
To the Graduate Council:

I am submitting herewith a dissertation written by Myles Brandon Bogner entitled
“Realizing ‘Consciousness’ In Software Agents.” I have examined the final copy of this
thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy, with a major in Mathematical
Sciences.

Stan Franklin, Ph.D., Major Professor

We have read this dissertation
and recommend its acceptance:

Dinpankar Dasgupta, Ph.D.

Art Graesser, Ph.D.

Jonathan Maletic, Ph.D.

Edward Ordman, Ph.D.

Accepted for the Council:

Linda L. Brinkley, Ph.D.
Vice Provost for Research
& Dean of the Graduate School

Realizing “Consciousness” In Software Agents

A Dissertation

Presented for the

Doctor of Philosophy

Degree

The University of Memphis

Myles Brandon Bogner

December, 1999

Copyright © Myles Brandon Bogner, 1999
All rights reserved

ii

DEDICATION

To Rose Greenbaum

For all of her struggles

iii

ACKNOWLEDGMENTS

I would like to express thanks to my advisor, Dr. Stan Franklin, for his

willi ngness to share his ideas and allow me to explore my own. Dr. Franklin has met

me many times on late Friday afternoons when all others have deserted the university.

Under his direction I have thoroughly enjoyed pursuing my graduate degrees. I would

like to thank Dr. Jonathan Maletic, a committee member and friend, for his

encouragement. Dr. Maletic’s guidance significantly enhanced my knowledge of

software reuse. I would like to acknowledge Dr. Chip Ordman for his teachings. From

Dr. Ordman I learned many of the distributed computing techniques used in my research.

 He and I have traced through numerous paths on his off ice chalk board. I would like to

thank Dr. Art Graesser for sharing with me the ideas of cognitive modeling. Dr.

Graesser made sure I stayed the course when testing my implementation. I would also

like to acknowledge Dr. Dipankar Dasgupta, for his assistance and comments. I have

often paused in front of Dr. Dasgupta’s office door to read his postings.

I would like to thank the “Conscious” Software Research Group for our inspiring

weekly meetings. I would like to acknowledge the United States Navy’s Off ice of Naval

Research and Personnel Research and Development Center for funding this research

under grant N00014-98-1-0332.

iv

I would like to thank Michaela, for her courage and support. I would like to

thank my sister, Alexis, for helping to hold up the St. Louis fort while I have been away.

Finally, I would like to thank my parents, who willingly continue to be wonderful guides.

v

ABSTRACT

Realizing “ Consciousness” In Software Agents describes the first design and

implementation of Bernard Baars’ global workspace theory. Global workspace theory is

a leading psychological model of human consciousness. The “Conscious” Software

Research Group at the University of Memphis has labeled agents which implement this

theory as “conscious” software agents. As background material for the reader, this work

also discusses agents, other existing cognitive architectures, and current software reuse

methodology.

This dissertation describes in depth the “Conscious” Agent framework (ConAg),

developed by this author. ConAg is a reusable software framework that carefully follows

software reuse methodology. ConAg provides a solid foundation for building

“conscious” software agents, and in particular, “consciousness” within these agents. A

description of two agents built with ConAg are described, as well as the framework’s

structure. It is beyond this work’s scope to address whether or not agents built with

ConAg are sentient.

There are several motivators for this research. First, it is hypothesized that a

global workspace gives a multi -agent system several advantages. For example, it offers

individual agents in the system a means of recruiting the system’s other agents to help

solve novel and ambiguous problems. Also, it gives a method for attentional focus for

the overall system. This provides a means for associative learning and metacognitive

functions to take place. This dissertation gives an in depth discussion of the specific

vi

functions of the global workspace in ConAg. It is hoped that the software

implementation advantages gained when using a global workspace are evident.

As a second motivation, this research hopes to provide new hypotheses about

human consciousness for cognitive scientists and neuroscientists. As a cognitive science

theory, Baars’ theory does not contain many of the low-level design specifications

necessary for a computer scientist’s implementation of the theory. To implement the

theory, these design decisions had to be made. Many of these decisions can be

considered hypotheses on human consciousness. It is hoped that the members of the

above disciplines will view these implementation decisions as springboards for the

further study of consciousness.

vii

TABLE OF CONTENTS

22What are Architectural Styles?

21How Does Reuse Work?

20The Motivations for Software Reuse

19Reuse Is Often Not Standard Practice

18What Is Software Reuse?

18Software Reuse

16Pacrat

15Why “Conscious” Software Agents Do Not Use Soar or CAPS

14CAPS

10Soar

10Computational Models

6Agents

6Introduction

6Agents, Models, & Reuse.

3Contents and Author’s Contributions

1Motivations

1

An Introduction To A Software
Implementation of
“Consciousness”.

viii

36Composition Workspace (A Working Memory)

36Tracking Memory

35Codelets

35Perception Registers

34Input Processing Workspace (A Working Memory)

33Input Processing Knowledge (Slipnet)

33Perception

32Behavior Network

31Drives

30VMattie’s Architecture

30VMattie As An Autonomous Agent

29VMattie’s Job Description

28Introduction

28VMattie

28Introduction

28Setting The Stage.

27Conclusions

26What Are Design Patterns?

25Frameworks and Components

25What Are Components?

23What Are Frameworks?

ix

51The Architectural Style

51Pandemonium Theory

50Global Workspace Theory Recap

50Action Selection Paradigm of Mind

50“Conscious” Software Agent’s Architectural Style

49Introduction

49“Conscious” Software Agents

47Conclusions

46An Example To Illustrate Global Workspace Theory

44Overall Steps In Global Workspace Theory

43How Global Workspace Theory Works

42The Global Workspace

42Contexts

41Processes and Coalitions

40The Components of Global Workspace Theory

39Functions of Consciousness

39Consciousness

38Introduction

38Global Workspace Theory

37Results and Limitations

36Mail Input and Output

x

71Conclusions

69IDA’s Natural Language Generation Scripts

68IDA’s Architecture As An Extension Of CMattie’s

67The Intelligent Distribution Agent (IDA)

66CMattie’s Performance

65Learning

65Metacognition

64Emotions

63Behavior Network

62“Consciousness”

61“Consciousness” Codelets

61Associative and Episodic Memories

60Focus

60Perception

59Mail Input and Output

59Roles of CMattie’s Modules

56“Conscious” Mattie

55A Brief Overview Of Codelets Reaching “Consciousness”

55Low Level Codelets

53High Level Cognitive Modules

53The General Architecture

xi

94The Framework’s Primary Goals

93Java Beans

92Why Java?

91The “Conscious” Agent Framework

91ConAg

90Conclusions

87An Example “Consciousness” Codelet

87From the Composition Working Memory

85From the Focus

85“Consciousness” Codelets

84Short-Term Memory

83Chunks and the Chunking Manager

82Broadcast Manager

81Spotlight Controller

80Coalition Manager

79Playing Field

75The Focus

72Base Codelet

72Introduction

72Realizing “Consciousness”.

xii

122Test Eight

121Test Seven

121Test Six

120Test Five

119Test Four

118Test Three

117Test Two

116Test One

115Testing Results

106ConAg’s Graphical User Interface Revisited

105How Other Cognitive Modules Integrate With ConAg

103ConAg’s Design Patterns

103Domain Dependant Portions

101Other Cognitive Module Stubs

101Error Handling

100Graphical User Interface

 98Compilation Hooks

98Attention

96Codelet Definitions

96ConAg’s Domain Independent Portions

94ConAg’s structure

xiii

134The Future

130Hypotheses

126

Are Baars’ Nine Functions of Consciousness
Implemented In ConAg?

124Conclusions

124Computational “Consciousness”

122Conclusions

xiv

LIST OF FIGURES

122Figure 6.14: ConAg’s “Unconscious” Menu.
120Figure 6.13: Current Perception Registers Snapshot.
119Figure 6.12: ConAg’s Focus Menu.
118Figure 6.11: “Consciousness” Codelet View
117Figure 6.10: ConAg’s “Consciousness” Codelets Menu
115Figure 6.9: ConAg’s Broadcast Recipients View.
114Figure 6.8: ConAg’s Attention Menu
113Figure 6.7: ConAg’s File Menu
112Figure 6.6: ConAg’s Startup Screen.
102Figure 6.5: “Consciousness” Codelet Package
100Figure 6.4: Display Package.
98Figure 6.3: Compilation Hooks Package.
97Figure 6.2: “Consciousness” Package.
95Figure 6.1: “Conscious” Software Agent Directory.
58Figure 4.3: CMattie’s Architecture
53Figure 4.2: An Architecture For “Conscious” Software Agents.
52Figure 4.1: Architectural Style For “Conscious” Software Agents.
45Figure 3.2: Global Workspace Theory.
31Figure 3.1: VMattie’s Architecture

xv

Chapter 1
An Introduction To A Software

Implementation of “Consciousness”

Motivations

This work describes a software design and implementation of global workspace theory, a

cognitive science theory of consciousness (Baars, 1997). This implementation focuses on

the theory’s consciousness portion. The theory extends to cover other cognitive

mechanisms such as learning and metacognition. Global workspace theory postulates

that in humans, consciousness provides for numerous functionaliti es. These include

adaptation, learning, and prioriti zation. This research is motivated, in part, to show that

these cognitive mechanisms, many of which have partly been implemented on machines

previously, can be enhanced through “consciousness.” Hopefully, this will l ead to

“smarter” software.

Second, it is important to stress that global workspace theory is a cognitive

science hypothesis. As such, it is at a much higher conceptual level than necessary for a

software implementation. Therefore, this writer, in consultation with the “conscious”

software research group, including both computer and cognitive scientists, made

lower-level design decisions for the theory’s implementation. These design decisions

can be considered hypotheses on how humans minds work. Hopefully, they will be

1

analyzed by cognitive scientists, neuroscientists and philosophers and lead to a further

understanding of mind.

The “conscious” software research group labels software agents (see chapter 2)

which implement global workspace theory as “conscious” software agents. As seen

throughout this work’s later chapters, these agents are quite complex and very

time-intensive to build. They are also closely coupled to their domain. Therefore, a

goal for this author’s implementation has been to incorporate current software reuse

methodologies to create a reusable framework. New “conscious” software agents, when

incorporating this framework, do not have to be implemented from scratch. Instead,

large portions of each new agent need no code modification, while other portions need

not be reimplemented from scratch. As discussed later, reuse has shown to significantly

increase productivity while decreasing defect density, rework, and development costs

(Basili, Briand, & Melo, 1996).

This framework, named ConAg: The “Conscious” Agent Framework, is

implemented in Java beans (Eckel, 1998). The use of Java beans increases ConAg’s

chances of truly being a reusable framework. As of July 1, 1999, ConAg had been

developed solely by this writer, and consisted of approximately 60,000 lines of code and

over 280 Java beans. While other agent frameworks do exist (Reticular Systems, 1999),

this is the first one designed for building “conscious” software agents.

2

Contents and Author’s Contributions

This work contains seven chapters. Chapter 2 gives a literature search overview. It

discusses agents, focusing on software agents (Franklin & Graesser, 1997) and their

relation to “conscious” software agents. The chapter then describes computational

models, comparing “conscious” software agents to established ones. The chapter ends

with a discussion of software reuse methodology, focusing on its importance and

components. ConAg is designed under software reuse methodology, and ConAg’s heavy

reliance on this methodology will be evident throughout the later chapters.

Chapter 3 sets the stage by describing global workspace theory and Virtual Mattie

(VMattie), the “conscious” software research group’s first project (Song, 1998).

VMattie is not a “conscious” agent, but contains many of the building blocks for agents

which do implement global workspace theory (Zhang, Franklin, Olde, Wan, & Graesser,

1998). The author was actively involved in VMattie’s design.

Chapter 4 discusses “conscious” software agents in depth, focusing on

“Conscious” Mattie (CMattie) and the Intelli gent Distribution Agent (IDA) (Bogner,

Ramamurthy, & Franklin, in press 1999). Chapter 4 describes the new architectural style

developed by the author for high level “conscious” software agent description (Bogner,

Maletic, & Franklin, in press 1999). This author has been actively involved in all stages

of the design and implementation of CMattie, and as seen in the reference section, has

publications based on work relating to the agent. CMattie is the first “conscious”

software agent. IDA is the “conscious” software research group’s proof of concept

3

project. IDA is funded by the Off ice of Naval Research and will , hopefully, turn into a

useful software package. The present writer has been actively involved in all stages of

the design and implementation of IDA, including meetings with naval personnel.

For both CMattie and IDA, this author’s major contributions have been:

1. The creation of a new architectural style and general architecture to succinctly

describe “conscious” software agents.

2. The design from scratch and implementation of these agents’ “consciousness”

mechanisms. Since “consciousness” provides the backbone in these agents’

structures, many of these agents’ core components are within this

“consciousness” mechanism.

3. The successful implementation and extension of John Jackson’s

pandemonium theory (Jackson, 1987). Extending pandemonium theory’s

ideas helped provide a means for implementing global workspace theory’s

consciousness. This is the first known implementation of pandemonium

theory.

4. The design from scratch and implementation of these agents’ base package of

classes, known as the base codelet package. All codelets in the system utili ze

this package.

5. The creation of a reusable software framework for utili zation in both these

agents and in future “conscious” software agents. This framework follows

software reuse methodology to create a truly “ reusable” framework. It

includes a graphical user interface for a view of what is internally occurring

4

within these agents; in particular, what is occurring within these agents’

“consciousness” mechanism.

6. The successful provision for each of Baars’ nine major functions of

consciousness. These are described in chapter 3, and chapter 9 includes

discussion on how the framework successfully provides for each of these

functions.

In addition, the present writer has worked on a project to develop an intelli gent tutoring

system. During that time, he was a primary developer of natural language curriculum

scripts which are spoken by the tutoring system. Many of these script innovations are

planned for use in IDA’s natural language generation portion. Chapter 4 gives a brief

tour of these scripts (Graesser, Franklin, & Wiemer-Hastings, 1998).

Chapter 5 describes the design of CMattie and IDA’s “consciousness”

mechanism. This includes how information is brought to “consciousness,” how the

“consciousness” apparatus functions, how the “conscious” information is disseminated,

and what “consciousness” provides to these agents. Chapter 6 delves into depth on the

structure of ConAg, illustrating how it implements Chapter 5’s design.

To be a successful software framework, it has to be straight forward in its use.

Chapter 6 also describes how different modules, developed by other “conscious” software

research group members, integrate with ConAg and utili ze its features. In addition, it

gives testing results. Finally, chapter 7 specifically answers the question of how ConAg

provides for Baars’ nine functions of consciousness. In addition, it draws conclusions,

hypotheses, and future speculations.

5

Chapter 2
Agents, Models, & Reuse

Introduction

This chapter gives overviews of research relevant to this dissertation’s focus. It begins

with a discussion of agents, focusing on software agents. “Conscious” software agents

are cognitive software agents. It then gives an overview of three computational models.

Described in this chapter and further beginning in chapter 4, “conscious” software agents

are different than these models as they follow the action selection paradigm of mind

(Franklin, 1995) and focus on consciousness directly in their implementation global

workspace theory (Baars, 1997). Finally, this chapter describes current software reuse

methodology. The “Conscious” Agent Framework (ConAg) draws heavily on this

practice to create a reusable framework.

Agents

On the software agents maili ng list (http://www.csee.umbc.edu/agentslist/),

frequently asked questions include: what is an agent; why are agents needed; can I call

this an agent; is there a dummy agent available on the web; what makes an agent distinct

from other software; what are the differences between multi -agent and single-agent

systems; what are the differences between agent architectures, cognitive architectures,

and software architectures; can agents be used in the medical area; and many more along
6

the same lines. A main reason for these questions is the increased interest in agents as

they continue to rapidly grow in popularity. Also, there are many varied definitions of

what an agent even is. In addition, agents are now classified: artificial li fe agents,

autonomous agents, cognitive agents, goal-based agents, irrational agents, mobile agents,

multi -agents, rational agents, reflex agents, robotic agents, utilit y-based agents, and

viruses are all examples.

Russell and Norvig have a highly regarded definition of an agent: it is anything

that can be viewed as having sensors through which it perceives its environment and

having effectors with which it acts upon this environment (1995). Under this definition,

humans are agents with sensors such as eyes and ears and effectors including hands and

feet. Described in later chapters, “conscious” software agents sense through their

perception modules and act upon their environment in numerous ways such as sending

out email messages through mail output modules.

However, by this definition, a refrigerator’s thermostat is an agent. It senses its

environment, the air temperature, and it acts upon its environment by causing the cooling

of the refrigerator. Obviously, more is needed to identify agents with “ intelli gence.” One

way to do this is to classify agents as irrational or rational. Rational agents are said to do

the right thing, meaning that they will t ake actions which allow them to achieve the

greatest success. CMattie is a rational agent, and, presumably, this is the goal of rational

humans as well . Rational agents can be classified as ideal rational agents. These perform

actions which are expected to maximize the agents’ success. These actions are taken

7

based on the agents’ built -in knowledge and what they have perceived up to this point.

Notice, thermostats are ideal rational agents.

Numerous researchers have defined autonomous agents (Franklin & Graesser,

1997). Franklin and Graesser provide a now prominent definition, stating that an

autonomous agent is a system situated in, and part of, an environment, which senses that

environment, and acts on it, over time, in pursuit of its own agenda. It acts in such a way

as to possibly influence what it senses at a later time. In other words, it is structurally

coupled to its environment (Maturana 1975; Maturana and Varela 1980). Biological

examples of autonomous agents include humans and most animals. Non-biological

examples include some mobile robots, and various computational agents, including

artificial li fe agents, software agents and computer viruses. “Conscious” software agents

are designed to be autonomous agents under this definition. It so happens that the

thermostat is one also.

The thermostat is lost, however, when classifying agents as cognitive agents

(Franklin, 1997). Both humans and “conscious” software agents can also be considered

cognitive agents. These are autonomous software agents that are equipped with cognitive

(interpreted broadly) features chosen from among attention, concept formation, decision

making, emotions, learning, long and short-term memory, multiple senses, perception,

problem-solving, etc. While this definition is not crisp, cognitive agents can play a

synergistic role in the study of human cognition, including consciousness (Bogner,

Ramamurthy, & Franklin, in press 1999). This dissertation uses cognitive features such

as attention both in the folk-psychological and technical senses.

8

Due to their cognitive nature, “conscious” software agents are currently relatively

unique; this can be seen through CMattie. CMattie is designed to fully function as a

“human” seminar announcer. She communicates entirely via the natural language found

in email messages. Her architecture combines numerous artificial intelli gence techniques

to model the human mind. While CMattie’s role will not fully be discussed until chapter

4, it is beneficial to point out that there are in fact other email and scheduling agents. For

example, the Calendar Agent automates a user’s scheduling process by observing the

person’s actions and receiving direct feedback (Kozierok, 1993). The Maxims system is

an email filtering agent which learns to process a user’s incoming mail messages

(Lashkari, 1994). These two systems employ other agents that collaborate to overcome

the problem of learning from scratch. Re:Agent is an email management system (Boone,

1998). This agent routes email to handlers that delete, download, sort, and store these

messages on palmtop computers and pagers. Re:Agent learns the emails’ features in

order to learn how to appropriately classify the messages. The Visitor-Hoster system is

aimed at helping a human secretary organize a visit to an academic department (Sycara,

1994). The secretary is presented with a user interface where she inputs relevant

information to the agent about the incoming visitor. The agent then plans the visit, and

returns to the secretary for confirmation. In addition to differences in tasks, CMattie’s

architecture, method of communication, degree of autonomy, and emphasis on

“consciousness” make her relatively unique among these types of agents. IDA continues

the trend.

9

Probably the types of agents gaining the most prominence are internet agents,

often known as mobile agents. These agents are beginning to be commonly found on the

internet, performing tasks such as information retrieval (Menczer, Belew, & Will uhn,

1995), network routing (Bonabeau, Henaux, Guérin, Snyers, Kuntz, & Theraulaz, 1998),

and security (Crosbie & Spafford, 1995). At times these agents may need to

communicate (http://www.fipa.org) and even barter with one another (Wurman,

Wellman, & Walsh, 1998).

Computational Models

Several researchers have created computational models which attempt to model human

intelli gence. Often these models try to depict a specific aspect of cognition, such as the

learning performed by connectionist systems (Haykin, 1994). Some attempt to approach

complete cognitive architectures. This section touches on three that begin to: Soar

(Laird & Rosenbloom, 1996), CAPS (Just, Carpenter, & Hemphill , 1996), and Pacrat

(Johnson & Scanlon, 1987). There are others, including the well known ACT*

(Anderson, 1991), OSCAR (Pollock, 1995), and “conscious” software agents. This

section also touches on why “conscious” software agents do not utili ze Soar and CAPS,

the two most prominent cognitive architectures.

Soar

Soar is a cognitive architecture designed for general intelli gence (Laird & Rosenbloom,

1996). It provides the means to study general properties of intelli gence. In this way, Soar

goes beyond many systems which solely deliver the abilit y to analyze specific algorithms

10

modeling specific problems. This design is motivated by cognitive issues such as

humans having a variety of behaviors. Soar’s underlying structure is built so that a full

range of cognitive tasks are available (Franklin, 1995). Soar’s creators declared specific

measures in order to monitor the progress of how close Soar is to general intelli gence

(Rosenbloom, Newell , & Laird, 1991). These include the abilit y to work on a full range

of tasks, to be able to use the full range of problem-solving methods and varieties of

knowledge, to be able to interact with the outside world in real time, and to learn about

the world and the system’s own performance. Soar has achieved significant progress in

numerous areas such as learning, outside interaction, problem solving, and range of tasks.

Soar’s hypothesis is that general intelli gence systems must be realized by

symbolic systems, which may be implemented on a lower-level architecture. Therefore,

Soar relies on production systems (Russell & Norvig, 1995) in its quest to perform a full

range of tasks from routine to extremely diff icult. Soar has very littl e built i n default

knowledge; most of the knowledge is domain-specific knowledge provided by the user.

Soar is often analyzed along four levels. The knowledge level is the most abstract

level and is used to characterize the system’s behavior. When Soar acquires knowledge,

it is available for all future goals. There is no capacity limitations on the amount of

knowledge that can be available, or on Soar’s abilit y to utili ze it in the selection of

actions that achieve its goals. The essential feature of the knowledge level is that Soar’s

behavior is determined by the content of its knowledge, not by aspects of its internal

structure. Soar’s intelli gence can be measured by how well the system applies its

knowledge to its tasks. The problem space level is concerned with the characterization of

11

problem spaces, operators, relationships between goals and subgoals, and states. The

problem space determines the set of operators and states that can be used during the

processing for goal attainment. One of Soar’s unique properties is that it is quite

entrenched in the problem space level as it determines how tasks are formulated. The

symbolic level contains the details of control flow and memories. More specifically, it

provides the basic control structure, memory organization, and processing structure for

supporting the knowledge level. The implementation level is the underlying technology

on which the symbolic architecture is built . The implementation details are largely

irrelevant to the Soar architecture. However, this level does show boundedness,

correctness for the execution of the symbolic level’s processes, and eff iciency. In

addition to these knowledge levels, Soar contains declarative, episodic, and procedural

knowledge, and its primary task is to perform procedural knowledge.

One of Soar’s most notable features is its abilit y to subgoal. When goals cannot be

reached, due to a lack of knowledge or a tie in the decision procedure, it is known as an

impasse and subgoals are created. Soar’s subgoaling is known as automatic subgoaling

as the architecture automatically generates subgoals based on an inabilit y to make

progress on the task. Soar also does universal subgoaling as it creates any and all types of

goals including metagoals (goals for deciding what operator to select), goals for achieving

operator preconditions, and goals for performing certain operators. Soar can create

subgoals of subgoals, creating a hierarchy of goals, in order to help achieve the overall

goal. To get through the created subgoals, Soar uses weak methods. These types of

methods are heuristic searches (Russell & Norvig, 1995) which control the search through

12

the problem spaces. Weak methods do not require significant built -in knowledge and

include common artificial intelli gence search techniques such as generate and test,

hill -climbing, and means-ends analysis. The Soar architecture automatically terminates

the subgoals when the impasse is resolved.

When a subgoal is realized, Soars collapses the subgoal into a chunk. This is a

method of one shot learning known as chunking. Chunking creates a production that

contains both the condition, describing the situation leading up to the impasse, and the

weak methods, utili zed to resolve the impasse. In other words, chunking summarizes the

problem solving of the subgoals, so that in the future, chunks fire in situations which

would have previously led to subgoals. Chunking is a background process which is

invoked automatically whenever a subgoal result is produced. Learned chunks are usable

throughout the entire system. Described in later chapters, “conscious” software agents

also utili ze a chunking technique, but its form is different largely due to architectural

differences.

Out of Soar’s goals and subgoals come two hypotheses about the relationships

among goals in intelli gent systems. First, subgoals are created to obtain knowledge so

that the pursuing of a goal can continue. Second, the functions for creating and selecting

goals are embedded into these systems’ architectures. This impasse-driven mechanism

has the unique property of eliminating the need for deliberate goals. “Conscious”

software agents’ goals are built in or learned.

Soar has been used in numerous successful applications including expert systems,

natural language parsing, resolution theorem proving, and robotic arms. In addition, Soar

13

has used in applications such as algorithm design, real-time control of simulated aircraft

(Tambe, Johnson, Jones, Koss, Laird, Rosenbloom, & Schwamb, 1995), medical

diagnosis, blood analysis, production-line scheduling, chemical process modeling, and

intelli gent tutoring. Soar has been used to model humans including concept acquisition,

immediate reasoning tasks, instruction taking, natural language understanding, number

conservation, problem solving, syllogisms, verbal reasoning, and visual attention.

However, Soar is still i ncomplete in respect to being a full unified theory of cognition in

some ways, such as having unbounded working memory.

CAPS

CAPS has been used to model problem solving, spatial reasoning, and text

comprehension. Like Soar, CAPS is a production system. CAPS, however, differs from

classical production systems in several ways. CAPS is actually a hybrid as it combines a

production system with an activation-based connectionist (Haykin, 1994) system. Unlike

traditional production systems, each element in CAPS has an associated activation level.

This allows elements, which can represent grammatical structures, thematic structures,

and words, to have varying degrees of activation. The production’s condition portion

specifies not only the presence of an element but also the minimum activation level (a

threshold) at which the element satisfies the condition. In addition, the precondition

elements are weighted, so that all preconditions do not need to be met for a production to

fire. If an element’s activation level is above threshold, it is considered to be in working

14

memory and available to initiate other computational processes. These can either be

actions or influence mental parameters (the contents of working memory).

Productions in CAPS change an element’s activation level by passing the source

element’s activation level, with some degradation, to this output element. In addition, a

reiterative action allows for symbolic manipulation. More specifically, productions fire

reiteratively over successive cycles, allowing for the output elements’ activation levels to

be gradually incremented until a threshold is reached. CAPS also allows multiple

productions with fulfilled preconditions to fire in parallel on a given cycle.

CAPS’ learning adjusts both productions’ condition weights and their firing

thresholds. This method of learning captures adaptation, as over time, weights and

thresholds can be lowered allowing frequent actions to occur more readily. Unlike Soar,

new productions are not learned via chunking.

Why “Conscious” Software Agents Do Not Use Soar or CAPS

Soar and CAPS have relatively long traditions of being comprehensive cognitive models.

Even so, in the creation of the “conscious” software agent architecture, the “Conscious”

Software Research Group is developing a quite detailed computational model of

cognition. This model has several distinctions when compared to Soar and CAPS. As

previously described, both Soar and CAPS are heavily engrained in action selection.

Each of these models most likely could have been the action selection mechanism for

“conscious” software instead of behavior networks (Maes, 1989). Certainly, there would

have been advantages and disadvantages to their use, different integration problems

15

would have arose, and different extensions would be necessary. Behavior networks

simply work well i n this context as they provide an appropriate level of abstraction and

relatively easy tuning once the behavior streams are in place. For the “conscious”

software architecture, the most important feature of the behavior network is its abilit y to

be extended to provide for global workspace theory’s goal contexts (see chapter 4). As

comprehensive cognitive models, Soar and CAPS do not provide the focus on

consciousness for which the “conscious” software agent architecture strives. The

“conscious” software agent architecture has been developed under the premise that

cognition is not unified. Instead, the “conscious” software agent model assumes that

humans are an evolutionary kludge. The “Conscious” Software Research Group does not

believe that a single mechanism can cover all of cognition.

Pacrat

Pacrat’s designers hoped to duplicate the functions of the “mammalian brain” by

designing and building “ feeling-thinking” machines. These designers hoped to produce

the functions of the brain in electronic circuitry. In addition, they hoped to provide

insight into how the brain potentially works. In fact, the authors explicitl y state that a

distant goal is to create a machine that acts and thinks like a person.

Pacrat is an artificial li fe agent created to be a feeling-thinking machine. Pacrat

feels, learns, and thinks about what it has learned. Pacrat’s actions are driven by eight

brain centers: amygdala, cingulate gyrus, hippocampus, hypothalamus, isocortex, medial

forebrain bundle, reticular ascending substance, and the thalamus. These brain centers

16

model the functional relationships between mammalian centers, but not the specific

electrical activity. The brain centers’ interaction gives rise to a sophisticated structure. In

Pacrat, individual neurons are not simulated, but codons, the activities of assemblages of

neurons, are.

Pacrat’s universe can be represented by a grid. Pacrat has the abilit y to move

around this universe through four motor neurons driven by the isocortex’s motor area.

Pacrat’s moves are based on the sensory input and the prevaili ng emotion. In addition,

Pacrat feels hunger. The activity of the hunger center is tied to the contractions and

expansions of the stomach. As the stomach empties, the hypothalamus’ hunger center

becomes more active. Pacrat also feels anger and frustration, which are inhibited by

eating.

Pacrat experiences agoraphobia, the fear of open places, when his back is

uncovered. This fear is determined by the level of activity in the cingulate gyrus. Pacrat

has curiosity, which arises when codons in the isocortex that have not previously been

excited become activated. Pacrat has habituation, as curiosity fades due to continuous

excitement of codons in the isocortex. Pacrat contains location sense as each location has

a different sensory neuron which becomes active in that location. When Pacrat is first

started, he does not know where one location is in relation to another. He does know

where he is, and he has an aversion to returning to where he’s already been.

Pacrat can move all four cardinal directions within the boundaries of his universe.

Pacrat is motivated by fear and hunger. Food is placed randomly in Pacrat’s universe in

three locations. Pacrat gets angry when food is not where it is expected. Pacrat also

17

sleeps, due to his reticular ascending substance becoming less active, and awakens when

hungry enough. Pacrat also contains a reward-punishment mechanism. When food is

found, this reward mechanism drives the learning of preferred direction of movement

when similar codons are active in the future. Pacrat’s fear is masked by hunger, and,

therefore, drives Pacrat when hunger is satisfied. Fear drives Pacrat back to his burrow.

When Pacrat’s burrow is reached, his back is covered, and once again the reward

mechanism is activated to drive learning. Pacrat’s learning is for survival.

Randomness forces Pacrat out of obsessive behavior patterns. His amygdala

mediates anger. Pacrat performs three forms of thinking. First, he evaluates the

consequences of his last moves. Second, Pacrat performs recognition when he moves to

an area of interest. Finally, Pacrat has insight, “ the basic mechanism of rational thought,”

(Johnson & Scanlon, 1987) when he finds more efficient paths to food.

Software Reuse

What Is Software Reuse?

Software reuse is the use of existing software to create new software instead of building

the new system from scratch (Krueger, 1992). Reuse involves using both previously

defined higher-level concepts such as ideas and knowledge and lower-level specific

components such as objects in new situations. The software reuse process is commonly

thought to involve three steps (Prieto-Dias & Freeman, 1987):

18

1. Accessing and choosing a reusable artifact.

2. Understanding and adapting the artifact to the application’s purpose.

3. Integrating the artifact into the product currently being developed.

Portions which can be reused include design structures, documentation such as

manuals and specifications, and source code. Reuse involves both black-box techniques,

utili zing a component as is, and white box techniques or code scavenging. White box

reuse occurs when existing components are modified to fit the needs of a new system.

Adaptation is much more common than straight reuse as available components usually do

not match the desired functionality.

Reuse Is Often Not Standard Practice

Software reuse is often not standard practice in software development organizations.

Reuse is diff icult as abstractions for large and complex systems are typically complicated.

It is often diff icult for developers to learn these abstractions. Research has shown that a

reuser’s skill i s important in determining their levels of reuse. Many developers are not

trained in reuse, and those with training are often not pressed to practice it. This is often

the case in the profit-driven corporate setting, where implementing an effective reuse

mechanism has a high initial investment (Kaspersen, 1994). This investment takes

several forms including new training for existing personnel, the establishment of reuse

repositories and hiring of maintainers for them, and an incentive program for establishing

reuse. In addition, an organizational-wide classification scheme is often needed. For

reuse to be attractive, the effort to use existing code must be less than the effort needed to

19

write new code, which is often not the case. For example, without an adequate

classification scheme, reuse becomes less attractive as it is diff icult to distinguish

between similar items.

The Motivations for Software Reuse

Reuse techniques have been gaining momentum as they have potential to significantly

reduce development costs, maintenance costs, and unrealizable schedules. Software reuse

has repeatedly been suggested as a means for successfully combating the software crisis:

the problem of building reasonably costing but large and reliable software systems

(Mellor & Johnson, 1997). Reusabilit y is widely believed to be a key to improving

software development quality (Biggerstaff & Richter, 1987). Reuse results in a

completed systems’ containing fewer total symbols with less time having been spent on

the symbols’ organization. Therefore, in a sense, reuse enhances software developers’

capabiliti es, and most developers prefer to reuse than write code from scratch when given

the option (Frakes & Fox, 1995).

According to Biggerstaff and Richter, a good reuse system addresses four

problems:

1. The abilit y for developers to be able to find necessary components, both exact

and similar matching ones.

2. A means for easily understanding the components. This is particularly key

when components need modification.

20

3. A method by which components can be modified in order to apply them to

new domains.

4. A way to appropriately document newly composed components. This

representation should ill ustrate the composed components both as independent

entities as well as showing how they can be modified to fit new domains.

Using common object-oriented development with standard tools, reuse has been

found to significantly reduce both defect density and rework while significantly

increasing productivity (Basili , Briand, & Melo, 1996). This ill ustrates the potential to

decrease software development costs and cycle time as human time and effort are reduced

in software construction. For black-box modifications, there appears to be no observable

difference between verbatim used and slightly-modified code. For white-box reuse

techniques, reuse has been shown to decrease rework, especially for experienced

developers, even when extensive code modification is required.

How Does Reuse Work?

Software reuse involves four dimensions:

1. Abstraction is the central feature of software reuse. Abstraction allows for a

succinct description of an item, highlighting the important information while

leaving out what is unimportant. A common example of an abstraction

technique are object-oriented languages’ class definitions. These languages’

provision for inheritance also allow for a reuse class hierarchy. These subtype

hierarchies are helpful in finding reusable items.

21

2. Selection provides classification schemes for organization and the finding of

reusable artifacts. Selection works well when the representation is clear on

what the artifact does. To be effective, the classification schemes must allow

developers to find components faster than write them.

3. Specialization allows developers to modify general components to fit their

specific needs.

4. Integration allows developers to combine their specialized components into a

new software system.

There are many techniques which when utili zed help foster software reuse. Some

of the main techniques are the use of architectural styles, design patterns, and objects.

What are Architectural Styles?

Research has ill ustrated that design reuse does have several advantages over simple code

reuse (Johnson, 1997). Design reuse is common as it can be applied to many contexts. In

addition, as has been the case in the development of “conscious” software agents, the

design process can be applied earlier in the development process, and, thereby having a

larger impact on the project. Also, true to form with “conscious” software agent

development, most design reuse is informal and happens with experienced developers.

Design reuse allows for open systems, and it allows the “Conscious” Software Research

Group’s developers to share a common vision.

Architectural styles are a form of design reuse. Architectural styles provide a

collection of constraints, building-block design elements, and rules for composing a

22

system (Monroe, Kompanek, Melton, & Garlan, 1997). There are several benefits to

architectural style usage. For example, routine solutions with well -understood properties

can be reapplied to new problems with confidence, potentially leading to significant code

reuse. In addition, architectural styles can be applied to a broad range of problems, such

as the different domains for “conscious” software agents.

Each architectural style has its own notation, or specialized design language,

describing:

• The structural and semantic properties of systems falling within the style.

• A common vocabulary such as “blackboard system,” “c lient-server system,”

and “database.” A semantic interpretation is also provided so that the

composition design elements have well defined meanings.

• The patterns of interaction of systems built within the style. These design

rules (constraints) determine which design element compositions are

permitted. For example, all “conscious” software agents’ processes have

access to a single blackboard.

• Analyses that can be performed on systems built in the style.

What Are Frameworks?

Frameworks are often not well understood and misused outside the object-oriented

community. Frameworks are reusable designs of all or part of systems. They are

commonly represented by a set of abstract classes and the way these classes’ instances

interact. A framework’s purpose is to provide an application skeleton that can be

23

customized by developers. Framework’s are powerful as they can significantly reduce the

amount of effort necessary to develop customized applications, thereby saving

organizations time and money.

Frameworks are a form of design reuse as they express reusable designs. They are

at a lower level than architectural styles as they are more concrete. In fact, frameworks

are actual programs, and, therefore, users of frameworks are often tied to a programming

language. Because of this, frameworks are more closely tied to their domain than

architectural styles. Therefore, successful frameworks must be consistent throughout

more so than architectural styles. Since frameworks are programs, they are often easier

for programmers to learn and apply than architectural styles. This occurs partially

because only a compiler is needed, not special design notation or software tools often

utilized when creating architectural styles.

When using frameworks, developers often think they are just using an

object-oriented language’s class library. However, frameworks are different than class

libraries as frameworks reuse high-level design. With frameworks, there is more to learn

before classes can be reused. For example, a set of classes must typically be learned at

once, and classes are not reused in isolation. A framework can usually be distinguished

from a class library if there are dependencies among components and developers learning

the library comment on its complexity. Because of this complexity, frameworks require

quality documentation. Even with the diff iculty which comes in learning a framework,

expert developers normally prefer frameworks over special-purpose languages as they are

easier to extend.

24

What Are Components?

Components are actual working code portions and are designed for reuse. Ideally,

components should be easy to learn. Often, with black-box reuse, developers do not need

to learn how components are implemented. Components are simply connected to create a

new system. By using existing components, more reliable systems are usually created

and are, therefore, easier to maintain. As components increase in generality, the payoff

for use in narrow focused domains diminishes. On the flipside, with component growth,

the payoff when reusing the component increases more than linearly due to the

complexity costs. Larger components, however, often become more specific which

increases the costs when modification is required.

Frameworks and Components

Frameworks are intertwined with components, and they are cooperating technologies.

Frameworks make it easier to develop new components. For example, frameworks

provide a standard way for components to do data exchange, error handling, and invoke

operations on other components. In other words, frameworks allow components to make

assumptions about their environment, making component integration easier. Frameworks

provide specifications and templates for new components and allow new components to

be built out of smaller components. Frameworks can actually be viewed as components

in the sense that applications might use several components, and vendors sell them as

products. As a whole, frameworks are more customizable than components and have

more complex interfaces, again highlighting the difficulty of learning a framework.

25

What Are Design Patterns?

Frameworks are composed of micro-architectural elements called design patterns. Design

patterns describe solutions to recurring problems and a context for which the solution

works. They include the solution’s costs and benefits. Design patterns represent the

common idioms found repeatedly in software designs and makes them codified, explicit,

and applicable to similar problems. Patterns emphasis is placed on documentation and

literary style rather than code generation or tools. Design patterns are useful as a

documentation tool for classification of design fragments, making it easier for a

development team to add new members (Cline, 1996). Design patterns provide a

standard vocabulary for developers. They communicate information between designers,

programmers, and maintenance programmers at a significantly higher level than

individual classes. They provide a list of items to look for in a design review.

Maintenance programmers are less likely to break existing code when they understand

and work to preserve the integrity of design patterns during maintenance changes.

Patterns are particularly useful for building robust designs in situations where the

trade-offs are well understood. When specifying and reusing design patterns, there are

three fundamental requirements to be followed. First, the design domain must be well

understood. Second, the patterns must support the encapsulation of design elements.

Finally, the design patterns must be responsible for a collection of well -known and

proven design idioms.

26

Conclusions

This chapter described agents, computational models, and software reuse. Software reuse

is relied upon heavily to create ConAg as a reusable framework based on an architectural

style for “conscious” software agents. “Conscious” software agents are cognitive agents

that implement Bernard Baars’ global workspace theory. This theory’s description is a

major portion of chapter 3.

27

Chapter 3
Setting The Stage

Introduction

This chapter discusses Virtual Mattie (VMattie) (Song, 1998; Zhang, Franklin, Olde,

Wan, & Graesser, 1998) and global workspace theory (Baars, 1997). VMattie is a

software agent containing many of the building blocks necessary for agents implementing

global workspace theory. While VMattie is not a “conscious” agent, she directly

preceded CMattie, the first “conscious” software agent. “Conscious” software agents

significantly extend VMattie’s design and, they implement global workspace theory. This

chapter, therefore, sets the stage for a description of “conscious” software agents.

VMattie

Introduction

VMattie is an intelli gent autonomous agent. She functions in a clerical role. Specifically,

she coordinates departmental seminar information, carrying out a role originally

performed by the department’s former secretary, Mattie. The agent was developed by

Stan Franklin and the “conscious” software research group and programmed by Honjung

Song, Zhaohua Zhang, and Aregahegn Negatu. She is implemented in Java.

28

This section first discusses VMattie’s job description. Next, the reasons why

VMattie can be considered an autonomous agent are addressed. The agent’s architecture

is then presented. Finally, testing results are given, and conclusions are drawn with

mention of how this agent can be improved.

VMattie’s Job Description

VMattie is an unsupervised agent. She functions to announce the University of

Memphis’ Department of Mathematical Sciences’ weekly seminars. VMattie

communicates completely via email . Below is a discussion of the different tasks

performed by the agent.

VMattie gathers seminar information from seminar organizers. She accepts email

from organizers about their upcoming seminars. Since there is no predetermined format

which the organizer’s email messages must take, VMattie has natural language processing

abilit y (Zhang, Franklin, Olde, Wan, & Graesser, 1998). The agent generates and sends

acknowledgments to emailers for every incoming message.

VMattie composes the upcoming week’s seminar announcement. She composes

messages stating she has incomplete information. She also writes messages saying a

received message was not understood.

VMattie emails the composed seminar announcements to a recipient’s list at a

specified time. To do this, the agent maintains a list of people who receive the weekly

seminar announcements. Therefore, VMattie accepts incoming email for requests to

join and leave the seminar list.

29

VMattie As An Autonomous Agent

Based on Franklin and Graesser’s definition of an autonomous agent (1997), described in

chapter 2, VMattie has many properties which enable her to be an autonomous agent.

• Her environment is the UNIX operating system.

• The agent’s niche is the maintenance of seminar announcements.

• VMattie can sense incoming email . The degree to which she actively understands

these messages corresponds to different perceptual levels. She also is aware of dates.

• The agent’s multiple drives are diverse and explicitly represented.

• VMattie has a distinctive action selection mechanism, known as the behavior

network, which is not controlled by a central executive.

VMattie’s Architecture

Figure 3.1 ill ustrates VMattie’s architectural components. VMattie’s architecture is an

original high-level agent architecture. The architecture is largely based on the behavior

networks developed by Pattie Maes (Maes, 1990) and the model of perception found in

Hofstadter and Mitchell ’s Copycat project (Hofstadter & Mitchell , 1994). Both

architectures have been modified and significantly extended for VMattie.

30

Figure 3.1: VMattie’s Architecture
(Bogner, 1998)

Drives

The drives portion of the architecture is based on Maes’ goals. The agent’s drives

correspond to her tasks found in the above Job Description section. All of VMattie’s

drives are built i nto the agent. These drives can operate in parallel. Some drives vary in

urgency. For example, the urgency level for sending out a seminar announcement may be

higher as it gets closer to the time to send the announcement. This varying in the level of

urgency is an addition to Maes’ original work. Each drive activates behaviors which

work to fulfill the drive.

31

Behavior Network

The behavior network is composed of behaviors whose role is to fulfill t he drives.

Behaviors in VMattie’s architecture correspond to Maes’ competencies. Behaviors have

an activation level. In general, this activation level is affected by the drives, the agent’s

internal conditions, and the perception registers. The perception registers serve as the

behavior network’s environmental inputs. Behaviors have preconditions that must be

met. For example, a behavior’s preconditions might be fulfill ed if an organizer’s email

message contains specific items of information. A behavior’s activation level increases

as more of its preconditions are met.

A behavior’s activation level is spread to other behaviors. Broadly speaking, its

activation spreads to three locations. A behavior’s activation is spread to those behaviors

which can fulfill t his behavior’s unmet preconditions. Also, the behavior’s activation is

spread to the behaviors whose preconditions can be fill ed by this behavior. Third, the

specific behavior sends inhibition, causing a reduction in activation level, to all behaviors

which can remove one of its currently met preconditions. Due to the way behaviors

spread forward and backward activation, each behavior can be thought to be a part of a

behavior stream. If a behavior has a high enough activation level and all of its

preconditions are met, it has the potential to become active. Only one behavior in a

behavior stream can be active at a time. The active behavior is determined by choosing

the executable behavior in the behavior stream with the highest activation level above a

32

threshold level. Each behavior stream can also be thought of as a plan, created and

executed without the building of a search tree.

As a behavior’s activation spreads, it diminishes in strength. Also, activation

level continually decays at a slow rate. Once a behavior performs its function, its

activation level returns to zero. The behavior network is tunable through global

parameters.

Perception

VMattie’s sensory data are the incoming email messages she receives. Perception for the

agent occurs by her comprehending these email messages. VMattie contains three

perceptual components: the input processing knowledge, the input processing workspace,

and the perception registers.

Input Processing Knowledge (Slipnet)

VMattie’s input processing knowledge, also known as the slipnet as it is based on

Copycat’s slipnet, contains the knowledge needed to understand incoming email

messages. Two years worth of email messages to the department secretary were studied

in order to generate the knowledge utili zed by VMattie’s slipnet. Items in the input

processing knowledge include the message type, ways to identify the different portions of

email messages such as the name of the seminar and speaker, and the abbreviation of

words. A common case of abbreviation found in departmental email i s seen in the

writing of building names, such as Dunn Hall being abbreviated DH, D.H., or D. Hall .

33

Another common example is in the days of the week, where Thursday can be abbreviated

Thu, Thurs, Th, etc.

VMattie’s input processing knowledge contains knowledge of nine message types.

Examples of message types include messages declaring the establishment of a new

seminar and messages stating the upcoming speaker and topic for a seminar. VMattie

uses surface level natural language processing in conjunction with a feed-forward neural

network to determine an email ’s message type. The highest output value from the neural

network is taken to be the candidate message type. If the output of the neural network is

inconclusive, VMattie sends back an acknowledgment saying the message was not

understood.

Input Processing Workspace (A Working Memory)

Sometime after a candidate message type is determined, a message template of this type is

placed in the input processing workspace. Codelets, described below, work to fill t he

template’s fields. Similar to Copycat, as mandatory fields in the template are fill ed, the

temperature, representing the proximity to completeness, falls. If the temperature falls

low enough a message is considered understood. However, if a certain number of

mandatory fields remain empty after the codelets have completed their tasks, the next

highest output of the neural network is tried as the appropriate message type. For safety

in the event a message is classified incorrectly, VMattie acknowledges every message. If

the acknowledgment conveys an incorrect understanding of the message, the seminar

organizer can send a reworded message.

34

Perception Registers

Once a message template has been fill ed, its contents are moved to the perception

registers, and the perception module can begin working to understand another message.

The perception registers are similar to a blackboard. Information which is placed in the

perception registers is available for utili zation by VMattie’s other modules such as the

message composition component described below.

Codelets

Each codelet can be thought of as a small distinct agent designed to perform one task. The

term codelet originated with Copycat. VMattie’s codelets correspond to global

workspace theory’s processes, described later in this chapter. VMattie’s behavior

network and perceptual module, both described above, are largely implemented via

codelets. For example, one codelet’s task in the slipnet is to fill a message template’s

speaker name field. Codelets perform the vast majority of VMattie’s actions.

Most codelets serve to implement a behavior or a portion of the Slipnet.

However, primitive codelets also exist. A primitive codelet does not serve the behavior

network or slipnet. Instead, it functions independently to perform housekeeping

functions. For example, a primitive codelet might poll for an incoming email message

addressed to VMattie.

35

Tracking Memory

Tracking memory contains the information utili zed in composing outgoing email

messages. Tracking memory contains the default information on seminars, such as the

day of the week each one occurs. It saves the current seminar announcement maili ng list.

Both the seminar and maili ng list information are updated via codelets attached to

behaviors. Tracking memory also stores the templates for different types of outgoing

messages. The corpus of email messages collected for two years contributed to the

building of tracking memory.

Composition Workspace (A Working Memory)

All outgoing messages are composed in the composition workspace. Message

composition consists of f illi ng the fields of an outgoing message template. The

information used to fill t he template fields comes from the tracking memory and the

perception registers. There is always a copy of the current seminar announcement being

generated in the composition workspace. As new information arrives in the perception

registers and tracking memory, the template fields are fill ed. When a seminar is

announcement is mailed, a new default announcement template is placed in the

composition workspace.

Mail Input and Output

VMattie’s mail i nput and output portion deals with the actual receipt of incoming email

messages and the sending of outgoing ones. Incoming email messages are first received

36

by the mail i nput portion. Messages are moved from here to the perception module.

Once an outgoing message is fully composed, it can be moved to the mail output portion.

Mail output hands off the outgoing message to the operating system.

Results and Limitations

VMattie is able to accurately perform her duties. She was tested over a period of four

weeks, with tests designed to simulate real world settings. During testing, she received

55 messages comprised of 10 message types. The majority of messages received fell i nto

the categories of add to maili ng list, seminar conclusion, seminar initiation, and a

speaker’s presentation of a topic (speaker-topic). She received 5 messages which were

irrelevant to her domain.

VMattie was able to correctly fill all of the perception registers for 96.4% of the

messages she received. She chose the date of seminar and title of talk incorrectly for only

two speaker-topic messages as two words were collapsed together without a space in the

incoming messages. Even with this misperception, she correctly composed

acknowledgment messages and sent them to the senders of each received message.

The behavior network used this perceived information to generate seminar

announcements. VMattie was 100% accurate in generating and sending out the seminar

announcements. This included correctly recovering missing information from her

tracking memory for default values with full accuracy. VMattie was able to correctly

change her maili ng list upon receipt of add to maili ng list and remove from maili ng list

messages.

37

VMattie sent 7 reminder messages to seminar organizers on time during this testing.

She received 5 replies to her reminders before the seminar announcement distribution

date. She correctly inserted “TBA” for the remaining 2 instances in the seminar

announcements.

To effectively coordinate departmental seminars, VMattie’s job description needs

expansion. The agent cannot accurately handle an incoming message containing two

message types. She cannot deal with one time events such as a colloquium. VMattie

does not perform any learning. Learning is very useful in several areas, such as learning

new message types and new behaviors.

Global Workspace Theory

Introduction

This section describes Bernard Baars’ global workspace theory. Global workspace theory

is a cognitive science model of human consciousness. It also discusses other cognitive

processes such as action selection and learning. This chapter focuses on consciousness.

It first gives the operational definition of consciousness and describes its functions. The

components of global workspace theory are discussed, followed by a presentation on how

the theory works. Finally, a detailed example is used to trace through the theory.

Global workspace theory is a significant step towards a concrete description of

human consciousness. Its computer science implications will be examined throughout the

remainder of this work.

38

Consciousness

Baars states that throughout human history, consciousness has been extremely diff icult to

define. He states, “Even today, more and more nonsense is spoken of consciousness,

probably, than of any other aspect of human functioning” (Baars, 1988, p. 4). According

to Baars, consciousness, while it can be inferred from reliable evidence, is a theoretical

construct. Consciousness, therefore, is defined in terms of what makes up the human

conscious experience. A two-part definition is necessary to define what it means to be

conscious of an event. The first part states that a person is defined to be conscious of an

event if the person states that they were conscious of it immediately after the event

occurs. Events may be conscious for only hundreds of milli seconds. The second portion

says that the experiencer’s report must be able to be independently verified.

The reader may now be wondering how this psychological definition ties into a

software agent implementation. As seen in later chapters, it contains two main

implications. First, “consciousness” will contain elements which relate to events.

Second, elements may be “conscious” in the agent for an extremely short period of time.

Functions of Consciousness

Baars states that consciousness has nine major functions. The reader will encounter these

functions again in chapter 7 when it is shown how ConAg’s implementation of

“consciousness” fulfill s these functions. The first function is Definition and

Context-setting. An example of this occurs when one focuses on a distant tree in a forest.

While multiple visual stimuli are present, a coherent image is able to be retrieved. The

39

second function is Adaptation and Learning. For example, extremely diff icult material is

often pondered for a great deal of time when attempting to learn it. The third function is

Editing, Flagging, and Debugging. This is evident in biofeedback training, where persons

use flagging in order to gain conscious voluntary control over usually unconscious

systems. Fourth is the Recruiting and Control function. An example of this function’s

use occurs when attempting to answer a question. While one is conscious of a question,

the candidate answers to that question are recruited unconsciously and brought to

consciousness. The fifth function is Prioriti zing and Access-control. This occurs when

learning a foreign language. One may wish to prioriti ze words which are diff icult to

pronounce. The Decision-making or Executive function is useful in controlli ng thought

and action. A decision-making question is “Should I go to the mall or to the park?” The

Analogy-forming function occurs when people make analogies to compare a novel

experience to known ones. An example of this is “Hate is the wrong road to travel.” The

eighth function is the Metacognitive or Self-monitoring function. One example of this is

humans’ abilit y to pinpoint and express their current feelings. The final function is

Autoprogramming and Self-maintenance. This can be seen in the desire to exercise and

eat properly in order to keep the body healthy.

The Components of Global Workspace Theory

Global workspace theory is an attempt to integrate the large amount of information about

consciousness into one model. To comprehend the theory, its underlying components

must first be understood.

40

Processes and Coalitions

Global workspace theory states as a premise that the nervous system is composed of

processes. Each process is autonomous and has a narrow focus. It is very eff icient,

works at high speeds, and makes very few errors. Each process can act in parallel to

others. This allows for the creation of a high capacity system such as the central nervous

system. In “conscious” software agents, as in VMattie, processes are called codelets,

taken from the Copycat architecture (Hofstadter & Mitchell , 1994) which inspires much

of these agents’ perception apparatuses (Bogner, Ramamurthy, & Franklin, in press

1999).

A coaliti on is a set of processes which work together to perform a specific task.

For example, it takes numerous processes for breathing to take place. Coaliti ons are

recursive in nature. For example, a coaliti on may be composed of several coaliti ons. A

process may be a member of more than one coaliti on. Coaliti ons normally perform

routine actions. However, coaliti ons may also perform duties relating to ambiguous,

conflicting, or novel events for the system. These coaliti ons have the potential for

entering consciousness. Baars states that coaliti ons may have an activation level. When

performing routine actions, a coaliti on’s activation level is low. Coaliti ons performing

more uncommon tasks have a higher activation level. A higher activation level gives a

coaliti on a greater chance to enter consciousness. Baars is careful to point out that a high

activation level may be a necessary but possibly not a suff icient condition for a coaliti on

to enter consciousness. As seen later in ConAg, this holds true.

41

Contexts

Contexts are relatively stable coaliti ons of processes which affect consciousness.

Contexts are normally unconscious. Therefore, contexts are not usually experienced

directly. Contexts interact rapidly with what is occurring in consciousness. One example

of a context is found in a collegiate classroom. Both students and faculty know that a

certain classroom behavior is expected in an engineering class, while not always being

conscious of it. This example ill ustrates cultural context, a main context according to

Baars. Perceptual, conceptual, and goal contexts are the three other main contexts. In

“conscious” software agents, the current goal context corresponds to the agents’ current

behavior. Contexts provide an underlying level of stabilit y. In the above classroom

example, if the professor began singing during class, the students would quickly become

conscious of the fact that the professor was exhibiting abnormal behavior. The

professor’s behavior went against the prevaili ng cultural context. In this sense, contexts

allow for novel events to become conscious. New contexts can be learned, allowing for

reality to be perceived in a further enhanced way.

The Global Workspace

The crux of the theory’s architecture is the global workspace. The global workspace is

intended to implement consciousness. The global workspace is a working memory which

gives a central location for one coaliti on to interact with the system’s other processes.

Therefore, the global workspace can be considered analogous to a classroom blackboard.

The next section discuses how this information exchange works and what information

42

this exchange provides. As seen later, ConAg’s attention package implements the global

workspace.

How Global Workspace Theory Works

Global workspace theory can be compared to a theater’s stage. In a theater, a spotlight is

often used to focus the audience’s attention. The spotlight roams around the stage, and

there is normally only one person in the spotlight at a time. A person is usually in the

spotlight when they are performing new actions. More is usually occurring in the

production than what is currently in the spotlight. This global workspace theory theater is

an interactive one. When members of the audience see something in the spotlight they

can relate to, they begin acting. These members may join the actors in the spotlight, or

they may begin acting outside the audience’s main focus.

In global workspace theory, consciousness is the spotlight which roams over the

active unconscious processes. This spotlight shines on coaliti ons attempting to solve

diff icult problems. It shines on coaliti ons performing tasks relating to ambiguous and

conflicting items. It also focuses on coaliti ons dealing with novel situations. Many

unconscious coaliti ons and processes are working even while a particular coaliti on is in

consciousness. In ConAg, the spotlight controller serves as this attentional focus

mechanism.

The audience is the unconscious processes not on the stage. When coaliti ons

enter consciousness, they broadcast information to all processes. Some audience

members which understand this information become active and perform their specific

43

functions. These processes, therefore, potentially contribute to the work of the conscious

coalition.

The spotlight can shine on only one coaliti on at a time. Baars states that humans

must think of two alternatives one after the other; they cannot be addressed at the same

time. Due to its serial nature, consciousness is a much smaller capacity system compared

to the large capacity system created by the numerous unconscious processes acting in

parallel.

Overall Steps In Global Workspace Theory

Figure 3.2 shows an ill ustration of global workspace theory (Baars, 1988). It is important

for the computer scientist to remember that global workspace theory is a high level

model. To understand the theory, it is helpful to think of processes going through five

stages. These are:

1. Unconscious processes, each working towards achieving a portion of an

overall goal, form a coaliti on. Unconscious processes working on ambiguous,

conflicting, or novel information have a greater chance of entering

consciousness.

2. Coalitions compete for access into the global workspace.

3. The coaliti on which enters consciousness broadcasts information to all

unconscious processes. This broadcast allows the conscious coaliti on to

recruit other processes which can contribute to the conscious coalition’s tasks.

44

4. All unconscious processes will receive the broadcast message. However, only

certain ones will be able to understand its contents.

5. The processes which understand the message and which need to take action do

so.

This five step process is implemented in ConAg.

Figure 3.2: Global Workspace Theory
(Bogner, 1998)

45

An Example To Illustrate Global Workspace Theory

Tracing through an example helps in understanding global workspace theory. Patricia is a

fourth year piano major who began playing the instrument her first collegiate year. At

this point Patricia is well accomplished, but does not yet have a maestro’s skill . She is

currently performing the fifth piece of her memorized ten piece recital, and has so far

faced no problems in her performance.

By this point in the recital, Patricia is relatively relaxed. She is playing habitually.

While she is conscious of what she is hearing, she basically is letting her hands move

themselves through this piece’s long runs. Suddenly, however, in the quiet auditorium,

Patricia hears the loud, sharp bark of a dog. This causes her to slightly lose concentration

and hit two wrong notes. Patricia, with no recollection of where her fingers are to go

next, jumps to a later portion of the piece where she continues to play. Only the keenest

audience members know there was something in her playing out of place.

This example illustrates numerous aspects of global workspace theory:

• With her long hours of practicing, Patricia’s abilit y to play her current piece

has become habitual. Unconscious processes are controlli ng her finger and

pedal movement. Patricia is mainly focusing on each note she hears. In this

case, the components involved in li stening to the piano notes form one or

more conscious coalitions.

• The dog’s loud bark introduces a new, unexpected, and potentially dangerous

event. A coaliti on of processes involved in determining the presence of

46

danger forms. This coaliti on may have a process to determine a sound’s

volume, another to determine a sound’s pitch, another to determine the

direction a sound is coming from, another which detects novel sounds, etc.

This coaliti on, having a very high activation level relative to the piano notes,

gains access to consciousness. It then broadcasts information. This

information is received by the unconscious processes. Visual and auditory

processes which can help determine if there is any immediate danger respond.

• Patricia, however, rapidly realizes that there is no immediate risk and she is in

front of an audience. In this case, a new coaliti on arises into consciousness.

This one’s goal is to get her back on track in her piece. To do this, this

coaliti on broadcasts asking for help. Processes in auditory, memory, and

visual retrieval respond. Those processes containing the solution gain a high

enough activation to reach consciousness.

• While in the short term thoughts of the dog and the crowd’s response come in

and out of consciousness due to their remaining high activation level, as their

activation falls Patricia relaxes into her practiced habitual playing mode.

Conclusions

Humans utili ze consciousness extensively. Global workspace theory provides a

high-level model describing human consciousness. It provides a means of cooperation

for coalitions. This fosters conflict resolution, learning, and perceptual clarification.

47

VMattie’s modules provide an agent implemented by combining and extending

several recent artificial intelli gent mechanisms. The agent implements several portions of

Baars’ global workspace theory. This correspondence will be discussed in chapter 7. The

next chapter includes a presentation of CMattie, the successor to VMattie which is

designed under the framework of global workspace theory.

48

Chapter 4
“Conscious” Software Agents

Introduction

For the past several years, the “conscious” software research group has been developing

“conscious” software agents. “Conscious” software agents are cognitive agents (see

chapter 2) that integrate numerous artificial intelli gence mechanisms to implement global

workspace theory (see chapter 3). “Conscious” software agents are designed to be

“smarter” software. These agents can range in functionality, from academic seminar

organizers (Bogner, Ramamurthy, and Franklin, in press 1999), to navy detailers

responsible for naval personnel placement (Franklin, Kelemen, & McCauley, 1998), to

personal travel agents. From the onset, and continually more so as development

progresses, it is clear that these agents are extremely complex and time-consuming to

develop and implement. This chapter first describes “conscious” software agents’

architectural style and a general architecture for them (Bogner, Maletic, & Franklin, in

press 1999). “Conscious” Mattie (CMattie), the first “conscious” software agent, is

described in depth (Franklin, submitted). IDA, the “conscious” software research group’s

proof of concept project, is then presented (Franklin, Kelemen, & McCauley, 1998). Left

for the next chapter is a description of these agents’ “consciousness” mechanism.

49

“Conscious” Software Agent’s Architectural Style

Action Selection Paradigm of Mind

As described in chapter 2, research has shown that design reuse has many advantages

(Johnson, 1997). “Conscious” software agents are designed following the action

selection paradigm of mind, a design philosophy providing principles for cognitive agent

architectures (Franklin, 1995; Franklin, 1997). The action selection paradigm states that

minds are autonomous agents’ control structures. Minds’ task is to produce the next

action. Minds should be viewed as continuous instead of boolean. Sensations, such as

perception, are operated on by minds to create information for their own use. A multitude

of disparate mechanisms enable minds, and there is littl e communication between them.

Minds and action selection are limited to autonomous agents. Agents are situated in

environments, and agents’ actions are selected in the service of drives. Prior information

(memories) are re-created to help produce actions. Cognitive functions such as

categorizing, inferencing, planning, recalli ng, recognizing, and sensing all serve to help

determine what to do next.

Global Workspace Theory Recap

“Conscious” software agents also fall under Baars’ global workspace theory (see chapter

3). Particularly important from the theory is that the system is comprised of numerous

small processes, known as codelets (Hofstadter & Mitchell , 1994) in “conscious”

software agents. Some of these codelets form coaliti ons and compete for consciousness.

50

When a coaliti on reaches consciousness, its information is broadcast to the entire system.

Becoming conscious is suff icient for learning. Processes act under the auspices of

contexts: conceptual contexts, cultural contexts, goal contexts, and perceptual contexts.

Each context is a coalition of processes.

Pandemonium Theory

Also key to these agents’ design is Jackson’s (1987) pandemonium theory, which extends

Selfridge’s (1959) original work. Pandemonium theory’s components interact like people

in a sports arena. Both the fans and players are known as demons. Demons can cause

external actions, they can act on other internal demons, and they are involved in

perception. The vast majority of demons are the audience in the stands. There are a

small number of demons on the playing field. These demons are attempting to excite the

fans. Audience members respond in varying degrees to these attempts to excite them,

with the more excited fans yelli ng louder. The loudest fan goes down on the playing field

and joins the players, perhaps causing one of the players to return to the stands. The

louder fans are those who are most closely linked to the players. There are initial li nks in

the system. Links are created and strengthened by the amount of time demons spend

together on the playing field and by the system’s overall motivational level at the time.

The Architectural Style

As described in chapter 2, architectural styles provide a collection of building-block

design elements that can be applied over a broad range of problems. A common example

of an architectural style is a blackboard system. Figure 4.1 ill ustrates “conscious”

51

software agents’ high level architectural style, comprised of many cognitive features from

the action selection paradigm.

Beginning at the bottom, figure 4.1 depicts “conscious” software agents’

numerous cognitive mechanisms, such as behaviors and perception. These mechanisms

are in reality driven by the small single-task codelets corresponding to global workspace

theory’s processes and pandemonium theory’s demons. The attention manager gathers

the necessary information from the codelets and chooses the appropriate ones for

“consciousness.” It updates the short-term memory blackboard with the “conscious”

codelets’ information and sends these codelets’ information to all of the cognitive

modules.

Figure 4.1: Architectural Style For “Conscious” Software Agents
(Bogner, Maletic, & Franklin, In Press 1999)

52

Figure 4.2: An Architecture For “Conscious” Software Agents
(Bogner, Maletic, & Franklin, In Press 1999)

The General Architecture

High Level Cognitive Modules

By extrapolating this architectural style at a lower level, figure 4.2 ill ustrates the

particular architecture that is used in “conscious” software agents. Described in chapter

6, this architecture forms the basis for the ConAg framework. Items specifically dealing

with “conscious” software agents’ “consciousness” are circled.

In this architecture, codelets comprise emotions (McCauley & Franklin, 1998),

behaviors (Maes, 1990; Song, 1998), metacognition (Zhang & Franklin, 1998),

53

perception (Ramamurthy, Bogner, & Franklin, 1998; Zhang, Franklin, Olde, Wan, &

Graesser, 1998), and portions of “consciousness” (Bogner, Ramamurthy, & Franklin,

1999). Emotion codelets are dispersed throughout “conscious” software agents, looking

for situations which will i nfluence the systems’ overall emotional state. Systems’

emotional states are a composite of several emotions, such as happiness, sadness, anger,

and fear. Behaviors serve to perform the systems’ major actions. For example, for agents

which communicate via email , a behavior might be to compose a reply to an email .

Drives are built i nto “conscious” software agents, and they operate in parallel. Drives

activate behaviors, and behaviors work to fulfill t hem. Perception varies depending on

the domain; it can range from receiving voice in tutoring systems to natural language

email messages in department seminar organizers.

The focus is the location where perceptual information is created for the agents’

own use. Here this perceptual information is associated with emotions and memories.

“Conscious” software agents contain numerous memories, including associative

(Kanerva, 1988), episodic (Kolodner, 1993), short-term memory associated with what has

become “conscious,” and numerous working memories. Metacognition keeps track of

agents’ internal conditions. If necessary, it can influence the behaviors, perception,

learning, and where the spotlight of “consciousness” shines. For example, metacognition

can make the agent more goal-oriented or opportunistic, and cause voluntary attention by

influencing the chances that a coaliti on of codelets will make it to “consciousness.”

Learning takes many forms in these agents such as the abilit y to learn new behaviors.

The primary responsibilit y of “consciousness” codelets are to bring novel or conflicting

54

information to “consciousness” (Bogner, Ramamurthy, & Franklin, 1999). This includes

new perceptual information. It also includes conflicts between what is perceived and

what is remembered, and conflicts in the potential communication output of the agents.

Low Level Codelets

All codelets have activation levels corresponding to how important they perceive

their action to currently be. When appropriate, these activation levels are also directly

associated with the higher level concept the codelet serves, such as a behavior currently

being executed. Codelets also contain associations with other codelets, corresponding to

the links of pandemonium theory’s demons. They also carry information such that, if the

codelet were to become “conscious,” this information would be broadcast to the entire

system.

In some cases, there must be multiple, concurrent instances of the same kind of

codelet based on what is “conscious.” Generator codelets, each corresponding to a

specific kind of codelet, are used in these situations. Generator codelets receive the

“conscious” broadcast and instantiate copies of themselves with the correct information.

Chapter 5 describes codelets in much more detail.

A Brief Overview Of Codelets Reaching “Consciousness”

All codelets which are actively performing their tasks join the playing field, also

inspired from pandemonium theory. The playing field is a portion of the “consciousness”

mechanism. This mechanism also contains a way to form coaliti ons of codelets.

Specifically, a coaliti on manager works to group codelets into coaliti ons based on their

55

associations to other codelets. A coaliti on must be selected for “consciousness” from

among the formed coaliti ons. The “consciousness” mechanism also contains a spotlight

controller that chooses the next coaliti on for the spotlight of “consciousness” based on

coaliti ons’ activation levels. Once the “conscious” coaliti on has been selected, this

mechanism’s broadcast manger sends out the coaliti on’s information. This information is

also placed in the module’s short-term memory as it is known that approximately seven

recently “conscious” items remain in short-term memory. It is also passed to the

“consciousness” module’s chunking manager. The chunking manager forms chunks out

of the different “conscious” coaliti ons. The chunks are later broadcast as potential items

to be learned. All codelets in the system are able to receive all of the “conscious”

broadcast.

“Conscious” software agents are extremely domain-specific entities. Following

the action selection paradigm, what an agents perceives, its drives and corresponding

behaviors, etc. are coupled to its environment (Maturana, 1975; Maturana & Varela,

1980; Varela, Thompson, & Rosch, 1991). One of the few relatively domain-independent

portions is these agents’ “consciousness.” This is ConAg’s main focus, and is described

throughout the later chapters.

“Conscious” Mattie

“Conscious” software agents’ general architecture is more readily understandable through

concrete examples. CMattie is the first software agent intended as an implementation of

global workspace theory. As such, she is “conscious,” and socially situated (Bogner,

56

Ramamurthy, & Franklin, in press 1999). CMattie is able to interact, learn, and adapt in a

social environment comprised of human agents. CMattie “ li ves” in a real world

computing system, a Unix-based system. No claims are made that CMattie is

“conscious” in the sense of being sentient. As described in chapter 1, this author has

contributed to several portions of CMattie, with the focus being the agent’s

“consciousness.” The other contributors are Stan Franklin as project leader, Art Graesser

as testing leader, Lee McCauley for emotion, Aregahegn Negatu for action selection,

Uma Ramamurthy for perception, and Zhaohua Zhang for metacognition.

CMattie is designed for a specific, narrow domain. She functions in an academic

setting, gathering information from humans regarding seminars and seminar-like events

such as colloquia, defenses of theses, etc. Using this information, she composes an

announcement of the next week’s seminars, and mails this announcement weekly to

members of a mailing list that she maintains, again by email interactions with humans.

CMattie’s implementation follows “conscious” software agents’ general

architecture. Her modular architecture, as ill ustrated in Figure 4.3, carries over and

significantly extends several portions of VMattie (see chapter 3). These include behavior

networks (Maes, 1990) for action selection, the Copycat architecture (Hofstadter &

Mitchell , 1994; Mitchell , 1993) and natural language understanding (Allen, 1995) for

email comprehension, and tracking memory. In addition, CMattie contains a sparse

distributed memory (Kanerva, 1988) for long-term, associative memory, pandemonium

theory (Jackson, 1987) for agent grouping, and case-based memory (Kolodner, 1993) for

57

Figure 4.3: CMattie’s Architecture
58

intermediate term, episodic memory. Each of these mechanisms has been significantly

extended in order to merge with the others, and to meet the needs of this domain.

 As specified in the architectural style, the real work of almost all of CMattie’s

modules is performed by codelets. Codelets lie underneath CMattie’s modules including

her behavior network, emotion, metacognition, perception, and portions of

“consciousness.” CMattie’s codelets coalesce into coaliti ons, become “conscious,”

broadcast their information to all other codelets in the system, and receive the

“conscious” broadcast. CMattie, follows a tenet of the action selection paradigm by

being a multi-agent system.

Roles of CMattie’s Modules

Mail Input and Output

CMattie’s sensory data are, for the most part, the incoming email messages she receives.

Mail i nput and output provides CMattie’s interface to her domain. Using this unit, she

receives and sends out email messages related to seminars, seminar-like events such as

colloquia, and maintenance of the recipient maili ng list. Mail i nput and output can

process more than one email message at a time, enabling the perception module to

perceive and understand emergency events in CMattie’s world. This aids in maintaining

her sense of self-preservation as she proactively reacts to her changing resource needs.

She immediately reacts to the status of the Unix-host system wherein she “lives.”

59

Perception

Perception for CMattie occurs when she “comprehends” an email message. As in

VMattie, incoming email messages, received by the mail i nput portion, are moved to the

perception module. The perception module was inspired by the Copycat architecture

(Hofstadter & Mitchell , 1994), and CMattie’s perception follows Copycat more closely

than VMattie’s. (Ramamurthy, Bogner, & Franklin, 1998). When an incoming message

is understood, every significant word or phrase has been classified, and the email message

has a whole has been categorized into a “message type,” such as “add me to your seminar

announcement mailing list” and “I’m initiating a new seminar.”

Focus

The focus is a portion of the “consciousness” mechanism and is described in great detail

in the next chapter. It serves as an interaction point for several of CMattie’s modules,

specifically associative memory (sparse distributed memory), “consciousness,” episodic

memory (case-based memory), emotions, and perception. The focus includes four

vectors: the perception registers, the output of associative memory, the output of episodic

memory, and the input to both these memories. First, the perception module places the

components of the understood email message into the perception registers. Next,

associative memory is read with the current percept as the address. Also, episodic

memory is read with the same address. These reads are designed to gather the

information most relevant to what was just perceived. At this point, the contents of the

Focus constitute the current percept. After the current percept has become “conscious,”

60

the behavior network and emotions potentially choose new states based on their receipt of

this “conscious” broadcast. These modules then write their current states to the focus.

This along with the current percept, is written to both memories.

Associative and Episodic Memories

Sparse distributed memory is a content addressable memory that serves as long-term,

associative memory for CMattie (Anwar & Franklin, forthcoming). This memory stores

the contents of the perception registers as well as her actions and emotions. Default

information, such as room and time can often be recovered, contributing to the

understanding of incoming messages. Recovering remembered actions and emotions

helps with action selection in the new situation.

Case-based memory is used as CMattie’s episodic memory. In it she stores the

sequences of email messages that form episodes. This memory acts as an intermediate

term memory, and the information stored there is used to learn domain knowledge. This

allows her to relate new events to similar past events. She understands these past events

using her built -in domain knowledge. Case-based memory aids her in learning new

perceptual concepts through case-based reasoning. Also, it aids in learning the new

action sequences necessary when new perceptual concepts learned by CMattie.

“Consciousness” Codelets

A “consciousness” codelet is one whose function is to bring specific information to

“consciousness” (Bogner, 1998). They are described in greater depth in subsequent

chapters. After the memory reads, perceptual “consciousness” codelets bring information

61

from the focus to “consciousness.” One such “consciousness” codelet is associated with

each of the perception registers and carries the specific piece of perceived information

from that register. For example, one codelet carries the speaker’s name, and another

carries the seminar’s time.

Specific “consciousness” codelets spring into action when the information in the

perception registers is relevant to them. For example, if what is perceived is a request to

be removed from the seminar announcement maili ng list, the “consciousness” codelet

which carries a person’s email address becomes active. It then joins the playing field on

its quest for “consciousness.”

In addition, some “consciousness” codelets check for conflicts amongst the

relevant items returned from the percept and the memory reads. For example, a conflict

occurs if the perceived date, room, and time for the Cognitive Science Seminar are the

same as case-based memory’s output of these same features for the Graph Theory

Seminar. The “consciousness” codelet recognizing the conflict joins the playing field and

raises its activation level. Since it is associated with the other perceptual “consciousness”

codelets, the “consciousness” mechanism groups them together to form a coaliti on.

“Consciousness” codelets also check for conflicts in the seminar announcement template

being generated by the behavior network.

“Consciousness”

CMattie contains a global workspace based on Baars’ theory of consciousness. Chapter 5

describes this “consciousness” mechanism in depth. The agent’s “consciousness”

62

mechanism serves to gather the active codelets into coaliti ons, choose the “conscious”

coaliti on, and broadcast this coaliti on’s information to all codelet’s in the system.

CMattie’s global workspace gives the agent several important performance features. It

allows for coaliti ons of codelets to gain attention and have their information broadcast to

all of the agent’s other codelets. Recipients of this broadcast become active themselves if

enough of the information is understood, and if it is applicable. In this way, the broadcast

recipients have the potential to contribute towards solving the problem raised by the

“conscious” coaliti on. This broadcast also allows metacognition a view of the events

taking place in the system. Learning also uses the information in “consciousness” to

learn to associate codelets as a coalition.

Behavior Network

Like VMattie, CMattie has several drives, some corresponding to her tasks (sending

seminar announcements, reminding organizers to send information, and acknowledging

messages). As specified in the “conscious” software agent general architecture, these

drives activate behaviors that work to fulfill t hem, are explicitl y built i nto the agent, and

operate in parallel.

Behaviors in CMattie correspond to global workspace theory’s goal contexts.

Each behavior has an activation level affected by drives, other behaviors adjacent to it in

the behavior net, internal conditions, and environmental inputs (incoming email

messages). Only one behavior can be active at a time. A behavior’s activation is spread

to those behaviors that can fulfill it s unmet preconditions and to behaviors whose

63

preconditions can be satisfied by this behavior. Thus, each behavior can thus be

considered part of a behavior stream. For example, there’s a behavior stream that

composes the seminar announcement. One behavior in that stream might fill t he

Cognitive Science Seminar’s portion of the seminar announcement.

The behavior network uses tracking memory to store templates used in composing

outgoing email messages of different types. It also keeps track of the current seminar

announcement maili ng list. Tracking memory is external to CMattie, acting as a

cognitive prosthesis for the agent. As of now, this memory also stores default

information on seminars, such as the day of the week each one occurs. This function may

be subsumed by associative memory.

All outgoing messages are composed in the composition workspace. Message

composition consists of f illi ng the fields of an outgoing message template. The

information used to fill t hese fields comes from the perception registers and any of

associative, case-based, or tracking memories. A current seminar announcement template

is always being generated in the composition workspace. As the behavior network

receives new perceptual information from “consciousness,” the announcement template

fields are fill ed. When a seminar announcement is moved to mail output and mailed, a

new announcement template is placed in the composition workspace.

Emotions

CMattie’s emotions play two roles (McCauley & Franklin, 1998). First, emotions

indirectly affect a behavior stream’s activation level by affecting the strength of drives.

64

Emotions allow CMattie to be pleased about sending out a seminar announcement on

time and to be anxious about an impending system shutdown. In these cases, emotion

might increase a behavior stream’s activation level since it is pleasing for CMattie to

complete these streams promptly. Second, metacognition uses emotions to help

determine its course of action. For example, if CMattie is “happy,” metacognition makes

her more reactive. If CMattie is “sad,” metacognition makes her more thoughtful.

Metacognition

By monitoring what is in “consciousness,” the activation of drives, emotional states,

parameters in the behavior network, and the perception module, metacognition keeps

track of CMattie’s internal conditions (Zhang, Franklin, & Dasgupta, 1998). Using a

classifier system (Holland, 1986), metacognition makes inferences about CMattie’s state.

If necessary, it can influence the behavior network, “consciousness,” learning, and

perception. For example, metacognition can change the behavior network’s activation

level threshold to make the agent more goal-oriented or more opportunistic. It can cause

voluntary attention by influencing the activation levels of certain coaliti ons of processes.

It keeps the perception module from oscill ating indefinitely when deciding on a message

type. Metacognition plays the role of an overseer, trying to keep CMattie’s action

selections on a productive track.

Learning

Learning via several types of mechanisms allows CMattie to become more closely

coupled to her environment. She can learn new behaviors, for example, a new step in

65

preparing for a system shutdown. She might also learn a new strategy for sending out

reminders to seminar organizers. Much of her learning uses case-based reasoning. She

learns new concepts in her slipnet allowing her to better understand incoming messages.

Described in the final chapter, “consciousness” is essential for this form of learning.

CMattie creates (learns) new codelets by modifying existing codelets enabling her to

perform newly learned behaviors and perceptual techniques. As described in the next

chapter, coaliti ons of codelets are learned via association a la pandemonium theory. This

allows the agent’s codelets greater ease in communicating and recruiting other codelets to

help in performing tasks. Associative learning also occurs in sparse distributed memory

as actions, emotions, and events are associated with one another when placed in this

memory.

CMattie’s Performance

Design and development of CMattie has been ongoing for several years. As of this

writing, the framework used for building CMattie’s “consciousness” mechanism is

“complete.” Chapter 6 describes this framework’s structure and gives testing results. In

addition, all of the different modules’ communication protocols have been agreed upon

and have been integrated. However, several of these modules are still actively being

implemented. Therefore, overall test results for CMattie are not expected until Spring,

2000. Rigorous testing of CMattie is planned.

If VMattie is a guide, CMattie’s performance should be very satisfactory.

CMattie’s implementation of global workspace theory makes her an agent significantly

66

more complex than VMattie. At the moment, even without the test results, CMattie’s

role as an implementation of global workspace theory makes her valuable as a conceptual

model of mind.

The Intelligent Distribution Agent (IDA)

IDA is an intelli gent distribution agent being designed and prototyped for the United

States’ navy (Franklin, Kelemen, & McCauley, 1998). IDA is designed to perform as one

navy detailer. At the end of sailors’ tour of duties (approximately 3-6 years), sailors are

assigned to new bill ets (job positions). This job assignment process is known as

distribution. These new assignments are made by approximately 200 full -time navy

personnel, known as detailers. Currently, employing these detailers costs approximately

$20,000,000 annually.

IDA is the “conscious” software research group’s proof of concept project, and

much of her is still i n the design phase. IDA utili zes CMattie’s modules and significantly

extends them. Like CMattie, IDA must communicate, this time to sailors, in natural

language. In addition, she must access and understand the content of several naval

databases. In addition, IDA has constraint satisfaction issues in satisfying the Navy’s

needs. For example, she must make sure that a destroyer has the required number of

sonar technicians and all have the appropriate training. She must keep down the costs

associated with moving sailors. Also, she must cater to the desires and needs of sailors as

much as possible.

67

IDA’s Architecture As An Extension Of CMattie’s

Like CMattie’s is to VMattie, IDA’s architecture is a significant extension of CMattie’s.

Specifically, enhancements include:

• IDA’s codelets in her action selection mechanism access and perceive

external, naval databases.

• IDA uses a linear functional as the first line of assessment when assigning a

sailor to a bill et. This linear functional encodes the common issues a detailer

considers. It includes concerns such as: are there women’s quarters on the

ship, does the sailor need training for the new position, does the sailor need to

change coasts for the new position, is the appropriate health care available for

the sailor’s family, is the cost of moving within the budget, the sailor’s home

port preference, etc.

• There are cases where the linear functional will not be able to encode all the

potential situations a sailor might face when switching positions. For

example, a sailor may desire to move his base location from the United States’

east coast to the west coast due to his marrying a Cali fornian. In such cases,

IDA will deliberate on the different scenarios possible in the billet assignment.

• IDA utilizes a naval order generation program in her creation of assignments.

• IDA’s email communication with sailors is over a much wider range of topics

than CMattie’s. Therefore, IDA uses scripts to help her generate natural

language.

68

IDA’s Natural Language Generation Scripts

IDA’s scripts are in the early design stage. However, they are largely inspired by

AutoTutor’s (Graesser, Franklin, & Wiemer-Hastings, 1998) curriculum scripts (Hacker,

Bogner, Yetman, & Klettke, 1998). AutoTutor is an intelli gent tutoring system that

contains a talking head and currently tutors students in computer literacy. Curriculum

scripts are used to present the students with questions and provide them hints and

prompts in helping guide them towards the appropriate answers. While IDA does not ask

students about computer literacy, she does interact with sailors in a similar manner about

bill et assignment. The remaining portion of this subsection describes AutoTutor’s

scripts.

According to Putnam, a curriculum script is “a loosely ordered but well -defined

set of skill s and concepts students are expected to learn, along with the activities and

strategies for teaching this material” (1987, p. 17). AutoTutor’s curriculum scripts are

based on research indicating that tutors appear to follow a predetermined script, with

greater attention given only to those elements of the script the student has missed

(Graesser & Person, 1994; Graesser, Person, & Magliano, 1995). In fact, this research

indicates that adherence to a tutor-driven script may be nearly absolute. Contained within

the curriculum script are predetermined sequences of examples, lessons, questions,

problem types, and subtopics that are used to instruct a discrete topic area. Within the

curriculum script macrostructure is the agenda, or microstructure, that is to be followed

during a tutoring session. The microstructure is the set of desired goals for a particular

69

lesson. In addition, the microstructure contains policies and microplans that may be used

when diff iculties or misconceptions arise (McArthur, Stasz, & Zmuidzinas, 1990). These

policies and microplans can serve as procedures that determine when a specific line of

questioning is to be terminated, what new subtopic is to be presented, and the number of

examples to be presented.

AutoTutor’s curriculum script’s are arranged hierarchically. At the broadest level

is the knowledge domain, which is a global body of knowledge that the tutoring

addresses. AutoTutor’s knowledge domain is currently computer literacy. Within the

knowledge domain are topics, natural chunks of knowledge characterized by common

themes. At the next level are subtopics, which are subchunks of knowledge characterized

by more discrete themes within each topic. Each subtopic is a structured database that is

further divided into smaller levels, or fields, each focused on a specific component of the

tutor-student dialogue.

Each subtopic field contains a list of one or more English words, sentences, or

paragraphs, most in conversational form. The fields include the focal question, which is

the main question being asked in the subtopic. The ideal answer is the desired response

to the posed focal question. The subtopic also includes lists of good answers containing

relevant information, li sts of different bad answers and misconceptions, li sts of hints to

help the student, li sts of prompts to try and get the student to divulge more information, a

succinct summary of ideal answer, a li st of anticipated student questions and answers to

these questions, and lists of good and bad keywords which help in the assessment of how

the student is doing.

70

Conclusions

“Conscious” software agents are unique largely because they implement a cognitive

theory of consciousness. In addition, they integrate and extend numerous mechanisms

from the “new ai.” This chapter described “conscious” software agents’ architectural

style, general architecture, and two example agents. Not discussed, however, is how

these agents’ “consciousness” actually works. This is chapter 5’s topic.

71

Chapter 5
Realizing “Consciousness”

Introduction

“Conscious” software agents are unique in part because they implement global workspace

theory. This chapter discusses these agents’ “consciousness” at the procedural level. A

description of the “consciousness” mechanisms’ locations and use in ConAg is left for

chapter 6. “Consciousness” in these agents includes the base codelet, broadcast manager,

chunking manager, coaliti on manager, “consciousness” codelets for conflict detection,

“consciousness” codelets for perceptual information, focus, playing field, short-term

memory, and spotlight controller. Each of these components has been originally designed

and implemented by this author in consultation with the “conscious” software research

group. Throughout this chapter, it is helpful to revisit figure 4.3.

Base Codelet

All codelets in “conscious” software agents utili ze the base codelet through inheritance

(Eckel, 1998). The base codelet is a class (Eckel, 1998) containing the variables and

methods common to all codelets in “conscious” software agents. Action selection

codelets, “consciousness” codelets, emotion codelets, metacognition codelets, and

perceptual codelets all extend the base codelet for their needs. This structure contains all

of the information necessary for the “consciousness” mechanism to access and
72

manipulate the codelets with which it is working. All codelets extend the base codelet as

“consciousness” provides the backbone for communication amongst these codelets.

Below is a description of the base codelet’s properties, and, therefore, the properties

common to all codelets in “conscious” software agents.

Thread. All codelets are threads (Eckel, 1998). This means that each codelet

runs in at least simulated parallelism to one another on a single processor machine.

Broadcast Listener. All codelets, when they become instantiated, are broadcast

li steners. This means that all “alive” codelets receive the broadcast from

“consciousness.” This follows global workspace theory’s premise that all processes

receive the broadcast. Just as in Baars’ theory, while codelets receive the broadcast, they

do not necessarily act upon it. They do so only if they understand it and it is applicable.

Serializable. All codelets are serializable (Eckel, 1998). Serialization is a Java

construct. It provides for objects to be turned into a sequence of bytes. Later, these bytes

can be restored to the original object. Serialization is commonly used in sending objects

over a network. “Conscious” software agents use serialization for self-preservation.

Specifically, codelets’ states are saved in the event of a system shutdown. Upon system

startup, they can be returned to their last running state.

Name. Each codelet has a name providing for description throughout the system.

Unique ID. For help in keeping track of the codelets in the system, they each

have a unique id. By default, this id is a randomly selected number. This unique id is

quite important for generator codelets. Generator codelets are like all codelets in that

they listen for the “conscious” broadcast. However, generator codelets do not directly

73

spring into action upon receiving a relevant broadcast. Instead, they instantiate copies of

themselves with the appropriate information. This unique id helps in identifying these

instantiated codelets.

Activation Level. Each codelet has an activation level. The activation level is a

fuzzy variable; codelets can set it to none, low, medium low, medium, medium high,

high, and max. They also can call methods to increase or decrease their activation level

to the next closest value. All activation values fall between zero and one. A codelet’s

activation level is tied to how important it perceives its current task to be.

Associations. Codelets have associations to one another, corresponding to

pandemonium theory’s links (see chapter 4). It is these associations which determine if

codelets are placed together in coaliti ons. Each association consists of a handle (Eckel,

1998), or pointer in C/Pascal terminology (Kernighan & Ritchie, 1988), to the associated

codelet along with an association strength, kept between zero and one. Physical memory

is the only limitation on the number of associations each codelet may have.

Codelets also have an association decay rate, and all contain a standard method

for decaying associations. Codelets independently choose how frequently to decay their

associations. Both the coaliti on manager and spotlight controller form new associations

and strengthen existing ones.

Consciousness Indicator. The spotlight controller sets this flag to signify that a

codelet has become “conscious.” Currently, the flag’s two options are that the codelet has

not yet become “conscious” and that the codelet can leave the playing field. This flag is

used by the “consciousness” codelets to know when their job is complete (they have made

74

it to “consciousness”). In addition, it is useful in tracking codelets’ states. In the future,

for mechanisms such as deliberation, a third option, that the codelet must stay on the

playing field, may be used. This would be set by the spotlight controller to force a

codelet to remain on the playing field, even if it perceived its task to be complete.

Broadcast Information. The broadcast from “consciousness” takes the form of a

hashtable (Aho & Ullman, 1992). Codelets receiving the broadcast search for relevant

keys. If one is found, they view the corresponding message. With this system, all

codelets carry broadcast information in the event they reach “consciousness.” This

information includes their key and message. Individual codelets determine their own key

and message. An interesting future study might be an analysis of the “language” created

by “conscious” software agents’ keys and messages.

Access To The Playing Field. Codelets contain the means to join and leave the

playing field. The playing field gives codelets potential access to “consciousness.”

Codelets join the playing field just before they perform their actions, and they leave once

their actions are complete.

The Focus

As mentioned in chapter 4, the focus is a main interaction point for perception, emotions,

“consciousness,” associative memory, and episodic memory. The specific properties of

the focus are now described.

Perception Registers. The perception registers are set by the perception module.

These registers are a fixed size array of strings. Fixing the size of these arrays is

75

“Conscious” software agent’s perception is largely driven by perceived events. In IDA,

these events include leaving a current bill et, training, arriving at a new bill et, etc. For

CMattie, the events are the different message types. These are:

1. Add person to seminar announcement mailing list

2. Answer to CMattie

3. Change of seminar’s location

4. Change of seminar’s time

5. Change of seminar’s topic

1. Seminar Name

2. Seminar Organizer

3. Speaker’s Name

4. Speaker’s Affiliation

5. Talk Title

6. Day

7. Date

8. Time

9. Location

10. Message Type

11. Email address

12. Emergency Indication

13. Unrecognized word one

14. Unrecognized word two

15. Unrecognized word three

16. Unrecognized word four

17. Unrecognized word five

necessary largely due to the interactions with the associative and episodic memories.

IDA, while they are not yet fully determined, has significantly more perception registers

than CMattie. CMattie’s perception registers, li sted below, are the ones currently

contained in ConAg.

76

17. Happy emotion

18. Sad emotion

19. Anger emotion

20. Fear emotion

21. Behavior’s name

22. Behavior’s activation

6. CMattie copy message to herself

7. Remove person from seminar announcement mailing list

8. Incoming message contains multiple message types

9. Negative message in response to CMattie’s action

10. Initiate a new seminar

11. No seminar at the specific time

12. CMattie sees message as nonsense

13. Question message for CMattie

14. Seminar has a speaker discussing a certain topic

15. Seminar is permanently ending

16. Message from the system administrator

Associative Memory Output Registers. After the perception registers are set, a

read from associative memory occurs. The result of this read is placed in the associative

memory output registers. These registers are the same set as the perception registers. In

addition, they contain the remembered emotion and behavior associated with the

remembered perception. In CMattie, these registers, not including the perception

registers, are:

77

Episodic Memory Output Registers. In addition to a read from associative

memory, a read from episodic memory occurs. The episodic memory output registers are

in the same format as associative memory’s.

Memories’ Input Registers. Once the perceptual information has reached

“consciousness” and has been broadcast, a new emotional state and behavior are

potentially chosen. After this assessment, the current emotional state and behavior are

written to the focus into the memories’ input registers. The memories’ input registers

have the same format as the associative and episodic output registers. Once both the

emotion module and behavior network have written to the focus, the focus writes the

memories’ input registers to both the associative and episodic memories.

Cannot_Fill _Registers_Counter and Registers_Can_Be_Fill ed_Indicator. A

significant design decision made for CMattie and IDA is that all of the perception

registers must become “conscious” before the perception registers can be fill ed again.

The cannot_fill _registers_counter is initially set to two. When the perception registers

are newly fill ed, “consciousness” codelets check to see if there is information for them to

carry to “consciousness.” If so, each codelet increments the cannot_fill registers_counter

and picks up this information. Once they’ve been “conscious,” these codelets decrement

this counter. In addition, the counter is decremented twice more: once with each

memory write.

At this point, the cannot_fill _registers_counter is reset to two, and the registers

can_be_fill ed_indicator is set to true. The perception module uses this boolean indicator

to determine if the next perception can be placed into the registers. This system ensures

78

that all “consciousness” codelets and memory accesses occur before the next perceived

email message is placed in the focus.

Perception Register, Associative Memory Output, and Episodic Memory Output

Broadcaster. Certain “consciousness” codelets and emotion codelets spring into action

immediately after the perception registers are fill ed. Upon system startup, these codelets

register to receive the focus’ perception register broadcast. When the perception registers

are newly fill ed, the focus broadcasts to all desired recipients, letting them know the

perception registers have been fill ed. This same process is used for the “consciousness”

and emotion codelets desiring to know when the associative memory read has been

completed, and those wanting episodic memory read’s completion.

Associative and Episodic Convergence Indicators. At times, “consciousness”

codelets and emotion codelets need to know whether or not associative and episodic

memory have converged. The focus stores this information.

Playing Field

The playing field, inspired from pandemonium theory, provides codelets access to

“consciousness.” Each codelet joins the playing field immediately before it begins to

perform its task. Each codelet currently leaves the playing field immediately after it has

completed its task. The playing field stores handles to each codelet on the playing field.

79

Coalition Manager

The coaliti on manager traverses the codelets on the playing field, forming them into

coaliti ons based on their associations. The coaliti on manager is a thread. It sleeps for a

short period of time as it must keep its coaliti on table current. Specifically, the coaliti on

manager performs the following loop:

1. It sleeps for a short period of time

2. It creates a new, temporary, coalition table

3. It traverses the playing field’s codelets. Each codelet encountered is initially

placed in its own coalition. This provides for singleton coalitions.

4. It looks at each of the coaliti on’s associations as a whole. In other words,

what is being viewed are the composite associations from each of the

coaliti on’s codelets. For each of these associations, the coaliti on manager

searches for the associated codelet on the playing field that is not already in

the coalition. If the searched for codelet is found, it is added to the coalition.

5. It overwrites the coalition table with its new temporary coalition table.

6. It updates all of playing field codelets’ associations to one another.

Specifically, if a codelet is on the playing field and is not associated to another

codelet on the playing field, an association is made. If associations exist, they

are strengthened by a small amount, assuming they are not at the maximum

value. Updating codelets’ associations on the playing field is inspired by

80

pandemonium theory and, potentially, allows the system’s behavior to evolve

over time.

Spotlight Controller

The spotlight controller determines the contents of “consciousness.” Specifically, as

specified by global workspace theory, it is the spotlight of “consciousness” shining down

on a coaliti on of codelets. The spotlight controller is its own thread, looping and

performing the following steps:

1. It sleeps.

2. It calculates the average activation level of the codelets in each of the coaliti on

manager’s coaliti ons. Average activation is used as opposed to total activation

to ensure that larger coalitions do not have an advantage for “consciousness.”

3. For the “coaliti on” with the highest average activation level, it sees if this

coalition is above the threshold for entering “consciousness.”

1. If so, it selects this coalition as the “conscious” coalition.

2. If not, it drops the threshold for “consciousness” by a percentage (currently

ten percent), and starts again. This threshold dropping is inspired by

Maes’ (1990) behavior networks.

4. It updates the codelets’ associations to one another as codelets are now in

“consciousness” together. This association level increase is significantly

greater than the association increase gained when codelets are on the playing

field together. In the rare event some of “conscious” codelets have not been

81

yet been associated by the coaliti on manager (as they’re also still on the

playing field together), the spotlight controller sets up new associations as

well.

5. It passes the “conscious” coalition to the broadcast manager.

6. It passes the “conscious” coalition to the chunking manager.

7. It sets each codelet’s consciousFlag to indicate that they have previously been

in “consciousness.” Even with this flag set, there is no limit to the number of

times a codelet can be chosen for “consciousness,” as long as it is on the

playing field.

8. It resets “conscious” coalition to indicate the lack of a “conscious” coalition.

Broadcast Manager

The broadcast manager disseminates the “conscious” information to all those listening.

Specifically:

1. It traverses the “conscious” coaliti on, taking from each codelet its information

to be broadcast. All codelets’ information is placed in a single hashtable.

2. It inserts a time-stamp into the hashtable.

3. It sends out the broadcast to all listeners.

4. It passes the broadcast hashtable to short-term memory.

Described below, the chunking manager also sends out information via the “conscious”

broadcast, and it uses the broadcast manager to do so. In these cases, step 1 is bypassed.

82

Chunks and the Chunking Manager

Currently, a chunk consists of three items:

Chunks’ Current Strength. This value determines how close a potential chunk is

to becoming a chunk.

Is Chunk Indicator. This flag is false if the chunk is only a potential chunk and

true otherwise.

Chunk’s Codelet Names. A chunk contains the names of all codelets in the

chunk, sorted and delimited by colons.

The chunking manager receives the latest “conscious” coaliti on from the spotlight

controller. The chunking manager’s role is determine new chunks out of the potential

chunks. Each “conscious” coaliti on is a potential chunk. Chunks are used by the

behavioral and perceptual learning mechanisms to help determine new concepts to learn.

They are inspired by pandemonium theory’s associations which develop over time into

concept demons.

The chunking manager:

1. Gathers the codelets’ names from “conscious” coaliti on, sorts these names,

delimits them, and places them into a single string.

2. Checks if this string is already in the list of chunks.

1. If it is not, the string is added to the list of chunks as a potential chunk.

83

2. If it is, the potential chunk’s strength is increased. If this potential chunk

is now above threshold, it is considered a chunk. In this case, it is passed

to the broadcast manager and sent out.

3. Decays all of the chunks and potential chunks. Chunks do not regress to

potential chunks, even though their activation level might deem it one.

Therefore, chunks are broadcast only once. The entire chunk list can be

retrieved from the chunking manager by the learning mechanisms.

Short-Term Memory

Short-term memory serves to hold the last several coaliti ons broadcast from

“consciousness;” CMattie’s is currently a maximum of seven. It provides a means for the

systems’ modules, including codelets, to look at the recent contents of “consciousness.”

This is particularly important for codelets which sleep for a relatively long period of time.

In these cases, the codelets still do receive all broadcasts as specified by Baars’ theory.

However, they potentially were asleep as received broadcasts overwrote each other.

When the codelets awaken, they have missed some broadcasts. Codelets can use the

broadcast’s time-stamp to determine which ones in short-term memory are relevant. In

addition, short-term memory provides an additional data-analysis source for the learning

mechanisms.

84

“Consciousness” Codelets

“Consciousness” codelets are base codelets with additional functionality. Following

Baars’ theory on consciousness’ role, “consciousness” codelets’ primary role are to

bring novel and conflicting information to “consciousness.” In CMattie and so far in

IDA, these codelets work in two areas: the focus and the behavior network’s composition

working memory. “Consciousness” codelets bring to “consciousness” both novel and

conflicting information from the focus and bring conflicting information from the

compositional working memory.

From the Focus

When the focus’ perception registers are fill ed, the focus notifies the “consciousness”

codelets li stening for this. For each of the perception registers excluding the message

type register, there is one “consciousness” codelet per register. These codelets are

daemon codelets, li stening for the perception registers to be fill ed and acting if their

specific register is in fact fill ed. Initially, these codelets have no associations with other

codelets; associations are simply allowed to develop over time.

Watching the message type register is one “consciousness” codelet for each

message type. When the appropriate message type is encountered, the corresponding

codelet springs into action. It picks up the message type from the perception register in

order to bring it to “consciousness.” Each message type codelet is initially strongly

associated with the perception register’s non-message type “consciousness” codelets that

carry the information describing the message. In this way, when the message type codelet

85

is on the playing field, it will be grouped with the relevant “consciousness” codelets such

as the one carrying the date, speaker’s name, time, etc. assuming they are on the playing

field. In CMattie, the message type codelets are initially associated with all of these

non-message type “consciousness” codelets as all are potentially relevant. In IDA, this

will most likely not be the case because of the greater number of perception registers.

CMattie’s message type “consciousness” codelets correspond to those which carry IDA’s

different events such as leaving the current billet.

After the associative memory read is complete, if there is convergence,

“consciousness” codelets li stening for the read’s completion spring into action. Some of

these codelets work to bring the remembered register contents to “consciousness.” These

go into effect if the corresponding perception register is empty. For example, for a

message from a seminar organizer about an upcoming speaker and topic for a seminar but

not containing the time of the seminar, the remembered time is carried to

“consciousness.” There are also “consciousness” codelets which listen for episodic

memory convergence. Some of these codelets work to carry episodic memory

information to “consciousness” if both the corresponding perception register and

associative memory register are empty. Like the “consciousness” codelets which bring

the remembered associative memory information to “consciousness,” these only bring the

appropriate remembered information such as the time of the seminar. Items such as a

seminar’s speaker are not brought to “consciousness” as those change weekly.

“Consciousness” codelets also check for conflicts amongst the perception registers

and memory registers if either of the memories have converged. Currently in CMattie,

86

one conflict is searched for in the focus: an overlap in the room, time, and date of the

remembered seminar and the seminar in the perception registers. Conflict

“consciousness” codelets work differently than those which simply carry information to

“consciousness.” The codelet which is actually searching for the conflict is a daemon

codelet. In the event a conflict is found, this codelet instantiates codelets associated to it

that pick up the information in both the memory and perception registers. This stems

from the fact that conflicts tend to be temporary in nature. The conflict codelet and these

new codelets carrying the information about the conflict then join the playing field in

their quest for “consciousness.” After the temporary “consciousness” codelets reach

consciousness, they die and are garbage collected.

From the Composition Working Memory

As the seminar announcement is being generated in the composition working memory by

the behavior network, “consciousness” codelets searched for conflicts in this template.

These conflict detecting codelets function in the same way as those in the focus. In

CMattie, two conflicts are detected. One is the same as detected in the focus: two

seminars overlapping on the same day at the same time in the same room. In addition, a

conflict is detected if the same speaker is speaking in two seminars simultaneously.

Unlike CMattie, IDA will most likely check for conflicts in all outgoing messages.

An Example “Consciousness” Codelet

This subsection ill ustrates a representative example of a “consciousness” codelet named

NewSeminarMessageTypeCarrier. This codelet waits until the perception registers are

87

fill ed with the message type signifying that a new seminar is being initiated.

NewSeminarMessageTypeCarrier inherits the properties of a percept register carrier

codelet. These codelets have the following properties.

Codelet. All percept register carrier codelets extend the base codelet class, and,

therefore, have all the properties of the base codelet. These codelets do not override any

of the base codelet’s defaults.

Percept Registers Listener. These codelets li sten for notification from the focus

that the perception registers have been filled.

Check All Other Perceptual “ Consciousness” Codelets Are Alive For

Association Setup. Many of the perceptual “consciousness” codelets are those which

carry the different message types to “consciousness.” So that these message type carrying

codelets have a high likelihood of being associated with the codelets carrying information

such as the time, they are initially associated with each of the other non-message type

perceptual information carrying codelets. Before these associations can be assigned,

however, it must be ensured that the codelets to which the associations are being made

have actually been initialized.

Refresh Codelet. Upon reaching “consciousness,” all of the “consciousness”

codelets carrying the perception registers’ information reset the their variables.

Specifically, they:

1. Leave the playing field.

2. Set their activation back to low.

3. Set their “conscious” indicator to not yet “conscious.”

88

4. Reset their broadcast information.

5. Decrement the focus’ cannot fill the perception registers counter.

NewSeminarMessageTypeCarrier performs the following algorithm.

1. Once all perceptual codelet’s are alive:

1. Setup the initial codelet’s information such as the codelet’s name and

initial activation level.

2. Setup the initial codelet’s associations.

2. Loop forever:

1. Sleep.

2. Decay associations.

3. If on the playing field:

1. If the “consciousness” indicator states the codelet can leave the playing

field, refresh the codelet.

2. Else, decay the activation level.

3. Return to the start of loop.

4. If the perception registers are not newly fill ed, return to the start of the

loop.

5. If the perception register’s message type is not of type initiate a new

seminar, return to the start of the loop.

6. Increment the focus’ cannot_fill_registers_counter.

7. Place the appropriate key and message into the codelet’s information to be

broadcast.

89

8. Join the playing field.

9. Increase activation to high.

Conclusions

This chapter describes how “consciousness” is realized in “conscious” software agents.

“Consciousness” codelets, extensions of the base codelet, bring novel and conflicting

information from the focus and the behavior network’s composition workspace. These

codelets compete for “consciousness” along with all other codelet’s in the system. The

playing field, coaliti on manager, spotlight controller, chunking manager, and short-term

memory all serve to complete the implementation of global workspace theory’s

“consciousness.” Not described in this chapter, however, is how “consciousness’ ”

different components are arranged in the code and how others’ modules interface with it.

This is the subject of chapter 6.

90

Chapter 6
ConAg

The “Conscious” Agent Framework

The “Conscious” Agent Framework (ConAg) is a software framework for implementing

“consciousness” in software agents. ConAg is intended to implement “consciousness”

according to global workspace theory (Baars, 1997), and its algorithms are those

described in chapter 5. ConAg is designed to carefully follow software reuse

methodology, discussed in chapter 2. ConAg is designed under the architectural style for

“conscious” software agents, detailed in chapter 4. This chapter first discusses the

rational for implementing ConAg in Java. This includes giving an overview of Java

beans since all of ConAg’s classes which can be beans are. ConAg’s primary goals are

then detailed. The framework’s package structure is described. For unfamiliar topics in

this section, please refer chapter 5. Next, the well known design patterns which ConAg

incorporates are presented. The techniques that other modules use to integrate with

ConAg is then described. ConAg’s current graphical user interface is presented to help

ground the framework and ill ustrate how portions of the testing results are gathered.

Finally, testing results are presented.

91

Why Java?

Java was introduced in late 1995 by Sun Microsystems with a large marketing blitz.

Opening any Java book’s introduction or visiting http://java.sun.com ill ustrates this

fanfare. After careful consideration amongst the “conscious” software research group

including this author, the group decided to use Java for several reasons. First, Java

programs run on a virtual machine. Therefore, they run on all operating systems for

which a Java virtual machine has been developed. This machine provides a layer of

abstraction over the operating system so that, to Java programs, all operating systems are

the same. In particular, this is helpful in the development of user interfaces and in

multi -threading programming; both are often operating system dependent. At decision

time, the operating systems of choice among the research group’s developers were

Windows 95, Windows NT for Intel, Solaris for Sparc, Linux for Intel, and Mac OS.

Java has relatively strong virtual machine support for each of these platforms, making it a

quite portable language.

Java has solid multi -threading support. Each thread works in parallel, or in a

single-process environment, in simulated parallelism to all other threads. In Java, threads

are easy to create. This helps in modeling both global workspace theory and

pandemonium theory, as both describe numerous processes being in action

simultaneously. Java is also highly object-oriented. Objects help provide for

encapsulation, allowing for both a structure’s data and methods to exist within the same

class. In addition, it provides for inheritance. Inheritance helps facilit ate the sharing of

92

properties among a group classes. Object-oriented programming helps foster the

independent development of different modules by different research group members as

there is minimal interaction needed among developers. Simultaneously, inheritance helps

in providing a common interface across modules for all of the agents’ codelets.

Java Beans

ConAg is implemented following the Java bean convention. Beans are simply classes,

with specific naming conventions for events, methods, and variables. By making each

class a bean, it can be opened and modified by any Java development environment

supporting beans such as Sun’s Java Workshop. This is possible as each bean’s

properties and events follow the same convention and, therefore, they can be easily

exposed. A simple example of this convention is the naming of variables. Variable

names begin with a lower case letter, such as activationLevel. Two methods, a get and

set method, then follow a standard naming convention to provide access to this variable.

In this case, the get method is named getActivationLevel and the set method is named

setActivationLevel.

A jar file is created when the compiled class files are placed into a single

compressed file. After ConAg’s source files are compiled, they are placed into jar files.

Jar files can be read by any bean-development tool, such as Sun’s free Bean Box. The

Bean Box is a simple tool intended to facilit ate a shared vision for bean developers.

ConAg’s jar files can be loaded into the Bean Box, and its events and variable names are

93

visible. With this, other module developers utili zing ConAg can see the framework’s

properties without having to dive into the code.

The Framework’s Primary Goals

As a framework, ConAg serves four primary goals:

1. To fit within the boundaries of the architectural style for “conscious” software

agents (described in chapter 4).

2. To provide a drop-in implementation for the domain-independent portions of

these agents’ “consciousness” mechanism.

3. To provide working, easily customizable, and properly documented

domain-specific portions of the “consciousness” mechanism, such as

“consciousness” codelets which look for a specific conflict.

4. To provide quality, working stubs for the cognitive mechanisms such as

behaviors and emotions found in “conscious” software agents. These

ill ustrate how these modules should work with the “consciousness” module

and provide a starting point for the mechanisms’ development.

ConAg’s structure

Explicit care has been taken to ensure ConAg follows good coding practice. ConAg’s

source code is 100% pure Java, and it utili zes Java’s beans framework as well as the

AWT and Swing frameworks (Eckel, 1998) for its graphical user interface. All possible

classes are Java beans, helping contribute to both black-box reuse, and when necessary,

94

easy modification for white box reuse (see chapter 2). Each source file has detailed

header comments, and almost every line of code is commented. All comments are

catered for Javadoc use. Javadoc comes with Sun’s standard Java distribution, and it

allows for comments to contain html code and be turned into readable html files.

ConAg has a detailed package structure allowing for its components to be easily

found and identified. The next several figures and subsections describe these packages at

a high level. At the root is the “conscious” software agent directory, shown in figure 6.1.

This directory is not actually a package within ConAg. It is simply the location where

each of the different modules’ jar files are placed. For example, besides ConAg, this

directory contains emotion and perception, developed independently. In reality, these jar

files could be placed anywhere on the disk, as long as the Java virtual machine is told

where to find them. ConAg’s package branches off into two main groups, the base

codelet and “consciousness” packages. Each are described below.

Figure 6.1: “Conscious” Software Agent Directory
(Bogner, Maletic, & Franklin, In Press 1999)

95

ConAg’s Domain Independent Portions

ConAg can be viewed partially as a “generic” framework similar to frameworks for

building graphical user interfaces. It implements portions of the “consciousness”

mechanism intended to work across domains. In other words, many portions of the

framework can be dropped in an agent being developed such as a distribution agent or

travel agent.

Codelet Definitions

Conscious software agents’ base codelet resides in ConAg’s base codelet package.

Similar to all of ConAg’s packages, the base codelet package contains several classes.

Since the base codelet package is crucial to “conscious” software agents, it is worthwhile

to mention the classes within this package. The codelet class inherits or instantiates all of

the other classes in the package.

ActivationLevels.class: This bean contains all the information needed for each

codelet to set its activation level.

AssociationElement.class: This bean stores all i nformation about each codelet’s

associations.

BroadcastElement.class: This bean contains the key and message the codelet

carries in the event it becomes “conscious.”

BroadcastEvent.class: This is the object that is actually “ thrown” by the

Broadcast Manager when it sends out a broadcast. It contains the hashtable that codelets

96

query as they look for relevant messages. All codelets know how to listen for and work

with this object.

BroadcastListener.class: This is an interface class, meaning that it contains

empty methods that must be declared by all classes that extend it. This class contains the

method necessary to receive the broadcast from the broadcast manager.

BroadcastListener.class is extended by Codelet.class, which implements the

appropriate method for broadcast receipt. In this way, all codelets in the system receive

the “conscious” broadcast.

Codelet.class: Described in the previous chapter, this bean contains the base

information common to all codelets in “conscious” software agents, including

“consciousness” and generator codelets.

As seen in figure 6.2, ConAg also includes a package containing classes common

to “consciousness” codelets. This package highlights that “consciousness” codelets carry

information, whether it be a conflict or novel information. Further specificity for

“consciousness” codelets is included in ConAg, and this is discussed in the Domain

Dependent Portions section below.

Figure 6.2: “Consciousness” Package
(Bogner, Maletic, & Franklin, In Press 1999)

97

Attention

Figure 6.2 also shows where attention is located. The attention package includes the

broadcast manager, chunking manager, coaliti on manager, playing field, short-term

memory, and spotlight controller. It also contains the definition of a chunk. These are

domain independent, and each of these mechanisms can be modified to the developer’s

satisfaction. For example, a new algorithm for forming coaliti ons can be created based

on the one included in the framework.

Compilation Hooks

Figure 6.3 shows the packages in the compilation hooks package. ConAg’s compilation

hooks allow the framework to be compiled without reliance on the other module’s jar

files. They are needed as ConAg currently has eleven locations where method calls are

made to cognitive modules built by other “conscious” software research group

developers. These are:

• The read and write calls to associative memory by the focus.

• The read and write calls to episodic memory by the focus.

Figure 6.3: Compilation Hooks Package

98

• A read of the behavior network’s composition working memory by

“consciousness” codelets working to detect conflicts in the outgoing

announcement.

• The abilit y to query, from ConAg’s graphical user interface, methods from

other cognitive modules stating the last items they passed to the focus.

Specifically, the modules are the associative memory, behavior network,

emotion, episodic memory, and perception. This system is used to help ensure

that the focus is correctly integrated with the corresponding modules.

• “Conscious” software agents’ main method, starting up these agents, is found

in the ConAg package, ill ustrated in figure 6.1. Different classes within this

package and instantiated by the main method allow for different startup

scenarios. These classes make calls to the other cognitive modules to start

them up.

The compilation hooks package contains its own packages, one for each of the modules to

which ConAg makes method calls. For each cognitive module, only the classes that

ConAg imports are included. For each included class, only the methods ConAg accesses

are included, and these methods are normally empty or contain only bare functionality.

These compilation hooks are intended to be written and maintained by the developer(s) of

ConAg, not of the other cognitive modules. They can only be written, however, after

agreement is reached with ConAg’s developer(s) and the other cognitive module

developers on how the integration takes place.

99

Graphical User Interface

Figure 6.4: Display Package
(Bogner, Maletic, & Franklin, In Press 1999)

ConAg’s graphical user interface, written using Java’s AWT and Swing frameworks,

serves two roles. First, if desired, it allows different ways for starting up ConAg. For

example, ConAg can be started using all of CMattie’s other cognitive modules or just its

own stubs (described below). Of note, it also allows the “consciousness” module to be

started independently of the other modules. While yet unproven, this may provide a

testing ground to compare how these agents run “consciously” versus entirely

“unconsciously.” Second, the gui provides a window into the inner workings of the

system. Screenshots of portions of this are seen later in the chapter, as ill ustrations on

how testing information is gathered. Currently, the gui is catered to developers’ use as

what is displayed is fine-grained. Figure 6.4 ill ustrates the gui package structure. Notice

that it is a close mirror to the “consciousness” package shown in figure 6.2. This allows

developers to easily find its components. The differences to the “consciousness” package

include a components package, where beans used throughout the display module reside.

All of the gui is domain-independent, except in the case of “consciousness” codelets as

100

these are domain dependent. In cases where “consciousness” codelets are added (or

removed) for a new domain, the gui can be easily modified to view these new codelets.

More importantly, ConAg does not depend on a gui to run; the package could be

completely removed. This provides a means for a user-interface based on a different

toolkit to be provided.

Error Handling

As seen in figure 6.2, ConAg provides a common mechanism for handling errors

throughout the system. To help foster ConAg’s independence from the need for the

user-interface, the provided GUI contains its own error handling mechanism. It currently

uses identical techniques as the framework’s main one. This technique allows the

developer a single point in which to code for handling additional errors while also

providing consistent debugging methods throughout the framework.

Other Cognitive Module Stubs

ConAg provides its own stubs for the other cognitive modules such as the behavior

network. These stubs simulate the basic functionality of the actual modules. For

example, the behavior network stub listens for an appropriate broadcast from

“consciousness” and sets the focus with a behavior. On startup, all or some of these stubs

can be run instead of the other cognitive modules. These stubs get their data from text

files, making them ideal for testing.

It is important to realize the rational for separating the compilation hooks from the

stubs. The compilation hooks are created only after discussion with other developers, and

101

they are subject to the changes the other developers make in terms of class names and

method calls. On the flipside, ConAg(s) developers control the course of the stubs, and

they provide functionality even if the other cognitive modules’ are not ready for

integration. These stubs often do not share method names with the real cognitive

modules. In addition, many of “conscious” software agents’ modules are domain

specific, such as perception. These stubs, however, are domain independent. Within

ConAg’s modules such as the focus, checks are done to see if the actual cognitive module

or the corresponding ConAg stub has been started. The appropriate method calls are then

made.

Figure 6.5: “Consciousness” Codelet Package
(Bogner, Maletic, & Franklin, In Press 1999)

102

Domain Dependant Portions

ConAg’s packages for “consciousness” codelets and the focus are domain-dependent,

with the exception being the “consciousness” codelet components common to all of these

codelets. As seen in figure 6.5, ConAg provides “consciousness” codelets to detect

conflicting and novel information for perceptual input and conflict detection for the

systems’ output. “Consciousness” codelets are domain specific. Currently, ConAg’s

“consciousness” codelets are tailored for use in CMattie. These provide a basis for

white-box reuse in order to apply these components to new domains. As “consciousness”

codelets are Java beans, often times code changes to the graphical interface are not

needed when “consciousness” codelets are applied to new domains.

As previously described, the focus is the location where perceptual information is

created for the agents’ own use. This perceptual information is associated with the

agents’ memories, and “consciousness” codelets bring this new and potentially

conflicting information to “consciousness.” Perceptual information is domain specific as

are systems’ memories about their taken actions in relation to what has been perceived.

Therefore, the focus, while an integral part of “conscious” software agents, is

domain-dependent. Even so, ConAg provides common methods for a focus’ use across

domains.

ConAg’s Design Patterns

Design patterns, an important aspect of software reuse methodology and described in

chapter 2, are heavily utili zed throughout ConAg. Illustrated here is ConAg’s use of

103

several patterns, all described in Design Patterns (Gamma, Helm, Johnson, & Vlissides,

1995). The abstract factory pattern provides an interface for creating families of related

or dependent objects without their concrete classes needing specification. Abstract

factory patterns are used throughout ConAg. Examples are seen in the base codelet and

base perceptual “consciousness” codelet definitions.

The singleton pattern ensures that there is only one instance of a class and that it is

accessible globally. ConAg relies on this pattern for each of the components that start up

its different modules. For example, the attention startup bean provides single access to

the attention components for the other cognitive modules, namely those that access the

playing field and the broadcast. “Consciousness” codelet startup provides access to all of

the “consciousness” codelets. Focus startup provides a single point of access to the

perceived information and the memories associated with it.

Used throughout ConAg is the façade pattern, which defines a higher-level unified

interface to a subsystem, making these subsystems easier to use. In ConAg, active

codelets join the playing field. The playing field’s structure is hidden from them; there is

simply a common way to exit and join the field. Completed perceptual information is set

in the focus for use by the entire system; the actual process of perceiving is hidden.

Codelets receive the broadcast information; hidden from them is how this information is

collected and arranged for broadcast.

The strategy pattern defines a family of algorithms, encapsulating each one and

making them interchangeable. This allows algorithms to vary without directly affecting

those which utili ze it. Throughout ConAg’s attention package, great care has been taken

104

to follow this pattern. For example, a different algorithm for forming coaliti ons can be

used in the coaliti on manager; the same holds true for the spotlight controller’s choosing

a “conscious” coaliti on. The methods for gathering the information to be broadcast and

the actual manner with which it is broadcast is also interchangeable. The same holds true

for the representation of short-term memory.

The observer pattern defines a one-to-many dependency between objects so that

when one object changes state, all of its dependencies are notified and automatically

updated. A prime example of this in ConAg occurs with the “conscious” broadcast,

where one broadcast is received by all codelets in the system. In addition, when the focus

receives a new percept, one announcement of this fact is sent out to all of the system’s

perceptual “consciousness” codelets and certain emotion codelets.

The memento pattern provides a way to capture and externalize an object’s

internal state, without violating encapsulation, so that the object can be restored to this

same state later. “Conscious” software agents often have a self-preservation mechanism.

For agents with this mechanism and written in Java, the base codelet class has the option

to utili ze Java’s serialization techniques. Serialization achieves the memento pattern, and

since all codelets inherit the base codelet component, all codelets’ states can be captured

and restored. In this future, this may apply to the system’s short-term memory as well.

How Other Cognitive Modules Integrate With ConAg

Currently, seven cognitive modules developed by other conscious software research

group members integrate with ConAg. Five of these modules, the behavior network,

105

emotion, learning, metacognition, and perception, extend the base codelet class. They do

this by importing ConAg.BaseCodelet.Codelet. Most developers choose for their

codelets to access short-term memory as well . In this case they import

ConAg.Consciousness.Attention.AttentionStartup and access short-term memory, for

example, via AttentionStartup.shortTermMemory.getMemory().

The behavior network, emotion, and perception modules all i ntegrate with ConAg

to access the focus. To do this, they import ConAg.Consciousness.FocusPackage.

FocusStartup. They can then access the focus, for example, via FocusStartup.focus.

setBehaviorRegisters (String[] behavior), FocusStartup.focus.setEmotionRegisters

(String[] emotions), FocusStartup.focus.getRegistersCanBeFilled(), etc.

Associative and episodic memories integrate with ConAg. Specifically, they

import the MemoryReadReturn class in ConAg.Consciousness.FocusPackage. This class

contains a boolean value specifying whether or not associative memory converges. It also

contains the returned memory registers which are set if there is convergence. Both

associative and episodic memory return a MemoryReadReturn class when a read is made

from the focus to either memory.

ConAg’s Graphical User Interface Revisited

Currently, two methods are available to get information on what is occurring inside the

system: a log file and ConAg’s gui display. Below is a small excerpt from the log file

when ConAg is running with its stubs. When ConAg is running with the real cognitive

modules, the log file is more diff icult to follow as each module independently writes to

106

the file. The ill ustration below takes up after “consciousness” codelets have picked up

their respective information from the focus; also, the reads from associative and episodic

memories have already occurred.

• The spotlight controller has determined that no coaliti on has a high enough average

activation for “consciousness.”

A NEW COALITION WAS NOT CHOSEN FOR CONSCIOUSNESS. THRESHOLD FOR
CONSCIOUSNESS: 0.47829682

• The coaliti on manager has rapidly traversed the playing field, forming coaliti ons

(twice)

Coalition Manager states playing field's size is: 10
Coalition Manager states playing field's size is: 10

• The spotlight controller once again traverses the coalition manager’s coalitions.

The Spotlight Controller's coalitions:
 Coalition:0
 Name: SpeakerTopicMessageTypeCarrier
 Id: 0.9185863266452637
 Act Lvl: 0.7

 Name: DateCarrier
 Id: 0.3318647383472735
 Act Lvl: 0.45

 Name: DayCarrier
 Id: 0.6290151970713053
 Act Lvl: 0.45

 Name: EmailAddressCarrier
 Id: 0.9806771259346015
 Act Lvl: 0.45

 Name: PlaceCarrier
 Id: 0.4155485895454599
 Act Lvl: 0.45

 Name: SeminarNameCarrier
 Id: 0.3213166329772882
 Act Lvl: 0.45

107

 Name: SeminarOrganizerCarrier
 Id: 0.2814919677465175
 Act Lvl: 0.45

 Name: SpeakerNameCarrier
 Id: 0.044040281456874886
 Act Lvl: 0.45

 Name: TalkTitleCarrier
 Id: 0.5934670356478824
 Act Lvl: 0.45

 Name: TimeCarrier
 Id: 0.4145744269360071
 Act Lvl: 0.45

 Coalition:1
 Name: TalkTitleCarrier
 Id: 0.5934670356478824
 Act Lvl: 0.45

 Coalition:2
 Name: EmailAddressCarrier
 Id: 0.9806771259346015
 Act Lvl: 0.45

• In this case, while not listed, there are a total of ten coalitions.

• The spotlight controller now computes each coaliti on’s average activation level. The

first three log entries for this are shown.

Coalition 0 average activation level: 0.475
Threshold for consciousness: 0.43046713
Coalition 1 average activation level: 0.45
Threshold for consciousness: 0.43046713
Coalition 2 average activation level: 0.45
Threshold for consciousness: 0.43046713

• The spotlight controller selects a “conscious” coalition.

The conscious coalition's average activation level: 0.475

THE CONSCIOUS COALITION:
 SpeakerTopicMessageTypeCarrier 0.9185863266452637
 DateCarrier 0.3318647383472735
 DayCarrier 0.6290151970713053
 EmailAddressCarrier 0.9806771259346015
 PlaceCarrier 0.4155485895454599
 SeminarNameCarrier 0.3213166329772882
 SeminarOrganizerCarrier 0.2814919677465175
 SpeakerNameCarrier 0.044040281456874886
 TalkTitleCarrier 0.5934670356478824
 TimeCarrier 0.4145744269360071

108

• The broadcast manager receives the “conscious” coaliti on, and selects each codelet’s

key and message.

In Broadcast Manager, information about to be broadcast:
 Codelet: SpeakerTopicMessageTypeCarrier 0.9185863266452637
 Key: speakerTopicMessageType
 Message: SpeakerTopicMessageTypeCarrier
 Codelet: DateCarrier 0.3318647383472735
 Key: prDate
 Message: DateCarrier:8th January '99
 Codelet: DayCarrier 0.6290151970713053
 Key: prDay
 Message: DayCarrier:Friday
 Codelet: EmailAddressCarrier 0.9806771259346015
 Key: prEmailAddress
 Message: EmailAddressCarrier:linki@msci.memphis.edu
 Codelet: PlaceCarrier 0.4155485895454599
 Key: prPlace
 Message: PlaceCarrier:Dunn Hall 351
 Codelet: SeminarNameCarrier 0.3213166329772882
 Key: prSeminarName
 Message: SeminarNameCarrier:Computer Science seminar
 Codelet: SeminarOrganizerCarrier 0.2814919677465175
 Key: prSeminarOrganizer
 Message: SeminarOrganizerCarrier:David Lin
 Codelet: SpeakerNameCarrier 0.044040281456874886
 Key: prSpeakerName
 Message: SpeakerNameCarrier:Sudipkumar P. Karnavat
 Codelet: TalkTitleCarrier 0.5934670356478824
 Key: prTalkTitle
 Message: TalkTitleCarrier:Knowledge Discovery for Time Series
(Master Thesis defense)
 Codelet: TimeCarrier 0.4145744269360071
 Key: prTime
 Message: TimeCarrier:2:00 pm

• The broadcast manager sends the “conscious” information to all codelets.

Broadcast Manager sending broadcast at: 5/2/99 4:44 PM

• ConAg’s behavior network and emotion stubs determine a message type was

broadcast. This signifies a new perception has been received. The current behavior

and emotion are then written to the focus.

ConAg stub detected a message type was just broadcast:
speakerTopicMessageType
ConAg's emotion stub detects a broadcast message type, setting the
Focus.
Focus reports that the current emotions have been set.

109

ConAg stub detected a message type was just broadcast:
speakerTopicMessageType
ConAg's Behavior Network stub detects a broadcast message type, setting
the Focus.

• The focus determines that both the behavior network and emotion modules have

written to it. The focus now writes to associative memory.

Focus reports the current behavior has been set.
Focus reports it has just written to associative memory.
Focus reports it has just written to case based memory.

• Even while ConAg’s stubs had received the broadcast and performed their actions,

others still had not. Here, the broadcast manager has completed sending the

“conscious” information to all li steners. Left out is the printout of the hashtable

actually broadcast.

Broadcast Manager has completed sending broadcast to all listeners.

• Short-term memory receives the “conscious” contents. Here the hashtable received is

printed.

Short term memory received from broadcastManager:
{prPlace=PlaceCarrier:Dunn Hall 351, prDay=DayCarrier:Friday,
prDate=DateCarrier:8th January '99,
prSeminarName=SeminarNameCarrier:Computer Science seminar,
prSpeakerName=SpeakerNameCarrier:Sudipkumar P. Karnavat,
prTalkTitle=TalkTitleCarrier:Knowledge Discovery for Time Series (Master
Thesis defense), broadcastTime=5/2/99 4:44 PM, prTime=TimeCarrier:2:00
pm, prEmailAddress=EmailAddressCarrier:linki@msci.memphis.edu,
speakerTopicMessageType=SpeakerTopicMessageTypeCarrier,
prSeminarOrganizer=SeminarOrganizerCarrier:David Lin}

• The chunking manager receives the codelets, sorts them, and determines if a new

potential chunk is necessary.

Chunking Manager received these codelets:
DateCarrier:DayCarrier:EmailAddressCarrier:PlaceCarrier:SeminarNameCarri
er:SeminarOrganizerCarrier:SpeakerNameCarrier:SpeakerTopicMessageTypeCar
rier:TalkTitleCarrier:TimeCarrier
Chunking Manager reports conscious coalition has not been in
consciousness before, creating new chunk.

110

• The spotlight controller notifies the “conscious” codelets that they have been

“conscious.” For “consciousness” codelets, which are all of the codelets currently in

“consciousness,” this signifies they can leave the playing field.

Spotlight Controller has set the conscious codelets'
canLeavePlayingField flag to true.
DateCarrier just left the playing field.
DayCarrier just left the playing field.
Coalition Manager states playing field's size is: 8
EmailAddressCarrier just left the playing field.
PlaceCarrier just left the playing field.
SeminarNameCarrier just left the playing field.
SeminarOrganizerCarrier just left the playing field.
SpeakerNameCarrier just left the playing field.
SpeakerTopicMessageTypeCarrier just left the playing field.
TalkTitleCarrier just left the playing field.
TimeCarrier just left the playing field.

• All of the perceptual information has made it to “consciousness,” and the focus now

awaits for a new percept.

The Focus is now ready to receive a new percept.

ConAg’s graphical user interface provides a view into the internal workings of the

system. Figure 6.6 ill ustrates the current startup screen with its menu-bar resembling

today’s common applications. Figure 6.7 shows ConAg’s File menu. If ConAg’s display

is started as part of a running “consciousness” module, the Start Consciousness Module

menu item’s choices are disabled. However, if only ConAg’s display is started, it can be

used to start “conscious” software agents in four ways:

111

Figure 6.6: ConAg’s Startup Screen

1. “Consciousness” as well as all the other cognitive modules and their user

interfaces.

2. “Consciousness” as well as all the other cognitive modules without their user

interfaces.

3. “Consciousness” with ConAg’s stubs serving as the other cognitive modules.

4. Without starting ConAg or its stubs. This can be used to start “consciousness”

after all other cognitive modules are running. This can potentially be used to

test the agent running with or without “consciousness.”

Different startup options can easily be integrated into the framework based on the

provided ones.

112

Figure 6.7: ConAg’s File Menu

Figure 6.8 shows ConAg’s Attention menu. This menu allows for viewing each

of the portions of the Attention package. Currently, throughout ConAg’s menus,

selecting a menu item, brings the screen shown in figure 6.9. The top portion of the

screen gives instructions. Pressing the button on the left updates the information

immediately. Entering a number in seconds at the bottom and pressing return displays the

desired information at the selected interval. Pressing the Reset button stops this interval

display. While displaying the information at intervals, the Update Now button can be

pressed at any time. Figure 6.9 shows the codelet’s li stening for the “conscious”

broadcast. Listed are the codelets’ names and unique ids. Figure 6.10 ill ustrates the

framework’s “consciousness” codelets menu. Submenus and menu items can be easily

113

Figure 6.8: ConAg’s Attention Menu

added for the addition of new “consciousness” codelets. Figure 6.11 shows a portion of

the information seen when looking at a “consciousness” codelet.

Figure 6.12 shows the Focus menu. This menu allows the viewing of the focus’

memory and perception registers. Figure 6.13 ill ustrates a perception register output.

Figure 6.14 shows the “Unconscious” menu. This menu allows the viewing of the

“unconscious” modules developed by the other “conscious” software research group

members. By viewing this information, the last information associative memory,

behavior network, emotion module, etc. intended to set to the focus is viewable. This

information can be compared to that actual focal contents to determine if these modules

are communicating appropriately.

114

Figure 6.9: ConAg’s Broadcast Recipients View

Testing Results

In parallel to its continual development, ConAg is being thoroughly tested. As stated

previously, at this time a fully realized “conscious” software agent is not available.

Therefore, the testing on ConAg has been fine-grained in nature, making sure the

framework does what it is supposed to do. As an example of the tests performed, this

115

section presents eight tests performed. All tests had very solid results. Each test

performed was for ConAg’s use in CMattie.

Test One

This test asked three questions. First, do the focus’ perception registers receive the data

correctly from the perception module? If so, do all the appropriate “consciousness”

codelets pick up the information? If this occurs, does all the information get chosen for

“consciousness?”

To perform this test, ten different message types were chosen from email

messages previously sent to the departmental secretaries. As currently there is not a

completed perception module, these messages were placed in ConAg’s perception

module stub file. They were placed in the stub file in such as way as to mimic how

CMattie’s perception module should ideally perform. ConAg was run with these ten

messages as input and then stopped. Upon completion, the log file was analyzed to

ensure all of the perception registers were fill ed correctly for each message. Also, it was

checked to make sure all of the “consciousness” codelets which were supposed to pick up

the information did in fact spring into action. Finally, it was check that the “conscious”

broadcast contained the same information as the initial stub file.

Testing revealed that the perception registers were able to be set correctly 100%

of the time. The “consciousness” codelets picked up their information 100% of the time.

The data broadcast from “consciousness” matched the initially perceived information

100% of the time.

116

Figure 6.10: ConAg’s “Consciousness” Codelets Menu

Test Two

This test made sure that in all cases after receiving the perception registers, the focus

performed a read from associative memory. This test also made sure that in each of these

cases, the focus performed a read from episodic memory.

To perform these tests, test one’s sample of different ten message types was used,

as well as ConAg’s associative and episodic memory stubs. For all ten messages, after

the perception registers received a new perception, 100% of the time a read from

associative memory and episodic memory occurred.

117

Figure 6.11: “Consciousness” Codelet View

Test Three

This test asked if all codelets in the system are in fact registered to li sten for the

broadcast. To perform this test, test one’s input was used. At three, five minutes

intervals, it was checked to see if all codelets running in the system were broadcast

li steners. This test was then repeated in its entirety. At each of the six check points,

100% of the codelets alive in the system were listening for the broadcast.

118

Figure 6.12: ConAg’s Focus Menu

Test Four

This test asked if all codelets, when on the playing field, were grouped into coaliti ons.

Test one’s input data was used. For each input message, the system’s subsequent playing

field codelets were logged. These were compared to the codelets in the coaliti on

manager’s coaliti ons. For each of the input messages, 100% of the time the codelets on

the playing field were in fact in the coalition manager’s coalitions. Do note that in

119

Figure 6.13: Current Perception Registers Snapshot

general, this is not always the expected case, especially if a working codelet joins and

leaves the playing field while the coalition manager’s thread is asleep.

Test Five

Test five made sure that the coaliti on with the highest average activation level is always

the one chosen for “consciousness.” This test used test one’s input data. The list of

120

coaliti ons were viewed. For the first ten “conscious” coaliti ons, this data was analyzed to

check if the highest average activation coaliti on became the “conscious” one. This

occurred 100% of the time.

Test Six

This test checked to make sure that the broadcast is always prepared correctly. Question

one’s input data was used. By analyzing the output log, the “conscious” coaliti on was

compared to the broadcast. Checked was whether or not all of the “conscious” codelets’

information was picked up by the broadcast manager. For each codelet’s information, it

was made sure that this data was formatted correctly by the broadcast manager.

The results found that 100% of the time, the “conscious” codelets were the

codelets broadcast. 100% of the time this broadcast information was formatted correctly

by the broadcast manager.

Test Seven

Question seven asked if short-term memory received the items from “consciousness”

correctly. If so, it then asked if short-term memory contained a maximum of the last

seven items in “consciousness.” This test used question one’s input. For each of the

input messages, the data was analyzed to ensure the short-term memory items were

correct. 100% of the time short-term memory correctly received the “conscious”

coaliti on’s information. 100% of the time short-term memory had a maximum of seven

items.

121

Figure 6.14: ConAg’s “Unconscious” Menu

Test Eight

This test analyzed whether or not the chunking manager received the broadcast correctly

and appropriately prepared the (potential) chunk. The test data was each of test one’s

input messages. The chunking manager performed appropriately 100% of the time.

Conclusions

This chapter describes the framework’s structure. This framework is designed to be

easily extended for the many “conscious” software agent environments. Examples of the

fine-grained testing results, hopefully, ill ustrate to the reader that the framework as a

program does appear to function correctly. The real underlying question, however, is

122

does ConAg implement Baars’ global workspace theory’s consciousness. This is a

subject of the final chapter.

123

Chapter 7
Computational “Consciousness”

Conclusions

This work gives overviews of software agents, cognitive models, and software reuse.

Global workspace theory is detailed. VMattie, a predecessor to “conscious” software

agents, is described. “Conscious” software agents’ architectural styles and general

architecture are then discussed. This includes an ill ustration of CMattie, the first

“conscious” software agent, and a description of IDA, the “conscious” software research

group’s proof of concept project. “Conscious” software agents’ “consciousness”

mechanism is then detailed. ConAg, the “Conscious” Agent Framework, a software

framework for implementing these agents’ “consciousness,” is described.

ConAg serves as the backbone for “conscious” software agents, providing for

these agents’ base codelet class, “consciousness” codelets, a focus where incoming

perception is associated with remembered information, an attention mechanism which

includes short-term memory and chunking for learning, and conflict resolution. It is the

first framework to implement pandemonium theory in its realization of global workspace

theory’s “consciousness.”

The research leading to this dissertation concentrates on how to implement global

workspace theory, with a focus on the theory’s consciousness. This work is necessary as

124

global workspace theory describes when and why consciousness occurs. It leaves out

how the consciousness mechanism actually works, such as a coaliti on manager grouping

processes for consciousness. This research hopes to shed light on these mechanisms and,

therefore, to further extrapolate global workspace theory. Therefore, ConAg, as a

realization of global workspace theory’s consciousness, not only extends global

workspace theory conceptually, but also provides a grounds for the theory’s further

development and testing. Described below, each design decision made in ConAg’s

implementation can be considered a hypothesis about the corresponding human

mechanism.

This research contributes to artificial intelli gence, cognitive science, and

philosophy. For artificial intelli gence, this research creates an agent architecture that

intends to be more flexible for agent decision making. It does this by producing

human-like thinking. While this architecture needs to be proven in more complex

domains, it lends itself to agents that are able to find intricate solutions to problems, learn

in multiple ways, and perform deliberation and synthesis. This architecture fosters the

creation of complex autonomous agents. It is a new technology that should allow

software agents to replace decision-making human information agents. For example, one

“conscious” software agent could be intended to replace a human help-desk customer

support representative.

For cognitive science and philosophy, an expandable cognitive architecture has

been developed around the “consciousness” module by this research group. The resulting

comprehensive model allows for cognition to be analyzed as a whole, and also for each of

125

the cognitive mechanisms to be studied individually. Currently, few comprehensive

cognitive models exist. In addition, this research further helps in studying what machines

can actually experience. “Conscious” software agents have the right mechanisms for

“consciousness.” It is currently unclear on how to determine if these agents are actually

experiencing.

Conclusions can be drawn from this research. The functions of consciousness as

specified by global workspace theory can be modeled computationally. A comprehensive

cognitive architecture can be integrated around this model of consciousness. This

comprehensive cognitive architecture can be implemented computationally. Many new

artificial intelli gence mechanisms can be used to create such a comprehensive cognitive

architecture. Testable hypotheses concerning human cognition can result from such a

comprehensive model.

Are Baars’ Nine Functions of Consc iousness Implemented In

ConAg?

Chapter 3 discusses Baars’ nine functions of consciousness. To some extent, each of

these functions are implemented by ConAg. This is ill ustrated below through CMattie

and IDA.

1. Definition and context-setting. This function occurs when one focuses on a

distant tree in a forest. While multiple stimuli are present, a coherent context

is able to be retrieved. In “conscious” software agents, the currently executing

behavior corresponds to global workspace theory’s goal context. In these

126

agents, the action selection mechanism ultimately decides the next behavior.

This decision is greatly influenced by the contents of “consciousness.” More

specifically, “consciousness” codelets bring the newly perceived information

to “consciousness.” After the broadcast occurs, the behavior network may

instantiate a new behavior stream in response to “consciousness’ ” contents.

“Consciousness’ ” influence is evident if this behavior stream executes.

Global workspace theory also describes perceptual and cultural contexts.

In “conscious” software agents, the perception module’s understanding

portion sets the perceptual context. This can be influenced by

“consciousness.” “ Consciousness” shines on the perception module’s codelets.

At times, the “conscious” broadcast recruits additional perceptual codelets that

help to determine the perceptual context. In CMattie, “consciousness” does

not influence the cultural context. This has yet to be explored in IDA.

2. Adaptation and learning. This function is evident when extremely diff icult

material is pondered for a great deal of time while attempting to learn it.

ConAg’s implementation of “consciousness” provides for several forms of

learning. Codelets’ associations are established and strengthened when on the

playing field together, and even more so when in “consciousness” together.

The chunking manager broadcasts new chunks, potential items to be learned

by the behavioral and perceptual learning mechanisms. After the “conscious”

broadcast, the current behavior and emotions are written along with the

127

current perception registers into associative and episodic memory, used by the

systems’ learning mechanism.

3. Editing, flagging, and debugging. A tennis player’s conscious concern over

the technical details of his serve after several double faults is an example of

debugging. Both in the behavior network’s composition working memory and

in the focus, “consciousness” codelets flag conflicts for debugging. Upon

finding a conflict, these codelets work to bring the information to

“consciousness.” Once this information is broadcast, the different cognitive

modules such as learning and metacognition can respond, adjusting their

parameters accordingly. IDA’s deliberation process involves the creation of

scenarios. It is currently planned that “conscious” decisions are necessary for

deciding the fitness of scenarios and for editing them.

4. Recruiting and control. An example of this function’s use occurs when

attempting to answer a question. While one is conscious of a question, the

candidate answers to that question are recruited unconsciously and brought to

consciousness. By viewing the information broadcast from “consciousness,”

other codelets spring into action if they understand the message and it is

applicable. This is seen throughout conscious software agents. New

behaviors are begun based on the contents of “consciousness,” metacognition

begins new system evaluations, and learning takes place.

5. Prioriti zing and access-control. This occurs when learning a foreign

language. One may wish to prioriti ze words which are diff icult to pronounce,

128

giving them greater access to consciousness. When ConAg’s “consciousness”

mechanism broadcasts, other codelets in the system respond, increasing their

activation level. This higher activation level gives them greater access to

“consciousness.”

ConAg’s “consciousness” mechanism causes codelets to learn new

associations. Over time, these associations may become strong enough for a

codelet to be placed into a coaliti on which frequently comes to

“consciousness.” Therefore, this new codelet now has greater access to

“consciousness.” It is planned that IDA’s “conscious” deliberation prioriti zes

scenarios before one is presented to a sailor.

6. Decision-making or executive. This function is useful in controlli ng thought

and action, such as “Should I go to the mall or to the park?” As described in

number 1, “consciousness” is a main but indirect reason for behaviors,

corresponding to global workspace theory’s goal contexts, to be chosen. It is

planned that “conscious” decisions are made in IDA’s deliberation. Also, in

both CMattie and IDA, metacognition performs tuning based in part on

“consciousness’ ” contents.

7. Analogy-forming. This function occurs when people make analogies to

compare a novel experience to known ones, as seen with “Hate is the wrong

road to travel.” “ Consciousness” plays an indirect role in both the behavioral

and perceptual learning mechanisms’ analogy forming. The focus’ perception

registers contain slots for novel words, and there are message types for both

129

nonsense messages and negative messages in response to CMattie’s actions.

After this perceptual information reaches “consciousness,” behavioral and

perceptual learning create new concepts, along with their underlying codelets,

based on existing concepts and codelets.

8. & 9. Metacognitive or self-monitoring, autoprogramming and

self-maintenance. The metacognitive function is evident in humans’ abilit y to

express their current feelings, and self-maintenance is seen in the desire to keep

the body healthy. Both in the compositional working memory and in the focus,

“consciousness” codelets work to detect internal conflicts. In addition, based in

part on the contents of “consciousness,” metacognition is able to monitor the

system. When applicable, metacognition can then perform self-maintenance by

adjusting the system’s parameters. A planned self-maintenance is to regularly

backup the agents’ information to disk.

Hypotheses

Many design and implementation decisions are made in ConAg in order to create

computational “consciousness.” Each of these decisions gives rise to a hypothesis about

human cognition. Given a particular decision about a portion of the agents’ mechanisms,

the hypothesis asserts that human cognition works in the same way (Franklin, 1997).

Hopefully, these hypotheses will be confirmed or laid to rest by researchers in cognitive

science and neuroscience. Twenty such hypotheses are listed below. As a reminder to

readers, ConAg’s codelets are intended to implement Baars’ processes. As this

130

discussion is cognitive in nature, the term process is used over codelet. Each of these

hypotheses is generated by replacing “codelet” with “process” in a true statement about

codelets in “conscious” software agents.

1. There are common properties which all processes share. Five main ones are:

A. Each process receives the “conscious” broadcast as postulated by global

workspace theory.

B. Each process carries activation level. This activation level allows

processes to compete with one another for access to “consciousness.”

C. Each process carries associations with other processes. These associations

are used to determine a process’ coalitions.

D. Each process carries information pertinent to its current situation. If a

process becomes conscious, this information is broadcast to all processes.

E. Each process carries identifying information. If a process becomes

conscious, this information is broadcast to all processes.

2. All processes such as the coaliti on manager and those working to bring

conflicting information to consciousness have periods in which they are not

active.

3. Perceived sensory data is realized by a well -defined structure in a focal

location. For this dicussion, this structure will be referred to as the perception

registers. These are located in the focus.

4. This focus contains a flag, letting the perception module know that a new

perception can now be placed in the perception registers.

131

5. A new percept can be placed in the focus only after the former percept has

become conscious.

6. Upon receipt of a new perception, processes work to bring this information to

consciousness.

7. While number 6 is occurring, reads from a long-term associative memory and

from an intermediate-term episodic memory are performed. Processes work to

bring this information to consciousness.

8. There is a single playing field where active processes are accessible by

consciousness. (Recall that, in the conscious software agent architecture, the

playing field contains all of the agents’ active codelets). In humans, this

playing field is most likely distributed broadly within the nervous system.

Consciousness can potentially gather any active process’ identifying

information and its information pertinent to the current situation.

9. The nervous system has a coaliti on manager which groups the playing field’s

processes together.

10. This coaliti on manager makes its decisions based on the level of association

between processes.

11. The coaliti on manager creates and updates associations for the processes on

the playing field, each by a relatively small amount.

12. A spotlight controller chooses which coaliti on is conscious, based on the

coalition’s average activation level.

132

13. Short-term memory holds only previously conscious items, and stores a

maximum of some seven items.

14. A chunking manager glues processes together in order to build new potential

concepts. These chunks are based on associations between the processes and

on which processes have previously been conscious simultaneously.

15. When a new chunk is realized, it comes to consciousness via the chunking

manager. This chunk is broadcast to the entire system just as the coaliti ons

handled by the spotlight controller are.

16. A broadcast manager picks up the information from the conscious processes,

prepares it for broadcast, and sends it out to all processes in the system.

17. An action selection mechanism, after receipt of a new percept, writes the

current behavior and its activation level back to the focus.

18. The emotion module, after receipt of a new percept, writes the current

emotions back to the focus.

19. Upon receipt of the behavior and the emotions, the focus records both of them

along with the perception registers to the long-term associative and to the

intermediate-term episodic memories.

20. Specialized processes check for conflicts as the system prepares an outgoing

communication. If conflicts are found, these processes work to bring this

information to consciousness.

133

The Future

This work presents a realization of global workspace theory’s “consciousness.” It is only

a start. Further integration followed by testing is necessary. Refinement of the

techniques will no doubt occur. Even so, this research has culminated in a solid

foundation for “consciousness” in software agents. ConAg is used in CMattie and in

IDA, a project which if successful, will have a major impact on the United States’ Naval

personnel assignment. While this is several years off , already this project has proven very

enjoyable and served as a significant learning experience for this author. Hopefully, this

will continue for me and future participants.

134

BIBLIOGRAPHY

135

BIBLIOGRAPHY

Aho, Alfred V. & Ulman, Jeffrey D. (1992). Foundations of Computer Science. New

York: Computer Science Press.

Anderson, John R. (1991). The place of cognitive architectures in a rational analysis.

VanLehn, Kurt (Ed.). Architectures for Intelligence. Hillsdale, NJ: Lawrence

Erlbaum Associates, 1-24.

Baars, Bernard. (1988). A cognitive theory of consciousness. New York:

Cambridge University Press.

Baars, Bernard. (1997). In the theater of consciousness. New York: Oxford

University Press.

Barsalou, Lawrence W. (1999). Perceptual symbol systems. Behavioral and Brain

Sciences. New York: Cambridge University Press.

Basili, V., Briand, L., & Melo, W. (1996). How reuse influences productivity in

object-oriented systems. Communications of the ACM, 39 (10), 104-116.

Biggerstaff, T. & Richter, C. (1987). Reusability framework, assessment, and

directions. IEEE Software, 4 (2), 41-49.

Bogner, Myles. (1998). Creating a “conscious” agent. Memphis: Master’s thesis,

The University of Memphis.

136

Bogner, Myles, Maletic, Jonathan, & Franklin, Stan. (1999). Building “consciousness”

into software. Department of Mathematical Sciences Technical Report

CS-99-02. The University of Memphis.

Bogner, Myles, Maletic, Jonathan, & Franklin, Stan (In Press 1999). ConAg: a reusable

framework for developing “conscious” software agents. The International Journal

on Artificial Intelligence Tools. River Edge, NJ: World Scientific Publishing

Company.

Bogner, Myles, Ramamurthy, Uma, & Franklin, Stan. (In Press 1999). “Consciousness”

and conceptual learning in a socially situated agent. Dautenhahn, Kerstin

(Ed.). Human Cognition and Social Agent Technology. Amsterdam: John

Benjamins Publishing Company.

Bonabeau, Eric, Henaux, Florian, Guérin, Sylvain, Snyers, Dominique, Kuntz,

Pascale, & Theraulaz, Guy. (1998). Routing in telecommunications networks

with “smart” ant-like agents. Santa Fe Institute Publications & Intelligent

Agents for Telecommunications Applications ‘98.

Boone, Gary. (1998). Concept features in Re:Agent, an intelligent email agent.

Proceedings of the Second International Conference on Autonomous Agents.

New York: ACM Press, 141-148.

Cline, Marshall P. (1996). The pros and cons of adopting and applying design

patterns in the real world. Communications of the ACM, 39 (10), 47-49.

137

Crosbie, Mark & Spafford, Gene (1995). Proceedings of the 18th National

Information Systems Security Conference. Purdue University Technical

Report 95-008.

Eckel, Bruce. (1998). Thinking in Java. Upper Saddle River, NJ: Prentice Hall Inc.

Etzkorn, Letha H. & Davis, Carl G. (1997). Automatically identifying reusable OO

legacy code. IEEE Computer, 30 (10), 66-71.

Foundation for Intelligent Physical Agents. (1996-Present). http://www.fipa.org.

Retrieved April 1, 1999.

Frakes, William B. & Fox, Christopher, J. (1995). Sixteen questions about software

reuse. Communications of the ACM, 38 (6), 75-87.

Franklin, Stan. (1995). Artificial Minds. Cambridge, MA: The MIT Press.

Franklin, Stan. (1997). Autonomous agents as embodied ai. Cybernetics and

Systems, 28 (6), 499-517.

Franklin, Stan. (Submitted). Conscious software: a computational view of mind.

Franklin, Stan and Graesser, Art. (1997). Is it an agent, or just a program?: A

taxonomy for autonomous agents. Intelligent Agents III. Berlin: Springer-

Verlag, 21-35.

Franklin, Stan, Kelemen, Arpad, and McCauley, Lee. (1998). IDA: a cognitive agent

architecture. Proceedings of the IEEE Conference on Systems, Man and

Cybernetics, 2646-2651.

Gamma, Erich, Helm, Richard, Johnson, Ralph, & Vlissides, John. (1995). Design

Patterns. Reading, MA: Addison-Wesley.

138

Graesser, Arthur, Franklin, Stan, & Wiemer-Hastings, Peter. (1998). Simulating

smooth tutorial dialog with pedagogical value. Proceedings of the American

Association for Artificial Intelligence. Menlo Park, CA: AAAI Press, 163-

167.

Graesser, A.C., & Person, N.K. (1994). Question asking during tutoring. American

Educational Research Journal, 31, 104-137.

Graesser, A.C., Person, N.K., & Magliano, J.P. (1995). Collaborative dialogue

patterns in naturalistic one-on-one tutoring. Applied Cognitive Psychology, 9,

359-387.

Hacker, Douglas, Bogner, Myles, Yetman, Holly, & Klettke, Bianca. (1998). The

curriculum script. Curriculum Script Subgroup Progress Report, Spring 1998.

The University of Memphis,

http://www.psyc.memphis.edu/trg/cur_script/Summary_4-1-1998.html. Retrieved

April 1, 1999.

Haykin, Simon. (1994). Neural Networks. Upper Saddle River, NJ: Prentice-Hall.

Hofstadter, Douglas & Mitchell, Melanie. (1994). The copycat project: A model of

mental fluidity and analogy-making. Holyoak, K. & Barden, J. (Eds.).

Advances In Connectionist and Neural Computation Theory, 2. Norwood, NJ:

Ablex.

Holland, J. H. (1986). A mathematical framework for studying learning in classifier

systems. Farmer, D., et al. (Eds.). Evolution, games and learning: Models

for adaption in machine and nature. Amsterdam: North-Holland.

139

Jackson, John. (1987). Idea for a mind. SIGGART Newsletter, 101, 23-26.

Johnson, Ralph. (1997). Frameworks = (components + patterns). Communications of

the ACM, 40 (10), 39-42.

Just, M.A., & Carpenter, P.A. (1987). The Psychology of Reading and Language

Comprehension. Boston: Allyn and Bacon.

Just, Marcel Adam, Carpenter, Patricia A., & Hemphill, Darold D. (1996).

Constraints on processing capacity: architectural or implementational? Steier,

David & Mitchell, Tom (Ed.). Mind Matters: A Tribute to Allen Newell.

Mahwah, NJ: Lawrence Erlbaum Associates, 141-178.

Kanerva, Pentti. (1988). Sparse distributed memory. Cambridge, MA: The MIT

Press.

Kaspersen, Donna. (1994). For reuse, process and product both count. IEEE

Software 11 (5), 12.

Kernighan, Brian W. & Ritchie, Dennis M. (1988). The C Programming Language,

Second Edition. Englewood Cliffs, NJ: Prentice Hall.

Kolodner, Janet. (1993). Case-based reasoning. Morgan Kaufmann Publishers.

Kozierok, Robyn & Maes, Pattie. (1993). A learning interface agent for scheduling

meetings. Proceedings of the 1993 International Workshop on Intelligent User

Interfaces. Orlando, FL, 81-88.

Krueger, Charles. (1992). Software reuse. ACM Computing Surveys, 24 (2), 131-

183.

140

Laird, John E. & Rosenbloom, Paul S. (1996). The evolution of the soar cognitive

architecture. Steier, David & Mitchell, Tom (Ed.). Mind Matters: A Tribute

to Allen Newell. Mahwah, NJ: Lawrence Erlbaum Associates, 1-50.

Lashkari, Yezdi, Metral, Max, & Maes, Pattie. (1994). Collaborative interface agents.

Proceedings of AAAI ‘94 Conference. Menlo Park, CA: AAAI Press.

Maes, Pattie. (1989). How to do the right thing. Connection Science Journal, 1 (3).

McArthur, D., Stasz, C., & Zmuidzinas, M. (1990). Tutoring techniques in algebra.

Cognition and Instruction, 7, 197-244.

Maturana, H. R. (1975). The organization of the living: A theory of the living

organization. International Journal of Man-Machine Studies, 7, 313-32.

Maturana, H. R. & Varela, F. (1980). Autopoiesis and cognition: The realization of

the living. Dordrecht, Netherlands: Reidel.

McCauley, Thomas L. & Franklin, Stan. (1998). An architecture for emtion. AAAI

Fall Symposium “Emotional and Intelligent: The Tangled Knot of

Cognition.”

Mellor, Stephen & Johnson, Ralph. (1997). Why explore object methods, patterns,

and architectures. IEEE Software, 14 (1), 27-30.

Menczer, Filippo, Belew, Richard K., and Wolfram, Willuhn. (1995). Artificial Life

Applied To Adaptive Information Agents. AAAI Spring Symposium Series:

Information gathering from heterogeneous, distributed environments.

Monroe, Robert T., Kompanek, Andrew, Melton, Ralph, & Garlan, David. (1997).

Architectural styles, design patterns, and objects. IEEE Software, 14 (1), 43-52.

141

Prieto-Días, Rubén, & Freeman, Peter. (1987). Classifying software for reusability.

IEEE Software, 4 (1), 6-16.

Putnam, R. T. (1987). Structuring and adjusting content for students: A study of live

and simulated tutoring of addition. American Educational Research Journal,

24, 13-48.

Ramamurthy, Uma, Bogner, Myles, & Franklin, Stan. (1998). “Conscious” learning

in an adaptive software agent. Proceedings of The Second Asia Pacific

Conference on Simulated Evolution and Learning (SEAL 98). Canberra,

Australia.

Reticular Systems, Inc. (1999). Agent construction tools,

http://www.agentbuilder.com/AgentTools/index.html. Retrieved April 1, 1999.

Rosenbloom, Paul S., Newell, Allen, & Laird, John E. (1991). Toward the

knowledge level in Soar: the role of the architecture in the use of knowledge.

VanLehn, Kurt (Ed.). Architectures for Intelligence. Hillsdale, NJ: Lawrence

Erlbaum Associates, 75-111.

Russel, Stuart & Norvig, Peter. (1995). Artificial Intelligence: A Modern Approach.

Upper Saddle River, NJ: Prentice-Hall, Inc.

Selfridge, O. G. (1959). Pandemonium: a paradigm for learning. Proceedings of the

Symposium on Mechanisation of Thought Process. National Physics

Laboratory.

142

Software Agents Mailing List. (1994-Present). Baltimore: Laboratory for Advanced

Information Technology, The University of Maryland Baltimore County,

http://www.csee.umbc.edu/agentslist/. Retrieved April 1, 1999.

Song, Hongjun. (1998). Control structures for autonomous agents. Memphis:

Doctoral dissertation, The University of Memphis.

Sycara, Katia, & Zeng, D. (1994). Visitor-hoster: Towards an intelligent electronic

secretary. CIKM94 Workshop on Intelligent Information Agents.

http://www.cs.cmu.edu/afs/cs/user/katia/www/visit-host.html. Retrieved April 1,

1999.

Tambe, Milind, Johnson, W. Lewis, Jones, Randolph M., Koss, Frank, Laird, John E.,

Rosenbloom, Paul S., & Schwamb, Karl. (1995) Intelligent agents for

interactive simulation environments. AI Magazine, 16 (1), 15-39.

Varela, F. J., Thompson, E., & Rosch, E. (1991). The Embodied Mind. Cambridge,

MA: MIT Press.

Wurman, PR, Wellman, MP, & Walsh, WE. (1998). The Michigan Internet

AuctionBot: A configurable auction server for human and software agents.

Proceedings of the Second International Conference on Autonomous Agents.

New York: Association of Computing Machinery, 301-308

Zhang, Zhaohua, Franklin, Stan, & Dasgupta, Dipankar. (1998). Metacognition in

software agents using classifier systems. Proceedings of AAAI 98, 82-88.

143

Zhang, Zhaohua, Franklin, Stan, Olde, Brent, Wan, Yun, & Graesser, Arthur. (1998).

Natural language sensing for autonomous agents. Proceedings of the IEEE

Joint Symposia on Intelligence and Systems. Rockville, Maryland, 374-81.

144

VITA

Myles Brandon Bogner was born in New York City on April 14, 1974. His

schooling prior to high school was in Austin, TX. He attended The Westminster Schools

in Atlanta, GA for high school, where he graduated Cum Laude in May, 1992. He

entered Rhodes College in Memphis, TN the following August. He graduated Cum

Laude from Rhodes in May, 1996 with a Bachelor of Science in Computer Science and a

minor in Business Administration.

In August, 1996 Myles entered The University of Memphis, Memphis, TN as a

doctorate student in Computer Science. He was a teaching assistant for Computer

Literacy his first year. His second year, Myles was a research assistant working on a

National Science Foundation grant to develop an intelli gent tutoring system. Myles

received his M.S. in May, 1998. At present Myles is at the University of Memphis,

working on a Naval grant to develop an Intelli gent Distribution Agent. He is a member

of the University of Memphis’ I nstitute for Intelli gent Systems and the “Conscious”

Software Research Group.

145

