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The present paper addresses systematic approach to Condition-Based Maintenance, and research results at the 

University of South Carolina Condition-Based Maintenance Research Center, directly related to U.S. Army 
rotorcraft Vibration Management Enhancement Program. The paper gives an analysis of the CBM concept and its 
functional layers, such as condition monitoring, diagnostics, prognostics and health management systems, followed 
by diagnosis and prognosis enabling technologies and concepts; followed by research and development of Health 
and Usage Monitoring Systems enhancing technologies, such as expansion of military aircraft condition sensing 
technologies through integration of multi-sensor data fusion, and exploration of new signal analysis techniques. The 
paper is concluded by Tail Rotor Gearbox case studies, and results of cost benefit analysis of the rotorcraft 
Condition-Based Maintenance program implemented at the South Carolina Army National Guard. 
 
 
 

Introduction 

Since 1998 the University of South Carolina (USC) 
and the South Carolina Army National Guard 
(SCARNG) have participated in a number of important 
projects that were directed at reducing the Army 
aviation costs and increasing operational readiness [1-
8, 43]. This joint effort succeeded in higher operational 
readiness using fewer, more capable resources, provided 
commanders with relevant maintenance-based readiness 
information at every level, showed and enabled millions 
of dollars in operational costs savings, and shifted the 
paradigm from preventative and reactive practices to 
proactive analytical maintenance processes, now 
commonly referred to as Condition-Based Maintenance. 
The benefits of these technologies have already been 
proven for helicopters on combat missions, training, and 
maintenance flight conditions. 

The transition to CBM requires a collaborative joint 
effort of an Industry, Academia, and Government team, 
and is contingent on identifying and incorporating 
enhanced and emerging technologies into existing and 
future aviation systems. This requires new tools, test 
equipment, sensors, and embedded on-board diagnosis 
systems.  
_______________________________ 
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The University of South Carolina has supported the 
U.S. Army by conducting research to enable timely and 
cost-effective aircraft maintenance program 
enhancements. Research emphasis has been to collect 
and analyze data and to formulate requirements 
assisting in the transition toward Condition-Based 
Maintenance for the U.S. Armed Forces.  

The research program at USC seeks to deliver 
tangible results which directly contribute to CBM 
efforts and objectives as: link and integrate maintenance 
management data with onboard sensor data and test 
metrics [5-7], and to quantify the importance of each 
data field relative to CBM; understand the physics and 
the root causes of faults of components or systems; 
explore the development of models for early detection 
of faults; develop models to predict remaining life of 
components and systems. 
 

Concept of Condition Based Maintenance 

Condition Based Maintenance (CBM) (sometimes 
called Predictive Maintenance) is an approach to 
equipment maintenance, where actions are performed 
based on part’s condition, which is found through 
observation and analysis rather than on event of failure 
(Corrective Maintenance) or by following a strict 
maintenance time schedule (Preventive Maintenance). 
CBM is looked upon as an efficient way of asset 
maintenance, which, if properly established and 
implemented, could significantly reduce the number or 
extent of maintenance operations, eliminate scheduled 



 

inspections, reduce false alarms, detect incipient faults, 

enable autonomic diagnostics, predict useful remaining 

life, enhance reliability, enable information 

management, enable autonomic logistics, and 

consequently reduced life cycle costs. 

The approach of CBM to asset management is not 

new and over the last seventy years dramatic 

improvements have occurred in the technology, 

equipment and practices used for machinery vibration 

measurement, condition monitoring and analysis [12]. 

Rapid technological progress in semiconductor and 

information technologies over the last two decades has 

made data acquisition and computation hardware much 

more compact, robust and less expensive, enabling 

implementation in reliability critical machinery like 

civilian and military rotorcraft vehicles, and in 

industrial, medical, automotive, electronics, energy, oil 

and gas production industries. Currently, still due to 

relatively high CBM implementation costs, traditional 

maintenance approaches of Corrective Maintenance, 

Preventive Maintenance and CBM techniques are 

being used in parallel.  
A full CBM system consists of several functional 

layers. According to Open Systems Architecture for 

Condition-based Maintenance (OSA-CBM) standard 

[10] and Condition Monitoring and Diagnostics of 

Machines ISO-13374 standard [11] these are:   
 

Data Acquisition: converts an output from a sensor 

measurement to a digital parameter, representing a 

physical quantity and related information such as the 

time, velocity, acceleration, sensor configuration.  

Data Manipulation: performs signal analysis, 

computes meaningful descriptors, and derives virtual 

sensor readings from the raw measurements.  

State Detection: facilitates the creation and 

maintenance of normal operation baselines, searches for 

abnormalities whenever new data is acquired, and 

determines in which abnormality zone, if any, the data 

belongs (e.g. alert or alarm).  

Health Assessment (Diagnosis): diagnoses any faults 

and rates the current health of the equipment or process, 

considering all state information.  

Prognostics Assessment (Prognosis): determines 

future health states and failure modes based on the 

current health assessment and projected usage loads on 

the equipment and/or process, as well as remaining 

useful life.  

Advisory Generation: provides actionable information 

regarding maintenance or operational changes required 

to optimize the life of the process and/or equipment 

based on diagnostics/prognostics information and 

available resources. 
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Fig. 1. Functional layers of CBM. 

 
Data Acquisition, Data Manipulation and State 

Detection layers comprise Condition Monitoring 

system, and make a foundation of a general CBM 

program (Fig. 1). Further growth of more efficient CBM 

program involves realization of Diagnosis, Prognosis, 

and Advisory Generation layers, which incorporates a 

broader range of new technologies.  

 

 

Fig. 2. Schematic of a component lifetime curve, 

relating to its condition diagnosis and prognosis. 

 

Diagnostics focus on identification of individual 

components’ condition, which include early fault 

detection, isolation and identification (like current crack 

location and size). Prognostics is a general term that 

describes a process to predicting the remaining useful 

life (RUL) of a component and system (how, how fast 

and to what extent the diagnosed fault will progress) 

(Fig. 2)[13, 28-32]. Prognostics are critical in order to 

further improve reliability, minimize life cycle costs and 

realize automated logistics. Then Health Management is 

a procedure to handle the information gathered through 

condition monitoring, diagnostics and prognostics, in 

order to present an accurate report of the current 

condition of the system, and recommend maintenance 

actions, schedule operations, order supplies, aid 

technicians in making the repairs, or suggest how to 

temporarily extend the life of the component by 

maintenance actions or adaptive control. These 

technologies require integration and automation across 

the subsystems, systems and logistics management 

system levels in holistic approach [9], since most of 

them are focusing on fault diagnosis and prognosis 

within individual components. Currently CBM is
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Fig. 3. Procedural roadmap of USC CBM research program. 

 

dominantly diagnostic, since machine condition 

prognosis is relatively new and by its definition has a 

high level of uncertainty and complexity with many 

remaining challenges. 

 

Research and Development for Military Rotorcraft 

CBM at the University of South Carolina CBM 

Research Center 

As the growth and awareness of CBM develop, 

many ideas and technologies have arisen in efforts to 

improve it. There is need for a standardized 

methodology and roadmap for the currently 

implemented CBM of military rotorcraft to reach its full 

potential. In cooperation with the South Carolina Army 

National Guard, the University of South Carolina has 

the resources and channels to develop a roadmap to 

investigate the transformation of CBM. The activities of 

USC are being performed as a joint Industry, Academia, 

and Government team.  

The research roadmap (Fig. 6) consists of three 

phases: initial investigation, component and system 

testing and the implementation of a fully-capable CBM 

system. This roadmap is driven by the currently 

available digital source collectors, which through 

integration and linking direct the needs of laboratory 

testing. The results of this self-refining process will 

ultimately lead to the development of diagnosis and 

prognosis algorithms which will facilitate proactive 

CBM practices. 

The research program at USC seeks to deliver 

additional results which directly contribute to CBM 

efforts and objectives as: link and integrate maintenance 

management data with onboard sensor data and test 

metrics [5-7], and to quantify the importance of each 

data field relative to CBM; understand the physics and 

the root causes of faults of components or systems; 

explore the development of models for early detection 

of faults; develop models to predict remaining life of 

components and systems. 

 

Component Testing and Data Collection 

One of the most expensive and time consuming 

tasks relating to CBM involves testing of mechanical 

components. The goal of testing is to identify the root 

causes of components’ failure, failure modes, 

identification of ways to improve serviceability of 

aircraft components, and research and development of 

alternative sensing, diagnostic and maintenance 

technologies.  

USC CBM Research Center has been active in the 

vibration diagnostics area both through internally 

funded research and contracted research.  In the last ten 

years, USC has been working closely with the S.C. 

Army National Guard, U.S. Army Aviation Engineering 

Directorate (AED) and Intelligent Automation 

Corporation (IAC) on the implementation of VMEP 

(Vibration Management Enhancement Program), which 

resulted in on-board Modern Signal Processing Unit 

(MSPU) (vibration data acquisition and signal-

processing equipment for the health monitoring of 

critical mechanical components) for the AH-64 

(Apache), UH-60 (Blackhawk) and CH-47 (Chinook) 

fleets. The CBM Center at the USC is one of the key 

players on the U.S. Army CBM team. USC has focused 

on defining and developing a long-term roadmap of 

methodologies and processes that reinforce CBM 

activities and objectives.  State-of-the-art indoor 

helicopter test stands have been designed and built, and 

are being used to test rotating mechanical components.  

The Tail Rotor Drive Train (TRDT) and Main Rotor 



 

Swashplate (MRSP) test stands shown in Fig. 4 are 
capable of testing AH-64 drive train components 
(bearings, gearboxes, swash-plates, oil coolers and 
shafts), AH-64 hydraulic pumps, and AH-64 main rotor 
swash-plate bearing assemblies.   

 

 

 

 

Fig. 4. USC Tail Rotor Drive Train (a) Test Stand, 
Main Rotor Swashplate Assembly (b) Test Stand, 
and Their Correspondence on the Actual AH-64 

Helicopter (c). 
 

All test stands utilize several data acquisition 
systems, including current in-flight MSPU health 
monitoring system, as well as a specialized laboratory 
data acquisition system, recording torque, speed, 
temperature, vibration, and capable of electrical 
signature, and acoustic emission monitoring. They are 
controlled based on measures of speeds, torques, and 
temperatures, which are collected throughout the 
experiment. The testing capabilities are structured to test 
new and existing drive train components of military and 
civilian aircraft, with particular emphasis on AH-64, 
ARH-70, CH-47 and UH-60. Aircraft components’ 
testing also supports data requirements necessary for 

accurate diagnosis and proper maintenance of aging 
aircraft. All of the measurement data is constantly 
collected and migrated to a secure in-house file server 
which is also readily accessible to Army personnel.  

The test facility is designed to be flexible and 
practical for multiple purposes, while facilitating the 
ability to scientifically understand and interrogate the 
actual condition of components as they relate to Army 
Maintenance Management System for Aviation 
(TAMMS-A) inspections, vibration signals, health and 
usage monitoring systems output, and other data 
sources. This data is needed for the development of 
comprehensive and accurate diagnosis algorithms and 
prognosis models.  
 
MSPU Technology Advancement for Diagnostics 
and Prognostics 

The Army-developed Modern Signal Processing 
Unit (MSPU) grew out of the Vibration Management 
Enhancement Program (VMEP) and is currently in use 
on a significant part of the Army helicopter fleet 
including AH-64D, UH-60, and CH-47. The MSPU 
acquires data and calculates the Condition Indicators 
(CIs) used to determine the health of the drive system 
mechanical components. The next generation of the 
MSPU system will utilize the ongoing test and in-flight 
data, together with historical maintenance data, and 
research in sensor data fusion, new signal analysis 
techniques, and maintenance techniques, for developing 
and demonstrating advanced diagnostic capabilities for 
this technological area.  
 
General Approach to Diagnostic and Prognostic 
Techniques 

Generally solutions to the diagnostics and 
prognostics problems can be classified into data-driven 
and physics-based model techniques [44-47]. 

Data-driven approaches are based on monitored 
system’s current, historical and expert knowledge data. 
These approaches rely on the assumption that measured 
statistical characteristics of a healthy system are 
relatively similar to the previously known healthy state 
of the same or similar system. When considerable 
deviations in measured data are detected, it is assumed 
that a certain fault was initiated and diagnosis is 
attempted through comparison to historical faults 
progression data. Thus data-driven approaches are based 
on statistical and machine learning techniques from the 
theory of pattern recognition [43]. The data-driven 
approaches are applicable to systems, where 
understanding of the first principles of system operation 
is not comprehensive or where sufficient historical/test 
data is available that maps out the damage space. The 
advantage of data-driven techniques is that often they 
can be deployed quicker and cheaper, while providing a 

(c) 

(a) 

(b) 



 

system-wide coverage (physics-based model techniques 
can be more limited). 

Physics-based model techniques are potentially 
more accurate since they use damage propagation 
physical models along with actual health information of 
the system to predict the condition or remaining useful 
life of a component once fault initiation has been 
detected. The models usually consist of a healthy 
component model that simulates operation under normal 
conditions and a series of models that simulate various 
failure modes. Then signals from an actual system in 
operation are employed to match the situation in the 
physical model in order to calculate/find the fault and its 
condition. The physics-based model techniques are 
more robust since they can deal with fault scenarios that 
are missing from the historical data, because 
mathematical models can analytically account for a 
wider range of system behaviors. Because of this ability, 
physics-based model techniques do not require 
extensive training and need much less historical data, 
compared to data-driven techniques [29]. However, very 
robust and accurate mathematical models are needed. 
Thus, accurate modeling and simulation of the physical 
systems is an essential task in applying model-based 
techniques for CBM. Data-driven and physics-based 
model techniques have their own advantages and 
disadvantages (Fig. 5 [49]) and consequently should be 
used together.  
 

 

Fig. 5. Applicability of data-driven and physics-
based model techniques for diagnosis and prognosis. 

 
In case of prognostics, physics-based model 

techniques differ from data-driven by the fact that they 
can make remaining useful life predictions in the 
absence of real-time measurements, by calculations 
based on previous diagnosis data and usage changes 
(operation time, load, environment changes etc. since 
last diagnosis). If/when updated diagnostic information 
is available the model can be recalibrated and remaining 
useful life reassessed. Therefore a combination of the 
data-driven and physics-based model techniques can 

provide full prognostic ability over the entire life of the 
component (Fig. 2).  
 
Historical and Test Data Analysis for the Rotorcraft 
CBM 

The U.S. Army CBM program has led to a 
significant amount of historical data for use in diagnosis 
and prognosis on the currently operating helicopter 
fleet. Also a considerable amount of data is being 
collected at the USC AH-64 tail rotor drive-train 
(TRDT) test facility, through seeded fault component 
testing. Currently the USC CBM Research Center has 
access to 35,000 flight-hour records that include records 
from UH-60A, UH-60L, AH-64A, AH-64D, and CH-
47D aircraft, collected by the U.S. Army CBM program. 
Also from the test facility, USC has the advantage of 
being able to generate new data by implementing 
capabilities such as thermal, acoustic, electrical 
signature, and oil debris analysis. In such case there is a 
significant amount of historical vibration data and 
maintenance records database, allowing for data-driven 
diagnostic/prognostic models application. 

In order to achieve the goal of the rotorcraft 
diagnosis-prognosis, we have established a research that 
can be summarized in Fig. 6 as: (1) the process of multi-
sensor data acquisition, (2) development of new 
diagnostic features/CIs and refinement of available CIs, 
(3) establishing fault classifiers through historical and 
experimental data analysis, (4) condition diagnosis 
through statistical/expert methods for classifying and 
fusing CIs into fault classes, (5) establishing health 
classifiers through historical and experimental data 
analysis, (6) health prognosis through statistical 
inference classification methods, which all are covered 
in the following paragraphs. 

The major components of the procedure are sensors 
data collection and historical data analysis in building of 
a feature/CI vector that contains enough information 
about the current machine operating condition to allow 
for fault classification and identification. In order to 
address the issue of more effective and informative 
diagnostic measure, we have proposed a new 
method/function of CI mapping in the form of mutual 
information measure [4]. So the feature vector will 
contain data obtained by signal processing techniques 
that are already implemented in the MSPU, and by 
proposed signal analysis technique, applied on the 
historical and experimental multi-sensor data. The 
research investigates the efficiency of the advanced 
time-frequency techniques in order to extract the health 
state information from a variety of observations. The 
research is featured by considering multiple physical 
dimensions of the systems, including mechanical 
vibrations, acoustic emission, electrical signatures and 
temperatures as some of the available diagnostic data 
sources. 
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Fig. 6. Flowchart to data fusion/diagnosis/prognosis, followed by USC CBM Research Center. 
 

Multi-sensor data fusion 

In the research, multi-sensor data fusion (here it is 
fusion of features/CIs from multiple sensors) is 
reasoned by the fact that many measurement techniques 
can be used to monitor the same failure mode. A 
mechanical problem identified by vibration analysis can 
also be cross-checked with an oil debris analysis, 
Electrical Signature Analysis (ESA), or thermography 
(Table 1). Electro-mechanical problem identified by 
ESA can be confirmed through vibration or ultrasound 
analysis techniques. Hence, a confirmation of the 
diagnosis is possible through the use of the different 
measurement techniques. A single data type will rarely 

provide evidence of a particular malfunction that is as 
conclusive as when multiple data types can be 
compared. It is always desirable to have multiple sensor 
data in agreement when performing machinery 
diagnostics, in order to support a conclusion with a 
higher confidence level. This makes CBM more 
convincing, especially when critical machinery is 
involved. This way another perspective to producing 
more reliable machinery diagnostic and prognostic 
system lies in the fusion of data and information at 
different levels. Fusion of information across multiple 
sensors offers potentially significant improvements in 
robustness and accuracy in fault detection and isolation. 
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Also fusion should help to reduce the occurrence of 
false alarms. Diagnostic performance is improved by 
allowing detection of unique fault patterns seen on sets 
of signals and information instead of a single signal (as 
in the proposed mutual information measure). 
Information is integrated across a variety of sensors, so 
potential faults can be detected earlier. For example, 
several case studies at the USC CBM Research Center 
[43, 50] show that in case of improper gear lubrication, 
direct temperature measurement can be an earlier 
indicator of an impending problem in comparison to 
vibration measurement.  
 
Non-Destructive Measurement Techniques 
Investigation 

USC CBM Center has investigated several sensors 
for non-destructive testing/measurement (NDT) and 
their applicability for rotating machinery fault detection. 
There is a variety of sensors (piezoelectric, eddy 
current, thermal imaging, optical) that have been 
designed for non-destructive in-situ temperature, 
vibration, acoustic emission (AE), oil analysis, electrical 
signature analysis (ESA), ultrasound and other 
measurements. Among these vibration monitoring and 
analysis is the most recognized, informative and 
applicable technique in rotating machinery condition 
monitoring and is used in combination with all the 
mentioned measurements, since no single measurement 
technique can capture all failure precursors: 
 
Vibration: Numerous studies of roller bearings 
condition monitoring have shown that vibration, 
temperature or other measurement is not always the best 
and only solution to the problem. For example roller 
bearings vibration monitoring was proven successful 
only where the vibration energy from other components 
(shaft, gears, etc.) does not overwhelm the lower energy 
content from the defective bearing. In case of fatigue 
failure, the bearing develops microscopic cracks or 
spalls below the surface of the race, that usually stay 
undetected by vibration analysis techniques. Usually it 
is only when failure progresses the bearing produces 
audible sound and the temperature rise (in such case 
temperature measurements can be effective only at the 
late failure stages). Some studies show that only 3 to 
20% of a bearing's useful life remains after spall 
initiation [15, 16].  

If a bearing is correctly chosen and installed, the 
main reason for premature damage usually is improper 
lubrication or contamination of the lubricant. In such 
case vibrations are non-periodic and difficult to detect 
and interpret by vibration analysis techniques. Also 
when machinery speeds are very low, the bearings 
generate low energy signals which again may be 
difficult to detect.  

Similarly vibration analysis of gears could detect 
damage after 30% of contact area is already pitted. 
 
Temperature: Bearings temperature monitoring is of 
limited value in case of a physical damage, since a 
noticeable temperature rise does not occur until there is 
a significant damage. But in case of improper 
lubrication, installation, misalignment or overload - 
temperature rise can be an early sign of an impending 
fault, because in such case there will be no significant 
change in vibration levels. So bearing temperature 
monitoring may be useful in applications where loss of 
lubrication, rather than contact fatigue is the primary 
failure mechanism, such as rotorcraft hanger bearings. 
Monitoring of a lubricant temperature is also important, 
since thickness, quality and lifetime of the lubricating 
film greatly depend on the lubricant’s nominal 
operational temperature ranges.  
 
Electrical Signature Analysis: Electrical Signature 
Analysis (ESA) in CBM is mainly referred to as Motor 
Electrical Signature Analysis (MESA) or Current 
Signature Analysis (CSA). Electrical 
motor/generator/tachometer current can act as a sensor 
for detecting electro-mechanical faults in the motor. 
This way through motor’s current and voltage signals 
analysis we can detect various mechanical faults of the 
motor or drive-train. Main applications of ESA are for 
electrical motor electro-mechanical diagnostics: rotor 
bar damage, foundation looseness, static eccentricity, 
dynamic eccentricity, stator mechanical faults, stator 
electrical faults, defective bearings. But ESA has also 
been found applicable for the motor mechanical drive 
train diagnostics (gears, bearings, belts, shafts, valves 
and other components), since all key mechanical events 
that are measurable by accelerometer also can be 
measured by a motor [22-27]. Though its sensitivity in 
comparison to seismic sensor (accelerometer) remains 
uncertain [22]. 
 
Oil debris and condition analysis: Oil analysis has 
been a prime condition monitoring technique for 
gearboxes, often able to detect gearbox wear before 
vibration analysis. 

On-line oil debris monitoring uses mainly two types 
of sensors: magnetic chip detector or electric chip 
detector. The magnetic chip detector requires scheduled 
inspection, while the electric chip detector provides 
immediate indication in the cockpit without the need for 
scheduled inspection. Newer generation inductive 
electric chip detectors can collect and count 
ferromagnetic particles, especially for rolling-contact-
fatigue failures; some of them even count nonferrous 
metals [13]. Debris particles are typically analyzed off-
line with an energy-dispersive scanning electron 
microscope or X-ray fluorescence instrument to 



 

determine the material and isolate the origin of the 
particles. 

Currently main limitations of on-line oil debris 
monitoring are insensitivity to fine debris and inability 
to detect non-metallic particles. 
 
Acoustic Emission: Stress waves inside materials occur 
due to collective motion of a group of atoms during a 
crack nucleation and growth, dislocations, phase 
transformations and other processes. These processes 
can be monitored by the means of Acoustic Emission 
(AE) measurement in the range of 100 kHz to 300 kHz. 
AE signal has its origin in the material itself, not in 
external geometrical discontinuities, so generation and 
propagation of cracks associated with plastic 
deformation are among the primary sources of acoustic 
emission. Main problems in interpretation of AE signal 
and application of the technology are related to parallel 
sources of AE and temperature variations, causing a 
noisy signal [33]. The advantage of AE monitoring over 
vibration monitoring and other techniques is that it can 
detect the growth of subsurface cracks, while other 
techniques can detect defects only when they appear on 
the surface [34]. High frequency vibration energy 
attenuates very rapidly with increasing distance from a 
source. This leads to a limitation that a sensor needs to 
be very close to the source of vibration. From another 
perspective - the advantage is that the localized nature 
of the vibration can be used to isolate the source of a 
problem. Again, in case of roller bearings, vibration 
energy from other components does not affect the AE 
signal released in the higher frequency range. Also high 
frequency measurements proved to be very sensitive to 
lubrication conditions in grease lubricated roller 
bearings [37]. This way AE can be considered as a 
solution to the previously mentioned late fault detection 
problems. Other applications of high frequency 
measurements include: detecting and monitoring of 
leaks, cavitation, monitoring chemical reactions and 
material phase transformations. Despite numerous 
studies in the field of AE application for gear 
diagnostics, it is still facing challenges, but still can be 
considered as a complementary tool [33-37]. 

All of the measurement techniques try to detect the 
smallest possible fault as early as possible with minimal 
investment. Thus, industry research is continuing into 
new sensor and implementation technologies such as 
sensor arrays, fiber optic sensors, power harvesting/self 
powered sensors, MicroElectroMechanical sensors 
(MEMS), wireless sensors, - enabling telemetric 
monitoring, component integration, minimization, and 
providing new methods for fault monitoring and 
detection. 

Vibration, temperature, AE, ESA measurements and 
oil analysis are some of the more widely practiced 
condition monitoring techniques. Choosing between the 

measurements mainly depends on the monitored 
component and system. Problem of measurement 
technique selection for CBM can be addressed with the 
following roadmap [14]: Define system boundaries › 
Establish equipment criticality › Conduct failure modes 
and effects analysis › Evaluate regulatory requirements › 
Establish failure modes to be addressed by NDT › 
Define information required from NDT technique › 
Evaluate safety and access constraints › Evaluate cost 
per point › Determine skills required › Select NDT 
based on information, access, cost and skills required › 
Establish sampling locations › Establish sampling 
intervals › Document and formalize the program. 

In the Table 1 we have tried to compare different 
NDT measurement methods in respect to their 
application field, diagnostics potential and width of 
faults coverage for rotating machinery component 
monitoring. 
 

 

Fig. 7. Relative comparison of predictive capabilities 
of the studied measurement methods. 

 
MSPU and VMEP enhancement by temperature 

monitoring (in parallel to current vibration monitoring) 
seems the most feasible, and, as shown by the research 
and case studies, enhancing option. One of the 
supporting factors is that it requires minimal investment 
in MSPU and helicopter hardware modifications - AH-
64 already has OEM installed thermistors on the most 
critical components like gearboxes. 
 

Mechanical Vibrations Data Processing with 
Application for Mechanical Fault Detection 

Currently MSPU is equipped only with 
accelerometers that measure one physical dimension. 
Mechanical vibrations data collected from the 
accelerometers is processed in MSPU independently by 
direct feature/CI mapping functions: Kurtosis, Shock 
Pulse Energy, Root Mean Square, Amplitude 
Demodulation, FM0, FM4, Sideband Level Factor, 
Sideband Index, Energy Ratio. Though full list is even 
longer, it does not mean that it is sufficient/efficient – it 
states that diagnosing mechanical failure modes of 
rotating components is very complex and needs further

AE

Oil debris analysis 

Vibration

ESA

Fault initiation Failure

Time

Temperature (improper lubrication, installation) 

Temperature 



 

Table 1. Comparison of vibration, temperature, acoustic emission, electrical signature analysis, and oil/oil 
debris analysis non-destructive testing techniques. 
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Fields of application:      
Science/R&D ● ● ● ● ● 
Civil engineering structures ● ● ●   
Electrical distribution systems ● ●  ●  
Mechanical systems ● ● ● ● ● 
Electronics  ● ● ● ●  
Chemical processes  ● ●   
Usability:      
Non-destructive ● ● ● ● ● 
Non-intrusive (■ – thermal imaging) ● ■  ●  
Online monitoring ● ● ● ● ● 
Diagnostics potential:      
Proven real life applications ● ● ● ● ● 
Fault detection ● ● ● ● ● 
Fault isolation ● ● ● ● ● 
Fault identification ● ■ ● ● ● 
Early fault detection (1 – best) 2 4 1 3 2 
Monitoring of low frequency (< 0.1Hz) processes  ● ●  ● 
Sensitivity to mechanical interference ●  ● ●  
Complexity of data analysis (1 – highest) 1 3 1 1 2 
Hardware cost 1 4 2 3 1 
Faults coverage ( ○ - low sensitivity):      
Crack initiation or propagation ● ●   
Gear defects ● ○ ○ ○ ● 
Roller bearing defects ● ○ ● ○  
Friction/lubrication ○ ● ●  ● 
Unbalance ● ●  
Misalignment ● ○ ●  
Belt drive problems ● ● ●  
Cavitation ○ ●   
* – In context of ESA measurements made on generator or tachometer 
connected to mechanical drive train. 

 
 Vibration Temperature AE ESA* 
Typical  
measurement 
ranges 

10 Hz –  
20kHz  

50 F (10 C) –  
300 F (150 C) 

100 kHz –  
300 kHz 

20 Hz –  
20 kHz 

Sensor ranges 0.1 Hz –  
100 kHz 

-328 F (-200 C) –  
2282 F (1250 C) 

20 Hz –  
5 MHz 

0 Hz –  
100 kHz 

 



 

research and refinement. The importance of the 
statement and the research is highlighted by recent 
studies at the CBM Center, where MSPU CIs have 
showed inadequate response to severe failure modes 
resulting from insufficient gear lubrication [43, 50]. 

As there is no single sensor that is sensitive to all 
failure precursors or faults - there is no single data 
processing technique that can extract all the features/CIs 
from vibration, AE, ESA or other raw measurement 
data. That is why there are numerous data processing 
methods and algorithms that are used in parallel, in 
order to extract all the available CIs, required for its 
condition analysis and diagnosis of a mechanical 
component/system.  
 
Currently Practiced Vibration Analysis Techniques 

First step in data processing is data conditioning in 
order to filter noisy/erroneous sensor or manually 
entered data. The next step is data analysis. In CBM 
case data analysis deals with time-domain, frequency-
domain and time–frequency domain analysis methods 
that are applicable for fault monitoring and diagnosis. 

Time-domain analysis mainly deals with waveform 
statistics like Root Mean Square (RMS), Crest Factor, 
Kurtosis [15-21]: 

The crest factor is equal to the ratio of a peak value 
to RMS value of a waveform. The purpose of the crest 
factor calculation is to give an analyst a quick idea of 
how much impacting is occurring in a waveform, since 
impacting is often associated with gear tooth wear, 
roller bearing wear, or cavitation. In such case it can be 
more informative method than FFT frequency-domain 
analysis (discussed further), since impacts and random 
noise appear the same in the FFT spectrum, although 
they mean different things in the context of machinery 
vibration.  

Kurtosis can be defined as a degree of peakedness of 
a probability distribution of a waveform. Its application 
in bearing diagnostics is attractive by the fact that no 
prior baseline data is needed - kurtosis value greater 
than 3 is assumed to be an indication of impending 
failure itself. However, kurtosis value drops down to the 
acceptable level as damage advances. 

Frequency-domain analysis is based on the analysis 
of transformed signal in respect to frequency. This is 
normally displayed as a spectrum (plot of frequency 
against amplitude). The advantage of frequency-domain 
analysis over time-domain analysis is its ability to easily 
identify and isolate certain frequency components of 
interest. The most widely used and known frequency-
domain analysis method is spectrum analysis by means 
of FFT (fast Fourier transform) [4]. The overall 
vibration signal of a machine is contributed from many 
of its components, surrounding machinery and 
structures. However mechanical faults excite 
characteristic vibrations at different frequencies related 

to specific fault conditions. By analyzing the spectrums, 
both the nature and severity of the defect can be 
identified. Though FFT is very popular and 
indispensible tool in vibration analysis it has a few 
limitations. It was mentioned that by definition FFT is 
intended for stationary/harmonic signals analysis, so 
impacts and random noise appear the same in the 
spectrum. Another limitation of the spectrum is that 
time information is totally lost - it is unknown if the 
signal of certain frequency was present all the time 
during the data acquisition or it appeared only at certain 
times or time periods. These limitations are addresses in 
Time-frequency domain analysis of the signal. 

Cepstrum is another frequency-domain technique 
that has the ability to detect harmonics and sideband 
patterns in the FFT spectrum. For example one 
characteristic common to most vibration signatures of 
rolling element bearings is that there exist a harmonic 
series not-synchronized with the shaft speed. These 
series are fundamental bearing frequencies or rotation 
rate sidebands that are important in bearing failure 
diagnosis and are difficult to identify in the spectrum. 
Because cepstrum has peaks corresponding mainly to 
the harmonics and sidebands in the signal, they can be 
more easily identified. This way it is even possible to 
detect bearing fault without knowing its geometrical 
parameters by looking for a series of harmonics that are 
not synchronized with the shaft speed. 

In order to improve the signal-to-noise ratio and 
make the spectral analysis more effective in mechanical 
diagnosis, there are specialized techniques like: 
averaging technique, adaptive noise cancellation 
technique, envelope detection or the high-frequency 
resonance technique. Envelope technique [20] is 
primarily used for early detection of faults in rolling 
element bearings and gearboxes, because the over-
rolling of a defect shows up in the vibration signal as a 
high frequency periodic impulsive action that can be 
easily extracted from a noisy signal by a band-pass 
filter, rectified and analyzed in frequency-domain. It is 
an early fault detection technique that can reveal faults 
in their earliest stages of development, before they are 
detectable by other vibration analysis techniques.  

Time-frequency domain analysis investigates non-
stationary waveforms in both time and frequency 
domains, because frequency-domain analysis is unable 
to handle non-stationary waveform signals, which are 
very common when machinery faults occur. STFT 
(short time Fourier transform), Wigner-Ville 
distribution and Wavelet transform are the most popular 
time-frequency analysis methods [4, 17, 26]. The Short-
Time Fourier Transform is an effective tool that 
overcomes the FFT non-stationary waveform 
limitations, but, again, it analyzes all the frequencies in 
a signal with the same window that limits frequency 
resolution. The wavelet transform is another time-



 

frequency domain method that preserves the time 
information of the original signal and can overcome the 
resolution problems encountered when analyzing 
transient signals using Fourier analysis. Wavelet 
transform has been suggested for analysis of very weak 
signals, where FFT becomes ineffective, and also has 
been applied for fault diagnostics of gears, bearings and 
other mechanical systems [26]. 

The field is continuing to grow as the potential of 
new data processing techniques is being introduced for 
the early fault detection, which is shown by the example 
of the following paragraph. 
 
Advanced Time-Frequency Analysis Technique 

As it was said, there is a need for more efficient CI 
functions that are more sensitive in extracting relevant 
vibration or transient measurements data, as there are 
great challenges and opportunities in the field. 

Consequently, USC CBM Research Center is 
developing and exploring a new information measure 
metric for time and frequency domain [4, 38]. Inspired 
by traditional information theory, this technique 
considers self- and mutual-information of the time-
frequency distribution and it provides measure of in-
phase and quadrature components of a pair of non-
stationary signals. This idea is unique and an innovative 
approach for time-frequency analysis which is 
investigated in the research. 
 
The presently accepted practice of vibration analysis for 
mechanical component diagnosis and prognosis is 
performed in time and frequency domain, while time-
frequency domain analysis is performed in a large time 
scale for vibration level trending or order analysis by 
professional human experts. The major difference in the 
ongoing work is that time-frequency analysis is 
performed on very short time scale signals, representing 
all the transients of the time signal. As a result, it is 
possible to extract meaningful parameters such as 
instantaneous frequency, group delay, and Rényi 
information [39], which is a key factor for a quantitative 
description of transient signal. Thus, one can take great 
advantage of time-frequency analysis for the scientific 
investigations of transient/non-stationary signals. 

The mutual information measure is comprised of a 
quadrature component and an in phase component 
which seem to indicate differences in the actual physics 
of the system. Fig. 8 shows the scatter plot distribution 
of the in phase component of the measure on the x-axis 
and the quadrature component of the measure on the y-
axis for cases of: (1) balanced and aligned shaft 
(baseline), (2) unbalanced and aligned shaft, (3) 
balanced and misaligned shaft, (4, 5): unbalanced and 
misaligned shaft. In the condition of system unbalance, 
as seen in Fig. 8 (a), (c), and (d), the in phase 
component trend is toward a greater amount of 

information bits. Similarly, misalignment can be 
observed to increase the number of information bits 
contained in the quadrature component (Fig. 8 (b) and 
(d)). As a distribution these values can be seen to shift 
along the x-y plane indicating a shift in part or system 
status. Differences in this mutual information measure 
could be further developed into an increased precision 
statistical indicator of part or system health status. 
 

 

Fig. 8. Baseline comparisons of the mutual 
information measure where the baseline distribution 

(*) is compared to various states of misalignment 
and unbalance. 

 
The proposed signal analysis technique is applicable 

on the historical and experimental multi-sensor data, 
since by investigation of drive-train component failures 
[4, 43, 50] we have found that additional sensors, as 
acoustic and electrical, exhibit their unique features in 
the given time-frequency analysis technique. Thus, in 
the proposed research we will investigate the efficiency 
of the advanced time-frequency technique in order to 
extract the health state information from a variety of 
multi-physical dimensions of the systems including 
mechanical vibrations, acoustic emission, electrical 
signatures and temperatures as some of the available 
diagnostic observations.  
 

Condition Diagnosis and Prognosis 

In order to conduct fault prognosis and maximize 
uptime of a failing component through  CBM, first we 
seek to determine impending or incipient failure 
conditions. The stage of diagnosis (Fig. 6) requires 
classification of calculated diagnostic features/CIs to 
currently MSPU employed condition classes as 
good/stable/failure condition, or to enhanced localized 
fault classes like unbalance, spall, crack (to enable 
further prognosis). In order to classify the feature 
vector, first we need to establish proper classifiers 
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(library of fault patterns and alarm thresholds). This 
process involves analysis of historical MSPU (and 
HUMS ) and Unit Level Logistics Support – Aviation 
(ULLS–A) data, USC historical and ongoing 
experimental data, in order to set threshold limits and 
establish probability distributions for enabling methods 
like weighted voting, Bayesian inference or Support 
Vector Machine (for the clustered mutual information 
data classification). There is no ultimate solution or 
answer to which diagnostic or prognostic classifier 
performs the best for a given scenario, - different tools 
and methods are investigated in the research: 

As shown in Fig. 8, the proposed mutual time-
frequency information measure provides clear clustering 
signatures of baseline, unbalanced load, and misaligned 
shaft in terms of in-phase and quadrature information 
components. The first task in utilizing this data for 
diagnosis (Fig. 6) should be statistical study of the 
signature clustering in order to determine bounds of 
baseline, unbalanced load, and misaligned shaft so that 
one can assess current health condition of the drive 
shaft. One of the enabling techniques for clustered data 
classification is Support Vector Machine (SVM): 
 

The SVM [40] is based on statistical learning theory 
and is extensively used for classification, regression, 
and density estimation. SVM maps the input patterns 
into a higher dimensional feature space through 
nonlinear mapping chosen a priori. A linear 
classification surface is then constructed in this high-
dimensional feature space (basically a hyperplane is 
defined that separates two clustered data sets). Thus, 
SVM is a linear classifier in the parameter space, but it 
becomes a nonlinear classifier as a result of the 
nonlinear mapping of the space of the input patterns into 
the high-dimensional feature space. Training the SVM 
is a quadratic optimization problem. The construction of 
a hyperplane wTx+b = 0 (w is the vector of hyperplane 
coefficients and b is a bias term), so that the margin 
between the hyperplane and the nearest point is 
maximized, can be posed as the quadratic optimization 
problem. SVM has been shown to provide high 
generalization ability [41].  

For the two-class problem, assuming the optimal 
hyperplane in the feature space is generated, the 
classification decision of an unknown pattern y will be 
made based on: 
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represents a symmetric positive definite kernel function 
that defines an inner product in the feature space. This 
way f(y) is a linear combination of the inner products or 
kernels. The kernel function enables the operations to be 
carried out in the input space rather than in the high-
dimensional feature space. Some typical kernel 
functions are K(u,v) = vTu (linear SVM); 
K(u,v) = (vTu+1)n (polynomial SVM of degree n); 

K(u,v) = exp )2/( 22 σvux −−  (radial basis function 
SVM); K(u,v) = tanh(κvTy+θ) (two layer neural SVM), 
where σ, κ, θ are constants [40]. 

One of the following tools for the classified data 
fusion is the rule-based fusion method, which is a 
superset of voting fusion method and can approximate 
all other data fusion methods [42, 46, 47]. Voting and 
weighted voting decision fusion techniques can be 
implemented by assigning weights to sensors/CIs based 
on their a priori reliability models at detecting a certain 
fault (Table 1) or their correlation (Table 1). Similarly 
some sensors can be ignored or assigned a low 
credibility based on their performance in time (Fig. 7) or 
fault being diagnosed. If all weights are set equal, 
weighted voting is reduced to voting. For the feature/CI 
fusion by weighted voting, each sensor, i, outputs a 
binary vector, xi, with n binary CI values corresponding 
to given faults. The classification vector, xi, from sensor 
i becomes the ith row of the weighting matrix A. Each 
row of the matrix is weighted using the a priori 
assumption of the sensor liability Wi. Subsequently the 
elements of the array are summed along each column: 
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where D(j) is a fused decision on fault j, m – number of 
sensors, W – weighting factor, t – time. 

Other approach to the method could be suggested, 
where normalized CI values are input parameters for 
previous equation, so fault severity is represented [48]. 
Normalization could be applied by min-max function: 

 
 A[i,j] = (CIi,j − CImin)/( CImax − CImin),  (3)

 
where CI is condition indicator, CImin and CImax are 
minimum and maximum CI threshold values. 
This way, a parallel fusion approach to Bayesian 
inference, which is discussed further, can be taken. 

Other statistical methods, such as Bayesian 
inference, are supposed to yield an “inverse 
probability”, or probability of the “cause” F (a fault), on 



 

the basis of the observed “effect” S (sensor 
reading/feature). Whereas P(F) is the a priori, P(F|S) is 
the a posteriori conditional probability of the cause F. 
Bayes’ theorem serves as the basis for the Bayesian 
inference technique for identity fusion. Bayesian 
inference assumes that a set of S mutually exclusive 
(and exhaustive) hypotheses or outcomes exists to 
explain a given situation. In the decision-level fusion 
problem Bayesian inference is implemented as follows: 
a system exists with N sensors that provide decisions on 
membership to one of S possible classes. The Bayesian 
fusion structure uses a priori information on the 
probability that a particular hypothesis exists and the 
likelihood that a particular sensor is able to classify the 
data to the correct hypothesis. The inputs to the 
structure are  P(Fj) – the a priori probabilities that object 
j exists (or equivalently that a fault condition exists), 
P(Sk,i|Fj) - the likelihood that each sensor k  will classify 
the data as belonging to any one of the S hypotheses, 
and Sk the input decisions from the K sensors [46]: 
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The output is a vector with element j representing 

the a posteriori probability that the data belong to 
hypothesis j. The fused decision is made based on the 
maximum a posteriori probability criteria given in 
following equation: 
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A basic issue with the use of Bayesian inference 

techniques involves the selection of the a priori 
probabilities and the likelihood values. The choice of 
this information has a significant impact on 
performance. In our case there is an advantage in 
extensive historical HUMS and USC CBM Center data 
and expert knowledge that can be used to determine the 
probability distributions [49]. 

Only after successful implementation of previous 
steps we can go to the final step of prognosis. Here from 
historical and experimental data we need to identify a 
statistical aging model that describes migration time of 
given state to reach the safety condition limit. This 
aging model should be experimentally verified by the 
proposed research. Same diagnostic algorithms and 
intelligent data-fusion architectures will be extended to 
optimally combine extracted data with probabilistic 
component models to achieve the best decisions on the 
overall health of components (Fig. 6). 

AH-64 Tail Rotor Gear Box Case Study 

One of the latest test articles at the USC test facility 
was a Tail Rotor Gearbox (TGB) (Fig. 9) that was tested 
for durability under critical lubrication conditions [50]. 
That is a bevel spiral tooth gear, having a 22:57 
transmission ratio, operating at approximately 3700 rpm 
input shaft speed, at 330 hp load. 
 

 

Fig. 9. AH-64 Tail Rotor Gearbox cross section. 
 

The reasoning behind the experiment was that 
output seal (Fig. 9) on the static mast of the gearbox 
often starts leaking grease and it cannot be replaced 
without servicing the static mast. Also the procedure 
requires grounding of the helicopter and fixing the seal 
immediately after the leak is detected. It cannot be 
accomplished without removing the entire gearbox and 
tail swash-plate, which is a time consuming process and 
keeps helicopter grounded in case of a mission. So the 
intent was to test performance and durability of the 
gearbox in case it is kept as is with the output seal 
leaking and see if it can last 250 hours till its scheduled 
maintenance date or end of a mission.  

The experiment was set up so the gearbox would 
gradually leak all of its grease during the first 150 hours 
of operation, resulting in accelerated wear, measured 
vibrations increase and deceiving temperature drop due 
to heat transferring medium loss and heat localization.  

When the gearbox is fully serviced, the grease acts 
as a heat sink/mediating medium that helps to efficiently 
dissipate localized heat, generated at the gear-mesh and 
initially as the lubricant in the friction pair. Also it is the 
transfer medium that distributes heat to thermocouples 
installed inside the gearbox (thermistors, which are 
originally installed on the gearbox, were replaced by 
thermocouples at the USC test facility). That is the way 
a gearbox is designed and expected to operate. When 
the lubricant is lost, it leaves air as the mediator, leading 
to heat localization and thermal gradient/bias that shows 
up as a misleading lower temperature inside the 
gearbox. 
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In addition to automated sensor data logging, optical 
tooth wear observations were made manually with 
digital borescope between the test runs. Testing was 
concluded after significant teeth deterioration and tooth 
fracture. 

 

 
 

 

Fig. 10. TGB Sideband Index CI and vibration order 
trends over time. 

 
Testing fully proved its expectations by providing 

valuable MSPU calibration data and supporting the 
importance/necessity of component testing for CBM 
program development. This conclusion is based on the 
discovery that some thresholds for CIs, that are most 
informative and critical in gear-mesh diagnosis, were set 
too low in attempt to minimize false alarm rates due to 
an absence of statistical failure propagation data to that 
extent. For example, Sideband Index’s (sum of largest 
gear-mesh frequency sidebands divided by the number 
of sidebands) vibration acceleration value was set well 
above 4 g (Fig. 10)); Diagnostic Algorithm 1 (RMS of 
Signal Average) also did not show warning signs due to 
inadequate diagnostic threshold levels. 

 

 

Fig. 11. Relative maximum vibration level over 
monitored frequency band, and temperature plots 

over time. 
 
 

Similarly it was shown that temperature might be a 
better indicator of an impending problem in case of poor 
lubrication (Fig. 11), showing clear deviations from 
nominal operation temperature, while vibration levels 
and tooth wear remained relatively low in order to cause 
concern.  
 

 

Fig. 12. Lateral vibrations spectrum over 0-9 kHz 
frequency band, and its threshold envelope (a); 
vibration magnitudes at the gear-mesh frequency 
(1345 Hz) (b), its second (2690 Hz) (c), third (4035 
Hz) (e) and fourth (5380 Hz) (d) harmonics, 
measured at the gearbox duplex input bearing. 
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Such findings give support for MSPU modernization 
by additional sensing capabilities and data fusion 
implementation in order to enable earlier identification 
and diagnosis of an impending fault. 

Other finding, that might lead to development of a 
new CIs for friction pair damage diagnosis, is that 
overall vibration magnitude of the gearbox (Fig. 11), 
and vibration magnitudes at gear-mesh frequency and 
its separate harmonics (fourth harmonic in particular) 
(Fig. 12) show clear response to the friction pair 
damage, with signal to noise ratio higher than in 
available condition indicators embedded in MSPU. This 
allows consideration of direct vibration magnitude 
monitoring as the means for new CIs, and diagnosis of 
severe friction pair damage in the gearboxes of the U.S. 
Army helicopters (Fig. 12 (a)). 
 

Cost Benefit Analysis of CBM and VMEP for 
SCARNG 

USC is receiving desensitized VMEP mechanical 
vibrations data and TAMMS-A flight and maintenance 
related data since 1999 for AH-64, AH-60 and CH-47 
aircraft. This data is stored on USC data server, 
enabling USC to update the Cost Benefit Analysis 
(CBA) records, investigate the operating and support 
(O&S) analysis, safety and benefits.  The deliverables 
make an outcome of an ongoing USC Cost Benefit 
Analysis of the VMEP Program.  

In order to provide a timely and sufficient cost and 
economic analysis to support the effective allocation 
and management of resources for the Army programs, 
custom CBA model has been developed by USC CBM 
Center. The goal is to develop and maintain cost and 
economic analyses as effective and efficient tools for 
decision-making, while supporting management 
decisions by quantifying the resource impact of 
alternative options.  In our model, as in any good cost 
model, the cost analysis grows in complexity and detail 
as the program matures and more information becomes 
available. 

In developing the model other models such as the 
Galorath SEER-H and the Cost Analysis Strategy 
Assessment (CASA) model for O&S cost assessment 
were investigated. 

The intuitive model utilizes flight and maintenance 
data from the TAMMS-A database DA 2408-12, DA 
2408-13, and DCR records, in order to estimate cost 
savings and recovery of the initial costs of the hardware 
installation and future cost savings for the Apache and 
Blackhawk helicopters. The model includes cost 
variables such as: maintenance test flight hours, cost per 
maintenance flight hour, VMEP investment, number of 
VMEP helicopters, unscheduled maintenance hours, 
installed parts costs.   

The Cost Benefits Analysis has been executed in a 
3-step procedure: 

Define the CBA Objectives: The CBA initially 
focused on the AH-64 platform, and the investment 
efforts were focused mainly at the Unit-Level and 
below, because the costs and benefits were most 
quantifiable at these levels. 

Develop CBA Framework: The Vibration 
Management Enhancement Program was considered as 
investment opportunity. The investment was analyzed in 
terms of primary and secondary benefits. For each 
presumed benefit, a definition and a metric were 
developed. 

Cost Estimations, and Benefits Analysis: The 
analysis initially targeted the operating and support 
costs. The O&S costs are a subset of life cycle costs 
(LCC). Intent was to address every aspect of O&S costs 
in search of major cost drivers. Pursuit of O&S costs 
reduction is particularly complex because problem areas 
and potential solutions involve multiple dependent 
variables. The O&S analysis was guided by the 
AMCOM document “Reduction of Operating and 
Support Costs for the US Army Helicopters” as of 24 
February 1995. In this activity, O&S estimates were 
developed, benefits were characterized, and impacts 
were organized. This activity had three levels of depth 
depending on assignment requirements. The analysis 
focused on selected ares that had the potential to show 
investment cost returns. Cost savings and cost 
avoidances from any source were considered as returns. 
A project would be successful if the benefits and returns 
exceed the investment costs. This factor was determined 
using return-on-investment (ROI) metrics, i.e., the ratio 
of savings to investment. Savings were represented by 
returns that are quantified in financial terms. 
 As of today the U.S. Army CBM program and the 
joint team activities have been highlighted by: 

 $33.4 million savings in parts costs. 
 $38.3 million savings in parts cost and operation 

support. 
 Increased mission capability through a reduction in 

maintenance test flights and unscheduled 
maintenance - increase in mission flight time. 

 Improved safety, sense of safety, morale, and 
performance. 

 Meeting CBM objectives. 
 

The above benefits and results are extracted from a 
series of analyses, based on the SCARNG AH-64 fleet 
data, which is the most consistent over the years. The 
results are graphically presented in Fig. 13 through Fig. 
15. Actual costs data has been collected for estimation 
of the costs and savings of each of the two project 
alternatives (baseline and VMEP) for each year of 
analysis. Maintenance costs for VMEP non-equipped 
fleet were assessed, based on the data from between 



 

October of 2000 and September of 2001.  They were 
used as a baseline in comparison to VMEP equipped 
fleets for the following years.  

The CBA model also includes non-tangible benefits 
such as: mission availability, morale, safety, operational 
flight hours’ gain, premature parts failure, mission 
aborts, and unscheduled maintenance occurrences. In 
our case, benefits take the form of tangible and non-
tangible benefits. Therefore, we first analyze the savings 
of the VMEP alternative by comparing the tangible 
costs in the two cases. 

Maintenance Test Flights (MTFs) are highly time 
demanding operations of active helicopters, which are 
performed after maintenance actions, in order to 
determine if all elements of the helicopter are 
performing accordingly. Results in Fig. 13 indicate that 
the ability of maintenance crews to use the VMEP 
system is improving with time, and the average number 
of maintenance flight hours for each aircraft at 
SCARNG is decreasing. This data is based on TAMMS-
A DA 2408-12 records, which contain flight logs for 
every aircraft. Based on the data and costs of 
maintenance test flights, we can find the total annual 
cost savings on MTFs, which make a total of $4.8M 
over the five years of CBM program implementation.  

The law of diminishing returns suggests that the 
VMEP program will reach an equilibrium number of 
MTFs after few years. Based on the logarithmic 
regression model applied to the MTF data, we can 
project the system equilibrium at the annual savings of 
$37.6k per aircraft. 
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Fig. 13. Decrease in maintenance test flight hours for 
Apache fleet at the SCARNG, due to CBM practice. 

 
Reduction in Unscheduled Maintenance actions is 

another strong indicator of mission readiness increase. It 
is reflected in Fig. 14 as the reduction in unscheduled 
maintenance hours over the data collection period, as a 
percentage of total maintenance actions. There is a clear 
reduction in unscheduled maintenance actions to less 
than 4% of total maintenance actions, and to less than 
one fourth of levels prior to CBM program, leading to 

significant increase in mission readiness and savings. 
The use of the VMEP system allows maintenance crews 
more opportunities to spot minor faults, that otherwise 
would lead to a chain of more serious failures, and 
provide adequate time to schedule these maintenance 
actions. 
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Fig. 14. Decrease in unscheduled maintenance 
operations for Apache fleet at the SCARNG, due to 

CBM practice. 
 

Parts Costs consume the greatest part of the aircraft 
maintenance related budget. Data in the Fig. 15 shows 
that implementation of the CBM program allows to fix 
minor impending faults and this way prevents more 
serious and expensive failures, saving millions of 
dollars in spare parts and maintenance man hours. 
According to the data this accounts for $33.4M in part 
costs savings over the five years period. In the following 
years we would expect annual savings of $270.6k per 
aircraft from the baseline levels.  
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Fig. 15. Decrease in replaced mechanical components 
costs for Apache fleet at the SCARNG, due to CBM 

practice. 
 

Non-tangible benefits analysis model is based on 
information and surveys from the McEntire Joint 
National Guard Base and is used to show the non-
tangible benefits that arise from the use of VMEP. 



 

Again, the idea is to determine, with the implementation 
of the VMEP program, whether or not the fleet will see 
an increase in aircraft availability, safety, and 
operational flight hours along with a decrease in 
premature parts failure, mission aborts, and unscheduled 
maintenance occurrences. 

Brainstorming sessions identified two categories of 
benefits, - basic and mission, which are important areas 
to “measure” VMEP outcomes in a comprehensive cost 
and benefit model.  Mission benefits, the “soft” benefit 
area, were conceived to comprise four areas: operational 
readiness, morale, performance, and safety. Our 
research team, crew chiefs, and pilots reviewed various 
iterations of a set of questions designed to address 
aspects of operational readiness, morale, performance 
and safety as they related to operating and maintaining 
Apache and Blackhawk helicopters.  Numerous 
questions and items were suggested, and through a 
series of review, discussion and reaction iterations, 
narrowed down to four items that addressed each of the 
four non-tangible mission benefit areas.  Anchor points 
for each were created using a seven-point Likert` Scale. 
The results were summarized as: 

 Safety – 16 % improvement 
 Sense of Safety – 30% improvement 
 Performance – 21% improvement 
 Mission – 13% improvement 
 Confidence – 20% improvement  
 Morale – 35% improvement 
 Ease of Troubleshooting – 32% improvement  

 
Tangible benefits resulting from the direct USC 

research and the joint team activities can be highlighted 
by the facts that USC and the United States Army have 
identified types of aircraft components to be tested for 
MSPU and CBM enhancement based on their return 
value within a short time for implementation of CBM. 
Some of the chosen components that are tested at USC 
and other Army test facilities, include AH-64 tail drive-
train, Auxiliary Power Unit clutch (APU), and main 
rotor swash-plate assembly.  

Testing of these components has already allowed the 
Army to eliminate the APU clutch vibration check and 
the special inspection on the main rotor swashplate. In 
addition, it has allowed extension of the APU mount 
inspection times, 16% increase in Time Between 
Overhaul of APU clutch; deferred replacements of the 
leaking tail rotor hanger bearings until 250 hour 
inspection cycle (moved an unscheduled 5.5 
Maintenance Man-Hour (MMH) task to a scheduled 
task). This results in a 5.2% increase in aircraft 
readiness and annual savings of $9.3M.  

Also the recent TGB study at the USC CBM 
Research Center [43, 50] is leading to a Maintenance 
Information Message, which will provide the authority 
and procedures to perform in-field maintenance on AH-

64 Tail Rotor Gearboxes. It enables in-field replacement 
of leaking output seal on TGB static mast, and moves an 
unscheduled 28 MMH task to a scheduled 10 MMH 
task, saving $35k a part. Over 50% of tail gearboxes 
were removed for this reason, totaling 80 in year 2006 
alone. 

Including additional components into CBM, and 
CBA model will allow for further increases in aircraft 
availability and annual cost savings. 
 

Conclusions 

1. The transition of the U.S. Army rotorcraft fleet 
maintenance practices to CBM requires a systematic 
collaborative joint industry, academic, and 
government team effort. 

2. If critical operation conditions of a component are 
not estimated in initial design process of the 
component and system, it may lead to misleading 
sensor and diagnostic system output. 

3. Aircraft component durability testing is an essential 
tool in CBM program development, supplying 
necessary calibration data for condition monitoring 
and diagnostic systems, giving insights to design 
flaws and improvement possibilities. 

4. Multi-sensor implementation and data fusion give an 
opportunity to enhance and accelerate impending 
problem diagnosis and CBM system development. 
Fusion of information across vibration and 
temperature sensors offers potentially significant 
improvements in robustness and accuracy in fault 
detection and isolation with relatively simple 
hardware and software modifications of MSPU and 
Army helicopters. 

5. Based on the data collected so far, MSPU condition 
indicators “Sideband Index”, “Diagnostic Algorithm 
1”, and USC custom installed thermocouples show 
good correlation with critical gear mesh conditions 
and show potential in diagnosis of inadequately 
lubricated gears through adjustment of MSPU 
threshold levels for the given CIs. 

6. Alternative time-frequency vibration signal analysis 
technique is proposed in effort to reveal short 
duration transients in vibration signal, enabling new 
diagnosis techniques. 

7. Monitoring of overall vibration magnitude, and 
vibration magnitude of separate gear-mesh 
frequency harmonics, show clear response to gear 
friction pair damage, with signal to noise ratio higher 
than in available condition indicators embedded in 
MSPU. This allows consideration of direct vibration 
magnitude monitoring as the means for diagnosis of 
severe friction pair damage in the gearboxes of the 
U.S. Army helicopters. 



 

8. The U.S. Army CBM program is constantly evolving 
and gaining millions of U.S. dollars in tangible 
benefits through its implementation. Some of the 
cost reduction factors include maintenance test flight 
hours, unscheduled maintenance and maintenance 
man-hours, replacement parts costs, and time 
between overhauls extension. 
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