
Network Simulator (NS-2)

Internet Technologies
60-375

© Varaprasad Reddy 2

 Agenda
!! Overview of NS-2
!! History
!! Current Status
!! Platforms Supported
!! Discrete Event Simulator
!! NS-2 Environment
!! NS-2 Hierarchy
!! NS-2 Architecture

"! Node Architecture
"! Multicast Node Architecture
"! Packet Structure
"! Links
"! Traffic Flow

!! Example

© Varaprasad Reddy 3

 Overview of NS-2

!! Discrete Event Simulator
!! Packet level
!! Modeling Network protocols

#!Collection of Various protocols at multiple layers
#!TCP(reno, tahoe, vegas, sack)
#!MAC(802.11, 802.3, TDMA)
#!Ad-hoc Routing (DSDV, DSR, AODV, TORA)
#!Sensor Network (diffusion, gaf)
#!Multicast protocols, Satellite protocols, and many others

© Varaprasad Reddy 4

 Overview of NS-2

!!Maintained through VINT project
!!NS2 :collaborative simulation environment

#!Freely distributed and open source
#!Supports NT research and education

#!Protocol design , traffic analysis etc.
#!Provides common reference

© Varaprasad Reddy 5

 History

!! 1995 : Developed by LBL through support
of DARPA

!! 1996: NS was extended and distributed
by VINT project

!! 1997: Satellite models added @ UCB
!! 1999: Wireless models added @ CMU
!!Recent incorporation of emulation

© Varaprasad Reddy 6

 Current status

!!Releases:
#!Periodic releases (currently 2.27, Jan 2004)
#!Daily snapshots (probably compiles and

works, but “unstable”)
#!Available from: USC/ISI, UC Berkeley, UK

mirror
#! More than 10k users from hundreds of univs

© Varaprasad Reddy 7

 Platforms supported

!!Most UNIX and UNIX-like systems
#! FreeBSD
#! Linux
#!Solaris

!!Windows 98/2000/2003/XP
"!Cygwin required
"!Some work , some doesnt

© Varaprasad Reddy 8

 NS-2 : Components

!! NS – Simulator
!! NAM – Network AniMator

"! visual demonstration of NS output
!! Preprocessing

"!Handwritten TCL or
"!Topology generator

!! Post analysis
"!Trace analysis using Perl/TCL/AWK/MATLAB

© Varaprasad Reddy 9

 User s Perspective

!! From the user s perspective, NS!2 is an OTcl
interpreter that takes an OTcl script as input
and produces a trace file as output.

© Varaprasad Reddy 10

 Discrete event simulator

!! ns-2 is an discrete event driven simulation
"! Physical activities are translated to events
"! Events are queued and processed in the order of their scheduled

occurrences
"! Time progresses as the events are processed

1 2

Time: 1.5 sec Time: 1.7 sec

Time: 1.8 sec Time: 2.0 sec

© Varaprasad Reddy 11

Discrete Event Scheduler

time_, uid_, next_, handler_
head_ ->

handler_ -> handle()

time_, uid_, next_, handler_ insert

head_ ->

Event Scheduler

© Varaprasad Reddy 12

 Event Scheduler

!! Non-Real time schedulers
"! Implementations : List , Heap , Calender
"! Calender is default

!! Real time schedulers
"!Used for emulation for direct interaction with real NT.

!! Basic use of an event scheduler:
"!schedule simulation events, such as when to start an

FTP application, when to finish a simulation, or for
simulation scenario generation prior to a simulation
run.

© Varaprasad Reddy 13

 NS-2 Environment
Simulation
Scenario

Tcl Script

C++
Implementation

1 2

set ns_ [new Simulator]

set node_(0) [$ns_ node]

set node_(1) [$ns_ node]

class MobileNode : public Node
{

 friend class PositionHandler;
public:
 MobileNode();

 •
 •

}

© Varaprasad Reddy 14

 tcl Interpreter With Extents

!! otcl: Object-oriented support
!! tclcl: C++ and otcl linkage
!!Discrete event scheduler
!!Data network (the Internet) components

tcl8.0

otcl

tclcl

ns-2 Event
Scheduler

N
etw

ork
C

om
ponent

© Varaprasad Reddy 15

 NS-2 Hierarchy

Addr

Replicator

MCast

MPath

Hash

Classifer

Delay

Agent

Application

Queue

Trace

Connector

NSOject

TclObject

© Varaprasad Reddy 16

 NS-2 Hierarchy

UDP

RBP

Reno

RBP

Vegas

Sack1

NewReno

Tap

Sink

FullTCP

Adaptive

SRM

TCP DSDV AODV TORA DSR

Agent

Telnet

Exponential

Pareto

CBR

Trace

Traffic

FTP

Application

Droptail

RED

FQ

SFQ

DRR

CBQ

Queue

Enq

Deq

Drop

Trace

© Varaprasad Reddy 17

 NS-2 Directory Structure

sim

tk8.0 otcl Tcl tcl8.0 ns-2 nam-1

tcl

ex test lib

...

...

tcl code

example

validation test

C++ code

tcl code core

© Varaprasad Reddy 18

 Node Architecture

C
lassifier

C
lassifier

Agent

Link

Agent

Agent

Node

Addr

Port

Node entry point

Local

Link Link

Agents are either protocol endpoints or related
objects that generate/fill-in packet fields.

Classifiers: packet demultiplexers.

© Varaprasad Reddy 19

Multicast Node architecture

© Varaprasad Reddy 20

Packets (events)
packet

Size
determined at
compile time

cmn header

Size
determined at
compile time

tcp header

Size
determined at
compile time

ip header

Size
determined at
compile time

 trace header

bits()

 accessdata()

next_
Size

determined
at

simulation
config time

-! packet size

-! timestamp

-! type

-! UID

-! interface label

 Packet Structure

© Varaprasad Reddy 21

 Links

Enq Trace Deq Trace Rcv Trace

Drp Trace

Delay TTL

Drop head

Queue
Link
entry
point

Links: keeps track of from and to node objects.
blocked

© Varaprasad Reddy 22

Link

Link

Application

N1 N2

C
lassifier

C
lassifier

Agent

Node

Addr

Port

Local

C
lassifier

C
lassifier

Agent

Node

Addr

Port

Local

Enq Trace Deq Trace Rcv Trace

Drp Trace

Delay TTL

Drop head

Queue

Application

© Varaprasad Reddy 23

!!C++ is used for the creation of objects
because of speed and efficiency.

 NS-2 : C++ / OTCL
!!NS-2 Code contains two sets of

languages, namely C++ and OTcl.

!!OTcl is used as a front-end to setup the
simulator, configure objects and
schedule events because of its ease of
use.

© Varaprasad Reddy 24

Why two languages? (Tcl & C++)
!! C++: Detailed protocol simulations require

systems programming language
"!byte manipulation, packet processing, algorithm

implementation
"!Run time speed is important
"!Turn around time (run simulation, find bug, fix bug,

recompile, re-run) is slower
!! Tcl: Simulation of slightly varying parameters

or configurations
"!quickly exploring a number of scenarios
"! iteration time (change the model and re-run) is

more important

© Varaprasad Reddy 25

 Tcl or C++?
!!Tcl

"!Simple Configuration, Setup, Scenario
"!If it’s something that can be done without

modifying existing Tcl module.
!!C++

"!Anything that requires processing each
packet

"!Needs to change behavior of existing
module

© Varaprasad Reddy 26

 Shadowing

TclObject

Agent

Agent/DSDV

Agent/DSDV OTcl
shadow object

Agent/DSDV C++
object

TclObject()

Agent()

DSDVAgent()

OTcl class
hierarchy

C++ class
hierarchy

© Varaprasad Reddy 27

Agent/DSDV
Constructor

Agent
Constructor

Invoke parent

TclObject
Constructor

Invoke parent

AgentDSDV()
Constructor

Create C++

Agent()
Constructor

Invoke parent

TCL

C++
TclObject()
Constructor

Invoke parent Do nothing,

return
bind and

return
bind and

return

OTcl shadow init complete init complete

 Object Correspondence

© Varaprasad Reddy 28

 Outline

© Varaprasad Reddy 29

 NS-2 Directory Structure

sim

tk8.0 otcl Tcl tcl8.0 ns-2 nam-1

tcl

ex test lib

...

...

tcl code

example

validation test

C++ code

tcl code core

© Varaprasad Reddy 30

Making Changes in C++ Space

!!Existing code
"!recompile

!!Addition
"!change Makefile and recompile

© Varaprasad Reddy 31

Making Changes in otcl Space

!!Existing code
"!recompile
"!source

!!Addition
"!source
"!change Makefile (NS_TCL_LIB), tcl/ns-

lib.tcl (source) and recompile

© Varaprasad Reddy 32

 Installation

!!Unix variants
"!Download NS-allinone-2.27 package
"!Contains

!! TCL/TK 8.4.5
!! oTCL 1.8
!! Tclcl 1.15
!! Ns2
!! Nam -1

© Varaprasad Reddy 33

 Installation

!! sudo apt-get install ns2
!! sudo apt-get purge nam
!! sudo dpkg -i nam_1.14_amd64.deb
!! sudo apt-mark hold nam
!!RESTART the machine

© Varaprasad Reddy 34

 Code for simple topology

!! Creating a Simulator Object
"!set ns [new Simulator]

!! Setting up files for trace & NAM
"!set trace_nam [open out.nam w]
"!set trace_all [open all.tr w]

!! Tracing files using their commands
"!$ns namtrace-all $trace_nam
"!$ns trace-all $trace_all

© Varaprasad Reddy 35

 Code for simple topology

!!Closing trace file and starting NAM
"!proc finish { } {

!! global ns trace_nam trace_all
!! $ns flush-trace
!! close $trace_nam
!! close $trace_all
!! exec nam out.nam &
!! exit 0 }

© Varaprasad Reddy 36

 Code for simple topology

!!Creating LINK & NODE topology
"!Creating NODES

!! set n1 [$ns node]
!! set n2 [$ns node]
!! set n3 [$ns node]
!! set n4 [$ns node]
!! set r1 [$ns node]
!! set r2 [$ns node]

© Varaprasad Reddy 37

 Code for simple topology

!! Creating LINKS
"! $ns duplex-link $N1 $R1 2Mb 5ms DropTail
"! set DuplexLink0 [$ns link $N1 $R1]
"! $ns duplex-link $N2 $R1 2Mb 5ms DropTail
"! set DuplexLink1 [$ns link $N2 $R1]
"! $ns duplex-link $R1 $R2 1Mb 10ms DropTail
"! set DuplexLink2 [$ns link $R1 $R2]
"! $ns duplex-link $R2 $N3 2Mb 5ms DropTail
"! set DuplexLink3 [$ns link $R2 $N3]
"! $ns duplex-link $R2 $N4 2Mb 5ms DropTail
"! set DuplexLink4 [$ns link $R2 $N4]

© Varaprasad Reddy 38

 Code for simple topology

!!Orientation of links
"! $ns duplex-link-op $N1 $R1 orient right-down
"!$ns duplex-link-op $N2 $R1 orient right-up
"!$ns duplex-link-op $R1 $R2 orient right
"!$ns duplex-link-op $R2 $N3 orient right-up
"!$ns duplex-link-op $R2 $N4 orient right-down

© Varaprasad Reddy 39

 Final topology Generated

© Varaprasad Reddy 40

 Traffic topology aimed at

© Varaprasad Reddy 41

 Generating Traffic
!! Attaching AGENT TCP to NODE 1

"! set TCP1 [new Agent/TCP]
"! $ns attach-agent $N1 $TCP1

!! Attaching AGENT TCP to NODE 2
"! set TCP2 [new Agent/TCP]
"! $ns attach-agent $N2 $TCP2

!! Attaching AGENT TCP to NODE 3
"! set TCP3 [new Agent/TCPSink]
"! $ns attach-agent $N2 $TCP3

!! Attaching AGENT TCP to NODE 4
"! set TCP4 [new Agent/TCPSink]
"! $ns attach-agent $N2 $TCP4

© Varaprasad Reddy 42

 Generating Traffic

!!Attaching Application (FTP)
"!set FTP0 [new Application/FTP]
"!set FTP1 [new Application/FTP]
"!$FTP0 attach-agent $TCP0
"!$FTP1 attach-agent $TCP1

© Varaprasad Reddy 43

 Setting simulation times

!! $ns at 0.5 "$FTP0 start"
!! $ns at 0.5 "$FTP1 start"
!! $ns at 10.0 "$FTP0 stop"
!! $ns at 10.0 "$FTP1 stop
!! $ns at 10.0 finish
!!Making NS run

"!$ns run

© Varaprasad Reddy 44

