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ON STABILITY PREDICTION FOR LOW RADIAL IMMERSION
MILLING

J. Gradi�ssek, E. Govekar, and I. Grabec & Faculty of Mechanical Engineering,
University of Ljubljana, Slovenia

M. Kalveram and K. Weinert & Department of Machining Technology (ISF),
University of Dortmund, Germany

T. Insperger and G. Stép�aan & Department of Applied Mechanics, Budapest
University of Technology and Economics, Hungary

& Stability boundaries for milling are predicted by the zeroth-order approximation (ZOA) and the
semi-discretization (SD) methods. For high radial immersions, the methods predict similar stability
boundaries. As radial immersion is decreased, the disagreement between the predictions of the two
methods grows considerably. The most prominent difference is an additional type of instability pre-
dicted only by the SD method. The experiments confirm the predictions of the SD method. Three dif-
ferent types of tool motion are observed: periodic chatter-free, quasiperiodic chatter, and periodic
chatter motion. Tool displacements recorded during each of the three motion types are analyzed.

Keywords End Milling, Stability Prediction

INTRODUCTION

High material removal rates, provided in theory by the modern machin-
ing centers, often can not be achieved in practice due to the inherent insta-
bility of a cutting process. In cutting processes that involve rotation of the
tool or workpiece, the instability is caused by the so called regeneration of
surface waviness during successive cuts. The instability is called regenerative
chatter.

Dynamics of regenerative cutting processes can be described by models
in the form of linear delay-differential equations (DDEs) (1, 2). Chatter-
free cutting and chatter correspond to the linearly stable and unstable solu-
tions of the model equations, respectively. Cutting parameters that assure
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stable, chatter-free, machining can therefore be predicted by the linear
stability analysis of the equations. For continuous cutting, such as uninter-
rupted turning, the stability boundary can be given in closed form while for
interrupted machining, such as milling and interrupted turning, the per-
iodic dependence of the cutting force complicates the stability analysis so
that the stability boundary in general cannot be given in closed form.

The first analytical attempts at stability prediction of milling were based
on Fourier expansion of the periodic cutting forces (3). Accuracy of the
obtained stability boundary depends on the shape of cutting force variation
and the number of Fourier terms used to approximate it. For cutters with a
large number of teeth and for substantial radial immersions, reasonably
accurate stability predictions can be achieved by using only the zeroth-
order Fourier term (4, 5). However, for cutters with few teeth and for
low radial immersions, prohibitively many Fourier coefficients may be
needed to capture the cutting force variation. In such cases, which are quite
common in high-speed milling, the exact stability boundary may differ sig-
nificantly from the one predicted by the zeroth-order approximation
(ZOA) (6).

This was first shown for the case of very low immersion milling, where
the time interval of the tool-workpiece contact was a small fraction of the
tool revolution period (6). Using an impact-like representation of the cut-
ting process, a new method for stability prediction was derived that revealed
that there are two types of instability possible in low immersion milling: the
Hopf bifurcation, which causes the quasiperiodic chatter, and the period
doubling or flip bifurcation, which causes the periodic chatter. In contrast,
the ZOA predicts only one type of instability, the Hopf bifurcation.

The stability predictions from (6) lose accuracy as the time of the tool-
workpiece contact increases. Two alternative methods have since been pro-
posed that can predict stability boundary for an arbitrary time in the cut
(7). The first method combines the exact analytical solution of the free tool
vibration with the approximate solution for the tool vibration during cutting
which is calculated using temporal finite element analysis (TFEA). The
second method employs a semi-discretization (SD) scheme to transform
the DDE into a series of autonomous ordinary differential equations (ODEs)
for which the solutions are known. Both methods define a transition matrix
whose eigenvalues determine stability of the process. The methods have
been derived and verified experimentally using a 1-dof milling system (8).
Recently, the TFEA method has been extended to 2-dof systems (9).

In this paper, the stability of a 2-dof milling system is investigated. Stab-
ility boundaries are predicted using the ZOA and the SDmethods; the latter
is also adapted for a 2-dof system. Stability predictions of the two methods
are compared and verified experimentally on a high speed milling center.
The recorded tool paths in the X-Y plane are analyzed and three different
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types of tool motion predicted by the SD method are distinguished: per-
iodic chatter-free, quasiperiodic, and periodic chatter motion.

STABILITY PREDICTION FOR END MILLING

Consider a 2-dof milling operation shown schematically in Figure 1. A
cutter with N equally spaced teeth rotates at a constant angular velocity
X. The radial immersion angle of the j th tooth varies with time as:
/jðtÞ ¼ Xt þ 2pð j � 1Þ=N . A compliant machine tool structure is excited
by the cutting forces at the tool tip, causing dynamic response of the struc-
ture governed by the following equation:

M€XXðtÞ þ C _XXðtÞ þKXðtÞ ¼ FðtÞ ð1Þ

Here X and F denote the displacement and cutting force vectors, while M,
C, and K denote the mass, damping and stiffness matrices, which are all
diagonal if the vibration modes in X and Y directions are uncoupled.
Dimensionality of the vectors and matrices depends on the number of
vibration modes. Assuming a single vibration mode in X and Y directions,
the vectors are 2� 1 and the matrices 2� 2 dimensional. The cutting force
components acting on the j th tooth are given by:

Fx;j ¼ gjðtÞ �Ft;jðtÞ cos/jðtÞ � Fr;jðtÞ sin/jðtÞ
� �

Fy;j ¼ gjðtÞ þFt;jðtÞ sin/jðtÞ � Fr;jðtÞ cos/jðtÞ
� �

ð2Þ

FIGURE 1 Scheme of 2-dof milling.
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Here, gj(t) is a unit step function determining whether or not the jth tooth
is cutting. The tangential and radial cutting force components, Ft and Fr,
are assumed proportional to the chip load defined by the product of chip
thickness hj(t) and chip width or depth of cut ap as:

Ft;jðtÞ ¼ KtaphjðtÞ; Fr;jðtÞ ¼ krFt;jðtÞ ð3Þ

Kt and k r, respectively, denote the specific tangential force coefficient and
the force ratio. The chip thickness consists of a static part due to feed,
stsin/(t), and a dynamic part due to cutter displacement. The stability of
cutting is influenced only by the dynamic part of chip thickness given by:

hjðtÞ ¼ gjðtÞ Dx sin/jðtÞ þ Dy cos/jðtÞ
� �

ð4Þ

where Dx ¼ xðtÞ � x t � Tð Þ and Dy ¼ yðtÞ � y t � Tð Þ describe the surface
regeneration, i.e. the difference between the tool positions at the present
and previous tooth passes. T ¼ 2p=NX denotes the tooth passing period.

Summing the contributions of all cutting edges yields the total cutting
force:

FxðtÞ
FyðtÞ

� �
¼ apKt

AxxðtÞAxyðtÞ
AyxðtÞAyyðtÞ

� �
� Dxðt;T Þ

Dyðt;T Þ

� �
ð5Þ

where Aij(t) denote the time periodic directional dynamic force coefficients:

AxxðtÞ ¼
1

2

XN
j¼1

� sin 2/jðtÞ � 2kr sin
2 /jðtÞ

� �
gjðtÞ

AxyðtÞ ¼
1

2

XN
j¼1

�2 cos2 /jðtÞ � kr sin 2/jðtÞ
� �

gjðtÞ

AyxðtÞ ¼
1

2

XN
j¼1

þ2 sin2 /jðtÞ � kr sin 2/jðtÞ
� �

gjðtÞ

AyyðtÞ ¼
1

2

XN
j¼1

þ sin 2/jðtÞ � 2kr cos
2 /jðtÞ

� �
gjðtÞ ð6Þ

Finally, the governing delay differential equation (DDE) of motion reads:

M€XXðtÞ þ C _XXðtÞ þ KXðtÞ ¼ apKtAðtÞðXðtÞ � Xðt � T ÞÞ ð7Þ

Time dependence of the directional coefficients Aij(t) complicates the
linear stability analysis of Equation (7). A possible solution to this problem
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is to expand the coefficients in a Fourier series and retain the terms neces-
sary for the approximation. In the simplest case, which is briefly reviewed
below, only the zeroth-order Fourier term is kept. Such an approximation
is practical as it allows a closed-form expression of the stability boundary,
but it loses accuracy as the radial immersion and the number of cutter teeth
decrease. Another possibility is the recently proposed time domain meth-
ods, the temporal finite element analysis (TFEA) or the semi-discretization
method (7). The latter is presented in Section 2.2.

Zeroth-Order Approximation Method

The zeroth-order approximation method was proposed in Reference
(5). It is based on approximating the periodic directional milling force
coefficient by its average value, AðtÞ � A0. The resulting approximate mill-
ing force vector is:

FðtÞ ¼ apKtA0ðXðtÞ � Xðt � T ÞÞ ð8Þ

The cutter displacement X caused by the force F can be expressed by means
of a transfer function H of the machine tool structure in the Laplace
domain as:

X ðsÞ
Y ðsÞ

� �
¼ HxxðsÞHxyðsÞ

HyxðsÞHyyðsÞ

� �
� FxðsÞ

FyðsÞ

� �
ð9Þ

By combining Equations (8) and (9), a system of equations is obtained:

Iþ KðsÞA0HðsÞ½ �FðsÞ ¼ 0 ð10Þ

where KðsÞ ¼ �apKt 1� expð�sT Þð Þ and I denotes the identity matrix. The
system has a nontrivial solution only if its determinant is zero:

det Iþ KðsÞA0HðsÞ½ � ¼ 0 ð11Þ

Signs of the real part of the roots of Equation (11) determine stability of
the system. On the stability boundary, the real part is zero, so that
s ¼ jxc, where xc denotes the chatter frequency. By a substitution of
s ¼ jxc into Equation (11), a quadratic equation for K is obtained from
which the values of the cutting depth ap and chatter frequency xc at the
stability boundary can be calculated. Further details on this procedure
can be found in References (4) and (5).

It should be pointed out that there exist two solutions of the quadratic
equation for K, which yield different stability boundaries. The procedure
itself does not indicate which of the two solutions is correct. According
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to the experience of the authors, one of the boundaries has usually, but not
always, unrealistically high values of the cutting depth that distinguishes it
from the correct boundary. Some caution is therefore required in the final
steps of the procedure.

Semi-Discretization Method

The basic idea of the semi-discretization (SD) method is to approximate
the delayed terms of the DDE by a piecewise constant function while leaving
the current time terms unchanged. This way, the DDE is approximated by a
series of ODEs for which the solutions can be given in closed form.

In the case of 2-dof milling, the Equation (7) may be rewritten as:

M€XXðtÞ þ C _XXðtÞ þ ðK þQðtÞÞXðtÞ ¼ QðtÞXðt � T Þ ð12Þ

where QðtÞ ¼ �apKtAðtÞ was used to simplify the notation. Discretization is
introduced using a time interval Dt ¼ ti;

�
tiþ1Þ. The delay time becomes

T ¼ m þ 0:5ð ÞDt, where m is an integer determining the coarseness of
the discretization. The periodic coefficient QðtÞ ¼ Qðt þ T Þ and the
delayed state Xðt � T Þ are approximated by:

QðtÞ � QðtiÞ ¼ Qi

Xðt � T Þ � 0:5 Xðti�mþ1Þ þ Xðti�mÞð Þ ¼ 0:5 Xi�mþ1 þ Xi�mð Þ: ð13Þ

The DDE in Equation (12) is herewith transformed into a series of auton-
omous second order ODEs:

M€XXðtÞ þ C _XXðtÞ þ ðK þQiÞXðtÞ ¼
Qi

2
Xi�mþ1 þ Xi�mð Þ; ð14Þ

which can be rewritten as systems of first order ODEs:

_uuðtÞ ¼ WiuðtÞ þ Vi ui�mþ1 þ ui�mð Þ ¼ WiuðtÞ þwi ð15Þ

with u ¼ _xx; _yy; x; y½ �. For the initial condition u tið Þ ¼ ui , the solution of
Eq. (15) is:

uðtÞ ¼ expðWi t � tið ÞÞ ui þW�1
i wi

� �
�W�1

i wi: ð16Þ

Substituting t ¼ tjþ1 and u tjþ1

� �
¼ ui into this solution gives:

uiþ1 ¼ expðWiDtÞui þ expðWiDtÞ � Ið ÞW�1
i Vi ui�mþ1 þ ui�mð Þ

¼ Piui þ Ri ui�mþ1 þ ui�mð Þ ð17Þ

122 J. Gradi�ssek et al.
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Eq. (17) can be recast into a map

viþ1 ¼ Zivi ð18Þ

with the state vector vi ¼ ui ; ui�1; . . . ;ui�m½ � and the coefficient matrix:

Zi ¼

Pi 0 0 . . . 0 Ri Ri

I 0 0 . . . 0 0 0
0 I 0 . . . 0 0 0
..
. ..

. ..
. . .

. ..
. ..

. ..
.

0 0 0 . . . I 0 0
0 0 0 . . . 0 I 0

2
6666664

3
7777775

ð19Þ

The Floquet transition matrix over the principal period T is approximated
by coupling the solution of m successive intervals as:

U ¼ Zm�1Zm�2 � � �Z1Z0 ð20Þ

Stability of the investigated system is determined by the eigenvalues of
the transition matrix (10). The system is stable if all eigenvalues of U are in
modulus less than 1.

Two possible instabilities can be observed in the case of milling. First,
the eigenvalue of U is complex and its modulus is greater than 1. This case
corresponds to the Hopf bifurcation causing the quasiperiodic chatter.
Second, the eigenvalue is real and its value is smaller than �1. This case
corresponds to the period doubling or flip bifurcation, which causes the
periodic chatter. Further details on the semi-discretization procedure can
be found in Reference (7).

EXPERIMENTAL RESULTS

The cutting tests were conducted on a high-speed milling center with a
cylindrical end mill with a single cutting edge, 8mm diameter, 45 degree
helix angle, and 96mm overhang (L=D ¼ 12). Originally, the cutter had
two teeth, but one tooth was removed in order to avoid disturbances due
to the outrun. The cutter was mounted in a HSK40E shrinkfit holder.
The workpiece material was AlMgSi0.5 aluminum alloy for which the spe-
cific tangential force coefficient and the force ratio were determined
mechanistically (11): Kt ¼ 644 MPa and kr ¼ 0:37.

The tool deflections during cutting were measured in X and Y direc-
tions simultaneously by a couple of laser-optical displacement sensors
mounted on the spindle housing. The sampling rate of the sensors was
10 kHz. The measurement point on the tool shaft was located 63mm above
the tool tip.
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A photo diode was attached to the spindle housing in order to detect
black=white transition painted on the rotating tool holder. The transition
occurred once per tool revolution, giving a signal synchronized with the
spindle rotation. The signal was used for off-line stroboscope resampling
of the displacements records.

Modal Analysis

The transfer function matrix H of the machine tool structure was
determined by a standard impact test procedure. For the stability predic-
tion, the transfer function at the tool tip is required. However, due to
the flexible tool of a small diameter the excitation at the tool tip using
an instrumented hammer with a 100 g head was not impulse-like. Regular
excitation could only be assured by hitting the tool shaft below the tool
holder. Consequently, the transfer function at the tool tip could not be
measured directly; instead, it had to be calculated from the measurements
at the excitation point located 15mm below the tool holder.

To facilitate such a calculation, the tool response in X and Y directions
was measured by two pairs of low mass accelerometers attached to the tool
at the excitation point and at the tool tip. The transfer functions at the exci-
tation point, obtained by averaging 10 responses, were curve fit using com-
mercial modal analysis software to determine the modal parameters and
the modal matrix, from which the transfer functions at the tool tip were cal-
culated. The resulting modal parameters at the tool tip are listed in Table 1.

Due to the large tool overhang, the transfer function of the machine
tool structure is dominated by a single vibration mode at ft � 720Hz, which
corresponds to the tool’s first bending mode. The frequencies of the mode
in X and Y directions are slightly different. The out-of-diagonal (xy and yx)
matrix elements, which would indicate the presence of coupling between
the modes in X and Y directions, were much smaller than the diagonal
(xx and yy) elements and their calculation was quite unreliable. Conse-
quently, the out-of-diagonal elements were set to zero making the transfer
function matrix diagonal, which means that the potential mode coupling
was neglected.

TABLE 1 Modal Parameters of the Cutter

xx yy

Mass [g] 20.1 19.9
Damping [kg=s] 1.56 1.60
Stiffness [kN=m] 414 409

xx and yy denote the indices of matrix elements.

124 J. Gradi�ssek et al.
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Predicted Stability Charts

Stability charts were predicted by the zeroth-order approximation
(ZOA) and semi-discretization (SD) methods for a series of radial depths
of cut ae. Charts for up-milling with ae ¼ 0:5D; 0:25D, and 0.05D are com-
pared in Figure 2. For ae ¼ 0:5D (50% radial immersion), both methods
yield similar results: lobed stability boundaries with lobe maxima located
at the integer fractions of the structure’s dominant eigenfrequency, ft=k.
As radial depth of cut decreases, the discrepancy between the ZOA and
SD stability boundaries grows considerably. The most prominent difference
is the additional set of lobes located at the odd integer fractions of twice the
dominant eigenfrequency, 2ft= 2k þ 1ð Þ. These lobes are predicted only by
the SD method and correspond to the period doubling (flip) bifurcation
which causes periodic chatter. They appear already at a full immersion cut
(ae ¼ D, not shown) and grow steadily with decreasing radial immersion.

FIGURE 2 Stability charts predicted by the ZOA and SD methods.
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The SD stability chart at ae ¼ 0:05D reveals an intriguing structure; the
flip lobe at n ¼ 12:5 krpm is a closed curve within the stable domain, the
lobe at n ¼ 18 krpm is almost closed, and there are further lobe-like por-
tions of the stability boundary at higher depths of cut (not shown). Similar
structure of the stability chart was observed for a simulated 1-dof interrup-
ted turning in (12), where it was proven rigorously that all flip lobes, except
for the first one, are in fact closed curves distributed not only along the
spindle speed axis but also across the entire n�ap plane. The stability chart
for ae ¼ 0:05D indicates that this property might also hold for realistic 2-dof
milling systems.

Experimental Stability Charts

The predicted stability charts were verified experimentally by cutting
tests conducted at a series of spindle speeds and cutting depths. Stability
of cutting was assessed from the sound emitted during machining and from
the recorded tool displacements. The results for the three radial immer-
sions are summarized in Figure 3.

For ae ¼ 0:5D, the predictions and experiments agree very well. The
observed stability maxima match the predicted ones along the entire spin-
dle speed range, whereas the minima slightly increase as spindle speed is
increased. This increase of stability could be attributed to decrease of cut-
ting force coefficients at higher cutting speeds. At n ¼ 29 krpm, a flip lobe
was observed. Its location was correctly predicted by the SD method. For
ae ¼ 0:25D, the agreement between predictions and experiments is still
quite good. Notable discrepancies are observed mainly at the stability max-
ima, which are overestimated by both methods. The reason for this discrep-
ancy is at present unknown. The flip lobes are observed close to the
locations predicted by the SD method. The situation is similar for
ae ¼ 0:05D, where the predicted structure of the stability chart is correct,
but the stability maxima are significantly overestimated. Location of the flip
lobes is predicted well, except for the lobe at n ¼ 28 krpm which was found
at lower spindle speeds than predicted.

Comparison of the Hopf and flip bifurcation lobes shows that the Hopf
lobes are much wider than the flip ones whereas the latter often reach to
lower depths of cut than the former. Since the Hopf and flip lobes are also
located at different spindle speeds, it is important to consider both of them
when selecting chatter-free cutting parameters.

TOOL PATHS IN X-Y PLANE

Three different types of tool motion corresponding to three different cut-
ting regimes were predicted by the SD method and observed experimentally
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in the cutting tests: periodic chatter-free regime, quasiperiodic, and periodic
chatter regimes. Figure 4 shows typical examples of the recorded tool motion
in the X-Y plane, Y-displacement sampled exactly once per tooth passing per-
iod T, and the amplitude spectra of the Y-displacement for the three cases. In
the chatter-free motion, the tool oscillates periodically with the tooth passing
frequency Nn, which is in our case (N ¼ 1) equal to the spindle speed n. This
is confirmed by the 1=T sampled displacement where the data points are gath-
ered in one compact cloud (panel (1a) in Figure 4) and their values remain
approximately constant as cutting progresses (panel (1b)). The amplitude
spectrum of the displacement shows peaks only at the multiples of the spindle
speed (panel (1c)).

In quasiperiodic chatter, the tool moves on a torus defined by the domi-
nant eigenfrequency and the tooth passing frequency, which usually have
incommensurate values. The data points sampled once per tooth passing
period lie on a circle (panel (2a)) and their values oscillate periodically

FIGURE 3 Comparison of experimental and predicted stability charts.
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FIGURE 4 (�a) Tool motion in X-Y plane, light dots denote 1=T sampled data, (�b) 1=T sampled
Y-displacement, (�c) amplitude spectra of Y-displacement, vertical dashed lines denote multiples of
the tooth passing frequency. (1�) chatter-free, (2�) quasiperiodic chatter, (3�) period doubling
chatter. All cases: ae ¼ 0:05D, up-milling.
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in time (panel (2b)). Spectral peaks are found at the two frequencies, at
their sums and differences and their multiples (panel (2c)).

Tool motion in periodic chatter is periodic with twice the tooth passing
period, 2T, (and half the tooth passing frequency, Nn=2). 1=T sampled data
points form two compact clouds (panel (3a)), which are visited alternately
(panel (3b)). The amplitude spectrum of the displacements shows peaks at
the multiples of half the tooth passing frequency (panel (3c)). Note that
chatter-free motion is also periodic but with a tooth passing period T.
The difference between the periodic chatter-free and periodic chatter tool
motion is therefore in the period. The chatter-free tool motion repeats
itself after each tooth pass (period equals T), while the periodic chatter tool
motion repeats itself after two tooth passes (period equals 2T ).

CONCLUSIONS

Stability boundaries predicted by the widely used zeroth-order approxi-
mation (ZOA) method and the recently proposed semi-discretization (SD)
method were compared. Under the specified cutting parameters and the
machine tool modal properties, the methods yielded similar predictions
for high radial immersions. As radial immersion was decreased, the dis-
agreement between the predictions of the two methods grew. For very
low radial immersions, the predicted stability boundaries differed consider-
ably. The most prominent difference was an additional set of lobes corre-
sponding to the new type of instability, the period doubling bifurcation,
which was predicted only by the SD method. Period doubling bifurcation
causes periodic chatter as opposed to the quasiperiodic chatter caused by
the Hopf bifurcation.

Experimental verification of the stability boundaries confirmed that the
predictions of the SD were more accurate than those of the ZOA method,
although both methods significantly overestimated the stability maxima at
low immersions. All three different types of the tool motion predicted by
the SD method were observed experimentally: periodic chatter-free, quasi-
periodic, and periodic chatter. These types of tool motion were studied in
more detail based on recorded tool deflections in the X-Y plane.

In summary, the presented investigations showed that there are indeed
two types of instability possible in low radial immersion milling and both of
them should be taken into account when selecting the stable, chatter-free
cutting parameters.
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