance signal din(t) = 2 sin(0.1t).
Figure 3.9(a) shows the output response to the disturbance signal. It is seen that the dis-
turbance is completely rejected and the output returns to the reference signal. The same
control system will also follow a sinusoidal reference signal, as shown in Figure 3.9(b),
which shows that the output tracks a sinusoidal signal r(t) = sin(0.1t). Thus, the con-
trol system we designed for sinusoidal disturbance rejection will automatically follow a
sinusoidal signal with the same frequency.

3.4.3 Pole–Zero Cancellation in the Design of a Resonant Controller

Example 3.10 An electric circuit has a second order transfer function:

G(s) = 1
(s + 1)(s + 6)

. (3.158)

This system has a sinusoidal disturbance with frequency 𝜔0 = 1. Design a resonant con-
troller to completely reject this disturbance at the steady-state. All desired closed-loop
poles are positioned at −3.

Solution. Since the positions of the closed-loop poles −3 are on the right-hand side of
the fast pole of the system −6, we will choose to use the pole–zero cancellation technique
in the design. Cancellation of this pole will not significantly alter the response speed of
the input disturbance. However, because we do not know the exact order of the controller,
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we will start the design using the lowest order possible and see if we can find the unique
controller parameter solutions.

The simplest controller structure for a resonant controller is

C(s) =
c2s2 + c1s + c0

s2 + 𝜔2
0

. (3.159)

This structure is chosen because we know that in order to reject the sinusoidal disturbance
the denominator of the controller will contain the factor s2 + 𝜔2

0, and the order of the
numerator is to match the order of the denominator.

To implement the pole–zero cancellation, the controller is re- written as

C(s) =
c2(s + 𝛾1)(s + 6)

s2 + 𝜔2
0

. (3.160)

The open-loop transfer with the plant and the controller is

Lo(s) = G(s)C(s) = 1
(s + 1)(s + 6)

c2(s + 𝛾1)(s + 6)
s2 + 𝜔2

0
. (3.161)

The closed-loop transfer function between the reference signal R(s) and the output Y (s) is
Y (s)
R(s)

= G(s)C(s)
1 + G(s)C(s)

=
c2(s + 𝛾1)

c2(s + 𝛾1) + (s + 1)(s2 + 𝜔2
0)
. (3.162)

Here, from (3.162), we can see that the denominator of the closed-loop transfer function
is a third order polynomial and therefore there are three closed-loop poles in the system.
When we look closely at (3.162), there are only two unknown controller coefficients, c2 and
𝛾1. If we were to examine the Diophantine equation,

c2(s + 𝛾1) + (s + 1)(s2 + 𝜔2
0) = s3 + t2s2 + t1s + t0 (3.163)

where the right-hand side of the equation is the desired closed- loop polynomial, there
are three linear equations in order to match the actual closed-loop poles to the desired
closed-loop poles. Thus, there is no unique solution to determine the two unknown con-
troller coefficients c2 and 𝛾1 when there are three linear equations. This means that the
controller structure is too simple for the system.

We increase the controller complexity by choosing

C(s) =
c3s3 + c2s2 + c1s + c0

(s2 + 𝜔2
0)(s + l0)

(3.164)

where both denominator and numerator have the same order of 3 for maintaining pro-
portional control and practical implementation. With the pole–zero cancellation, we
re-write the controller structure as

C(s) =
c3(s2 + 𝛾1s + 𝛾0)(s + 6)

(s2 + 𝜔2
0)(s + l0)

. (3.165)

The open-loop transfer function is

L0(s) = G(s)C(s) = 1
(s + 1)(s + 6)

c3(s2 + 𝛾1s + 𝛾0)(s + 6)
(s2 + 𝜔2

0)(s + l0)
. (3.166)
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With the cancellation of the factor s + 6, the closed-loop transfer function is
Y (s)
R(s)

=
c3(s2 + 𝛾1s + 𝛾0)

c3(s2 + 𝛾1s + 𝛾0) + (s + 1)(s2 + 𝜔2
0)(s + l0)

. (3.167)

From (3.167), it is seen that the closed-loop characteristic polynomial is fourth order
and there are four closed-loop poles, and there are four independent unknown controller
parameters: c3, 𝛾1, 𝛾0, and l0. As per the design specification, all closed-loop poles are
positioned at −3, hence the desired closed-loop characteristic polynomial is (s + 3)4. This
leads to the Diophantine equation:

c3s2 + c3𝛾1s + c3𝛾0 + (s + 1)(s2 + 𝜔2
0)(s + l0) = (s + 3)4 (3.168)

which is
s4 + (1 + l0)s3 + (𝜔2

0 + l0 + c3)s2 + (𝜔2
0 + l0𝜔

2
0 + c3𝛾1)s + l0𝜔

2
0 + c3𝛾0

= s4 + 12s3 + 54s2 + 108s + 81. (3.169)
Comparing both sides of the equation (3.169), we obtain the linear equations:

s3 ∶ 1 + l0 = 12 (3.170)
s2 ∶ 𝜔2

0 + l0 + c3 = 54 (3.171)
s ∶ 𝜔2

0 + l0𝜔
2
0 + c3𝛾1 = 108 (3.172)

s0 ∶ l0𝜔
2
0 + c3𝛾0 = 81. (3.173)

Solving these linear equations gives the values of the controller parameters: l0 = 11,
c3 = 54 − 𝜔2

0 − l0 = 42, 𝛾1 = (108 − 𝜔2
0 − l0𝜔

2
0)∕c3 = 2.2857, and 𝛾0 = (81 − l0𝜔

2
0)∕c3 =

1.667. With these parameters, we re-construct the resonant controller as

C(s) =
c3(s2 + 𝛾1s + 𝛾0)(s + 6)

(s2 + 𝜔2
0)(s + l0)

= 42s3 + 348s2 + 657s + 486
s3 + 11s2 + s + 11

. (3.174)

The closed-loop output response to an input disturbance di(t) = 2 sin(t) is simulated with
the system operating at the steady state of 1, the disturbance entering the system at t = 0.
Figure 3.10 shows the output response to the disturbance input. It is seen that it takes
about three seconds for the closed-loop system to completely reject the sinusoidal distur-
bance.

With the resonant controller, as shown in Section 2.5.3, the complementary sensitivity
function is required to satisfy T(𝜔) = 1 at the frequency 𝜔 = 𝜔0. Thus, this indicates
that the bandwidth of the closed-loop resonant control system is to be greater than 𝜔0,
at least. If 𝜔0 is large, from the analysis given in Chapter 2, this implies in general that a
resonant control system requires a better mathematical model for robustness and better
sensors for noise attenuation.

3.4.4 Food for Thought

1. A periodic reference signal has a known frequency 50 Hz. What is the frequency
parameter𝜔0 you would use in the design of resonant controller so that the reference
signal could be tracked without steady-state error?
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Figure 3.10 Sinusoidal input disturbance
rejection (Example 3.10).

2. If a resonant controller is designed to track a sinusoidal signal with frequency 𝜔0
without steady-state error, will the same resonant controller reject a periodic input
disturbance signal with the same frequency?

3. If the sinusoidal reference signal is known to have the frequency 𝜔0 and the distur-
bance is known to have a frequency 3𝜔0, is it correct to choose the denominator of
the resonant controller to contain the factor (s2 + 𝜔2

0)(s
2 + 9𝜔2

0)?
4. If the reference signal is a sinusoidal signal with frequency 𝜔0 plus a constant, what

would be the key factors in the denominator of the resonant controller you would
choose so that the closed-loop control system will track this reference signal?

3.5 Feedforward Control

Feed forward control is widely used in combination with either PID or resonant con-
trollers. The starting point for feedforward compensation is that the feedforward vari-
ables used are either directly measured or estimated. Their effect is captured at the
control signal from which it can be subtracted. It has various forms; however, the basic
idea remains the same.

3.5.1 Basic Ideas about Feedforward Control

Assume that the output of a dynamic system is described by the Laplace transform:
Y (s) = G(s)U(s) + Gd(s)Do(s) (3.175)

where U(s) is the Laplace transform of the control signal and Do(s) is the disturbance
that is measured and used in the feedforward compensation. To introduce feedforward
compensation, (3.175) is re-written as

Y (s) = G(s)(U(s) +
Gd(s)
G(s)

Do(s))

= G(s)Ũ(s) (3.176)
where an intermediate control signal Ũ(s) is defined as

Ũ(s) = U(s) +
Gd(s)
G(s)

Do(s).

Based on (3.176), a PID controller C(s) is designed using the transfer function G(s) to
generate the intermediate control signal Ũ(s) from which the effect of the disturbance
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Figure 3.11 Block diagram of the
feedback and feedforward control
system.

R(s) Y(s)E(s) U(s)
C(s) G(s)+– + ++–

Gd(s)

Gd(s)
G(s)

D0(s)

U(s)
∼

Do(s) is subtracted. This explicitly leads to the actual control signal U(s) to be expressed
as

U(s) = Ũ(s) −
Gd(s)
G(s)

Do(s)

= C(s)(R(s) − Y (s)) −
Gd(s)
G(s)

Do(s). (3.177)

Clearly, the assumption is that the transfer function Gd(s)
G(s)

is stable and realizable in addi-
tion to Do(s) being measured. Figure 3.11 illustrates the feedback and feedforward con-
trol system. As an example, if we assume that G(s) and Gd(s) are represented by the
following first order plus delay transfer functions:

G(s) = 0.5e−5s

2s + 1
; Gd(s) =

0.1e−10s

6s + 1
then the control signal U(s) is expressed as

U(s) = C(s)(R(s) − Y (s)) − 0.2(2s + 1)e−5s

6s + 1
Do(s).

Because the time delay of the disturbance model is larger than the time delay of the plant
model, the transfer function Gd(s)

G(s)
is realizable, hence the feedforward compensation can

be implemented for the application.

3.5.2 Three Springs and Double Mass System

To illustrate how to use a feedforward controller in conjunction with a PID controller, we
will examine the PID control system design for a three springs and double mass system.

A three springs and double mass system Tongue (2002) is illustrated in Figure 3.12. In
this figure, the two blocks are with mass M1 and M2, and there are two spring constants
𝛼1 for the right and left springs, 𝛼2 for the middle spring. The manipulated variables are
the two applied forces u1 and u2 and the output variables are the distances of the mass
block movement y1 corresponding to block one and y2 corresponding to block two.

M1 M2

S1

u1 u2

S2

Figure 3.12 Three springs and double mass system.
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We consider the simplified spring force f1 where f1 = 𝛼1d1 and d1 is the distance of
the mass movement, and apply Newton’s law 2 to the first block to obtain the following
equation:

u1(t) − 𝛼1y1(t) − 𝛼2(y1(t) − y2(t)) = M1
d2y1(t)

dt2 (3.178)

where the first term represents the first external force, the second and third terms rep-
resent the forces from spring 1 and spring 2, respectively. The right-hand side of (3.178)
is the multiplication of the mass and acceleration of block 1. Similarly, by applying
Newton’s law to the second block, we obtain

u2(t) − 𝛼1y2(t) + 𝛼2(y1(t) − y2(t)) = M2
d2y2(t)

dt2 (3.179)

where the first term represents the second external force, and the second and the third
terms are the forces generated from spring 3 and spring 2. The right-hand side of (3.179)
is the multiplication of mass and acceleration of block 2.

To have a clear view of the dynamics, we re-write (3.178) and (3.179) as
d2y1(t)

dt2 = −
𝛼1 + 𝛼2

M1
y1(t) +

𝛼2

M1
y2(t) +

u1(t)
M1

(3.180)

d2y2(t)
dt2 = −

𝛼1 + 𝛼2

M2
y2(t) +

𝛼2

M2
y1(t) +

u2(t)
M2

. (3.181)

We have two second order systems for the three springs and double mass system. Addi-
tionally, there are interactions between the two systems.

As in Tongue (2002), the physical parameters are M1 = 2 kg, M2 = 4 kg, 𝛼1 = 40 N
m−1 and 𝛼2 = 100 N m−1. As an exercise, the parameter is varied to 𝛼1 = 200 N m−1.

Example 3.11 In this example, we assume that the second block is not controlled. The
force from the second block acts as a disturbance on the closed-loop control of the first
block. Find the natural frequency of the uncontrolled system and choose all closed-loop
poles in relation to this natural frequency when designing the PID controller.

Solution. The Laplace transforms of the differential equations (3.180) and (3.181) are
obtained as

Y1(s) =
1∕M1

s2 + 𝛼1+𝛼2

M1

(𝛼2Y2(s) + U1(s)) (3.182)

Y2(s) =
1∕M2

s2 + 𝛼1+𝛼2

M2

(𝛼2Y1(s) + U2(s)) (3.183)

where we have assumed zero initial conditions of the variables y1(t) and y2(t). With these
two transfer function models, we can build the Simulink simulator for the three springs
double mass system using transfer function blocks.

To find the natural frequency for the first mass, (3.182) is considered, where the Laplace
transform Y2(s) is the external disturbance. Thus, the open-loop system has a pair of poles
on the imaginary axis, determined by the solution of the polynomial equation:

s2 +
𝛼1 + 𝛼2

M1
= 0

2 F = Ma, where F is the total force, M is the mass and a is the acceleration.
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which is

s1,2 = ±j

√
𝛼1 + 𝛼2

M1
= ±j

√
40 + 100

2
= ±j8.3667.

The natural frequency is 8.3667 N m−1 kg−1.

PID Controller with Filter
The PID controller with filter is designed based on the transfer function model (3.182)
using the MATLAB program PIDplace.m (see Tutorial 3.2). The term 𝛼2Y2(s) is consid-
ered as disturbance. Two pairs of complex poles are used in the pole assignment PID
controller design. With damping coefficient 𝜉 = 0.707, the parameter 𝑤n is used as a
performance tuning parameter. Because of the interactions between the two outputs,
the closed-loop dynamics from the first mass block are more complex. As a result, there
is a minimum𝑤n required for the stabilization of the closed-loop system. Through simu-
lation studies, this minimum𝑤n is approximately five times the natural frequency of the
original system. This behavior is similar to that of controlling unstable systems where a
minimum controller gain is required for robustness of the feedback system.

By selecting𝑤n = 6 × 8.3667 = 50.2 and 𝜉 = 0.707 for the two pairs of complex poles,
the program PIDplace.m calculates the PID controller parameters as

Kc = 4269.8; 𝜏I = 0.0477; 𝜏D = 0.0260; 𝜏f = 0.0070.

Closed-loop Simulation Studies
In the first simulation, we assume u2(t) = 0 for t > 0. However, because the second mass
is connected to the first mass, the output y2(t) is not zero. With sampling interval Δt =
0.0001 (s), a step reference signal with amplitude 0.1 is added to the closed-loop control.
Figure 3.13(a) shows the control signal used to move the first mass from the origin to
0.1 m and Figure 3.13(b) shows the output signal. It is clearly seen from Figure 3.13(a)
that the second mass generates a sinusoidal disturbance and the feedback control sig-
nal tries to compensate it. The effect of the sinusoidal disturbance is hardly noticeable.
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Figure 3.13 Closed-loop responses for three springs and double mass system with u2 = 0
(Example 3.11). (a) Control signal. (b) Output signal.
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Figure 3.14 Closed-loop responses for three springs and double mass system with u2 = −120
(Example 3.11). (a) Control signal. (b) Output signal.

Another simulation scenario is presented. Assume that there is a constant negative force
acting on the second mass block, which is u2(t) = −120. Additionally, the control sig-
nal u1(t) is constrained to positive values (u1(t) ≥ 0). Figure 3.14 shows the closed-loop
responses for the three springs and double mass system with u2 = −120. The control sig-
nal (see Figure 3.14(a)) still tries to reduce the effect of the disturbance, however because
of its larger amplitude, the effect of the disturbance can be seen from the output response
(see Figure 3.14(b)).

Example 3.12 To overcome the sinusoidal disturbance generated by the second mass,
we will design a disturbance feedforward control together with the PID feedback control
and simulate the closed-loop control performance. We assume that the output y2(t) is
measured.

Solution. To design the feedforward together with the PID controller, we consider the
physical equation (3.180) that describes the dynamics of the first mass block:

d2y1(t)
dt2 = −

𝛼1 + 𝛼2

M1
y1(t) +

1
M1

(𝛼2y2(t) + u1(t))

= −
𝛼1 + 𝛼2

M1
y1(t) +

1
M1

ũ1(t) (3.184)

where we have defined an intermediate control variable

ũ1(t) = 𝛼2y2(t) + u1(t).

Now, the PID controller presented in Example (3.11) is unchanged and is used here to
calculate the intermediate control signal ũ1(t). The feedforward control is then realized as

u1(t) = ũ1(t) − 𝛼2y2(t). (3.185)

The PID controller with disturbance feedforward compensation is evaluated with the
case of u2 = −120. Figure 3.15(a) shows the closed-loop control signal, from which we
can see that the control signal captures the oscillations caused by the second mass block.
More importantly, because of the characteristics of the control signal, the output y1(t) no
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Figure 3.15 Closed-loop responses with disturbance feedforward control for three springs and
double mass system with u2 = −120 (Example 3.12). (a) Control signal. (b) Output signal.

longer has the periodic oscillations when compared with that shown in Figure 3.14(b).
This means that the periodic disturbance is completely eliminated.

One needs to be cautious when using feedforward compensation. The effectiveness of
feedforward compensation is dependent on the accuracy of the model used in the com-
pensation. It is reasonable to say that this dependence is more severe than the cases when
feedback control strategies are used. Here, the parameter 𝛼2 plays an important role. To
illustrate, we consider the following three cases:

u1(t) =
⎧
⎪
⎨
⎪
⎩

ũ1(t) − 0.5𝛼2y2(t) (a)
ũ1(t) − 1.5𝛼2y2(t) (b)
ũ1(t) + 0.5𝛼2y2(t) (c).

(3.186)

Figure 3.16 compares the output responses for the three feedforward compensations. It is
clearly seen that the periodic disturbance is no longer completely compensated and the
responses are different from each other in the steady-state behavior. Also, the worse case
is when the sign of the compensation was wrong.
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Figure 3.16 Comparison between the closed-loop output responses when using different
feedforward compensations (Example 3.12). (a) Control signal. (b) Output signal. Key: line (1)
feedforward using (3.186(a)); line (2) feedforward using (3.186(b)); line (3) feedforward using (3.186 (c)).
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3.5.3 Food for Thought

1. In the feedforward control, if the feedforward variable is bounded, as shown in the
three springs and double mass system, would you believe that the feedforward control
will not cause closed-loop instability?

2. In most of the applications when using feedforward compensation, the feedforward
variable is captured as part of the control signal as shown in the three springs and
double mass system so it is conveniently subtracted. Can we extend this idea of feed-
forward compensation to the reference signal?

3. What are the main advantages of using feedforward control?
4. What are the drawbacks of using feedforward control?

3.6 Summary

This chapter has discussed one of the most widely used control system design methods
for PID and resonant controllers. The central ideas behind the pole-assignment
controller design are to specify the desired closed-loop performance via the locations
of the closed-loop poles and to match the desired closed-loop poles with the actual
closed-loop poles by finding the solutions of a polynomial equation. These methods
are conceptually and computationally simple, and the design methodology can be
extended to various controller structures and models. The other important aspects are
summarized as follows.

• For a first order model, we can design a P controller or a PI controller or a resonant
controller.

• For a second order model, we can design a PD controller or a PID controller or a
resonant controller with a first order filter.

• For a higher order model, the structure of the controller needs to be selected so that
the controller parameters can be determined uniquely.

• We can use the pole-zero cancellation technique for the purpose of getting simple
analytical solutions. We can only cancel the poles corresponding to fast dynamic
response. The canceled poles will re-appear in the closed-loop system in response
to input disturbance. We can not cancel unstable poles or zeros in the design.

• For a higher order system, model order reduction is used to obtain first order or sec-
ond order model for the PID controller design.

• The locations of the desired closed-loop poles are chosen, and they need to be
adjusted to suit the requirement of closed-loop response speed for reference fol-
lowing, disturbance rejection, noise attenuation and robustness of the closed-loop
system. It will be desirable to adjust them according to the Nyquist diagram and the
sensitivity analysis presented in Chapter 2.

3.7 Further Reading

1. Internal model control is introduced in the book Morari and Zafiriou (1989).
2. Pole-assignment PID controller design together with several other design methods

are introduced in Goodwin et al. (2000),Cominos and Munro (2002).
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3. Robust pole-assignment controller design is proposed in Soh et al. (1987), Nurges
(2006), Wang et al. (2009).

4. Pole-assignment in combination with sensitivity shaping is proposed in Langer and
Landau (1999).

5. Self-tuning control using pole-assignment design is one of the original self-tuning
controllers Wellstead et al. (1979).

6. Pole-assignment PID controller design with dominant pole consideration and anal-
ysis is introduced in Zítek et al. (2013).

7. With approximation of time-delay and specification of a desired closed-loop time
constant, PI and PID controllers are found analytically using direct synthesis method
for disturbance rejection (Chen and Seborg (2002)).

8. A simple relay nonlinear PD controller is proposed for controlling high precision
motion system with frictions (Zheng et al. (2018)).

9. Current control in electrical AC drives and power converters typically uses PI control
structures in the synchronous reference frame (d − q reference frame) because their
reference signals are constant (Wang et al. (2015)). If the stationary reference frame is
used, then current control for the AC drives and power converters utilizes resonant
controllers because their reference signals are sinusoidal (Wang et al. (2015)).

Problems

3.1 Design PI controllers for the systems with the transfer function G(s) = b
s+a

, where
the parameters a and b are given as follows:
1. a = 0.1 and b = 3;
2. a = 10 and b = −0.1;
3. a = −3 and b = 1.
In the design, the desired closed-loop characteristic polynomial is selected as
s2 + 2𝜉𝑤ns +𝑤2

n with 𝜉 = 0.707 and choosing the natural frequency parameter
𝑤n as |a|, 5|a| and 10|a|. Compare the proportional controller gain Kc and the
integral time constant 𝜏I for the three choices of the bandwidth. What are your
observations?

3.2 PD controllers are designed based on a second order model, which has the following
form:

G(s) =
b1s + b0

s2 + a1s + a0

1. Find the PD controllers with a derivative filter for the following systems:
(a) b1 = 0, b0 = 3, a1 = 0, a0 = 4.
(b) b1 = −1, b0 = 1, a1 = 0.2, a0 = 1.
(c) b1 = 0.1, b0 = −1, a1 = 1, a0 = 0.
where all the desired closed-loop desired closed-loop polynomial is chosen to be
(s2 + 2𝜉𝑤ns +𝑤2

n)(s + 2𝑤n), where 𝜉 = 0.707 and 𝑤n = 2.
2. Write a Simulink simulation program to evaluate the performance of the three

closed-loop PD control systems with a unit step reference signal using sampling
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interval Δt = 0.01 (sec), where the derivative control is implemented on the
output only. Will the closed-loop output follow the reference signal without
steady-state error?

3.3 In the design of a PI controller, it is often to approximate a higher order system
with a first order transfer function where the dominant time constant is identi-
fied (largest time constant) and kept, while the other smaller time constants are
neglected. This follows the procedure of writing the transfer function using the form

G(s) = K
(𝜏s + 1)(𝜖s + 1)

≈ K
𝜏s + 1

where we assume that 𝜖 << 𝜏 .
1. Design PI controllers for the following systems with appropriate approximation

of the complex dynamics. The desired closed-loop performance is specified using
the polynomial s2 + 2𝜉𝑤ns +𝑤2

n, where 𝜉 = 0.707 and 𝑤n is 5∕𝜏 .
(a) G(s) = 0.1

(s+0.2)(s+3)
;

(b) G(s) = −5
(s+0.1)(s+6)2 ;

(c) G(s) = e−0.1s

s+0.1
. (Hint: use Pade approximation to the time-delay in order to

find the dominant dynamics, e−ds ≈ −ds+2
ds+2

)
2. Evaluate the closed-loop stability by using Nyquist diagram. If the closed-loop

system is unstable, reduce the parameter 𝑤n to achieve stable closed-loop
system.

3. Simulate the closed-loop step response for the PI controlled systems with sam-
pling interval Δt = 0.001.

4. If the closed-loop response were oscillatory, reduce the parameter 𝑤n until sat-
isfactory performance is achieved.

3.4 Find the PID controller parameters using pole-assignment controller design tech-
nique and apply pole-zero cancellation to simplify the parameter solutions. Here,
the PID controller structure is assumed to be Kc +

Kc

𝜏I s
+ Kc𝜏Ds. Take approxima-

tion of the complex dynamics if necessary. The desired closed-loop characteristic
polynomial is (s2 + 2𝜉𝑤ns +𝑤2

n) where 𝜉 = 0.707 and𝑤n is adjusted for each case.
The transfer functions with performance specification are given as below:
1. G(s) = 10

(s+20)s
, and 𝑤n = 5

2. G(s) = 2
(s+3)(s−1)

, and 𝑤n = 1.

3. G(s) = e−0.1s

(s+3)s
, and 𝑤n = 1.

4. G(s) = s−3
s(s+0.4)(s+10)

, and 𝑤n = 0.2.

3.5 Find the parameters for PID controller with a filter using pole-assignment
controller design technique. Use pole-zero cancellation technique to simplify
the parameter solution and take approximation of the complex dynamics if
necessary. With a pole-zero cancellation, the desired closed-loop polynomial is
specified as (s2 + 2𝜉𝑤ns +𝑤2

n)(s + 3𝑤n). The transfer functions with performance
specification are given as below:
1. G(s) = e−s

(s+5)(s+2)(s+0.1)
, 𝑤n = 1 and 𝜉 = 0.707.
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2. G(s) = s−1
(s+10)(s+0.01)s

, 𝑤n = 0.1 and 𝜉 = 1.

3.6 For a system with the transfer function

G(s) =
b0

s2 + a1s + a0

design a controller with the structure

C(s) =
c2s2 + c1s + c0

s
where all three desired closed-loop poles are chosen to be −𝜆. Convert this con-
troller into an ideal PID controller that has the structure Kc +

Kc

𝜏I s
+ Kc𝜏Ds so to

find the proportional gain Kc, integral time constant 𝜏I and the derivative time 𝜏D.
Use final value theorem to show that for a step reference signal with amplitude R0,
the closed-loop output response is R0 as t → ∞. The following three systems are
used in this exercise.
1. G(s) = 1

s(s+2)
, 𝜆 = 3, R0 = 1.

2. G(s) = −3
s2+32 , 𝜆 = 6, R0 = −3.

3. G(s) = 1
s2−1

, 𝜆 = 1, R0 = 2.

3.7 For a system with the transfer function

G(s) = b
s + a

design a resonant controller with the structure

C(s) =
c2s2 + c1s + c0

s2 + 𝜔2
0

where all three desired closed-loop poles are chosen to be −𝜆. Supposing that the
reference signal is a sinusoidal signal r(t) = sin(𝜔0t), show that as t → ∞, the feed-
back error r(t) − y(t) → 0. The following three systems are used in this exercise.
1. G(s) = −1

2s+1
, 𝜔0 = 1, and 𝜆 = 2.

2. G(s) = 0.5
s

, 𝜔0 = 0.1, and 𝜆 = 0.5.
3. G(s) = 1

s−1
, 𝜔0 = 2, and 𝜆 = 1.

3.8 In order for the closed-loop system to track a reference signal r(t) = sin(𝜔0t) + R0,
the controller needs to contain the factors s and s2 + 𝜔2

0 in its denominator. For a
system with the transfer function

G(s) = b
s + a

design a resonant controller plus integral action with the structure

C(s) =
c3s3 + c2s2 + c1s + c0

s(s2 + 𝜔2
0)

where all four desired closed-loop poles are chosen to be −𝜆. Supposing that the
reference signal is a sinusoidal signal r(t) = sin(𝜔0t) + 1, show that as t → ∞, the
feedback error r(t) − y(t) → 0. The following three systems are used in this exercise.
1. G(s) = 0.1

s+0.1
, 𝜔0 = 1, and 𝜆 = 1.
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2. G(s) = 1
5s+3

, 𝜔0 = 0.1, and 𝜆 = 2.
3. G(s) = 2

s−2
, 𝜔0 = 2, and 𝜆 = 2

3.9 A robot arm is described by the second order transfer function:

G(s) = 1
s(s + 6)

(3.187)

where the input is the voltage and the output is the position of the arm on x-axis.
1. Design a resonant control system such that the output of the robot arm will

follow a sinusoidal reference signal r(t) = 3sin(t) without steady-state error. All
desired closed-loop poles are positioned at −1 (hint: use pole-zero cancellation
technique to simplify the computation).

2. Verify your design by showing that the error signal (r(t) − y(t)) converges to zero
as time t → ∞. That is

lim
t→∞

e(t) = lim
t→∞

(r(t) − y(t)) = 0

Write a Simulink simulation program to evaluate the closed-loop system per-
formance for reference following of the sinusoidal signal where the sampling
interval Δt = 0.005.

3. Now, suppose that the reference signal contains a constant 10, leading to the
new reference signal r(t) = 10 + 3sin(t). Show that with this resonant controller,
the error signal (r(t) − y(t)) also converges to zero as time t → ∞. Modify the
Simulink simulation program to include the new reference signal and confirm
that the closed-loop output tracks the new reference signal without steady-state
error.

4. Assume that the input disturbance di(t) = d0 + dmsin(t) enters the system at
half of the simulation time, where d0 = −2 and dm = 1. Modify the Simulink
simulation program to include the disturbance and confirm that the resonant
controller can not completely reject this input disturbance. What would you
propose for the resonant controller structure so that it will reject this distur-
bance without steady-state error? Verify your answer using final value theorem.

3.10 An unstable system is described by the transfer function:

G(s) = 1
(s − a)(s + p)

(3.188)

where a > 0 and p > 0.
1. Design a PI controller to control this system, where all desired closed-loop poles

are positioned at −a.
2. In order to guarantee the closed-loop stability of the PI control system, the mag-

nitude of the stable pole p has a relationship with the unstable pole a. Use
Routh-Hurwitz stability criterion to find this relationship.
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4

Implementation of PID Controllers

4.1 Introduction

The key reason for the wide application of PID control systems is their simplicity of
structure, design, and implementation. This chapter shows how to implement a PID
controller with operational constraints. Operational constraints are used to ensure plant
safe operation and protect the electronics from damage when the control signals exceed
limits. Without exception, all control systems implemented in practical applications
must contain the operational constraints.

4.2 Scenario of a PID Controller at work

To understand how the implementation of a PID controller is performed, we will first
describe the general scenario of a digital control system at work.

A computer controlled system generally consists of a plant to be controlled (including
sensors and actuators), and a computer that stores control algorithms and computes the
input to the plant. In many applications, the computer is replaced by a micro-controller
or a digital signal processor.

The majority of the physical systems are continuous time systems. The variables
within the systems are inherently analog continuous signals. For instance, the pressure
signals, temperature signals, voltage signals and current signals are the commonly
encountered analog signals in physical systems. These analog signals are continuous in
nature. Since the computers, micro-controllers and digital signal processors only take
the digital signals for processing, there must be key devices that “bridge” the analog
world (physical plants) to the digital world (computing instruments). These devices are
called analog-to-digital converters (ADCs) and digital-to-analog converters (DACs).
An internal clock synchronizes the actions of the ADCs and DACs. Together, they form
a computer controlled system or digital device controlled system.

Electronic sampling is the most frequently used method in analog-to-digital convert-
ers. The ADCs in the micro-controller and in the commonly used interface cards use
electronic sampling. When using this method, a sensor is connected to physical plant,
which generates an electronic output signal. This signal is passed through an electronic
device that samples the output signal of the sensor and converts it to a digital signal. The
ADC using electronic sampling is an integrated circuit that accepts an analog voltage as

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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its input, at the same time, it accepts a time signal that gives an interface between the
outside environment and the synchronized environment inside a data processing unit.

A digital-to-analog converter is an integrated circuit that accepts voltage signals at
high and low levels and produces an analog output proportional to the real number
represented by the binary word at the input of the DAC. The DAC is an electronic imple-
mentation of the zero-order-hold. The input to the device is a binary word that is made
available, by the clock signal, at the ith sample instant. The output signal of the DAC is
a constant voltage over the interval ti ≤ t ≤ ti+1, where ti = iΔt and ti+1 = (i + 1)Δt. A
DAC is a circuit that accepts a digital signal and produces a quantized signal. The out-
put signal consists of a series of steps and the width of the steps is the sampling interval
Δt. Here, we assume that the input signal is a discrete signal and the output signal is a
continuous-time signal in steps.

How does a computer controlled system work? To illustrate how in a general sense a
computer controlled system works, a room temperature control is used as an example.
Suppose that in a cold environment the appropriate room temperature is maintained
through heating. The heating elements are from an oil furnace. The input to control the
room temperature is the fuel injection rate to the furnace and the output is room temper-
ature. The control objective is to maintain the room temperature at 19∘C. The assump-
tion is that the measurement and control action are synchronized in terms of a sequence
of time intervals. The intervals between two executions are assumed to be the same,
and it is called the sampling interval Δt. A typical cycle of measurement and control is
summarized in the following steps.
1. Take the output measurement. At the time when the closed-loop control system is

switched on, assumed as t0, the temperature sensor reads the room temperature y(t0).
Then this measurement is read by the computer or the digital device into its memory.

2. Compute feedback error. This temperature measurement at time t0 is compared with
the required room temperature. This comparison generates the feedback error e(t0).

3. Compute the controller output. The control algorithm in computer computes a con-
trol signal u(t0) based the feedback error e(t0) and the history of the feedback error,
depending on the complexity of the control algorithm.

4. This digital value u(t0), through zero-order hold, is converted into the analog control
signal u(t) (fuel injection rate), where u(t) = u(t0), t0 ≤ t ≤ t1, and t1 = t0 + Δt.

5. This analog signal is the fuel injection rate for the time interval, t0 ≤ t ≤ t1.
6. The clock ticks to the next sample period, t1, the temperature sensor reads the room

temperature as y(t1), and the entire controlling process repeats the steps listed.

4.3 PID Controller Implementation using the Position Form

Position form implementation of PID controllers involves direct discretization of the
continuous time controller.

4.3.1 The Steady-state Information Needed

The control signal u(t) for a PID controller is computed using the equation,

u(t) = Kce(t) +
Kc

𝜏I ∫

t

0
e(𝜏)d𝜏 − Kc𝜏D

dyf(t)
dt

(4.1)
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where e(t) = r(t) − y(t) is the feedback error signal between the reference signal r(t)
and the output y(t), and yf(t) is the filtered output signal. It is important to make it
clear that all the signals used in the computation are not the actual physical variables
in numbers, instead they are the deviation variables from the physical variables in a
steady-state operation. In other words, the control signal u(t), the reference signal r(t),
and the output signal y(t) represent the changes to the corresponding physical vari-
ables in steady-state operation. For instance, in the application of a room temperature
control in a wintery environment if all doors and windows were closed the room tem-
perature was set to 18∘C, which was maintained by the heat of a gas furnace with its
valve opening at 40%. The steady-state of the output variable is Yss = 18∘C, and the
steady-state of the control variable is Uss = 40%. If we were happy with the room tem-
perature (r(t) = 0) and the doors and windows remained closed, then there would be
no change to the room temperature y(t) = 0 due to the steady operation of the gas
furnace. At this steady-state operation, the control signal from the PID controller is
u(t) = 0. If someone decided to change the room temperature setting from 18∘C to
20∘C at a time t0, then the reference signal r(t) = 2∘C at t = t0 and the feedback error
e(t) = r(t) − y(t) = 2 − 0 at t = t0. Based on the feedback error e(t), the controller pro-
duces a control signal u(t) > 0 at t = t0. The gas furnace would change the valve opening
percentage (uact(t): uact(t) = Uss + u(t)). The room temperature sensor reads the actual
room temperature as yact(t) and the output signal y(t) is updated with y(t) = yact(t) − Yss.
The control signal u(t) changes with the new output signal y(t).

The position form of the PID controller is to directly calculate the deviation control
variable u(t) based on the feedback error e(t). Therefore, when using the position
form of PID controller for implementation, it is vital to have a priori knowledge about
the steady-state information of the control signal and the output signal, so that the
actual control signal will be computed as uact(t) = u(t) + Uss; in reverse, the output
signal y(t) = yact(t) − Yss.

4.3.2 Discretization of a PID Controller

In the implementation of a PID controller when using micro- controllers or other com-
putational devices, the input signals to the PID controller are digital signals and the
output from the PID controller is also a digital signal. Therefore, we need to find the dis-
crete form of the PID controller in order for it to be implemented. In the position form,
the output of the PID controller is computed from the sum of the three terms (see 4.1).
For simplicity of expression, we let the control signal

u(t) = uP(t) + uI(t) − uD(t)

where uP(t), uI(t) and uD(t) represent the proportional, integral, and derivative control
terms, respectively.

In the position form, the implementation of proportional (P) controller, proportional
plus integral (PI) controller, and proportional plus derivative (PD) controller, and pro-
portional plus integral plus derivative (PID) controller will be formed from using one
single term or a combination of single terms from the discretized functions.

We assume that the discretization occurs in a uniformly sampling interval Δt, and the
continuous time t is sampled as t = 0, t1, t2,… , ti−1, ti, ti+1,… , . The proportional term
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is easiest to be discretized. At an arbitrary time ti, the proportional control term uP(ti)
is calculated as

uP(ti) = Kc(r(ti) − y(ti)). (4.2)

The integral control term uI(ti) requires numerical approximation for the integral func-
tion, which is written as

uI(ti) =
Kc

𝜏I

i∑

k=0
e(tk)Δt (4.3)

where ∫
t

0 e(𝜏)d𝜏 ≈
∑i

k=0 e(tk)Δt. We know that

lim
Δt→0

i∑

k=0
e(tk)Δt =

∫

t

0
e(𝜏)d𝜏. (4.4)

Therefore, the accuracy of the approximation increases as the sampling interval Δt
reduces.

The discretization of the derivative term uD(t) in the position form is identical to the
procedure used in the velocity form, as described by Equations (4.22)–(4.25).

One critical problem with this implementation of a PID controller is that the integral
term from the computation used in (4.3) could be too large, resulting in the numeri-
cal problem of variable “overflow”. Because the integral term uses the accumulated sum
from all the past feedback error signal, this problem will occur if the feedback error
has a non-zero steady-state value. The PID implementation algorithm introduced in
Section 4.4 avoids this problem with an iterative approach.

4.3.3 Food for Thought

1. Without detailed mathematical modelling, how would you propose to obtain
steady-state information for a physical plant?

2. The position form of a PID controller is calculated using

u(t) = Kce(t) +
Kc

𝜏I ∫

t

0
e(𝜏)d𝜏 − Kc𝜏D

dyf (t)
dt

(4.5)

Is it possible for the control variable u(t) to become negative in the situation where
the physical system obviously requires a positive control input signal (for instance,
percentage opening of a valve)?

3. The PID controllers are designed in continuous-time, at what stage do we obtain the
discretized form of the PID controller?

4. What would you do when you discovered that the PID control system you designed
should be stable, and yet it was unstable in a perfect simulation environment in which
sampled data were used?

5. From your experience in numerical analysis, with the same sampling interval Δt,
which one is easier, the approximation of integration or the approximation of
derivative?

6. Is it possible that the integral calculation becomes too large for this type of
implementation?
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4.4 PID Controller Implementation using the Velocity Form

There are only two types of PID controllers using the velocity form for implementa-
tion. One is proportional plus integral (PI) controller, the other is proportional plus
integral plus derivative (PID) controller. Proportional (P) controllers and proportional
plus derivative (PD) controllers cannot be implemented using the velocity form for the
reason that the implementation involves direct manipulation of the integral term.

In the velocity form, the PI controller or PID controller is discretized without sepa-
ration of individual terms, and the solution is focused on the derivative of the control
variable du(t)

dt
, from which comes the term “velocity”.

4.4.1 Discretization of a PI Controller

The Laplace transfer function of the control signal U(s) is in relation to the feedback
error E(s):

U(s) = Kc(1 + 1
𝜏Is

)E(s)

=
KcsE(s) + Kc

𝜏I
E(s)

s
. (4.6)

From (4.6), we have

sU(s) = KcsE(s) +
Kc

𝜏I
E(s). (4.7)

The inverse Laplace transform of (4.7) leads to the following differential equation:

u̇(t) = Kcė(t) +
Kc

𝜏I
e(t). (4.8)

This is the equation that is used to calculate the derivative of the control signal u̇(t). This
is termed the velocity form because on the left-hand side of the equation the derivative
of the control signal is computed.

At a first glance of (4.8), we notice that the derivative of the error signal ė(t) is involved
in the computation. However, the derivative of the error signal ė(t) will be eliminated in
the discretization process.

Let us represent the derivatives of the control and the feedback error signals u̇(t) and
ė(t) by the first order approximation at sample time ti :

u̇(ti) ≈
u(ti) − u(ti−1)

Δt
(4.9)

ė(ti) ≈
e(ti) − e(ti−1)

Δt
. (4.10)

By substituting these approximations into (4.8), we obtain

u(ti) − u(ti−1) = Kc(e(ti) − e(ti−1)) +
Kc

𝜏I
e(ti)Δt. (4.11)

By moving the term u(ti−1) from the left-hand side to the right-hand side, the computa-
tion of the control signal becomes

u(ti) = u(ti−1) + Kc(e(ti) − e(ti−1)) +
Kc

𝜏I
e(ti)Δt. (4.12)
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It is useful to emphasize that the feedback error signal e(ti) = r(ti) − y(ti).
For the IP structure discussed in Chapter 1 where the proportional control term is only

implemented on the output signal, a small modification of (4.12) is to replace the differ-
enced feedback error e(ti) − e(ti−1) with the differenced output signal −y(ti) + y(ti−1). As
a result, the implementation of the IP controller structure is based on the computational
equation,

u(ti) = u(ti−1) + Kc(−y(ti) + y(ti−1)) +
Kc

𝜏I
e(ti)Δt. (4.13)

Note that in the implementation of equation (4.13), the current control signal u(ti) at
time ti is a linear combination of past control signal u(ti−1), current output y(ti), past
output signal y(ti−1), and current reference signal r(ti). All these signals on the right-
hand side of (4.13) are available at the current sampling time ti.

One of the key advantages of using the velocity form for implementation is the han-
dling of steady-state information. As before, all the signals in (4.13) are the deviation
signals. They are relative to their steady-state values. To this end, with the steady-state
values of Uss, Yss and Rss, the actual signals corresponding to the plant operation are

uact(ti) = u(ti) + Uss (4.14)
yact(ti) = y(ti) + Yss (4.15)
ract(ti) = r(ti) + Rss. (4.16)

We consider the IP structure in (4.13) first, and then extend the procedure to the original
PI structure in (4.12).

Now, we manipulate (4.13) by first adding the steady- state value of Uss to both sides,
adding and subtracting Yss to the second term that corresponds to the proportional con-
trol, which leads to its equivalent expression:

u(ti) + Uss = u(ti−1) + Uss + Kc(−y(ti) − Yss + Yss + y(ti−1))

+
KcΔt
𝜏I

(r(ti) − y(ti)). (4.17)

At this point, we need to make the assumption that the steady state of the reference
signal Rss is equal to the steady state of the output signal Yss, which is realistic for plant
operations.

With the steady-state information, we replace the deviation variables with the actual
physical variables, and obtain the computational equation for the actual implementation
of the PI controller as,

uact(ti) = uact(ti−1) + Kc(−yact(ti) + yact(ti−1)) +
KcΔt
𝜏I

(ract(ti) − yact(ti)). (4.18)

With this formulation given by (4.18), all actual measurements of the physical variables
are used in the updating of the control signal, and the control signal computed is the
physical variable to be implemented. Perhaps more importantly, the implementation
using (4.18) does not require the actual steady-state information of Uss and Yss, which
makes the implementation convenient and practical in control applications. The exten-
sion to the original PI structure in (4.12) follows from the same assumption that the
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steady state of the reference signal Rss is equal to the steady state of the output signal Yss.
Thus, the implementation equation for the original PI structure is

uact(ti) = uact(ti−1) + Kc(ract(ti) − yact(ti) − ract(ti−1) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)). (4.19)

Here the proportional control will directly act on the reference signal.

4.4.2 Discretization of a PID Controller using the Velocity Form

The Laplace transfer function of a PID controller is expressed as

U(s) = KcE(s) +
Kc

𝜏Is
E(s) −

Kc𝜏Ds
𝜏f s + 1

Y (s). (4.20)

The first two terms of left-hand side of Equation (4.20) form the PI controller, which was
discretized in the previous section. The question is how the third term corresponding
to the derivative control will be discretized. Since we do not wish to use steady-state
information of the output, a different approach for discretization of the derivative term
is needed in the velocity form. From the transfer function of the derivative control,

UD(s) =
1
𝜏f

Kc𝜏Ds
s + 1

𝜏f

Y (s) (4.21)

the differential equation that governs the relationship between the variables uD(t) and
y(t) is obtained as

duD(t)
dt

+ 1
𝜏f

uD(t) =
Kc𝜏D

𝜏f

dy(t)
dt

. (4.22)

By approximating
duD(t)

dt
≈

uD(ti) − uD(ti−1)
Δt

;
dy(t)

dt
≈

y(ti) − y(ti−1)
Δt

at time ti, the differential equation (4.22) becomes:
uD(ti) − uD(ti−1)

Δt
= − 1

𝜏f
uD(ti) +

Kc𝜏D

𝜏f

y(ti) − y(ti−1)
Δt

. (4.23)

By multiplying Δt on both sides of the equation, and re- arranging, we obtain

(1 + Δt
𝜏f

)uD(ti) = uD(ti−1) +
Kc𝜏D

𝜏f
(y(ti) − y(ti−1)). (4.24)

The steady state of uD(t) is taken as zero, and by adding and subtracting the steady state
of the output value to (4.24), we obtain the computation of the derivative control term
using the actual output measurement,

uD(ti) =
𝜏f

𝜏f + Δt
uD(ti−1) +

Kc𝜏D

𝜏f + Δt
(yact(ti) − yact(ti−1)). (4.25)

Now, going back to the expression of the PID controller given by (4.20), the derivative
of the control signal is expressed as

u̇(t) = Kcė(t) +
Kc

𝜏I
e(t) − u̇D(t). (4.26)
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Combining the discretization of the derivative term (4.25) with the discretization
of the PI controller part, the completed PID controller when using velocity form is
expressed as

uact(ti) = uact(ti−1) + Kc(ract(ti) − yact(ti) − ract(ti−1) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)) − uD(ti) + uD(ti−1). (4.27)

When implementing the proportional control directly on the output, the PID controller
using velocity form is

uact(ti) = uact(ti−1) + Kc(−yact(ti) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)) − uD(ti) + uD(ti−1). (4.28)

Example 4.1 A second order system is described by the transfer function:

G(s) = −0.1
(s + 1)2 . (4.29)

Design a PID controller with filter to control this plant. The desired closed-loop polyno-
mial is specified as (s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)2, where 𝜉 = 0.707, 𝑤n = 𝜆1 = 5. Simulate
the unit step closed-loop response using the discrete PID computational algorithm with
sampling interval Δt chosen as 1

10𝑤n
= 0.02 and 1

5𝑤n
= 0.04. Illustrate that when Δt is

increased to 0.1, the closed-loop system becomes unstable although the continuous time
PID controller design produced a stable closed-loop system.

Solution. Using the MATLAB program pidplace.m (see Tutorial 3.2), we obtain the PID
controller parameters as

Kc = −245.66; 𝜏I = 0.59; 𝜏D = 0.176; 𝜏f = 0.066.

Figure 4.1 compares the closed-loop responses with the three cases of the sampling inter-
vals. It is seen that the difference between the closed-loop responses using Δt = 0.02 and
0.04 is negligible. However, when the sampling interval is increased to 0.1, the closed-loop
system becomes unstable as shown in Figure 4.1.

4.4.3 Improving Accuracy in a Slower Sampling Environment

Sampling rate 1
Δt

is typically chosen to be 5 to 10 times the closed-loop bandwidth.
In the PI control system, this bandwidth is the parameter 𝑤n. In reality, this range of
sampling rates will result in performance degradation from the desired closed-loop per-
formance we aimed at. To make the sampling effect truly negligible, the sampling rate
would be at least 10 times higher than a typical rate. Since PID controllers are designed in
a continuous-time environment (i.e. the model is continuous-time differential equation
and its parameters are chosen corresponding to the continuous-time system), in prin-
ciple the sampling rate 1

Δt
should be chosen as large as the computational power of the

system permitted.
When the sampling rate is slow (or Δt is large relative to the closed-loop bandwidth),

a possible way to improve the accuracy of the discretization of the PID controller is to



�

� �

�

4.4 PID Controller Implementation using the Velocity Form 121

0 2 4 6
−1500

−1000

−500

0

500

1000

Time (sec)

C
on

tr
ol

1
2
3

(a)

0 2 4 6
−2

−1

0

1

2

3

Time (sec)

O
ut

pu
t

1
2
3

(b)

Figure 4.1 Closed-loop response (Example 4.1). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response with Δt = 0.02; line (2) closed-loop response with sampling interval Δt = 0.04;
line (3) closed-loop response with sampling interval Δt = 0.1.

use a higher order discretization scheme for the derivatives of the signals (Burden and
Faires (1989)).

Let

u̇(ti) =
3u(ti) − 4u(ti−1) + u(ti−2)

2Δt
(4.30)

ė(ti) =
3e(ti) − 4e(ti−1) + e(ti−2)

2Δt
. (4.31)

Considering the original velocity form of the PI controller:

u̇(t) = Kcė(t) +
Kc

𝜏I
e(t) (4.32)

by replacing the derivatives u̇(t) and ė(t) with (4.30) and (4.31), we obtain the approxi-
mate equation to (4.32) at sampling time ti :

3u(ti) − 4u(ti−1) + u(ti−2)
2Δt

= Kc
3e(ti) − 4e(ti−1) + e(ti−2)

2Δt
+

Kc

𝜏I
e(ti). (4.33)

By adding and subtracting the quantity 4Uss to the left side of (4.33), (4.33) becomes,
3u(ti) − 4u(ti−1) + u(ti−2) + 4Uss − 4Uss

2Δt

=
3uact(ti) − 4uact(ti−1) + uact(ti−2)

2Δt

= Kc
3e(ti) − 4e(ti−1) + e(ti−2)

2Δt
+

Kc

𝜏I
e(ti) (4.34)

where uact(ti) = u(ti) + Uss, uact(ti−1) = u(ti−1) + Uss and uact(ti−2) = u(ti−2) + Uss. Thus
the actual control signal is

uact(ti) =
4
3

uact(ti−1) −
1
3

uact(ti−2) +
Kc

3
(3e(ti) − 4e(ti−1) + e(ti−2))

+ 2Δt
3

Kc

𝜏I
e(ti). (4.35)
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4.4.4 Food for Thought

1. In the velocity form of PID controller, at which step did we add the steady-state values
of the signals in order to obtain the PID controller representation with the actual
plant signals?

2. Is it correct to say that the implementation of the IP controller is simply to neglect
the reference signal in the calculation of the proportional control term?

3. Under what plant operational condition could we assume that the steady-state of the
derivative control signal uD(t) is zero?

4. There is a guideline in the selection of the sampling interval Δt based on the band-
width of the closed-loop control system. Would you also consider that this guideline
might not be adequate when the derivative filter time constant is much smaller than
the closed-loop time constant?

4.5 Anti-windup Implementation using the Position Form

The implementation of PID controllers requires the consideration of an anti-windup
mechanism in the presence of constraints on the control signals. There are many
approaches available for implementing PID controllers with an anti-windup mecha-
nism. This section will discuss the implementation when using the position form.

4.5.1 Integrator Windup Scenario

To understand the scenario of integrator wind-up, we look at the example below.

Example 4.2 Consider the integrating plus delay plant with the transfer function,

G(s) = 1.8e−30s

s(10s + 1)2 . (4.36)

The PI controller for this plant has proportional gain Kc = 0.0065 and integral time con-
stant 𝜏I = 244.5. Simulate the closed-loop response for this PI control system with a unit
step reference signal. Supposing that the control signal amplitude is not to exceed 1.5 ×
10−3, illustrate the scenario of integrator windup.

Solution. The simulation set-up is conducted using a Simulink program, where a
saturation block is used to simulate the scenario of limits of control amplitude. Both
proportional and integral terms are implemented on the feedback error signal. We
first set the limits in the saturation blocks to be larger (±3) than the maximum and
minimum of the control signal amplitude. The control signal and output responses are
shown in Figure 4.2 (see line (1)). The closed-loop responses behave reasonably well. By
reducing the allowable control amplitude to 1.5 × 10−3, the actual control signal to the
plant, u, is limited. When this happens, the closed-loop response becomes oscillatory,
as shown in Figure 4.2 (see line (2)). When investigating this further, we find that the
controller output signal (u1) continued to grow as shown in Figure 4.3 (see solid line)
after the actual control signal to the plant was limited (see dash-dot line) because the
feedback error is positive. The amplitude of u1 reached its maximum when the feedback
error e(t) changes sign from positive to negative (see the top plot). The magnitude of the
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Figure 4.2 Closed-loop response (Example 4.2). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response without saturation; line (2) closed-loop response with saturation.

Figure 4.3 Error signal and control signal in
the integrator windup case (Example 4.2).
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control signal gradually reduced as the magnitude of the error increased, which is in the
negative region. Eventually, the integral term became sufficiently small, and the control
signal came within the allowable upper limit. When the control signal changed its sign,
it encountered the negative constraint. As the result of control signal saturation, both the
error signal and the output signal became oscillatory.

There are two things we noted from this example.

1. In the position form when implementing a PI controller, the control signal is calcu-
lated using the equation,

u(t) = Kce(t) +
Kc

𝜏I ∫

t

0
e(𝜏)d𝜏 (4.37)

where the feedback error e(t) is integrated. This integral term will continue to grow
in magnitude as long as the sign of the feedback error remains the same (integration
is about calculation of the area of the curve). As a result, the control signal u(t) cal-
culated will continue to grow as long as the sign of the feedback error remains the
same.
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2. Because of the saturation, the actual control signal implemented on the plant is not
the same as the output of the controller when the saturation limits are reached. The
controller is not informed of what is actually happening in the plant.

Those are the two key points needed to be taken into consideration when devising
anti-windup schemes in PID controllers. In summary, the integral function should be
stopped when the saturation limits are reached and the controller should be informed
of what is actually happening in the plant.

4.5.2 Anti-windup Mechanisms in the Position Form of PI Controllers

There are many anti-windup mechanisms in PI controllers. More or less, they have the
same principles by implementing the PI controller with a stable transfer function and
letting the controller know what is actually happening in the plant. Figure 4.4 shows one
of the anti-windup mechanisms in the position form of PI controller implementation
with amplitude constraint. In this implementation, the parameters of the PI controller
are c1 and c0, corresponding to the transfer function,

C(s) =
c1s + c0

s
. (4.38)

The assumption for using this implementation is that the controller has a stable zero,
namely the ratio c0

c1
> 0, or 𝜏I is positive. In this implementation, there is a positive feed-

back used in the system (positive feedback is seldom used, but here is an example).∑
represents the saturation nonlinearity, which is defined by the following computation.

If umin < u0(t) < umax, then u(t) = u0(t); if u0(t) ≤ umin, then u(t) = umin; if u0(t) ≥ umax,
then u(t) = umax. The saturation block in the Simulink library can be used to represent
the function

∑
.

When the saturation limits are not reached,
∑

is a unity gain (u(t) = u0(t)), then the
transfer function from the error signal e to the control signal u is

U(s)
E(s)

=
c1

1 − c0c1

c1(c1s+c0)

=
c1s + c0

s
(4.39)

which is the transfer function of a PI controller (4.38). The integral action in this con-
figuration is achieved by putting positive feedback around a stable transfer function. If
the control signal reaches a limit, for instance, u(t) = umax, because the transfer func-
tion c0

c1(c1s+c0)
is stable by the assumption made, the feedback signal c0

c1(c1s+c0)
will become a

constant after a transient response. With this action, the integral action will be stopped,

c1 Σ

c0

c1(c1s+c0)

e(t) u(t)u0(t)+

+

Figure 4.4 PI controller (position form) with
anti-windup mechanism (

∑
represents the

saturation nonlinearity).
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also the controller calculation is fully informed of what is actually happening by this
feedback link.

Example 4.3 Apply the anti-windup control mechanism in the PI controller given in
Example 4.2, and compare the simulation results with the results obtained from the pre-
vious example.

Solution. The parameters required for the anti-windup implementation are

c1 = 0.0065; c0 = 2.6585e − 005.

Using the anti-windup mechanism, we simulated the closed-loop response in the same
conditions as those in Example 4.2. Figure 4.5 shows the closed-loop response with the
anti-windup mechanism. In comparison to the case without the anti-windup mecha-
nism, the overshoot in the closed-loop output response has been significantly reduced.
The control signal with the anti-windup scheme came out of the saturation faster than
the control signal without it. Also, the duration of the second saturation time was shorter
in the anti-windup scheme. As a result, the closed-loop performance is improved with the
anti-windup mechanism.

4.5.3 Food for Thought

1. Could PID windup event occur if the control signal operates within its limits?
2. Could this windup event happen to a PD controller?
3. In the position form of PI controller anti-windup implementation, is it the case that

each element in the implementation is stable?
4. If the steady-state value of the control signal is not zero, where would you propose

to add this steady-state value in the implementation block diagram shown in
Figure 4.4?

5. Could you use the anti-windup mechanism in the position form if the integral time
constant 𝜏I is negative?
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Figure 4.5 Closed-loop response (Example 4.3). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response without anti-windup mechanism; line (2) closed-loop response with
anti-windup mechanism.
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4.6 Anti-windup Mechanisms in the Velocity Form

It is straightforward to implement anti-windup mechanisms in the velocity form of PID
controllers, mainly because the velocity form of a PID controller is derived for computer
controlled systems in discrete time form. Similarly, the two key points in implemen-
tation of anti-windup mechanism are to stop integral action when the control signal
reaches saturation and to make sure that the actual control signal equals the control
signal computed. In the velocity form of PID controllers, not only can the anti-windup
scheme be readily implemented on the amplitude of the control signal, but also on the
derivative of the control signal.

4.6.1 Anti-windup Mechanism on the Amplitude of the Control Signal

We assume that the actual control variable to the plant is limited by umin and umax.
Namely, the actual control signal must satisfy the constraints:

umin
≤ uact(t) ≤ umax.

From Section 4.4, we learned how to calculate the actual control signal uact(ti) at sample
time ti using the equation,

uact(ti) = uact(ti−1) + Kc(−yact(ti) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)) − uD(ti) + uD(ti−1). (4.40)

With this formulation given by (4.40), all actual measurements of the physical variables
are used in the updating of the control signal, and the control signal computed is the
physical variable to be implemented. Thus, the implementation procedure naturally sat-
isfies one of the requirements in an anti-windup mechanism that the actual control
signal be equal to the computed control signal. In order to stop the integration, when the
actual control signal reaches the limit, we impose the limits on the actual control signal
with the computation that if uact(ti) < umin, then uact(ti) = umin; if uact(ti) > umax, then
uact(ti) = umax. When the sample time ti moves one step forward, uact(ti−1) carries the
information of saturation at the previous sample time and the control signal computa-
tion is automatically informed of the saturation. Both requirements in an anti-windup
mechanism are satisfied.

In summary, the implementation of an anti-windup scheme in the velocity form of a
PI controller follows the steps below.
1. For the IPD controller structure, calculate the actual control signal using

uact(ti) = uact(ti−1) + Kc(−yact(ti) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)) − uD(ti) + uD(ti−1). (4.41)

Or for original PID controller structure, calculate
uact(ti) = uact(ti−1) + Kc(eact(ti) − eact(ti−1)

+
KcΔt
𝜏I

(eact(ti)) − uD(ti) + uD(ti−1) (4.42)

where eact(ti) = ract(ti) − yact(ti).
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2. Check if the control signal is within the limits
umin

≤ uact(ti) ≤ umax.

If the constraints are satisfied, then this is the actual control signal to the plant. If not,
go to the next step,

3. If uact(ti) < umin, then uact(ti) = umin; if uact(ti) > umax, then uact(ti) = umax.

Example 4.4 Consider a mechanical system with severe non-minimum phase behavior
that is described by the transfer function:

G(s) = s − 0.1
(s + 1)(s + 2)

. (4.43)

The operation of the control signal is required to be within the limits (−30, 1). There is
an undershoot in the step response. For a unit step response, the maximum undershoot
in magnitude is required not to exceed 6. Design a PID controller with an anti-windup
mechanism to achieve the performance specification. The implementation is to use the
IPD controller structure where the proportional control and derivative control are imple-
mented on the output only.

Solution. We need to choose a desired closed-loop performance in the design. We choose
the simplest formulation in the design, so that we can easily adjust the parameters:

Acl = (s2 + 2𝜉𝑤ns +𝑤2
n)(s + 𝜆1)2 (4.44)

where 𝜉 = 0.707 and 𝑤n = 𝜆1. We need a few iterations in the design to get it right.

First attempt in the design
We start with 𝑤n = 5, and design the PID controller using the pole-assignment design
technique. The PID controller parameters are

Kc = −3.0578; 𝜏I = 1.4166; 𝜏D = 0.3251; 𝜏f = 3.4536e − 004
where the MATLAB program PIDplace.m is used to calculate the parameters (see
Tutorial 3.2).

The closed-loop control system is simulated first without any limits on the control sig-
nal. Here we used a very small Δt = 0.0002 to avoid the numerical errors induced by
discretization of the PID controller (note that the filter time constant is very small). The
simulation results are shown in Figure 4.6, which is seen to have a minimum of the control
signal of about −70, which violates the lower limit; in addition, the undershoot of the out-
put is about −15, which violates the undershoot requirement. We added the operational
limits with the anti-windup mechanism, and compare the closed-loop responses with the
previous case. It is seen that the limits of the control signal are satisfied. However, the
undershoot of the output is reduced to −7, which still violates the requirement.

Second attempt in the design
The parameter that we can make an adjustment is the desired closed-loop performance.
It is known that if the desired closed-loop performance produces a slower closed-loop
response, then the undershoot will be reduced. We choose 𝑤n = 𝜆1 = 2 in the second
attempt. With this closed-loop performance specification, the PID controller parameters
are:

Kc = −2.8599; 𝜏I = 1.4631; 𝜏D = 0.3211; 𝜏f = 0.0122.
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Figure 4.6 Closed-loop response (Example 4.4). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response without limits; line (2) closed-loop response with control signal saturation.
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Figure 4.7 Closed-loop response (Example 4.4). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response with𝑤n = 2; line (2) closed-loop response using anti-windup control with
𝑤n = 5.

The closed-loop simulation results are shown in Figure 4.7. With this choice of 𝑤n = 2,
the minimum of the control signal has been reduced to −25, which is within the limit,
also the magnitude of the undershoot has been reduced to be less than 5.5. Thus, all
design requirements are satisfied.

Third attempt in the design
From the first attempt, we learnt that by reducing the minimum value of the control sig-
nal, the magnitude of the undershoot would also be reduced. We could also change the
limits of the control signal to (−25, 1), but maintain the desired closed-loop performance
specification as 𝑤n = 𝜆1 = 5. With the anti-windup scheme, the closed-loop response is
compared in Figure 4.7. All limits of control signal and output signal are satisfied. In
addition, the output response is faster in reaching the reference signal, in comparison to
the results obtained in the second attempt.
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4.6.2 Limits on the Rate of Change of the Control Signal

Similarly, we can also impose limits on the rate of change on the control signal. This set
of limits is typically specified as

Dumin
≤ u̇(t) ≤ Dumax.

In the computation, we calculate u̇(t) using the approximation,

u̇(t) ≈
u(ti) − u(ti−1)

Δt

=
uact(ti) − uact(ti−1)

Δt
(4.45)

as the current sample uact(ti) and the past sample uact(ti−1) share the same steady-state
value. The idea is to calculate the actual control signal first and then check if the
limits on the derivative are violated. If not, then the control signal is accepted. Oth-
erwise, if the derivative is less than the lower limit ( uact(ti)−uact(ti−1)

Δt
< Dumin), then the

derivative is made equal to the lower limit ( uact(ti)−uact(ti−1)
Δt

= Dumin), and the current
control signal is calculated using this information; if the derivative is larger than the
upper limit ( uact(ti)−uact(ti−1)

Δt
> Dumax), then the derivative is made equal to the upper

limit ( uact(ti)−uact(ti−1)
Δt

= Dumax ) and the current control signal is calculated based on the
maximum derivative of the system allowed. With these computation equations, the
requirements of an anti-windup mechanism are satisfied because the integral action
is capped and the actual control signal is equal to the computed control signal with
information of saturation embedded in the previous sample of control signal uact(ti−1).

The limits will be imposed using the following computational steps.

1. Calculate the actual control signal using
uact(ti) = uact(ti−1) + Kc(−yact(ti) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)) − uD(ti) + uD(ti−1). (4.46)

2. Check if the derivative of the control signal is within the limits

Dumin
≤

uact(ti) − uact(ti−1)
Δt

≤ Dumax.

If the constraints are satisfied, then this is the actual control signal to the plant. If not,
we calculate the control signal using one of following steps.
• If uact(ti)−uact(ti−1)

Δt
< Dumin, then

uact(ti) = uact(ti−1) + DuminΔt;

• if uact(ti)−uact(ti−1)
Δt

> Dumax, then

uact(ti) = uact(ti−1) + DumaxΔt.

4.6.3 Food for Thought

1. What would be the essential elements in implementing the anti- windup mechanism
for control amplitude limits when using a velocity form of a PID controller?



�

� �

�

130 4 Implementation of PID Controllers

2. Is it correct to say that in the implementation using the velocity form, the integral
action is automatically switched off when the control signal reaches its limit after
two samples consecutively?

3. When the derivative of the control signal u̇(t) reaches its limit, what behavior would
you anticipate for the control signal?

4. Is it possible for both the control signal and the derivative of the control signal reach-
ing their limits at the same sampling time?

4.7 Tutorial on PID Anti-windup Implementation

Tutorial 4.1 This tutorial is to illustrate how to implement the PID control algorithm
in real-time. The core of this activity is to produce a MATLAB embedded function that
can be used in a Simulink simulation as well as in xPC Target implementation. This
embedded function is based on the PID controller velocity form discussed in the previ-
ous sections. The entire embedded MATLAB completes one cycle of computation for the
control signal. For every sampling period, it will repeat the same computation procedure.
The embedded function is written in a set of general variables and it is suitable for all PID
control applications.

Step by Step

1. Create a new Simulink file called PIDV.slx
2. In Simulink’s directory of User-Defined Functions, find the icon of the embedded

MATLAB function and copy it to the PIDV model.
3. Click on the icon of the embedded function, and define the input and output variables

and the controller parameters to the PIDV model so that the embedded function has
the following form:

function uCurrent = PIDV(yCurrent,rCurrent,Kc,tauI,tauD,
...tauf,deltat,Umin,Umax,Dumin,Dumax)

where uCurrrent is the calculated control signal at the sampling time ti, the first
two elements (yCurrent and rCurrent) among the input variables are the measure-
ment of the output and the reference signals at sampling time ti, Kc, tauI and tauD
are the proportional control gain, integral time constant and derive control gain,
tauf is the derivative filter time constant, deltat is the sampling interval and Umin
and Umax are the upper and lower limits imposed on the control signal uCurrent,
Dumin and Dumax are the upper and lower limits imposed on the derivative of the
control signal.

4. We need to edit the input and output data ports in order to let the embedded function
know which input ports are the real-time variables and which are the parameters.
This editing task is performed using Model Explorer.
• click on ‘yCurrent’, on Scope, select ‘input’, assign port ‘1’ and size ‘−1’, complexity

‘Inherited’, type ‘Inherit: Same as Simulink’. Repeat the same editing procedure
for the reference signal ‘rCurrent’.

• The rest of the inputs to the embedded function are the parameters required
in the computation. Click on ‘Kc’, on Scope, select ‘Parameter’ and click ‘Tunable’
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and click ‘Apply’ to save the changes. Repeat the same editing procedure for the
rest of the parameters.

• To edit the output port from the embedded function, click on ‘uCurrent’, on Scope,
select ‘Output’, Port ‘1’, Size ‘−1’, Sampling Model ‘Sample based’, Type ‘Inherit:
Same as Simulink’, and click on ‘Apply’ to save the changes.

5. In the following, the program will declare those variables that are stored in the
embedded function during each iteration for their dimensions and initial values.
‘uPast’ is the past control signal (u(ti−1)), ‘yPast’ is the past output signal (y(ti−1)).
Because the PID controller implemented using the velocity form takes the actual
measured variables, the past input and output variables should be initialized to the
actual measured physical variables before the closed-loop control. These initial
values can enter the computation as the extra parameters in the embedded function.
Here, for simplicity of the programming, they are assigned to zero. Enter the following
program into the file:

persistent uPast
if isempty(uPast)

uPast=0;
end
persistent yPast
if isempty(yPast)

yPast=0;
end
persistent uDPast
if isempty(uDPast)

uDPast=0;
end
persistent rPast
if isempty(rPast)

rPast=0;
end

6. Calculate the filtered derivative of the control signal (see 4.25). Enter the following
program into the file:

uDCurrent=tauf/(tauf+deltat)*uDPast+..
(Kc*tauD)/(tauf+deltat)*(yCurrent-yPast);

7. Calculate the actual control signals (see (4.27)). Enter the following program into
the file:

uCurrent=uPast+Kc*(rCurrent-yCurrent-rPast+yPast)+..
(Kc*deltat)/tauI*(rCurrent-yCurrent)-uDCurrent+uDPast;

Alternatively, if one wishes to reduce overshoot in the output response by putting
the proportional control on output only (see (4.28)), the following computation is used
instead,

uCurrent=uPast+Kc*(-yCurrent+yPast)+..
(Kc*deltat)/tauI*(rCurrent-yCurrent)-uDCurrent+uDPast;
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8. Impose constraints on the derivative of the control signal. Enter the following program
into the file:
Du=(uCurrent-uPast)/deltat;
if (Du>Dumax) uCurrent=uPast+Dumax*deltat; Du=Dumax;end
if (Du<Dumin) uCurrent=uPast+Dumin*deltat;Du=Dumin; end

9. Impose constraints on the amplitude of the control signal. Enter the following pro-
gram into the file:
if (uCurrent>Umax) uCurrent=Umax;end

if (uCurrent<Umin) uCurrent=Umin; end

10. Update the past control and output signals. Updating uPast is part of the
anti-windup implementation for the constraints so that when the control signal
reaches its limit, the integral action is stopped. Enter the following program into
the file:
uDPast=uDCurrent;
uPast=uCurrent;
yPast=yCurrent;
rPast=rCurrent;

11. Test this program with the DC motor control example (see Example 4.5).
For PI controller implementation, the program is simply modified by remov-

ing the parameters 𝜏D and 𝜏f from the input, followed by deleting the calculation
of derivative control (see Step 6) and removing it from the calculation of the control
signal.

Example 4.5 A DC motor model is given by the transfer function:

G(s) = 0.5
(s + 2)s

(4.47)

where the input is voltage and the output is the angular position. The requirement is
that the angular position follows a ramp signal of a unit slope without steady-state error,
and the operational requirements are that the control signal is within the limits of (−7, 5),
and the derivative of the control signal is within the limits of ±20. Design a PID controller
with anti-windup mechanism for this system. The desired closed-loop performance is
determined using the desired closed-loop polynomial (s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)2, where
𝜉 = 0.707 and 𝑤n = 𝜆1 = 3. Also, investigate the approach that uses a smaller controller
gain to reduce both |u(t)| and |u̇(t)| and compare the results with the anti-windup
control.

Solution. With this desired closed-loop performance, we design the PID controller using
the MATLAB program PIDplace.m and obtain the controller parameters as

Kc = 19.9831; 𝜏I = 1.0167; 𝜏D = 0.2061; 𝜏f = 0.1213.
We will use the PID controller structure with both proportional and integral terms imple-
mented on the feedback error, while the derivative term is implemented on the output.

The limits given for the control signal are all violated when using this PID controller
(see Figure 4.8). The anti-windup mechanism takes effect and the results are compared in
Figure 4.8.
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Figure 4.8 Closed-loop response (Example 4.5). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response without limits; line (2) closed-loop response using anti-windup control with
𝑤n = 3; line (3) reference signal.
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Figure 4.9 Closed-loop response (Example 4.5). (a) Input signal. (b) Output signal. Key: line (1)
closed-loop response without limits (𝑤n = 1); line (2) closed-loop response using anti-windup control
with𝑤n = 3; line (3) reference signal.

Without anti-windup control, we need to reduce the parameters 𝑤n and 𝜆1 to reduce
the magnitudes of the control signal and the derivative of the control signal. By selecting
𝑤n = 𝜆1 = 1, both control signal and the derivative of the control signal are within the
operational limits specified in the design. Figure 4.9 shows the closed-loop control results.
It is seen that the track performance is significantly deteriorated in comparison with the
results obtained from anti-windup control. The results show that the anti-windup control,
if implemented properly, will allow us to use a higher gain in closed-loop control, with
safety protection of the equipment.

4.8 Dealing with Other Implementation Issues

When using the velocity form for implementing the PID controllers, the issues, such
as plant start-up from a non-zero steady-state operating conditions and quantization
errors, can be handled in a relatively easy manner.
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4.8.1 Plant Start-up

One of the issues in implementation of a PID control system is how to turn on the
closed-loop control. This step is often linked with plant start-up, particularly when the
plant has nonlinearities in the start-up region. There are a few possibilities in starting up
the plant and the closed-loop PID controller, depending on whether the plant is stable
and how much nonlinearity the plant has in the start-up region. In the start-up phase,
accuracy in reference following and disturbance rejection are not the main concerns. For
an industry plant, the time of start-up phase should be as short as possible to increase
production rate and reduce plant downtime. There are a few scenarios discussed below.

• The plant is linear over the start-up phase and within the operating region so that the
same linear controller can cover both the start-up operation and the normal oper-
ation. If all the scenarios are true, then the closed-loop PID control system can be
turned on in the start-up phase.

• In many applications, at the start-up phase, the plant is extremely nonlinear, such as
deadband within the start-up region. The PID controller designed for normal opera-
tion may not be working well in this region. If it is deadband we are dealing with, and
if the plant is stable, a common strategy is to operate the plant in open loop without
feedback control and inject a step input signal directly to the system (u is a step sig-
nal). By choosing a large amplitude for the step signal, the plant response is brought
out from the deadband as quickly as possible. This is to avoid the scenario that the
closed-loop system becomes unstable in the initial phase because of the plant nonlin-
earity. With open-loop start-up, the PID controller will be turned on when the system
reaches the region for that it is designed.

• Proportional controller is a good candidate in the start-up region, if the plant is not
stable or has slow dynamics. With a proportional controller, the proportional gain Kc
can be chosen by trial-and-error, thus it is convenient to tune the closed-loop dynam-
ics for the start-up region. The PID controller designed for normal operation will be
switched on once the system response reaches the region for which the PID controller
is designed.

When there is a need to switch between the open-loop operation to closed-loop con-
trol, or switch between two different controllers, there are two points that should be
taken into consideration: the time for the switching and how the switching is to be con-
ducted. Another important point is to make sure that when the switching occurs, the
control signal from the previous operation should be close to the one used in the current
operation so to avoid discontinuity.

To make sure the continuity between the open-loop operation and the closed-loop
operation, the PID controller in velocity form is a good candidate. Because the PID
controller in velocity form takes the actual plant input and output signals in the com-
putation, without additional effort the transition from the two operational states can be
made smooth (we could call it “bumpless transfer”).

A simple switching policy is illustrated in the following. Here, a parameter 𝜆 is defined
as the signal for switching. When 𝜆 = 0, the system operates in open-loop state, and
when 𝜆 = 1, the PID controller controls the plant. The value of 𝜆 is assigned according
to the operation of the plant. For instance, we can assign 𝜆 to 1 when the plant output
variable yact(t) reaches 50% of the full value. By defining uop(ti) as the open-loop control
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signal at the sampling time ti, for example, a step input signal, the control signal with
the switching from open-loop operation to closed-loop operation is calculated as

uact(ti) = (1 − 𝜆)uop(ti) + 𝜆[uact(ti−1) + Kc(−yact(ti) + yact(ti−1))

+
KcΔt
𝜏I

(ract(ti) − yact(ti)) − uD(ti) + uD(ti−1)] (4.48)

where the derivative term is computed using

uD(ti) =
𝜏f

𝜏f + Δt
uD(ti−1) +

Kc𝜏D

𝜏f + Δt
(yact(ti) − yact(ti−1)). (4.49)

This switching policy gives a switching between the two operations. When using it, we
will define the parameter 𝜆 prior to the control application.

4.8.2 Dealing with Quantization Errors in PID Controller Implementation

Quantization errors occur in PID controller implementation when the actuators are
restricted to a set of values. The topic of quantization error will be further discussed
in Section 7.4. As an illustration, we assume that the actuator can only implement a
control signal u(t) with the step size of q. This quantization information can be embed-
ded into the PID controller implementation as a constraint on Δu(ti) = u(ti) − u(ti−1) so
to reduce the effect of quantization errors on the PID controller performance.

We recall in Section 4.4 that the derivative of the control signal is expressed as

u̇(t) = Kcė(t) +
Kc

𝜏I
e(t) − u̇D(t) (4.50)

At sampling time ti, by approximating u̇(ti) as Δu(ti)
Δt

, we obtain

Δu(ti) = (Kcė(ti) +
Kc

𝜏I
e(ti) − u̇D(ti))Δt. (4.51)

In the implementation, at sampling time ti, the step size of the quantization q is
checked against the computed incremental control signal. If

|(Kcė(ti) +
Kc

𝜏I
e(ti) − u̇D(ti))Δt| < q (4.52)

i.e. the computed incremental control signal |Δu(ti)| is smaller than the step size q, then
the actual incremental control signal Δu(ti) = 0 and

u(ti) = u(ti−1).

However, if the computed incremental control signal |Δu(ti)| is greater than or equal to
the step size q, which is,

|(Kcė(ti) +
Kc

𝜏I
e(ti) − u̇D(ti))Δt| ≥ q (4.53)

then Δu(ti) is calculated according to the constraint from the quantization step by using
the following expression:

Δu(ti) = q × round
⎛
⎜
⎜
⎝

(Kcė(ti) +
Kc

𝜏I
e(ti) − u̇D(ti))Δt

q

⎞
⎟
⎟
⎠

(4.54)
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where the round(x) is to round the variable x to the nearest integer.
After the incremental control signal is computed with the quantization information,

the control signal is updated as before using

u(ti) = u(ti−1) + Δu(ti).

This implementation will reduce the impact of quantization error by limiting the error
to each sampling instant and informing the controller with the actually implemented
control signal. The PID controller implementation with quantization has been tested in
the application of beer filtration process in Section 8.3.5.

With the variable expressions defined in Tutorial 4.1, small modification of the MAT-
LAB codes PIDV.slx will implement a PID controller to reduce the effect of quantization
errors. Firstly, we will add the quantization step q as an input parameter, and replace
step 7 in Tutorial 4.1 by the following codes:

uDCurrent=tauf/(tauf+deltat)*uDPast+..
(Kc*tauD)/(tauf+deltat)*(yCurrent-yPast);
Deltau=Kc*(-yCurrent+yPast)+..
(Kc*deltat)/tauI*(rCurrent-yCurrent)-uDCurrent+uDPast;

if abs(Deltau)<q; Deltau=0;
else

Deltau=q*round(Deltau/q);
end
uCurrent=uPast+Deltau;

where q is the quantization step.

4.9 Summary

Because PID controllers are continuous-time controllers, their implementations require
the discretization process as discussed in this chapter. The discretization process is per-
formed according to their time domain signals for the proportional control, the integral
control and the derivative control with filter, respectively. This leads to a greater flexi-
bility in choosing which the structures of PID controller we actually want to implement.
For instance, if we wish to put the proportional controller on the output only, the control
signal calculation from the proportional controller simply opted out the reference sig-
nal. Because the PID controllers are designed in the continuous time for discrete time
implementation, the sampling rate needs to be selected as fast as possible. The other
important aspects are summarized as follows.

• There are the position form and the velocity form in the choice of implementa-
tion algorithms. When using the position form, one needs to be careful with the
steady-state control signal if it is not zero. The velocity form takes care of this
problem by using the first sample of the actual control signal as an estimate to the
steady-state control signal value.

• Integrator windup problem exists in PID controlled systems when the control signal
reaches saturation limits. For the position form implementation, the PID controller
needs to be re-written to produce a stable polynomial realization to avoid the integra-
tor windup problem. For the velocity form implementation, the problem is solved by
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simply including the control signal saturation information in the past control signal
for the computation of current control signal. This effectively switches off the integral
action when the control signal reaches the saturation limit.

• The strategies for plant start-up and dealing with quantization errors can be devised
in a relatively simple manner when using the velocity form implementation.

• The Simulink program PIDV.slx produced in the MATLAB tutorial is used in
the later chapters for closed-loop simulation studies. This program has also been
successfully used in many applications where it is translated into C- program for
micro-controllers.

4.10 Further Reading

1. A book on continuous-time control system design with discrete-time implementa-
tion is Middleton and Goodwin (1990).

2. A general anti-windup control system implementation is introduced and analyzed in
Goodwin et al. (2000), in Zaccarian and Teel (2011). Unified framework is proposed
for anti-windup control system implementation (Kothare et al. (1994)). An overview
on anti-windup mechanisms is given in Peng et al. (1996), Tarbouriech and Turner
(2009), and Galeani et al. (2009). An anti-windup implementation for PID controller
is proposed in Visioli (2003).

Problems

4.1 The Laplace transfer function of the control signal U(s) is in relation to the feedback
error E(s):

U(s) = 10(1 + 1
s
)E(s)

1. Assuming that the sampling interval isΔt = 0.1, write down the implementation
equation for the PI controller with the velocity form.

2. Now, suppose that the feedback error e(t0) = −1, e(t1) = −0.5, e(t2) = 0.3,
e(t3) = −0.4, e(t4) = 0.1, and at t0, u(t0)= 0.5. We also assume that the control
signal is limited to ±0.6 (−0.6 ≤ u(t) ≤ 0.6). Calculate the control signal u(t1),
u(t2), u(t3) and u(t4).

4.2 Following Tutorial 4.1 for PID controller implementation with an anti-windup
mechanism, MATLAB real-time functions can be written for future Simulink
based simulations. Verify the PIDV.slx program by generating the simulation
results presented in Example 4.5.

4.3 A DC motor model is given by the transfer function:

G(s) = 0.6
(s + 3)s

(4.55)
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where the input is voltage and the output is the angular position. The requirement is
that the angular position follows a ramp signal of a unit slope without steady-state
error, and the operational requirements are that the control signal is within the
limits of (−7, 5), and the derivative of the control signal is within the limits of ±20.
The desired closed-loop performance is determined using the desired closed-loop
polynomial (s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝜆1)2, where 𝜉 = 0.707 and 𝑤n = 𝜆1 = 3.5.
1. Design a PID controller for this system.
2. Implement the PID controller using velocity form with anti-windup mechanisms

using PIDV.slx with both proportional and integral control on the reference
signal.

3. Implement the IPD controller by putting integral control on the reference, both
proportional and derivative control on the output. Will this IPD controller track
the ramp reference signal without steady-state error? If not, where did the mis-
take occur?

4.4 For the same system presented in Problem 4.3, investigate the PID controller design
that leads to a smaller controller gain to reduce both |u(t)| and |u̇(t)| so that these
signals are within the operational limits. Here we can reduce the parameters𝑤n and
𝜆1 to achieve the requirements. Simulate the closed-loop response and compare the
results with the anti-windup control presented in Problem 4.3.

4.5 A continuous time system is described by the following transfer function:

G(s) = 0.2
s2 + 0.1s + 1

1. Design a PID controller with filter for this continuous time system, where all
desired closed-loop poles are chosen to be −1.

2. Suppose that the actuator can only implement a control signal u(t) with the
step size of q = 0.1. With sampling interval Δt = 0.01, simulate the closed-loop
response to reference following and disturbance rejection where a unit step refer-
ence signal enters the simulation at t = 0 and a negative unit step input distur-
bance enters the system at half of the simulation time.
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5

Disturbance Observer- Based PID and Resonant Controller

5.1 Introduction

In Chapter 1 to Chapter 4, we discussed PID control systems with explicit functions
of proportional control, integral control, and derivative control. Because integral con-
trol embeds a marginally stable mode in the controller structure, which could cause the
problem of integrator windup when the control signal reaches its saturation limits, the
PID control system implementation requires modification to overcome this problem.
Similar implementation problems to a worse degree are faced by the resonant con-
trollers.

This chapter examines the PID controller design and resonant controller design from
a different angle to the previous chapters. It introduces the integral mode and reso-
nant modes through disturbance estimation. By doing so, the design becomes simpler,
and more importantly, the implementations of the PID and resonant controllers flow
naturally from the designs with anti-windup mechanisms. This development is particu-
larly significant for resonant controllers because simplicity in the implementation with
anti-windup mechanisms is paramount for practical applications.

5.2 Disturbance observer-Based PI Controller

This section introduces the idea of disturbance estimation that leads to an equivalent PI
control system. The mathematical model used in this section is a first order model. For
systems with higher order transfer functions, approximation is required.

5.2.1 Estimation of Disturbance with Control

We assume that there is a constant input disturbance d(t), which is unknown. So the
differential equation used to describe a first order system is given by

ẏ(t) = −ay(t) + b(u(t) + d(t)) (5.1)

where a and b are model coefficients, and u(t) and y(t) are the input and output vari-
ables. Figure 5.1 illustrates the mathematical model to be used for the estimator based
PI controller design.

Because of the assumption that d(t) is a constant, we have

ḋ(t) = 0. (5.2)

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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d(t)

+
+

u(t) y(t)+

–
b

a

Figure 5.1 Block diagram of the system for a
disturbance observer-based PI controller.

We would like to specify two desired closed-loop poles −𝛼1 and −𝛼2 where
𝛼1 > 0, 𝛼2 > 0. In the proposed design, the choice of 𝛼1 influences predominantly the
proportional gain K1 and 𝛼2 predominantly the integral gain K2.

5.2.1.1 Choice of Proportional Controller K1

The choice of K1 is straightforward. Firstly, we define:

ũ(t) = u(t) + d(t). (5.3)

Then (5.1) becomes

ẏ(t) = −ay(t) + bũ(t). (5.4)

Together with proportional control

ũ(t) = −K1y(t)

we obtain the closed-loop system:

ẏ(t) = −(a + bK1)y(t). (5.5)

Equating the actual closed-loop pole −(a + bK1) to the desired closed-loop pole −𝛼1, we
find the proportional gain K1 as

K1 =
𝛼1 − a

b
. (5.6)

5.2.1.2 Compensation of Steady-state Error
We know that proportional control will lead to a closed-loop system with steady-state
error for a constant reference signal or a disturbance signal. For overcoming the
steady-state error, we need integral action incorporated into the control system. Here,
we will estimate the steady-state error and then compensate it in the control signal. For
this purpose, we extract the disturbance information from (5.1) leading to

bd(t) = ẏ(t) + ay(t) − bu(t). (5.7)

One might attempt to directly calculate the unknown disturbance d(t) using (5.7) and
compensate for it in the control signal. However, it can be easily verified that such an
approach fails to produce the control signal required because of uncertainties in the
model parameters and other imperfections in practical applications. We will estimate
the disturbance signal d(t) with compensation on the error.

Let d̂(t) denote the estimated disturbance signal. The error, between what is given and
what is to be estimated, is described by,

𝜖(t) = bd(t) − bd̂(t) = ẏ(t) + ay(t) − bu(t) − bd̂(t). (5.8)
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With the gain K2 weighted on the error 𝜖(t), together with the assumption ḋ(t) = 0, we
construct the estimation d̂(t) as

dd̂(t)
dt

= K2(ẏ(t) + ay(t) − bu(t) − bd̂(t)). (5.9)

This is the so-called observer-equation. We will choose the gain K2 such that the error
d̃(t) = d(t) − d̂(t) converges to zero.

Note that

dd̃(t)
dt

= −K2bd̃(t) (5.10)

then, the parameter K2 is chosen such that −K2b = −𝛼2. This then leads to

K2 =
𝛼2

b
.

Hence,

dd̃(t)
dt

= −𝛼2d̃(t). (5.11)

For any given initial condition |d̃(0)| < ∞ and 𝛼2 > 0, the estimation error |d̃(t)| → 0
as t → ∞. The convergence rate is dependent on the parameter 𝛼2. The larger 𝛼2 is, the
faster the error will converge to zero.

Now, to calculate the control signal with compensation on the steady-state error, the
unknown disturbance d(t) in (5.3) is replaced by the estimated d̂(t) from (5.9), leading
to the control signal calculated as

u(t) = −K1y(t) − d̂(t). (5.12)

5.2.1.3 The closed-loop poles
To verify indeed that the closed-loop poles for the control system are −𝛼1 and −𝛼2, sub-
stituting (5.12) into (5.1) gives

ẏ(t) = −(a + bK1)y(t) + bd̃(t) = −𝛼1y(t) + bd̃(t) (5.13)

where d̃(t) = d(t) − d̂(t). Together with (5.11), the closed-loop system equation is writ-
ten as

⎡
⎢
⎢
⎢
⎣

dy(t)
dt

dd̃(t)
dt

⎤
⎥
⎥
⎥
⎦

=

A
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[
−𝛼1 b

0 −𝛼2

][ y(t)

d̃(t)

]

. (5.14)

Because A is an upper triangular matrix, the closed-loop poles (or eigenvalues) are sim-
ply calculated as the solution of the characteristic equation:

det(sI − A) = (s + 𝛼1)(s + 𝛼2) = 0

where I is the identity matrix with dimensions 2 × 2, equal to −𝛼1 and −𝛼2.
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5.2.1.4 Implementation procedure
Because the estimation equation (5.9) contains the derivative of the output signal y(t),
direct discretization requires information of y(ti+1) at sampling time ti, which is not
available to us.

Let us define a variable ẑ(t) as

ẑ(t) = d̂(t) − K2y(t). (5.15)

Then, substituting this variable into the estimation equation (5.9) yields

dẑ(t)
dt

= −K2bẑ(t) − (K2
2 b − K2a)y(t) − K2bu(t)

= −𝛼2ẑ(t) − K2(𝛼2 − a)y(t) − 𝛼2u(t). (5.16)

If the reference signal r(t) ≠ 0, then both (5.15) and (5.16) are modified by replacing
y(t) with y(t) − r(t). Furthermore, if the control signal u(t) reaches its saturation limit,
this saturation information is updated in the estimation of the disturbance d̂(t) via (5.16).
Figure 5.2 illustrates the block diagram of the control system using disturbance observer.
For discretizaton, at sampling time ti, the derivative dẑ(t)

dt
is approximated using the first

order approximation as

dẑ(t)
dt

≈
ẑ(ti+1) − ẑ(ti)

Δt
.

Then, it follows that

ẑ(ti+1) = ẑ(ti) − (𝛼2ẑ(ti) +
𝛼2(𝛼2 − a)

b
(y(ti) − r(ti)) + 𝛼2u(ti))Δt. (5.17)

The calculation procedure for control signal is summarized as follows. Choose initial
condition for ẑ(t0) at the beginning of the closed-loop operation. This could be selected
to be zero if no other information is available. With the reference signal r(ti) and output
signal y(ti) available at sampling time ti, the control signal u(ti) is calculated recursively.
The control signal is limited between umin and umax.

1. Calculate the estimated disturbance signal at sample ti as

d̂(ti) = ẑ(ti) + K2(y(ti) − r(ti)).

2. Calculate the control signal using the following equation

u(ti) = −K1(y(ti) − r(ti)) − d̂(ti).

r(t) e(t) y(t)

d(t)ˆ

Disturbance
observer

PlantK1+
–

+–

Figure 5.2 Block diagram of the
control system using a disturbance
observer.
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3. Implement the control signal saturation:

u(ti) =
⎧
⎪
⎨
⎪
⎩

umin if u(ti) < umin

u(ti) if umin
≤ u(ti) ≤ umax

umax if u(ti) > umax
.

4. Update the estimation of disturbance d̂(ti+1) for the next sampling instant as

ẑ(ti+1) = ẑ(ti) − (𝛼2ẑ(ti) +
𝛼2(𝛼2 − a)

b
(y(ti) − r(ti)) + 𝛼2u(ti))Δt.

5. Send the control signal u(ti) for implementation. When the next sampling period
arrives, the new measurement of the output is taken and the computation is repeated
from step 1.

5.2.2 Equivalence to PI controller

In order to calculate the equivalent PI controller, the Laplace transform of Ẑ(s) is
expressed as

Ẑ(s) = −
K2(𝛼2 − a)
(s + 𝛼2)

Y (s) −
𝛼2

s + 𝛼2
U(s)

where K2 = 𝛼2

b
, and the Laplace transform D̂(s) is

D̂(s) = Ẑ(s) + K2Y (s) =
K2(s + a)

s + 𝛼2
Y (s) −

𝛼2

s + 𝛼2
U(s). (5.18)

The Laplace transform of the control signal U(s) becomes

U(s) = −K1Y (s) −
K2(s + a)

s + 𝛼2
Y (s) +

𝛼2

s + 𝛼2
U(s)

which is

U(s) = −
(K1(s + 𝛼2)

s
+

K2s + K2a
s

)
Y (s) (5.19)

Thus, the equivalent PI controller is revealed as

C(s) =
K1(s + 𝛼2)

s
+

K2s + K2a
s

= K1 + K2 +
(K1𝛼2 + K2a)

s
. (5.20)

The PI controller parameters are

Kc = K1 + K2

Kc

𝜏I
= K1𝛼2 + K2a

where K1 = 𝛼1−a
b

and K2 = 𝛼2

b
. We can verify that the closed-loop poles are at −𝛼1 and

−𝛼2, which was the design specification.
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R(s)

Y(s)

U(s)+ +

+–

c1s+c0
s+α2

s+α2

α2

Figure 5.3 Transfer function realization
of the estimator based PI controller and∑

is the saturation limiter.

Defining the coefficients c1 = Kc and c0 = Kc

𝜏I
and the saturation limiter

∑
, Figure 5.3

shows the transfer function realization of the PI controller with anti-windup mecha-
nism, which calculates the control signal U(s) based on the reference signal R(s) and the
output signal Y (s).

5.2.3 MATLAB Tutorial for Implementation of a PI Controller via Estimation

The embedded PI controller via estimation will be used in the simulation studies with
the Simulink environment.

Tutorial 5.1 This tutorial is to illustrate how to implement the estimator based PI con-
trol algorithm in real-time. The core of this activity is to produce a MATLAB embedded
function that can be used in a Simulink simulation as well as in MATLAB real time
implementation. The entire embedded MATLAB completes one cycle of computation
for the control signal. For every sampling period, it will repeat the same computation
procedure.

Step by Step

1. Create a new Simulink file called PIEstim.slx
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded

MATLAB function and copy it to the PIEstim model.
3. Click on the icon of the embedded function, and define the input and output variables

to the PIEstim model so that the embedded function has the following form:
function uCur = PIEstim(r,y,K1,K2,alpha2,a,deltat,umin,umax)

where uCur is the calculated control signal at the sampling time tk, the first two
elements (r and y) among the input variables are the measurements of the the ref-
erence and output signals at sampling time ti, K1 and K2 are the controller gain and
estimator gain, deltat is the sampling interval, and umin and umax are the lower
and upper limits imposed on the control signal uCur.

4. At the top of the embedded function, find Model Explorer among the Tools. When
opening the Model Explorer, select Discrete for the Update method and input deltat
into the Sample time; select Support variable-size arrays; select Saturate on integer
overflow; select Fixed point. Click Apply to save the changes.

5. We need to edit the input and output data ports in order to let the embedded function
know which input ports are the real time variables and which are the parameters.
This editing task is performed using Model Explorer.
• click on r, on Scope, select Input, assign port 1 and size −1 complexity, Inherited

type Inherit: Same as Simulink. Repeat the same editing procedure for the output
signal y.
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• The remaining five inputs to the embedded function are the parameters required
in the computation. Click on K1, on Scope, select Parameter and click Tunable and
click Apply to save the changes. Repeat the same editing procedure for the rest of
the parameters.

• To edit the output port from the embedded function, click on uCur, on Scope, select
Output, Port 1, Size −1, Sampling Model Sample based, Type Inherit: Same as
Simulink, and click on Apply to save the changes.

6. In the following, the program will declare the variable that is stored in the embedded
function during each iteration for their dimensions and initial values. zhat is the esti-
mated disturbance at sampling time ti, which needs an initial value and is assigned
to zero. Enter the following program into the file:

persistent zhat
if isempty(zhat)

zhat=0;
end

7. Update the estimation of ẑ(ti+1). Enter the following program into the file:

dhat=zhat+K2*(y-r);

8. Update the control signal by combining the proportional control with the disturbance
estimation. Enter the following program into the file:

uCur= -K1*(y-r)-dhat;

9. Implement saturation with anti-windup mechanism. Enter the following program
into the file:

if (uCur>umax)
uCur=umax;
end
if (uCur<umin)
uCur=umin;
end

10. Calculate the ẑ(ti+1) for the next sample. Enter the following program into the file:

zhat=zhat-alpha2*zhat*deltat-(y-r)*(alpha2-a)*K2*deltat..
-alpha2*uCur*deltat;

5.2.4 Examples for Estimator based PI Controllers

Example 5.1 A continuous-time system is approximated by the following first order
model:

G(s) = 0.1
T1s + 1

(5.21)

where the time constant T1 is 10 s. It is known that the system has a variable delay
of TD which has a maximum value of 1 s and a neglected time constant T2 with a max-
imum value of 5 s. Design an estimator based PI controller for this system and simulate
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the closed-loop control performance for unit step reference change and rejection of input
disturbance having amplitude of 20.

Solution. Because this system has neglected time delay and time constant, this model
uncertainty will limit the specification of desired closed-loop performance. A good
starting point is to select the dominant closed-loop pole equal to the known pole
of system, which is at −0.1. Hence, 𝛼1 = 0.1. The second desired closed-loop pole −𝛼2
is determined using closed-loop simulations with the MATLAB real-time function
presented in Section 5.2.3.

With a = 0.1, b = 0.01, and 𝛼1 = 0.1, the parameter K1 is calculated as

K1 =
𝛼1 − a

b
= 0.

The parameter K2 is calculated as

K2 =
𝛼2

b
.

With the parameter 𝛼2 being selected as 0.1, 0.2, and 0.3, three values of K2 are calculated
as 10, 20, and 30.

By selecting the sampling interval Δt = 0.01 (s) and using the Simulink simulator with
the PIEstim.slx function built in Section 5.2.3, closed-loop simulation results are obtained
for the worst case scenario where the plant transfer function used in the simulation is

G(s) = 0.1e−s

(10s + 1)(5s + 1)
.

In the simulation, the unit step reference signal enters the system at t = 0 and the input
disturbance enters the system at half of the simulation time. It is seen from the compara-
tive results illustrated in Figure 5.4 that with the increase in 𝛼2, the closed-loop response
speed for both reference following and disturbance rejection has increased. One can ver-
ify that further increase of 𝛼2 will lead to the increased oscillations in the closed-loop
response. 𝛼2 = 0.3 is a good choice with respect to the model uncertainties.
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Figure 5.4 Comparison of closed-loop control performance using an estimator based PI controller
with different 𝛼2 values (Example 5.1). (a) Control signal. (b) Output. Key: line (1) 𝛼2 = 0.1 ; line (2)
𝛼2 = 0.2; line (3) 𝛼2 = 0.3.
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It is apparent that much larger control amplitude is required when 𝛼2 = 0.3 is used for
the estimator based PI controller design. In practice, this much larger control amplitude
may not be realizable due to the physical limitations of the actuators. An interesting
question arises as how the closed-loop response speed will change if the control signal
amplitude is limited. The following example illustrates the comparative studies.

Example 5.2 Continue from Example 5.1. Assuming that the control signal amplitude
is constrained so that

−11 ≤ u(t) ≤ 14. (5.22)

Compare the closed-loop responses to a unit step reference signal and a step input distur-
bance with amplitude of 20.

Solution. We examine the slowest response case with 𝛼2 = 0.1 and the fastest response
case 𝛼2 = 0.3 where 𝛼1 = 0.1 is used for both cases.

When 𝛼2 = 0.1, the maximum and minimum of the control signal are naturally sat-
isfied except for a brief time in disturbance rejection (see Figure 5.5). Therefore, for the
choice of 𝛼2 = 0.1 the closed-loop response to reference and disturbance signals remains
unchanged with respect to the control signal constraints. However, when 𝛼2 = 0.3, the con-
trol signal amplitude exceeds its maximum and minimum values in reference following
and disturbance rejection. In fact, the maximum value needs to be reduced from 35.60 to
14 and the minimum value needs to be increased from −17.92 to −11. The constraints
imposed will lead to a drastic reduction on the amplitude of the control signal when
𝛼2 = 0.3 is used in the controller design. Figure 5.5(a) shows the closed-loop control signals
to the step reference signal and the disturbance signal. It is seen that indeed the control
signals are within the limits. Figure 5.5(b) compares the closed-loop responses to the step
reference signal and the disturbance signal. It is seen that the closed-loop responses to
the step reference signal have a similar speed, however, the disturbance rejection with the
larger 𝛼2 is much faster.
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Figure 5.5 Comparison of closed-loop control performance using an estimator based PI controller
with different 𝛼2 values (Example 5.2). (a) Control signal. (b) Output. Key: line (1) 𝛼2 = 0.1 ; line (2)
𝛼2 = 0.3; and line (3) the limits of the control signal.
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Figure 5.6 Comparison of closed-loop control performance between the PI controller in velocity form
and the disturbance observer-based PI controller (Example 5.3). (a) Control signal. (b) Output. Key: line
(1) the PI controller in velocity form; line (2) the disturbance observer-based PI controller.

The above two examples indicate that with the estimator based PI control system, the
closed-loop performance limitation is limited by the model uncertainties due to unmod-
eled dynamics in the system. The performance limitation is reflected by the value of 𝛼2.
The control signal limits can be incorporated into the implementation of the control
system with a naturally occurred anti-windup mechanism.

From Section 5.2.2 it is clear that there is an equivalent PI controller with parameters
Kc and 𝜏I to this estimation based PI controller. The implementation of a PI controller
using the velocity form was discussed with anti-windup mechanisms in Section 4.6. Nat-
urally we wonder if these two implementations would lead to different outcomes. The
following example compares the outcomes of these two PI controller with anti-windup
mechanisms.

Example 5.3 Continue from Examples 5.1 and 5.2. Evaluate the the original PI
controller velocity form implementation with the estimation based PI controller
implementation.

Solution. With 𝛼1 = 0.1 and 𝛼2 = 0.3, the proportional control gain and integral time
constant are calculated as

Kc = K1 + K2 = 30;
Kc

𝜏I
= K1𝛼2 + K2a = 3; 𝜏I = 10

where K1 = 0 and K2 = 30. Figures 5.6 (a)–(b) show that both implementations have
incorporated an anti-windup mechanism although there is a tiny difference between the
closed-loop performances when the saturation limit is reached.

5.2.5 Food for Thought

1. In the design of a disturbance observer-based PI controller, what effect will the
desired closed-loop poles −𝛼1 and −𝛼2 have on the closed-loop performance?

2. If the system has a large modelling error, would you decrease 𝛼1 and 𝛼2?
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3. If the steady-state values of the control signal and output signal are not zero at
the initial time, how would you enter these steady-state values in the disturbance
observer-based PI controller implementation?

4. Is it possible to estimate the disturbance d(t) without compensating it in the control
system?

5. Is the implementation of integrator based on a stable system?

5.3 Disturbance observer-Based PID Controller

To design a PID controller using the estimation based approach, we consider a second
order transfer function:

G(s) = b
s2 + a1s + a0

= Y (s)
U(s)

(5.23)

where U(s) and Y (s) are the Laplace transforms of the input and output signals. We
assume that b ≠ 0. By assuming zero initial conditions, the corresponding differential
equation is expressed as

ÿ(t) = −a1ẏ(t) − a0y(t) + bu(t).

In matrix form, it is expressed as
[

ẏ(t)
ÿ(t)

]
=
[

0 1
−a0 −a1

] [
y(t)
ẏ(t)

]
+
[

0
b

]
u(t). (5.24)

5.3.1 Proportional Plus Derivative Control

We will first design a proportional plus derivative controller. For this purpose, the feed-
back control signal u(t) is

u(t) = −
[
K1 K2

] [y(t)
ẏ(t)

]
. (5.25)

Substituting (5.25) into (5.24) leads to the closed-loop equation:
[

ẏ(t)
ÿ(t)

]
=
([

0 1
−a0 −a1

]
−
[

0 0
K1b K2b

])[
y(t)
ẏ(t)

]

=
[

0 1
−a0 − K1b −a1 − K2b

] [
y(t)
ẏ(t)

]
. (5.26)

The closed-loop characteristic polynomial is then calculated as

det
([

s 0
0 s

]
−
[

0 1
−a0 − K1b −a1 − K2b

])
= s(s + a1 + K2b) + a0 + K1b.

This is clearly a second order polynomial. We can specify a damping coefficient
𝜉 = 0.707 and choose the parameter 𝑤n as the closed-loop performance parameter.
Alternatively, we could also choose two desired closed-loop poles as −𝛼1 and −𝛼2
where 𝛼1 > 0 and 𝛼2 > 0. In any case, to determine the proportional and the derivative
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controller gain, the actual closed-loop characteristic polynomial is made equal to the
desired one, leading to

s2 + (a1 + K2b)s + a0 + K1b = s2 + 2𝜉𝑤ns +𝑤2
n.

The solution of this polynomial equation gives the proportional control gain:

K1 =
𝑤2

n − a0

b
(5.27)

and the derivative control gain:

K2 =
2𝜉𝑤n − a1

b
. (5.28)

Since it is necessary to use a filter for the derivative action because of measurement
noise, a quick way to calculate a first order filter time constant is to find the correspond-
ing gain 𝜏D, which is

𝜏D =
K2

K1

based on (5.25). With this parameter, the derivative filter constant is

𝜏f = 𝛽𝜏D

where 𝛽 = 0.1 is often selected. The filtered derivative output signal is expressed as

Ydf(s) =
s

𝜏f s + 1
Y (s).

For many applications, it is preferable to design the PD controller together with deriva-
tive filter 𝜏f to avoid the extra errors introduced from the approximation. A PD controller
with filter design is discussed in detail in Section 3.4.1 with the filter constant calculated
through the desired closed-loop performance specification.

5.3.2 Adding Integral Action

To add integral action to the PD controller, we assume that there is a constant input
disturbance d(t) so we have ḋ(t) = 0. The differential equation model (5.24) is modified
to become:

[
ẏ(t)
ÿ(t)

]
=
[

0 1
−a0 −a1

] [
y(t)
ẏ(t)

]
+
[

0
b

]
(u(t) + d(t)). (5.29)

Similar to the PI controller design via estimation, we will write the unknown disturbance
term as

bd(t) = ÿ(t) + a1ẏ(t) + a0y(t) − bu(t). (5.30)

Together with the assumption that ḋ(t) = 0, the estimation of d(t) is constructed as

dd̂(t)
dt

= K3(ÿ(t) + a1ẏ(t) + a0y(t) − bu(t) − bd̂(t)). (5.31)

We choose 𝛼3 > 0 and determine the estimator’s gain K3 using

K3 =
𝛼3

b
.
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Because Equation (5.31) has double derivative and derivative of output signal y(t), it
is not suitable for computational purposes. To this end, we define a new variable

ẑ(t) = d̂(t) + K3ẏ(t)

and rewrite Equation (5.31) as function of ẑ(t):
dẑ(t)

dt
= −𝛼3ẑ(t) + K3(a1 − 𝛼3)ẏ(t) + K3a0y(t) − 𝛼3u(t). (5.32)

Assuming that the reference signal is r(ti) at the sampling time ti and the output signal
and its derivative are measured as y(ti), ẏ(ti), with the sampling interval Δt, with satura-
tion limits umin and umax, the control signal is calculated using the following steps.

1. Update the estimated disturbance signal. An initial condition on ẑ(t0) will be given as
the start up of the control algorithm.

d̂(ti) = ẑ(ti) − K3ẏ(ti).

2. Calculate the control signal

u(ti) = −K1(y(ti) − r(ti)) − K2ẏ(ti) − d̂(ti).

3. Implement control signal saturation:

u(ti) =
⎧
⎪
⎨
⎪
⎩

umin if u(ti) < umin

u(ti) if umin
≤ u(ti) ≤ umax

umax if u(ti) > umax
.

4. Update the disturbance estimator for ti+1:
ẑ(ti+1) = ẑ(ti) + Δt(−𝛼3ẑ(ti) + K3(a1 − 𝛼3)ẏ(ti))

+ Δt(K3a0(y(ti) − r(ti)) − 𝛼3u(ti)).

5. When the next sample period arrives, repeat the computation at step 1.

Note that in the implementation of the PID controller, the derivative control is on the
output only, avoiding producing a spike on the control signal when the reference signal
signal r(t) makes a step change. When a filter is used for the derivative signal ẏ(ti), the
signal ẏ(ti) is replaced by ẏf (ti), which is illustrated in Tutorial 5.2.

5.3.3 Equivalence to a PID Controller

To find the equivalence of the proposed estimation based PID controller to the PID
controller expressed in transfer function form, we examine the Laplace transform of the
estimation equation (5.31), which is,

sD̂(s) = K3(s2 + a1s + a0)Y (s) − 𝛼3U(s) − 𝛼3D̂(s) (5.33)

where 𝛼3 = K3b. Solving for D̂(s) gives

D̂(s) = 1
s + 𝛼3

(K3(s2 + a1s + a0)Y (s) − 𝛼3U(s)). (5.34)

Note that the Laplace transform of the control signal is expressed as

U(s) = −K1Y (s) − K2sY (s) − D̂(s). (5.35)
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By substituting (5.34) into (5.35), the Laplace transform of the control signal U(s) is
found as

U(s) = −
s + 𝛼3

s
(K1 + K2s)Y (s) −

K3

s
(s2 + a1s + a0)Y (s). (5.36)

With the negative feedback, the equivalent controller transfer function C(s) is obtained
as

C(s) =
(s + 𝛼3)(K1 + K2s)

s
+

K3(s2 + a1s + a0)
s

= P(s)
L(s)

. (5.37)

Now, it can be verified that the closed-loop polynomial is indeed

A(s)L(s) + B(s)P(s) = (s + 𝛼3)(s2 + 2𝜉𝑤ns +𝑤2
n) (5.38)

where B(s) and A(s) are the numerator and denominator of the transfer function model
as given by (5.23). Additionally, it can be verified that the controller transfer function
can be written in an equivalent form to a PID controller:

C(s) =
c2s2 + c1s + c0

s
(5.39)

where the parameters c2, c1, and c0 are calculated as

c2 = K2 + K3 (5.40)
c1 = K1 + K2𝛼3 + K3a1 (5.41)
c0 = K1𝛼3 + K3a0. (5.42)

Figure 5.7 shows the transfer function realization of the disturbance observer-based PID
controller where

∑
is the saturation limiter.

There are several comments related. Firstly, the relationship presented in (5.38) shows
that there are three desired closed-loop poles for the PID controller designed. The pair
of complex poles located at −𝜉𝑤n ± j𝑤n

√
1 − 𝜉2 with 𝜉 = 0.707 or 1 is used to deter-

mine the parameters K1 and K2, and the pole located at −𝛼3 is used to determine the
parameter K3. Secondly, the PID controller can be implemented using the estimation of
the input disturbance, providing a stable implementation for the integrator. Thirdly, the
controller transfer function shown in (5.39) can readily be used for frequency response
analysis so that the gain margin, phase margin, and delay margin can be calculated for
the controller designed.

R(s)

Y(s)

U(s)+ +

+–

c2s
2+c1s+c0

(s+α3)(τfs+1)

s+α3

α3

Figure 5.7 Transfer function realization of the disturbance observer-based PID controller.
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5.3.4 MATLAB Tutorial on the Implementation of a disturbance
observer-based PID Controller

This section presents the MATLAB tutorial for the implementation of disturbance
observer-based PID controller. This implementation will contain the anti-windup
mechanism when the control signal reaches its maximum or minimum values. The
embedded PID controller via estimation will be used in the simulation studies within
the Simulink environment.

Tutorial 5.2 This tutorial is to illustrate how to implement the disturbance observer-
based PID control algorithm in real-time. The core of this activity is to produce a
MATLAB embedded function that can be used in a Simulink simulation as well as in
MATLAB Real-time implementation. The entire embedded MATLAB completes one
cycle of computation for the control signal. For every sampling period, it will repeat the
same computation procedure.

Step by Step

1. Create a new Simulink file called PIDEstim.slx
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MAT-

LAB function and copy it to the PIDEstim model.
3. Click on the icon of the embedded function, and define the input and output variables

to the PIDEstim model so that the embedded function has the following form:

function uCur = PIDEstim(r,y,K1,K2,K3,tauf,alpha3,..
a1,a0,deltat,umin,umax)

where uCur is the calculated control signal at the sampling time ti, the first two ele-
ments (r and y) among the input variables are the measurements of the the reference
and output signals at sampling time ti, K1, K2 and K3 are the PD controller gains
and estimator gain, tauf is the time constant for the derivative filter, alpha3 is for the
pole location of the estimator, deltat is the sampling interval, umin and umax are
the lower and upper limits imposed on the control signal uCur.

4. At the top of the embedded function, find Model Explorer among the Tools. When
opening the Model Explorer, select discrete for the update method and input deltat
into the sample time; select Support variable-size arrays; select Saturate on integer
overflow; select Fixed point. Click Apply to save the changes.

5. We need to edit the input and output data ports in order to let the embedded function
know which input ports are the real-time variables and which are the parameters.
This editing task is performed using Model Explorer.
• Click on r, on Scope, select input, assign port 1 and size −1, complexity Inherited,

type Inherit: Same as Simulink. Repeat the same editing procedure for the output
signal y.

• The rest of 10 inputs to the embedded function are the parameters required in the
computation. Click on K1, on Scope, select Parameter and click Tunable and click
Apply to save the changes. Repeat the same editing procedure for the rest of the
parameters.
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• To edit the output port from the embedded function, click on uCur, on Scope, select
Output, Port 1, Size −1, Sampling Model Sample based, Type Inherit: Same as
Simulink, and click on Apply to save the changes.

In the following, the program will declare the variables that are stored in the embed-
ded function during each iteration for their dimensions and initial values. zhat is
the estimated disturbance at sampling time ti, which needs an initial value and is
assigned to zero. We also declare the derivative of the filtered output and the past
output signals that will be stored in the memory. Enter the following program into
the file:

persistent zhat
if isempty(zhat)

zhat=0;
end
persistent ydfpast
if isempty(ydfpast)

ydfpast=0;
end
persistent ypast
if isempty(ypast)

ypast=0;
end

6. Update the filtered output derivative signal. Enter the following program into the file:

ydf=tauf/(tauf+deltat)*ydfpast+1/(tauf+deltat)*(y-ypast);

7. Update the estimated disturbance d̂(ti). Enter the following program into the file:

dhat=zhat+K3*ydf;

8. Update the control signal by combining the proportional plus derivative control with
the disturbance estimation. Enter the following program into the file:

uCur= -K1*(y-r)-K2*ydf-dhat;

9. Implement saturation with anti-windup mechanism. Enter the following program
into the file:

if (uCur>umax) uCur=umax;end
if (uCur<umin) uCur=umin;end

10. Calculate ẑ(ti+1) for the next sample. Enter the following program into the file:

zhat=zhat-deltat*alpha3*zhat+...
deltat*(K3*(a1-alpha3)*ydf+K3*a0*(y-r)-alpha3*uCur);

11. Update the past output signal and past filtered derivative output signal in prepara-
tion for the next sample period. Enter the following program into the file:

ypast=y;
ydfpast=ydf;

This program is tested using the example presented in the next section.
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5.3.5 Examples for Disturbance observer-based PID Controller

Example 5.4 An unstable system is described by the transfer function:

G(s) = 0.1e−0.05s

(s + 2)(s − 2)
(5.43)

where the small time delay is due to the dynamics from the actuator. Design a estimator
based PID controller with the pair of dominant poles at−2 and the estimator pole at−10.
Evaluate the control system performance for reference following and disturbance rejection
in the presence of control amplitude constraints.

Solution. Choosing 𝜉 = 1 and 𝑤n = 2 positions the closed-loop poles at −2. The model
(5.43) gives the parameters a1 = 0, a0 = −4, and b = 0.1. The PD controller parameters
are calculated as

K1 =
𝑤2

n − a0

b
= 80

and the derivative control gain

K2 =
2𝜉𝑤n − a1

b
= 40.

Because it is an unstable system with neglected time delay, the selection of third pole −𝛼3
is considered with simulation studies. When 𝛼3 is too large, the neglected time delay will
lead to the instability of the closed-loop system. However, when 𝛼3 is not large enough,
and the control amplitude constraints could lead to instability. The range of 𝛼3 is found
to be between 5 and 15 to provide satisfactory closed-loop performance in the presence of
control signal amplitude constraints. With 𝛼3 = 10, the parameter K3 is calculated as

K3 =
𝛼3

b
= 100.

A derivative filter time constant is calculated as

𝜏f =
0.01K2

K1
= 0.005.

The filter time constant used is quite small because it introduces additional dynam-
ics in the system. If the system has severe noises and a larger filter time constant is
required, then the derivative filter needs to be designed as part of the control system (see
Section 3.4.1). The disturbance observer-based PID control system is evaluated through
simulation studies using the MATLAB real-time function in Section 5.3.4 together with
a Simulink program. Choosing the sampling interval Δt = 0.001 (s), in the simulation,
a unit step reference signal enters the closed-loop system at t = 0 and an input step
disturbance with amplitude of 20 enters the system at half of the simulation time. The
control signal amplitude is constrained between −68 and 26. Figures 5.8(a) and (b) show
the closed-loop control performances in the presence of the control signal amplitude
constraints. In comparison, the responses from the unconstrained control signal and
the output signal are also illustrated in the same figures. It is seen that the control
amplitude has been reduced from about 100 to 26 at the beginning of the simulation.
For the disturbance rejection, the control signal was constrained from the original −73
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Figure 5.8 Closed-loop control performance using disturbance observer-based PID controller with
control signal amplitude constraints (Example 5.4). (a) Control signal. (b) Output. Key: line (1)
constrained responses; line (2) unconstrained responses.

to −68. The comparative results show that the constraints are met with little closed-loop
performance deterioration.

One can also verify that the anti-windup PID controller implementation introduced
in Section 4.6 will produce the same disturbance rejection results, however, will have a
slower reference response if the proportional control is implemented on the output only.
This is left as an exercise.

5.3.6 Food for Thought

1. In the design of disturbance observer-based PID controller, how would you modify
Equations (5.29)–(5.32) to include the derivative filter?

2. Can you list three physical systems that have second order transfer functions and are
suitable for a PD controller application?

3. How would you propose to include the steady-state values of control signal and out-
put signal in the implementation of the disturbance observer-based PID controller?

4. Would you consider the possibility of adding the integral action after the PD con-
troller has stabilize the system, which can be achieved subsequently by subtracting
the disturbance term?

5.4 Disturbance observer-Based Resonant Controller

This section will investigate resonant controller design and implementation with
anti-windup mechanism using the disturbance estimation approach.

5.4.1 Resonant Controller Design

Assume that a dynamic system is described by the differential equation:

ẏ(t) = −ay(t) + b(u(t) + d(t)) (5.44)
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where a and b are the coefficients; u(t) and y(t) are the input and output signals; d(t)
is the input disturbance signal. In particular, we assume that d(t) is a sinusoidal signal
with known frequency 𝜔0, but unknown amplitude dm and phase angle 𝜓0, which is
expressed as

d(t) = dm sin(𝜔0t + 𝜓0).

The resonant control law is expressed as

u(t) = −K1(y(t) − r(t)) − d̂(t)

where d̂(t) is an estimate of the unknown disturbance d(t).
By choosing the desired closed-loop pole at−𝛼1 and 𝛼1 > 0, the proportional feedback

control gain K1 is calculated as

K1 =
𝛼1 − a

b
.

Now, the next question is how to compute the estimated input sinusoidal disturbance
signal d̂(t). The derivative of this disturbance signal is

ḋ(t) = dm𝜔0 cos(𝜔0t + 𝜓0)

and its second derivative is
d̈(t) = −dm𝜔

2
0 sin(𝜔0t + 𝜓0) = −𝜔2

0d(t).

Now, we choose x1(t) = d(t) and x2(t) = ḋ(t). With these choices, the following differ-
ential equations are used to describe the sinusoidal disturbance signal:

[
ẋ1(t)
ẋ2(t)

]
=
[

0 1
−𝜔2

0 0

] [
x1(t)
x2(t)

]
. (5.45)

In order to estimate the disturbance signal d(t), from (5.44), we obtain

bd(t) =
[
b 0

] [x1(t)
x2(t)

]
= ẏ(t) + ay(t) − bu(t)

which is the output equation for the estimation. Thus, the estimated variables x̂1(t) and
x̂2(t) are constructed as

⎡
⎢
⎢
⎢
⎣

dx̂1(t)
dt

dx̂2(t)
dt

⎤
⎥
⎥
⎥
⎦

=
[

0 1
−𝜔2

0 0

] [
x̂1(t)
x̂2(t)

]
+
[
𝛾1
𝛾2

](
ẏ(t) + ay(t) − bu(t) −

[
b 0

] [x̂1(t)
x̂2(t)

])

(5.46)
where 𝛾1 and 𝛾2 are the estimator gains chosen for the design.

The next question is how to choose 𝛾1 and 𝛾2 such that the errors between the
estimated and true disturbance signals are ensured to converge to zero as t → ∞. For
this purpose, we define x̃1(t) = x1(t) − x̂1(t) and x̃2(t) = x2(t) − x̂2(t). It can be verified
as an exercise that we have the following error system:

⎡
⎢
⎢
⎢
⎣

dx̃1(t)
dt

dx̃2(t)
dt

⎤
⎥
⎥
⎥
⎦

=
([

0 1
−𝜔2

0 0

]
−
[
𝛾1b 0
𝛾2b 0

])[
x̃1(t)
x̃2(t)

]
(5.47)
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where we have used the following relationship:
[
b 0

] [x1(t)
x2(t)

]
= ẏ(t) + ay(t) − bu(t).

Clearly, we can choose the parameters 𝛾1 and 𝛾2 such that the poles (or eigenvalues) of
the error system are on the left half of the complex plane, which ensures its stability. The
characteristic polynomial for the error system is calculated as

det
([

s 0
0 s

]
−
[

−𝛾1b 1
−𝜔2

0 − 𝛾2b 0

])
= s2 + 𝛾1b + 𝜔2

0 + 𝛾2b.

Now, we choose a desired characteristic polynomial for performance specification as
s2 + 2𝜉𝑤ns +𝑤2

n. Then, to make the characteristic polynomial for the error system equal
to the desired characteristic polynomial, the coefficients 𝛾1 and 𝛾2 are found as,

𝛾1 =
2𝜉𝑤n

b
;

𝛾2 =
𝑤2

n − 𝜔2
0

b
. (5.48)

In the applications, the damping parameter 𝜉 is chosen to be 0.707 and the parameter
𝑤n is adjusted for how fast we would like to see the errors converge to zero.

5.4.2 Resonant Controller Implementation

The calculation of the estimated input disturbance using (5.46) requires the derivative
of the output signal ẏ(t), which is not desirable in the implementation. To overcome the
problem, we define a pair of new variables:

ẑ1(t) = x̂1(t) − 𝛾1y(t); ẑ2(t) = x̂2(t) − 𝛾2y(t).

Then, from (5.46), the following two equations are obtained:
dẑ1(t)

dt
= −2𝜉𝑤nẑ1(t) + ẑ2(t) + (a𝛾1 + 𝛾2 − 2𝜉𝑤n𝛾1)y(t) − b𝛾1u(t) (5.49)

dẑ2(t)
dt

= −𝑤2
nẑ1(t) + (a𝛾2 −𝑤2

n𝛾1)y(t) − b𝛾2u(t). (5.50)

The control law presented above is a combination of proportional feedback and a dis-
turbance observer. This section will present how this control law can be implemented
in a discrete time environment with anti-windup mechanism.

The derivatives in the observer equations (5.49) and (5.50) are first discretized with a
sampling interval Δt leading to their approximations at the sampling time ti:

dẑ1(t)
dt

≈
ẑ1(ti+1) − ẑ1(ti)

Δt
;

dẑ2(t)
dt

≈
ẑ2(ti+1) − ẑ2(ti)

Δt
.

The following algorithm summarizes the computational procedure for the implementa-
tion of the resonant controller with anti-windup mechanism.

Assume that the control signal u(t) is limited to umin and umax, that is
umin

≤ u(t) ≤ umax.

Choosing the initial conditions for ẑ1 and ẑ2, the control signal is calculated iteratively
according to the following steps, where r(ti) is the reference signal at sampling time ti.
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1. Calculate the estimated sinusoidal disturbance d̂(ti) as

d̂(ti) = ẑ1(ti) + 𝛾1(y(ti) − r(ti)).

2. Calculate the control signal u(ti) as

u(ti) = −K1(y(ti) − r(ti)) − d̂(ti).

3. Implement the saturations on the control signal using

u(ti) =
⎧
⎪
⎨
⎪
⎩

umin if u(ti) < umin

u(ti) if umin
≤ u(ti) ≤ umax

umax if u(ti) > umax
.

4. Update the estimated disturbance signals using the following equations:
ẑ1(ti+1) = ẑ1(ti) + Δt(−2𝜉𝑤nẑ1(ti) + ẑ2(ti))

+ Δt((a𝛾1 + 𝛾2 − 2𝜉𝑤n𝛾1)(y(ti) − r(ti)) − b𝛾1u(ti))
ẑ2(ti+1) = ẑ2(ti) + Δt(−𝑤2

nẑ1(ti) + (a𝛾2 −𝑤2
n𝛾1)(y(ti) − r(ti)) − b𝛾2u(ti)).

5. When the next sampling period arrives, repeat the computation from step 1.

5.4.3 Equivalence to a Resonant Controller

To find the Laplace transfer function of the resonant controller designed using dis-
turbance estimation, we note that the Laplace transform of the control signal has the
following expression:

U(s) = −K1Y (s) − D̂(s) (5.51)

where D̂(s) = X̂1(s) is the Laplace transform of the estimated sinusoidal disturbance. It
can be verified that the Laplace transform of (5.46) gives

[
X̂1(s)
X̂2(s)

]

=

[
s + 2𝜉𝑤n −1
𝑤2

n s

]−1 [
𝛾1
𝛾2

]
(sY (s) + aY (s) − bU(s)). (5.52)

Calculating the matrix inversion and multiplication gives

X̂1(s) =
𝛾1s + 𝛾2

s2 + 2𝜉𝑤ns +𝑤2
n
((s + a)Y (s) − bU(s)). (5.53)

To find the Laplace transform of the control signal, we will substitute (5.53) into (5.51)
and move the term containing U(s) from the left-hand side to the right-hand side of the
equation, which gives the expression of the control signal

U(s) = −K1
s2 + 2𝜉𝑤ns +𝑤2

n

s2 + 𝜔2
0

Y (s) −
(𝛾1s + 𝛾2)(s + a)

s2 + 𝜔2
0

Y (s) (5.54)

where b𝛾1 = 2𝜉𝑤n and b𝛾2 = 𝑤2
n − 𝜔2

0.
From (5.54), we find the Laplace transfer function of the resonant controller as

C(s) = K1
s2 + 2𝜉𝑤ns +𝑤2

n

s2 + 𝜔2
0

+
(𝛾1s + 𝛾2)(s + a)

s2 + 𝜔2
0

. (5.55)

This controller has a pair of complex poles at s1,2 = ±j𝜔0.
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Figure 5.9 Transfer function realization of a resonant controller with saturation limits.

To verify if the closed-loop poles are indeed at the locations of −𝛼1 and
−𝜉𝑤n ± j𝑤n

√
1 − 𝜉2 (𝜉 = 1 or 0.707), we calculate the closed-loop characteristic

polynomial as

(s + a)(s2 + 𝜔2
0) + b(K1(s2 + 2𝜉𝑤ns +𝑤2

n) + (𝛾1s + 𝛾2)(s + a))
= (s2 + 2𝜉𝑤ns +𝑤2

n)(s + 𝛼1) (5.56)

where K1 = 𝛼1−a
b

, 𝛾1 = 2𝜉𝑤n

b
, and 𝛾2 = 𝑤2

n−𝜔
2
0

b
. The closed-loop characteristic polynomial

(5.56) leads to the conclusion that the closed-loop poles are at the locations as we spec-
ified.

Figure 5.9 shows the transfer function realization of the resonant controller with
anti-windup mechanism.

5.4.4 MATLAB Tutorial on Disturbance observer-Based Resonant Controller
Implementation

This section presents the MATLAB tutorial for implementation of the disturbance
observer-based resonant controller together with the anti-windup mechanism when
the control signal reaches its maximum or minimum values. The embedded resonant
controller via estimation will be used in the simulation studies within the Simulink
environment.

Tutorial 5.3 The core of this activity is to produce a MATLAB embedded function that
can be used in a Simulink simulation as well as in MATLAB real time implementation.
The entire embedded MATLAB completes one cycle of computation for the control signal.
For every sampling period, it will repeat the same computation procedure.

Step by Step

1. Create a new Simulink file called ResEstim.slx
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded

MATLAB function and copy it to the ResEstim model.
3. Click on the icon of the embedded function, and define the input and output variables

to the ResEstim model so that the embedded function has the following form:

function uCur =ResEstim(r,y,K1,gamma1,gamma2,xi,wn,..
a,omega0,deltat,umin,umax)

where uCur is the calculated control signal at the sampling time ti, the first two
elements (r and y) among the input variables are the measurements of the the
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reference and output signals at sampling time ti, K1 is the proportional controller
gain, gamma1, gamma2, xi, wn, a, omega0 are the parameters for the estimator,
deltat is the sampling interval, umin and umax are the lower and upper limits
imposed on the control signal uCur.

4. At the top of the embedded function, find Model Explorer among the Tools. When
opening the Model Explorer, select discrete for the update method and input deltat
into the sample time; select Support variable-size arrays; select Saturate on integer
overflow; select Fixed point. Click Apply to save the changes.

5. We need to edit the input and output data ports in order to let the embedded function
know which input ports are the real-time variables and which are the parameters.
This editing task is performed using Model Explorer.
• Click on r, on Scope, select input, assign port 1 and size −1 complexity, Inherited

type Inherit: Same as Simulink. Repeat the same editing procedure for the output
signal y.

• The rest of 10 inputs to the embedded function are the parameters required in the
computation. Click on K1, on Scope, select Parameter and click Tunable and click
Apply to save the changes. Repeat the same editing procedure for the rest of the
parameters.

• To edit the output port from the embedded function, click on uCur, on Scope, select
Output, Port 1, Size −1, Sampling Model Sample based, type Inherit: Same as
Simulink, and click on Apply to save the changes.

In the following, the program will declare the variables that are stored in the embed-
ded function during each iteration for their dimensions and initial values. zhat1 and
zhat2 are the two estimated variables at sampling time ti, which need initial values
and are assigned to zero in this program. Enter the following program into the file:
persistent zhat1
if isempty(zhat1)

zhat1=0;
end
persistent zhat2
if isempty(zhat2)

zhat2=0;
end

6. We calculate the following two constants using the parameters of the estimator. One
could calculate the parameters outside the embedded function to save memory. Enter
the following program into the file:
cz1=a*gamma1-2*xi*wn*gamma1+gamma2;
cz2=2*xi*wn;

7. Update the estimated disturbance d̂(ti). Enter the following program into the file:
dhat=zhat1+gamma1*(y-r);

8. Update the control signal by combining the proportional control with the disturbance
estimation. Enter the following program into the file:
uCur= -K1*(y-r)-dhat;
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9. Implement saturation with anti-windup mechanism. Enter the following program
into the file:

if (uCur>umax) uCur=umax;end
if (uCur<umin) uCur=umin;end

10. Calculate the ẑ1(ti+1) and ẑ2(ti+1) for the next sample. Enter the following program
into the file:
zhat1=zhat1+deltat*((-cz2*zhat1+zhat2)+cz1*(y-r)-cz2*uCur);
zhat2=zhat2+deltat*(-wn∧2*zhat1..
+(a*gamma2-wn∧2*gamma1)*(y-r)..
-(wn∧2-omega0∧2)*uCur);

This program is tested using the example presented in the next section.

5.4.5 Examples for Disturbance observer-Based Resonant Controllers

The following example is to illustrate the disturbance observer-based resonant con-
troller design.

Example 5.5 An electrical system is approximated by the following first order plus time
delay model:

G(s) = 0.3e−0.0015s

0.001s + 1
(5.57)

where the delay is used to describe the neglected time constants from the other electronic
components in the system. The control objective is for the output of the system to fol-
low a sinusoidal reference signal with frequency 𝜔0 = 2𝜋 × 50 rads−1. Design a resonant
controller and simulate the closed-loop output with sampling interval Δt = 0.00001 (s).

Solution. The resonant controller is designed using the first order model, which gives
the parameters a = 1∕0.001 = 1000 and b = 0.3∕1000 = 3000. Because the system has a
time delay that is not used in the resonant controller design, it will affect the closed-loop
stability and performance. Therefore, the proportional controller gain and the estimator
gains need to be selected with regards to the actual first order plus delay system. A good
starting point is to select the desired closed-loop pole −𝛼1 for the controller gain K1 equal
to the model pole −a, leading to

K1 =
𝛼1 − a

b
= 0.

Then, we select the parameters for the estimator to satisfy the closed-loop stability and
performance in the presence of unmodeled time delay. By choosing 𝜉 = 0.707, the parame-
ter𝑤n is used for adjusting the closed-loop response speed and robustness. The parameter
selection can be performed using both closed-loop simulation and frequency response
analysis.

One can verify that using the Simulink embedded function created in Tutorial 5.3, the
closed-loop system is unstable for the choice of 𝑤n = 1000. Reducing 𝑤n to 500 gives the
estimator gains as

𝛾1 =
2𝜉𝑤n

b
= 2.3567; 𝛾2 =

𝑤2
n − 𝜔2

0

b
= 504.3465.
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Figure 5.10 Closed-loop control response using a disturbance observer-based resonant controller
(Example 5.5,𝑤n = 500). (a) Control signal. (b) Output. Key: line (1) output response; line (2) reference
signal.
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Figure 5.11 Closed-loop control response using disturbance observer-based resonant controller
(Example 5.5, 𝛼1 = 1000,𝑤n = 300). (a) Control signal. (b) Output. Key: line (1) output response; line (2)
reference signal.

Figures 5.10 (a) and (b) show the closed-loop control signal and the output signal to a
sinusoidal reference signal with frequency 𝜔0 = 100𝜋. It is seen that the closed-loop sys-
tem is stable. However the closed-loop responses are oscillatory in the initial period of
responses evident from both the control signal and the output signal. The oscillation is
caused by the neglected time delay in the plant.

Further reduction of 𝑤n is necessary to eliminate the undesirable characteristics. With
the choice of 𝑤n = 300, the estimator gains become,

𝛾1 =
2𝜉𝑤n

b
= 1.4140; 𝛾2 =

𝑤2
n − 𝜔2

0

b
= −28.9868.

Figures 5.11(a) and (b) show the closed-loop control signal and output signal to the sinu-
soidal reference signal. It is seen that the reduction of 𝑤n has eliminated the undesired
behavior in both control signal and output signal.

Another approach to the selection of parameters 𝛼1 and 𝑤n is to make 𝛼1 = 𝑤n, which
could simplify the resonant controller tuning process. It can be verified through simulation
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Figure 5.12 Closed-loop control response using a disturbance observer-based resonant controller
(Example 5.5,𝑤n = 𝛼1 = 400). (a) Control signal. (b) Output. Key: line (1) output response; line (2)
reference signal.

studies that when 𝛼1 = 𝑤n = 600, the closed-loop system has oscillatory modes. When
the parameters 𝛼1 = 𝑤n are reduced to 400, the controller and estimator gains are calcu-
lated as

K1 =
𝛼1 − a

b
= −2; 𝛾1 =

2𝜉𝑤n

b
= 1.8853; 𝛾2 =

𝑤2
n − 𝜔2

0

b
= 204.3465.

Figures 5.12(a) and (b) show the responses of the control signal and the output signal to
the sinusoidal reference. It is seen that with this selection of performance parameters, the
closed-loop system has satisfactory responses.

One can easily analyze the effect of unmodeled dynamics using the complementary
sensitivity function together with the time delay (see Section 2.7). The nominal comple-
mentary sensitivity function is calculated using the transfer function G0(s) =

b
s+a

. If for
all 𝜔 > 0, the following condition is satisfied:

|Γ(j𝜔)| = |
G0(j𝜔)C(j𝜔)

1 + G0(j𝜔)C(j𝜔)
||(e−j𝜔d − 1)| < 1

where d = 0.0015. Then, the closed-loop system is guaranteed to be stable. Figure 5.13
compares |Γ(j𝜔)| with respect to the two choices of the resonant controller parameters. It
is seen that both closed-loop systems are robustly stable with |Γ(j𝜔)| < 1 for all 𝜔.
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Figure 5.13 |Γ(j𝜔)| (Example 5.5). Key:
line (1) 𝛼1 = 1000,𝑤n = 300; line (2)
𝑤n = 𝛼1 = 400.
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It is clear that these two approaches in selecting the parameters 𝛼1 and 𝑤n produced
quite different controller parameters although the responses to the reference signal are
similar. The question arises as how these two resonant controllers will behave in the
presence of periodic disturbances. Clearly, if the disturbance has exactly the same fre-
quency 𝜔0, then both resonant controllers will achieve the same disturbance rejection
at the steady-state operation from the sensitivity analysis in Section 2.5. However, when
the actual disturbance frequency is different from 𝜔0, there is a difference in the control
system performance. The next example will compare the closed-loop performance of
the two resonant controllers for the purpose of disturbance rejection.

Example 5.6 Continue from Example 5.5. Assuming that there is a sinusoidal input
disturbance with its frequency in the range between 1.5𝜔0 and 2𝜔0, we will evaluate the
closed-loop performance of the two resonant controllers for the objective of disturbance
rejection.

Solution. To measure how the resonant controllers will respond to disturbances in other
frequency regions, we examine the sensitivity function

S(j𝜔) = 1
1 + G(j𝜔)C(j𝜔)

where G(j𝜔) is the frequency response of the system described by transfer function (5.57)
and C(j𝜔) is the frequency response of the resonant controller described by the trans-
fer function (5.55). Figure 5.14 compares the magnitude of the sensitivity functions for
the two resonant control systems. Both sensitivity functions have a magnitude of 0 at
𝜔 = 100𝜋 from analytical solutions. For the choice of 𝛼1 = 1000 and𝑤n = 300, the sensi-
tivity function has a lower gain at all frequency regions when comparing with the second
case of𝑤n = 𝛼1 = 400. This implies that the first choice will work better for the purpose of
disturbance rejections because smaller magnitude of sensitivity function leads to a bet-
ter reduction of disturbance effect. Because the magnitude of the sensitivity function is
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Figure 5.14 Magnitude of the sensitivity function (Example 5.6). Solid line: 𝛼1 = 1000,𝑤n = 300;
dotted line:𝑤n = 𝛼1 = 400.
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Figure 5.15 Closed-loop control response using disturbance observer-based resonant controller
(Example 5.6). (a) Output (𝛼1 = 1000,𝑤n = 300). (b) Output (𝛼1 = 𝑤n = 400). Key: line (1)
𝛼1 = 1000,𝑤n = 300, line (2) 𝛼1 = 𝑤n = 400.

not zero at the disturbance frequency band (1.5𝜔0, 2𝜔0), it is not possible to completely
eliminate the disturbance with the resonant controller. To evaluate the actual closed-loop
performance, an input disturbance

di(t) = 0.6sin(1.7𝜔0t + 0.1)
is added to the Simulink simulation program used in Example 5.5 where 𝜔0 = 100𝜋 rad
s−1. The rest of the simulation parameters and conditions remains unchanged from the
previous example. Figures 5.15(a) and (b) compare the closed-loop output responses with
the two resonant controllers. It is seen that the resonant controller designed using 𝛼1 =
1000 and 𝑤n = 300 produces much better reference tracking results than the one using
𝛼1 = 𝑤n = 400. This improvement is the result of a better disturbance rejection property
when the sensitivity function has a smaller magnitude at the disturbance frequency band.

In summary, for better disturbance rejection, one should select 𝛼1 as large as possible,
then adjust the bandwidth of the estimator 𝑤n to achieve closed-loop stability and per-
formance in the presence of unmodeled time delay. We emphasize that the reason why the
periodic disturbance is not completely rejected at the steady-state is because the actual
disturbance frequency is 1.7𝜔0.

The next example is to illustrate the effectiveness of the anti-windup mechanism con-
tained in the resonant controller.

Example 5.7 Continue from Examples 5.5 and 5.6. The magnitude of the control signal
is about 4.2 in order for the closed-loop system to track the sinusoidal reference signal and
reject the sinusoidal disturbance. Assume that the physical system only allows the control
signal to vary between ±3.6, i.e.

−3.6 ≤ u(t) ≤ 3.6.
Evaluate the resonant control system in the presence of control amplitude constraints.

Solution. The MATLAB embedded function presented in Tutorial 5.3 is used with the
maximum and minimum values of the control signals specified. The rest of the simulation
conditions remains unchanged from Example 5.6.
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Figure 5.16 Closed-loop control response using disturbance observer-based resonant controller
in the presence of control signal constraints (𝛼1 = 1000,𝑤n = 300). (a) Solid line- control signal,
dashed line -control signal limits. (b) Output. Key: line (1) constrained control; line (2) unconstrained
control.

Figures 5.16(a) and (b) show the closed-loop resonant control system responses to the
sinusoidal reference signal and the sinusoidal disturbance signal. It is seen that the con-
trol signal is constrained within the limits specified and the anti-windup mechanism
works very well. Figure 5.16(b) reveals that despite the constraints imposed on the con-
trol amplitude, there is little performance loss in the output response to the reference
signal.

5.4.6 Food for Thought

1. Can you list three systems that have first order dynamics and require a resonant con-
trol system for disturbance rejection or reference following of a sinusoidal signal?

2. Is it correct that with the disturbance observer-based resonant controller, the
complementary sensitivity function has a magnitude of one at the frequency 𝜔 = 𝜔0
where 𝜔0 is the frequency of the sinusoidal reference signal or the disturbance
signal?

3. What do the closed-loop performance parameters 𝛼1 and𝑤n represent in the design
of disturbance observer-based resonant controller? If there are neglected dynamics
in the system, how would you choose them?

4. What are the key components in the disturbance observer-based-resonant controller
that lead to the anti-windup mechanism in its implementation?

5. Would you say that it is quite straightforward to implement the resonant controller
with anti-windup mechanism?

5.5 Multi-frequency Resonant Controller

In many applications, the resonant controller containing a single frequency introduced
in Section 5.4 may not be adequate to track the reference signal or reject the distur-
bance signal that contains multiple frequencies. The framework we used in the single
frequency case can be extended to multiple frequencies.
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5.5.1 Adding Integral Action to the Resonant Controller

We consider the following first order differential equation as in Section 5.4

ẏ(t) = −ay(t) + b(u(t) + d(t)) (5.58)

where a and b are the coefficients; u(t) and y(t) are the input and output signals; d(t) is
the input disturbance signal. Different from the resonant controller design, we assume
that d(t) is a combination of a sinusoidal signal with a constant. For this purpose, d(t) is
expressed as

d(t) = d1(t) + d0

where d1(t) = dm sin(𝜔0t + 𝜓0) and d0 is an unknown constant. The feedback control
law is determined as

u(t) = −K1(y(t) − r(t)) − d̂(t)

where d̂(t) is an estimate of the unknown disturbance d(t).
With the desired closed-loop pole specified at −𝛼1 and 𝛼1 > 0, the proportional feed-

back control gain K1 is given as

K1 =
𝛼1 − a

b
.

Now, we will extend the estimation algorithm presented in Section 5.4 to include the
estimation of an unknown constant. Let us choose x1(t) = d1(t) and x2(t) = ḋ1(t) and
x3(t) = d0. Note that ẋ3(t) = 0 as d0 is a constant. The following differential equations
will be used to describe the unknown disturbance d(t) with the additional state x3(t):

⎡
⎢
⎢
⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

0 1 0
−𝜔2

0 0 0
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x1(t)
x2(t)
x3(t)

⎤
⎥
⎥
⎦
. (5.59)

In order to estimate the disturbance signal d(t), from (5.58), we obtain

bd(t) = b
[
1 0 1

] ⎡⎢
⎢
⎣

x1(t)
x2(t)
x3(t)

⎤
⎥
⎥
⎦
= ẏ(t) + ay(t) − bu(t)

which is the output equation for the estimation. Thus, the estimated variables x̂1(t), x̂2(t),
x̂3(t) are expressed as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dx̂1(t)
dt

dx̂2(t)
dt

dx̂3(t)
dt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎣

0 1 0
−𝜔2

0 0 0
0 0 0

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

x̂1(t)
x̂2(t)
x̂3(t)

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎣

𝛾1
𝛾2
𝛾3

⎤
⎥
⎥
⎦

⎛
⎜
⎜
⎝
ẏ(t) + ay(t) − bu(t) − b

[
1 0 1

] ⎡⎢
⎢
⎣

x̂1(t)
x̂2(t)
x̂3(t)

⎤
⎥
⎥
⎦

⎞
⎟
⎟
⎠

(5.60)

where 𝛾1, 𝛾2 and 𝛾3 are the estimator gains chosen for the design.
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As in Section 5.4, we will choose the parameters 𝛾1, 𝛾2 and 𝛾3 such that the poles of
the error system are on the left half of the complex plane to ensure the convergence
of the estimation errors. Here, the characteristic polynomial for the error system is
computed as

det M = det
⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎣

s 0 0
0 s 0
0 0 s

⎤
⎥
⎥
⎦
−
⎡
⎢
⎢
⎣

0 1 0
−𝜔2

0 0 0
0 0 0

⎤
⎥
⎥
⎦
+
⎡
⎢
⎢
⎢
⎣

𝛾1

𝛾2

𝛾3

⎤
⎥
⎥
⎥
⎦

[
1 0 1

]
⎞
⎟
⎟
⎟
⎠

(5.61)

where 𝛾 i = b𝛾i, i = 1, 2, 3 for simplicity in the computation.
There is an analytical expression for the determinant given by (5.61), which leads to

analytical solutions for the parameters 𝛾1, 𝛾2, and 𝛾3. We firstly partition the M matrix
into a block matrix as

M =
[

M11 M12
M21 M22

]

where

M11 =

[
s + 𝛾1 −1
𝜔2

0 + 𝛾2 s

]

; M12 =

[
𝛾1

𝛾2

]

M21 =
[
𝛾3 0

]
; M22 = s + 𝛾3.

With this partition, the determinant of the block matrix becomes

det(M) = det(M11) det(M22 − M21M−1
11 M12).

Note that M11 is exactly the same as the determinant described in the estimation of the
sinusoidal signal in Section 5.4, which is

det(M11) = s2 + 𝛾1s + 𝜔2
0 + 𝛾2

and the second determinant is

det(M22 − M21M−1
11 M12) =

s3 + (𝛾1 + 𝛾3)s2 + (𝜔2
0 + 𝛾2)s + 𝛾3𝜔

2
0

s2 + 𝛾1s + 𝜔2
0 + 𝛾2

.

The characteristic polynomial for the closed-loop error system becomes

det(M) = s3 + (𝛾1 + 𝛾3)s2 + (𝜔2
0 + 𝛾2)s + 𝛾3𝜔

2
0. (5.62)

With the choice of desired characteristic polynomial for the performance specification
that consists of a pair of complex poles and a real pole having the following form: (s +
𝛼)(s2 + 2𝜉𝑤ns +𝑤2

n), we find the the coefficients 𝛾1, 𝛾2, and 𝛾3 as

𝛾3 =
𝛼𝑤2

n

𝜔2
0

𝛾1 = 2𝜉𝑤n + 𝛼 − 𝛾3;
𝛾2 = 𝑤2

n − 𝜔2
0 + 2𝜉𝑤n𝛼. (5.63)

The actual gains used in the estimation are then scaled to yield: 𝛾i =
𝛾 i

b
for i = 1, 2, 3.
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Defining ẑ1(t) = x̂1(t) − 𝛾1y(t), ẑ2(t) = x̂2(t) − 𝛾2y(t), and ẑ3(t) = x̂3(t) − 𝛾3y(t), it can
be verified that the implementation equation for the estimated disturbance becomes

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dẑ1(t)
dt

dẑ2(t)
dt

dẑ3(t)
dt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= Ω
⎡
⎢
⎢
⎣

ẑ1(t)
ẑ2(t)
ẑ3(t)

⎤
⎥
⎥
⎦
+ Ω

⎡
⎢
⎢
⎣

𝛾1
𝛾2
𝛾3

⎤
⎥
⎥
⎦

y(t) + a
⎡
⎢
⎢
⎣

𝛾1
𝛾2
𝛾3

⎤
⎥
⎥
⎦

y(t) −
⎡
⎢
⎢
⎣

𝛾1
𝛾2
𝛾3

⎤
⎥
⎥
⎦

u(t) (5.64)

where Ω is the system matrix defined as

Ω =
⎡
⎢
⎢
⎢
⎣

−𝛾1 1 −𝛾1

−𝜔2
0 − 𝛾2 0 −𝛾2

−𝛾3 0 −𝛾3

⎤
⎥
⎥
⎥
⎦

.

Ω has eigenvalues as the solutions of the characteristic equation:

(s + 𝛼)(s2 + 2𝜉𝑤ns +𝑤2
n) = 0.

Hence, the implementation of the estimator using (5.64) is a stable realization.
From the estimated ẑ1(t) and ẑ3(t), we obtain

d̂1(t) = ẑ1(t) + 𝛾1y(t); d̂0(t) = ẑ3(t) + 𝛾3y(t)

and d̂(t) = d̂1(t) + d̂0(t).

5.5.2 Adding More Periodic Components

If the system’s disturbance or reference signal has more than one pair of periodic compo-
nents, the disturbance estimator needs to be designed so to include those components.

We assume that the system is described by the differential equation (5.58). As before,
d(t) is the input disturbance signal and it is a combination of sinusoidal signals with a
constant. For this purpose, d(t) is expressed as

d(t) = d1(t) + d2(t) + d0

where d1(t) = dm1 sin(𝜔1t + 𝜓1), d2(t) = dm2 sin(𝜔2t + 𝜓2) (𝜔1 ≠ 𝜔2) and d0 is an
unknown constant.

Continuing from the design in Section 5.5.1, we choose x1(t) = d1(t), x2(t) = ḋ1(t),
x3(t) = d0, x4(t) = d2(t), and x5(t) = ḋ2(t). With the two additional states, the following
differential equation is used to describe the input disturbance d(t):

⎡
⎢
⎢
⎢
⎢
⎣

ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
−𝜔2

1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −𝜔2

2 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

⎤
⎥
⎥
⎥
⎥
⎦

. (5.65)
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To estimate the disturbance signal d(t) from the dynamic system (5.58), the disturbance
term is written as

bd(t) = b
[
1 0 1 1 0

]
⎡
⎢
⎢
⎢
⎢
⎣

x1(t)
x2(t)
x3(t)
x4(t)
x5(t)

⎤
⎥
⎥
⎥
⎥
⎦

= ẏ(t) + ay(t) − bu(t) = 𝜂(t).

The estimated variables x̂1(t), x̂2(t), x̂3(t), x̂4(t), and x̂5(t) are written as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

dx̂1(t)
dt

dx̂2(t)
dt

dx̂3(t)
dt

dx̂4(t)
dt

dx̂5(t)
dt

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

A
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎡
⎢
⎢
⎢
⎢
⎣

0 1 0 0 0
−𝜔2

1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −𝜔2

2 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂1(t)
x̂2(t)
x̂3(t)
x̂4(t)
x̂5(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

+

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝛾1

𝛾2

𝛾3

𝛾4

𝛾5

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜂(t) −

C
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

b
[
1 0 1 1 0

]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂1(t)
x̂2(t)
x̂3(t)
x̂4(t)
x̂5(t)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5.66)

where 𝛾1, 𝛾2, 𝛾3, 𝛾4, and 𝛾5 are the estimator gains chosen for the design.
To find the estimator gains, we will consider the pair of matrices, A and C. Because

of their higher dimensions, it is no longer easy to work out the analytical solutions of
the estimator gains. Instead, we can use MATLAB programs for finding the estimator’s
gain matrix. For this purpose, we define the A and C matrices as illustrated in (5.66), and
we choose five desired closed-loop poles for the error system to ensure the convergence
of the estimated variables. The MATLAB program place.m is used to compute the 𝛾i,
i = 1, 2, 3, 4, 5, illustrated as below:

Gamma=place(A',C',P)'

where P contains the five desired closed-loop poles for the error system and gamma is
the vector that contains 𝛾i, i = 1, 2, 3, 4, 5.

5.5.3 Food for Thought

1. Is it correct that in the design of disturbance observer-based resonant controller for
the multi-frequency signal, the complexity of the estimator has increased in order to
estimate the multi-frequency disturbance signal?

2. Would you say that in general a higher accuracy of the model is required for estimat-
ing more frequency components?

3. Can you devise a resonant controller scheme for the multi-frequency control so that
you can sequentially enter the periodic component one at a time?
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5.6 Summary

We have discussed the PID and resonant controller design from the angle of distur-
bance estimation. Using the disturbance observer-based approaches, the integral con-
trol or the resonant control is introduced through the estimation of an input disturbance
with the assumption that the disturbance is a constant for the integral mode or the
disturbance is a sinusoidal signal for the resonant mode. The advantages of the pro-
posed approaches include the simplified design for the controller, and perhaps even
more importantly a stable controller structure suitable for direct implementation with
an anti-windup mechanism in the event of control signal saturation. The other impor-
tant aspects of the chapter are summarized as follows.

• For a first order system with constant disturbance, the controller is a proportional
control and the estimator is based on a first order model. This is equivalent to a PI con-
troller with proportional and integral gains. The controller gain and estimator gains
are selected with independent performance specifications.

• For a second order system with constant disturbance, the controller has the functions
of proportional and derivative control, and the estimator is based on a first order
model. This is equivalent to a PID controller with proportional, integral and derivative
gains. The closed-loop performance for the controller and the estimator is specified
separately through the locations of their closed-loop poles.

• For the resonant controller design, the system is assumed to have a first order model
with input sinusoidal disturbance. The sinusoidal disturbance includes those with a
single frequency or a multi-frequency. A proportional controller is used for the con-
trol function, and an estimator that embeds the sinusoidal modes is used to estimate
the disturbance. This is equivalent to the resonant controller discussed in the previous
chapters. Because the disturbance estimation is based on a stable system, the imple-
mentation of the proposed approach is numerically sound with a naturally embedded
anti-windup mechanism if the control signal reaches its saturation limits.

For systems that have higher order dynamics, to use the design approaches proposed
in this chapter, model order reduction is required.

5.7 Further Reading

1. A book is devoted to disturbance observer-based linear and nonlinear control sys-
tems (Li et al. (2014)). A survey is presented in Chen et al. (2016). The same research
group has also worked on various topics of disturbance observer in control systems
(Li et al. (2012), Yang et al. (2012)).

2. The early work on motion control using disturbance observer includes Komada et al.
(1991). Disturbance observer is used for rigid mechanical systems in Schrijver and
van Dijk (2002) and for robotic manipulator in Chen et al. (2000). Controller design
for disturbance rejection is proposed using disturbance observer with estimation of
frequency in Jia (2009). Stability and robust performance of motion control using
disturbance observer is analyzed in Sariyildiz and Ohnishi (2015).

3. PID control and active disturbance rejection are introduced in Han (2009).
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4. H∞ control is compared with disturbance observer-based control methods in Mita
et al. (1998).

5. Disturbance rejection in dual-stage feed drive control system is discussed in She et al.
(2011).

6. A recent survey is presented for disturbance estimation and attenuation in PMSM
drives (Yang et al. (2017)) using the framework of disturbance observer.

7. The disturbance observer-based resonant controller is used to control a single phase
voltage converter with experimental validation in McNabb et al. (2017).

Problems

5.1 Use the disturbance observer-based approach to design and implement a PI con-
troller for the following systems:

G(s) = 1
(s + 1)(s + 10)

G(s) = 2e−0.5s

(s + 0.1)(s + 10)2

G(s) = 0.5e−2s

(s + 0.01)(s + 1)3

1. Find the approximate first order model GA(s) =
b

s+a
by neglecting the rela-

tively small time constant(s) and small time delay while maintaining the same
steady-state gain.

2. Choose the desired closed-loop pole for the proportional controller K1 as −2a
where a is the dominant pole for the system while the pole for the estimator is
−3a to obtain the estimator gain K2.

3. Compute the frequency responses of the controller C(j𝜔), the sensitivity func-
tion S(j𝜔), the input disturbance sensitivity function Si(j𝜔) and the comple-
mentary sensitivity function T(j𝜔). You can adjust the desired closed-loop
poles for the controller and estimator, and observe their effects on the sensi-
tivity functions.

4. Evaluate the closed-loop stability by using Nyquist diagram. If the closed-loop
system is unstable, adjust the controller pole and the estimator pole to achieve
stable closed-loop system.

5. Evaluate the robust stability condition for all 𝜔 > 0:

|T(j𝜔)||ΔGm(j𝜔)| < 1

6. What are your observations from the Nyquist diagram and robust stability
condition? What can we do to improve the robustness of the closed-loop
system?

7. Build the MATLAB real-time function PIEstim.slx by following Tutorial 5.1
and simulate the closed-loop step response and input disturbance rejection.
We choose sampling interval Δt = 0.001 and set the constraints on the control
amplitude to be sufficiently large. A unit step reference signal is used in the
simulation studies where a step input disturbance with amplitude of−1 enters
the simulation at half of the simulation time.
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8. Evaluate the effect of constraints on the control signal where the constraint
parameters umax and umin are chosen to be 85 percent of the control signal’s
maximum amplitude from the previous step.

9. What are your observations from the constrained control simulations?

5.2 Use the disturbance observer-based approach to design a PID controller for the
following systems:

G(s) = 2
(s − 1)(s + 1)

G(s) = 3
s2

G(s) = 1
s2 + 0.1s + 3

1. Choose the desired closed-loop characteristic polynomial for the proportional
plus derivative controller as s2 + 2𝜉𝑤ns +𝑤2

n where 𝜉 = 0.707 and 𝑤n = 3,
while the pole for the estimator is −4 to obtain the estimator gain K3.

2. Build the MATLAB real-time function PIDEstim.slx by following Tutorial 5.2
and simulate the closed-loop step response and input disturbance rejection
with the sampling interval Δt = 0.001 where the constraints on the control
amplitude are set to be sufficiently large. In the simulations, the derivative
filter time constant 𝜏f = 0.1𝜏D. The reference signal is a unit step signal and
the input disturbance signal has amplitude of −2 that enters the simulation
at half of the simulation time.

3. Evaluate the effect of constraints on the control signal where the constraint
parameters umax and umin are chosen to be 85 percent of the control signal’s
maximum amplitude from the previous step.

4. What are your observations from the constrained control simulations?

5.3 Consider the disturbance observer-based PID controller design for the three sys-
tems introduced in Problem 5.2. All the other conditions remain the same except
designing the Proportional and Derivative controller with filter (see Section 3.4.1),
where the filter time constant is considered in the process. The additional pole for
the PD controller is chosen to be −2𝑤n.

1. What are your observations on the PD controller parameters in comparison
with those obtained from Problem 5.2?

2. Repeat the simulation studies with constraints as described in Problem 5.2 and
compare the simulation results with those obtained from Problem 5.2. What
are your observations?

5.4 It is ideal to incorporate the derivative filter in the PID controller design and anal-
ysis. From Section 5.3, inclusion of the derivative filter 𝜏f will change the transfer
function of the PID controller presented in (5.39). Find the PID controller transfer
function

C(s) =
c2s2 + c1s + c0

s(s + l0)
that is equivalent to the disturbance observer-based PID controller.
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5.5 Equation (5.18) reveals that the disturbance observer-based PI control is equiv-
alent to computing the disturbance transfer function using the input and output
signal:

D̂(s) =
𝛼2

s + 𝛼2

s + a
b

Y (s) −
𝛼2

s + 𝛼2
U(s) (5.67)

which is, in essence, the inversion of the plant model together with a first order
stable filter with unity steady-state gain for implementation, which is the essential
component for disturbance observer-based approach (Li et al. (2014)).

1. Propose a discretization scheme for the disturbance estimation based on
(5.67).

2. Draw a closed-loop feedback diagram with limits on the control signal ampli-
tude. Does this implementation incorporate the anti-windup mechanism?

5.6 Equation (5.34) shows that the disturbance observer-based PID controller is equiv-
alent to accessing the disturbance information with the following transfer function
form:

D̂(s) =
𝛼3

s + 𝛼3

s2 + a1s + a0

b
Y (s) −

𝛼3

s + 𝛼3
U(s) (5.68)

which is the inversion of the plant model with first order filter that has a unity
steady-state gain.

1. Propose a discretization scheme for computing the estimated disturbance
based on the transfer function (5.68) with an additional first order filter so to
make it realizable.

2. Draw the closed-loop diagram with control signal constraints.

5.7 From Problem 5.6, if the plant model has the following transfer function

G(s) =
b1s + b0

s2 + a1s + a0

where b1 ≠ 0, b1 and b0 have the same sign, meaning a stable zero.
1. Express the D̂(s) in terms of the inversion of the new plant model.
2. Will this stable zero result in slow disturbance rejection if |b1| >> |b0| or if

|b1| << |b0|?
3. Verify your answer by examining the input disturbance sensitivity function

Si(s) for both cases.

5.8 Consider the following systems with the given frequency 𝜔0 for a resonant con-
troller design:

G(s) = 0.3e−0.01s

s + 2
, 𝜔0 = 0.5;

G(s) = 1
(s + 1)(s + 10)

, 𝜔0 = 0.3;

G(s) = 2
(s + 0.5)(s + 10)2 , 𝜔0 = 0.1
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1. Design the resonant controller based on a first order model b
s+a

by neglecting
either the small time delay or small time constant (s), where the proportional
controller pole is selected as −2a and the desired closed-loop characteristic
polynomial for the estimator as (s +𝑤n)2 with 𝑤n = 3a.

2. Calculate the frequency response of the complementary sensitivity function
T(j𝜔) and the multiplicative modelling error ΔGm(j𝜔) and check if the robust
stability condition, for all 𝜔 > 0:

|T(j𝜔)||ΔGm(j𝜔)| < 1

is satisfied. If not, reduce the parameter 𝑤n until it is satisfied.
3. Build the MATLAB real-time function ResEstim.slx by following Tutorial 5.3

and simulate the closed-loop response to a sinusoidal reference signal
r(t) = sin(𝜔0t), where Δt = 0.001.

4. Add a sinusoidal input disturbance di = 3 cos(𝜔0t) at half of the simulation
time and simulate the disturbance rejection of the closed-loop system.

5. In order to evaluate the anti-windup mechanism, you may choose the control
signal limits umax and umin based on 85 percent of the maximum and mini-
mum of the control signal in transient response.

5.9 In many applications, tracking of a ramp reference signal is required. The distur-
bance observer-based resonant controller introduced in Section 5.4 can be mod-
ified to track a ramp reference signal by assuming the frequency 𝜔0 = 0. Assume
that a given first order system is described by the following transfer function model:

G(s) = 0.3
s + 1

1. Modify the disturbance observer-based resonant controller to track a ramp
input signal;

2. Find the proportional controller gain K1 by positioning the desired closed-loop
pole at −2, and find the estimator gains 𝛾1 and 𝛾2 by choosing the desired
closed-loop characteristic polynomial as s2 + 2𝜉𝑤ns +𝑤2

n, where 𝜉 = 1 and
𝑤n = 2.

3. Use final value theorem to show that indeed this disturbance observer-based
control system will track a ramp reference signal without steady-state error.

4. With the reference signal as 0.5t, simulate the closed-loop response using
the MATLAB real-time function ResEstim.slx where the sampling interval
Δt = 0.01.

5.10 Consider the following first order system:

G(s) = 300
s + 100

Design a resonant controller that will follow a reference signal r(t) = 10 + sin t,
and reject an input disturbance di(t) = cos 3t, where all desired closed-loop poles
for both the controller and the estimator are positioned at −200.
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5.11 One application for the resonant controller is in the area of a single phase AC
current regulator. The objective is to accurately track a sinusoidal reference signal
with a frequency that matches the power grid.
The dynamic model for a single phase Voltage Source Inverter (VSI) coupled to a
back electromotive force with an inductive-resistive filter network is expressed as

di(t)
dt

= −R
L

i(t) + 1
L
(𝑣(t) − 𝜖g(t)) (5.69)

where i(t) is the output current from the inverter, 𝑣(t) is the input variable that
is the pulse width modulated (PWM) switched voltage from the VSI, and 𝜖g(t) is
the back EMF voltage that is naturally a sinusoid with a nominal frequency 𝜔0.
The parameter R is the resistance and L is the inductance, associated with the
inductive-resistive filter network.
The control signal 𝑣(t) equals to the multiplication of a modulation signal m(t)
with the inverter DC link voltage Vdc:

𝑣(t) = m(t)Vdc (5.70)

In the mathematical model of a single phase Voltage Source Inverter as in McNabb
et al. (2017), the physical parameters are Vdc = 200V , L = 12 × 10−3H, R = 1Ω.
The back EMF voltage is described by 𝜖g = 130VRMS and 50Hz (𝜔0 = 100𝜋).

1. Design a resonant controller for the single phase Voltage source inverter, where
𝜔0 = 100𝜋. The closed-loop performance specifications are considered for the
following two cases.
(a) The feedback controller gain K1 is selected such that the closed-loop control

system pole is equal to the open-loop system pole. The parameters for the
estimator are 𝑤n = 200𝜋 and 𝜉 = 0.707.

(b) The feedback controller gain K1 is selected such that the closed-loop con-
trol system pole is twice of the open-loop system pole in magnitude. The
parameters for the estimator are 𝑤n = 100𝜋 and 𝜉 = 0.707.

2. Compare the sensitivity function |S(j𝜔)| and the complementary sensitivity
function |T(j𝜔)| for the two cases. Determine the maximum time delay that
the resonant control systems can tolerate. What are our observations? (Hint:
the multiplicative modelling error is ΔGm(j𝜔) = 1 − e−jd𝜔 for neglected time
delay d).

3. Choosing sampling interval Δt = 0.0001 (sec), simulate the closed-loop
response to reference following and disturbance rejection, in which the
reference signal is r(t) = 3 cos(𝜔0t) and the disturbance is 𝜖g = 130 cos(𝜔0t).
In the simulation model, the control signal is 𝑣(t) for simplification.

4. Impose the constraints on the amplitude of 𝑣(t), where the maximum and min-
imum of the control signal are chosen to be 85 percent of the unconstrained
control cases in transient responses.

5. Discuss the closed-loop control performances with respect to the two desired
closed-loop performance specifications.
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6

PID Control of Nonlinear Systems

6.1 Introduction

One of the approaches to obtain the models for the control system design is based on
analysis of the system dynamics using first principles, such as mass balance, Newton’s
laws, current law and voltage law. The majority of these types of models are nonlinear
in nature. Thus, in order to use them for the PID controller design or other linear time
invariant controller design, these nonlinear models need to be linearized around the
operating conditions of the system.

This chapter will introduce linearization of nonlinear models through several
examples and case studies. It will also show how to apply the PID controllers to a
nonlinear plant using the technique called gain scheduled control.

6.2 Linearization of the Nonlinear Model

The starting point of designing a PID controller for a nonlinear plant is to obtain a linear
time invariant model through linearization around the chosen operating conditions of
the system.

6.2.1 Approximation of a Nonlinear Function

Assume that the nonlinear models have the general form:

ẋ(t) = f [x(t),u(t), t] (6.1)

where f [⋅] is a nonlinear function. The purpose of linearization is to find a linear function
(a set of linear functions) to describe the dynamics of the nonlinear model at a given
operating condition.

In order to understand how the linearization is performed, we first examine the case
of linearization of a nonlinear function. It begins with a Taylor series expansion and
approximation of a nonlinear function. As we know, a function with variable x, f (x) can
be expressed in terms of a Taylor series expansion at x = x0, where x0 is a constant, as

f (x) = f (x0) +
df (x)

dx
|x=x0(x − x0) + 1

2!
d2f (x)

dx2 |x=x0(x − x0)2 +… (6.2)

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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if the function f (x) is smooth and its derivatives exist for all the orders. All the derivatives
are evaluated at x = x0.

Using the first two terms in the Taylor series expansion leads to the approximation of
the original function f (x) at a specific point x0,

f (x) ≈ f (x0) +
df (x)

dx
|x=x0(x − x0). (6.3)

This first order Taylor series approximates the original nonlinear function f (x) using the
function evaluated at x0 and its first derivative at x = x0. The approximation holds in
the vicinity of x = x0. Figure 6.1 illustrates an example of a linear approximation of a
nonlinear function where x0 = 5.3, f (x0) = 140 and df (x)

dx
|x=x0 = 85. It is seen that within

the region where x is close to x0, f (x) is closely approximated by the first order Taylor
series expansion (6.3). Intuitively, we can think of the original variable x as a “large”
variable because it covers a large region, and the perturbed variable x − x0 as a “small”
variable because it covers a small region around x0.

If the nonlinear function f (x) contains n variables, meaning that x =
[
x1 x2 … xn

]T is
a vector with dimension n, then the function is approximated using the first n + 1 terms
in the multi-variable Taylor series expansion as

f (x1, x2, x3,… , xn) ≈ f (x0
1, x

0
2, x

0
3,… , x0

n) +
𝜕f (x)
𝜕x1

|||||x1=x0
1,x2=x0

2,…

(x1 − x0
1)

+
𝜕f (x)
𝜕x2

|||||x1=x0
1,x2=x0

2,…

(x2 − x0
2) +… +

𝜕f (x)
𝜕xn

|||||x1=x0
1,x2=x0

2,…

(xn − x0
n). (6.4)

Note that we need the partial derivatives of the nonlinear function against all its
variables. Similar to the single variable case, the multi-variable Taylor series expansion
consists of the constant term that is the nonlinear function evaluated at x0

1, x
0
2, ,… , x0

n,
followed by the partial derivatives with perturbations x1 − x0

1, x2 − x0
2, ,… , xn − x0

n.
Furthermore, the first order Taylor series expansion approximates well the original
nonlinear function if the variables x1, x2, ,… , xn are in the vicinities of x0

1, x
0
2,… , x0

n.

x
3 4 5 6 7

f(
x)

0
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100
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200
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350 Figure 6.1 Approximation of a
nonlinear function at x0 = 5.3.
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6.2.2 Linearization of nonlinear differential equations

The nonlinear models obtained from using first principles of the physical laws are dif-
ferential equations. We assume that the nonlinear differential equation used to describe
a physical system takes the general form:

ẋ(t) = f (x(t),u(t), t) (6.5)
where x(t) is a vector that represents the state variables of dimension n and u(t) is a
vector for the control signals of dimension m.

In linearization of a nonlinear dynamic system, we will firstly choose the constant
vectors x0 =

[
x0

1 x0
2 … x0

n
]T and u0 =

[
u0

1 u0
2 … u0

m
]T , and apply the linearization pro-

cedure of the nonlinear functions as outlined in the previous section. We may write the
final results in matrix and vector forms.

The constant vectors x0 and u0 play an important role in the linearized model. To make
the linearized system truly linear, these vectors need to be selected carefully. The point
of interest is called an equilibrium point for the nonlinear dynamic system (6.5), which
was originated from nonlinear control (see Bay (1999)). These equilibrium points in con-
trol system design and implementation are often referred to as stationary points, which
represent a steady-state solution to the dynamic equation (6.5). In general terms, an
equilibrium point is defined by a constant vector xe such that if x(t0) = xe, u(t) = 0, then
x(t) = xe.

Since an equilibrium point is a constant vector, the nonlinear differential
equation (6.5) satisfies the following relationship:

ẋ(t) = f (xe, 0, t) = 0. (6.6)
The concept of equilibrium points is extended to constant vectors x0 and u0 such that
the following steady-state solution of the nonlinear differential equation (6.5) is true:

ẋ(t) = f (x0,u0) = 0. (6.7)
These constant vectors are not dependent on time; however, they are allowed to vary
as desired trajectories. In fact, they correspond to the steady-state values of the sys-
tem that have been discussed previously in the PID control system implementation (see
Chapter 4).

In control applications, it is often to choose the desired values for the state variables
x0, and solve the nonlinear algebraic equation given by (6.7) to determine the constant
vector u0. However, because of the uncertainty associated with the physical parame-
ters and unknown disturbances, the characterization of the operating conditions of the
system by the pair x0 and u0 could be quite inaccurate and far from reality.

The shortcoming caused by the inaccuracy of steady-state parameters can be over-
come by the action of an integrator contained in the controller as the discrepancy is
modeled as a constant input disturbance to the system. The integral action will auto-
matically adjust the steady-state value of the input signal to achieve zero steady-state
error in the output signal.

6.2.3 Case Study: Linearization of the Coupled Tank Model

Two cubic water tanks are connected in series as illustrated in Figure 6.2. Water flows
into the first tank and flows out from the second tank. A pump controls the water in-flow
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A Bfab

L1 L2

u1

u2

Pump 1

Pump 2

Figure 6.2 Schematic of a double
tank.

rate u1(t) (m3 s−1) to the first tank; and another pump controls the water out-flow rate
u2(t) (m3 s−1) from the second tank. Water flows from tank A to tank B, with a flow rate
fab(t). The unit for the flow rate is m3 s−1 and the unit for the water level is m.

Using mass balance, the rate of change of water volume V1(t) in tank A is
dV1(t)

dt
= u1(t) − fab(t). (6.8)

The water volume can also be expressed as V1(t) = S1L1(t), where S1 is the cross-
sectional area of the tank A, and L1(t) is the water level in tank A. The dynamic equation
to describe the rate of change in the water level L1(t) (tank A) is

S1
dL1(t)

dt
= u1(t) − fab(t). (6.9)

Likewise, the rate of change in the water level L2(t) is

S2
dL2(t)

dt
= fab(t) − u2(t) (6.10)

where S2 is the cross-sectional area for tank B. For a small orifice with a cross-sectional
area as (m2), fab(t) is linked to the tank levels L1(t) and L2(t) by the following relationship:

fab(t) = as
√

2g(L1(t) − L2(t)) (6.11)

where g is acceleration due to gravity (= 9.81 m s−2); fab is the flow rate (m3 s−1).
By substituting (6.11) into (6.9) and (6.10), we obtain

dL1(t)
dt

= −
as

S1

√
2g(L1(t) − L2(t)) +

1
S1

u1(t) (6.12)

dL2(t)
dt

=
as

S2

√
2g(L1(t) − L2(t)) −

1
S2

u2(t). (6.13)

Both of these models are nonlinear.

Example 6.1 Find the linearized models for the water tanks and discuss possible oper-
ating conditions and how they affect the linearized models.

Solution. In the linearization, the independent variables are L1(t), L2(t), u1(t), and u2(t).
We will linearize the two equations (6.12) and (6.13) separately in terms of those indepen-
dent variables. We let L0

1 and L0
2 denote the operating points for the tanks. The coefficients

𝛾1 = as
√

2g
S1

and 𝛾2 = as
√

2g
S2

are used to simplify the notations in both (6.12) and (6.13).
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The first term in (6.12) is approximated by the first order Taylor series expansion as

𝛾1
√

L1(t) − L2(t) ≈ 𝛾1

√
L0

1 − L0
2 + 𝛾1

𝜕(
√

L1(t) − L2(t))
𝜕L1

|L0
1,L

0
2
(L1(t) − L0

1)

+ 𝛾1
𝜕(
√

L1(t) − L2(t))
𝜕L2

|L0
1,L

0
2
(L2(t) − L0

2). (6.14)

Note that

𝜕(
√

L1(t) − L2(t))
𝜕L1

|L0
1, L0

2
= 1

2
1

√
L0

1 − L0
2

(6.15)

𝜕(
√

L1(t) − L2(t))
𝜕L2

|L0
1, L0

2
= −1

2
1

√
L0

1 − L0
2

. (6.16)

Therefore, (6.14) is written as

𝛾1
√

L1(t) − L2(t) = 𝛾1

√
L0

1 − L0
2 +

𝛾1

2
1

√
L0

1 − L0
2

(L1(t) − L0
1)

−
𝛾1

2
1

√
L0

1 − L0
2

(L2(t) − L0
2). (6.17)

The second term in the differential equation (6.12) is already linear in relation to u1(t),
therefore, we keep it unchanged. By substituting the Taylor series approximation (6.17)
into the differential equation (6.12), we obtain the linearized model for water tank A (do
not forget that there is a negative sign):

dL1(t)
dt

= −𝛾1

√
L0

1 − L0
2 −

𝛾1

2
1

√
L0

1 − L0
2

(L1(t) − L0
1)

+
𝛾1

2
1

√
L0

1 − L0
2

(L2(t) − L0
2) +

1
S1

u1(t). (6.18)

Firstly, we notice that in order for the linearization to be valid, the operating points L0
1 >

L0
2. Secondly, the first term is a constant that is not zero because L0

1 ≠ L0
2. We can choose

the steady-state value of u1(t) according to this constant. For this purpose, we re-write
(6.18) as

dL1(t)
dt

= −
𝛾1

2
1

√
L0

1 − L0
2

(L1(t) − L0
1)

+
𝛾1

2
1

√
L0

1 − L0
2

(L2(t) − L0
2) +

1
S1

(
u1(t) − S1𝛾1

√
L0

1 − L0
2

)
. (6.19)

To find the small signal model for tank A, we define the deviation variables as

L̃1(t) = L1(t) − L0
1; L̃2(t) = L2(t) − L0

2; ũ1(t) = u1(t) − S1𝛾1

√
L0

1 − L0
2.
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This leads to the linearized model for tank A as

dL̃1(t)
dt

= −
𝛾1

2
1

√
L0

1 − L0
2

L̃1(t) +
𝛾1

2
1

√
L0

1 − L0
2

L̃2(t) +
1
S1

ũ1(t). (6.20)

Note that the steady-state value of the control signal S1𝛾1

√
L0

1 − L0
2 is a function of the

system parameters S1, 𝛾1. If there are errors in these parameters, then there is an error in
the steady-state value of the control signal. This error could be modelled as an input dis-
turbance that can be estimated using the estimator based PID controller (see Chapter 5).

The linearization of the nonlinear model for the tank B follows the same steps, and we
leave the details as an exercise.

6.2.4 Case Study: Linearization of the Induction Motor Model

From the literature, several standard models of induction motor are available to use for
control system design (Quang and Dittrich (2008), Wang et al. (2015)). Among them is
a mathematical model with four differential equations in direct-quadrature (dq) coordi-
nation, which is originated from the field oriented control theory (Quang and Dittrich
(2008), Wang et al. (2015)). When the parasitic effect such as eddy currents, magnetic
field saturation are neglected, the dynamic model of an induction motor is governed by
the following differential equations (Wang et al. (2015)):

isd(t) + 𝜏 ′𝜎
disd(t)

dt
= 𝜏 ′𝜎𝜔s(t)isq(t) +

kr

r𝜎𝜏r
𝜓rd(t) +

1
r𝜎

usd(t) (6.21)

isq(t) + 𝜏 ′𝜎
disq(t)

dt
= −𝜏 ′𝜎𝜔s(t)isd(t) −

kr

r𝜎
𝜔(t)𝜓rd(t) +

1
r𝜎

usq(t) (6.22)

𝜓rd(t) + 𝜏r
d𝜓rd(t)

dt
= Lhisd(t) (6.23)

fd𝜔(t) + JE
d𝜔(t)

dt
=

3ZpLh

2Lr
isq(t)𝜓rd(t) − TL(t) (6.24)

𝜔s(t) = 𝜔(t) +
Lhisq(t)
𝜏r𝜓rd(t)

(6.25)

where isd(t) and isq(t) are the stator currents in the dq coordination, 𝜓rd(t) is the rotor
flux in the d-axis and the input variables usd(t) and usq(t) represent the stator voltages in
the dq coordination. 𝜔s(t) and 𝜔(t) are the synchronous and rotor velocity respectively.
TL(t) is the load torque that might change with respect to time. The rest of the parame-
ters are physical parameters with descriptions in Wang et al. (2015). For example, Rs and
Ls are the stator resistance and inductance, Rr and Lr are the rotor resistance and induc-
tance, Lh is the mutual machine inductance; fd is the friction coefficient, JE is the inertia
constant and Zp is the number of pole pairs. The manipulated variables in the induction
motor control problem are the stator voltages, usd(t) and usq(t), and the output variables
are the rotor velocity 𝜔(t) and the rotor flux in the d-axis, 𝜓rd(t).

In the above model, there are four bilinear terms contained in (6.21)–(6.24). However,
because the synchronous velocity 𝜔s(t) is not a state variable, it needs to be replaced by
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the slip equation (6.25), which leads to the following nonlinear terms:

𝜔s(t)isq(t) = 𝜔(t)isq(t) +
Lh

𝜏r

i2
sq(t)
𝜓rd(t)

(6.26)

𝜔s(t)isd(t) = 𝜔(t)isd(t) +
Lh

𝜏r

isq(t)isd(t)
𝜓rd(t)

. (6.27)

By pre-defining operating conditions and the steady-state parameters,𝜔0
s ,𝜔0, i0

sq, i0
sd,𝜓0

rd,
the nonlinear terms are approximated using a first order Taylor series expansion around
the steady-state parameters. In particular, the following approximations are used in the
derivation of the linearized model,

𝜔(t)isq(t) ≈ 𝜔0i0
sq + i0

sq(𝜔(t) − 𝜔0) + 𝜔0(isq(t) − i0
sq) (6.28)

𝜔(t)isd(t) ≈ 𝜔0i0
sd + i0

sd(𝜔(t) − 𝜔
0) + 𝜔0(isd(t) − i0

sd) (6.29)
𝜔(t)𝜓rd(t) ≈ 𝜔0𝜓0

rd + 𝜓
0
rd(𝜔(t) − 𝜔

0) + 𝜔0(𝜓rd(t) − 𝜓0
rd) (6.30)

isq(t)𝜓rd(t) ≈ i0
sq𝜓

0
rd + 𝜓

0
rd(isq(t) − i0

sq) + i0
sq(𝜓rd(t) − 𝜓0

rd) (6.31)
i2
sq(t)
𝜓rd(t)

≈ i0
sq𝜓

0
rd +

2i0
sq

𝜓0
rd

(isq(t) − i0
sq) −

(i0
sq)2

(𝜓0
rd)2

(𝜓rd(t) − 𝜓0
rd) (6.32)

isq(t)isd(t)
𝜓rd(t)

≈
i0
sqi0

sd

𝜓0
rd

+
i0
sq

𝜓0
rd

(isd(t) − i0
sd) −

i0
sqi0

sd

(𝜓0
rd)2

(𝜓rd(t) − 𝜓0
rd)

+
i0
sd

𝜓0
rd

(isq(t) − i0
sq). (6.33)

Although the variables 𝜔(t), isq(t), isd(t), 𝜓rd(t) are the actual physical variables, not
the deviation variables, the approximation relations are only valid in the vicinity of
the steady-state conditions as they are based on a Taylor series expansion. From
(6.28)–(6.33), it is seen that information about the steady-state values of 𝜔0, i0

sd, i0
sq, and

𝜓0
rd is required to obtain the parameters for the linearized terms. Since the output vari-

ables are 𝜔(t) and 𝜓rd, the steady-state parameters for these variables will be chosen to
be equal to their desired reference signals. In particular, in the application of induction
motor control, the reference signal to rotor flux is often fixed as a constant with its
value dependent on the operating speed and load condition of the induction motor.
For instance, the reference signal for 𝜓rd is recommended to be 0.35 Wb for the energy
efficient at the rated speed and load-free operating condition. The reference signal to
the rotor velocity 𝜔(t) changes according to operating conditions. Therefore, the steady
state conditions for 𝜓0

rd and 𝜔0 are first determined according to the operating condi-
tions of the induction motor. Next, from (6.23), by letting d𝜓rd(t)

dt
= 0, the steady-state

solution of i0
sd is determined via the steady-state calculation, i0

sd = 1
Lh
𝜓0

rd. Furthermore,
by letting d𝜔(t)

dt
= 0, the steady-state operating condition for isq is calculated using (6.24)

together with the linear approximation (6.31),

i0
sq =

2Lr

3ZpLh𝜓
0
rd

(fd𝜔
0 + T0

L). (6.34)

With all the steady-state operating parameters defined, the next step is to substitute
(6.28)–(6.33) into (6.21)–(6.25) in order to obtain the linear time-invariant (LTI) model



�

� �

�

186 6 PID Control of Nonlinear Systems

that is valid at the operating condition specified by the steady-state parameters 𝜔0, i0
sq,

i0
sd, 𝜓0

rd. By gathering all the appropriate terms, it can be verified that the linear model
has the form,

dx(t)
dt

= Ax(t) + Bu(t) + 𝜇0 (6.35)

where x(t) = [isd(t) − i0
sd isq(t) − i0

sq 𝜓rd(t) − 𝜓0
rd 𝜔(t) − 𝜔

0]T , u(t) = [usd(t) − u0
sd usq(t)

−u0
sq]T , and with the coefficient 𝜅t =

3ZpLh

2LrJE
, the matrices A and B are defined as

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− 1
𝜏 ′𝜎

𝜔0 +
2Lh

𝜏r

i0
sq

𝜓0
rd

kr

r𝜎𝜏r𝜏
′
𝜎

−
Lh

𝜏r

(i0
sq)2

(𝜓0
rd)2

i0
sq

−𝜔0 −
Lh

𝜏r

i0
sq

𝜓0
rd

− 1
𝜏 ′𝜎

−
Lh

𝜏r

i0
sd

𝜓0
rd

−
kr

r𝜎𝜏 ′𝜎
𝜔0 +

Lh

𝜏r

i0
sqi0

sd

(𝜓0
rd)2

−
kr

r𝜎𝜏 ′𝜎
𝜓0

rd − i0
sd

Lh

𝜏r
0 − 1

𝜏r
0

0 𝜅t𝜓
0
rd 𝜅ti0

sq −
fd

JE

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

B =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
r𝜎𝜏 ′𝜎

0

0 1
r𝜎𝜏 ′𝜎

0 0

0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

The constant vector 𝜇0 represents uncertainties associated with the physical parameters
and the variations of the steady-state parameters. It is seen that the uncertainties are
captured as input constant disturbances to the system.

6.2.5 Food for Thought

1. Would you say that the first order Taylor series expansion underpins the linearization
of nonlinear models?

2. Would you want to a use second order Taylor series expansion to improve the accu-
racy of approximation?

3. For the linear models derived from the double water tank system, what are the actual
physical variables that are directly measured? What are the deviation variables we
created?

4. Is it a good strategy to choose the steady-state values of a nonlinear system according
to the reference signals to the closed-loop control system?

5. Would it be possible to find the steady-state values by solving the nonlinear dynamic
equations, which can be achieved by building a Simulink program?

6. For a complex system, would you consider using experimental tests to find the actual
operating conditions through steady-state experiments?
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6.3 Case Study: Ball and Plate Balancing System

This section is based on a final year project performed by Mr John Lee (see Lee (2013)),
who was previously a fourth year electrical engineering student at RMIT University,
Australia. As part of the project, a prototype of a ball and plate balancing system was
built and PID control systems were designed for this self-made system. More impor-
tantly, they were successfully implemented with experimental results. Details for this
project can be found in Lee (2013).

6.3.1 Dynamics of the Ball and Plate Balancing System

A ball and plate balancing system is illustrated in Figure 6.3, which consists of a ball and
a rigid plate together with a set of actuators, sensors, and a controller. The position of
the ball on the top of the plate is controlled by manipulating the inclination of the plate
about its x- and y-axes.

The system has four variables to be controlled. The first pair corresponds to the incli-
nation of the plate in the x- and y-axes captured by the angles of the plate 𝜃x and 𝜃y
from the x- and y-axes, and the second pair corresponds to the position of the ball in
the x- and y-axes denoted by x and y. Two DC motor drivers are used to control the sys-
tem. The relationship between the motor torque forces and the inclination of the plate
is described by the following two differential equations:

(Jp + Jb + mx2)�̈�x + 2mxẋ�̇�x + mxy�̈�y + mẋy�̇�y + mxẏ�̇�y

+ mgx cos(𝜃x) = 𝜏x (6.36)

(Jp + Jb + my2)�̈�y + 2myẏ�̇�y + mxy�̈�x + mẋy�̇�x + mxẏ�̇�x

+ mgy cos(𝜃y) = 𝜏y (6.37)

where Jp and Jb are the mass moment of inertia of the plate and the ball respectively, m
is the mass of the ball and g is the gravity constant (g = 9.8 m s−2). The variables 𝜏x and
𝜏y are the torque forces in the x and y directions.

The movement of the ball on the plate is described the following two equations:
(

m +
Jb

R2

)
ẍ − mx(�̇�x)2 − my�̇�x�̇�y = −mg sin(𝜃x) (6.38)

(
m +

Jb

R2

)
ÿ − my(�̇�y)2 − mx�̇�x�̇�y = −mg sin(𝜃y) (6.39)

where R is the radius of the ball.

Figure 6.3 Schematic of the ball and plate balancing
system.
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In the control system implementation, a touch screen is used as the sensor to measure
the ball’s position on the plate. As a result, a heavy ball is used, which gives the inertial
parameter Jb as

Jb = 2
5

mR2.

Thus, the plate dynamic equations are re-written as
7m
5

ẍ − mx(�̇�x)2 − my�̇�x�̇�y = −mg sin(𝜃x) (6.40)

7m
5

ÿ − my(�̇�y)2 − mx�̇�x�̇�y = −mg sin(𝜃y). (6.41)

Clearly the equations (6.36) and (6.37) describe the actuator dynamics, which have
severe nonlinearities, and the equations (6.40) and (6.41) describe the position outputs
x and y in relation to the input variables 𝜃x and 𝜃y. From these two sets of equations, it
is apparent that cascade control systems (see Chapter 7) should be deployed to control
the actuators and the plant, respectively.

However, because in the control system implementation two DC motors are used
as the actuators with their angular positions under control from the manufacturer,
the dynamics from the actuators are neglected and, instead, steady-state relationships
between the angular positions of the DC motors and the inclination of the plate
(governed by 𝜃x and 𝜃y) are found. With this simplification, the control system design
focuses on the dynamics of the plate as described by (6.40) and (6.41) where the
inputs are 𝜃x and 𝜃y, and the outputs are the positions of the ball governed by x and y
coordinates.

6.3.2 Linearization of the Nonlinear Model

The next step in the control system design is to derive the linear models for the nonlinear
dynamic system. The operating conditions for the ball and plate balancing system are
defined as follows.

1. At the equilibrium, the ball is stable at the center of the plate, which is x0 = 0 and
y0 = 0.

2. The angle of the plate is zero in both x- and y-axes, which is translated to 𝜃0
x = 𝜃0

y = 0.
3. The angle of the plate is not changing, which leads to �̇�0

x = �̇�0
y = 0.

To obtain the linear model for (6.40), we consider the linearization procedure term
by term.

The first term in (6.40) is linear by itself and does not require linearization. The non-
linear function in the second term is approximated by a Taylor series expansion as

x�̇�2
x ≈ x0(�̇�0

x )2 +
𝜕(x�̇�2

x )
𝜕x

|x=x0,�̇�x=�̇�0
x
(x − x0) +

𝜕(x�̇�2
x )

𝜕�̇�x
|x=x0,�̇�x=�̇�0

x
(�̇�x − �̇�0

x )

= x0(�̇�0
x )2 + �̇�2

x |x=x0,�̇�x=�̇�0
x
(x − x0) + 2x�̇�x|x=x0,�̇�x=�̇�0

x
(�̇�x − �̇�0

x )
= 0

because x0 = �̇�0
x = 0.
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The quantity in the third term of (6.40) is approximated by a Taylor series expansion as

y�̇�x�̇�y ≈ y0�̇�0
x �̇�

0
y +

𝜕(y�̇�x�̇�y)
𝜕y

|y=y0,�̇�x=�̇�0
x ,�̇�y=�̇�0

y
(y − y0)

+
𝜕(y�̇�x�̇�y)

𝜕�̇�x
|y=y0,�̇�x=�̇�0

x ,�̇�y=�̇�0
y
(�̇�x − �̇�0

x )

+
𝜕(y�̇�x�̇�y)

𝜕�̇�y
|y=y0,�̇�x=�̇�0

x ,�̇�y=�̇�0
y
(�̇�y − �̇�0

y ) = 0

because y0 = �̇�0
x = �̇�0

y = 0.
The nonlinear quantity on the right-hand side of (6.40) is approximated as

sin 𝜃x ≈ sin 𝜃0
x +

d sin 𝜃x

d𝜃x
|𝜃x=𝜃0

x
(𝜃x − 𝜃0

x )

= sin 𝜃0
x + cos 𝜃x|𝜃x=𝜃0

x
(𝜃x − 𝜃0

x ) = 𝜃x.

Combining all the linearized quantities together yields the linear model that describes
the dynamics of the ball and plate balancing system at its operating condition as,

7m
5

ẍ = −mg𝜃x (6.42)

which says that at the equilibrium point, the ball and plate balancing system is a double
integrator system. The input to the system is angle of the plate 𝜃x and the output is the
position of the ball x on the plate.

The dynamic model for the y-axis is obtained through the linearization of the nonlin-
ear model (6.41) as

7m
5

ÿ = −mg𝜃y. (6.43)

It is seen that the linearized models are equal. Also the coupling relationships in the
original nonlinear models are gone, meaning that two identical PID controllers can be
used to control the x- and y-axes separately.

6.3.3 PID Controller Design

Because all the steady-state variables are zero in the ball and plate balancing system, the
Laplace transfer function of (6.42) for the x-axis becomes

X(s)
Θx(s)

= −5
7

g 1
s2 . (6.44)

Because the system is a double integrator system, one might attempt to use a PD con-
troller for the position control because the self-contained integrator would take care of
the tracking accuracy to step reference signals. Were the system a true double integrator,
this option would be viable. Because the double integrator is the result of linearization
of a nonlinear model, a small deviation from the operating condition, this characteris-
tic would disappear, observed from the original physical model (6.40). Therefore, PID
controller with derivative filter is selected to perform the position control.



�

� �

�

190 6 PID Control of Nonlinear Systems

Following from the PID controller design in Section 3.4, the controller structure is
selected as

C(s) =
c2s2 + c1s + c0

s(s + l0)
(6.45)

and the desired closed-loop polynomial is selected as

Acl = (s2 + 2 × 0.707𝑤ns +𝑤2
n)(s +𝑤n)2

= s4 + t3s3 + t2s2 + t1s + t0

where the parameter 𝑤n is a tuning parameter for the closed-loop performance.
With the second order model,

G(s) =
b0

s2

where b0 = − 5
7
g, the polynomial equation for solving the PID controller parameters

becomes

s4 + l0s3 + b0c2s2 + b0c1s + b0c0

= s4 + t3s3 + t2s2 + t1s + t0. (6.46)

The solution of (6.46) gives

l0 = t3; c2 =
t2

b0
; c1 =

t1

b0
; c0 =

t0

b0
.

To determine the performance parameter𝑤n, using Simulink simulation, nonlinear sys-
tem simulators were built with consideration of the nonlinear plant and actuator dynam-
ics for various reference signals. It was found that 𝑤n = 3 is a satisfactory choice from
the simulation studies based on the nonlinear simulators, and this 𝑤n was used in the
actual implementation with a small adjustment for special cases.

It is noted that the linear models for the ball and plate balancing system are sufficiently
accurate for the PID controller design with the parameter𝑤n calibrated against the non-
linear system. By adjusting 𝑤n, we effectively adjust the desired closed-loop bandwidth
against the actual physical system to reduce the effect of modeling errors.

However, when a resonant controller is designed using the linear model (6.44), the
feedback controller could not stabilize the actual physical system despite numerous
attempts. A possible key reason for this problem is that the resonant controller
demands much higher accuracy from the plant model in the higher frequency region.
The neglected dynamics from the actuators and the sensors will have a greater effect on
the closed-loop stability and performance when a resonant controller is used.

As a result, in order to track a sinusoidal reference signal, the same PID controllers
are used with feedforward compensation on the reference signals, in which the output
errors at the steady-state operation are measured and then compensated at the reference
signal by modifying its amplitude and phase. This compensation from reference signal
no longer puts extra demand on the accuracy of the model.

6.3.4 Implementation and Experimental Results

In the implementation of the control system, the parameters in controller (6.45) are
converted to Kc, 𝜏I, 𝜏d and 𝜏f for the discretization and a two degrees of freedom PID
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controller is implemented as shown in Section 3.4, which is to put the proportional con-
trol and the derivative control on the output only. The sampling interval used in the
implementation is Δt = 0.01 (s).

Additionally, to protect the equipment, constraints on the derivative of the control sig-
nal and the amplitude of the control signal are imposed with anti-windup mechanisms,
which was shown in Tutorial 4.1. In the implementation, the MATLAB real time func-
tion PIDV.slx in Tutorial 4.1 was converted into C-code for real time execution using a
micro-controller.

It was a tremendous effort to design and implement the ball and plate balancing con-
trol system, which requires detailed considerations and executions in hardware elec-
tronics design and software design. The design and implementation were detailed in
Lee’s report (Lee (2013)). As a case study, selected experimental results are presented.

6.3.4.1 Disturbance Rejection
In the disturbance rejection experiment, the ball is positioned at the center of the plate,
which is at the coordinates of x = 0 and y = 0. The reference signals to both x- and y-axes
are zero and an external pulse disturbance was applied to the ball by using a finger to
perturb the position of the ball. The x-axis and y-axis responses to this unknown distur-
bance are shown in Figures 6.4(a) and (b). Figure 6.4(c) shows the x–y plane plot for the
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Figure 6.4 Disturbance rejection. (a) x-axis response. (b) y-axis response. (c) Ball position.
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disturbance rejection. It is seen that the PID control system has successfully rejected the
disturbance without steady-state errors.

6.3.4.2 Making a Square Movement
To make a square movement, two sets of step signals are chosen as the desired reference
signals for the x-axis and y-axis, as shown by the dashed lines in Figures 6.5(a) and (b).
The output responses to the x and y reference signals are compared in the same plots.
Figure 6.5(c) shows the ball movement on the plate, which is seen as a square trajectory.

6.3.4.3 Making a Circle Movement
To make a circle movement, the reference signals to the x-axis and y-axis are chosen to
be

x∗(t) = 0.075 cos
( 2𝜋

2.5
t
)

y∗(t) = 0.075 sin
( 2𝜋

2.5
t
)
.

Here, the desired angular velocity of the ball movement is 2𝜋
2.5

rad s−1 and the radius of
the circle is 0.075 m.
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Figure 6.5 Making a square movement. (a) x-axis response. (b) y-axis response. (c) Ball position. Key:
line (1) output response; line (2) reference signal.
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As stated before, the closed-loop control using a resonant controller embedding the
mode s2 + ( 2𝜋

2.5
)2 into its denominator is not stable possibly due to modeling errors. The

solution resorts to PID control with pre-compensation by modifying the reference sig-
nals.

To find the suitable reference signals for the circle movement, the desired sinusoidal
reference signals x∗(t) and y∗(t) are applied to the same PID control systems. Then, at
steady-state operation, the ratio between the peaks of the reference and output is calcu-
lated as 0.2566, and the phase lag between the desired sinusoidal signal x∗(t) and x(t) is
3.8973 rad. Therefore, the reference signals to the PID control systems are modified for
the pre-compensation as

x∗(t) = 0.075
0.2566

cos
( 2𝜋

2.5
t − 3.8973

)

y∗(t) = 0.075
0.2566

sin
( 2𝜋

2.5
t − 3.8973

)
.

Figures 6.6(a) and (b) compare the x-axis and y-axis responses to the original desired
sinusoidal reference signals. Indeed, with the pre-compensation, the output signals track
the desired reference signals quite nicely. Figure 6.6(c) shows the x–y plane movement
of the ball, which is seen to make a circle movement.
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Figure 6.6 Making a circle movement. (a) x-axis response. (b) y-axis response. (c) Ball position. Key:
line (1) output response; line (2) desired reference signal.



�

� �

�

194 6 PID Control of Nonlinear Systems

6.3.4.4 Making more Complicated Movements
In the final year project thesis (Lee (2013)), the control of ball’s square movement was
extended to more complicated maze movement by carefully choosing the step reference
signals on the x- and y-axes. The control of ball’s circle movement was extended to the
movement of a figure “8”. They are all successfully implemented and validated on the
ball and plate balancing system. For those who are interested in the other more com-
plicated cases, Lee’s video demonstration can be found at https://www.youtube.com/
watch?v=wiPWqmlN5N4.

6.3.5 Food for Thought

1. For the ball and plate balancing system, is it possible to choose other steady-state
values for the linearization of the nonlinear model?

2. Was it a bit surprise to find that the linear model for such a complex system is a simple
double integrator with gain easily determined?

3. Would you be able to list three factors that will result in modelling errors between
the double integrator model and the actual ball and plate balancing system?

4. In order to overcome the modelling error, which parameter do you think that John has
used to tune the closed-loop PID controller against the actual ball and plate balancing
system?

6.4 Gain Scheduled PID Control Systems

Gain scheduled control for nonlinear plants has proven to be a successful design
methodology in many engineering applications. The gain scheduled control system is to
use linear control strategies to control a nonlinear plant, and the family of closed-loop
linear systems is stable in the vicinity of each linear model.

There are four general steps involved in the design of a gain scheduled control system
listed as below, which are to

1. identify the operating conditions of the nonlinear system and obtain a family of linear
models with regard to these conditions;

2. perform linear control system design for the family of linear models with specified
closed-loop performance for each linear system;

3. implement the actual gain scheduling that forms an interpolation between the family
of the linear closed-loop control systems;

4. validate and simulate the gain scheduled control system.

We have discussed the tasks given in step 1 and step 2 in the previous chapters. In this
section, we will focus on step 3. Step 4 has been illustrated with experimental validations
for induction motor control (see Wang et al. (2015)) and for a fixed-wing unmanned
aerial vehicle (see Poksawat et al. (2017)).

6.4.1 The Weighting Parameters

One approach used in the design of a gain scheduled control system is to assign a set
of weighting parameters with values between 0 and 1 that will correspond to each
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operating condition of the nonlinear system. These weighting parameters will be used
in the next section for the calculation of the control signal with the gain scheduled
component.

As an example, the gain scheduled speed control system for AC motor control is used
for visualization. Here, the parameters 𝜆l, 𝜆m, and 𝜆h are used as the weights for low
speed, median speed, and high speed operations of a motor. The basic idea is to assign a
correct value to the weighting parameters according to the operating conditions, which
can be identified through the measurement of a physical variable. For the motor control
application, its velocity is readily measured, which also influences the parameters of the
linear model.

The first approach, also the simplest approach, is to assign the weighting parameters
according to the reference signal of the system. We have following three cases. When
we choose the reference signal 𝜔∗ to be 𝜔l for low speed operation of the AC motor,
then 𝜆l = 1, 𝜆m = 0 and 𝜆h = 0. When we choose the reference signal 𝜔∗ to be 𝜔m for
median speed operation, 𝜆l = 0, 𝜆m = 1 and 𝜆h = 0. when the desired velocity is at the
high speed where 𝜔∗ = 𝜔h, 𝜆l = 0, 𝜆m = 0 and 𝜆h = 1.

This approach takes into consideration the changes in plant dynamics due to reference
changes; however, it does not consider the possibility that disturbances could cause the
significant changes in plant dynamics. Hence, with this simple approach, closed-loop
instability could occur if severe disturbances were encountered in plant operation.

The more general approach is to compute the weighting parameters 𝜆l, 𝜆m, and 𝜆h

according to the actual measurement of velocity 𝜔. In order to avoid random trigger-
ing of the model changes in the presence of noises and transient responses, a band is
formed around the desired speed. By assigning a tolerance constant 𝛿 to the desired
speed ranges, the weighting constants 𝜆l, 𝜆m, and 𝜆h are defined as

−𝛿 + 𝜔l
≤ 𝜔 ≤ 𝜔l + 𝛿 𝜆l = 1; 𝜆m = 0; 𝜆h = 0

−𝛿 + 𝜔m
≤ 𝜔 ≤ 𝜔m + 𝛿 𝜆l = 0; 𝜆m = 1; 𝜆h = 0

−𝛿 + 𝜔h
≤ 𝜔 ≤ 𝜔h + 𝛿 𝜆l = 0; 𝜆m = 0; 𝜆h = 1.

Outside the band of the desired speed, none of the linear models can accurately describe
the dynamic system. A traditional method is to use a combination of these two models
from the nearest regions. For instance, assuming that the actual operating condition
is between the band of the desired median speed and that of the desired high speed
(𝜔m + 𝛿 ≤ 𝜔(t) < 𝜔h − 𝛿), by defining 𝜆h (0 ≤ 𝜆h

≤ 1) as a function of 𝜔(t), 𝜆h(t) is cal-
culated using the linear interpretation of the two boundaries between the median and
high speeds given by:

𝜆h(t) = 𝜔(t) − 𝜔m − 𝛿
𝜔h − 𝜔m − 2𝛿

. (6.47)

The weighting parameter 𝜆m follows as 𝜆m = 1 − 𝜆h (0 ≤ 𝜆m
≤ 1), and 𝜆l = 0 for this

region. Similarly, for 𝜔l + 𝛿 ≤ 𝜔(t) < 𝜔m − 𝛿,

𝜆m(t) = 𝜔(t) − 𝜔l − 𝛿
𝜔m − 𝜔l − 2𝛿

(6.48)

and 𝜆l(t) = 1 − 𝜆m(t), 𝜆h = 0.
Figure 6.7 illustrates the weighting parameters that have been used to represent the

operating regions of the AC motor.
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ωh

ωm
λm = 1; λh = λl = 0.

ωI δ

ω(t) –ωl– δ
ωm–ωl– 2δ

λm(t) = ; λl = 1– λm; λh = 0.

λh = 1; λm = λl = 0.

λl = 1; λh = λm = 0.

ω(t) –ωm– δ
ωh–ωm– 2δ

λh(t) = ; λm = 1– λh; λl = 0.

Figure 6.7 Weighting parameters.

6.4.2 Gain Scheduled Implementation using PID Velocity Form

One of the key elements in the implementation of a gain scheduled control system is
that the calculated control signal is required to be the actual control signal, not the con-
trol signal in deviation variables. The difference between them is the steady-state value
of the control signal Uss. Because when the operating condition changes the value Uss
changes, as we noticed from the exercises in linearization. This means that if we calcu-
late the deviation control variable, this steady-state value needs to be adapted when the
operating condition changes.

However, in the PID controller implementation shown in Chapter 4, the control signal
was discretized with its steady-state value added to give the actual control signal, for
example, see (4.27), which is shown at the sampling time ti, as

uact(ti) = uact(ti−1) + Kc(e(ti) − e(ti−1)) +
KcΔt
𝜏I

e(ti) − uD(ti) + uD(ti−1) (6.49)

where the feedback error is calculated as e(ti) = ract(ti) − yact(ti), and the derivative con-
trol signal uD(ti) is expressed in relation to the actual output signal yact(ti) as

uD(ti) =
𝜏f

𝜏f + Δt
uD(ti−1) +

Kc𝜏D

𝜏f + Δt
(yact(ti) − yact(ti−1)).

Thus, the remaining task in the gain scheduled PID controller implementation is to per-
form the interpolation between the family of the linear closed-loop control systems.

We assume that with the three operating conditions selected, there are three PID
controllers designed and simulated to obtain desired closed-loop performance for each
operating condition. For clarity, we use the superscripts l, m, and h to denote the PID
controller parameters obtained at the low, median, and high operating conditions. The
identifiers 𝜆l, 𝜆m and 𝜆h are calculated in real time using the actual output yact(ti), which
is equivalent to the velocity 𝜔(ti) in the previous section. Then, the calculation of the
actual control signal with a gain scheduled controller becomes:

uact(ti) = uact(ti−1)

+ 𝜆l

[

K l
c(e(ti) − e(ti−1)) +

K l
cΔt
𝜏 l

I

e(ti) − uD(ti) + uD(ti−1)

]
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+ 𝜆m
[

Km
c (e(ti) − e(ti−1)) +

Km
c Δt
𝜏m

I
e(ti) − uD(ti) + uD(ti−1)

]

+ 𝜆h

[

Kh
c (e(ti) − e(ti−1)) +

Kh
c Δt
𝜏h

I

e(ti) − uD(ti) + uD(ti−1)

]

(6.50)

where uD is calculated using the following scheduled expression:

uD(ti) = 𝜆l

[
𝜏 l

f

𝜏 l
f + Δt

uD(ti−1) +
K l

c𝜏
l
D

𝜏 l
f + Δt

(yact(ti) − yact(ti−1))

]

+ 𝜆m
[

𝜏m
f

𝜏m
f + Δt

uD(ti−1) +
Km

c 𝜏
m
D

𝜏m
f + Δt

(yact(ti) − yact(ti−1))
]

+ 𝜆h

[
𝜏h

f

𝜏h
f + Δt

uD(ti−1) +
Kh

c 𝜏
h
D

𝜏h
f + Δt

(yact(ti) − yact(ti−1))

]

. (6.51)

To switch on the gain scheduled PID controller, the first sample of the control sig-
nal uact(t0) will use the actual open-loop control signal, which is the estimate of the
steady-state value Uss at an operating condition. The values of 𝜆l, 𝜆m, and 𝜆h are con-
tinuously updated using the actual output or other physical parameter to pin-point the
operating condition of the nonlinear system.

6.4.3 Gain Scheduled Implementation using an Estimator Based PID
Controller

As an illustration, we will discuss the estimator based PI controller for the gain scheduled
implementation. The extension to PID controller using an estimator is left as an exercise.

We assume that the system has three operating conditions denoted by the superscripts
l, m, and h. At each operating condition, a first order model is obtained together with
the steady-state values of the input signal Uss and output signal Yss.

At an operating condition, the steady-state values Uss and Yss are used to obtain the
first order differential equation:

ẏ(t) = −ay(t) + b(u(t) + d(t)) (6.52)

where a and b are the model coefficients obtained at the operating condition, and u(t)
and y(t) are the input and output deviation variables (or small signals), defined as

u(t) = uact(t) − Uss; y(t) = yact(t) − Yss.

Note that in this formulation, the steady-state value Yss can be chosen to correspond
to the reference signal at the operating condition, which is known in applications. It is
more difficult to accurately determine the value of Uss, but as in the velocity controller
implementation, we can give a rough estimate of Uss by using the initial open-loop con-
trol signal. Afterwards, the estimated constant disturbance d̂(t) in (6.52) will provide the
compensation for the error in the steady-state value of the control signal Uss.

As in Chapter 5, two desired closed-loop poles −𝛼1 and −𝛼2 are specified where
𝛼1 > 0, 𝛼2 > 0. The controller and estimator parameters are calculated for the low speed
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operating condition as

K l
1 =

𝛼1 − al

bl

K l
2 =

𝛼2

bl

for median speed operating condition as

Km
1 =

𝛼1 − am

bm

Km
2 =

𝛼2

bm

and for the high speed operating condition as

Kh
1 =

𝛼1 − ah

bh

Kh
2 =

𝛼2

bh .

Because the control signal and output signal are small signals, they will be calculated
in terms of their operating conditions. For this purpose, at the sampling instance ti, we
define the output signals for the three operating conditions:

yl(ti) = yact(ti) − Y l
ss

ym(ti) = yact(ti) − Y m
ss

yh(ti) = yact(ti) − Y h
ss.

The control signal in deviation form is calculated using the identifiers 𝜆l, 𝜆m, and 𝜆h

introduced in Section 6.4.1 using the following form:

u(ti) = −𝜆l((K l
1 + K l

2)y
l(ti) + ẑl(ti)) − 𝜆m((Km

1 + Km
2 )ym(ti)

+ ẑm(ti)) − 𝜆h((Kh
1 + Kh

2 )y
h(ti) + ẑh(ti)). (6.53)

At sampling time ti, the three estimators will run in parallel to estimate the disturbance
term at different operating conditions:

ẑl(ti+1) = ẑl(ti) − (𝛼2ẑl(ti) +
𝛼2(𝛼2 − al)

bl yl(ti) + 𝛼2u(ti))Δt

ẑm(ti+1) = ẑm(ti) − (𝛼2ẑm(ti) +
𝛼2(𝛼2 − am)

bm ym(ti) + 𝛼2u(ti))Δt

ẑh(ti+1) = ẑh(ti) − (𝛼2ẑh(ti) +
𝛼2(𝛼2 − ah)

bh yh(ti) + 𝛼2u(ti))Δt.

The actual control signal is constructed using

uact(ti) = u(ti) + Uss.

The steady-state value Uss does not need to be accurate because of the estimation of
disturbance. At the start of the closed-loop control, this parameter could take the value
of the open-loop control signal. When operating condition changes, it can use the con-
verged steady-state value of the control signal from the previous operating condition as
the new steady-state value for the changed operating condition.
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6.4.4 Food for Thought

1. In the calculation of the weighting parameters, 𝜆l, 𝜆m and 𝜆h, can we use other phys-
ical parameters beside the output variable, to identify the operating conditions?

2. In the gain scheduled PID controller when using the velocity form, do you need the
steady-state information of the plant input and output?

3. In the gain scheduled disturbance observer-based PID controller, do you need the
steady-state information of the plant input and output?

6.5 Summary

Many physical models are represented by nonlinear differential equations. In order to
design PID controllers for those physical systems, linearization of the nonlinear models
is required. In this chapter, we have discussed how to obtain a linear model when a
nonlinear model in the form of differential equations is given and how to design a gain
scheduled control system for a nonlinear system. The other important aspects of this
chapter are summarized as follows.

• An operating condition is selected to obtain a linear model for a given nonlinear
model. A linear model is valid with respect to a chosen operating condition. If the
operating condition changes, the linear model will change.

• In the linearization process, it is not always possible for us to find the correct equilib-
rium point due to parameter uncertainty. If this happens, we could model the uncer-
tainty with a constant disturbance to the system. This constant disturbance will be
overcome by the integral action in the controller or by subtracting it from the control
signal with the disturbance estimation as proposed in Chapter 5.

• If the nonlinearity is severe, a gain scheduled control system is desired. With the gain
scheduled PID control system, a family of linear models and controllers is obtained
first, and the controller is smoothly switched when the operating condition changes.
We can realize the gain scheduled PID control systems using the PID controller in
velocity form or using the disturbance observer- based PID controllers.

6.6 Further Reading

1. Text books for nonlinear control include Isidori (2013), Khalil (2002), Nijmeijer and
Van der Schaft (1990).

2. Henson and Seborg (1997) presents advanced topics in nonlinear process control.
3. pH neutralization process is a typical example for nonlinear systems (Henson and

Seborg (1994), Kalafatis et al. (1995), Böling et al. (2007)). It is a Wiener nonlinear
model with its static inverse identified in Kalafatis et al. (1997), then compensated
with the inverse nonlinearity, leading to a gain-scheduled control system (Kalafatis
et al. (2005)). Another successful application of Hamerstein-Wiener model with a
gain-scheduled control system is runtime management of Quality of Service (QoS)
performance and resource provisioning in shared resource software environments
(Patikirikorala et al. (2012)).
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4. The gain scheduled PID control algorithm presented in this chapter has been suc-
cessfully used to attitude control of fixed-wing unmanned aerial vehicle with exper-
imental validations (Poksawat et al. (2017)). The gain scheduled algorithm has an
extension to continuous-time model predictive control, which was successfully vali-
dated on induction motor control (Wang et al. (2015)).

Problems

6.1 Perform linearization of the following differential equations and find their transfer
functions at the operating conditions.
1. A dynamic system is described by the following differential equation:

ẋ(t) = 2x(t)u(t) + x2(t)u2(t) + u2(t)

Find the linearized model at x0 = 1 and u0 = 1. Is this system stable at this oper-
ating condition?

2. A dynamic system is described by the following differential equation:

ẍ(t) = 2
√

x(t) + 6 + x2(t)u(t) + u2(t)

Find the linearized model at x0 = −1 and u0 = −1. Where are the poles of this
linearized system?

6.2 Perform linearization of a differential equation for an inverted pendulum on a cart.
The differential equations that describe the motion of an inverted pendulum are:

(m + M)ẍ + ml�̈�cos𝜃 − ml�̇�2sin𝜃 = F (6.54)

(I + ml2)�̈� + mlẍcos𝜃 − mglsin𝜃 = 0 (6.55)

where 𝜃(t) is the angle of the pendulum, x(t) is the horizontal position of the cart, 2l
is the length of the pendulum, M and m are the masses of the cart and the pendu-
lum, respectively, and I is the moment of inertia of the pendulum about its center of
gravity. F is a force applied to the body of the cart.
The operating point of the pendulum is selected as, 𝜃0 = �̇�0 = �̈�0 = 0, and x0 = ẋ0 =
ẍ0 = 0, and F0 = 0.
1. Verify the linearized differential equations at the operating point are:

(m + M)ẍ + ml�̈� = F (6.56)

(I + ml2)�̈� + mlẍ − mgl𝜃 = 0 (6.57)

2. Find the Laplace transfer function between the force F (the input variable) and
the pendulum angle 𝜃.

6.3 A Permanent Magnetic Synchronous Motor (PMSM) is described by the differential
equations in the d-q rotating reference frame:

did(t)
dt

= 1
Ld

(𝑣d(t) − Rid(t) + 𝜔e(t)Lqiq(t)) (6.58)
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diq(t)
dt

= 1
Lq

(𝑣q(t) − Riq(t) − 𝜔e(t)Ldid(t) − 𝜔e(t)𝜙mg) (6.59)

d𝜔e(t)
dt

=
p
J
(Te −

B
p
𝜔e(t) − TL) (6.60)

Te =
3
2

p𝜙mgiq (6.61)

where𝜔e is the angular electrical speed and is related to the rotor speed by𝜔e = p𝜔m
with p denoting the number of pole pairs, 𝑣d and 𝑣q represent the stator voltages in
the d-q frame, id and iq represent the stator currents in this frame, and TL is load
torque that is assumed to be zero if no load is attached to the motor.
The operating point for the PMSM is defined as i0

d, i0
q and 𝜔0

e . Find the linearized
differential equations that describe the dynamics of the motor at the operating point.

6.4 A continuous-time system is described by the differential equation,

ẋ(t) = −x(t)2 + 2x(t)u(t) − u(t)3 (6.62)

Supposing that the operating point for the input signal is at u0 = 1, the operat-
ing point for x(t) could be determined by letting ẋ(t) = 0 and solving the algebraic
equation with the value of u0 = 1, leading to

−(x0)2 + 2(x0) − 1 = 0 (6.63)

1. What is the operating point for x(t)? Find the linearized model against the oper-
ating points of x0 and u0.

2. Find the Laplace transfer function between the input variable u(t) − u0 and the
output variable x(t) − x0. Is this system stable at the operating point?

3. Design a PI controller for this system, where the closed-loop poles are positioned
at −3.

6.5 A dynamic system is described by the following differential equation:

ÿ(t) = −y(t) + y(t)|u(t)| + u2(t)

1. Find the linearized model at y0 = 1 and u0 = 1. Hint: we need to consider the
case u(t) > 0 and u(t) < 0 separately to obtain two linear systems depending on
the sign of the control signal u(t).

2. Design two PID controllers for this system in terms of both positive u(t) and
negative u(t), where all closed-loop poles are positioned at −𝛼 (𝛼 > 0), which
is selected to produce stable closed-loop systems with satisfactory performance.
𝛼 could be different for the two controllers. A starting point is to select 𝛼 = 1.

3. Implement the gain scheduled PID control system using the sign of control signal
u(t) as the identifier of the operating condition. We modify the PIDV.slx real-time
function to incorporate the gain scheduled control feature. In the simulation, the
reference signal is chosen to be zero, and added to the simulation is an input dis-
turbance, which is a square wave signal with appropriate period 2 and amplitude
of ±2. The sampling interval Δt is selected to be 0.01.
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6.6 Consider the linearized model and the nonlinear plant given in Problem 6.5.
1. Design two disturbance observer-based PID controllers for the same nonlinear

plant depending on the sign of the control signal, where all desired closed-loop
poles for both controller and estimator are positioned at −𝛼 (𝛼 > 0). The param-
eter 𝛼, which could be different, is selected to produce stable closed-loop systems
with satisfactory performance. A starting point is to select 𝛼 = 1.

2. Modify the MATLAB real-time function PIDEstim.slx introduced in Tutorial 5.2
to include the gain-scheduled control feature. Simulate the closed-loop control
system for input disturbance rejection with the same simulation condition out-
lined in Problem 6.5.
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Cascade PID Control Systems

7.1 Introduction

Cascade PID control systems are very important for successful applications. Most
physical systems are complex in dynamics and cascade PID control systems offer
effective solutions to their control problems, where a complex system is decomposed
into several smaller and simpler systems for which PID control systems are designed
for each of them.

This chapter will introduce the general design procedures for a cascade control system.
The advantages of using cascade control when there are disturbances and nonlinearities
in actuators are investigated and illustrated through simulation studies.

7.2 Design of a Cascade PID Control System

The PID and resonant controllers introduced in the previous chapters are the building
blocks in a cascade control system design. Thus, the design of a cascade control system
is a combination of the simpler control systems.

7.2.1 Design Steps for a Cascade Control System

A typical system suitable for cascade control is shown in Figure 7.1. For this system,
the mathematical model of the system is described by Gs(s)Gp(s) and there is an input
disturbance di(t), where s is the differential operator in this time domain environment.
More importantly, the variable between the transfer functions, x1(t), is measurable.

With the assumption that the variable x1(t) is measurable, the cascade feedback con-
trol system is configured as shown in Figure 7.2, where an inner-loop system is formed
with the feedback from x1(t) with the reference signal x∗

1(t) to the inner-loop generated
by the outer-loop controller Cp(s).

The inner-loop system is called the secondary system, which is, thus, denoted with
transfer function model Gs(s) and controller Cs(s). The outer-loop system is called
the primary system, denoted with transfer function model Gp(s) and controller Cp(s).
Clearly, the link between the secondary and primary control systems is the reference
signal x∗

1(t), which is the output of the primary controller.
There are four steps involved with the design of a cascade control system as listed

below.

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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+

+u(t)

di(t) x1(t)
y(t)Gs(s) Gp(s)

Figure 7.1 Block diagram for a system
suitable for cascade control.

+
– –

r(t) +x1
*

di(t)

++ x1 y(t)
Cp(s) Cs(s) Gs(s) Gp(s)

Figure 7.2 Block diagram of a cascade control system.

1. A complex system is decomposed into a series of first order or second order
subsystems based on the considerations of physical relationships and availability of
measurements.

2. Design P, PI, PID or PD controllers for each of the subsystems depending on the
requirements. In general, the outer- loop systems are required to contain integral
action to eliminate steady-state errors. In the design process, the inner-loop control
system is designed first and the closed-loop transfer function for the inner-loop
system is obtained. The outer-loop control system is designed based on the outer-
loop system, where the relatively small time constants resulting from the inner
closed- loop system are neglected, but its steady-state gain is taken into account in
the outer-loop model. However, in the situation where the inner-loop control system
dynamics could be captured and taken into the design of outer-loop controller, the
closed-loop performance for the cascade control system should be improved in
general (see Section 9.7.3).

3. Robust stability and performance analysis are performed, and closed-loop perfor-
mances are adjusted using the bandwidths of the inner-loop and outer-loop systems.
This step is important because there are neglected dynamics in the cascade control
system. In principle, the bandwidth of the inner closed-loop control should be much
wider than the one used in the outer closed-loop control. Namely, the inner-loop con-
trol system should have a much faster response speed for obtaining the closed-loop
stability of the cascade control system.

4. In the implementation, a wider bandwidth for the secondary closed-loop system is
desired and also achieved by putting proportional control Kc on the feedback error.

7.2.2 Simple Design Examples

Example 7.1 A physical system is described by two continuous time transfer functions
connected in series (see Figure 7.1), where Gs(s) represents the actuator dynamics
and Gp(s) is the primary system to be controlled. The variable x1(t) is measurable
and can be used as a feedback signal. Here, the transfer functions are

Gs(s) =
5

s + 10
; Gp(s) =

0.005
s + 0.05

.
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Design a cascade control system with two PI controllers based on the configuration
illustrated in Figure 7.2. For simplicity, we select the damping coefficient 𝜉 = 0.707
for both inner- and outer-loop control systems and use the bandwidths𝑤ns and𝑤np as the
tuning parameters of the inner (secondary) and outer-loop (primary) systems respectively.

Solution. It is reasonable to choose the parameters𝑤ns and𝑤np based on the open-loop
poles of the secondary and primary systems. For the inner-loop control system, we choose
𝑤ns = 5 × 10 = 50 leading to a pair of closed-loop poles at −35.35 ± j35.35, and for
the outer-loop system, we choose 𝑤np = 4 × 0.05 = 0.2 leading to a pair of closed-loop
poles at −0.1414 ± j0.1414. These selections give us the ratio of inner-loop bandwidth to
outer-loop bandwidth of 250.

In the design of cascade control system, we start the design from the inner-loop con-
troller. From the pole assignment PI controller design outlined in Chapter 3, we obtain
the PI controller parameters for the inner-loop controller as

Kcs =
2𝜉𝑤ns − a

b
=

2𝜉𝑤ns − 10
5

= 12.14;

𝜏Is =
2𝜉𝑤ns − a

𝑤2
ns

=
2𝜉𝑤ns − 10

𝑤2
ns

= 0.0243

where the parameters a = 10 and b = 5 for the inner-loop system, and 𝑤ns = 50 with
damping coefficient 𝜉 = 0.707. The closed-loop transfer function between the reference
signal X∗

1 (s) and the output signal X1(s) is calculated as,

X1(s)
X∗

1 (s)
=

(2𝜉𝑤ns − 10)s +𝑤2
ns

s2 + 2𝜉𝑤nss +𝑤2
ns
. (7.1)

To design the outer-loop controller, we consider the transfer function between X∗
1 (s) and

the output Y (s), which is

Y (s)
X∗

1 (s)
=

(2𝜉𝑤ns − 10)s +𝑤2
ns

s2 + 2𝜉𝑤nss +𝑤2
ns

0.005
s + 0.05

. (7.2)

In the design of the outer-loop controller, it is assumed that the dynamic response from
the inner-loop system is much faster than the outer-loop (primary) system, the dynamics
from the inner-loop system are neglected. For instance, when 𝑤ns is 50, the inner-loop
transfer function is approximated by a unit gain, that is

X1(s)
X∗

1 (s)
=

(2𝜉𝑤ns−10)
𝑤2

ns
s + 1

1
𝑤2

ns
s2 + 2𝜉

𝑤ns
s + 1

≈ 1. (7.3)

This approximation is based on the consideration that the inner-loop–closed-loop
transfer function has much smaller time constants than those of the outer-loop system.
Additionally, the integral action in the inner-loop controller ensures that the closed-loop
transfer function has a unit steady-state value. Thus, the design of the outer-loop
controller is simplified by considering the outer-loop model only. For this example, the
PI controller parameters for the outer-loop controller are chosen as

Kcp =
2𝜉𝑤np − 0.05

0.005
= 46.56; 𝜏Ip =

2𝜉𝑤np − 0.05
𝑤2

np
= 5.82
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where 𝑤np = 0.2 and 𝜉 = 0.707. Because in the design of the outer-loop controller we
neglect the inner-loop dynamics, the robustness of the cascade control system is an issue
that needs to be investigated. For this example, we can calculate the actual closed-loop
poles of this cascade control system by including the inner-loop control systems.

One can verify that there are four closed-loop poles with the following values:
−35.2335 ± j35.4441 and −0.1415 + ±j0.1415. It is interesting to note that the pair of
dominant closed-loop poles are almost equal to the performance specifications from
the outer-loop control system and the remaining pair is close to the performance spec-
ification from the inner-loop control system. This means that the coupling between the
inner-loop controller design and outer-loop controller design is almost broken because
the approximation given by (7.3) is quite accurate.

One can also verify that by choosing the ratio between the inner-loop bandwidth
and the outer-loop bandwidth to be 250 with 𝑤ns = 25 and 𝑤np = 0.1, the cascade
closed-loop control system will have four closed-loop poles: −17.6293 ± j17.7002,
−0.0707 ± j0.0708, which are very close to the pair of desired inner-loop control system
poles −17.6750 ± j17.6803 and the outer-loop poles −0.0707 ± j0.0707. However, by
choosing the ratio to be 10 with 𝑤ns = 25 and 𝑤np = 2.5, the cascade closed-loop control
system has four closed-loop poles: −15.8796 ± j18.4590, −1.8204 ± j1.8096 in compari-
son to the two pairs of desired closed-loop poles: −17.6750 ± 17.6803, −1.7675 ± j1.7680.
It is clearly seen that there are some discrepancies between the closed-loop poles specified
for the inner-loop and outer-loop systems and those that have actually been obtained in
the cascade control system. However, with the ratio being 10, the closed-loop poles of the
cascade control system remain close to those that were originally specified.

In the applications of the cascade control system, the controller for the inner-loop
system could be selected to be a proportional controller. Being a proportional controller,
one can simply tune the controller parameter Kc. This is particularly useful in the situa-
tion where the model for the inner-loop system is nonlinear and not easy to obtain. The
following example is to illustrate the cascade control using a proportional controller for
the secondary plant and a PID controller for the primary plant.

Example 7.2 The secondary system in a cascade control system is a motor that has the
transfer function:

Gs(s) =
0.03

s(s + 30)
(7.4)

where the output of the motor is angular position. The primary system is an undamped
oscillator with the transfer function:

Gp(s) =
0.6

s2 + 1
. (7.5)

Design a cascade control system with inner-loop proportional control and outer-loop PID
control. The outer-loop control system is specified with 𝜉 = 0.707 and 𝑤np = 1 and the
remaining poles are placed at −2.

Solution. This system is of fourth order with three poles on the imaginary axis. It
would be very difficult to find a PID controller that could produce a stable closed-loop
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system. This example will illustrate how effectively two simple controllers will produce
satisfactory closed-loop control results.

The secondary system is approximated by the following integral model: Gs(s) ≈
0.001

s
where the stable mode is neglected. Because the primary control system is required to have
the natural frequency 𝑤np = 1, we select the closed-loop pole for the secondary control
system at −10, leading to the proportional controller Kcs = 10000. Roughly speaking, we
select the ratio of inner-loop bandwidth to the outer-loop bandwidth as 10.

Because the secondary plant contains an integrator, and with the specification of
fast closed-loop response, the inner-loop dynamics are neglected in the design of the
outer-loop PID controller. The PID controller with filter is designed using the MATLAB
function pidplace.m illustrated in Tutorial 3.2. In the design of a PID controller, the
desired closed-loop polynomial is selected as

Acl(s) = (s2 + 2𝜉𝑤nps +𝑤2
np)(s + 2)2

where 𝑤np = 1 and 𝜉 = 0.707. Using pidplace.m function, the PID controller parameters
together with the derivative filter are found as

Kcp = 1.0784; 𝜏Ip = 0.8758; 𝜏Dp = 2.5717; 𝜏fp = 0.1847.

The closed-loop control performance is evaluated using closed-loop simulation stud-
ies with sampling interval Δt = 0.01 (s). A unit step reference signal is given for the
closed-loop control at t = 0. At t = 20 (s), a step input disturbance with amplitude of
30 enters the simulation at the input signal to the secondary plant. Figure 7.3(a) shows
the control signal to the secondary plant and Figure 7.3(b) shows the closed-loop output
response. It is seen that the cascade closed-loop system is stable with characteristics
similar to the performance specification given to the primary control system (𝑤np = 1,
𝜉 = 0.707). It is also noted that the step input disturbance is completely rejected
without steady-state error. There are three comments. For this particular example,
both secondary and primary plants have poles on the imaginary axis. The key for the
stabilization and maintaining the closed-loop performance is to choose the ratio of the
control system bandwidths sufficiently large; 10 for this example. Because of the cascade
control structure, the control system design is simplified into the design of a proportional
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Figure 7.3 Cascade closed-loop response signals (Example 7.2, primary controller PID and secondary
controller P). (a) Control signal. (b) Output.
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controller and a PID controller, and both can be readily implemented. We can also
verify that when the secondary plant has an integrator, a PI controller for the inner-loop
system does not offer much additional advantage in a cascade structure. However, if
the secondary plant does not have an integrator, there is an advantage when using a
PI controller for the inner-loop system. Because the integral action in the secondary
controller will produce unity of the steady-state gain from the inner-loop control system,
the outer-loop controller design will only consider the dynamics from the primary
plant.

7.2.3 Achieving Closed-loop Performance Invariance (Approximate) in a
Cascade Structure

In the design of cascade control system, we have neglected the secondary closed-loop
dynamics in the design of the primary control system, which was illustrated in
Examples 7.1 and 7.2. Understanding how the neglected dynamics affect the closed-loop
performance of the cascade control system is important for the design and applications.

Essentially, we will examine the variations of the closed-loop poles of the cascade con-
trol system. Assume that secondary and primary controllers and plants are described by
the transfer functions illustrated in Figure 7.4.

The inner-loop transfer function between X∗
1 (s) and X1(s) is calculated as

X1(s)
X∗

1 (s)
=

Ps(s)Bs(s)
Ls(s)As(s) + Ps(s)Bs(s)

=
Ps(s)Bs(s)

Acls(s)
(7.6)

where Acls(s) is the closed-loop polynomial for the secondary system. The closed-loop
transfer function for the cascade control system becomes,

Y (s)
R(s)

=
Pp(s)Bp(s)Ps(s)Bs(s)

Lp(s)Ap(s)Acls(s) + Pp(s)Bp(s)Ps(s)Bs(s)
. (7.7)

Thus, the actual closed-loop polynomial for the cascade control system is

Acl(s) = Lp(s)Ap(s)Acls(s) + Pp(s)Bp(s)Ps(s)Bs(s)

= Acls(s)
(

Lp(s)Ap(s) + Pp(s)Bp(s)
Ps(s)Bs(s)

Acls(s)

)
. (7.8)

+

–

+ +
+

–
R(s) X1

*

Di(s)

Y (s)X1Pp(s)
Lp(s)

Ps(s)
Ls(s)

Bs(s)
As(s)

Bp(s)
Ap(s)

Figure 7.4 Closed-loop cascade control system.
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Clearly, there are some couplings between the poles from the secondary and primary
control systems, and this leads to uncertainties in the closed-loop performance of
the cascade control system. However, in the design when neglecting the secondary
closed-loop system, we have assumed that

Ps(s)Bs(s)
Acls(s)

= T(s)s ≈ 1

which is the closed-loop transfer function for the secondary plant, also its comple-
mentary sensitivity function. This approximation could be quantified in the frequency
domain through the bandwidth of the secondary closed-loop system. If this approxima-
tion stands true, then the actual closed-loop polynomial Acl(s) is approximated using
following expression:

Acl(s) ≈ Acls(s)(Lp(s)Ap(s) + Pp(s)Bp(s))
= Acls(s)Aclp(s) (7.9)

where Aclp(s) is the closed-loop polynomial for the primary control system. Therefore,
the closed-loop poles of the cascade control system are found by letting

Acl(s) ≈ Acls(s)Aclp(s) = 0
which is equivalent to

Acls(s) = 0; Aclp(s) = 0.
This means that in the design of a cascade control system, if the secondary control
system has a sufficiently large bandwidth and has a unit steady-state gain, then the
closed-loop poles of the cascade control system consist of the closed-loop poles from the
secondary control system and the primary control system. We can design the secondary
control system and the primary control system separately as long as the closed-loop
transfer function from the secondary control system has much smaller time constants
and is equal to one in steady state.

7.2.4 Food for Thought

1. Would you be able to list three control applications that have used a cascade control
system structure?

2. Why have we neglected the closed-loop secondary system’s dynamics in the design
of PID controller for the primary system?

3. If the secondary system has no self-contained integral action and a proportional con-
troller is used, should you consider the effect of steady-state error from the inner-loop
when you design the outer-loop controller?

4. Would you say that a cascade control structure gives us a means to tackle the problem
of PID control system design for a higher order and complex system?

7.3 Cascade Control System for Input Disturbance Rejection

One of the major advantages in using cascade control lies in its characteristics with
regard to disturbance rejection. This section will explicitly examine the properties of
input disturbance rejection in cascade control with both frequency response analysis
and simulation studies.
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7.3.1 Frequency Characteristics for Disturbance Rejection

To examine the effectiveness of disturbance rejection, we calculate the closed-loop
transfer function between the disturbance Di(s) and the output Y (s), as shown in
Figure 7.4. Here, we assume the reference signal R(s) = 0.

The output X1(s) from the inner-loop system consists of the input disturbance Di(s)
and the reference signal X1(s)∗, which can be verified as,

X1(s) =

T(s)s

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Bs(s)Ps(s)
As(s)Ls(s) + Bs(s)Ps(s)

X1(s)∗

+

Si(s)s

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Bs(s)Ls(s)
As(s)Ls(s) + Bs(s)Ps(s)

Di(s).

(7.10)

This relationship is governed by the complementary sensitivity function T(s)s and the
input sensitivity function Si(s)s for the secondary plant, which has the following compact
form:

X1(s) = T(s)sX1(s)∗ + Si(s)sDi(s). (7.11)

The primary output Y (s) is expressed as

Y (s) =
Bp(s)
Ap(s)

X1(s)

=
Bp(s)
Ap(s)

(T(s)sX1(s)∗ + Si(s)sDi(s)). (7.12)

With the control signal X1(s)∗ generated from the primary controller as

X1(s)∗ = −
Pp(s)
Lp(s)

Y (s)

we obtain the closed-loop transfer function from the input disturbance Di(s) to the
output Y (s):

Y (s)
Di(s)

=
Gp(s)Si(s)s

1 + Gp(s)Cp(s)T(s)s
(7.13)

where Gp(s) =
Bp(s)
Ap(s)

and Cp(s) =
Pp(s)
Lp(s)

are the transfer functions for the primary plant and
primary controller, respectively.

In the frequency domain, the amplitude of the frequency response |Y (j𝜔)| becomes

|Y (j𝜔)| = |
Gp(j𝜔)Si(j𝜔)s

1 + Gp(j𝜔)Cp(j𝜔)T(j𝜔)s
||Di(j𝜔)|

= |
Gp(j𝜔)

1 + Gp(j𝜔)Cp(j𝜔)T(j𝜔)s
||Si(j𝜔)s||Di(j𝜔)|. (7.14)

Note that the input sensitivity function for the secondary plant plays an important role
in rejecting the disturbance occurring at the inner-loop system. In general, because the
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secondary control system has a much faster dynamic response than the primary control
system, the magnitude of the input sensitivity function is expected to be very small in
the low and medium frequency regions. Therefore, the cascade control structure is more
effective in rejecting disturbance that occurs in the secondary plant.

7.3.2 Simulation Studies

The following example illustrates the characteristics of frequency response and simula-
tion studies of the cascade control system for input disturbance rejection.

Example 7.3 Consider the position control of a DC motor in the presence of unknown
load TL. The relationship between the input voltage V (s) and the angular velocity of the
motor Ω(s) is described by the normalized Laplace transfer function:

Ω(s)
V (s)

= e−ds

s + 1
(7.15)

where a small time delay d = 0.0016 (s) is used to model the delay induced by the sensing
and actuation devices. The angular positionΘ(s) is related to the angular velocity through
integration:

Θ(s)
Ω(s)

= 1
s
.

Design a cascade control system for the position control of the DC motor and show its
advantages in terms of disturbance rejection of the unknown load.

Solution. For the cascade control system design, the secondary transfer function is

Gs(s) =
e−ds

s + 1
.

By neglecting the time delay and from the pole-assignment controller design, the propor-
tional controller gain and the integral time constant are

Kcs = 2𝜉𝑤ns − 1 = 34.35; 𝜏Is =
2𝜉𝑤ns − 1
𝑤2

ns
= 0.0550

where 𝜉 = 0.707 and 𝑤ns = 25. The primary transfer function is

Gp(s) =
1
s

and the proportional controller gain and the integral time constant are

Kcp = 2𝜉𝑤np = 3.535; 𝜏Ip = 2𝜉
𝑤np

= 0.5656

where 𝜉 = 0.707 and 𝑤np = 2.5.
With these PI controllers in a cascade structure, the sensitivity functions are calcu-

lated with their magnitudes of the frequency responses shown in Figures 7.5(a)–(d). The
complementary sensitivity function for the secondary plant [see Figure 7.5(a)] shows that
the inner-loop system has a very wide bandwidth, numerically determined as around
52 rad s−1, which corresponds to the magnitude of |T(j𝜔)s| =

1
√

2
. The input disturbance
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Figure 7.5 Sensitivity functions for the cascade control system (Example 7.3). (a) Complementary
sensitivity (secondary). (b) Input sensitivity (secondary). (c) Complementary sensitivity (primary).
(d) Input sensitivity (primary).

sensitivity for secondary plant [see Figure 7.5(b)] has a maximum amplitude of 0.029 at
𝜔 = 25 rad s−1, and its magnitude is small in the low and medium frequency regions, indi-
cating that the inner-loop controller has a good input disturbance rejection property for
disturbance occurring in these regions. For the primary control system, the complemen-
tary sensitivity [see Figure 7.5(c)] shows that the closed-loop bandwidth is significantly
reduced, which is numerically determined as 5.2 rad s−1 corresponding to the bandwidth
of the primary control system without much variation. The interesting point is that the
magnitude of the input sensitivity for the primary plant [see Figure 7.5(d)] has reduced
further when comparing it with Figure 7.5(b). The maximum amplitude is about 0.0016
and almost constant in the region 5 ≤ 𝜔 ≤ 18, which is about 5% of the maximum ampli-
tude of the input sensitivity for the inner-loop control system. This basically says that the
cascaded control structure will produce superior performance in disturbance rejection
for those occurring in the secondary system.

Closed-loop simulation is performed with sampling interval Δt = 0.0001 (s). The
reference signal is chosen to be zero to simulate the situation when we are trying to
maintain the motor angular position constant while adjusting the motor load. The load
disturbance is chosen to be a square wave signal with amplitude changing between 0
and 100. Figure 7.6(a) shows the control signal for the cascade system required to reject
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Figure 7.6 Cascade closed-loop response to square wave disturbance signal with amplitude 100 and
period of 10 (Example 7.3). (a) Control signal. (b) Output signal.

this disturbance and Figure 7.6(b) shows the closed-loop output response to the load
disturbance. Despite such a large load variation, the output variation is very small,
indicating superior property in load disturbance rejection.

In the implementation of the PI controller for the secondary system, we always use
a one-degree of freedom PI controller, which will put both proportional and integral
control on the feedback error to the inner-loop system. This implementation will give
us a wider bandwidth for the inner-loop complementary sensitivity T(j𝜔)s, leading to
better closed-loop control results.

We leave as an exercise the comparative studies of this example without the cascade
control structure, as illustrated by Figure 7.7. One might find that simple implementa-
tion of the primary controller in Example 7.3 would lead to an unstable system and one
would want to try a PID controller with filter so to take into consideration the dynamics
from the secondary system (see (7.15)).

7.3.3 Food for Thought

1. Would you be able to list three application examples where input disturbance existed
due to uncertainties to the system?

2. Will the cascade control structure improve the rejection of output disturbance occur-
ring at the inner-loop system?

+ +
+–

R(s) Y(s)
C(s)

Di(s)

Gs(s) Gp(s)

Figure 7.7 One controller for disturbance rejection.
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3. If the inner-loop system has sensor bias error, will this error affect the primary control
system? If so, in what way?

4. In general, in the implementation of cascade control system, we will not consider
implementing the IP controller for the secondary controller. Namely, we will put both
integral and proportional control on the feedback error of the inner-loop system.
Why do you think this is the case?

7.4 Cascade Control System for Actuator Nonlinearities

One of the important applications when using a cascade control system is to take its
advantages in dealing with actuator nonlinearities.

7.4.1 Cascade Control for Actuator with a Deadzone

A deadzone nonlinearity for an actuator, which is due to wear and tear, is described by
the following equations:

x(t) =
⎧
⎪
⎨
⎪
⎩

e(t) − 𝛿 e(t) > 𝛿
0 − 𝛿 ≤ e(t) ≤ 𝛿

e(t) + 𝛿 e(t) < 𝛿
(7.16)

where x(t) is the output of the deadzone and e(t) is the input to the deadzone. Figure 7.8
illustrates the deadzone nonlinearity with input signal e(t) and output signal x(t) from
the deadzone nonlinearity. For this type of nonlinearity, if we know the size of 𝛿, then it
can be pre-compensated for with its inverse function as,

e(t) =

{
ê(t) + 𝛿 ê(t) ≥ 0
ê(t) − 𝛿 ê(t) ≤ 0.

(7.17)

This pre-compensation will eliminate the effect of the deadzone on the control system.
However, the pre-compensation requires information about the size of the deadzone
that may not be readily available. Therefore, in order to obtain the parameter 𝛿, nonlinear
system identification is often used on the basis of experimental data collected from the
actuator. Additionally, the size of deadzone characterized by the parameter 𝛿 may vary
with respect to time. Thus, this parameter may need to be updated with experimental
data from time to time so to form adaptation.

Because feedback control provides a means to the inversion of the nonlinearity, it is
shown that through simulation studies it offers an efficient approach to compensate the

–δ
δ

x(t)

e(t)

Figure 7.8 Deadzone nonlinearity.
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effect of a deadzone when a secondary control loop is introduced for the actuator. This
is particularly effective when the size of the zone is varying.

In order to highlight the importance of cascade feedback control, the first example is to
illustrate the effect of a deadzone on closed-loop control performance without cascade
control, and the second example is to show the performance improvement when the
cascade control is introduced.

Example 7.4 The actuator for a physical system is described by the transfer function

Gs(s) =
0.5

s + 15
,

which is the secondary plant. The primary plant is described by the transfer function:

Gp(s) =
0.8

(0.1s + 1)(s + 0.1)
. (7.18)

There is a deadzone associated with the actuator.
Design a PI controller to control the primary system while neglecting the actuator

dynamics, and illustrate the performance deterioration due to the existing deadzone.
The desired closed-loop performance is specified with natural frequency 𝑤n = 1 and
damping coefficient 𝜉 = 0.707.

Solution. The transfer function Gp(s) has a dominant pole at −0.1 and small time
constant 0.1. By neglecting this small time constant and taking into consideration the
steady-state gain from the actuator, which is 0.5

15
, we obtain the approximate model for

the PI controller design as

G(s) = 0.5
15

0.8
s + 0.1

= b
s + a

.

With a = 0.1, b = 0.0267,𝑤n = 1, and 𝜉 = 0.707, we calculate the PI controller parame-
ters as

Kc =
2𝜉𝑤n − a

b
= 49.275; 𝜏I =

2𝜉𝑤n − a
𝑤2

n
= 1.314.

The closed-loop control system performance is simulated with the sampling interval
Δt = 0.001 (s) and a unit step reference signal entering the system at t = 0. Figures 7.9(a)
and (b) compare the closed-loop responses with and without the deadzone, where the
sizes of the zones are 𝛿 = 20 and 𝛿 = 40, respectively. From these figures, it is interesting
to note that with the PI controller there is no steady-state error in the output response and
the control signal automatically finds a new steady-state value to compensate for the
effect of the deadzone. However, the transient closed-loop control performance dete-
riorates with the introduction of the deadzone. Additionally, the larger the size of the
deadzone (𝛿), the worse the transient closed-loop control performance is.

Now, we assume that the actuator’s output x1(t) is directly measured, which can be
used to construct a cascade control system.

Example 7.5 We continue from Example 7.4. Instead of neglecting the actuator dynam-
ics, we use a PI controller to control the actuator and a PI controller for the primary plant.
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Figure 7.9 Closed-loop control response by neglecting the actuator dynamics (Example 7.4).
(a) Control signal. (b) Output. Key: line (1) response without the deadzone; line (2) response with the
deadzone (𝛿 = 20); line (3) response with the deadzone (𝛿 = 40).

To be consistent with Example 7.4, the natural frequency of the primary control loop is
selected as 1 and 𝜉 = 0.707, which is identical to the performance specification in the pre-
vious example. However, we will vary the natural frequency of the secondary control loop
to illustrate the effect of cascade control on the closed-loop performance in the presence
of a deadzone.

Solution.
Case A. In the first case, we select the natural frequency for the secondary control sys-
tem as 𝑤ns = 20, which is 20 times that used for the primary control system. With this
selection, the PI controller parameters are

Kcs =
2 × 0.707 × 20 − 15

0.5
= 26.56; 𝜏Is =

2 × 0.707 × 20 − 15
400

= 0.0332.

In the design of primary controller, the inner-loop dynamics are neglected. Therefore,
the PI controller is designed using the transfer function (7.18) for the primary plant,
leading to

Kcp = 2 × 0.707 × 1 − 0.1
0.8

= 1.6425; 𝜏Ip = 2 × 0.707 × 1 − 0.1
1

= 1.314.

The cascade control system is configured and simulated using the Simulink program, as
illustrated in Figure 7.10, where the PI controller with the velocity form from Tutorial 4.1
is used in the Simulink simulation. Note that in the inner-loop controller implemen-
tation, the proportional controller Kc is implemented on the feedback error to give an
extra boost to the secondary closed-loop bandwidth. This implementation is used for all
the cascade simulations. For simplicity, both input disturbance and measurement noise
are assumed zero. With this cascade control structure, closed-loop simulation studies are
performed with a deadzone where 𝛿 = 20 and 𝛿 = 40, respectively. Figure 7.11(a) shows
the inner-loop control signal response in the presence of a deadzone nonlinearity. It is
seen that the control signal converges to different values in steady state to compensate
for the effect of the nonlinearity and it exhibits discontinuity. As a result of the cascade
control, the effect of the deadzone is eliminated, as shown in the output response (see
Figure 7.11(b)).
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Figure 7.11 Closed-loop control response using cascade control (Example 7.5,𝑤ns = 20,𝑤np = 1).
(a) Control signal. (b) Output. Key: line (1) response without a deadzone; line (2) response with a
deadzone (𝛿 = 20); line (3) response with a deadzone (𝛿 = 40).
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Figure 7.12 Closed-loop control response using cascade control (Example 7.5,𝑤ns = 10,𝑤np = 1).
(a) Control signal. (b) Output. Key: line (1) response without a deadzone; line (2) response with a
deadzone (𝛿 = 40).

Case B. In the second case, we reduce the natural frequency for the inner-loop control
system from𝑤ns = 20 to𝑤ns = 10. Without a deadzone, this reduction does not result in a
significant change in the closed-loop control performance, as shown in Figures 7.12(a) and
(b). However, when the deadzone nonlinearity is introduced and in the worst case where
the size of the deadzone is 𝛿 = 40, this smaller closed-loop bandwidth for the inner-loop
system is no longer adequate to compensate for the effect of the deadzone nonlinearity,
and as a result, the closed-loop output becomes oscillatory, as illustrated in Figure 7.12(b).

7.4.2 Cascade Control for Actuators with Quantization Errors

Actuators with quantization errors are commonly encountered in control applications,
particularly when using low cost actuation devices. Analyzing quantization errors was
a classical topic (see Slaughter (1964), Miller et al. (1988)). Figure 7.13 illustrates quan-
tization of the input signal e(t) to produce the output signal x(t).
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Figure 7.13 Illustration of a
quantization of signal e(t) with
quantization interval q = 1.
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In this section, we will show how the quantization errors affect closed-loop control
performance and how a cascade control system will reduce the effects and improve the
closed-loop performance.

Example 7.6 Consider the system used in the original paper (Slaughter (1964)) for
study of quantization error, which has the following continuous time transfer function:

G(s) = 4500
s(s + 10)(s + 20)

. (7.19)

Design a PI controller for this system with the natural frequency 𝑤n = 1 and 𝜉 = 0.707.
Choosing sampling interval Δt = 0.01 (s), simulate the effect of quantization errors on
the closed-loop performance.

Solution. Although the system is of third order, it can be approximated by the following
first order transfer function by neglecting the two small time constants, which gives the
design model for the PI controller.

G(s) = 4500
s(s + 10)(s + 20)

= 22.5
s(0.1s + 1)(0.05s + 1)

≈ 22.5
s
.

With the choice of 𝑤n = 1 and 𝜉 = 0.707, the PI controller parameters are found as

Kc =
2𝜉𝑤n − a

b
= 2 × 0.707

22.5
= 0.0628; 𝜏I =

2𝜉𝑤n − a
𝑤2

n
= 2 × 0.707 = 1.414

where the natural frequency 𝑤n = 1, 𝜉 = 0.707, a = 0, and b = 22.5.
Now, the closed-loop control system is simulated using a unit step reference signal

entering the system at t = 0 and a step input disturbance signal (amplitude= 0.5)
entering the system at t = 20 (s). With Δt = 0.01 (s) and the quantization parameter
q = 0.1, the quantizer function in Simulink is inserted into the Simulink simulator before
the plant. Figure 7.14(a) shows the control signal calculated using the PI controller and
Figure 7.14(b) shows the plant input signal after the quantization of the control signal
with the addition of step disturbance. It is seen that the input signal only takes values in
multiples of q = 0.1. Figure 7.14(c) shows the closed-loop output with the quantization.
Due to the quantization process, there is a performance loss. A simulation study is
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Figure 7.14 Closed-loop control response with quantization on the input signal (Example 7.6,
q = 0.1). (a) Control signal. (b) Input signal. (c) Output. (d) Error.

performed for the control system without the quantizer. Figure 7.14(d) shows the error
signal between the outputs without quantization and with quantization. It is seen that
the magnitude of the error is about 0.3.

In the next example, we assume that the system in Example 7.6 can be decomposed
into an actuator and a plant, and the output from the actuator can be measured to form
a feedback control for the actuator. Then, we examine how the cascade control structure
improves the closed-loop control performance with the quantization.

Example 7.7 We assume that the actuator for the secondary plant has the transfer
function

Gs(s) =
45

s + 10
and the primary plant has the transfer function:

Gp(s) =
100

s(s + 20)
. (7.20)

The natural frequency for the primary control system is selected as 𝑤np = 1 and the sec-
ondary control system is selected as 𝑤ns = 30. The damping coefficient is 𝜉 = 0.707 for
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both loops. Show the effect of the cascade control structure on the closed-loop control
performance with the same quantization as Example 7.6.

Solution. With the selection of the natural frequency𝑤ns = 30 for the secondary control
system, the PI controller parameters are calculated as

Kcs =
2 × 0.707 × 30 − 10

45
= 0.7204; 𝜏Is =

2 × 0.707 × 30 − 10
900

= 0.0360.

The inner-loop dynamics are neglected in the primary controller design; however, there
is an approximation introduced to obtain the integrator model with gain equal to 5
(see (7.20)). We calculate the PI controller parameters for the outer-loop system, with
𝑤np = 1 and 𝜉 = 0.707, as

Kcp = 2 × 0.707
5

= 0.2828; 𝜏Ip = 2 × 0.707 = 1.414.

The cascade closed-loop control system is simulated with the same conditions as in
Example 7.6 where a step reference signal enters the system at t = 0 and a step input
disturbance with amplitude 0.5 enters the system at t = 20 (s). The Simulink Quantizer
function is inserted into the simulator before the secondary plant. Figure 7.15 shows the
cascade control structure used in the Simulink simulation.

Figure 7.16(a) shows the control signal generated by the secondary PI controller, and
Figure 7.16(b) shows the quantized control signal with the added input disturbance signal,
which becomes the input signal to the secondary plant. Figure 7.16(c) shows the plant
output. By comparing the control signal to the input signal, it is seen that the cascade
control system has taken quantization into consideration when calculating the controller
output. As a result, the performance degradation is minimal, as illustrated by the error
signal between the outputs of the cascade control systems without quantization and with
quantization, as shown in Figure 7.16(d).

Comparing the cascade control system with that given by Example 7.6 there are two
comments. The first is related to the disturbance rejection by comparing the output from
Figure 7.14(c) with that from Figure 7.16(c). It is seen that without the cascade control,
the effect of the disturbance is tremendous, which has a large magnitude of about 6 and
it takes about 5 s for the control system to reject the disturbance (see Figure 7.14(c)). In
contrast, the effect of the disturbance in the cascade control is almost invisible in the
output response [see Figure 7.16(c)]. The second comment is related to the performance
deterioration due to the quantization by comparing Figure 7.14(d) with Figure 7.16(d).
It is seen that without the cascade control, there is a large performance decay due to the
quantization, where the error signal fluctuated with magnitude of 0.3 [see Figure 7.14(d)].
In contrast, the performance decay due to the quantization is reduced significantly,
where the error signal fluctuated with magnitude of 0.005 [see Figure 7.16(d)]. In other
words, without the cascade control, the error due to quantization alone is increased
60 times.

7.4.3 Cascade Control for Actuators with Backlash Nonlinearity

A backlash nonlinearity is commonly encountered in actuation mechanisms. This type
of nonlinearity has some shared characteristics with the deadzone nonlinearity, such as
the existence of a deadband in the actuation. Assuming a deadband Δ for the backlash
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Figure 7.15 Simulink simulation program for cascade control with actuator quantization errors.
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Figure 7.16 Cascade closed-loop control response with quantization on input signal (Example 7.7,
q = 0.1). (a) Control signal. (b) Input signal. (c) Output. (d) Error.

nonlinearity, with the input signal to the backlash as e(t) and output as x(t), Figure 7.17
illustrates a backlash nonlinearity with gain (k = 1) and a deadzone (Δ = 40). As illus-
trated in the figure, following the path with the arrows pointed upwards, the output
signal is described by

x(t) = k
(

e(t) − Δ
2

)

and following the path with the arrows pointed downwards, the output signal is
described by

x(t) = k
(

e(t) + Δ
2

)
.

The output signal x(t) can switch between these two paths.
This type of nonlinearity causes sustained oscillations and affects the closed-loop con-

trol performance. The following example illustrates its effect on the closed-loop stability
and performance.

Example 7.8 In this example, the secondary system corresponding to the actuator
dynamics is described by the following transfer function:

Gs(s) =
0.5

s + 15
. (7.21)
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The primary system is an integrator with a small time delay described by the transfer
function:

Gp(s) =
0.01e−0.3

s
. (7.22)

The actuator has a backlash nonlinearity with deadband width Δ = 60. Design a PI
controller with damping coefficient 𝜉 = 0.707 and 𝑤n = 0.1 and 0.3 respectively. Use
Simulink simulation to show the effect of the backlash nonlinearity on the closed-loop
stability and performance. The simulation will be performed using sampling interval
Δt = 0.01 (s) and Simulink backlash block function. The reference signal is a unit step.

Solution. When the actuator dynamics is neglected, its steady-state value is still consid-
ered in the design of a PI controller. For this purpose, the approximate model used for the
design of a PI controller becomes:

G(s) ≈ 3.333 × 10−4

s
where the time delay is also neglected in the design.

Case A (𝑤n = 0.1). With 𝑤n = 0.1 and b = 3.333 × 10−4, the PI controller parameters
become:

Kc =
2 × 0.707𝑤n

b
= 424.2; 𝜏I =

2 × 0.707𝑤n

𝑤2
n

= 14.14.

Figures 7.18(a)–(c) compare the closed-loop performance of the control systems with and
without the backlash nonlinearity. It is seen that with the backlash nonlinearity, the
closed-loop control signal [Figure 7.18(a)] and output signal [Figure 7.18(c)] become oscil-
latory. After the backlash, the actual input signal to actuator is a modulated control
signal [see Figure 7.18(b)]. It is also interesting to note that the oscillation due to backlash
is sustained, which is seen from the error between the two output signals illustrated in
Figure 7.18(d). Here the error amplitude is 0.095 and the period is 36.4.

Case B (𝑤n = 0.3). Now, we increase the desired natural frequency 𝑤n for the PI con-
troller design. With𝑤n = 0.3 and b = 3.333 × 10−4, the PI controller parameters are cal-
culated as

Kc = 1272.6; 𝜏I = 4.7133.
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Figure 7.18 The effect of backlash on closed-loop performance (Example 7.8,𝑤n = 0.1). (a) Control
signal. (b) Input signal. (c) Output. (d) Error. Key: line (1) control system with backlash; line (2) control
system without backlash.

For this particular example, when compared with case A, Kc is three times larger and 𝜏I
is three times smaller.

A closed-loop simulation is performed with and without the backlash nonlinearity.
Figures 7.19(a)–(c) compare the closed-loop control results. It is seen that with the larger
desired natural frequency, essentially a faster closed-loop response speed, sustained oscil-
lation due to the backlash nonlinearity still exists; however, its amplitude and period have
changed. By examining the error signal between the two outputs (see Figure 7.19(d)), we
can find that the amplitude of the error is 0.042 and the period of oscillation is 11.44.
Therefore, by increasing the bandwidth of the closed-loop control system, the amplitude
of the error caused by the backlash is reduced; however the frequency of the oscillation is
increased.

It is worthwhile noting that the bandwidth of the closed-loop system (𝑤n) in
Example 7.8 is limited by the unmodeled dynamics in the system such as the neglected
actuator dynamics and the time delay. One can verify that if𝑤n is increased to 1 for this
particular system, the closed-loop system has a sustained oscillation even without the
backlash, which is caused by the unmodeled dynamics in the system. When𝑤n exceeds
1, the closed-loop system becomes unstable even without the backlash nonlinearity.

Example 7.8 shows how the bandwidth of the closed-loop feedback control system
affects the closed-loop performance in the presence of a backlash nonlinearity. The
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Figure 7.19 The effect of backlash on closed-loop performance (Example 7.8,𝑤n = 0.3). (a) Control
signal. (b) Input signal. (c) Output. (d) Error. Key: line (1) control system with backlash; line (2) control
system without backlash.

larger the closed-loop bandwidth is, the smaller the magnitude and the higher frequency
of the periodic oscillation will be. The next example will illustrate that when using cas-
cade control, a secondary controller is used to control the actuator with a much larger
natural frequency, leading to a significant reduction in the amplitude of the oscillation
and an increase of the oscillation frequency.

Example 7.9 We continue to use the system described by the transfer functions with
(7.21) and (7.22), together with the backlash nonlinearity with deadband Δ = 60. Design
a cascade control system with the bandwidth 𝑤ns = 20 for the secondary system and the
bandwidth 𝑤np = 0.1 and 0.3 for the primary system, respectively. The damping coeffi-
cient is 𝜉 = 0.707 for both secondary and primary control systems. Simulate the cascade
closed-loop control system with the backlash nonlinearity, where the sampling interval
Δt = 0.01.

Solution. From the transfer function model (7.21), we have b = 0.5 and a = 15. With the
desired natural frequency 𝑤ns = 20, the PI controller for the actuator has the following
proportional gain and integral time constant,

Kcs =
2𝜉𝑤ns − a

b
= 26.56; 𝜏Is =

2𝜉𝑤ns − a
𝑤2

ns
= 0.0332.
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Case A (𝑤np = 0.1). For the primary plant, with 𝑤np = 0.1, a = 0, and b = 0.01, the PI
controller parameters are calculated as

Kcp =
2𝜉𝑤np

b
= 14.14; 𝜏Ip = 2𝜉

𝑤np
= 14.14,

where the time-delay is neglected in the design and the steady-state gain of the inner-loop
system is taken to be one.

The Simulink backlash function is inserted into the simulator before the secondary
plant. Figure 7.20 shows the cascade control structure used in the Simulink simulation.

Now, with the reference signal being a unit step, sampling interval Δt = 0.01, and actu-
ator backlash with deadband Δ = 60, the cascade control system is simulated with the
Simulink program illustrated in Figure 7.20. Figures 7.21(a)–(c) compare the cascade con-
trol system with and without the backlash nonlinearity. It appears that, in the presence
of the backlash nonlinearity, both the control signal [see Figure 7.21(a)] and the input
signal to the actuator [see Figure 7.21(b)] are noisy. However, the output of the primary
plant is very close to that simulated without the backlash nonlinearity, and it is hard to
distinguish them by visual inspection [see Figure 7.21(c)]. The error between the two out-
put responses is shown in Figure 7.21(d). At the steady state, the amplitude of the error is
0.00015, which is 633 times smaller than the control system without cascade control. In
fact, the cascade control system does not eliminate the periodic oscillation caused by the
backlash nonlinearity. However, because of the much wider bandwidth used in the sec-
ondary control system, the period of the sustained oscillation has been reduced to 0.3, as
shown in Figure 7.22, by the segments of the control signal and the input signal. The control
signal is still a sinusoidal signal and the input signal after the backlash is a modulated
control signal.

Case B (𝑤np = 0.3). As an exercise, one can verify that when the natural frequency for
the primary controller is increased to 0.3, the amplitude of the error between the outputs
with and without the backlash nonlinearity is reduced to 0.0001288 and the period of the
sustained oscillation is reduced to 0.28. Thus, it is less significant in error reduction when
increasing the outer-loop bandwidth.

One can also verify that when the bandwidth 𝑤ns of the secondary controller is
increased from 20 to 30 while maintaining𝑤np = 0.1, the amplitude of the error between
the outputs with and without the backlash is reduced to 0.00007898 which is almost half
of that presented in case A and the period of oscillation is reduced to 0.16.

7.4.4 Food for Thought

1. In the cascade control structure, the nonlinearities are assumed in the actuator. Do
you agree that one of the key reasons for the successful cascade nonlinear compen-
sation is due to a much wider bandwidth used for the inner-loop control system?

2. In the three classes of nonlinearities considered, from the control signals to the pri-
mary plant, do you observe the nonlinear inversion compensation? Is this nonlinear
inversion predominantly caused by high gain feedback control?

3. Would you say that the backlash nonlinearity is harder to deal with because of the
periodic oscillation?

4. Which nonlinearity is easiest to compensate?
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Figure 7.20 Simulink simulation program for cascade control with a backlash nonlinearity in the actuator.
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Figure 7.21 The effect of backlash on cascaded closed-loop performance (Example 7.9,𝑤ns = 20 and
𝑤np = 0.1). (a) Control signal. (b) Input signal. (c) Output. (d) Error. Key: line (1) control system with
backlash; line (2) control system without backlash.
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Figure 7.22 Segment of data to illustrate the effect of backlash on cascaded closed-loop performance
(Example 7.9). (a) Control signal. (b) Input signal.
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7.5 Summary

Cascade control systems are widely used in control engineering applications. The main
reasons behind the utilization of cascade control systems include the simplification of
control system design because a complex system is decomposed into several subsystems
and each of them can be described by a first order or a second order model, superior
performance in disturbance rejection and compensations of actuator nonlinearity.

The other important aspects of this chapter is summarized as follows.

• The design of a cascade control system starts at the control system design for the
inner-loop system. The inner-loop closed-loop system dynamics are commonly
neglected in the design of outer-loop control system. However, if a proportional
controller is used for the inner-loop control, then the steady-state gain of the
inner-loop system needs to be considered in the outer-loop controller design.

• The closed-loop performance of the cascade control system is dependent on the rel-
ative bandwidth between the inner-loop and outer-loop systems. For the inner-loop
controller, we will choose the desired closed-loop poles corresponding to much faster
dynamic response speed than those used in the outer-loop control system.

• The effect of actuator nonlinearities can be compensated using a PI controller
designed for the actuator.

• The input disturbance occurred at the inner-loop system is much more effectively
compensated in the cascade control structure.

7.6 Further Reading

1. Qualitative analysis of cascade control was introduced in Franks and Worley
(1956). The improved disturbance rejection using cascade control was discussed in
Krishnaswamy et al. (1990), Lee et al. (1998), Lee et al. (2002).

2. Quantization error analysis was introduced in Slaughter (1964) and Miller et al.
(1988). Nonlinear oscillations from the backlash nonlinearity was analyzed in
Moradi and Salarieh (2012). Adaptive control of systems with backlash was pro-
posed in Tao and Kokotovic (1993). Adaptive nonlinear control of system with
unknown deadzone was proposed in Zhou and Shen (2007). Nonlinear control of
gear transmission servo systems with backlash nonlinearity was proposed in Shi
and Zuo (2015). Application examples include cascade control of hydraulic actuator
(Cunha et al. (2002)).

3. Tuning of cascade PID control systems was proposed in Wang et al. (1995), Visioli
and Piazzi (2006), Dittmar et al. (2012) and Alfaro et al. (2009).

4. PID control of systems with hysteresis was designed and analyzed in Jayawardhana
et al. (2008).

5. Electrical drives and power converters typically use cascade PI control structures
(Wang et al. (2015)).

6. Cascade control system with inner-loop sliding mode control and outer-loop PI con-
trol was proposed for induction motor control in Mishra et al. (2018) and power
converter control in Saeed et al. (2018).
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Problems

7.1 An electro-mechanical system is controlled by a cascade PI controller, where the
mathematical models for the secondary and primary systems are,

Gs(s) =
1

s + 1
; Gp(s) =

0.1
s + 0.1

Choose the proportional controller gain K such that the secondary system has a
closed-loop pole at −6 and design the primary PI controller by finding its propor-
tional gain Kc and integral time constant 𝜏I . All desired closed-loop poles for the
outer-loop system are chosen to be −𝜆 (𝜆 > 0).

7.2 Continue from Prob 7.1. Because of the neglected dynamics from the inner-loop con-
trol system, there is a range of 𝜆 for the closed-loop stability. Use Routh-Hurwitz
stability criterion to determine the range of 𝜆 for the stability of the closed-loop
system.

7.3 Continue from Prob 7.1. Suppose that there is a step input disturbance entering the
system at the inner-loop plant with amplitude 2. Find the transfer function between
the input disturbance and the output (primary variable), and show that the distur-
bance will be rejected without steady-state errors if a correct 𝜆 is selected.

7.4 A dynamic system is described by the following transfer functions that are used for
the design of a cascade control system,

Gs(s) =
−s + 10

(s + 10)(s + 3)
;Gp(s) =

0.1
s(s + 2)

1. Find the proportional controller K such that the secondary control system has a
pair of identical real poles on the left half of the complex plane.

2. Design a PID controller with filter for the outer-loop system with all closed-loop
poles positioned at −1.

3. Use Nyquist stability criterion to check if the cascade control system is stable.

7.5 In the majority of applications, we would like to have a PI controller for the sec-
ondary control system as well as for the primary control system. Design cascade
control systems for the following cases.
1. The system transfer functions are

Gs(s) =
1

(s + 1)
;Gp(s) =

0.1
s + 0.1

.

The closed-loop poles for the secondary system are all positioned at −6; and for
the primary system are all positioned at −1. Find the transfer function between
the input disturbance and the output. Determine the gain margin and phase
margin for the cascade control system.

2. The system transfer functions are

Gs(s) =
−5

(s + 30)(s + 2)
;Gp(s) =

0.1
s(s + 4)

.
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The closed-loop poles for the inner-loop system are all positioned at −6; and
for the outer-loop system are all positioned at −0.6. Find the transfer function
between the input disturbance and the output. Determine the gain margin and
phase margin for the cascade control system.

7.6 A type of heat exchanger systems is to transfer heat from a hot fluid to a cooler
fluid in which the temperature control of outlet fluid is of prime importance. Based
on experimental data, the mathematical models of a heat exchanger system were
obtained in Khare and Singh (2010). The process model for the heater exchanger is,

Gp(s) =
50e−ds

30s + 1
the sensor dynamics with the thermocouple is,

Gm(s) =
0.16

10s + 1
the actuator is the combination of a converter and valve, having the transfer func-
tion model:

Gs(s) =
0.75 × 0.13

3s + 1

1. Design a cascade control system for this heater exchanger with all the closed-loop
poles of the secondary system positioned at −1.5 and the primary system at
−0.1. Here, the secondary PI control system is to control the actuator based
on the transfer function Gs(s) to overcome the nonlinearity of the valve such as
quantization errors. The primary PID control system is designed based on the
process model Gp(s) and the sensor model Gm(s). In the design, the time delay d
is neglected.

2. Determine the gain margin, phase margin and delay margin for the cascade con-
trol system using Nyquist diagram.

3. Simulate the cascade closed-loop PID control performance for disturbance rejec-
tion and reference following with time delay d = 2. The sampling intervalΔt = 1.
The implementation of inner-loop PI controller will put both proportional and
integral control on the feedback error. However, to reduce overshoot in the
reference response, the implementation of the primary controller will put both
proportional and derivative control on the output only.
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8

PID Controller Design for Complex Systems

8.1 Introduction

The PID controller design methods discussed in the previous chapters are either model
based approaches or rule based approaches. It is clear that when using a model based
approach, a first order model yields a PI controller and a second order model yields a PID
controller. In some applications, the first order and second order models are basically
an approximation to the actual physical systems. In other applications, the underlying
physical systems are complex and are of higher order. This chapter studies how to design
PID controllers for higher order systems directly using frequency response data.

8.2 PI Controller Design via Gain and Phase Margins

This section presents PID controller design via specification of gain margin and phase
margin.

8.2.1 PI Controller Design Using Gain Margin and Phase Margin
Specifications

The starting point is to assume that the frequency response of a desired open-loop trans-
fer function Ld(j𝜔) at a specific frequency point 𝜔 = 𝜔1 is available. It is also assumed
that the frequency response of the system G(j𝜔) is available at 𝜔 = 𝜔1.

At the frequency 𝜔1, the actual open-loop frequency response with a PI controller is

Ld(j𝜔1) =
c1j𝜔1 + c0

j𝜔1
G(j𝜔1).

Letting the actual open-loop frequency response equal its desired counterpart leads to
c1j𝜔1 + c0

j𝜔1
G(j𝜔1) = Ld(j𝜔1) (8.1)

which is

c0 + jc1𝜔1 =
j𝜔1Ld(j𝜔1)

G(j𝜔1)
= Real

[ j𝜔1Ld(j𝜔1)
G(j𝜔1)

]
+ jImag

[ j𝜔1Ld(j𝜔1)
G(j𝜔1)

]
. (8.2)

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems



�

� �

�

234 8 PID Controller Design for Complex Systems

Comparing the left-hand side with the right-hand side of (8.2) gives

c1 = 1
𝜔1

Imag
[ j𝜔1Ld(j𝜔1)

G(j𝜔1)

]
(8.3)

c0 = Real
[ j𝜔1Ld(j𝜔1)

G(j𝜔1)

]
. (8.4)

From c0 and c1, the PI controller parameters are calculated using the following
relationships

Kc = c1; 𝜏I =
c1

c0
.

One of the choices for the frequency response of a desired open- loop transfer func-
tion Ld(j𝜔) is to specify the gain margin for the PI control system. Say, if one wishes to
have a gain margin of 2, then Ld(j𝜔1) = −0.5. However, the frequency 𝜔1 still needs to
be determined, where𝜔1 in this specification is the cross-over frequency for the desired
closed- loop system. Had a proportional controller C(s) = Kc been used in the design,𝜔1
could be chosen as the cross-over frequency for the G(j𝜔). Following the same practice,
because of the 𝜋

2
phase-lag introduced by the integrator in the controller, a reasonable

practice is to select 𝜔1 in the vicinity of the frequency 𝜔𝜋

2
where G(j𝜔) for the first time

crosses the imaginary axis. Note that 𝜔1 ≠ 𝜔𝜋

2
because at 𝜔𝜋

2
, Real(G(j𝜔)) = 0, conse-

quently resulting in c0 = 0. A practice is to set 𝜔1 = 1.01𝜔𝜋

2
.

Similar to the specification of the desired gain margin, the phase margin can also
be used to specify the desired open-loop frequency response Ld(j𝜔1). It is known that
|Ld(j𝜔)| = 1 at the frequency (say𝜔1) that defines the phase margin. Hence, by denoting
the phase margin as 𝜃, then

Ld(j𝜔1) = − cos 𝜃 − j sin 𝜃.

8.2.2 Design Examples

The following example demonstrates the performance of the PI controller when using
gain margin and phase margin specifications.

Example 8.1 Consider a system with the following transfer function,

G(s) = 1.2(−s + 1)
(2s + 1)2(s + 1)

. (8.5)

Choose the frequency 𝜔1 = 𝜔𝜋

2
+ 0.01𝜔𝜋

2
.

1. Selecting gain margin kg = 2 and 4 respectively, design a PI controller with these two
gain margin specifications and evaluate the closed-loop performance.

2. Selecting phase margin 𝜃 = 𝜋

3
, design a PI controller with the phase margin and sim-

ulate the closed-loop response.

Solution. We will first determine the frequency 𝜔1 by presenting the real part of G(j𝜔)
as shown in Figure 8.1(a). By inspection of Figure 8.1(a), the parameter 𝜔1 is found to be
0.28 × 1.1 = 0.2828. With this frequency parameter, G(j𝜔1) = −0.009 − j0.9091.
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Figure 8.1 Illustration of the design process and closed-loop responses (Example 8.1) when using the
gain margin. (a) Determining 𝜔1. (b) Output signal. (c) Control signal. Key: line (1) with a specified gain
margin of 2; line (2) with a gain margin of 3.

Design using the gain margin. The specification of a gain margin of 2 (Ld(j𝜔1) = −0.5)
gives

j𝜔1Ld(j𝜔1)
G(j𝜔1)

= 0.1555 + j0.0015

which leads to c0 = 0.1555 and c1 = 0.0015
0.2828

= 0.0054. Hence, the proportional controller
gain Kc = 0.0054 and the integral time constant 𝜏I = 0.035.

Repeating the above computation with the specification of a gain margin of
3 (Ld(j𝜔1) = −1∕3), it can verified that

Kc = 0.0036; 𝜏I = 0.035.

Here Kc has been reduced while 𝜏I stays the same.
Closed-loop simulation studies have been performed for both controllers where a unit

step reference signal is introduced at time t = 0 and an input step disturbance with mag-
nitude 2 is injected at t = 100 (s). Figures 8.1(b)–(c) show the closed-loop output responses
and the control signal responses. It is seen that with a larger gain margin, the closed-loop
system response is slower and less oscillatory.
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Design using phase margin. By choosing the desired phase margin 𝜃 = 𝜋

3
, the desired

open-loop frequency response at 𝜔1 is

Ld(j𝜔) = − cos 𝜋
3
− j sin 𝜋

3
= −0.5 − j0.866.

Using this information together with the information of 𝜔1 and G(j𝜔1), we calculate
j𝜔1Ld(j𝜔1)

G(j𝜔1)
= 0.1529 + j0.2709

yielding

c0 = 0.1529; c1 = 0.2709
0.2828

= 0.958.

The PI controller parameters are Kc = 0.958 and 𝜏I =
c1

c0
= 6.267. Apparently, the design

using phase margin specification gives a larger proportional gain and integral time con-
stant. Closed-loop simulation studies have been performed for this PI control system for
evaluation of reference following and input disturbance rejection. Figure 8.2(a) shows the
output response and Figure 8.2(b) shows the control signal response. It is seen that the
closed-loop response speed is faster than the closed-loop systems designed using the gain
margin specification in the first part of this example.

The following example is to show how the PI controller is used to control a higher
order complex system with time delay, which is very difficult if other design methods
are used for this case. The closed-loop performance when using the specification of gain
margin is left as an exercise (see Problem 8.1).

Example 8.2 The transfer function of a complex system is given by

G(s) = −3(−s2 + s + 1)
(10s + 1)(8s + 1)(6s + 1)(5s + 1)

e−6s. (8.6)

Design a PI controller for this system by specifying the desired phase margin with 𝜃 = 𝜋

3
and evaluate the closed- loop performance.
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Figure 8.2 Closed-loop responses (Example 8.1) when using the phase margin. (a) Output signal.
(b) Control signal.
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Figure 8.3 Illustration of the design process and closed-loop responses (Example 8.2) when using a
phase margin. (a) G(j𝜔). (b) Determining 𝜔1. (c) Output. (d) Control.

Solution. The frequency response G(j𝜔) is shown in Figure 8.3(a) and its real part is
shown in Figure 8.3(b), from which the frequency𝜔1 = 0.048 is chosen, leading to G(j𝜔1) =
−0.6442 + j2.2672. With the given desired phase margin 𝜃 = 𝜋

3
, the desired open-loop

frequency response at 𝜔1 is specified as

Ld(j𝜔) = − cos 𝜋
3
− j sin 𝜋

3
= −0.5 − j0.866.

Then the following quantity is calculated:
j𝜔1Ld(j𝜔1)

G(j𝜔1)
= −0.0148 − j0.0143.

This gives c0 = −0.0148 and c1 = −0.2955. Finally, Kc = −0.2955 and 𝜏I = 20.0154.
To evaluate the closed-loop performance of the PI control system, simulation studies

are performed using unit step reference input and a step disturbance with magnitude of
2 entering the system at 200 (s). The proportional control is implemented on the output
only. Figures 8.3(c) and (d) show the closed-loop control results. The results show that
even though the process is higher order and complex, the PI controller produces stable
and satisfactory results. However, the response to the input disturbance is quite slow.

It must be emphasized that the PI controller design using the specification of either
gain margin or phase margin does not work for severely underdamped systems and
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unstable systems. This is because for these classes of systems, the desired open-loop
frequency response Ld(j𝜔) must be calculated in a more sophisticated way to reflect
the undesired process characteristics. Problem 8.1 is left for the verification of these
statements.

8.2.3 Food for Thought

1. If we are to fit the frequency response of a higher order transfer function with a first
order plus delay model or a second order plus delay model, how would you propose
to estimate the time delay parameter d?

2. Would you say that the stability of the closed-loop system is not guaranteed when a
PID controller is designed using an approximate model?

3. Is it correct that the closed-loop stability is checked against the original higher order
system?

4. If the amplitude of the frequency response of the original system, |G(j𝜔)|, asymptot-
ically decays as𝜔 increases, do you think that the PI controller design methods using
the specification of gain margin or phase margin will guarantee closed-loop stability
for the original system?

5. Will the amplitude of the frequency response of the original system containing a pair
of underdamped modes asymptotically decay as 𝜔 increases?

8.3 PID Controller Design using Two Frequency Points

This section discusses an intuitive and simple approach to PID controller design
from the perspective of curve fitting of the frequency response of the loop transfer
function.

8.3.1 Finding the PID Controller Parameters

As we know from the PI controller design, the process frequency response informa-
tion at one frequency 𝜔1 is sufficient to find the two parameters (Kc and 𝜏I). Because
there are three parameters contained in a PID controller, naturally it requires the pro-
cess frequency response information at two frequencies𝜔1 and𝜔2 (𝜔1 ≠ 𝜔2 ) to uniquely
determine the three parameters (Kc, 𝜏I and 𝜏D).

The starting point is to assume that the desired open-loop frequency response Ld(j𝜔)
is specified at𝜔 = 𝜔1 and𝜔 = 𝜔2, and the plant frequency response G(j𝜔) is also known
at 𝜔 = 𝜔1 and 𝜔 = 𝜔2. Furthermore, we assume that 𝜔1 < 𝜔2. The specifications of the
Ld(j𝜔), and the frequency points 𝜔1 and 𝜔2 will be discussed later.

For a PID control system, the actual open-loop frequency response at 𝜔1 is

L(j𝜔1) =
c2(j𝜔1)2 + c1j𝜔1 + c0

j𝜔1
G(j𝜔1)

and at 𝜔2 is

L(j𝜔2) =
c2(j𝜔2)2 + c1j𝜔2 + c0

j𝜔2
G(j𝜔2).
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Thus, by letting

L(j𝜔1) = Ld(j𝜔1) (8.7)
L(j𝜔2) = Ld(j𝜔2) (8.8)

and comparing their real and imaginary components, the following linear equations
hold:

c1𝜔1 = Imag [X(j𝜔1)] (8.9)
−c2𝜔

2
1 + c0 = Real [X(j𝜔1)] (8.10)

−c2𝜔
2
2 + c0 = Real [X(j𝜔2)] (8.11)

where for notational simplicity,

X(j𝜔1) =
j𝜔1Ld(j𝜔1)

G(j𝜔1)
(8.12)

X(j𝜔2) =
j𝜔2Ld(j𝜔2)

G(j𝜔2)
. (8.13)

From (8.9), the coefficient c1 is calculated as

c1 =
Imag [X(j𝜔1)]

𝜔1
. (8.14)

From (8.10) and (8.11), the coefficients c2 and c0 are calculated by solving the two linear
equations, giving

c2 =
Real [X(j𝜔2)] − Real [X(j𝜔1)]

𝜔2
1 − 𝜔

2
2

(8.15)

c0 = c2𝜔
2
1 + Real [X(j𝜔1)]. (8.16)

Finally, the PID controller parameters are given in relation to c2, c1, c0 as

Kc = c1; 𝜏I =
c1

c0
; 𝜏D =

c2

c1
.

Because there are two frequencies 𝜔1 and 𝜔2 used in the design, more thought is
required in the selection of not only Ld(j𝜔) at 𝜔1 and 𝜔2, but also the frequencies 𝜔1
and 𝜔2 themselves. Naturally, one assumes that the desired gain margin and phase mar-
gin are good candidates for the selection of Ld(j𝜔). However, the challenge is to find the
suitable values for the desired gain margin and phase margin together with 𝜔1 and 𝜔2.

The following example is used to demonstrate the difficulties in specifying Ld(j𝜔).

Example 8.3 Consider PID controller design for the higher order system used in
Example 8.2 [see the transfer function given by (8.6)]. Choosing 𝜔1 = 0.0485, 𝜔2 = 0.108
(cross-over frequency of G(j𝜔)), and desired phase margin 𝜃 = 𝜋

3
, design a PID controller

by varying the desired gain margin.

Solution. It can be easily verified that for any choice of desired gain margin less than
1∕0.3 = 3.33, the derivative gain 𝜏D is negative. As in practice, a derivative filter is often
used in conjunction with the derivative gain 𝜏D, which has the form 𝜏Ds

0.1𝜏Ds+1
. Then with
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Figure 8.4 Comparison of closed-loop responses of PI and PID control systems (Example 8.3).
(a) Output response. (b) Control signal. Key: PID control system (solid-line), PI control system
(dashed-line).

the negative 𝜏D, the filter becomes unstable. This definitely renders the controller better
off without the derivative term.

By increasing the desired gain margin to 5, together with 𝜔1 = 0.0485, 𝜔2 = 0.108, and
the desired phase margin 𝜃 = 𝜋

3
, the PID controller parameters are calculated as

Kc = −0.2955; 𝜏I = 18.8527; 𝜏D = 1.3110.

In comparison to the PI controller designed in Example 8.2, the proportional gain is the
same, however the integral time constant is reduced. Closed-loop system simulation is
performed with proportional control implemented on the output only. The derivative fil-
ter with time constant 0.1𝜏D is used in the implementation of derivative control. Figure 8.4
compares the closed-loop responses of the PID control system with those of the PI control
system from Example 8.2. It is seen that the performance improvement using the PID con-
troller is very small in comparison to the one with the PI controller. Again, the closed-loop
response to input disturbance is oscillatory and slow.

8.3.2 Desired Closed-loop Performance Specification using
Two Frequency Points

It is apparent that the desired closed-loop performance specification via choice of Ld(j𝜔)
plays an important role in the design of a PID controller using the frequency response.
The parameters such as gain margin and phase margin are relatively easy to specify
in terms of closed-loop stability; however, it is difficult to relate them to the actual
closed-loop response performance for reference following and disturbance rejection.

Going back to the drawing board, it is necessary to find a systematic and yet a sim-
ple way to specify Ld(j𝜔) such that the closed-loop response performances for refer-
ence following and disturbance rejection are met. Another aspect in PID controller
design apart from the performance specification is that, because of the limited complex-
ity of the controller structure, there is a difference between what is desired and what is
achievable. In other words, what we ask for in a PID control system is not necessarily
achievable.
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One of the effective ways to specify the desired open-loop frequency response Ld(j𝜔) is
via the specification of the desired frequency response of the complementary sensitivity
function Td(j𝜔), where

Td(j𝜔) =
Ld(j𝜔)

1 + Ld(j𝜔)
.

Hence, if Td(j𝜔) is specified, then Ld(j𝜔) is calculated as

Ld(j𝜔) =
Td(j𝜔)

1 − Td(j𝜔)
. (8.17)

The properties of Td(j𝜔) are directly related to reference following and noise atten-
uation, as well as indirectly to disturbance rejection via the frequency response of the
desired sensitivity function

Sd(j𝜔) = 1 − Td(j𝜔).

What are the key characteristics of a complementary sensitivity function? There are four
basic characteristics listed as below.

1. The desired complementary sensitivity function Td(s) must have all poles on the
left-hand side of the complex plane.

2. With a PID controller in the feedback control, the complementary sensitivity Td(s)
must be equal to unity at s = 0.

3. The plant unstable zeros contained in G(s) will be in the presence of Td(s) because
the plant unstable zeros cannot be changed through feedback control.

4. The plant time delay e−ds will appear in the desired complementary sensitivity func-
tion because the plant time delay can not be changed through feedback control.

All the characteristics can be easily verified with closed-loop transfer function calcu-
lations, which is left as an exercise.

In view of these characteristics of the desired complementary sensitivity function,
without a complete knowledge about the system transfer function G(s), it could be a dif-
ficult task to choose a suitable Td(s) in its own right. This task could become even more
difficult when the plant frequency information G(j𝜔) is given at one or two frequency
points.

The specification of Td(s) is proposed as follows so that the PID controller design using
frequency response data remains effective while maintaining the original simplicity. This
specification was originally proposed in Wang et al. (1995) and was described in more
detail in Wang and Cluett (2000).

We assume that the plant transfer function G(s) is stable with all poles on the
left-half complex plane and the system has no severely underdamped poles. With
these assumptions, the behaviour of a control signal to a step reference signal in an
over-damped closed-loop control system can be approximated by a first order response.
This behaviour is then described by the desired control sensitivity function Su(s) with
the first order transfer function:

Su(s) =
1

Kp

1
𝛽
𝜏cls + 1

𝜏cls + 1
(8.18)
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where 𝜏cl > 0 is the desired closed-loop time constant for the control signal, the param-
eter 𝛽 is selected so that 𝜏cl

𝛽
> 0 is approximately equal to the dominant time constant of

the system, Kp is the steady-state gain of the system. When the dominant time constant
of the system is unknown, which is the case for using the plant frequency response data
in the design, the parameter 𝛽 is a tuning parameter.

The desired complementary sensitivity function follows from the desired control sen-
sitivity function in the form:

Td(s) = Su(s)G(s) = 1
Kp

1
𝛽
𝜏cls + 1

𝜏cls + 1
G(s) (8.19)

Clearly, Td(s) is stable as 𝜏cl > 0 and the transfer function G(s) is assumed to be stable;
Td(s) at steady-state (s = 0) is equal to unity because of the factor 1

Kp
, where Kp is the

steady-state gain of G(s); and the time delay or zeros in G(s) are contained in Td(s).
Therefore, all four characteristics of Td have been included in this simple specification.

If the dominant time constant of the plant is estimated (or known) as 𝜏op, then the
desired closed-loop time constant 𝜏cl is chosen to be 𝛽𝜏op, where 𝛽 =

𝜏cl

𝜏op
.

8.3.3 Design Examples

Example 8.4 Consider PID controller design for the higher order system used
in Example 8.2 (see the transfer function given by (8.6)). Choosing 𝜔1 = 0.04801,
𝜔2 = 0.108 (cross-over frequency of G(j𝜔)), which are the same as those used
in Example 8.3. Fixing 𝜏cl = 3, investigate the effect of 𝛽 on the closed-loop performance
in terms of reference following and disturbance rejection.

Solution. Because the system transfer function is known, the desired complementary
sensitivity function Td(s) is seen to be, with the specification of 𝜏cl = 3,

Td(s) =
1

Kp

𝜏cl

𝛽
s + 1

𝜏cls + 1
G(s) =

3
𝛽

s + 1

3s + 1
(−s2 + s + 1)

(10s + 1)(8s + 1)(6s + 1)(5s + 1)
e−6s

Here, the choice of 𝜏cl = 3 adds a small time constant to the desired closed-loop system,
which essentially does not change much the desired closed-loop response speed. However,
the specification of 𝜏cl∕𝛽 will add a lead element to Td(s), which will have an impact on
the desired closed-loop response speed.

We will first consider the selection of 𝛽 = 3
10

. This leads to pole-zero cancelation for the
pole corresponding to the largest time constant 10. With this specification, the desired
loop frequency responses at 𝜔1 and 𝜔2 are calculated using (8.17),

Ld(j𝜔1) = −0.3986 − j0.6717; Ld(j𝜔2) = −0.3420 − j0.1166.
The calculation of PID controller coefficients c2, c1, c0 follows from (8.14)–(8.16) based on
which the PID controller parameters are obtained as,

Kc = −0.2837; 𝜏I = 22.1468; 𝜏D = 7.2192. (8.20)
For comparison purpose, we investigate the effect of 𝛽 on the closed-loop response. With
the choice of 𝛽 = 3

20
, the PID controller parameters are calculated as

Kc = −0.4083; 𝜏I = 20.3657; 𝜏D = 8.4836.
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Figure 8.5 Comparison of closed-loop responses of PID control systems with different performance
specifications (Example 8.4). (a) Output response. (b) Control signal. Key: line (1) 𝜏cl = 3 and 𝛽 = 3

10
;

line (2) 𝜏cl = 3 and 𝛽 = 3

20
; line (3) 𝜏cl = 3 and 𝛽 = 3

30
.

Further decrease of 𝛽 to 𝛽 = 3
30

leads to the PID controller parameters as

Kc = −0.4526; 𝜏I = 14.4588; 𝜏D = 10.4671.

Clearly, with the decrease of 𝛽, the proportional control gain Kc has increased in magni-
tude, and integral time constant 𝜏I has reduced and the derivative gain 𝜏D has increased.
The parameters of the PID controller indicate that the closed-loop responses become faster
as 𝛽 decreases. Figure 8.5 compares the closed-loop simulation results for the three cases
for a unit step response and an input disturbance rejection where the disturbance magni-
tude is 2 entering the system at t = 200 (sec). In comparison with the closed-loop response
when using the gain and phase margin specifications (see Example 8.3 and Figure 8.4), it is
clearly seen with this specification that the closed-loop response to the input disturbance
has been significantly improved.

Note that a derivative filter with time constant 0.1𝜏D has been used in the simula-
tion, and both proportional control and derivation control are implemented on the
output only.

8.3.4 MATLAB Tutorial on PID Controller Design Using two Frequency Points

The objectives of the following two tutorials are to produce a MATLAB program for PID
controller design using two frequency response points (see Tutorial 8.1) and to test this
program using a simulation example (see Tutorial 8.2).

Tutorial 8.1 We need plant frequency information at two frequencies that are denoted
as ’w1’ and ’w2’. The frequency response at ’w1’ is denoted by ’Gjw1’ and at ’w2’ is denoted
by ’Gjw2’. As in PI controller design, K is the estimated steady-state gain, ’beta’ and ’taucl’
are specified according to the control sensitivity function

Su(s) =
1
K

1
𝛽
𝜏cls + 1

𝜏cls + 1
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Step by Step

1. Create a new file called FR4PID.m for the MATLAB function.
2. Define the input and output variables for the MATLAB function. Enter the following

program into the file:
function [Kc,tauI,tauD]=FR4PID(beta,taucl,w1,w2,Gjw1,Gjw2,K)

3. Calculate the frequency response of the control sensitivity function at 𝜔1 and 𝜔2.
Continue entering the following program into the file:

j=sqrt(-1);
Sujw1=(j*w1*taucl/beta+1)/(K*(j*w1*taucl+1));
Sujw2=(j*w2*taucl/beta+1)/(K*(j*w2*taucl+1));

4. Calculate the frequency response of the complementary sensitivity function T(j𝜔) and
the desired open-loop frequency response Ld(j𝜔) at 𝜔1 and 𝜔2. Continue entering the
following program into the file:

Tjw1=Sujw1*Gjw1;
Ljw1=Tjw1/(1-Tjw1);
Tjw2=Sujw2*Gjw2;
Ljw2=Tjw2/(1-Tjw2);

5. Calculate X(j𝜔1) and X(j𝜔2) using (8.12) and (8.13). Continue entering the following
program into the file:

Xjw1=j*w1*Ljw1/Gjw1;
Xjw2=j*w2*Ljw2/Gjw2;

6. Calculate the controller coefficients c2, c1 and c0 using X(j𝜔1) and X(j𝜔2). Continue
entering the following program into the file:

c1=imag(Xjw1)/w1;
c2=-(real(Xjw2)-real(Xjw1))/(w2 ̂ 2-w1 ̂ 2);
c0=c2*w1 ̂ 2+real(Xjw1);

7. Finally, calculate the PID controller parameters, Kc, 𝜏I and 𝜏D. Continue entering the
following program into the file:

Kc=c1;
tauI=c1/c0;
tauD=c2/c1;

The program needs to be tested so that we can use it for applications.

Tutorial 8.2 We select a system with dominant time delay that has the following trans-
fer function,

G(s) = 0.4e−20s

(2s + 1)2(s + 1)
.

Step by Step

1. We create a new file called ‘test4FR2PID.m’.
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2. Define the system under test. Enter the following program into the file:
delay=20;
K=0.4;
num=K;
tau1=2;
tau2=2;
tau3=1;
den1=conv([tau1 1],[tau2 1]);
den=conv(den1,[tau3 1]);
w=0.001:0.01:1;
Gjw0=freqs(num,den,w).*exp(-j*w*delay);

3. plot the real and imaginary parts of ’Gjw0’ as before to find 𝜔𝜋

2
= 0.061 and

𝜔𝜋 = 0.131.
4. These two frequencies will be used to find the PID controller parameters. We need to

add time delay to the frequency calculation. Continue entering the following program
into the file:
w1=[0.061 0.131];
Gjw=freqs(num,den,w1).*exp(-j*w1*delay);

5. We choose 𝛽 = 5 and 𝜏cl = 5, then use the function ’FR4PID.m’ to calculate the PID
controller parameters. Continue entering the following program into the file:
taucl=5;
beta=5;
[Kc,tauI,tauD]=FR4PID(beta, taucl,w1(1),w1(2),Gjw(1),Gjw(2),K);

6. The function gives Kc = 0.9924, 𝜏I = 11.1598 and 𝜏D = 3.3389.
7. If one wishes to have a slower closed-loop response, the desired closed-loop time

constant 𝜏cl could be increased. When 𝜏cl = 10, 𝛽 = 5, Kc = 0.7994, 𝜏I = 10.5643 and
𝜏D = 1.7446.

Closed-loop simulation of the PID control systems are performed using a deriva-
tive filter with the filter time constant being 0.1𝜏D. Both the proportional control term
and derivative control term are implemented on the output only. Figure 8.6 shows the
closed-loop responses for reference following of a unit step signal and disturbance rejec-
tion. The input step disturbance with amplitude of 2 enters the system at t = 100 (s). It
is seen that by increasing 𝜏cl, the closed-loop response speed is reduced, however, the
slight oscillation with the smaller 𝜏cl is overcome.

Note that the MATLAB program FR4PID.m will be used for auto-tuner design in
Chapter 9 where the plant frequency information at𝜔1 and𝜔2 will be found by the relay
feedback experiments. Additionally, the PID controller will degrade to a PI controller if
the derivative gain 𝜏D is either negative or is too small. In the case of the PI controller,
the proportional gain Kc and 𝜏I remain unchanged from the calculation of the FR4PID.m
program.

8.3.5 PID Controller Design for Beer Filtration Process

In the work by Lees and Wang (2015), two transfer function models were estimated for
a beer filtration process at different operational conditions.
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Figure 8.6 Comparison of closed-loop responses of PID control systems. (a) Output response.
(b) Control signal. Key: line (1) 𝜏cl = 5 and 𝛽 = 5; line (2) 𝜏cl = 10 and 𝛽 = 5

For the first operational condition, step response experiments were conducted to
obtain the estimated transfer function:

G1(s) =
0.0216s − 0.0031

s2 + 0.4576s + 0.0868
e−s∕6

For the second operational condition, the estimated transfer function is

G2(s) =
0.0174s − 0.0046

s2 + 0.5978s + 0.0445
e−s∕6

where the time unit for the transfer functions is minute, instead of second. The filtration
process is clearly a nonlinear system, in which the system dynamics change with respect
to operating conditions.

In order to design a single PID controller for the system, the frequency responses of
the transfer function models are then averaged point-by-point. Figure 8.7 shows the
frequency response of G1(j𝜔), G2(j𝜔) and the averaged frequency response Ga(j𝜔). To
obtain the two frequency response points 𝜔1 and 𝜔2, the real and imaginary parts of
Ga(j𝜔) are examined, where 𝜔1 = 0.133 is identified as the point when the real part of
Ga(j𝜔) changes sign from negative to positive and 𝜔2 = 0.432 is identified as the point
where the imaginary part changes sign from positive to negative. The corresponding
frequency response Ga(j𝜔) at 𝜔 = 𝜔1 is 0.0009 + j0.0532 and at 𝜔2 is 0.037 + j0.0001.
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Figure 8.7 Frequency response. Key: line (1) G1(j𝜔);
line (2) G2(j𝜔); line (3) Ga(j𝜔)
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The desired closed-loop performance is specified at 𝜔1 and 𝜔2 through the following
relationship:

Td(j𝜔) =
1

Kp

1
𝛽
𝜏clj𝜔 + 1

𝜏clj𝜔 + 1
Ga(j𝜔) (8.21)

where Kp = −0.0696, 𝜏cl = 7.187 and 𝛽 = 0.625. Note that we have selected 𝜏cl

𝛽
= 11.5,

which corresponds to the dominant time constant of G1(s).
Using the MATLAB function FR4PID.m produced in Tutorial 8.1, we calculate the

PID controller parameters:

Kc = −11.795; 𝜏I = 8.4069; 𝜏D = 0.7832

Figure 8.8 shows the frequency response C(j𝜔)G1(j𝜔) and C(j𝜔)G2(j𝜔), from which we
can estimate that the closed-loop control systems have the minimum gain margin of 2
and phase margin 𝜋∕4.

In the closed-loop simulation, the PID controller is discretized and a derivative filter
with time constant 𝜏f = 0.1𝜏D is added to the derivative term to avoid amplification of
measurement noise. The discretized control signal ready for implementation is calcu-
lated using (4.40) in Chapter 4. Additionally, the control signal is computed with quan-
tization for the possible implementation of the control system by a plant operator. The
control signal with quantization is chosen to be a multiple of 0.01, which corresponds
to 1 percent change in the control signal as the basis unit. Also, if the calculated con-
trol signal change |Δu| = |u(ti) − u(ti−1)| is less than 1 percent, then the control signal
remains constant.

The control objective is to maintain a constant output y(t), and due to the filtration
operation, it drops with respect to time. The closed-loop control system is simulated
with an output disturbance added to the system while maintaining a constant reference
response. The typical case of the disturbance mimics the situation where the y(t) reduces
in a series of step changes. Because of the nonlinearity, the same PID controller is used
to control both G1(s) and G2(s) in the simulation studies. Figure 8.9 shows the control
signal response and output response to the output disturbance in a series of steps. It is
seen that the closed-loop PID control has maintained the constant output value despite
of the disturbance. Note that with the same filter, but at different operational time, G2(s)
has a smaller steady-state gain, corresponding to the filter condition deteriorating. As a

Figure 8.8 Nyquist plot. Key: line (1) C(j𝜔)G1(j𝜔);
line (2) C(j𝜔)G2(j𝜔).
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Figure 8.9 Closed-loop control
simulation for output stair case
disturbance rejection. (a) Control
response (top figure: results from
using G1(s), bottom figure: results
from using G2(s)). (b) Output
response (top figure: results from
using G1(s), bottom figure: results
from using G2(s)).

result, a larger steady-state control signal is required to maintain the same operational
conditions. This is evident from comparing the control signals in Figure 8.9 (a).

8.3.6 Food for Thought

1. In the PID controller parameter solutions (see (8.14)–(8.16)), is it correct to say that
the proportional controller gain Kc only uses the information from the first frequency
point𝜔1, however, 𝜏I and 𝜏D use the information from both first and second frequency
points?

2. Upon finding the controller parameters, Kc, 𝜏I and 𝜏D, using the information from
the two frequency points, we have the options to test different combinations of con-
trollers without changing their parameters. First instance, we can use the propor-
tional controller with Kc, PI controller with Kc and 𝜏I , PID controller with Kc, 𝜏I and
𝜏D or PD controller with Kc and 𝜏D. Why do you think that the frequency domain
design can lead to such a result?

3. We have chosen 𝜔1 and 𝜔2 for easy implementation. Can we choose other frequency
points as𝜔1 and𝜔2 as long as they are in the medium frequency range with cross-over
frequency contained? Why is that?

4. In the specification of desired closed-loop transfer function (see (8.19)), if the param-
eter 𝛽 = 1, the closed-loop dominant time constant is specified to be equal to the
open-loop dominant time constant but with unity steady-state gain. Would you con-
sider this as a default choice?
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8.4 PID Controller Design for Integrating Systems

PID control of integrating systems has become increasingly important in control engi-
neering applications. A large number of electro-mechanical systems can be classified as
integrating plus time delay systems. For instance, the angular position control of a robot
is the control of integrating system, and the quadrotor control is also related to control
of integrating systems.

The most widely encountered integrating systems have time delay in addition to first
order or higher order dynamics. Because the integral action is expressed as a pole on
the origin of the complex plane, which essentially is the dominant dynamics for an inte-
grating system, it may not be necessarily to capture the first order or higher dynamics
in the design of PID controllers. Instead, these stable dynamics are approximated using
an equivalent time delay to describe the effect of their phase lag in the PID control system
design.

8.4.1 The Approximate Model

The approximate model of an integrating system is assumed to be of the following form:

G(s) =
Kpe−ds

s
(8.22)

where Kp is the gain of the integrating system and d is its time delay. For most physical
systems, there are more or less approximations involved in obtaining the integrating
plus time delay model. An easy way to find the parameters in (8.22) is through frequency
response analysis.

Assume that the frequency response G(j𝜔1) is available at the frequency 𝜔1. This
frequency information G(j𝜔1) is estimated using the relay experiments in many appli-
cations as shown in the next chapter.

Now, letting the frequency response of the integrating plus delay model (8.22) be equal
to the measured G(j𝜔1) leads to

Kpe−jd𝜔1

j𝜔1
= G(j𝜔1) (8.23)

Equating the magnitudes on both side of (8.23) gives

Kp = 𝜔1|G(j𝜔1)| (8.24)

where |e−jd𝜔1 | = 1. Additionally, from (8.23), the following relationship holds:

e−jd𝜔1 =
j𝜔1G(j𝜔1)

Kp

This gives the estimate of time delay as

d = − 1
𝜔1

tan−1 Imag(jG(j𝜔1))
Real(jG(j𝜔1))

It is seen here that if the system is truly integrating with time delay, the plant information
at a single frequency is sufficient to determine the plant gain and time delay.
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8.4.2 Selection of Desired Closed-loop Performance

Because the transfer function for the time-delay e−ds is irrational, approximation is
often needed when using the model based designs (see Chapter 3). An effective way to
avoid the approximation is to derive the PID controller parameters using the frequency
response analysis.

Similar to the PID controller design introduced in the previous section, we will first
introduce the specification of desired closed-loop performance. Considering the PID
controller structure

C(s) =
c2s2 + c1s + c0

s
together with the integrating plus delay model

G(s) =
Kpe−ds

s
it is clear that the loop transfer function

Lp(s) =
Kpe−ds

s
c2s2 + c1s + c0

s
(8.25)

contains a double integrator. Therefore, this characteristic should be reflected in the
selection of the desired closed-loop performance. Additionally, the four characteristics
of the desired complementary sensitivity function specified in Section 8.3.2 should be
satisfied. It is simpler to choose the desired control sensitivity function to this effect.

A candidate for such a choice is the control sensitivity to have the following form:

Su(s) =
1

Kp

s((2𝜉𝜏cl + d)s + 1)
𝜏2

cls2 + 2𝜉𝜏cls + 1
(8.26)

where 𝜏cl > 0 is the desired closed-loop time constant and 𝜉 is the damping coefficient
typically chosen as 0.707 or 1. A larger 𝜏cl corresponds to a slower closed-loop response
speed.

The desired complementary sensitivity function Td(s) is composed of the control sen-
sitivity Su(s) and the model G(s) given by

Td(s) = G(s)Su(s) =
Kpe−ds

s
1

Kp

s((2𝜉𝜏cl + d)s + 1)
𝜏2

cls2 + 2𝜉𝜏cls + 1

=
((2𝜉𝜏cl + d)s + 1)e−ds

𝜏2
cls2 + 2𝜉𝜏cls + 1

(8.27)

where the steady-state gain Kp and the factor s have been cancelled to obtain (8.27).
It is seen from (8.27) that the desired complementary sensitivity function Td(s) has all

poles on the left-hand side of the complex plane. Additionally, the complementary sensi-
tivity Td(s) is equal to unity at s = 0 and the plant time-delay e−ds appears in the numera-
tor of Td(s). Therefore, all the characteristic requirements discussed in Section 8.3.2 are
satisfied for the integrating with time delay system by PID control.

Furthermore, a stable zero at s = − 1
2𝜉𝜏cl+d

is introduced in the desired complementary
sensitivity. The introduction of this stable zero is to ensure that at s = 0 the desired loop
transfer function Ld(s) will have the structure of a double integrator, which matches that
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of the actual loop transfer function Lp(s) in (8.25). This claim can be verified through the
following calculation:

Ld(s) =
Td(s)

1 − Td(s)

=
((2𝜉𝜏cl + d)s + 1)e−ds

𝜏2
cls2 + 2𝜉𝜏cls + 1 − ((2𝜉𝜏cl + d)s + 1)e−ds

(8.28)

Writing the irrational transfer function e−ds in Taylor series expansion gives

e−ds = 1 − ds + 1
2!
(ds)2 − 1

3!
(ds)3 +… ≈ 1 − ds + O((ds)2) (8.29)

where O((ds)2) denotes the higher order terms in the Taylor series. Then, the denomi-
nator of Ld(s) is expressed as

𝜏2
cls

2 + 2𝜉𝜏cls + 1 − ((2𝜉𝜏cl + d)s + 1)e−ds

= 𝜏2
cls

2 + 2𝜉𝜏cls + 1 − (1 + 2𝜉𝜏cls − d(2𝜉𝜏cl + d)s2)
+ O((ds)2)((2𝜉𝜏cl + d)s + 1)

= 𝜏2
cls

2 + d(2𝜉𝜏cl + d)s2 − O((ds)2)((2𝜉𝜏cl + d)s + 1) (8.30)

Since from (8.30) the higher order O((ds)2) contains a factor s2, then it is clearly seen
that the denominator Ld(s) contains the factor s2.

It is emphasized that the choice of Td(s) given by (8.27) ensures the desired loop trans-
fer function Ld(s) has the feature of a double integrator at s = 0 matching that of the
actual loop transfer function Lp(s). This means that at the lower frequency region, the
PID controller parameters will automatically lead to the low frequency requirement
of the sensitivity functions. This choice of desired complementary sensitivity function
reduces the errors in the frequency curve fitting for computation of the PID controller
parameters.

8.4.3 Normalization of the Parameters and Empirical Rules

To normalize the process parameters for derivation of the PID controller parameters in
empirical rules, the actual loop transfer function Lp(s) from (8.25) is re-written as

Lp(s) =
Kpe−ds

s
Kc

(
1 + 1

𝜏I s
+ 𝜏Ds

)

=
K̂ce−ŝ

ŝ

(
1 + 1

𝜏I ŝ
+ 𝜏Dŝ

)
(8.31)

where ŝ = ds, K̂c = dKpKc, 𝜏I =
𝜏I

d
and 𝜏D = 𝜏D

d
. For convenience in computation, (8.31)

is expressed as

Lp(s) =
e−ŝ

ŝ
ĉ2ŝ2 + ĉ1ŝ + ĉ0

ŝ
(8.32)

where the parameters are defined as

K̂c = ĉ1; 𝜏I =
ĉ1

ĉ0
; 𝜏D =

ĉ2

ĉ1
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Note that the loop transfer function Lp(s) is free of the process gain Kp and the time
delay d. Similarly, the desired loop transfer function Ld(s) given by (8.28) is required to
be normalized. To this end, the desired closed-loop time constant 𝜏cl is selected as the
function of the time delay d:

𝜏cl = 𝛽d (8.33)
where 𝛽 > 0 is the desired closed-loop performance parameter used in the design. This
leads to the re-writing of (8.28) in the following form:

Ld(s) =
((2𝜉𝛽d + d)s + 1)e−ds

𝛽2d2s2 + 2𝜉𝛽ds + 1 − ((2𝜉𝛽d + d)s + 1)e−ds

= ((2𝜉𝛽 + 1)ŝ + 1)e−ŝ

𝛽2ŝ2 + 2𝜉𝛽 ŝ + 1 − ((2𝜉𝛽 + 1)ŝ + 1)e−ŝ
(8.34)

Note that the desired loop transfer function Ld(s) is also free of the time delay parameter
d.

The solution of the PID controller parameters follows from the frequency domain
solution proposed in Section 8.3, but with different choices of the frequency points �̂�1
and �̂�2 (see Wang and Cluett (2000)).

Because the PID controller parameters are normalized, there are only the desired
closed-loop time constant 𝜏cl = 𝛽d and the damping coefficient adjustable. Thus, we can
find the normalized PID controller parameters numerically with respect to the param-
eter 𝛽 and form empirical rules. There are two sets of empirical rules obtained below
through polynomial fitting of the normalized PID controller parameters, together with
gain and phase margins.

Selecting 100 𝛽 values from 𝛽 = 1.0 to 𝛽 = 11 with increment of 0.1, together with a
damping coefficient 𝜉, there are 100 sets of normalized PID controller parameters cal-
culated. By using the polynomial fitting tool in MATLAB to find the calculated PID
parameters, the following empirical rules for the normalized parameters are obtained
as shown in Tables 8.1–8.2. With the normalized PID controller parameters calculated,
the actual PID controller parameters are then obtained with the scaling parameters Kp
and d, as

Kc =
K̂c

dKp
; 𝜏I = 𝜏Id; 𝜏D = 𝜏Dd (8.35)

The polynomial functions in both Tables have provided quite accurate descriptions to
the original data (see Figure 8.10 as an illustration). Therefore, when an integrator with
delay is given, the PID controller parameters will be calculated simply using the polyno-
mial equations presented in the tables.

Table 8.1 Normalized PID controller parameters
(𝜉 = 0.707, 1 ≤ 𝛽 ≤ 11).

K̂c
1

0.7184𝛽 + 0.3661
𝜏I 1.3970𝛽 + 1.2271

𝜏D
1

1.4275𝛽 + 1.6450
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Table 8.2 Normalized PID controller parameters
(𝜉 = 1, 1 ≤ 𝛽 ≤ 11).

K̂c
1

0.5138𝛽 + 0.5909
𝜏I 1.9886𝛽 + 1.2118

𝜏D
1

1.0156𝛽 + 1.7550
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Figure 8.10 Calculated normalized proportional controller gain. (a) 𝜉 = 0.707, 1 ≤ 𝛽 ≤ 11. (b) 𝜉 = 1,
1 < 𝛽 ≤ 11. Key: line (1) data; line (2) using Tables 8.1 and 8.2.

8.4.4 Gain and Phase Margins

Because the original PID controller parameters are calculated using two frequency
response data points, the PID controller parameters can be used in combination to
obtain PID controller, PI controller and PD controller.

The gain and phase margins for the PID controllers are calculated using the empirical
forms, which are also function of the parameter 𝛽 and are shown in Figure 8.11. Addi-
tionally, the gain and phase margins for PI and PD controllers are calculated shown in
Figures 8.12 and 8.13. These gain and phase margins are useful in measuring closed-loop
performance and quantify robustness of the PID control system designed. It also pro-
vides some guidance on the choice of controller structures.

8.4.5 Simulation Examples

Example 8.5 Consider the integrator plus time delay system described by the transfer
function

G(s) = e−5s

s
In the first part of the example, we will evaluate the performance of the PID, PI, and PD
controllers designed. In the second part of the example, we will show that the closed-loop
performance is similar to a PID controller using the pole assignment design method.
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Figure 8.11 Calculated gain and phase margins for PID controllers. (a) Gain margin. (b) Phase margin.
Key: line (1) using Table 8.1 (𝜉 = 0.707); line (2) using Table 8.2 (𝜉 = 1).
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Figure 8.12 Calculated gain and phase margins for PI controllers. (a) Gain margin. (b) Phase margin.
Key: line (1) using Table 8.1 (𝜉 = 0.707); line (2) using Table 8.2 (𝜉 = 1).
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Figure 8.13 Calculated gain and phase margins for PD controllers. (a) Gain margin. (b) Phase margin.
Key: line (1) using Table 8.1 (𝜉 = 0.707); line (2) using Table 8.2 (𝜉 = 1).
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However, there is no comparable PI or PD controller when using model based design.
The damping coefficient 𝜉 is chosen to be 0.707.

Solution. From Figures 8.11–8.13, when 𝛽 = 1, we can see that the phase margin for the
PID control system is about 45∘, for the PI control system about 20∘, and for the PD control
system about 55∘. All gain margins exceeded 1.8. Thus, it is expected that the closed-loop
systems are stable for all three types of controller. There is a closed-loop oscillation when
using the PI controller because its phase margin is too small. We usually need to have a
phase margin larger than 40∘ to avoid closed-loop oscillation.

From Table 8.1, the normalized PID controller parameters are calculated, and from
(8.35) the actual PID controller parameters are calculated to give

Kc = 0.1844; 𝜏I = 13.1205; 𝜏D = 1.6297.

The closed-loop systems are simulated for a step reference change at t = 0 and a step
input disturbance entering system at t = 150 (s). The PI controller takes the form
C(s) = Kc(1 + 1

𝜏I s
) and PD controller takes the form C(s) = Kc(1 + 𝜏Ds

0.1𝜏Ds+1
). All derivative

terms are implemented on output only. Figure 8.14 compares the control signals and the
output signals for the three control systems. It is seen that the PID control system shows
satisfactory performance, the PI control system has oscillatory responses due to the
small phase margin, and PD controller has a better performance in reference tracking;
however, it is not capable of rejecting the step input disturbance, leading to steady-state
errors in the disturbance rejection.

The second part of this example is to design a PID controller for the integrator plus delay
model using the pole assignment controller design method. Here the Padé approximation
is used to approximate the time delay to yield

Gp(s) =
e−5s

s
≈ (−s + 0.4)

s(s + 0.4)
. (8.36)
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Figure 8.14 Comparison of closed-loop performance for three types of controllers (Example 8.5).
(a) Control signal. (b) Output. Key: line (1) PID control response; line (2) PI control response; line (3) PD
control response.
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Figure 8.15 Comparison of closed-loop PID control performance between the model based design
and the tuning rules (Example 8.5). (a) Control signal. (b) Output signal. Key: line (1) model based
design; line (2) using tuning rules.

Choose the desired closed-loop polynomial as
Acl = (s2 + 0.707𝑤ns +𝑤2

n)(s + 5𝑤n)2

where 𝑤n = 1∕d = 0.2, which is equivalent to the selection of the dominant closed-loop
time constant d. With this selection, the dominant closed-loop time constant is equal
to the previous case. Using the pole-assignment design method, the PID controller param-
eters are found as

Kc = 0.2581; 𝜏I = 11.3425; 𝜏D = 1.9870; 𝜏f = 0.2275
Although the two design approaches have selected an equivalent desired closed-loop
time constant, the model based design method leads to the closed-loop control system
with oscillation [see Figure 8.15]. This is likely caused by the modeling error between
the approximated transfer function and the true integrator with time delay model
[see (8.36)].

Interestingly, for the model-based design, the direct combination of proportional control
and integral control is unstable for this design method.

8.4.6 Food for Thought

1. In the derivation of the PID controller rules for integrating with delay system, why is
the desired closed-loop control sensitivity function specified with a stable zero?

2. Do you expect an overshoot in closed-loop response to the step reference signal
by observing the desired complementary sensitivity function Td(s) in (8.27)? If you
wish to eliminate such an overshoot, which reference filter should you choose in a
two-degrees of freedom controller implementation?

3. To obtain an approximate integrating with time delay model, a frequency 𝜔1 is
required. Which region on the Nyquist curve of a system is a good candidate? Why?

8.5 Summary

This chapter has discussed several approaches to PID controller design using frequency
domain information. PID controllers can be designed using gain margin and phase
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margin as their performance specifications in the frequency domain. One drawback
with respect to the gain margin and phase margin specification is that these parameters
are not related to the closed-loop response speed in a simple and intuitive way.

The other important aspects in the chapter are summarized as follows.

• PID controller parameters can be found analytically in a manner related to curve fit-
ting of the open-loop frequency response in two frequency points. In this approach,
the closed-loop performance specification is the desired dominant time constant via
complementary sensitivity function.

• In order to produce the best fit possible with the limited number of controller param-
eters, the complementary sensitivity function contains the zeros of the plant as well
as the time delay of the plant.

• A special case of the approach is the PID controller for integrator with delay system.
With a normalized delay parameter, the PID controller parameters are simply
expressed in empirical forms analytically with achieved gain margin and phase
margin.

8.6 Further Reading

1. The PID controller design methods using two points of frequency response data were
originally introduced in Wang et al. (1995), Wang and Cluett (1997) and Wang and
Cluett (2000).

2. More PID controller design techniques using gain margin and phase margin specifi-
cations can be found in Ho et al. (1995), Ho et al. (1996), Ho and Xu (1998), Ho et al.
(1998), Ho et al. (2000).

3. Second order with delay model was obtained for PID controller design by using
two frequency response points together with nonlinear optimization in Wang et al.
(1999).

Problems

8.1 The transfer function of a complex system is given by

G(s) = −3(−s2 + s + 1)
(10s + 1)(8s + 1)(6s + 1)(5s + 1)

e−6s (8.37)

1. Design a PI controller for this system by specifying the desired gain margin of 2.
2. Determine the phase margin and delay margin using Nyquist diagram.

8.2 The transfer function of a complex, underdamped system is given by

G(s) = −3(−s2 + s + 1)
(10s2 + 20𝜉s + 1)(6s + 1)(5s + 1)

e−6s (8.38)

where 𝜉 = 0.3.
1. Design a PI controller for this system by specifying the desired phase margin of
𝜃 = 𝜋

3
.

2. Determine the gain margin and delay margin using Nyquist diagram.
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3. Show using simulation studies that the closed-loop response to a step input dis-
turbance is oscillatory no matter what you do.

4. Explain your results by examining the sensitivity function between the step input
disturbance and output.

8.3 The mathematical model for the eighth reactor in a copolymerization reactor
train is described by the following transfer function model (Madhuranthakam and
Penlidis (2016)):

Y (s) =
[

Ks + 1
𝜏2

1 s2 + 2𝜏1𝜏2s + 1

]8

U(s) (8.39)

where the input is the flow rate of the Chain Transfer Agent (CTA) to the first
reactor in the reactor train and the output is the weight-based average molecular
weight (MW𝑤). The parameters in the transfer function for the reactor are given as
K = 361.54, 𝜏1 = 106.84 and 𝜏2 = 1.72. Design PID controller for this polymer
reactor using two frequency response points (see Section 8.3).
1. Choosing 𝛽 = 1, which is case that the desired closed-loop transfer function equal

to the open-loop transfer function, find the PID controller parameters.
2. Choosing 𝛽 = 2 and 𝜏cl = 200, find the PID controller parameters.
3. Choosing 𝛽 = 0.5 and 𝜏cl = 50, find the PID controller parameters.
4. Compare the Nyquist plots for the PID control systems and find their gain mar-

gin, phase margin and delay margin.
5. Simulate the closed-loop PID control systems with unit step reference signal and

a unit step disturbance entering the systems at half of the simulation time. The
sampling interval Δt is 1 (min), and the simulation time is 3000 (min) because it
is a very slow process. In the simulation, both proportional control and derivative
control are implemented on the output only to reduce overshoot in the refer-
ence response. The derivative filter time constant is selected as 0.1𝜏D. For the
simulations studies, use the MATLAB real-time function PIDV.slx created in
Tutorial 4.1.

6. What are the observations when we compare the three PID control systems?
What are the observations when we compare the three PID control systems with
the results obtained in Example 2.7?

7. What are the reasons behind the closed-loop performance improvement when
using the frequency domain based design technique for this particular system?
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9

Automatic Tuning of PID Controllers

9.1 Introduction

Relay feedback control has been one of the key instruments used in the automatic tuning
of PID controllers. Its application is associated with the identification of process fre-
quency response information via the self-generated excitation signals in a closed-loop
operation. Because it is in a closed-loop operation, the feedback control effect maintains
the system around its operating condition while conducting the experiment.

This chapter will discuss the automatic tuning of PID controllers where the process
frequency response information is obtained from relay feedback experiments and the
PID controllers are designed using the design methods introduced in Chapter 8.

9.2 Relay Feedback Control

This section will discuss relay feedback control systems in combination with hysteresis
or with an integrator. Simulink tutorials are presented for both cases, which is conve-
nient for simulation studies and experimental validations.

9.2.1 Relay Control with Hysteresis

In applications, because of measurement noise, a hysteresis element is incorporated
within the relay feedback control mechanism to avoid possible random switches due
to the effect of noise. Figure 9.1 illustrates a block diagram of relay feedback control.

For the purpose of relay feedback control, there are a few parameters that need to be
defined.

1. A plant steady-state operating condition with input signal uss and output signal yss is
chosen based on which relay control experiment will be carried out. For some appli-
cations, the steady-state input and output signals are zero.

2. The amplitude of the relay control signal is chosen as parameter a, which represents
the variations of the input signal at the steady-state operating condition.

3. The hysteresis parameter is chosen to be 𝜖, which is used to prevent the triggering
of relay switching from random noise. If the standard deviation of the measurement
noise is 𝜎, then approximately the hysteresis parameter 𝜖 is chosen to be 3𝜎.

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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Figure 9.1 Block diagram of relay feedback control.

We define the deviation variable of the control signal as

u(t) = uact(t) − uss

and the initial condition of the deviation control signal as u(t0) = a. We assume that
the system is already operating at the steady state. With the actual measurement of the
output yact(ti) at the sampling time ti, the closed-loop control signal uact(ti) is calculated
using the following relay switching rules:

u(ti) =

{
u(ti−1) if |e(ti)| ≤ 𝜖

a × sign(e(ti)) if |e(ti)| > 𝜖
(9.1)

and

uact(ti) = u(ti) + uss (9.2)

where e(ti) = yss − yact(ti) is the feedback error at the sampling time ti.
It is worthwhile emphasizing that the relay switching rule given in (9.1) is for the sys-

tems that have a positive steady-state gain. For the systems having a negative steady-state
gain, the deviation variable u(ti) is calculated as

u(ti) =

{
u(ti−1) if |e(ti)| ≤ 𝜖

−a × sign(e(ti)) if |e(ti)| > 𝜖
(9.3)

uact(ti) = u(ti) + uss. (9.4)

Clearly, the relay feedback control is a nonlinear control law with a small amount of a
priori information required and it is very easy to implement.

It is known (Astrom and Hagglund (1984), Astrom and Hagglund (1988)) that this
relay controlled system will generate a sustained periodic oscillation that contains the
fundamental frequency 𝜔1 at the point of the Nyquist curve of the process, which
approximately has the imaginary part as − 𝜋𝜖

4a
, as shown in Figure 9.2. One immediately

pays attention to the location of the frequency 𝜔1 on the Nyquist curve. If the hysteresis
value 𝜖 is chosen to be zero, then the frequency 𝜔1 becomes the cross-over frequency
on the Nyquist curve if a proportional controller is used. This was indeed the key
link between the classical Ziegler–Nichols tuning rules and the first generation of
auto-tuners (Astrom and Hagglund (1984), Astrom and Hagglund (1988)). The second
point is that if the hysteresis 𝜖 is increased, while maintaining the same amplitude a,
the frequency 𝜔1 is reduced, meaning that the oscillation period T = 2𝜋

𝜔1
is increased.

Under relay feedback control, there are several classes of systems that will have a sus-
tained periodic oscillation. In general, these systems should be stable to ensure safety
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Figure 9.2 Location of 𝜔1 on a Nyquist curve. Imag

Real

4a

πε

of the operation during experiments. They include the first order plus delay systems,
systems with higher order dynamics, systems with non-minimum phase behavior and
higher order under-damped systems. The common feature of these systems is that their
Nyquist curve will expand to the second and third quadratures on the complex plane,
as shown in Figure 9.2. For a first order system, relay feedback control will not generate
sustained periodic oscillation unless there are additional dynamics from actuation and
measurement involved leading to a higher order system as a result.

The following tutorial is written to produce a MATLAB function that can be used for
Simulink simulations and for real-time implementations.

Tutorial 9.1 This tutorial is to illustrate how to implement the relay feedback control
algorithm in real time. The core of this activity is to produce a MATLAB embedded func-
tion that can be used in a Simulink simulation as well as in xPC Target implementation.
The entire embedded MATLAB function completes one cycle of computation for the relay
feedback control signal. For every sampling period, it will repeat the same computation
procedure.

Step by Step

1. Create a new Simulink file called RelayH.slx
2. In Simulink’s directory of User-Defined Functions, find the icon of embedded MATLAB

function and copy it to the RelayH model.
3. Click on the icon of the embedded function, and define the input and output variables

to the RelayH model so that the embedded function has the following form:

function uCurrent=RelayH(e,Ra,epsilon)

where uCurrent is the calculated relay control signal at the sampling time ti, the first
element(e) is the feedback error, the second element (Ra) is the relay amplitude, and
epsilon is the hysteresis used to avoid random switches caused by noise.

4. At the top of the embedded function, find Model Explorer among the Tools. When
opening the Model Explorer, select discrete for the update method and input Deltat
into the sample time; select Support variable-size arrays; select Saturate on integer
overflow; select Fixed point. Click Apply to save the changes.
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5. We need to edit the input and output data ports in order to let the embedded function
know which input ports are the real time variables and which are the parameters. This
editing task is performed using Model Explorer.
• click on e, on Scope, select input, assign port 1 and size -1, complexity Inherited,

type Inherit: Same as Simulink.
• The remaining two inputs to the embedded function are the parameters required

in the computation. Click on Ra, on Scope, select Parameter and click Tunable and
click Apply to save the changes. Repeat the same editing procedure for the epsilon.

• To edit the output port from the embedded function, click on uCurrent, on Scope,
select Output, Port 1, Size -1, Sampling Model Sample based, Type Inherit: Same
as Simulink, and click on Apply to save the changes.

6. In the following, the program will declare those variables that are stored in the embed-
ded function during each iteration for their dimensions and initial values. uPast is the
past control signal (u(ti−1)). Enter the following program into the file:

persistent uPast
if isempty(uPast)

uPast=Ra;
end

7. Check to see if the feedback error is within the specified hysteresis level (|e(t)| ≤ 𝜖) and
if so, the control signal remains unchanged. Otherwise, the relay control signal equals
to the sign of the feedback error multiplying the amplitude of the relay, followed by
updating the past control signal u(ti−1). Continue entering the following codes into the
program.

if abs(e)<=epsilon
uCurrent=uPast;

else
uCurrent=sign(e)*Ra;
uPast=uCurrent;

end

8. Test this program using Simulink simulator you build for Example 9.1.

Example 9.1 Use relay feedback control to generate sustained oscillation for the follow-
ing system:

G(s) = (−2s + 1)e−6s

(3s + 1)(5s + 1)
(9.5)

where the measurement noise is a band-limited white noise with noise power 1 and sam-
pling interval Δt and a gain 0.1. In the closed-loop relay feedback control, the relay
amplitude is chosen to be 1.75, yss = uss = 0, and the sampling interval Δt = 0.3.

Solution. Choosing the relay amplitude a = 1.75, we build the Simulink simulator as
shown in Figure 9.3 where the band limited white noise is used with a gain 0.1 to sim-
ulate the measurement noise. We also used the RelayH.slx function in the closed-loop
simulation as the relay feedback controller. Note that the noise is added in the closed-loop
system, which will affect the switching frequency if the parameter 𝜖 is too small.
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Figure 9.3 Simulink diagram for the relay feedback control.
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Figure 9.4 Relay feedback control signals with hysteresis (Example 9.1). (a) 𝜖 = 0.01. (b) 𝜖 = 0.3.

We first use a small hysteresis value 𝜖 = 0.01, and the relay feedback control signals
are shown in Figure 9.4(a). It is seen that, because of the noise, it takes a long time to
establish a stable oscillation, and additionally, the control signal responds to the noise,
generating fast and random switches. In contrast, when we increase the hysteresis value
𝜖 to 0.3, as shown in Figure 9.4(b), the stable oscillation is established rather quickly and
the control signal seldom has the fast and random switches triggered by noise once the
sustained oscillation is reached.

9.2.2 Relay Control with Integrator

Assuming that the plant is stable with all poles on the left half of the complex plane, the
relay feedback controller incorporates an integrator in the closed-loop system, as illus-
trated in Figure 9.5. It is known (Astrom and Hagglund (1984), Astrom and Hagglund
(1988)) that this relay controlled system will generate a sustained periodic oscillation
that contains the fundamental frequency 𝜔1 at the point where the Nyquist curve of the
process intersects the imaginary axis as shown in Figure 9.6.
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Figure 9.5 Block diagram of integrated relay feedback control.
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With the integrator incorporated in the relay feedback control, the frequency 𝜔1 is
smaller than the case without the integrator, meaning that the oscillation period T =
2𝜋
𝜔1

is larger. The main purpose of choosing this configuration instead of the basic relay
feedback control is to ensure that the plant information obtained is contained at the
lower and medium frequency range, as illustrated in Figure 9.6. Additionally, because
of the integrator, the effect of high frequency measurement noise is minimized, and
the need to use a hysteresis for the noise is reduced. It will be shown in Section 9.6 that
the proposed configuration is essential in providing the key information of steady-state
gain and dominant time constant in the auto-tuner design.

The relay feedback control with integrator is easy to implement. We assume that the
system is operating at the steady state with given values of uss and yss. The integral error
eI(t) is defined as

eI(t) =
∫

t

0
(yss − yact(𝜏))d𝜏.

With the first order approximation of the derivative ėI(t), we obtain at the sampling
time ti,

ėI(ti) ≈
eI(ti) − eI(ti−1)

Δt
= yss − yact(ti) = e(ti).

Thus, the integral error is calculated recursively with

eI(ti) = eI(ti−1) + e(ti)Δt.
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The control law for the relay with integrator is summarized as follows. Here, we assume
that the steady-state gain of the system is positive.

eI(ti) = eI(ti−1) + e(ti)Δt (9.6)

u(ti) =

{
u(ti−1) if |eI(ti)| ≤ 𝜖

a × sign(eI(ti)) if |eI(ti)| > 𝜖
(9.7)

uact(ti) = u(ti) + uss. (9.8)

The following Tutorial is to present a Simulink function for the relay with integrator
control law. It is very similar to Tutorial 9.1. With these real time functions, one can
convert them into C-code for the real time implementation of the relay feedback control
systems.

Tutorial 9.2 We assume that one has already written the RelayH.slx codes.

Step by Step

1. Save the RelayH.slx as RelayI.slx
2. The embedded function for the relay with integrator has the following form:

function uCurrent=RelayI(e,Ra,Deltat)

where uCurrent is the calculated relay control signal at the sampling time ti, the first
element(e) is the feedback error, and the second element (Ra) is the relay amplitude,
and epsilon is the hysteresis used to avoid random switches caused by noise and Deltat
is the sampling interval. As before, we will edit the input and output ports. The new
parameter is Deltat, which will be added as a parameter in the editing process.

3. In the following steps, the program will declare those variables that are stored in the
embedded function during each iteration for their dimensions and initial values.
‘uPast’ is the past control signal (u(ti−1)), and ’eIPast’ is the past integrated error
signal (eI(ti−1)). Enter the following program into the file:

persistent uPast
if isempty(uPast)

uPast=Ra;
end
persistent eIPast
if isempty(eIPast)

eIPast=0;
end

4. Calculate the integrated error. Enter the following program into the file:

eI=eIPast+e*Deltat;
eIPast=eI;

5. Check to see if the integrated feedback error is within the specified hysteresis level
(|eI(t)| ≤ 𝜖) and if so, the control signal remains unchanged. Otherwise, the relay con-
trol signal equals to the sign of the integrated feedback error multiplying the amplitude
of the relay, followed by updating the past control signal u(ti−1). Here, we set the default
value of 𝜖 = 0.001. Continue entering the following codes into the program.
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if abs(eI)<=0.001
uCurrent=uPast;

else
uCurrent=sign(eI)*Ra;
uPast=uCurrent;

end

6. Test this program using Simulink simulator built for Example 9.2.

Example 9.2 Use of a relay with an integrator controller to generate a sustained oscil-
lation for the following transfer function:

G(s) = 0.6e−s

(3s + 1)3 .

The sampling interval is selected as Δt = 0.02, and the amplitude of the relay control
is a = 3. In the closed-loop control simulation, a band-limited white noise with power 1
and sampling interval Δt is used as shown in Figure 9.7(a). Compare the relay feedback
closed-loop responses with and without the integrator.
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Figure 9.7 Relay feedback control signals with and without integrator (Example 9.2). (a) Noise used in
simulation. (b) Relay with integrator. (c) Relay with hysteresis (𝜖 = 2). (d) Relay with hysteresis (𝜖 = 1).
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Solution. We use the same Simulink configuration as illustrated in Figure 9.3, except
replacing the RelayH function by the RelayI function when deploying the relay with inte-
grator controller. Figure 9.7(b) shows the input and output signal for the relay with inte-
grator control system. It is seen that although there is much noise in the system, with
hysteresis value almost zero (𝜖 = 0.001), the input signal does not respond to the mea-
surement noise.

From Figure 9.7(a) it is seen that the noise amplitude is about 2. Thus, without integra-
tor in the relay control, we choose the hysteresis 𝜖 = 2. Figure 9.7(c) shows the closed-loop
responses. With 𝜖 = 2, the relay control does not respond to the measurement noise. How-
ever, if the parameter 𝜖 is reduced to 1, then the relay control signal is severely affected by
the noise, as seen in Figure 9.7(d). Clearly, 𝜖 = 1 is too small for the noise in the system.

From this example, it is seen that by incorporating a hysteresis element with the correct
𝜖 into the relay feedback control, or using the relay with integrator, the correlation of
noises between the control input signal and the output signal existing in a general feed-
back control system is broken, rendering the control input signal noise free in a closed-loop
operation. Consequently, system identification under relay feedback control becomes a
much simpler task without the noise correlations and complex issues such as identi-
fiability in a closed-loop operation are avoided (Soderstrom et al. (2013), Soderstrom
(2018)).

9.2.3 Food for Thought

1. How do you determine the noise level in the system in order to choose the hysteresis
level 𝜖?

2. If the noise is severe and you are not sure about the noise level, would you try to use
the relay with integrator approach?

3. If the system is first order, relay feedback control will not generate sustained oscilla-
tion. Would you consider to incorporate a delay element to the relay feedback control
in order to generate a sustained oscillation? How will you define the input and output
data in this situation?

4. Instead of using an integrator, will you be able to use a stable transfer function
to achieve the same effect? In comparison, what is the key advantage of using an
integrator?

5. Is it possible to use relay feedback control to stabilize an unstable system?

9.3 Estimation of Frequency Response using the Fast Fourier
Transform (FFT)

It is well known that under a stable relay feedback control, both control input and
process output signals are periodic in nature (Astrom and Hagglund (1984), Astrom
and Hagglund (1988), Astrom and Hagglund (1995), Astrom and Hagglund (2006),
Hagglund and Astrom (1985)). If a single relay experiment is conducted, a standard
Fourier analysis (Kreyszig (2006)) shows that the periodic signals contain the frequen-
cies in multiples of the fundamental frequency 𝜔1 as 𝜔1, 3𝜔1, 5𝜔1, …, k𝜔1, where k
is an odd number. Because of this, many approaches have been proposed to extract
meaningful process information from the set of relay feedback control data, including
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the describing function analysis (Atherton (1975), Astrom and Hagglund (1984)) and
fast Fourier analysis (Wang et al. (2001)).

9.3.1 FFT Estimation

For a period T , the Fourier series expansion of the periodic input signal u(t), is expressed
as (see Kreyszig (2006)),

u(t) = 4a
𝜋

(
sin 2𝜋

T
t + 1

3
sin 6𝜋

T
t + 1

5
sin 10𝜋

T
t +…

)
. (9.9)

Here, we emphasize that the continuous time fundamental frequency is 𝜔1 = 2𝜋
T

. From
(9.9), it is seen that the construction of the periodic signal u(t) using the sinusoidal com-
ponents is predominantly dependent on the first few terms because their contributions
decay as the frequency increases.

By choosing sampling interval Δt, the discretized input signal u(t) at sampling instant
ti = iΔt becomes

u(ti) =
4a
𝜋

(
sin 2𝜋i

N
+ 1

3
sin 6𝜋i

N
+ 1

5
sin 10𝜋i

N
+…

)
(9.10)

where N = T
Δt

is the number of samples within one period. The expression of the discrete
time signal u(ti) reveals the discrete time fundamental frequency as 𝜔d = 2𝜋

N
when we

compare (9.10) with (9.9). Therefore, the relationship between the continuous time and
discrete time frequencies exists as,

𝜔1 =
𝜔d

Δt
. (9.11)

The simplest way to estimate the frequency response of the system under relay feed-
back is to use the FFT. Assuming that the data length is L, the Fourier transform of an
input signal u(k), k = 1, 2,… , L, is

U(n) = 1
L

L∑

k=1
u(k)e−j 2𝜋(k−1)(n−1)

L (9.12)

and the corresponding Fourier transform of the output is

Y (n) = 1
L

L∑

k=1
y(k)e−j 2𝜋(k−1)(n−1)

L (9.13)

where n = 1, 2, 3,… , L. With the computation of the Fourier transformation of both
input and output signals, the estimation of the frequency response of the plant G(n) is
simply (Ljung (1999))

G(n) = Y (n)
U(n)

. (9.14)

From both (9.12) and (9.13), with the definition of the Fourier transform, it is seen that
the corresponding discrete frequency is defined from 0 to 2𝜋(L−1)

L
with an incremental of

2𝜋
L

, where L is the data length.
The remaining tasks are to find which index n corresponds to the fundamental fre-

quency 𝜔d in discrete time, followed by converting the discrete time frequency to the
continuous time frequency 𝜔1.
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An intuitive way to find the fundamental frequency𝜔d is to find the averaged number
of samples of the input signal u(k) within one period [see Figures 9.7(b)–(c)]. How-
ever, this could potentially lead to an inaccurate result because of the possible random
switches in the input signal due to the measurement noise [see Figure 9.7(d)].

Since the input signal exhibits the feature of a periodic signal, the amplitude of the
discrete time Fourier transform of the input signal will yield a maximum value at the
fundamental frequency 𝜔d. Thus, we will use the maximum value of the amplitude of
the Fourier transform as the signature to identify the discrete time fundamental fre-
quency𝜔d while taking into account of the incremental frequency 2𝜋

L
in a general Fourier

transformation.

9.3.2 MATLAB Tutorial using the FFT for Estimation

The following MATLAB tutorial shows how to estimate G(j𝜔1), G(j𝜔3), G(j𝜔5) and G(0)
through Fourier analysis.

Tutorial 9.3 In this tutorial, we will estimate the plant frequency response at 𝜔1, 𝜔3,
𝜔5 and 0.

Step by Step

1. Create a new file called FFTRelay.m for the MATLAB function.
2. Define the input and output variables for the MATLAB function. Enter the following

program into the file:

function [G1,G3,G5,G0]=FFTRelay(u,y,Deltat)

where u and y are the input and output data from the relay feedback control. Deltat
is the sampling interval.

3. Remove the steady-state values of the input and output data to obtain zero mean
data. Enter the following program into the file:

L=length(u);
u=u-mean(u);
y=y-mean(y);

4. Calculate Fourier transform of the input and output signal. Enter the following pro-
gram into the file:

Ujw=fft(u);
Yjw=fft(y);

5. Estimate the frequency response of the plant for all frequencies. Enter the following
program into the file:

fftEst=Yjw./Ujw;

6. We find the index that corresponds to the maximum value of the amplitude of the
Fourier transform of the input signal, pointing to the fundamental frequency 𝜔1 and
the estimated plant frequency response G(j𝜔1). Enter the following program into the
file:
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[n1,m1]=max(abs(Ujw));
P1=m1;
w1=2*pi*(P1-1)/(L*Deltat);
G1=fftEst(P1);

7. We will find the second peak in the amplitude of the Fourier transform of the input
signal, pointing to the frequency 𝜔3. Because of the noise, in many cases, 𝜔3 ≠ 3𝜔1.
Enter the following program into the file:

[n2,m2]=max(abs(Ujw(P1+3:P1+2*m1+3)));
P3=P1+2+m2;
w3=2*pi*(P3-1)/(L*Deltat);
G3=fftEst(P3);

8. We will locate the third peak in the amplitude of the Fourier transform of the input
signal, pointing to the frequency 𝜔5. Enter the following program into the file:

[n3,m3]=max(abs(Ujw(P3+3:P3+3+2*m1)));
P5=P3+2+m3;
G5=fftEst(P5);
w5=2*pi*(P5-1)/(L*Deltat);

9. We can also estimate the steady-state gain. Enter the following program into the file:

G0=fftEst(1);

10. The estimated frequency responses are exported together with their corresponding
frequencies in the following format. Enter the following program into the file:

G1=[G1 w1];
G3=[G3 w3];
G5=[G5 w5];
G0=[G0 0];

11. We can test this program in the Examples 9.3 and 9.4 presented in the next section.

9.3.3 Monte-Carlo Simulation Studies

In the Monte-Carlo simulation, the measurement noise is generated with a random ini-
tial seed that changes with each simulation to reflect the randomness of the noise and its
effect on the estimation results. It means that the measurement noise sequence is unique
for each simulation and different from others. Consequently, the estimated parameters
for each simulation are unique due to the noise. From the total number of simulations,
the mean and variance of the estimated parameters are assessed. This assessment can
be performed graphically by plotting the estimated parameters for each run against the
original parameters or by calculating the mean and variance of the parameters from the
total number of simulations. We choose to use a graphic display of the Monte-Carlo
simulation results.

Two examples are presented in this section to show the estimation of frequency
response of the system using the FFT with relay feedback control data in a noisy
environment. The first case is to investigate the estimation when a relay is used with
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hysteresis to control the system and the second case is to show the estimation when a
relay with an integrator is used to control the system.

The system under study has the transfer function

G(s) = 0.6e−6s

(3s + 1)2(2s + 1)
.

The noise used in the simulation is band limited noise with sampling interval Δt = 0.05
(s) and power strength 1 together with a gain 0.1. The simulation time is 800 s. The initial
seed used to generate the noise sequence varies from 0 to 68 to form the Monte-Carlo
simulation studies. In total, we will conduct 69 simulation studies for the estimation.

Example 9.3 The Simulink simulator is set up using the diagram illustrated in
Figure 9.3. In the simulation studies, the hysteresis level 𝜖 is chosen to be 2 in order to
prevent the relay from random switching triggered by the noise. The relay amplitude a is
chosen to be 3 . This combination will give the value 𝜋𝜖

4a
= 0.5236 (see Figure 9.2), which

will result in sustained oscillation for this system. Because the measurement noise is
used in the closed-loop relay feedback control, it affects the switching pattern of the input
signal when the relay element is triggered occasionally by random noise. Figure 9.8(a)
shows a section of the input and output data generated using seed 68 for the band
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Figure 9.8 Frequency response estimation using FFT (Example 9.3). (a) Input and output data using
seed 68. (b) Fourier transform of the input data. (c) Estimated frequency responses (𝜔1 (o), 𝜔3 (∗), 𝜔5
(+)). (d) Estimated steady-state gain.



�

� �

�

272 9 Automatic Tuning of PID Controllers

limited noise, and Figure 9.8(b) shows the Fourier transform of the input data. The first
1000 data points were removed from the estimation. Using the program FFTRelay.m,
the estimation is performed for the 69 sets of data generated from the relay feedback
control. Figure 9.8(c) shows the estimated frequency points in clusters for 𝜔1, 𝜔3 and
𝜔5 from the 69 estimations. From this figure, it is seen that the estimation for G(𝜔1) is
reliable because all 69 estimates are close to the true frequency response at 𝜔1. For the
estimation of G(j𝜔3), there is one failure out of the 69 experiments, which is quite good.
For the estimation of G(j𝜔5), there are a few more failed estimations. The estimation for
the steady-state gain is not reliable, as shown in Figure 9.8(d).

It is worthwhile emphasizing that the selection of hysteresis level in relation to ampli-
tude of the relay in a noisy environment is an important task. Without a priori knowledge
about the noise level and the gain of the system, their combination is to be revealed often
through trial and error experiments.

Example 9.4 For the relay with integrator control studies, the Simulink simulator is
set up using the diagram illustrated in Figure 9.3 with the MATLAB embedded function
RelayI.slx produced in Tutorial 9.2.

For the relay with integrator control, the relay amplitude a is selected to be one and a
very small hysteresis level 𝜖 = 0.001 is used to avoid the possible numerical problem dur-
ing the relay feedback control. With the exactly same noise sequences used in Example 9.3,
the closed-loop relay feedback control system is simulated for 69 different noise sequences.
Sustained oscillations are generated for all the experiments. Figure 9.9(a) shows the first
segment of the input and output data generated using seed 68 and Figure 9.9(b) shows
the Fourier transform of the input data. Figure 9.9(c) presents the estimated results for
G(j𝜔1), G(j𝜔3) and G(j𝜔5). From this figure, it is seen that the estimated G(j𝜔1) is very
good, which is centered at the true frequency response with a small cluster ( i.e. a small
variance). There is one failure for the estimation of G(j𝜔3) with a larger cluster, also a
larger cluster for G(j𝜔5). There is no reliable estimation for the steady-state gain, as shown
in Figure 9.9(d).

It is not essential to use hysteresis in the relay with integrator feedback control because
the integral action acting as a low-pass filter has prevented the possible random switches
caused by the noise. In comparison, the relay with integrator control is much more robust
in the presence of noise, as demonstrated in this example. If the system has severe noises,
relay with integrator gives a viable solution to generate a sustained oscillation without
having to choose a hysteresis level.

9.3.4 Food for Thought

1. Is it correct to say that the periodicity of the input and output signals with relay feed-
back control plays the key role at obtaining accurate estimated frequency response
parameters?

2. Will you still get estimated frequency parameters if the estimated period T is wrong?
3. Why do we use the peak amplitude of the Fourier transform of input signal to identify

the period of the oscillation?
4. Why can not we reliably estimate the steady-state gain of the system from the periodic

input and output data generated by the relay control?
5. If the input and output data are not zero mean, will you be able to correctly obtain

the frequency response estimation using the Fourier analysis?
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Figure 9.9 Frequency response estimation using FFT (Example 9.4). (a) Input and output data using
seed 68. (b) Fourier transform of the input data. (c) Estimated frequency responses (𝜔1, 𝜔3, 𝜔5).
(d) Estimated steady-state gain.

9.4 Estimation of Frequency Response Using the frequency
sampling filter (FSF)

This section introduces a model based approach for the estimation of process frequency
response based on the input and output data collected from relay feedback control. The
model is called the FSF model (Bitmead and Anderson (1981),Wang and Cluett (2000)).
The advantages of using such a model based approach in comparison with the FFT anal-
ysis include that the computation can be performed recursively in real time and the
estimated frequency responses have better accuracy because of the model optimization.

9.4.1 Frequency Sampling Filter Model

Assuming that a relay experiment is performed, a set of input and output signals u(k) and
y(k) is obtained. Because the input and output signals are periodic signals, the period in
number of samples, denoted by N , is calculated and the fundamental discrete frequency
is denoted by 𝜔d, where 𝜔d = 2𝜋

N
. Also, the backward shift operator q−1 is defined as

q−1x(k) = x(k − 1) where x(k) is a discrete time signal.
Then, associated with the plant frequency response, G(0) and G(ejl𝜔d), where

l = 1, 2, 3,… ,N , the output y(k) is expressed using the frequency sampling filter model
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in the relationship to the input signal u(k) as (Bitmead and Anderson (1981),Wang and
Cluett (2000)),

y(k) = G(0) f 0(k) +

N−1
2∑

l=− N−1
2

G(ejl𝜔d) f l(k) + 𝑣(k) (9.15)

where f 0(k) is the FSF output for the zero frequency, defined as

f 0(k) = 1
N

1 − q−N

1 − q−1 u(k)

and f l(k) is the lth FSF filter output defined as

f l(k) = 1
N

1 − q−N

1 − ejl𝜔d q−1
u(k)

and 𝑣(k) is the output measurement noise assumed to be Gaussian distributed with zero
mean and variance 𝜎2. If the input signal u(k) is a perfect period signal with period N ,
then, from Fourier analysis (Kreyszig (2006)), it only contains the odd number of fre-
quencies and the magnitude decays as the number increases (see (9.10)). As a result,
the outputs from the frequency sampling filters with even numbers are zero in response
to the relay feedback control signal u(k), and they could be removed from the sum in
(9.15). Figure 9.10 shows a block diagram of the frequency sampling filter model with
a reduced number of filters. In practice, because of nonlinearities and other imperfect
conditions, the relay control signals may not be perfectly periodic signals. The outputs
of the zero frequency sampling filter and the even number of frequency filters may have
signals with small magnitudes. To avoid bias errors in estimation, the expression of
the output signal will take into consideration the effect of the near zero terms, which
yields,

y(k) ≈ G(ej0) f 0(k) + G(ej𝜔d) f 1(k) + G(e−j𝜔d) f −1(k) + G(ej2𝜔d) f 2(k)
+ G(e−j2𝜔d) f −2(k) + G(ej3𝜔d) f 3(k) + G(e−j3𝜔d) f −3(k) + 𝑣(k). (9.16)

The model in (9.16) with seven complex parameters proves to be adequate for the
majority of the applications even in the situation when the relay control does not pro-
duce perfect periodic signals.

+

u(t)

v(t)

y(t)

Figure 9.10 Block diagram of the frequency sampling filter model with reduced order.
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With the description of the output signal in terms of the frequency parameters, the
next step is to estimate these parameters using the relay feedback control data. Define
the complex parameter vector to be estimated as

𝜃 = [G(0)G(ej𝜔d)G(e−j𝜔d)G(ej2𝜔d)G(e−j2𝜔d)G(ej3𝜔d)G(e−j3𝜔d)]∗

and its corresponding regressor vector as

𝜙(k) = [f 0(k) f 1(k) f −1(k) f 2(k) f −2(k) f 3(k) f −3(k)]∗

where A∗ denotes the complex conjugate transpose of A.
Assuming that the number of data samples is M, then the least squares estimation

of 𝜃 has the following analytical solution (Soderstrom and Stoica (1989), Ljung (1999),
Soderstrom (2018), Young (2012), Goodwin and Sin (1984)):

�̂� =

( M∑

k=1
𝜙(k)𝜙(k)∗

)−1 M∑

k=1
𝜙(k)y(k) (9.17)

For real-time computation, we can use a recursive least squares algorithm to compute
the frequency parameter vector �̂�(k) at sampling instant k (see Goodwin and Sin
(1984),Young (2012),Ljung (1999)). Here, a standard recursive least squares algorithm is
written in the following steps, where the initial conditions of P(0) and �̂�(0) are selected
by the user or they can also be calculated using the relay testing data based on the
least squares algorithm (Wang and Cluett (2000)). The following computation steps are
repeated in real time, beginning with the sampling instant k = 1.

1. Calculate the estimated parameter vector �̂�(k)

�̂�(k) = �̂�(k − 1) + P(k − 1)𝜙(k)(y(k) − 𝜙(k)∗�̂�(k − 1)). (9.18)

2. Update the covariance matrix P(k) using

P(k) = P(k − 1) − P(k − 1)∗𝜙(k)𝜙(k)∗P(k − 1)
1 + 𝜙(k)∗P(k − 1)𝜙(k)

(9.19)

where �̂�(k) contains the estimated frequency response parameters at the sampling
instant k.

3. Go back to step one as the next sampling period arrives.

There are two comments given below.

1. It is worthwhile emphasizing that the estimated zero frequency and even frequency
parameters are not reliable due to the near zero magnitudes of their filter outputs due
to the periodicity of the input signal. This is illustrated by the Monte-Carlo simulation
in the examples.

2. It is important to note that in an ideal situation, the parameter N can be determined
from the averaged period of the relay control signal. However, this calculation
is no longer correct when the relay feedback control does not produce perfectly
periodic oscillations. An effective way to calculate N is to find the first maximum
magnitude of the Fourier transformation of the input signal and the correspond-
ing frequency 𝜔d from which 2𝜋

𝜔d
is rounded to the nearest integer to yield the

parameter N .
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9.4.2 MATLAB Tutorial on Estimation Using the FSF Model

Tutorial 9.4 In this tutorial, we will estimate the parameter vector �̂�(k) using recursive
least squares. We assume that the entire input and output data set is available. One can
adapt the program for real-time data analysis.

Step by Step

1. Create a new file called FSFRelay.m for the MATLAB function.
2. Define the input and output variables for the MATLAB function with u for the input

and y for the output variables. Enter the following program into the file:

function [thetaCurrent,n,N]=FSFRelay(u,y)

3. Remove the steady-state values of the input and output variables. Enter the following
program into the file:

L=length(u);
u=u-mean(u);
y=y-mean(y);

4. Determine the averaged period N using FFT. Enter the following program into the file:

Ujw=fft(u);
[n1,m1]=max(abs(Ujw));
P1=m1;
N=round(L/(P1-1));

5. Specify the number of frequencies we wish to estimate. Here we select n = 7. Enter
the following program into the file:

n=7;

6. Set up Fourier coefficient matrix. Enter the following programs into file:

alpha=exp(j*2*pi/N);
beta=1;
for i=1:N-1
beta=[beta alpha ̂ i];
end
zeta=beta. ̂ 0;
for i=1:(n-1)/2
zeta=[zeta; beta. ̂ i];
end

7. Use the first N data points to estimate the initial recursive parameters. Enter the fol-
lowing program into file:

U_input=zeros(N,1);
for kk=1:N
Pt=zeta*U_input/N;
Pn=Pt(1);
for i=2:(n+1)/2
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Pn=[Pn;Pt(i);conj(Pt(i))];
end
Ps(:,kk)=Pn;
U_input=[u(kk);U_input(1:N-1,1)];
end

8. Least squares estimation for the initial �̂�(0) and covariance matrix P(0). Continue
entering the following program into the file:

M=inv(Ps(:,1:N)*Ps(:,1:N)');
thetaPast=M*Ps(:,1:N)*y(1:N);
P_ls=M;

9. Set up forgetting factor for time varying system.1 Enter the following program into
the file:

lam=1;

10. Computation of recursive least squares estimation begins. This computation can be
adapted for micro-controller applications. Enter the following program into the file:

for k=N+1:length(y)-1;

11. Update FSF outputs at the sampling instant k. Enter the following program into
the file:

U_input=[u(k);U_input(1:N-1,1)];
Pt=zeta*U_input/N;
Pn=Pt(1);
for i=2:(n+1)/2
Pn=[Pn;Pt(i);conj(Pt(i))];
end

12. Calculate the error e(k) at the current time. Enter the following program into the file:

eCu=y(k)-Pn’*thetaPast;

13. Update the estimated parameter vector �̂�(k). Enter the following program into the file:

thetaCurrent=thetaPast+P_ls*Pn*eCu/(lam+Pn'*P_ls*Pn);

14. Update the covariance matrix P(k). Enter the following program into the file:

P_ls=(1/lam)*(P_ls-P_ls*Pn*Pn'*P_ls/(lam+Pn'*P_ls*Pn));

15. Prepare for the next cycle of computation. Enter the following program into the file:

thetaPast=thetaCurrent;
end

16. Test this program using the Monte-Carlo simulation in Section 9.4.3.

1 One can choose the parameter lam to be less than 1 for time varying systems (see Goodwin and Sin
(1984), Young (2012), Ljung (1999)).
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9.4.3 Monte-Carlo Simulation using the FSF Estimation

In this section, we will illustrate the estimation of frequency response using the
frequency sampling filter model based on a relay with integrator control. The same
Monte-Carlo simulation studies as in Example 9.4 will be used to generate the input
and output data under relay feedback control.

Example 9.5 Use the input and output data from the Monte-Carlo simulation
studies presented in Example 9.4 to estimate the plant frequency response G(j𝜔) at
𝜔 = 0, 𝜔1, 2𝜔1, 3𝜔1.

Solution. We will use the program FSFRelay.m produced in Tutorial 9.4 to calculate
the estimated frequency response at 𝜔 = 0, 𝜔1, 2𝜔1, 3𝜔1, where 𝜔1 = 2𝜋

NΔt
. Because of the

noise, the fundamental period N may vary from one experiment to another. Thus, this
parameter is determined automatically using FFT as illustrated in the tutorial.

Figure 9.11 (a) compares the estimated G(j𝜔1) and G(j𝜔3) against the true frequency
response G(j𝜔). It is seen that for these two estimated frequency response parameters,
they are indeed very close to the true underlying value. In particular, the 69 estimated
values of G(j𝜔1) are almost identical to the true value evident by the location and the size
of the cluster. The quality of the estimation for the third frequency parameter G(j𝜔3) is
lower as the size of the cluster is larger, indicating a larger variance associated with the
estimation. The estimation for the frequency parameters G(0) and G(j2𝜔1) is not reliable
as the size of the clusters are far too large due to the periodicity of the input and output
signals, which inevitably leads to little information contained in the input signals for these
two frequency parameters.

In general, the frequency sampling filter model based estimation leads to an improved
estimation compared with FFT based approaches when using the relay feedback con-
trol data because it is a model based approach that uses the principle of optimization
in the parameter solutions. Additionally, the FSF model based approach can be imple-
mented using a recursive method, as shown in Tutorial 9.4, which is suitable for real time
computation on a micro-controller. If necessary, a noise model can be incorporated in
the estimation (Wang and Cluett (2000)). The main advantage of using the FFT for the
estimation is its simplicity of implementation, as shown in Tutorial 9.3.
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Figure 9.11 Frequency response estimation using FSF (Example 9.5).
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9.4.4 Food for Thought

1. In the frequency estimation when using the FSF model and the relay feedback control
data, we need to estimate the period in number of samples, N . Why do you think that
we identify the parameter N using the maximum peak value of the FFT of the input
signal? Can you propose an alternative approach to identify the parameter N?

2. What would happen to the frequency response estimation using FSF if the estimated
parameter N is wrong? Even so, would you still be able to get some estimation results?

3. Where are the poles of the frequency sampling filters? Can you express the frequency
sampling filter model in terms of real coefficients instead of the complex coefficients?

4. Do you think that the estimated results from the recursive least squares estima-
tion are identical to those obtained from the least squares estimation (see 9.17) with
appropriately selected initial conditions?

5. What are the advantages when using the recursive least squares estimation?

9.5 Monte-Carlo Simulation Studies

In this section, we will further evaluate the estimation of the plant frequency response
using the frequency sampling filter model in comparison with the estimation using
Fourier analysis, where Monte-Carlo simulation studies are used.

The transfer function used in the Monte-Carlo simulation is

G(s) = 0.6e−6s

(3s + 1)2(2s + 1)
.

The relay amplitude is selected to be 1 and the sampling interval Δt = 0.05 (s). The relay
testing time is selected to be 800 (s). The noise used in the simulation is band limited
noise with sampling interval Δt = 0.05 (s) and power strength 1 together with a gain
0.02. In the Monte-Carlo simulation, the measurement noise is generated with a ran-
dom seed that changes with each simulation to reflect the randomness of noise and its
effect on the estimation results. The seeds used in the simulations are 0, 2, … ,60. Thus,
there are 31 random seeds used in the Monte-Carlo simulation to generate the measure-
ment noise. There is a small hysteresis in the proposed relay feedback control because
the integral action acting as a low-pass filter has reduced the possible random switches
caused by the noise.

9.5.1 Effect of Unknown Constant Disturbance

In many applications, during the relay experiments, there is an unknown constant dis-
turbance. This type of disturbance often enters the system at the input variable, which
is called the input disturbance. A typical example is the electrical load in an AC motor
(Wang et al. (2015)). This type of disturbances will cause periodic oscillations in the relay
feedback control to become unbalanced.

A constant input disturbance with magnitude of 0.3 is added to the relay feedback con-
trol experiments. Figure 9.12(a) shows the closed-loop relay feedback control responses
in the presence of measurement noise and the input disturbance. From this figure it
is seen that with the disturbance the oscillations are no longer in symmetry. Fourier
analysis reveals [see Figure 9.12(b)] that the input signal has the fundamental frequency
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Figure 9.12 Monte-Carlo simulation results with 31 random seeds in the presence of constant load
disturbance. (a) Input and output signal. (b) Magnitude of DFT. (c) FSF estimation. (d) FFT estimation.
Key: G(j𝜔) (solid line), o is the estimated values at 𝜔1 = 2𝜋

NΔt
, ∗ is the estimated values at 𝜔2 = 2𝜔1, + is

the estimated values at 𝜔4 = 4𝜔1.

𝜔d = 2𝜋
N

= 0.0051 (rad), where N = 1231 and the next significant frequency in the peri-
odic signal is 2𝜔d followed by 4𝜔d. By choosing the nine frequency parameters (n = 9)
and N = 1231 in the frequency sampling filter model, we obtain the estimated frequency
parameters as shown in Figure 9.12(c). It is seen that the estimated parameters are unbi-
ased with small variances, as shown through the Monte-Carlo simulations. In compar-
ison, Figure 9.12(d) shows the estimated parameters using Fourier analysis, which are
seen to have larger variances. The estimation results for frequency parameters at 0 and
3𝜔d are not consistent when the oscillations are not symmetric caused by the constant
disturbance.

9.5.2 Effect of Unknown Low Frequency Disturbance

In the application of process control, low frequency disturbances are frequently encoun-
tered. This group of studies will investigate what would happen to the relay feedback
control and to the frequency response estimation in the presence of unknown low fre-
quency disturbance.
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In the Monte-Carlo simulation studies, the low frequency disturbance, entering into
the system via the input signal, is generated by passing the same band limited measure-
ment noise through a first order filter with transfer function:

Gd(s) =
0.05

s + 0.05
which is then sampled using the same sampling interval Δt = 0.05 (s). Note that the
disturbance model has a time constant of 20 (s), which is much larger than the time
constants of the system. Figure 9.13(a) shows the input and output data generated
by the relay feedback control system. From this figure, it is interesting to see that
the relay feedback control system no longer generates periodic oscillations in the
presence of low frequency disturbances. This is confirmed through the Fourier analysis
[see Figure 9.13(b)], from which only one spike in the magnitude of the Fourier
transformation is observed. It is important to note that the relay feedback control
system produces the oscillations that have the largest amplitude at 𝜔d = 0.0055, where
N = 1143 ≈ 2𝜋

𝜔d
. Figures 9.13(c) and (d) compare the estimation results obtained using

the frequency sampling filter model and the Fourier analysis of the input and output
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Figure 9.13 Monte-Carlo simulation results with 31 random seeds in the presence of unknown low
frequency disturbance. (a) Input and output signal. (b) Magnitude of DFT. (c) FSF estimation. (d) FFT
estimation. Key: G( j𝜔) (solid line), o is the estimated values at 𝜔1 = 2𝜋

NΔt
, ∗ is the estimated values at

𝜔2 = 2𝜔1, + is the estimated values at 𝜔4 = 4𝜔1.
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data. It is seen from Figure 9.13(c) that the variances of the estimated parameters using
the frequency sampling filter model are relatively small; however, there are small biases
in the estimated parameters. In contrast, because the input signal is not periodic, the
frequency response estimation using Fourier analysis produces poor results except the
estimated parameters at 𝜔d = 0.0055, as shown in Monte-Carlo simulation studies,
which is evident by the scatters on the complex plane [see Figure 9.13(d)].

9.5.3 Estimation of the Steady-state Value

The final question to be answered in the Monte-Carlo simulation studies is whether
the steady-state estimation will be valid using the frequency sampling filter model.
Figure 9.14 shows that the estimation of steady-state information is not reliable when
using relay feedback control. Depending on the particular seed of the noise generator,
all the estimated steady-state gains vary significantly from the true value (0.6). The worst
case is shown in Figure 9.14(b), where with the constant disturbance the steady-state
gain estimated is 0.
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Figure 9.14 Monte-Carlo simulation results for estimation of steady-state gain with 31 random seeds.
(a) Steady-state estimation (measurement noise). (b) Steady-state estimation (constant disturbance).
(c) Steady-state estimation (low frequency disturbance). Key: G(j𝜔) (solid line), o is the estimated
values at 𝜔 = 0.
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9.5.4 Food for Thought

1. The Monte-Carlo simulation studies presented in this section are based on integra-
tor with relay feedback control. In the presence of constant disturbance, what is the
role of the integrator played in the relay feedback control system? What are your
observations in terms of the behavior of input and output signals?

2. In the presence of low frequency disturbance, has the integrator with relay feedback
control tried to compensate the disturbance? Does this cause the breakdown of the
periodicity of the input and output signals?

3. When there is a constant disturbance in the system, what kind of behavior would
you expect from the input and output data for a relay with hysteresis? Do you expect
accurate estimation results for this case when using FFT and FSF algorithms?

4. Why can not we consistently estimate the steady-state gain of the system using the
data generated from the relay feedback control? Even for the case with low frequency
disturbance?

9.6 Auto-tuner Design for Stable Plant

To design the auto-tuner for a stable plant, the integrator with relay feedback control
is used to generate the input and output data for the frequency response identifica-
tion because this configuration handles the measurement noise and disturbances well
and also provides the valuable low frequency information for the PID controller design.
We assume that the two estimated frequency response points from the relay testing data
are the fundamental frequency Gp(j𝜔1), 𝜔1 = 2𝜋

NΔt
and Gp(j𝜔2), where N is the number

of samples within one period. Because of noise, the oscillation generated from the relay
feedback control may not be perfectly periodic. Thus, the parameter N is estimated using
FFT analysis as illustrated in the previous sections (see Section 9.4). In the majority of
the cases, the second frequency 𝜔2 is selected as 3𝜔1.

We assume that the plant transfer function Gp(s) is stable with all poles strictly on the
left-half complex plane. Recall the desired closed-loop performance for the PID con-
troller design using frequency response data in Chapter 8, which is specified through
the control sensitivity function (see (8.18)), as

Su(s) =
1

Kp

1
𝛽
𝜏cls + 1

𝜏cls + 1
(9.20)

where 𝜏cl > 0 is the desired closed-loop time constant, the parameter 𝛽 is selected so
that 𝜏cl

𝛽
= 𝜏op is approximately equal to the dominant time constant of the system, Kp is

the steady-state gain of the system.
To link the PID controller design method to the auto-tuner, the question remains as

how to choose the design parameters in (9.20). One possibility that works well is to
derive the approximate dominant time constant of the system using the period of relay
control, N . For the majority of the system, it can be readily verified through simulation
studies that the settling time of the system is roughly 0.5NΔt, namely half of the period
under integrated relay control. With this knowledge, the dominant time constant of the
process is selected about one-fifth of the settling time as

𝜏op = 0.5NΔt
5

= 0.1NΔt (9.21)
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Now, one can choose the desired closed-loop time constant 𝜏cl in relation to the
dominant time constant of the process via the scaling parameter 𝛽 > 0 by defining

𝜏cl = 𝛽𝜏op = 0.1𝛽NΔt (9.22)

Substituting (9.21) and (9.22) into (9.20) leads to the desired control sensitivity func-
tion as,

Su(s) =
1

Kp

0.1NΔts + 1
0.1𝛽NΔts + 1

(9.23)

hence, the desired closed-loop transfer function as

Td(s) =
1

Kp

0.1NΔts + 1
0.1𝛽NΔts + 1

Gp(s) (9.24)

Note that in (9.24) the parameters N and Δt are known from the relay experiment and
the user selected performance parameter is 𝛽, which is the scaling factor between the
estimated open-loop and the desired closed-loop time constants. This modification of
the closed-loop performance specification leads to the automatic calculation of the PID
controller parameters with minimum effort from the user.

Because the direct estimation of the steady-state gain is not consistent using the relay
control experiment, an approximation is taken to yield a rough estimation of the gain as

Kp ≈ sign(Kss)|Gp(j𝜔1)|

where Kss is the unknown steady-state gain of the system.

9.6.1 MATLAB Tutorial on Auto-tuner for Stable Plant

Tutorial 9.5 The objective of this tutorial is to implement the auto-tuner in a simula-
tion environment. The system to be controlled has the following transfer function

Gp(s) =
0.6(−6s + 1)e−s

(2s + 1)(3s + 1)

Step by Step

1. Build a Simulink simulation program Tuner4StableSys.slx as shown in Figure 9.15,
where the output data ports are the relay feedback error e, the control signal u and the
output signal y. The steady-state values uss and yss are set to zero. Inside the Configu-
ration Parameters, the start time is selected as 0.0, stop time as Tsim, Solver option:
fixed-step and ode4 (Runge-Kutta), Fixed-step size: Deltat. In the Simulink simula-
tor, we have used the relay with integrator controller built in Tutorial 9.2. We can
add noise and disturbance to the simulator for the different cases.

2. Create a new MATLAB file called Test4tuner.m and save it in the same directory
as the Simulink simulator.

3. Define the system parameters using numerator, denominator and time delay d. Enter
the following program into the MATLAB file:

num=0.6*[-6 1];
den=conv([3 1],[2 1]);
d=1;
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Figure 9.15 Simulink diagram of auto-tuner for stable system.

4. Define the relay amplitude and hysteresis level, simulation time Tsim and sampling
interval Δt. Continue entering the following program into the MATLAB file:

Ra=1; %relay amplitude
epsilon=0.001; % hysteresis
Deltat=0.05;
Tsim=400;
Nsim=Tsim/Deltat;

5. Call the Simulink program to generate the three data output sets u,y and e. Continue
entering the following program into the MATLAB file:

sim('Tuner4StableSys')

6. Call the FSF estimation program created in Tutorial 9.4. Continue entering the fol-
lowing program into the file:

[thetaCurrent,n,N]=FSFRelay(u,-e);

7. Define the estimated frequency parameters. Continue entering the following program
into the file:

w1=2*pi/(N*Deltat);
w2=6*pi/(N*Deltat);
Gjw1=thetaCurrent(3);
Gjw2=thetaCurrent(7);

8. Find the estimated steady-state gain in approximation. Continue entering the follow-
ing program into the file:

K=abs(Gjw1);

9. Define the ratio 𝛽 (𝛽 = 1 as an example) between desired closed-loop time constant
in relation to the open-loop time constant, and the desired closed-loop time constant.
Continue entering the following program into the file:
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beta=1;
taucl=beta*0.1*N*Deltat;

10. Call the FR4PID.m from Tutorial 8.1 to calculate the PID controller parameters.
Continue entering the following program into the file:

[Kc,tauI,tauD]=FR4PID(beta,taucl,w1,w2,Gjw1,Gjw2,K);

11. Test this program with the closed-loop simulation as demonstrated in the next section
and compare with results from Case B in the next section.

9.6.2 Evaluation of the Auto-tuner for a Stable Plant

In this section, we will firstly evaluate the closed-loop PID control performance of the
proposed auto-tuner using four classes of systems commonly encountered in process
control, and secondly perform comparative studies. For simplicity of the presentations,
only measurement noise is added to the relay experiments. It has been verified that the
auto-tuner will provide similar closed-loop performance when the constant disturbance
or the low frequency disturbance are introduced during the relay experiments as long
as we make an adjustment on the choice of the second frequency estimate for the PID
controller design (see Sections 9.5.1 and 9.5.2).

There are four classes of systems used to evaluate the auto-tuner. Time delays are
added for all testing cases to reflect the cases in process control. The same steady-state
gain is used in all four cases for consistency in signal-to-noise ratio and the scaling of
disturbance rejection in the closed-loop simulation. The sampling interval is Δt = 0.05,
the relay amplitude is selected to be 1, and a measurement noise with standard deviation
𝜎 = 0.02 was added to the output. After the relay experiment, the number of samples
for the period of the relay signal is calculated automatically to give the parameter N ,
and the frequency responses at 𝜔1 = 2𝜋

NΔt
and 3𝜔1 are estimated. Then, by choosing

𝛽 = 0.5, 1, and 2, three sets of PID controller parameters are calculated using the pro-
gram FR4PID.m.

Case A. This is a testing case for high order systems. The transfer function of this
system is given as

Gp(s) =
0.6e−s

(3s + 1)6 .

Case B. This is the testing case for systems with non-minimum phase behavior. The
transfer function is given by

Gp(s) =
0.6(−6s + 1)e−s

(2s + 1)(3s + 1)
.

Case C. This is the testing case for systems with dominant time delay. The transfer
function is given as

Gp(s) =
0.6e−10s

3s + 1
.

Case D. The final testing case uses an underdamped system, which has the transfer
function

Gp(s) =
0.6e−s

(9s2 + 2.4s + 1)(3s + 1)
.
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This transfer function has the damping coefficient 𝜉 = 2.4
6
= 0.4. Thus, the system has

oscillatory response in open-loop operation.
Relay feedback control is used to generate the input and output data for all four pro-

cesses in the presence of measurement noise. Because of the integral action used in
the relay feedback control, the measurement noise has not affected the input signal
without using hysteresis in the design, and there is no correlation between the mea-
surement noise and the input signal. This adds to the benefit of using an integrator in
series with a relay control. The estimation of the frequency responses at 𝜔1 = 2𝜋

NΔt
and

3𝜔1 is performed using the frequency sampling filter model and the estimated frequency
responses are accurate for all four cases.

9.6.2.1 PID Controller Parameters
By choosing 𝛽 = 0.5, 1, and 2, three sets of PID controller parameters are calculated,
which corresponds to the selection of three different desired closed-loop response
speed. For instance, when 𝛽 = 0.5, the desired closed-loop time constant is selected
equivalent to half of the estimated dominant open-loop time constant. Table 9.1 shows
the PID controller parameters of the four cases for the three 𝛽 values together with
the mean squared errors, where the mean squared error is defined as 1

M

∑M
1 e(ti)2, M

being the number of samples and e(ti) being the error between the reference and output
signals.

It is noticed that as 𝛽 increases, the proportional controller gain Kc reduces, and the
derivative gain reduces. In contrast, the variation of integral gain is smaller when 𝛽

changes.

9.6.2.2 Nyquist Plots
Figures 9.16(a)–(d) show the Nyquist plots of the four cases for the three control systems
designed using 𝛽 = 0.5, 1 and 2, where the frequency response of the system, G(j𝜔),
is used in the computation. It is seen from the Nyquist plots that the PID controllers
with all three choices of 𝛽 lead to stable closed-loop systems. However, for 𝛽 = 0.5, the

Table 9.1 PID controller parameters for different 𝛽 values.

Case 𝜷 Kc 𝝉I 𝝉D
1
M

∑M
1 e(ti)2

A 0.5 1.2849 9.0098 5.0778 0.0894
1 0.9992 9.5168 3.0527 0.0971
2 0.6829 9.7083 1.1979 0.1171

B 0.5 0.9479 6.2732 1.1641 0.1285
1 0.7265 5.9704 0.9729 0.1033
2 0.4911 5.6412 0.7095 0.1072

C 0.5 1.1366 6.0222 3.8558 0.0805
1 0.8841 5.9116 3.2651 0.0793
2 0.6044 6.0983 1.8358 0.0902

D 0.5 0.9885 3.2625 2.1823 0.0417
1 0.7693 3.7356 0.9428 0.0450
2 0.5261 3.8386 0.2066 0.0543
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Figure 9.16 Nyquist plots using the PID controller parameters in Table 9.1. (a) Case A. (b) Case B.
(c) Case C. (d) Case D. Key: line (1) 𝛽 = 0.5; line (2) 𝛽 = 1; line (3) 𝛽 = 2.

closed-loop control systems for case B to case D had gain margins less than 2. As 𝛽
increases, both gain and phase margins for all four systems have increased. In particular,
for the default choice of 𝛽 = 1, the gain margins for all four case are greater than 2 and
phase margins are greater than 45∘.

9.6.2.3 Closed-loop Simulation Results
Closed-loop simulation is conducted for all four cases with 𝛽 = 0.5, 1, and 2. In the
closed-loop simulation, the derivative term is implemented on the output only and a
derivative filter with time constant 1

0.1𝜏Ds+1
is used. A unit step signal is used as the ref-

erence signal at t = 0 (s), and a unit step input disturbance enters at time t = 100 (s).
Figures 9.17(a)–(d) show the closed-loop simulation results for reference following and
disturbance rejection. It is seen that all closed-loop systems are stable. The simulation
results demonstrate that for a faster response to the reference signal, the PID control
system will also have a faster response to disturbance rejection. The user can select
the scaling parameter 𝛽 to achieve the desired closed-loop response as required. As 𝛽
increases, the closed-loop response speed reduces to both reference following and dis-
turbance rejection. The overshoot in the reference response when 𝛽 is small could be
overcome by using a two degree of freedom PID controller implementation as shown in
Chapters 1 and 2.
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Figure 9.17 Closed-loop simulation results using the PID controller parameters in Table 9.1. (a) Case A.
(b) Case B. (c) Case C. (d) Case D. Key: line (1) 𝛽 = 0.5; line (2) 𝛽 = 1; line (3) 𝛽 = 2.

9.6.3 Comparative Studies

In this section, we will benchmark the closed-loop performance of the PID controller
found by the auto-tuner against the performance of the several other well known PID
controllers. We will consider the following first order plus time delay model,

G(s) = e−50s

10s + 1
. (9.25)

In the comparative studies, we will calculate the PID controller parameters using the
IMC-PID controller design proposed by Rivera et al. (1986) (see Section 1.4.1), and the
PID controller design by Padula and Visioli (2011) (see Section 1.4.2).

As in Chapter 1, the PID controller parameters using IMC-PID controller and Padula
and Visioli tuning rules are calculated using the transfer function model (9.25). The
PID controller parameters from the auto-tuner are calculated from the relay experiment
where measurement noise with standard deviation of 0.02 was added.

In Table 9.2, we will choose two 𝛽 parameters to yield two sets of PID controller
parameters from the auto-tuner. With this selection, it seems that all three PID
controllers have a similar gain for the proportional control. However, the integral
time constant varies between 26 and 35, and the derivative gain varies between 7
and 17. Figures 9.18(a)–(b) compare the three control signals and output signals in
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Table 9.2 PID controller parameters and mean squared errors from the control
simulation studies. Cases A and B use an auto-tuner, case C uses IMC-PID, cases D
and E use Padula and Visioli PID.

Case Spec. Kc 𝝉I 𝝉D
1
M

∑M
1 e(ti)2

A 𝛽 = 1 0.5137 27.9241 14.4603 0.1326
B 𝛽 = 2.5 0.2982 28.3523 7.4440 0.1671
C 0.538 35.00 7.14 0.1358
D Ms = 1.4 0.1664 17.2991 11.9938 0.1923
E Ms = 2 0.3205 22.5160 13.5770 0.1504
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Figure 9.18 Closed-loop simulation results using the PID controller parameters in Table 9.2.
(a) Control signal. (b) Output signal. Key: line (1) auto-tuner (𝛽 = 1); line (2) IMC-PID controller; line (3)
Padula–Visioli design (Ms = 2).

both reference following and disturbance rejection, which show that all three control
systems have similar closed-loop performances in reference following and disturbance
rejection.

9.6.4 Food for Thought

1. What are the key advantages when using the estimated frequency information
directly for the auto-tuner design?

2. Can you propose an approach to convert the estimated frequency points to first order
plus delay model, then design PID controller using the Padula and Visioli tuning rules
given in Chapter 1?

3. If you wish to have a faster closed-loop response speed for disturbance rejection and
reference following, should you increase or decrease the parameter 𝛽?

4. If the system has a large measurement noise, and you wish not to amplify it, should
you increase or decrease the parameter 𝛽?

5. If the auto-tuner finds the derivative time constant to be negative, should we simply
neglect the derivative term and implement the PI controller?
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Figure 9.19 Block diagram of relay feedback control for an integrating system.

9.7 Auto-tuner Design for a Plant with an Integrator

For systems containing an integrator, in the design of auto-tuner for PID controllers, a
proportional controller KT is first used to stabilize the plant. A relay with hysteresis ele-
ment is utilized to generate the sustained oscillation for the closed-loop control system.
The block diagram of the relay feedback control for an integrating system is illustrated
in Figure 9.19.

9.7.1 Estimation of an Integrating Plus Delay Model

The approximate model of an integrating system is assumed to be of the following form:

G(s) =
Kpe−ds

s
. (9.26)

For most physical systems, there are more or less approximations involved in obtaining
the integrating plus time delay model. For an integrating plus time delay system, a single
frequency is sufficient to determine its gain Kp and time delay d. Therefore, it is exceed-
ingly simple to obtain an integrating plus delay model using the relay feedback control
experimental data.

As shown in Section 9.4, the estimation of the closed-loop frequency response using
either FFT analysis or an FSF model will yield the information T̂(j𝜔1) where T̂(j𝜔1) is
the estimated closed-loop frequency response and 𝜔1 is the fundamental frequency of
the relay feedback control.

With the knowledge of the proportional controller KT, the frequency response of the
plant G(ej𝜔1) is calculated from the closed-loop frequency response relationship,

T̂(ej𝜔1) =
G(ej𝜔1)KT

1 + G(ej𝜔1)KT

leading to

G(ej𝜔1) = 1
KT

T̂(ej𝜔1)
1 − T̂(ej𝜔1)

. (9.27)

Now, letting the frequency response of the integrating plus delay model (9.26) be equal
to the estimated G(j𝜔1) leads to

Kpe−jd𝜔1

j𝜔1
= G(j𝜔1). (9.28)

Equating the magnitudes on both side of (9.28) gives
Kp = 𝜔1|G(j𝜔1)| (9.29)
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where |e−jd𝜔1 | = 1. Additionally, from (9.28), the following relationship holds:

e−jd𝜔1 =
j𝜔1G(j𝜔1)

Kp
.

This gives the estimate of time delay as

d = − 1
𝜔1

tan−1 Imag(jG(j𝜔1))
Real(jG(j𝜔1))

. (9.30)

In the event that parameter d is negative, its absolute value is taken as the estimated
time delay.

It is seen here that if the system is approximated by integrating with the time delay,
the plant information at a single frequency is sufficient to determine the plant gain and
time delay.

9.7.2 Auto-tuner for Integrating Systems

On obtaining the estimated integrating plus time delay model (9.26), one can find the
PID controller using the empirical rules such as the modified IMC-PI controller in
Skogestad (2003), which was discussed in Section 1.4.1, or tuning rules in Tyreus and
Luyben (1992). We will use the empirical rules presented in Section 8.4.3, which gives
the flexibility of PI, PID and PD controllers together with the gain margin and phase
margin for the selection of performance parameter 𝛽.

One is encouraged to follow Tutorial 9.1 for the relay feedback control and Tutorial 9.4
for the estimation of the frequency response using an FSF so as to validate the following
simulation example.

The following example is to show the behaviour of the auto-tuner when it is applied
to a complex integrating system.

Example 9.6 Consider the design of PID controller using auto-tuner for the integrating
system described by the following transfer function:

G(s) = (−3s + 1)e−6s

s(10s + 1)2 . (9.31)

The proportional feedback control gain is selected as KT = 0.01 to produce a stable system
for the relay experiments. The relay amplitude of 1.75 and hysteresis of 0.2 are cho-
sen. Find the PID controller parameters for 𝛽 = 1.5 and 𝜉 = 0.707. In the relay feedback
control, band limited white noise is added to the output, where the signal power is selected
to be 1 with gain 0.02 and seed 23341.

Solution. Figure 9.20 shows the input and output data with the relay feedback control.
Using the frequency sampling filter model, the closed-loop frequency response is estimated
as

T̂(ej𝜔1) = −0.1924 − j0.0486

and the plant frequency response is estimated using (9.27) as G(j𝜔1) = −16.2741 −
j3.4158 where 𝜔1 = 0.0503. Figure 9.21 compares the estimated frequency response at
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Figure 9.20 Input and output relay
feedback control data (Example 9.6).
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Figure 9.21 Comparison between the
estimated frequency point with the
original frequency response (Example 9.6).
Key: solid line, plant frequency response;
dot, estimated frequency response.
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𝜔1 against the frequency response of the plant transfer function (9.31). It is seen that the
estimated result is quite accurate.

With the single frequency response point, the integrating time delay model is found
using (9.29) and (9.30):

G(s) = 0.8359e−27.1341s

s
. (9.32)

This model leads to the PID controller parameter using the empirical rules in Section
8.4.3 as

Kc = 0.0305; 𝜏I = 90.1559; 𝜏D = 7.1750.

Because the original system actually contains an integrator, the Nyquist diagrams (see
Figure 9.22) show their frequency responses are very similar at the cross over frequency
region as well as low and medium frequency regions, comparing the PID controller apply-
ing to the integrating plus delay model (9.32) with that applying to the original system
(9.31). Figure 9.22(b) compares the magnitudes of their sensitivity functions. It is seen
that the discrepancies are very small between the sensitivity functions in all the frequency
regions. The PID control system performance is evaluated with a step reference signal
and a step disturbance signal entering the simulation at t = 300 (s). The derivative con-
trol is implemented on the output only with the filter time constant equal to 0.1𝜏D. Three
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Figure 9.22 Frequency response comparison (Example 9.6). (a) Nyquist diagram. (b) Sensitivity
function. Key: line (1) frequency response calculated with integrating plus delay model; line (2)
frequency response calculated with the actual plant.

control configurations are considered (see Figures 9.23(a) and (b)). Overall, the PID con-
troller produces the best performance in terms of disturbance rejection. The PD controller
could not reject the step disturbance; however, it produces the best reference following
performance. There is an oscillation in the closed-loop control if a PI controller is used.

Although it is derived for an integrator plus delay system, the auto-tuner provides
satisfactory closed-loop performance for many classes of systems. This is illustrated by
the following example.

Example 9.7 Assume that a second order system with time delay is described by the
transfer function:

G(s) = e−3s

(8s + 1)(6s + 1)
. (9.33)
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Figure 9.23 Comparison of closed-loop performance for three types of controllers (𝛽 = 1.5,
𝜉 = 0.707). (a) Control signal. (b) Output. Key: line (1) PID control response; line (2) PI control response;
line (3) PD control response.
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Figure 9.24 Input and output relay
feedback control data (Example 9.7).
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Choosing the proportional feedback control gain KT = 0.6, and relay amplitude of 1.75
and hysteresis of 0.2, find the PID controller parameters for 𝛽 = 1.5 and 𝜉 = 0.707. In the
relay feedback control, band limited white noise is added to the output, where the signal
power is selected to be 1 with gain 0.02 and seed 23341.

Solution. Following Tutorial 9.1, we obtain the relay control data for the proportional
controlled system as shown in Figure 9.24. Then, following Tutorial 9.4, the closed-loop
frequency response with proportional control is estimated using the FSF model as

T̂(ej𝜔1) = −0.1539 − j0.0380

and the plant frequency response is estimated using (9.27) as G(j𝜔1) = −0.2238 − j0.0475
where𝜔1 = 0.264. Figure 9.25 compares G(j𝜔1) against the plant frequency response pro-
duced by the original system (9.33). It is seen that despite of the measurement noise, the
estimation result is very accurate. With the frequency response information, the integra-
tor plus time delay model becomes

G(s) = 0.0604e−5.1577s

s
(9.34)

based on (9.29) and (9.30).

Figure 9.25 Comparison between the
estimated frequency point with the
original frequency response (Example 9.7).
Key: solid line, plant frequency response;
dot, estimated frequency response.
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Figure 9.26 Comparison of closed-loop performance for three types of controllers (𝛽 = 1.5,
𝜉 = 0.707). (a) Control signal. (b) Output. Key: line (1) PID control response; line (2) PI control response;
line (3) PD control response.

By choosing 𝛽 = 1.5, the PID controller parameters are found using the empirical rules
in Section 8.4.3:

Kc = 2.2232; 𝜏I = 17.1371; 𝜏D = 1.3638.
This PID control system is simulated using a unit step input reference signal with sampling
interval Δt = 0.05 s. A step input disturbance with amplitude 0.05 enters the simulation
at half of the simulation time. Figure 9.26 shows the evaluation results for the configu-
rations of PID, PI, and PD control systems. In the implementation, the derivative control
is implemented on output only with a filter time constant 0.1𝜏D, both proportional and
integral control functions are implemented on the feedback error. The PID controller pro-
vides much improved performance over the PI and PD control systems for this choice of
𝛽 parameter. The oscillation for the PI control system reduces when 𝛽 is increased. In
general, if a PI controller is used, the parameter 𝛽 should be selected to be larger than
2 to reduce the oscillation due to the small phase margin, which can be verified for this
example.

To understand why the auto-tuner designed for the integrating system worked for a
stable system, a frequency response analysis is performed. Figure 9.27(a) makes a com-
parion between the Nyquist diagrams of the controller with the estimated integrating plus
delay model (9.34) and the controller with the stable plant transfer function (9.33). The
Nyquist diagrams show that their frequency responses are quite similar at the cross over
frequency region, which produces the closed-loop stability with sufficient gain and phase
margins when the controller found by the auto-tuner is applied to the original system.
Figure 9.27(b) compares the magnitudes of their sensitivity functions. It is seen that at
the high frequency region, they are very similar. However, at the lower and medium fre-
quency regions, there are some discrepancies. In particular, in the lower frequency region,
the magnitude of the sensitivity is much smaller when the controller is applied to the orig-
inal system, which indicates that the controller may have a better disturbance rejection
when it is found using the auto-tuner designed for the integrating systems.

This auto-tuner will be used for finding the PID controllers for the unmanned aerial
vehicles in Chapter 10.
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Figure 9.27 Frequency response comparison (Example 9.7). (a) Nyquist diagram. (b) Sensitivity
function. Key: line (1) frequency response calculated with integrating plus delay model; line (2)
frequency response calculated with the actual plant.

9.7.3 Auto-tuning of Cascade Control Systems

Auto-tuners are very convenient for tuning cascade control systems. The inner-loop
control system will be auto-tuned first to find the appropriate controller, followed by
the implementation of this secondary controller. An outer-loop control system will be
auto-tuned with the closed-loop secondary system considered. As an illustration, we
consider the following example.

Example 9.8 The transfer function for the secondary system is assumed to have the
transfer function:

G1(s) =
2e−3s

s(s + 1)
(9.35)

The transfer function for the primary system is described by

G2(s) =
0.1e−s

s(s + 1)
Find the PID controllers using the auto-tuner for the cascade PID control system.

Solution.
Auto-tuning inner-loop controller
The proportional controller used to stabilize the inner-loop system is selected to be KT1 =
0.04. In the simulation, a zero mean white noise with standard deviation of 0.025 is added
to the measured output. The relay amplitude is selected to be 1.75 and hysteresis is 0.2
to prevent the relay from the switching caused by the random noise. Figure 9.28 shows
the input and output data for the closed-loop system. It is seen from this figure that the
measurement noise has caused some random switches of the relay, particularly in the
beginning of the simulation. From the relay testing data, the number of samples within
one period is estimated to yield N = 355. The estimated fundamental frequency response
for the closed-loop system with KT1 = 0.04 is −0.2472 − j0.0673. From this value, the fre-
quency response of the integrating system is found as G(j𝜔1) = −5.0134 − j1.0791. With
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Figure 9.28 Relay feedback control signals
from inner closed-loop system (Example
9.8). top figure input signal; bottom figure
output signal.

the frequency response value of the inner-loop system, the following integrator with delay
model is calculated based on (9.29)–(9.30):

Gs(s) =
1.7852e−4.0547s

s

Choosing 𝛽 = 2, which gives the desired closed-loop time constant about 8, with PID
controller tuning rules presented in Section 8.4.3, the PID controller parameters for the
inner-loop control system are calculated as

Kc = 0.0844; 𝜏I = 21.0864; 𝜏D = 1.0449

Considering that the 𝜏D value is quite small, also noise in the system, the inner-loop con-
troller is selected as a PI controller. The Nyquist curve for the PI controller against the
original system described by (9.35) is shown in Figure 9.29(a). Roughly it can be read
from the figure that the control system has gain margin about 2 and phase margin about
45 degree, which are quite close to the specification in the tuning rules. The inner-loop PI
control system is evaluated via a step change at time t = 0 and a step input disturbance
with amplitude 0.05 entering the system at t = 60 (sec). Figure 9.29(b) shows the control
signal response and the output response to the reference change and the disturbance.

Auto-tuning outer-loop controller
The automatic tuning process is repeated for the outer-loop control system, however,
the inner-loop system is controlled with the PI controller auto-tuned previously. It is
important for a cascade control system in the relay experiment that the inner-loop
dynamics are considered. In the outer-loop relay experiment, the proportional controller
KT2 = 0.1 is used to stabilize the primary system, which has an integrator. The relay
feedback control data with amplitude of 1.75 and hysteresis of 0.2 for the outer-loop
system is shown in Figure 9.30 where the same measurement noise is added. It is seen that
there are many more random switches due to the measurement noise. The estimation
of the closed-loop frequency response using the frequency sampling filter model leads
to the value −0.1133 − j0.0011 at the fundamental frequency. Then, the calculated
frequency response of the primary plant together with the inner-closed-loop system at
the fundamental frequency of the relay signal is Gp(j𝜔1) = −1.0177 − j0.0091.
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Figure 9.29 Auto-tuning inner-loop control system (Example 9.8). (a) Nyquist curve with Cs(j𝜔).
(b) Closed-loop response.

Figure 9.30 Relay feedback control signals
from outer- closed-loop system
(Example 9.8). top figure input signal;
bottom figure output signal.
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The integrator with time delay model for the design of primary controller is derived
using (9.29)–(9.30) to give:

Gp(s) =
0.1752e−9.0729s

s
Note that the original time delay for the primary plant is 1, however, because of the
inner-loop dynamics, the estimated time delay is over 9. By choosing 𝛽 = 2, which gives the
desired closed-loop time constant about 18, the PID controller parameters are calculated
using the tuning rules to give

Kc = 0.3844; 𝜏I = 47.1835; 𝜏D = 2.3701

By neglecting the derivative control term, the PI controller is determined for the outer-loop
control system. Figure 9.31(a) shows the Nyquist curve for the cascade control system with
the primary controller auto-tuned. It is seen that the closed-loop system has gain mar-
gin approximately greater than 2 and phase margin greater than 45 degree. The cascade
control system is finally evaluated by using a step reference signal at t = 0 and a step
disturbance with magnitude of 0.05 entering at t = 150 as the input disturbance to the
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Figure 9.31 Auto-tuning outer-loop control system (Example 9.8). (a) Nyquist curve with Cp(j𝜔).
(b) Closed-loop response.

secondary plant. Figure 9.31(b) shows the cascade closed-loop control system to the ref-
erence signal and the disturbance signal.

9.7.4 Food for Thought

1. Why do you think that the auto-tuner designed for integrating system can be applied
to a stable system?

2. Do you expect that this class of auto-tuners would produce a faster disturbance rejec-
tion based on the observation of the sensitivity function in Example 9.7?

3. We use relay with hysteresis in the identification experiments. Do you think that it
would work better if we use the integrator with relay control apparatus in the identi-
fication experiment? Why?

4. If you wish to have a faster closed-loop response for disturbance rejection, should
you increase or decrease the parameter 𝛽?

5. If you wish to reduce the effect of measurement noise, should you increase or
decrease the parameter 𝛽?

9.8 Summary

We have discussed automatic tuning of PID controllers in this chapter. The auto-tuners
are designed for stable systems and integrating systems. Both involve relay feedback con-
trol to generate the input and output data for estimation of plant frequency response.
Then, the PID controller design methods discussed in Chapter 8 are used to automati-
cally find the controller parameters.

The other important aspects of the chapter are summarized as follows.
• Relay feedback control is utilized in generating the input and output data for

estimation of process frequency response. Following the MATLAB tutorials, we can
create our own Simulink functions for simulations of relay feedback control system
and those programs can also be translated into C-program for micro-controller
implementation.
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• The input and output data collected from the relay feedback control experiments in
simulation or in real-time implementation are used for the estimation either using
Fourier analysis or using the frequency sampling filter model. The frequency sampling
filter based estimation is performed in a recursive least squares algorithm with the
feature for real-time applications.

• Monte-Carlo simulation studies have been used to investigate the accuracy of the esti-
mated models in the presence of measurement noise and low frequency disturbances.

• Once the process frequency response is estimated, the PID controller design methods
either using two frequency points or using an integrating with delay model are applied
to obtain the PID controller parameters.

9.9 Further Reading

1. Relay feedback control has been one of the key instruments used in the automatic
tuning of PID controllers (Astrom and Hagglund (1984), Astrom and Hagglund
(1988), Astrom and Hagglund (1995), Astrom and Hagglund (2006), Hagglund and
Astrom (1985), Yu (2006), Johnson and Moradi (2005)).

2. The auto-tuner for stable systems was originally presented in Wang (2017).
3. Auto-tuners are experimentally compared in laboratory test beds (Berner et al.

(2018)).
4. Books for automatic tuning of PID controllers include Yu (2006), Sung et al. (2009)
5. Software package introduced for tuning of PID controllers is discussed in Oviedo

et al. (2006). Use of phase-locked-loop idea is used to auto-tune PID controllers in
Crowe and Johnson (2002).

6. Auto-tuners in closed-loop operations include Lee et al. (1990), Schei (1992), Tan
et al. (2000). Automatic tuning of cascade PID control system was discussed in Jeng
and Lee (2012) and Jeng (2014). Automatic tuning of PID controller for nonlinear
systems was presented in Cetin and Iplikci (2015). Multi-loop PID controller tun-
ing was proposed using an optimization based approach (Dittmar et al. (2012)). A
simplified approach to auto-tuner design with respect to disturbance rejection was
proposed in Romero et al. (2011). An auto-tuner was designed for fractional order
plus delay model in Jin.

7. Estimation of transfer function model by changing between two relay feedback
controllers to obtain multi-frequency signals (Schei (1994)), and estimation of step
response model (Wang and Cluett (1997)).

8. Frequency sampling filters was introduced in Bitmead and Anderson (1981) and
Wang and Cluett (2000).

9. The auto-tuning algorithm presented in this chapter has been successfully used to
attitude control of fixed-wing unmanned aerial vehicle with experimental valida-
tions (Poksawat et al. (2016), Poksawat et al. (2017) and Poksawat (2018)). It has
been used to find a PID control system for an electro-mechanical system with two
inputs and two outputs (see Wang et al. (2017)). In Chen (2017), the auto-tuning
algorithm has been successfully used to find flight controllers for quadrotor UAVs.

10. There are many books for the topics of system identification (see Ljung (1999),
Soderstrom and Stoica (1989), Goodwin and Sin (1984), Young (2012), Soderstrom
(2018)).
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Problems

9.1 Consider the systems with the following transfer functions:

G(s) = e−3s

5s + 1

G(s) = (−10s + 1)
(10s + 1)6

G(s) = s + 1
(5s2 + s + 1)3

1. Suppose that the measurement is corrupted by a noise source that has zero
mean with variance 0.1. Following Tutorial 9.1, write the RelayH.slx real-time
function and build a Simulink relay feedback control simulation program. Sam-
pling interval Δt = 0.1.

2. Choose the relay amplitude to be 3 and adjust the hysteresis level 𝜖 to prevent
the random switches caused by the noise. Apply the relay feedback control pro-
gram to the above systems. What are your observations on the choice of 𝜖 with
regard to relay amplitude and the magnitude of the measurement noise? If you
use Simulink noise generator in the continuous-time, will the sampling interval
Δt affect the choice of 𝜖?

3. Add a constant input disturbance with amplitude of 0.3 to the relay feedback
control. What are the effects of this disturbance on the relay with hysteresis
control system?

9.2 Consider the three systems given in Problem 9.1.
1. Following Tutorial 9.2, write the MATLAB real-time function RelayI.slx for

relay with integrator control. Choose the same relay amplitude with very small
hysteresis (𝜖 = 0.001).

2. Apply the relay with integrator control to the three systems given in Problem 9.2.
What are your observations on the effect of noise with this type of relay feedback
control system?

3. Add a constant input disturbance with amplitude of 0.3 to the relay feedback
control. What are the effects of this disturbance on the relay with integrator
control system?

4. Will the sampling interval Δt affect the relay with integrator control system?

9.3 Assume that we have generated relay feedback control data by solving Problem 9.1.
1. Following Tutorial 9.3, write the MATLAB program FFTRelay.m for estimation

of frequency response using relay feedback data.
2. Apply the program to the six sets of data generated from Problem 9.1.
3. Evaluate the estimation results against the Nyquist curves obtained from the

transfer functions.
4. What are your observations on the effect of measurement noise on the accuracy?

The effect of constant input disturbance?
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5. Alternatively, following Tutorial 9.4, write the MATLAB program FSFRelay.m
for the estimation of frequency response using relay feedback data and repeat
the exercises outlined in the previous steps.

9.4 Apply the MATLAB program FFTRelay.m (or FSFRelay.m) to the six sets of data
generated from Problem 9.2, where relay with integrator control has been used.
What are your observations on the effect of measurement noise and disturbance
on the accuracy of the estimation?

9.5 Consider the systems with the following transfer functions:

G(s) = 10(s + 1)e−s

(s + 0.1)5

G(s) = (s − 2)
(s2 + 0.5s + 3)2

G(s) = 1
(s + 1)2(s + 5)2(s + 10)

1. Following Tutorial 9.5, write the auto-tuner for stable systems.
2. Apply the auto-tuner to the above systems with appropriate sampling interval

Δt, where the performance parameter 𝛽 = 1, 2, 3.
3. Evaluate the closed-loop performance with a unit step reference signal and a

step input disturbance with magnitude of −0.5.
4. What are your observations on the closed-loop responses to reference following

and disturbance rejection in terms of the parameter 𝛽?
5. Add measurement noise and the input disturbance in the relay with integrator

control system. Will the noise and disturbance significantly affect the perfor-
mance of the closed-loop control system produced by the auto-tuner?

9.6 Consider the integrating systems with the following transfer functions:

G(s) = 0.1e−3s

s(s + 1)

G(s) = 2e−s(−s + 1)
s(s + 3)2

1. Following the computational steps outlined in Section 9.7, write the auto-tuner
for integrating systems where the relay with hysteresis is applied to a propor-
tionally controlled system (see Figure 9.19).

2. Choose a proportional controller KT that will produce a stable closed-loop sys-
tem and apply the auto-tuner to the above systems, where sampling interval Δt,
relay amplitude and hysteresis are selected appropriately.

3. Evaluate the closed-loop control system performance with unit step reference
signal and a step input disturbance with amplitude −0.1 for the performance
parameter 𝛽 = 1, 2, 3.
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9.7 The auto-tuner derived for integrating system can also be applied to stable sys-
tems in a closed-loop controlled environment. Considering the systems with the
following transfer functions

G(s) = 3e−3s

(2s + 1)4

G(s) = (−s + 1)e−s

(3s + 1)(2s + 1)
Use the auto-tuner with integrator model to find the PID controller parame-
ters for these systems. In the relay control experiments, feedback control gain
KT = 0.2, and relay amplitude of 1.75 and hysteresis of 0.2 are used. Sampling
interval Δt = 0.1 is selected. The performance parameters 𝛽 = 1 and 𝜉 = 0.707
are selected for fast disturbance rejection. Evaluate the closed-loop control system
performance for step input disturbance rejection with a disturbance amplitude
of 1.

9.8 The auto-tuners are very convenient for tuning cascade control systems. Consider
that a cascade control system has the inner-loop transfer function

G1(s) =
e−s

s + 1
and the outer-loop transfer function

G2(s) =
2

s(s + 10)

1. Construct an auto-tuner for this cascade control system from tuning the
inner-loop control system first followed by tuning the outer-loop control system.

2. By choosing the closed-loop performance parameter 𝛽, the closed-loop response
speed can be specified for the inner-loop and outer-loop control systems. In order
for the cascade control system to work properly, the inner-loop response speed
needs to be much faster than the outer-loop’s response speed. How do you choose
𝛽 for this auto-tuned cascade control system?

9.9 We can design an auto-tuner for integrating systems using the modified IMC-PI
controller introduced in Skogestad (2003), which was discussed in Section 1.4.1. For
the estimated integrating with delay model, G(s) = Kpe−ds

s
, the PI controller param-

eters are calculated using the following expressions:

Kc =
1

Kp(𝜏cl + d)
𝜏I = 4(𝜏cl + d).

Repeat the exercises given in Problem 9.7 with the closed-loop performance param-
eter 𝜏cl = d. What are your observations when you compare these two PI control
systems?
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10

PID Control of Multi-rotor Unmanned Aerial Vehicles

10.1 Introduction

This chapter will present the PID control of multi-rotor unmanned aerial vehicles as
case studies. Because of nonlinearities and physical parameter uncertainties, the atti-
tude control systems for an unmanned aerial vehicle are proposed to be PID control
systems in a cascade structure and the PID controller parameters are found using the
auto-tuners designed in Chapter 9. The auto-tuners are implemented on laboratory test
rigs specifically designed for multi-rotor unmanned aerial vehicles and operated on the
ground for the safety of the equipment. Experiments are conducted to evaluate the atti-
tude control systems.

10.2 Multi-rotor Dynamics

This section will discuss the dynamics of a quadrotor and a hexacopter for the PID con-
trol system design. We will pay attention to their shared common features and their
differences.

To ensure stable flight of a multi-rotor unmanned aerial vehicle (UAV), its attitude is
required to be under feedback control. The attitude of a multi-rotor is captured by the
variations of the three Euler angles: roll angle 𝜙, pitch angle 𝜃 and yaw angle 𝜓 . More
specifically, the roll angle 𝜙 defines the rotation about the x body axis, the pitch angle 𝜃
about the y body axis, and the yaw angle about the z body axis. To maintain stable flight
with a multi-rotor UAV, the three Euler angles are required to follow desired reference
signals in closed-loop control. The attitude control forms the common ground of PID
control methodologies for multi-rotor UAVs. However, the difference comes from the
details of the control signal realizations through actuators that are the rotors associated
with the UAVs.

10.2.1 Dynamic Models for Attitude Control

From the control system design point of view, the outputs of an attitude control sys-
tem are clearly the three Euler angles: roll angle 𝜙, pitch angle 𝜃 and yaw angle 𝜓 . One
important reason why these three angles are selected as the outputs is that the refer-
ence signals to the angles are readily available. For instance, in order to maintain stable
flight, the reference signals to the roll angle 𝜙 and pitch angle 𝜃 are commonly selected

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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to be zero whilst the yaw angle 𝜓 is determined by the position of the UAV in the
horizontal plane. The questions remain as what the control input signals are and how
they are related to the output signals for the attitude control problem.

In order to derive the dynamic models for attitude control, a reference frame is
defined. The mathematical models for the multi-rotor unmanned aerial vehicles share
the same reference frame leading to the same dynamic models at this common ground.
As an example, we examine the derivation of the dynamic models for a quadrotor UAV.

Figure 10.1 shows the framework used to derive a quadrotor dynamics model
(Bouabdallah et al. (2004), Corke (2011), Derafa et al. (2006)), which illustrates that the
origin of the body frame is in the mass center of the quadrotor UAV and the z-axis is
upwards. M1,M2,M3, and M4 are the four rotors and 𝜔1, 𝜔2, 𝜔3, and 𝜔4 represent the
rotors’ angular velocities.

In order to obtain an unique solution for the mathematical models, the transforma-
tion sequence is assumed to be 𝜓 → 𝜃 → 𝜙. The input signals for the quadrotor are the
torques 𝜏x, 𝜏y, and 𝜏z in the x-, y-, and z-axes, respectively. In the same three dimensional
space, we define p, q, and r as their angular velocities and Ixx, Iyy, and Izz as the moments
of inertia for the three axes in the x, y, and z directions. The quadrotor UAV is assumed
to have a symmetric structure with four arms aligned with the x-axis and y-axis, and as
a result there is no interaction between the torques along the three axes. From Euler’s
equation of motion (Bouabdallah et al. (2004), Corke (2011), Derafa et al. (2006)), the
following dynamic equations in the x, y, and z axes are obtained:

Ixxṗ = (Iyy − Izz)qr + 𝜏x

Iyyq̇ = (Izz − Ixx)pr + 𝜏y

Izzṙ = (Ixx − Iyy)pq + 𝜏z. (10.1)
From the control system design point of view, if the multi-rotor UAV carries a payload,
the load torque can be projected onto the x-, y- and z-axes, denoted by 𝜏d

x , 𝜏d
y and 𝜏d

z .
These quantities are unknown in general, and are considered as constant disturbances
in control system design. With the consideration of load disturbances, we modify the
motion equations as

Ixxṗ = (Iyy − Izz)qr + 𝜏x − 𝜏d
x

Iyyq̇ = (Izz − Ixx)pr + 𝜏y − 𝜏d
y

Izzṙ = (Ixx − Iyy)pq + 𝜏z − 𝜏d
z . (10.2)

Inertial reference frame

Body-fixed frame

ω3

ω2

ω4

ω1

M3 M4

M1M2

ez
b

ex
b

ex
i

ez
i

ey
b

ey
i

Figure 10.1 Inertial frame and body frame of the quadrotor.
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If the payload is aligned with the mass center and is symmetric, the projections of the
load torque on the x- and y-axes are small.

Now, the relationships between Euler angular velocities and the body frame angu-
lar velocities (p, q, and r) are described in the following differential equations (Corke
(2011)):

⎡
⎢
⎢
⎢
⎣

�̇�

�̇�

�̇�

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

1 sin(𝜙) tan(𝜃) cos(𝜙) tan(𝜃)
0 cos(𝜙) − sin(𝜙)
0 sin(𝜙)∕ cos(𝜃) cos(𝜙)∕ cos(𝜃)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

p
q
r

⎤
⎥
⎥
⎥
⎦

. (10.3)

The dynamic models (10.2) and (10.3) present mathematical descriptions for the attitude
control system design for the quadrotor. Clearly, there are three outputs in the control
system, and the manipulated variables or the control signals are the three torques, 𝜏x, 𝜏y,
and 𝜏z, along the x, y, and z directions.

The dynamic models for attitude control of a hexacopter are also described by the
differential equations (10.2) and (10.3). Because a hexacopter uses six rotors attached
to the end of each arm with equal distance from the vehicle’s center of gravity, which is
illustrated in Figure 10.2, it has better fault-tolerant properties and capability of carrying
a larger payload than the quadrotor UAVs.

10.2.2 Actuator Dynamics for Quadrotor UAVs

It is worthwhile emphasizing that the dynamic models (10.1)–(10.3) derived for the
quadrotor have not taken the actuators into consideration. The control signals, the
torques 𝜏x, 𝜏y, and 𝜏z in the body frame, will be implemented using DC motors. Thus,
there will be additional first order or second order models used to capture the DC
motor dynamics for the control system design.

In quadrotor control, the torques 𝜏x, 𝜏y, and 𝜏z in the body frame are generated by the
differences in rotor thrusts. The upward thrust produced by each rotor is

Ti = bt𝜔
2
i , i = 1, 2, 3, 4.

The total thrust is, hence,
T = T1 + T2 + T3 + T4 = bt(𝜔2

1 + 𝜔
2
2 + 𝜔

2
3 + 𝜔

2
4) (10.4)

z
y

x

Figure 10.2 Representation of a hexacopter (Ligthart et al. (2017)).
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where bt is the thrust constant determined by air density, the length of the blade, and
the blade radius, and 𝜔i is the ith rotor’s angular speed.

When we only consider the attitude control, the altitude of the quadrotor UAV is not
controlled and the total thrust T is manually set by the operator. Therefore, there will
be an independent reference signal to the total thrust T .

The torques about quadrotor’s x-axis and y-axis are

𝜏x = dmm(T4 − T2) = dmmbt(𝜔2
4 − 𝜔

2
2) (10.5)

𝜏y = dmm(T3 − T1) = dmmbt(𝜔2
3 − 𝜔

2
1) (10.6)

where dmm is the distance from the motor to the mass center. The torque applied to each
propeller by the motor is opposed by aerodynamic drag, and the total reaction torque
about the z-axis is

𝜏z = kd(𝜔1
2 + 𝜔3

2 − 𝜔2
2 − 𝜔4

2) (10.7)

where kd is a drag constant determined by the same factors as bt.
To determine the angular velocities for the four DC motors with regard to the control

signals 𝜏x, 𝜏y, 𝜏z, and T , the linear equations (10.4)–(10.7) are solved to give the following
algebraic equations in the matrix form:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜔2
1

𝜔2
2

𝜔2
3

𝜔2
4

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
4bt

0 − 1
2dmmbt

− 1
4kd

1
4bt

− 1
2dmmbt

0 1
4kd

1
4bt

0 1
2dmmbt

− 1
4kd

1
4bt

1
2dmmbt

0 1
4kd

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

T

𝜏x

𝜏y

𝜏z

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (10.8)

From (10.8), once the manipulated variables T , 𝜏x, 𝜏y, and 𝜏z are decided by the feedback
controllers, the squared velocities, 𝜔2

1, 𝜔2
2, 𝜔2

3, and 𝜔2
4, of the motors will be uniquely

determined.
From the context of feedback control, the squared velocities are translated into the

velocity reference signals 𝜔∗
1, 𝜔∗

2, 𝜔∗
3, and 𝜔∗

4 that will be implemented in a typical DC
motor drive, which are equal to the square roots of the components calculated using
(10.8).

The DC motor dynamics will affect the closed-loop control performance, which
should be included in the quadrotor model and they are approximated by a first-order
transfer function:

Ωi(s)
Vi(s)

=
rwv

𝜖ms + 1
, (10.9)

where Vi(s) is the Laplace transform of the armature voltage 𝑣i to the ith motor, Ωi(s)
is the Laplace transform of the motor velocity, 𝜖m is the time constant, and rwv is the
steady-state gain for the motor. The armature voltage 𝑣i is changed by manipulating
the duty cycle of the pulse width modulation (PWM) signal of each motor drive, where
the relationship between the motor armature voltage and the PWM duty cycle is

𝑣i = dc
i Vbat, (10.10)
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where dc
i is the PWM signal duty cycle of the ith DC motor drive and Vbat is the

battery voltage assumed to be constant. Substituting equation (10.10) into equation
(10.9) yields:

Ωi(s)
Dc

i (s)
=

Vbatrwv

𝜖ms + 1
(10.11)

which describes the ith DC motor dynamics. To achieve the desired speed 𝜔∗
i with-

out steady-state error, a PI controller is required, which is designed by following
the pole-assignment PI controller design method introduced in Chapter 3 with the
parameters Vbat, rwv and 𝜖m. If we select two identical closed-loop poles at − 1

𝜏cl
, then

the closed-loop control system for the ith DC motor is approximately a second order
system with unit gain with the transfer function:

Ωi(s)
Ωi(s)∗

= 1
(𝜏cls + 1)2 (10.12)

where Ωi(s)∗ is the Laplace transform of the velocity reference signal to the DC motor.
Because the DC motor control system has a very small time constant, the transfer func-
tion (10.12) is approximated using a time delay e−ds with the parameter d determined
through actual experiments.

The DC motor control systems are most commonly purchased together with the
motors. Thus, for the implementation of the quadrotor control system, the control
signals are the desired speed reference signals, 𝜔∗

1, 𝜔∗
2, 𝜔∗

3, and 𝜔∗
4 to the DC motors

and their closed-loop dynamics are modeled by time delay components assuming the
PI controllers are used in DC motor control.

10.2.3 Actuator Dynamics of Hexacopters

Similar to quadrotor control, the torques 𝜏x, 𝜏y, and 𝜏z in the body frame of a hexacopter
are generated by the rotor thrusts. The upward thrust produced by each rotor is

Ti = bt𝜔
2
i , i = 1, 2, 3, 4, 5, 6.

The total upward thrust is used to control the translational motion along the z-axis and
is defined as follows:

T =
6∑

i=1
Ti = bt

6∑

i=1
𝜔2

i (10.13)

where bt is the thrust constant determined by air density, the length of the blade, and
the blade radius, and 𝜔i is the ith rotor’s angular speed.

Let dmm be the distance from the center of gravity to the rotor and kd be the drag
constant. For the hexacopter, the roll, pitch, and yaw control objectives are achieved by
controlling the difference in thrust generated by each rotor, which is defined as:

𝜏x = dmm sin(60∘)(−T2 − T3 + T5 + T6) (10.14)
𝜏y = −dmmT1 + dmmT4 + dmm sin(30∘)(−T2 − T6 + T3 + T5) (10.15)
𝜏z = kd(−T1 + T2 − T3 + T4 − T5 + T6). (10.16)
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Equations (10.13), (10.14), (10.15), and (10.16) can be arranged in matrix form as:

Z
⏞⏞⏞

⎡
⎢
⎢
⎢
⎢
⎢
⎣

T
𝜏x

𝜏y

𝜏z

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

Φ
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 1 1 1

0 −
√

3dmm

2
−
√

3dmm

2
0

√
3dmm

2

√
3dmm

2
−dmm −

dmm

2
dmm

2
dmm

dmm

2
−

dmm

2
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which has the simplified expression:
Z = ΦX. (10.17)

To implement the attitude control system, we need to determine the values of upward
thrust Ti, i = 1, 2,… , 6. Unlike the quadrotor control case, from (10.17), there is no
explicit one-to-one relationship between the actuators and the 𝜏x, 𝜏y, 𝜏z, and T variables.

In the literature, this was often determined using the pseudo inverse of the matrix Φ,
leading to

X = Φ+Z (10.18)
where Φ+ denotes the pseudo inverse of matrix Φ.

An interesting approach is to borrow the idea from the model predictive control of
hexacopter (Ligthart et al. (2017)) to formulate the inversion problem in terms of opti-
mization. We define the following objective function:

J = (Z − ΦX)T(Z − ΦX) + XTWX (10.19)
where AT denotes the transpose of A matrix, W is a positive definite matrix and for
most cases, it is selected as a diagonal matrix with all positive elements. The first term
in the objective function says that we would like to find the best X vector such that the
vector Z is matched as close as possible while the second term indicates that we wish
the upward thrust vector to be limited with a weighting matrix W . In most cases, we
wish all the upward thrusts to have the same consideration, and W is chosen as W = 𝜖I,
𝜖 > 0, where I is a diagonal matrix with dimension 6 × 6.

The minimization of objective function (10.19) leads to the following analytical
solution:

Xopt = (ΦTΦ + W )−1ΦTZ. (10.20)

Now, the matrix ΦTΦ + W is invertible because of the existence of the weighting matrix
W , which is positive definite.

From the Xopt, the six upward thrust values Ti, i = 1, 2, 3, 4, 5, 6 are determined as well
as the angular velocities of the six DC motors

𝜔i =

√
Ti

bt
.

These 𝜔i values, i = 1, 2, 3, 4, 5, 6, will be used as reference signals𝜔∗
i for the motor con-

trol systems.
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10.2.4 Food for Thought

1. Which variables are used to define the attitude of a multi-rotor UAV?
2. Neglecting the actuator dynamics, what are the input and output variables for the

attitude control of a multi-rotor UAV? Taking the actuators into consideration, what
are the input and output variables?

3. For the DC motor control problem, if the battery voltage is less than expected, will
the motor drive increase or decrease the duty cycle to compensate the discrepancy?

4. From the mathematical modelling, do you think that it is important to use a PI con-
troller to control the velocity of each motor?

5. Which constants do you need to determine in order to implement the control system?
Which constants do you need to determine for the attitude control system design?

6. Are there any redundancies in the actuators for the hexacopter?

10.3 Cascade Attitude Control of Multi-rotor UAVs

In order to fly a UAV, the closed-loop control of the three Euler angles 𝜙, 𝜃, and 𝜓 is
necessary. Because of the products of angular velocities in (10.2) and the sinusoidal
functions in (10.3), a multi-rotor UAV is a nonlinear system.

In theory, combining (10.2) with (10.3) will lead to three second order nonlinear sys-
tems. Therefore, three PID controllers could be adequate for the attitude control appli-
cations. However, in practice, a cascade PI or PID controller structure offers a better
solution for the following reasons.
1. If the multi-rotor UAV carries a payload [see (10.2)], the load disturbance is much

more effectively rejected in a cascade control system structure because it occurs at
the secondary plant [see Chapter 7].

2. Looking at Euler’s equations of motion (10.1), if the multi-rotor UAV is well designed
with a balanced load, the moment of inertia at the x-axis and y-axis equal each other:
Ixx = Iyy. However, Izz ≠ Ixx in general. There are interactions between the variables p
and q. The interactions in a PID controlled system would be translated as distur-
bances. We could compensate their effects using a feedforward control action as
shown in Section 3.6 if the parameters Ixx, Iyy, and Izz are available with reasonable
accuracy. Alternatively, we simply neglect them in the PID controller design, and they
are automatically compensated in the feedback control using a high gain feedback
control. Clearly the bilinear terms in (10.1) act on the torques 𝜏x, 𝜏y, and 𝜏z, and they
are regarded as input disturbances to the multi-rotor UAV system. It was shown in
Section 7.3 that the cascade control system has a much improved performance in dis-
turbance rejection. The existence of bilinear terms in (10.1) is one consideration for
the choice of cascade control system.

3. Because the torques 𝜏x, 𝜏y, and 𝜏z will be realized by the electrical motors installed
on the multi-rotor UAV and the motor dynamics are not captured in the motion
equations, there will be model uncertainties in the mathematical models having an
impact on the closed-loop control. These uncertainties occurring in the secondary
plant are better dealt with in a cascade control structure.

4. Above all, the cascade control structure offers a simpler controller design framework
because for each stage only first order models or first order plus time delay models
are involved.
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Figure 10.3 Attitude control system structure.

Figure 10.3 shows the cascade control system configuration for the attitude control
of a multi-rotor UAV where the body frame angular velocities p, q, and r along the x,
y, and z directions are the secondary variables. With this configuration, the secondary
system is described by the differential equations given in (10.1), and the primary system
is described by (10.3). To control the angular velocities of the multi-rotor UAV, three PI
controllers are used to calculate the control signals based on their respective reference
signals p∗, q∗, and r∗. Additionally, there are two PI controllers to control the roll and
pitch angles, where their reference signals are 𝜙∗ and 𝜃∗.

10.3.1 Linearized Model for the Secondary Plant

The dynamic models in (10.1) used for the design of secondary controllers are
expressed as

ṗ = 1
Ixx
((Iyy − Izz)qr + 𝜏x)

q̇ = 1
Iyy
((Izz − Ixx)pr + 𝜏y)

ṙ = 1
Izz
((Ixx − Iyy)pq + 𝜏z) (10.21)

where the load disturbances are neglected. Clearly, the secondary plant is integrating
systems with gain inversely proportional to their moment of inertia constant.

If one wishes to use feedforward compensation as in Section 3.6 of Chapter 3, the
intermediate variables are defined as

𝜏x = (Iyy − Izz)qr + 𝜏x; 𝜏y = (Izz − Ixx)pr + 𝜏y; 𝜏z = (Ixx − Iyy)pq + 𝜏z.

With these variables defined, the dynamic models (10.21) for the secondary plant
become:

ṗ = 1
Ixx
𝜏x

q̇ = 1
Iyy
𝜏y

ṙ = 1
Izz
𝜏z. (10.22)
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The dynamics from actuators, i.e. the rotors, can be modeled as a time delay d with a gain
𝛾m because their time constants are relatively small in comparison with the dynamics
from the secondary plant. In short, the secondary plant in the multi-rotor UAV system
is approximated by three integrator with time delay models.

10.3.2 Linearized Model for the Primary Plant

For the problem of attitude control, the nonlinear plant for the three Euler angles is
required to be linearized around their operating conditions. To maintain stable flight,
the reference signals to the roll and pitch angles (𝜙 and 𝜃) are chosen to be zero at the
steady-state operating conditions while the reference signal to the yaw angle 𝜓 may
change according the position reference signals of the multi-rotor UAV. Thus, the lin-
earization of the nonlinear equations (10.3) at the steady-state operating conditions
(𝜙0 = 𝜃0 = 0) gives:

⎡
⎢
⎢
⎣

�̇�

�̇�

�̇�

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

p
q
r

⎤
⎥
⎥
⎦
. (10.23)

With consideration of time delay from the secondary closed-loop system, the primary
plant is approximately modeled using an integrator with the time delay model.

Depending on a time delay existing in the system, one may wish to use PID controllers
for the secondary or primary plant if closed-loop control performance can be improved
with the derivative action.

10.3.3 Food for Thought

1. In the cascade control structure, what are the reference signals for 𝜙 and 𝜃 to ensure
a stable flight?

2. How do we generate a reference signal for yaw rate r if the position of a multi-rotor
UAV is controlled by an operator?

3. Do we need the total thrust T in the cascade attitude control system?
4. Is it correct to say that we can not change 𝜏x, 𝜏y and 𝜏z directly although they are the

manipulated variables? If it is correct, which variables can be changed that will result
in the changes in 𝜏x, 𝜏y and 𝜏z?

5. Is it correct to say that the dynamic models for the secondary plant are not accurate
because the actuators are not considered?

6. With the cascade control structure, we still face the choice of P, PI, or PID controllers
for each loop. Which factors and criteria do you consider for the selection of the
controller structures for each individual loop?

10.4 Automatic Tuning of Attitude Control Systems

The dynamic models for the attitude control system are relatively simple with the
parameters from the moments of inertia, Ixx, Iyy, and Izz. However, the parameters
associated with the actuators are more complicated if one wishes to measure them
accurately. The purpose of using an auto-tuner for the attitude control system is to
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avoid the time consuming tasks of finding the physical parameters for the secondary
and primary plants as well as the actuators. In addition, the dynamics of the closed-loop
secondary system are taken into consideration in the primary control system through
the application of the cascade auto-tuner.

In order to implement the cascade PI control system with auto-tuner for a multi-rotor
UAV, the coefficients bt, kd and dmm are pre-determined so that the reference signals to
the rotors in the example of quadrotor UAV are calculated using the equation below:

⎡
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⎢
⎢
⎢
⎢
⎣
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2)
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(10.24)

where T , 𝜏x, 𝜏y, and 𝜏z are the attitude controller outputs, which are used to generate the
desired velocities for the rotors. For a DC motor with a commercial drive, a PI controller
is often used for controlling its velocity where the desired the velocity reference signal
𝜔∗

i , i = 1, 2, 3, 4, is used for each motor.
A similar approach is adopted for the hexacopter by calculating the desired rotor

velocities using (10.18).
The auto-tuning algorithms for an integrator with delay systems were developed in

Section 9.7. They are used for tuning both primary and secondary controllers in the
multi-rotor UAV applications without modifications. More detailed discussions on
auto-tuning of attitude control for multi-rotor UAVs can be found in Chen and Wang
(2016) and Poksawat and Wang (2017).

10.4.1 Test Rigs for Auto-tuning Cascade PI Controllers of Multi-rotor UAVs

In order to conduct identification experiments in a controlled environment, the quadro-
tor is fixed on a mechanical stance for the testing on ground in order to ensure safety
of the electronics during the testing process. The test rig is shown in Figure 10.4, which
was built and used to conduct the relay experiments for identification of the quadro-
tor’s two-axis dynamics. For instance, with the objective to identify the integrator with
a delay model for the roll angle, two quadrotor arms along the x-axis are fixed on the
stand and the quadrotor can only rotate about the x-axis. Furthermore, the test rig is
carefully adjusted to make rotating axis aligned with the quadrotor’s body frame axis, so
that the torque due to weight force is minimized. As the quadrotor platform is very light
and the two rotating pivots are very smooth, the friction is negligible in the experiments.

A similar test rig is also built for the hexacopter as shown in Figure 10.5.

10.4.2 Experimental Results for Quadrotor UAV

The quadrotor consists of five main components: RC transmitter/receiver, IMU sensor
board, data logger, microprocessor, and actuators. The RC transmitter/receiver is to
send and receive reference signals. The IMU sensor board is to measure the Euler angles
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Figure 10.4 Quadrotor test-bed.

Yaw Axis

Roll Axis

Figure 10.5 Experimental rig for a hexacopter.
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Table 10.1 Quadrotor hardware list.

Function Model

DC motor drive DRV8833 Dual Motor Driver Carrier
Sensor board MPU6050
Micro processor STM32F103C8T6
RC receiver WFLY065
DC motor 820 Coreless Motor
RC transmitter WFT06X-A
Data logger SparkFun OpenLog

and angular velocities. The data logger is to record flight data such as Euler angles
and reference signals. The micro-processor is to generate control signals to stabilize
the UAV’s attitude. The actuators are to generate thrust and torques, which consist of
motor drives, DC motors, gearboxes, and blades. The quadrotor’s hardware used in the
experimental tests is listed in Table 10.1.

The sampling interval Δt for the secondary, primary controllers and relay test are all
set to be 0.01 s, which is the IMU sensor’s maximum updating rate. The other physical
parameters of the quadrotor are shown in Table 10.2.

The auto-tuning of the cascade PI control system begins at the inner loop. Before the
relay control experiment, a proportional controller KT1

= 0.06 is selected to stabilize the
secondary system. The sensor measurement of velocity, �̇�(t), contains noise. Thus, a relay
amplitude of 0.8 together with a hysteresis level of 0.1 is selected to reflect the measure-
ment noise level. Figure 10.6 shows a segment of the relay feedback control data. From
the input signal to the inner-loop, closed-loop control system, the period of the sus-
tained oscillations is identified as N = 28 samples, leading to the fundamental frequency

Table 10.2 Quadrotor parameters.

Parameters Description Value Unit

Ixx Moment of inertia about x−axis 3.2 × 10−4 kg m2

Iyy Moment of inertia about y−axis 3.2 × 10−4 kg m2

Izz Moment of inertia about z−axis 4.6 × 10−4 kg m2

bt Thrust constant 9.7 × 10−7 N/A
kd Drag constant 2.5 × 10−9 N/A
m Quadrotor total mass 0.145 kg
dmm Motor to mass center distance 0.110 m
Vbat Battery voltage 8.28 V
rwv Motor’s DC gain 137.6571 rad V−1 s−1

𝑤0 Rotor normal speed 606.2469 rad s−1

dm Motor delay 0.032 s
𝜖m Motor time constant 0.072 s
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Figure 10.6 Relay feedback control
signals from the inner-loop system:
top figure, input signal; bottom
figure, output signal.
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in the frequency sampling filter as 2𝜋
N

(rad). The use of the frequency sampling filter based
estimation algorithm gives the inner-loop, closed-loop frequency response as

T(ej 2𝜋
N ) = −1.225 − j0.5137.

Converting this discrete-time frequency to continuous time frequency, which is
𝜔1 = 2𝜋

NΔt
= 22.44 (rad s−1), together with the knowledge of the proportional controller

used in the relay experiment (KT1
= 0.06), the continuous-time frequency response of

the inner-loop plant is calculated as

G1(j𝜔1) =
1

KT1

T(ej 2𝜋
N )

1 − T(ej 2𝜋
N )

= −9.551 − j1.6421.

From this frequency information, an integrator plus delay model is identified as

G1(s) =
217.5589e−0.0624s

s
.

By choosing the desired closed-loop time constant as three times the estimated delay:
𝜏cl = 𝛽d = 3d = 0.1872 (s) and damping coefficient of 1, from the empirical rules shown
in Section 8.4.3, the PI controller parameters are found for the inner-loop control system
as Kc = 0.0343 and 𝜏I = 0.4487. This set of PI controller parameters approximately gives
a gain margin of 3 and phase margin of 48∘ for the closed-loop system with the integrator
plus delay model.

Figure 10.7 shows the closed-loop step response of �̇�(t) where the reference signal
has a magnitude of 0.5 (rad s−1). It is seen from this figure that the closed-loop veloc-
ity response follows the reference signal without steady-state error, and there is a large
overshoot and a slight oscillation. Additionally, there are disturbances and measurement
noise in the inner-loop system. For a cascade control system, the inner-loop control
system is required to have a fast response speed, which is achieved in the design here.

The second step in auto-tuning the cascade control system is to find the outer-loop
controller. For the outer-loop experiment, the proportional controller KT2

= 2 is used
to stabilize the integrator with delay system. The amplitude of the relay is selected to
be 0.4 and the hysteresis level 𝜖 is 0.05 to prevent the relay from random switching.
Figure 10.8 shows a segment of the input and output data generated from this relay
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Figure 10.7 Inner-loop step response
in closed-loop control. Dashed line,
reference signal; solid line, output.
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Figure 10.8 Relay feedback control
signals from outer-loop system: top
figure, input signal; bottom figure,
output signal.

feedback control of the primary plant under proportional control. The averaged period
of the sustained oscillation is N = 59 in number of samples, which gives the fundamen-
tal frequency in discrete time as 2𝜋

59
(rad). A frequency sampling filter model is used to

estimate the closed-loop frequency response based on the set of input and output data
shown in Figure 10.8, yielding to

T(ej 2𝜋
N ) = −0.1317 − j0.3130.

With the proportional controller KT2
= 2, the frequency response of the outer-loop sys-

tem is found at 𝜔1 = 2𝜋
NΔt

= 10.649 (rad s−1) as

G2(j𝜔1) =
1

KT2

T(ej 2𝜋
N )

1 − T(ee 2𝜋
N )

= −0.0896 − j0.1135.

From this frequency information, the integrator plus delay model for the primary system
is calculated as

G2(s) =
1.54e−0.0627s

s
. (10.25)
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For a typical cascade control system design, the outer-loop control system should have
a slower desired closed-loop response than that of the inner-loop control system. By
selecting the desired closed-loop time constant as eight times the delay value: 𝜏cl = 𝛽d =
8.5d with damping coefficient 𝜉 = 1 which gives gain margin ≈ 7, and phase margin
≈ 63∘ (see Section 8.4.3, the PI controller parameters are calculated using the empirical
rules:

Kc = 2.095; 𝜏I = 1.137.

For comparison purposes, with a faster desired closed-loop time constant 𝜏cl = 5d and a
slower desired closed-loop time constant 𝜏cl = 10d, two additional sets of PI controller
parameters are calculated as Kc = 3.27, 𝜏I = 0.7006, and Kc = 1.8155, 𝜏I = 1.3244.

Figure 10.9 shows the comparative closed-loop responses for the three cases experi-
mentally. It is seen from the comparative results that all three PI controllers lead to stable
closed-loop systems. Clearly when 𝛽 = 5, the fastest closed-loop response is obtained.
A sequence of step reference changes is applied to the roll angle for a further experi-
mental test, as shown in Figure 10.10, which shows a fast response with an overshoot.

Figure 10.9 Comparative roll angle
step response in closed-loop control.
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Figure 10.10 Roll angle step response
of quadrotor using test rig.
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We note that the estimated integrator with delay model for the roll angle given in
(10.25) has a gain of 1.54, which is much larger than the expected value of 1 because
the secondary closed-loop system should have unit gain under PI control. This could
be caused by the existence of the nonlinearity or how the IMU sensor behaves when the
roll angle swings with a large amplitude.

10.4.3 Experimental Results for Hexacopter

A hexacopter is built for experimental testing of the auto-tuner and the cascade atti-
tude control system (Poksawat and Wang (2017)). The flight controller specifications
and avionic components are presented in Table 10.3. The physical parameters are pre-
sented in Table 10.4.

To validate the proposed strategy, an automatic tuning experiment is performed on
the hexacopter and the results are presented here. Firstly, the roll angular rate controller
parameters are tuned with the relay test. It is assumed that the airframe is symmetrical,
thus the pitch controller parameters are selected to be identical to those obtained in the
experiments from the roll axis. For the yaw angular rate loop, the tuning procedure will
follow the same approach. The sampling interval Δt is chosen to be 0.006 s.

Table 10.3 Flight controller and avionic components.

Components Descriptions

Airframe Turnigy Talon Hexacopter
Microprocessor ATMega2560
Inertial measurement unit MPU6050
Electronic speed controllers Turnigy 25A Speed Controller
Brushless DC motors NTM Prop Drive 28-26 235W
Propellers 10x4.5 SF Props
RC receiver OrangeRX R815X 2.4Ghz receiver
RC transmitter Turnigy 9XR PRO transmitter
Datalogger CleanFlight Blackbox Datalogger

Table 10.4 Physical specifications of the hexacopter.

Parameters Details

Mass (m) 1.61 kg
Arm length (𝓁) 0.3125 m
Blade radius (r) 0.127 m
Moment of inertia (Ixx) 0.2503 kg m2

Moment of inertia (Iyy) 0.2914 kg m2

Moment of inertia (Izz) 0.6177 kg m2

Thrust constant (bt) 1.562e−5

Torque constant (kd) 0.0209
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Figure 10.11 Inner loop relay test result.

For the automatic tuning of the secondary controller, which is the roll angular rate,
the proportional gain used in the relay test is chosen as Kt = 0.3 for stabilization of the
integral system. The amplitude of the relay reference signal has to be within the operating
condition of the hexacopter UAV, thus it is selected as 50∘ s−1. The hysteresis is chosen
to be 𝜖 = 30∘ s−1 to prevent the relay switching from measurement noise.

A section of the relay feedback experimental data is presented in Figure 10.11. The
period of the sustained oscillations is calculated to be N = 70, leading to the fundamen-
tal frequency in the sampling filter of 2𝜋

N
= 0.0898 rad.

The inner loop frequency response is then estimated using frequency sampling filter
estimation algorithm as

T(ej 2𝜋
N ) = −1.382 − j0.6641.

The continuous time frequency can be calculated as 𝜔1 = 2𝜋
NΔt

= 14.96 (rad s−1). From
this, the continuous time frequency response of the secondary plant is

G(j𝜔1) =
1
Kt

T(ej 2𝜋
N )

1 − T(ej 2𝜋
N )

= −2.035 − j0.362.

The integrator plus time delay transfer function is obtained as

G(s) ≈
Kpe−ds

s
= 30.92e−0.09s

s
.

For the hexacopter, we decided to use a PID controller instead of a PI controller because
the delay is quite large and the derivative term improves the closed-loop response. In
order to achieve fast closed-loop system response, the desired closed-loop time constant
is selected to be relatively small. Here, 𝛽 is selected as 1, which leads to an approximate
gain margin of 2 and phase margin of 37∘ respectively. The controller parameters for
the roll angle rate system are then obtained as Kc = 0.33, 𝜏I = 0.26, and 𝜏d = 0.03 from
using the empirical rules presented in Section 8.4.3.

Once the inner loop controller is tuned, the outer loop controller’s parameters can be
selected with the following procedures. Instead of automatic tuning of the primary con-
troller, the mathematical model for the primary plant is approximated by the following
integrator with delay system:

G(s) = e−(𝜏cl+d)s
s



�

� �

�

322 10 PID Control of Multi-rotor Unmanned Aerial Vehicles

+
–

PID e–(τcl+d)s

T̃ (s)

1
s

φ* φp* p

Figure 10.12 Attitude control system with approximated inner loop.

where the integrator is from the primary plant (roll angular rate to roll angle) and the
time delay is from the approximation of the closed-loop secondary system, where 𝜏cl is
the closed-loop time constant and d is the time delay from the inner-loop. Figure 10.12
shows the primary control system.

Generally, for a control system with a cascaded loop configuration, the outer loop
response time needs to be slower than the inner loop. Hence, the outer loop time con-
stant is chosen to be twice of the time delay, leading to the controller parameters for the
angular position loop as Kc = 3.3, 𝜏I = 0.63, and 𝜏d = 0.013.

An outdoor flight test was conducted to validate the stability of the UAV in real flight
against external disturbances such as turbulence (see Figure 10.13). The roll, pitch, and
yaw data obtained from the flight test are presented in Figures 10.14, 10.15, and 10.16
respectively. The dashed lines represent the reference signals and the solid lines repre-
sent the measured flight data.

It is clearly seen that the hexcopter is able to follow the pilot’s commands, due to the
fact that the outputs are regulated closely to their references. Furthermore, it is able to
hover, roll, pitch, and yaw while maintaining stability.

Figure 10.13 Outdoor flight test.
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Figure 10.14 Flight data for roll axis.
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Figure 10.15 Flight data for pitch axis.
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Figure 10.16 Flight data for yaw axis.

10.4.4 Food for Thought

1. What are the steps required to implement the auto-tuners?
2. Is it correct to say that the relay experiments because they are conducted in

closed-loop with a feedback controller KT , are relatively simple to implement using
the existing cascade control structure of a multi-rotor UAV?

3. If the parameters kd, kt and dmm are not precisely measured, will the auto-tuner com-
pensate the errors because of the experiments are carried out on the actual physical
system?

4. Have the integrator with delay models for the secondary plant included the actuator
dynamics?

5. If an integrator is included in the controller for the secondary plant, what is the
steady-state gain of the primary plant? What is the minimum value of the estimated
time delay for the primary plant?

6. Will PD controllers be adequate for controlling both secondary and primary plants
of the multi-rotor UAV? What problems would you envisage that might occur?

10.5 Summary

We have discussed PID control of multi-rotor unmanned aerial vehicles in this chapter.
Dynamic models for both quadrotor UAV and hexacopter UAV are discussed from the
control system design point of view. Cascade control system structures are proposed
for both quadrotor and hexacopter UAVs. The auto-tuning algorithms introduced in
Chapter 9 are used to find the PID controller parameters for the UAVs on test rigs. The
cascade PID control systems are experimentally evaluated through outdoor flight tests.

The other important aspects of the chapter are summarized as follows.
• Both inner-loop and outer-loop systems for the unmanned aerial vehicles are mod-

elled using integrator with time delay systems.
• A proportional controller is used to produce a stable closed-loop system prior to the

implementation of auto-tuner.
• Both PID controller and auto-tuner implementations on the UAVs have used

micro-controllers. The programs for PID implementations have included
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anti-windup mechanisms and are based on Tutorial 4.1. The auto-tuner imple-
mentations are based on Tutorial 9.1 for the relay feedback control.

• The estimation of frequency response of the UAVs is performed based on Tutorial 9.4.
• Upon obtaining the estimation of the frequency response, we can follow the compu-

tational examples presented in Section 9.7 to calculate the PID controller parameters.

10.6 Further Reading

1. Books for unmanned aerial vehicles include Beard and McLain (2012), Fahlstrom and
Gleason (2012), Austin (2011) and Gundlach (2012).

2. Mathematical modelling and control of hexacopter were presented in Alaimo et al.
(2013). Detailed nonlinear modelling together with control was presented in Bangura
and Mahony (2012). Nonlinear control of quadrotor UAV was presented in Goodarzi
et al. (2013). A survey of control methods was presented in Li and Song (2012).

3. Automatic tuning of the PID attitude control systems for the quadrotor UAV pre-
sented in this chapter was designed and experimentally validated in Chen and Wang
(2016) and in Chen (2017). The closed-loop performance was assessed on ground
using the same test rig based on system identification of the closed-loop transfer
function (Chen and Wang (2015)). Automatic tuning of the PID attitude control sys-
tems for the hexacopter presented in this chapter was designed and experiementally
validated in Poksawat and Wang (2017). Automatic tuning of PID attitude control
systems for a micro fixed-wing UAV can be found in Poksawat et al. (2016), Poksawat
et al. (2017) and Poksawat (2018).

4. Optimization based tuning method was used to find controllers for an auto-pilot of
fixed-wing UAV (Ahsan et al. (2013)).

5. Model predictive control system was designed and experimentally validated for the
hexacopter presented in this chapter (Ligthart et al. (2017)).

Problems

10.1 The dynamic models for a multi-rotor UAV without considering the actuator
dynamics are described by the following differential equations (see (10.2)–(10.3)):

Ixxṗ =(Iyy − Izz)qr + 𝜏x − 𝜏d
x

Iyyq̇ =(Izz − Ixx)pr + 𝜏y − 𝜏d
y

Izzṙ =(Ixx − Iyy)pq + 𝜏z − 𝜏d
z

(10.26)

and
⎡
⎢
⎢
⎢
⎣

�̇�

�̇�

�̇�
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⎣
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⎢
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⎥
⎥
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(10.27)

where the moments of inertial constants are Ixx = 3.6 × 10−2 (kg.m2),
Iyy = 3.8 × 10−2 (kg.m2) and Izz = 4.6 × 10−2 (kg.m2).
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1. Build a Simulink simulation model for the multi-rotor UAV without actuator
dynamics.

2. With zero initial conditions for all the state variables 𝜃, 𝜙, 𝜓 and p, q, r,
compute the open-loop responses of the states to the load disturbances
𝜏d

x = 0.01, 𝜏d
y = 0.02 and 𝜏d

z = 0.2. Here, we assume that the reference signals
to the open-loop system are 𝜃∗ = 𝜙∗ = 𝜓∗ = 0 and the sampling interval is
Δt = 0.0001 (sec).

3. What are your observations on the system dynamics from this open-loop simu-
lation exercise?

10.2 Continue from Problem 10.1. Design a cascade PI control system for the multi-rotor
UAV. The desired closed-loop poles for the secondary plant are all chosen to be
−100 and for the primary plant are all chosen to be −20. Use the model based PI
controller design method in Chapter 3 to find the PI controller parameters.
1. Choosing the reference signals 𝜃∗ = 𝜙∗ = 0 and 𝜓∗ = 𝜋

3
, and simulate the cas-

cade closed-loop control system’s responses to the reference following and dis-
turbance rejection. You may use a smaller sampling interval to improve the
numerical stability in the simulation.

2. Increase the load torque 𝜏d
z to 0.4 and observe how the control signals 𝜏x, 𝜏y and

𝜏z change in comparison to the responses from the original load of 0.2.
3. Vary the desired closed-loop poles for both secondary and primary control sys-

tems and observe the changes on the control signals 𝜏x, 𝜏y and 𝜏z, and output
signals 𝜃, 𝜙, 𝜓 .

10.3 Continue from Problem 10.1. Instead of the cascade control structure, design
three PID controllers using the linearized models from (10.26) and (10.27). For
simplicity, we may choose all closed-loop poles at −𝜆 and tune the parameter
𝜆 to achieve closed-loop stability from the nonlinear control system simulation.
The pole-assignment controller design introduced in Chapter 3 is used to find the
parameters of the PID controller with filter.
1. What are the 𝜆 values found to achieve closed-loop stability without oscilla-

tions?
2. What are your observations on the disturbance rejection when comparing this

control system with the previous cascade control system?

10.4 Modify the Simulink simulator built from Problem 10.1 to consider the actuator
dynamics. For simplicity, the actuator dynamics for each axis are modeled using
the delay model ke−ds. Choosing d = 0.007 second, through the nonlinear system
simulation determine the range of k for the closed-loop stability of the cascade
control system.

10.5 Using the physical parameters from Table 10.2, we build a Simulink simulation
model for the quadrotor UAV with actuators. Perform automatic tuning of the
PID controllers for the quadrotor using simulation studies. The closed-loop time
constants for the secondary controllers are selected as 2d where d is the estimated
delay and for the primary controllers are selected as 4d.
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Suggestions to Food for Thought Questions

Chapter 1
Section 1.2.6. 1 Kc could be both positive and negative, 𝜏I positive, and 𝜏D positive.
3 Its main role is to compensate steady-state errors, however, it also increases dynamic
response speed. 5 Yes. This is a quite simple and effective approach to reduce overshoot
in the reference response.
Section 1.3.3. 2 No, because it is not safe to conduct open-loop experiments for unsta-
ble systems and the tuning rules are derived for stable systems. 4 System could easily
become unstable. 6 Time delay, time constant and steady-state gain. 8 Cohen-Coon
tuning rules produce larger Kc, smaller 𝜏I and 𝜏D.
Section 1.4.4. 1 Decrease. 3 No, decrease.

Chapter 2
Section 2.2.3. 1 Not oscillatory. 3 Because the coefficients of the denominator are
real. 5 No.
Section 2.3.3. 2 Yes. 4 Combination of Kc, 𝜏I and 𝜏D.
Section 2.4.4. 1 Yes. 3 It is simpler for implementation. 5 1

𝛽𝜏Ds+1
.

Section 2.5.4. 2 Yes. 4 Because it can achieve a faster disturbance rejection without
causing a larger overshoot in reference following.
Section 2.6.3. 1 No. 3 No.
Section 2.7.4. 2 Yes. 2 Yes.

Chapter 3
Section 3.3.1. 2 No. 4 Current control in AC drives; liquid level control; temperature
control.
Section 3.4.6. 1 No. 3 Yes. 5 No. 7 Sylvester matrix is invertible.
Section 3.5.4. 2 Yes. 4s(s2 + 𝜔2

0).
Section 3.7.1. 1 Yes. 3 Open-loop compensation technique; faster and better distur-
bance rejection through measurement.

Chapter 4
Section 4.3.3. 2 Yes. 4 Reduce the sampling interval Δt. 6 Yes.
Section 4.4.4. 1 At the initial step when the closed-loop control starts. 3 Constant
plant operational condition.
Section 4.5.3. 2 No. 4 Before the saturation block.

PID Control System Design and Automatic Tuning using MATLAB/Simulink, First Edition. Liuping Wang.
© 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd.
Companion website: www.wiley.com/go/Wang/PIDcontrolsystems
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Section 4.6.3. 1 The control signal computed is the actual variable to be implemented;
the integral action needs to be stopped when the control signal reaches its limits. 3
Control signal behaves like a ramp signal.

Chapter 5
Section 5.2.5. 2 Yes. 4 Yes.
Section 5.3.6. 1 See Tutorial 5.2. 3 Add the control signal steady-state before imple-
menting the saturation limits and the disturbance observer (see Figure 5.2). The output
steady-state should be considered together with the steady-state of the reference signal.
Section 5.4.6. 2 Yes. 4 The implementation uses a stable structure and the calculated
control signal equals the actual control signal when its steady state is added.
Section 5.5.3. 1 Yes. 3 Yes.

Chapter 6
Section 6.2.5. 2 No. 4 Yes. 6 Yes.
Section 6.3.5. 1 Yes. 3 The actuator dynamics, the sensor errors, and errors from the
physical parameters.
Section 6.4.4. 1 Yes, as long as they are measurable. 3 Yes.

Chapter 7
Section 7.2.4. 2 For simplicity of the primary controller design. 4 Yes.
Section 7.3.3. 2 Yes. 4 Because the original PI controller implementation will lead to
a faster inner-loop dynamic response for a better performance in the cascade control
system.
Section 7.4.4. 1 Yes. 3 Yes.

Chapter 8
Section 8.2.3. 2 Yes. 4 Yes.
Section 8.3.6. 1 Yes. 3 Yes, however the two frequency points should not be too close
to each other. The approach is based on matching the frequency response of the Nyquist
curve at the two selected points.
Section 8.4.6. 2 1

(2𝜉𝜏cl+d)s+1
.

Chapter 9
Section 9.2.3. 1 Use steady-state experimental data. 3 Yes. The data can be used for
estimation of the first order model. A simple approach is to incorporate a delay in the
feedback path, where the input and output signals are only related to the original first
order dynamics. 5 Yes, but can not guarantee to produce a stable closed-loop system
in general.
Section 9.3.4. 2 Yes. 4 Because the input and output data do not contain the frequency
information at 𝜔 = 0.
Section 9.4.4. 1 Because the maximum peak value of the FFT of the input signal reli-
ably carries information about the fundamental frequency of the periodic signal. The
alternative approach is to take an average of the periods of the input signal, which is
not as reliable because of the possible random switches due to noise and disturbances.
3 On the unit circle of the complex plane. Yes. 5 It offers a real-time implementation
platform and can adapt to parameter changes in the system.



�

� �

�

Suggestions to Food for Thought Questions 329

Section 9.5.4. 2 Yes. Yes. 4 Because the input and output signals do not contain the fre-
quency information at 𝜔 = 0. Even with the low frequency disturbance, the estimation
at 𝜔 = 0 is not reliable as shown in the Monte-Carlo simulation studies.
Section 9.6.4. 1 High accuracy with the estimated frequency parameters, and no need
for conversion to a transfer function model. 3 Decrease. 5 Yes.
Section 9.7.4. 2 Yes. 4 Decrease.

Chapter 10
Section 10.2.4. 1 roll angle 𝜙, pitch angle 𝜃 and yaw angle 𝜓 . 3 From (10.11),
when the battery voltage is less than expected, in order to maintain the same motor
speed, the duty cycle needs to increase. 5 To implement the control system, the
constants for the actuator dynamics listed in Sections 10.2.2 and 10.2.3 are required
together with the controller parameters. To design the control system, the moments of
inertia, Ixx, Iyy and Izz are required, although it would be ideal to include the actuator
dynamics into the attitude control system design.
Section 10.3.3. 2 Through remote control transmitter/receiver for sending and receiv-
ing position reference signals. 4 Yes. The velocities for the DC motors. 6 The secondary
control systems could use P, PI and PD depending on the actuator dynamics and sensor
noise. The primary control systems could use PI or PID. Integrator is needed in the pri-
mary controller to compensate for the steady-state errors. The selection of the controller
structure could be performed with flight experiments.
Section 10.4.4. 1 Setup ground test apparatus for the relay experiments, setup flight
controller in cascade control structure that contains the estimated constants for the
actuators. 3 Yes. 5 Unity. Minimum time delay is the delay from the secondary system.
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