
 

Proceedings of GT2007 
ASME Turbo Expo 2007: Power for Land, Sea and Air  

May 14-17, 2007 

GT2007-27660 
A COMPREHENSIVE HIGH FREQUENCY VIBRATION MONITORING SYSTEM FOR 

INCIPIENT FAULT DETECTION AND ISOLATION OF GEARS, BEARINGS AND 
SHAFTS/COUPLINGS IN TURBINE ENGINES AND ACCESSORIES 

Matt Watson, Jeremy Sheldon, Sanket Amin, 
Hyungdae Lee, Ph.D, and Carl Byington 

Impact Technologies, LLC 
2571 Park Center Blvd. State College, PA 16801 

Matthew.Watson@impact-tek.com  

Michael Begin 
NAVAIR, Code 4.4.2 

Patuxent River, MD 20670 
Michael.Begin@jsf.mil 

 

Proceedings of GT2007 
ASME Turbo Expo 2007: Power for Land, Sea and Air 

May 14-17, 2007, Montreal, Canada 

GT2007-27660 
ABSTRACT 
 The authors have developed a comprehensive, high 
frequency (1-100 kHz) vibration monitoring system for 
incipient fault detection of critical rotating components within 
engines, drive trains, and generators. The high frequency 
system collects and analyzes vibration data to estimate the 
current condition of rotary components; detects and isolates 
anomalous behavior to a particular bearing, gear, shaft or 
coupling; and assesses the severity of the fault in the isolated 
faulty component. The system uses either single/multiple 
accelerometers, mounted on externally accessible locations, or 
non-contact vibration monitoring sensors to collect data. While 
there are published instances of vibration monitoring 
algorithms for bearing or gear fault detection, there are no 
comprehensive techniques that provide incipient fault detection 
and isolation in complex machinery with multiple rotary and 
drive train components. The author’s techniques provide an 
algorithm-driven system that fulfills this need.  
 The concept at the core of high frequency vibration 
monitoring for incipient fault detection is the ability of high 
frequency regions of the signal to transmit information related 
to component failures during the fault inception stage. Unlike 
high frequency regions, the lower frequency regions of 
vibration data have a high machinery noise floor that often 
masks the incipient fault signature. The low frequency signal 
reacts to the fault only when fault levels are high enough for 
the signal to rise over the machinery noise floor.  
 The developed vibration monitoring system therefore 
utilizes high frequency vibration data to provide a quantitative 
assessment of the current health of each component. The 
system sequentially ascertains sensor validity, extracts multiple 
statistical, time, and frequency domain features from broadband 
data, fuses these features, and acts upon this information to 
isolate faults in a particular gear, bearing, or shaft. The 
techniques are based on concepts like mechanical 
transmissibility of structures and sensors, statistical signal 
processing, demodulation, time synchronous averaging, 
artificial intelligence, failure modes, and faulty vs. healthy 
vibration behavior for rotating components. The system 
exploits common aspects of vibration monitoring algorithms, as 
applicable to all of the monitored components, to reduce 
algorithm complexity and computational cost. To isolate 
anomalous behavior to a particular gear, bearing, shaft, or 
coupling, the system uses design information and knowledge of 
the degradation process in these components.  
 This system can function with Commercial Off-The-Shelf 
(COTS) data acquisition and processing systems or can be 
adapted to aircraft on-board hardware. The authors have 
successfully tested this system on a wide variety of test stands 
and aircraft engine test cells through seeded fault and fault 
progression tests, as described herein. Verification and 
Validation (V&V) of the algorithms is also addressed. 

NOMENCLATURE 
A/D Analog-to-Digital Converter 
AE Acoustic Emission 
AM Amplitude Modulation 
AMT Accelerated Mission Test 
DC Direct Current 
FM Frequency Modulation 
kHz Kilohertz 
MDTB Mechanical Diagnostic Test Bed  
PHM Prognostics and Health Management 
PSD Power Spectral Density 
RMS Root Mean Squared 
RPM Revolutions Per Minute 
TSA Time Synchronous Average 
UAV Unmanned Autonomous Vehicle 

INTRODUCTION 
 The ability to successfully detect and isolate faults is 
critical to the performance of diagnostic algorithms and the 
implementation of Prognostics and Health Management 
(PHM). Prognostics rely on incipient (early) fault detection and 
isolation to provide reliable and timely predictions. A well-
designed PHM system seeks to extend the detection horizon as 
far as possible. Detection horizon is the elapsed time between 
the initial detection of a fault and the resultant mechanical 
failure. Figure 1 shows a timeline representation of several 
diagnostic approaches and their detection horizons. 
Incorporating features that increase detection horizon is key in 
the design of a high performance PHM system. 
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Figure 1 – Typical Turbo Machinery Diagnostics Detection Horizon Comparison
Vibro-acoustic data continues to provide some of the most 
quantitative and reliable indicators of bearing, gear, and 
rotating member fatigue for detection and diagnosis. These 
indicators are typically spread throughout the vibro-acoustic 
regime. Figure 2 illustrates the regions of response and health 
management uses of vibro-acoustic data, as well as the 
detection horizon provided. As shown, healthy machine 
vibration energy for a gas turbine engine dominates the 
frequency region from DC through approximately 50 kHz. This 
region is also appropriate for rotordynamic fault detection, such 
as misalignment and imbalance. However, the use of high 
frequency measurements is required for effective prognostic-
enabling incipient fault detection and fault isolation.  

The typical utility of high frequency measurements in 
diagnostics and prognostics is documented in several studies 
[1-3]. Research has shown that early material distress and 
incipient faults are most detectable at higher frequencies; thus 
an indication at this point will provide the greatest detection 
horizon. For instance, the earliest indications of bearing 
problems appear in ultrasonic frequencies (>30 kHz). As wear 
increases, component noise drops in the frequency range. 
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Figure 2 – Vibro-Acoustic Spectrum and PHM Uses 
During fault progression, slight defects begin to ring the 
bearing at natural frequencies and overall high frequency 
energy and demodulated spectra values increase. Further in the 
progression, bearing defect frequencies and harmonics appear 
in the conventional spectrum analysis (if the overall machinery 
noise is not too high). High frequency demodulation and 
enveloping confirms this progression of damage. At the very 
end of life, the magnitudes of 1 times RPM are affected and 
more harmonics appear in the frequency analysis. Defect 
frequencies start to disappear and are replaced by high 
frequency random noise as the damage induces more random, 
chaotic vibration. Just prior to failure, spectrum energy will 
usually grow by excessive amounts. 

This paper describes a comprehensive turbine engine and 
accessory vibration monitoring system that has been developed 
to take advantage of the changes in high frequency vibration 
that occur during the incipient stages of a fault. The approach, 
shown in Figure 3, uses component-specific PHM modules that 
extract information from high frequency vibration sensors to 
detect incipient faults. As seen, the system addresses each of 
the critical rotating components of a turbine engine, including 
the gears, bearings, shafts, and couplings. In addition, the 
validity of data from the vibration sensors is also evaluated 
prior to data processing to ensure that false alarms are not 
triggered by anomalous data. The PHM modules also consider 
the operational mode of the system and appropriately normalize 
the results to further reduce false alarms. The results from the 
component-specific PHM modules are then interpreted by a 
system-level reasoner that accounts for functional interaction 
and dependency between elements. This approach reduces the 
complexities associated with tracking competing failure modes 
because all information is presented to a single point for 
interpretation. The system-level reasoner interprets the results 
from the PHM modules and produces an overall assessment 
that detects and isolates system faults and predicts future health 
through the application of prognostic algorithms. 
Operation/usage statistics, visual inspection, experience-based 
data, user input, etc., can also be incorporated into the analysis. 
This hierarchal approach to system/subsystem health 
monitoring produces an overall assessment of health that 
considers all relevant Prognostics and Health Management 
(PHM) information. 
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Figure 3 - A Comprehensive Turbine Engine and Accessory Vibration Monitoring System 
This paper describes the key elements of the PHM 
architecture shown in Figure 3 and highlights its successful 
application in a number of military and industrial test cell 
applications. These successes clearly demonstrate the system’s 
ability to detect and isolate incipient faults in complex 
machinery with multiple rotary and drive train components, 
including gears, bearings, shafts, and couplings. 

FIRSTCHECK™: SENSOR VALIDATION 
An important assumption in the deployment of an 

automated PHM system is that the data used by the system is 
accurate and valid. However, there are various factors 
associated with sensor hardware degradation and inadequate 
data collection methods that can compromise the integrity of 
vibration data. For example, accelerometers can be damaged by 
exposure to excessive shock or temperature or by improper 
handling by maintenance personnel. Other factors are more 
insidious and arise from loose electrical connections, poor 
solder joints, loose mounts, ground loops, electromagnetic 
interference (EMI) and Radio Frequency Interference (RFI) 
noise, or degradation of sensing instrumentation due to thermal 
effects. Data acquisition effects, such as A/D clipping and 
insufficient dynamic range, can also alter the dynamic 
characteristics of the signal. These issues can be very 
problematic and lead to significant safety concerns (i.e., 
onboard) and cost increases (i.e., during development or 
validation testing, where lost data means that a test may have to 
be repeated). In addition, changes in the dynamics of a 
vibration signal characteristic due to sensor faults can be 
deceptively similar to those due to mechanical failures (or vice 
versa), which will inevitably result in false alarms. Rigorous 
and automated analysis of the integrity of vibration data is 
therefore critical to providing accurate health assessments. 
Based on the authors’ experience, vibration monitoring 
algorithms can be impeded by faulty accelerometer data. Figure 
4 shows the result of the authors’ analysis of a gear pinion 
failure that occurred on the test stand of a high-speed 
(thousands of RPMs), high-power (tens of thousands of 
horsepower) military fighter aircraft drive train. As seen, 
several vibration features react simultaneously, indicating that a 
potential fault is present in the system. Information gathered 
solely from this sensor would confidently indicate a fault. 
However, upon further investigation of the raw sensor data 
(shown in the top plot of Figure 4), one can see that this 
reaction was caused by faulty (intermittent) data and, therefore, 
should not be trusted.  

 
Figure 4 – False Alarm Caused by Faulty Sensor  
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In order to address this potential source of false alarms and 
validate the integrity of the signal, the developed approach first 
evaluates the high frequency vibration signal using a technique 
termed FirstCheck™. This technique tracks specific signal 
characteristics and statistical-based features to identify basic 
sensor failures, such as clipping, weak signal, over-
amplification, and DC-bias, as well as other forms of corrupt 
data. This approach is more effective than traditional energy 
measures (i.e., peak-to-peak strength), which cannot detect a 
corrupt vibration signal when its values are within normal 
range but lacking in frequency content. Similar to mechanical 
fault detection algorithms, the developed approach uses a 
baseline of healthy sensor values to ensure that the algorithm 
does not disregard a valid signal.  

Figure 5 shows an example of the algorithm’s ability to 
detect anomalous vibration data. This data was collected from a 
small engine used to power a military UAV. As seen, the feature 
response varied significantly over the course of the test (left 
plot). In the early part of the test, the high feature response was 
indicative of a loose sensor connection. This is evident in the 
raw, time-series waveform (top right plot) and was confirmed 
through inspection. This problem was corrected and normal 
response resumed (see right, middle plot). As the test 
continued, the feature intermittently returned a value close to 
zero. This was a result of the data collection system being left 
on when the engine was not operating. This evidence is 
supported by the time waveform shown in the bottom right plot 
of Figure 5. 

These results clearly demonstrate the algorithm’s ability to 
autonomously detect a vibration sensor that has been 
disconnected or damaged. In addition to the examples 
presented, the algorithm has been rigorously developed and 
validated in many fielded and test cell applications, including 
Navy shipboard propulsion systems, helicopter engine 
FADECs, aircraft engine test cells, and onboard military 
ground and aircraft propulsion/drive train systems. 
 

IMPACTENERGY™:  BEARING FAULT DETECTION 
AND ISOLATION 

Within the developed approach, bearing fault detection and 
isolation is performed using a set of algorithms termed 
ImpactEnergy™. Although bearing characteristic frequencies 
are easily calculated, they are not always easily detected by 
conventional frequency domain analysis. Incipient bearing 
damage is most often characterized by short-burst impulses in 
the vibration signature. Vibration amplitudes at these 
frequencies due to incipient faults (and sometimes more 
developed faults) are often indistinguishable from background 
noise or obscured by much higher amplitude vibration from 
other sources, including engine rotors, blade passing, and gear 
meshing. Similarly, time domain energy features, such as RMS 
and Kurtosis, are not significantly affected by such short bursts 
of low intensity vibrations. Therefore, traditional time domain 
or frequency domain analyses often encounter problems in 
detecting the early stages of bearing failure. 

The developed algorithms integrate traditional time-
domain statistical analysis and frequency-based spectral 
analysis techniques with high-frequency demodulation and 
advanced feature extraction algorithms to provide a more 
effective PHM solution. The advantages of using the high 
frequency response to identify and track bearing damage is 
well documented [2, 4] and proven to be effective. 
Demodulation (or enveloping) allows the broadband energy 
caused by failure effects to be differentiated from normal 
system noise. This approach provides the ability to detect 
defect impulse events much easier than traditional analysis 
techniques. A key consideration is selecting the bandpass filter 
that is centered on the expected carrier frequencies. Through 
proprietary knowledge and field-application experience, the 
authors have developed a process to identify key carrier 
frequencies [5, 6].
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Figure 5 – Sensor Validation Feature and Corresponding Time Waveforms from a Military UAV Engine
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For complete characterization of bearing health from 
incipient fault to failure, the algorithms include processing to 
extract an extensive set of time and frequency domain features 
from both the raw (unprocessed) and demodulated vibration 
signals. This extensive feature set provides an effective fault 
isolation capability. Time domain features include traditional 
statistical measures, such as RMS, Kurtosis, and Crest Factor. 
Frequency domain features include the power levels of specific 
bearing defect frequencies, which are compared against known, 
healthy baseline thresholds. These features can be very useful 
in diagnosing a fault [7]. In addition, observing the magnitude 
of the rate of change of these features can also provide a 
prognostic benefit.  

The developed algorithms have been applied in numerous 
industrial and military platforms, including power generation 
equipment and several gas turbine engines. Figure 6 shows an 
example using vibration data that was collected from a multi-
stage military fighter aircraft drive train with multiple bearings 
(more than ten) and a sophisticated, high-power gearbox. The 
advantage of using the developed algorithm is clear in this 
example, which compares the power spectral density of the 
raw, unprocessed, conventional vibration signal against the 
ImpactEnergy™ processed signal. The results obtained using 
the developed approach clearly demonstrate an increase in 
bearing defect frequency identification and the advantage of 
applying the preprocessing. These results were confirmed by 
teardown inspections, which revealed a single bearing with 
significant raceway damage. 

Conventional

ImpactEnergy™

Faulted Bearing
Defect Frequency

 
Figure 6 - Traditional Vs. ImpactEnergy™ Power 

Spectrum Density Estimates 
 

The algorithms also provide increased fault isolation 
capability. This is demonstrated in Figure 7, which compares 
the respective defect frequency feature trends of two bearings 
(one healthy and one faulted) from the example aircraft drive 
train system just described. As seen, the defective bearing 
feature is larger in magnitude than the healthy bearing feature 
and shows a gradual upward trend and variance increase, which 
is representative of the progression of a fault. The trend for the 
healthy bearing, on the other hand, remains constant with 
minimal variance.  

Figure 8 (below) provides an additional example of the 
algorithm in a high performance test stand used for researching 
the failure propagation patterns of full-scale aircraft ceramic 
hybrid bearings. The test stand includes a 150 HP electric 
motor that drives two identical ceramic hybrid bearings, one of 
which was seeded with a spall on the surface of a single rolling 
element partly through the test (after approximately 575 hours). 
The test cycle contained three stages of operation, with load 
and speed conditions simulating military accelerated mission 
tests (AMTs). Data was sampled at 200 kS/s, allowing for high-
frequency analysis. 

The left plot in Figure 8 provides results for one of the 
energy features. As seen, the feature behaved statically up to 
approximately 575 hours of testing. At this point, the feature 
began to distinctively increase in magnitude and variance on all 
three accelerometers, indicating that fault inception had 
occurred. In addition to the fault detection performance of the 
energy feature, a feature specifically developed to detect outer 
raceway defects provided good fault isolation performance, as 
shown in the right plot of Figure 8. Similar to the energy 
feature trend, a dramatic increase in magnitude occurred 
approximately 575 hours into testing. Furthermore, the 
magnitude and variance of the outer race feature significantly 
increased after 774 hours, indicating that the fault had 
progressed to a severe state. These results were supported by 
periodic teardown inspections.
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Nearby Healthy Bearing from a Military Fighter 
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Figure 8 - Fault Detection (left) and Isolation (right) Capability of Developed Bearing PHM Approach 
GEARMOD™: GEAR FAULT DETECTION AND 
ISOLATION 

The authors have developed a set of algorithms, termed 
GearMod™, that are used to extract diagnostic features that can 
be employed for gear fault detection and isolation. These 
algorithms contains a broad range of statistical methods based 
on time synchronous averaged (TSA) and other processed 
signals. The time synchronous averaging technique is a very 
useful noise reduction tool that reduces random noise levels 
and disturbances from events unrelated to the gear of interest. 
TSA has been extensively used to preprocess gear vibration 
signals [8, 9]. The fundamental principal of TSA is that the 
vibration signals related to shaft and gear rotation will repeat 
periodically with each rotation. Therefore, TSA divides the 
vibration signal into contiguous segments (with each segment 
representing one shaft rotation) and calculates the average of 
the segments. This process reinforces vibration components 
that are synchronous to the shaft rotation and cancels out others 
that are out of phase in consecutive rotations. The algorithms 
calculate time-domain features, such as RMS, Skewness, 
Kurtosis, Energy Operator Kurtosis, and Crest Factor, as well 
as features from the spectrum of the averaged signal, including 
FM0, Sideband Index, and Sideband Level Factor. Additional 
features are also calculated using proprietary methods [10, 11]. 

These algorithms have been successfully applied in 
numerous military and research applications, including gear 
fault progression test data acquired from a Mechanical 
Diagnostic Test Bed (MDTB) at the Pennsylvania State 
University Applied Research Lab. Figure 9 shows an example 
trend of a diagnostic feature that was extracted from the MDTB 
data. The circles in black (on the left side of vertical dotted 
line, which is coincident with crack initiation) represent the 
gear in good condition and the circles in blue (on the right side 
of the dotted line) represent the gear in faulty condition. As 
seen, the developed feature accurately represents the health of 
the gearbox. Figure 10 shows another successful application of 
the algorithms, as applied to a high performance military 
fighter aircraft gearbox. In this case, the fault was not detected 
by the test cell monitoring system, which resulted in a 
catastrophic failure that destroyed the test stand. However, 
subsequent offline analysis of the data using the developed 
approach showed significant feature response more than five 
minutes before the failure occurred. This result means that real-
time application of the developed module would have detected 
the fault in sufficient time to save the test stand. 
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Figure 10 - Gear Fault Detection of Catastrophic Military Fighter Aircraft Gearbox Failure 
GEARMOD-SHAFT™ AND COUPLING OVERVIEW 
The authors have developed a set of algorithms, termed 

GearMod-Shaft™, that combines traditional shaft harmonic 
inspection methods, TSA analysis, and a Nonlinear Energy 
(NLE) estimation algorithm to identify frequency variations 
related to a failing shaft or coupling. These algorithms have 
also proven useful in identifying shaft misalignment. Unlike a 
bearing fault, which  is small and induces an impulse response 
each time it rolls over another element, shaft and coupling 
vibration energy is primarily limited to the dominant forcing 
frequencies (i.e., the shaft RPM and its exact multiples). 
Sabnavis et al [12] conducted a literature review of cracked 
shaft diagnostics and cited several case studies that support 
looking at the trend of 1x and 2x orders of the shaft. 
Furthermore, a direct advantage is gained when performing this 
type of traditional analysis using the TSA signal, since non-
cyclic events and random noise are diminished through the 
TSA signal calculation process. Example results of the 
developed approach are captured in Figure 11. In this example, 
a shaft failure occurred on a full-scale aircraft bearing test stand 
approximately 8 hours and 50 minutes after testing began. 
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Figure 11 - Shaft Feature from a Full-Scale Aircraft 

Bearing Test Stand Failure 
Figure 11 trends a TSA-based feature throughout the 
progression of the test. The plot in Figure 11 shows the 
dynamic behavior of the feature throughout the progression of 
testing and reveals a drastic increase in amplitude at 
approximately 7.5 hours into testing, resulting in a detection 
horizon of approximately 1.5 hours (a maintenance lead time of 
approximately 3 accelerated missions in this scenario). It is 
worth noting that the dynamic variation of the feature is a result 
of the testing’s cyclic load and speed conditions, which 
simulate military accelerated mission test profiles. 

The Nonlinear Energy (NLE) algorithm enhances the 
traditional approach by tracking the energy in resonant systems 
and accentuating characteristic modes while diminishing 
random noise and events. The process is termed ‘nonlinear’ 
because it uses a nonlinear operator. Nonlinear energy 
operators have been successfully applied to signal envelope 
detection, AM and FM demodulation in audio signals, and 
voice recognition [13]. Figure 12 illustrates the detection 
advantage gained when the nonlinear energy algorithm is used 
to identify a shaft coupling fault. The vibration data in this 
example was collected from a test stand dedicated to the 
research of coupling failure detection. The test setup included a 
motor coupled to a generator using a disc-type coupling. 
Vibration data was collected and processed for various types of 
coupling faults. Figure 12 compares a healthy, no-fault 
coupling with one that contained a seeded incipient crack. As 
seen, analysis of the frequency spectrum from the TSA signal 
alone (top plots) makes it difficult to discern between the 
healthy and faulted couplings. However, as seen in the lower 
plots, applying the nonlinear energy estimation process to the 
TSA signal makes the fault detectable through an increase in 
the shaft harmonic content. It is clear from this example that the 
NLE approach employed by the developed module 
significantly enhances coupling fault detection capability. 
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Figure 12 - Traditional vs. Nonlinear Energy (NLE) Approach to Identify Coupling Faults 
SYSTEM-LEVEL FAULT REASONER OVERVIEW 
The comprehensive approach of the developed system 

results in many diagnostic features that are individually useful 
in fault detection. However, the intelligent fusion of these 
complimentary features provides a more accurate and robust 
indicator of overall component health. As a result, the authors 
have developed a system-level reasoner that is capable of 
combining various component-level features into a single 
assessment of the targeted component’s health. In addition, the 
various component health states are used to evaluate overall 
system health. A flowchart representation of the system-level 
reasoner is shown in Figure 13. Depending on whether or not 
baseline/healthy data is available, the reasoner operates in one 
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Figure 13 – Inference Engine Process Flow 
of two modes. If baseline data is available, the reasoner will use 
historical feature values to estimate the fault severity predicted 
by each feature. Unlike many diagnostic fusion techniques, the 
fault severity estimate accounts for both abnormally high 
feature values and high rates of change in feature values. The 
reasoner also compares the baseline data to the respective fault 
feature threshold, which is statistically determined from 
baseline data, to calculate its confidence in the fault estimate.  

If there is no baseline data, the reasoner will only use 
information derived from the trends of the features to estimate 
fault severity and calculate fault confidence. After fault severity 
and confidence have been calculated for each feature and 
sensor in the system, the individual features are fused to 
provide a more robust health indicator. In either mode of 
operation, feature fusion uses a sequential combination of 
knowledge fusion techniques (i.e., Bayesian Inference and 
Dempster-Shafer Combination) and voted weighting schemes. 
In the later case, unique feature weights are a determined from 
the feature’s fault prediction capability, the fault 
transmissibility to each sensor, previous experience, and the 
availability of baseline data and operating condition 
information. Finally, overall fault severity and confidence are 
calculated using a final fusion and health inference engine. The 
health inference engine uses a combination of implicit and 
explicit approaches, such as Bayesian Belief Networks (BBN), 
Fuzzy Logic, or Neural Networks, to name a few. 

The developed fault reasoning approach was validated 
using vibration data from a high speed military helicopter gas 
turbine engine. The data was collected in a test cell while the 
engine was operating under load conditions simulating an 
actual flight. Validation was performed using data from a 
healthy bearing (for baseline) and a bearing seeded fault 
progression test (a small dent was created on the inner raceway 
in the load zone of the running bearing using a hardness testing 
machine and allowed to progress). The seeded fault data was 
evaluated by the reasoner to determine fault confidence (Figure 
14, left plot) and fault severity (right plot). 
8 Copyright © 2007 by ASME 
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Figure 14 – Fault Severity Assessment and Confidence for a Dented Bearing in a Military Helicopter Engine
As expected, the reasoner was less confident that an 
incipient fault existed at the beginning of the test. However, the 
reasoner’s confidence quickly increased as its results were 
reinforced by new features indicating a fault. The reasoner was 
also able to accurately predict and track bearing fault severity 
as it progressed from the incipient level (at the beginning of the 
test) to a much more severe state. It is worth noting that the 
fluctuations in the severity assessment were caused by varying 
speeds and loads of the engine during testing. However, even 
with these fluctuations, the reasoner was very sensitive and 
correlated well with the increase in bearing damage. These 
results were confirmed with tear down inspections and pictures 
taken using a scanning electron microscope. 

VERIFICATION & VALIDATION 
Verification and Validation (V&V) of incipient fault 

detection systems can be accomplished using statistical 
analysis. This analysis is based on the separability of features 
between the no-fault (“healthy”) and faulted conditions. Figure 
15 shows the probability density function (PDF) of feature 
values for a no-fault condition (the PDF on the left) and a 
component with a fault (the right PDF). These distributions are 
fairly typical of most features that are designed for fault 
detection purposes; however, the concepts can be applied 
regardless of whether the faulted feature increases or decreases 
as a result of component damage. 
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Figure 15 –Statistical Detection Metrics 
The upper plot of Figure 15 emphasizes the no-fault 
distribution. As seen, the Probability of False Alarm, P(FA), is 
represented in red on the right side of the threshold. This 
represents the feature values that would incorrectly indicate 
that a fault existed. The lower plot of Figure 15 emphasizes the 
“unhealthy” distribution. The Probability of Missed Detection, 
P(MD), is the red area below the threshold and represents 
feature values that (incorrectly) would not have indicated a 
fault given the threshold set-point. It is worth noting that the 
Probability of Correct Rejection, P(CR), and Probability of 
Detection, P(D), are the conjugates of P(FA) and P(MD), 
respectively.  

As seen, P(FA) and P(MD) are interdependent due to their 
measurement with respect to a particular threshold. If the 
threshold is raised to decrease the P(FA), P(MD) is 
consequently increased. Therefore, once sensors are positioned, 
data is collected, and features are extracted, a threshold choice 
must be made to either minimize P(FA) or P(MD). Assuming 
the computed feature is sensitive to changes brought about by a 
damage mechanism, the system designer’s goal is to maximize 
that sensitivity, thus separating the mean values while 
minimizing the variance to decrease the spread and resultant 
overlap of the distributions. Additional details on this analysis 
can be found in  [14] and  [15]. 
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Figure 16 – V&V of a Military Test Stand Bearing Fault 
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Figure 16 shows an example of the statistical analysis 
performed on the ImpactEnergy™ algorithm using data from a 
seeded fault on a military test stand. In this case, a threshold 
was set to achieve a 2% probability of false alarm. As seen, this 
threshold produced a very good detection rate for both the 
incipient and severe faults that were evaluated. 

CONCLUSIONS & FUTURE WORK 
The authors have developed a comprehensive high 

frequency (1-100 kHz) vibration monitoring system for 
incipient fault detection of critical rotating components within 
engines, drive trains, and generators. This comprehensive 
approach begins with validation of vibration sensor data to 
reduce the occurrence of false alarms. Component-specific 
PHM modules are then applied to individually detect and 
isolate incipient faults in gears, bearings, and shafts. 
Component-specific information is then interpreted by a 
system-level reasoner that considers component interaction and 
other operational factors to produce a confident analysis of 
overall system health. As described herein, this PHM system 
has been successfully applied to several industrial and military 
systems (in the field or currently under development) for the 
detection and isolation of faults in gears, bearings, and shafts. 
The developed vibration monitoring system represents 
significant technology maturation from traditional 
demonstrations, which are performed in controlled, sub-scale 
test environments, to actual applications in real, complex 
systems with multiple rotary components that operate under 
dynamic conditions. 

ACKNOWLEDGMENTS 
This work has significantly benefited from the invaluable 

support and technical consult of Andy Hess, Doug Gass, Bill 
Hardman, and Eric Carney of the Naval Air Warfare Center 
(NAVAIR) and Joint Strike Fighter program office, along with 
Dr. Al Behbahani, Ken Semega, Christopher Klenke, and 
Matthew Wagner of the Wright-Patterson Air Force Research 
Laboratory (AFRL). Financial support for this work, provided 
through multiple contracts from both the NAVAIR and Air 
Force Small Business Innovative Research (SBIR) program 
offices, is also gratefully acknowledged. The authors would 
also like to thank DARPA for proving Phase III funding for test 
cell evaluation of the previously developed ImpactEnergy™ 
techniques. Finally, the authors would like to acknowledge the 
contributions of countless others at Impact Technologies, 
including Dr. Michael Roemer, Patrick Kalgren, Rolf Orsagh, 
Dr. Kallappa Pattada, and the numerous others who have 
helped make these efforts successful. 

REFERENCES 
[1] Lebold, M., McClintic, K., Campbell, R., Byington, C., 
and Maynard, K., 2000, “Review of Vibration Analysis 
Methods for Gearbox Diagnostics and Prognostics,” Proc. 54th 
Meeting of the Society for MFPT, May 1-4, 2000, pp. 623-625. 
 

[2] Bagnoli, S., Capitani, R., and Citti, P., 1988, “Comparison 
of Accelerometer and Acoustic Emission Signals as Diagnostic 
Tools in Assessing Bearing Damage,” Proc. of the 2nd 
International Conference on Condition Monitoring, London, 
pp. 117-125. 
[3] Campbell, R.L, Byington, C.S, and Lebold, M.S, 2000, 
“Generation of HUMS Diagnostic Estimates Using Transitional 
Data,” Proc. 13th International Congress and Exhibition on 
Condition Monitoring and Diagnostic Engineering 
Management, The Society for Machinery Prevention 
Technology (MFPT), Haymarket, VA, pp. 587-595. 
[4] Braun, S., and Datner, B., 1979, “Analysis of Roller/Ball 
Bearing Vibrations,” J. of Mechanical Design, 101, pp. 118-25. 
[5] Kallappa, P., Byington, C., Kalgren, P., and DeChristopher, 
M., 2005, “High Frequency Incipient Fault Detection for 
Engine Bearing Components,” Proc. ASME Turbo Expo 2005: 
Power for Land, Sea, and Air, Paper No. GT2005-068516, 
Reno-Tahoe, NV. 
[6] Kalgren, P., Byington, C., and Kallappa, P., 2004, “An 
Intelligent Ultra High Frequency Vibration Monitoring System 
for Turbomachinery Bearings,” Proc. 2004 ASME/STLE 
International Joint Tribology Conference, Paper No. 
TRIB2004-64317, Long Beach, CA. 
[7] Harris, T.A., 2001, Rolling Bearing Analysis, John Wiley 
& Sons, Inc., New York, pp. 993-1000. 
[8] Braun, S.G., and Seth., B.B., 1979,  “On the Extraction and 
Filtering of Signals Acquired from Rotating Machines,” J. of 
Sound and Vibration, 65(1), pp. 37-50. 
[9] Decker, H.J., and Zakrajsek, J.J., 1999, “Comparison of 
Interpolation Methods as Applied to Time Synchronous 
Averaging,” Technical Memorandum, NASA/TM-1999-
209086, ARL-TR-1960, Army Research Lab, Cleveland, OH. 
[10] Orsagh, R., and Lee, H., 2006, “An Enhancement to TSA 
and Filtering Techniques for Rotating Machinery Monitoring 
and Diagnostics,” 60th Meeting of the Society for MFPT, 
Virginia Beach, VA, pp. 339-349.  
[11] Orsagh, R., Lee, H., Watson, M., Byington, C., and 
Powers, J., 2005, “Application of Health and Usage Monitoring 
System (HUMS) Technologies to Wind Turbine Drive Trains,” 
WindPower 2005, Denver, CO, May 15-18, 2005. 
[12] Sabnavis, G., Kirk, R., Kasarda, M., and Quinn, D., 2004, 
“Cracked Shaft Detection and Diagnostics: A Literature 
Review,” Shock and Vibration Digest, 36(4), pp. 287-296. 
[13] Maragos, P., Stokes, V., and Handel, P., 1993, “On 
Amplitude and Frequency Demodulation Using Energy 
Operators,” IEEE Transactions on Signal Processing, 41(2), pp. 
506-7. 
[14] Byington, C., Safa-Bakhsh, R., Watson, M., Kalgren, P., 
2003, “Metrics Evaluation and Tool Development for Health 
and Usage Monitoring System Technology,” AHS Annual 
Forum 59, Phoenix, AZ, May 6-8, 2003.  
[15] Roemer, M., Dzakowic, J., Orsagh, R., Byington, C., 
Vachtsevanos, G., 2005, “Validation and Verification of 
Prognostic and Health Management Technologies,” Proc. 2005 
IEEE Aerospace Conference, Big Sky, MT, pp. 3941-3947.  
10 Copyright © 2007 by ASME 


