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Summary

 Size is defined indirectly in contemporary Geometric Dimensioning and Tolerancing (GD&T) through Features 
of Size (FOS), which are subsets of spherical surfaces, cylindrical surfaces, and pairs of opposed parallel planar 
surfaces. Features of Size have distinctive characteristics – extremal states, locatability – that have set much of the 
character of GD&T over the past forty years. If GD&T is to live for another forty years, some deep issues associated 
with size will have to be addressed. One – an ostensibly narrow conformance problem – must be solved soon. The 
broader issues include such questions as: what is 'size'? Is size fundamental, or can it be defined in terms of other 
concepts? Can a rational GD&T system be constructed without using size? The paper opens with a short summary 
of the conformance problem. The focus then shifts to an exploration of size per se, and a discussion of properties 
and issues that emerge from the exploration.1

-------------------------------------- 

1. INTRODUCTION 

 'Size' is a convenient concept that everyone uses, but its precise meaning – when it has one – is almost always 
context dependent and sometimes subjective. The notion of geometric (or spatial) size pervades the mechanical 
industries: it is used to organize cutters in toolrooms, to catalog standard components, and so forth. Curiously, the 
American Standard Y14.5 [ASME 94a] for Geometric Dimensioning and Tolerancing (GD&T) provides no 
definition for size, but instead defines size indirectly through the three Features of Size (FOS) shown in Figure 1.  
 

 

 
(a): A Feature of Size is a  subset of a spherical or cylindrical surface, or of 

a pair of parallel planar surfaces with opposing material-side normals. 

∅ 1.0 ± 0.1

 
(b): Limits of Size are defined by limits on nominal parameter values. 

Figure 1: Contemporary Features of Size (FOS). 

 Features of Size have distinctive properties that set much of the character of contemporary GD&T – notably 
extremal states (Maximum and Least Material Conditions determined by the Limits of Size, plus Virtual and 
Resultant Conditions), and locatability (only FOSs can carry position tolerances). However, the variational-limit 

                                                           
1 Popular versions of portions of this material have been published in the trade press; see [Voel 95] and [Voel 01]. 
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semantics of FOSs have defied precise definition, and this has led to the conformance problems summarized in 
Section 2. On a deeper level, there is no agreement on rules for extending the current set of FOSs, or on handling 
size in some alternative manner. This suggests that the notion of 'size' as a free-standing concept should be exam-
ined, and the remainder of the paper is devoted to that exercise. 

* * 

2. ASSESSING CONFORMANCE TO SIZE SPECIFICATIONS 

 GD&T distinguishes between nominal features, which are ideals specified by a designer, and actual or physical 
features. A nominal FOS carries the limits of size shown in Fig. 1b. Clearly these should control variations in actual 
size, but the exact nature of the control, and how to assess it (conformance assessment), depend on how size is 
defined. Examples based on the solid cylindrical FOS shown in Fig. 1b will illustrate the issues. 

 Actual (measured) size has been determined traditionally by two-point caliper measurements. Such measure-
ments can assess conformance to the nominal specification on a section-by-section basis if the sections are circular. 
If they are not, the results can be misleading: see Figure 2.  
 

R1.00

Reuleaux Section

Ø 1.00

Circular Section

1.0

Fourier Section  
Figure 2: Can two-point measurements distinguish these sections? 

 The issue is even murkier when size is mixed with form. Rule 1 of Y14.5 requires that an actual cylinder lie on 
or within a perfect cylinder of MMC (maximum allowed) diameter, as in Figure 3, and that the LMC (least allowed) 
limit be met on all cross-sections. But how can one check all cross-sections, and how is 'cross-section' defined for 
imperfect cylinders with ambiguous axes? Thus definitions of size based on two-point measurements, while 
intuitively appealing, carry ambiguities that are difficult to resolve.  
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Figure 3: The Y14.5 interpretation of size under Rule 1. 

 Requicha [Requ 83] proposed a rigorous definition for size based on a containment zone constructed by offset-
ting the perfect-form boundary inward and outward. For a solid cylinder, the outer (MMC) boundary would honor 
Y14.5's Rule 1 (perfect form at MMC), but the perfect form inner (LMC) boundary would be more stringent than 
Y14.5 requires; it could not be met, for example, by the Y14.5-acceptable 'bent cylinder' in Fig. 3. Thus Requicha's 
definition was rejected, but its primary mechanism – a containment zone – is used in the current 'official' definition 
of size. 

 The current definition in Y14.5.1 [ASME 94b]2 was provided by Srinivasan and Requicha [Srin 93]. Figure 5 
illustrates the concepts for a solid cylinder. Succinctly: 
• sweep a solid ball of MMC diameter on the 'spine' (a space curve) labeled SMMC to generate the solid RMMC; 
• sweep a solid ball of LMC diameter on the spine SLMC to genereate RLMC; 
• construct zone Z as the set difference of the two R-solids; 

                                                           
2 Y14.5.1 is the new (in 1994) 'mathematical companion' to Y14.5; it provides definitions in algebraic geometry for 
the tolerances defined in Y14.5 via prose and special-case examples. 
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• actual feature G (a subset of an imperfect cylindrical surface) conforms to the size specification if G lies within Z. 
 

RMMCS MMC RMMC – RLMCZ =

G
RLMCS LMC

G

 
Figure 4: The Y14.5.1 definition of size conformance. 

 The spines are the key to this definition. SMMC is a line segment under Rule 1, but SLMC (and SMMC if Rule 1 does 
not apply) can be any curve segments that satisfy some mathematical conditions.3 The definition is existential and 
almost certainly impractical, because one must either exhibit spines that establish zone containment, or prove 
(somehow) that no such spines exist. See [Sure 94] for more information and early results on finessing existentiality, 
and Section 5 below for a different solution to the current impasse.  

* * 

3. FIVE CONCEPTIONS OF SIZE 

 This section summarizes five conceptions of size, with the aim of finding at least one that will lead to a formal 
characterization of size in GD&T. We begin with natural language semantics, since every natural language provides 
expressions for the notion of size. 

 3.1 VERNACULAR SIZE 

 In English dictionaries we find, for example:  
 size (noun) : the physical dimensions, proportions, magnitude, or extent of an object; any of a series of graduated 
categories of dimension whereby manufactured articles, such as shoes and clothing, are classified; … and others less 
relevant. These definitions capture everyday human use, but they are not sharp enough for our purposes. A diction-
ary of mathematics contains no entries for size. 

 3.2 PARAMETRIC SIZE 

 The parameter 'A' of the disk in Figure 5a can fairly be called a size parameter because (for example)  
• the diameter, perimeter, and area vary monotonically with A; 
• a containment property holds, viz. 
  ( ) ( ),Solid A Solid A where A A+ +⊂ < ; (1) 
 • the solid retains its shape if it is indeed a disk. 
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(a) (b) (c) 

Figure 5: Parametric solids. 

 'A' also seems to be a size parameter for the rectangular plate in Fig. 5b, but perhaps a weaker size parameter. 
The diameter (as measured by the diameter of a minimal enclosing sphere), perimeter, and area grow with A, the 
containment property holds, but the solid's aspect ratio (hence its shape?) changes unless .B kA=  

                                                           
3 The conditions on the spines in the Y14.5.1 definition are not strong enough. More rigorous conditions are 
proposed in [Sure 95], but these have subtle consequences that may be unacceptable to the Y14.5 community. 
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 Is 'A' a size parameter for the U-shaped solid in Fig. 5c? The solid's diameter and perimeter are invariant under 
small changes in A, its area shrinks, the containment property fails, and the solid's shape may change … depending 
on how we construe 'shape'. So – probably not. But A might be a size parameter for the slot in the solid! 

 These examples suggest that (some) simple solids defined by one- or two-parameter constitutive equations (e.g. 
spheres, ellipsoids) may be naturally size-parametric in the constitutive parameters. For more complex, composed 
solids, parametric size seems to be in the eye of the beholder. 

 3.3 RELATIVE SIZE: SCALING 

 Here we seek a characterization of size through a characterization of shape. Figure 6a shows three triangles 
generated by rigid motions (rotations and translations) which are members of a congruence class. They differ in 
location and orientation, but have the same size and shape by any reasonable interpretation of those terms. The rigid 
motions that generate the triangles preserve the distances between all pairs of points in a solid, and the signs of 
angles defined on triples of points. 

 Fig. 6b shows a similarity class generated by uniform scalings of members of the congruence class. Clearly 
distances between points in the triangles are not preserved, but signed angles and ratios of distances are preserved, 
and these capture the notion of shape. Thus 
• scaling preserves shape; 
• the size of  relative to is  2k A 1k A 2 1/k k
• greater relative size does not guarantee containment, i.e. 
  , (2) 2 1 2 1( ) (k k k B k B> ⊃ )
 unless the scaled solid is convex: see Figure 6c.4
 

A A

A

 

k1A

k3A

k2A

 

   k1B     k2B

 

(a) (b) (c) 

Figure 6: Defining relative size through isotropic scaling. 

 3.4 INCREMENTAL SIZE: OFFSETTING 

 Scaling expands or shrinks objects homogeneously. A different, incremental conception of size can be based on 
changes at an object's boundary. Constant-distance offsetting, defined through Minkowski sums and differences, 
provides a convenient model.  

 Figure 7a shows a (two-dimensional) solid A. Fig. 7b illustrates spherical dilation (offsetting) of A, viz. 
( , ( )) ( )@

( ( )@
Offset A B t A B t o

) ,A A B t o
= ⊕
= ∪ ∂ ⊕

 (3) 

where B(t) @ o is a ball (sphere) of radius t located at the origin of a common coordinate system, denotes Min-
kowski (exhaustive vector) summation, and 

⊕
A∂  denotes the boundary of A. Fig. 7c illustrates spherical contraction 

(insetting) of A through the Minkowski difference operation, viz. 

( , ( )) ( )@
( ( )@

Inset A B t A B t o
).A A B t o

=
= − ∂ ⊕

 (4) 

 

                                                           
4 Containment conditions are generally stated in this paper modulo rigid motions, i.e. "There exists a rigid motion M 
such that 2 1( )M k B k B⊃ ." 

 4 Printed: 1-Feb-05 



This mms. is published in Proc. ASPE Summer Topical Meeting on Tolerance Modeling and 
Analysis, University of North Carolina at Charlotte; ASPE Press, Raleigh, NC, July 2002. 

 

   
(a) (b) (c) 

Figure 7: Defining incremental size through offsetting. 

Observe that these definitions admit absolute larger and smaller size relations based on containment. Specifically, 
 • Offset(A) is incrementally larger than A. (5a) ( )A Offset A⊂ ⇒
 • Inset(A) is incrementally smaller than A. (5b) ( )Inset A A⊂ ⇒

It is evident from Fig. 7, and easy to prove formally, that offsetting/insetting generally does not preserve shape. 

 3.5 GENERATIVE SIZE: MEDIAL AXIS METHODS 

 Generative size entered geometric tolerancing with the Y14.5.1 definition summarized in Section 2. The 
paradigm: generate a solid by sweeping a standard simple solid – typically a sphere – over a spatial trajectory. The 
size of the generated entity is, by definition, the size of the swept sphere.  

 

r @1 r @2 

Object Spine 

 
Radius Function  

(2 places)  

 

 Suresh and Voelcker suggested [Sure 94] that this conception of size, 
which applies to the three generic FOSs of contemporary GD&T, can be 
generalized through well known medial axis concepts. In essence (see 
Figure 8): any general solid can be represented unambiguously by a 
union of variably sized spheres, determined by a Radius Function, 
arrayed over the solid's medial axis (spine). Note that the Radius 
Function varies over the spine (only two instances are shown in Fig. 8), 
and provides a measure of local size. Unfortunately, medial axis methods 
– while conceptually elegant – are computationally prohibitive at present. Figure 8: Medial Axis representation 

 3.6 WHAT CAN WE CONCLUDE? 

 Vernacular size is too vague to be useful, and parametric size does not provide a proper definition of size … but 
it can be a useful for simple solids.  The two strongest candidates for a mathematical semantics of size are 

• relative size, which is defined through scaling and preserves shape but generally not containment, and 
• incremental size, which is defined through offsetting and  guarantees containment but generally does not pre-

serve shape.  
Generative size, which is defined by sweeping, is currently a 'wild card'. It is clearly a useful representation for 
simple solids (e.g. the classical FOSs), but we don't know enough about generative methods to assess their intrinsic 
properties and practical significance.  

* * 

4. OBSERVATIONS 
1) Containment and shape invariance are important. Containment is a basic principle used in assembly design, and 

offsetting (our incremental size mechanism) provides a powerful tool for managing containment. Shape invari-
ance is paramount in applications where shape determines function. Constrained motions (e.g. shafts rotating in 
bearings – the shaft and bearing should remain round under small variations) offer obvious examples, but there 
are many others. 

2) The classic three Features of Size play major roles in both nominal (ideal form) and variational (toleranced) 
mechanical design. How can such a small set of features do so much? The answer seems to lie in simple but 
powerful geometric properties. For nominal design, the classic three FOSs embody the most important symme-
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tries found in the seven symmetry groups that underlie kinematics [Srin 99]. For variational design, the classic 
three retain their shapes under offsetting,  and thus offer containment and shape invariance. In addition, all three 
are (conveniently) parametrically monotonic. 

3) Shape invariance under offsetting is a special and rare property. [Voel 02] describes an initial study of solids that 
exhibit the property … a reasonably rich family that should provide candidates for extending the set of FOSs.  

* * 

5. WHITHER 'SIZE' IN GEOMETRIC TOLERANCING? 
 The problem posed by the current Y14.5.1 definition should either be fixed or a new definition should be sought. 
To date the mooted fixes have introduced almost as many problem as they have cured. The root of the definitional 
problem lies in Rule 1, which mixes size with form. If those two can be separated, the definitional problem should 
either vanish or become much easier. 

 On generalizing GD&T beyond the classic three FOSs: apparently one can either expand the set of FOSs using 
an intrinsic property (shape invariance under offsetting?) as a discriminant, or one can abandon the FOS concept and 
work wholly through offsetting and/or scaling. At present neither alternative is 'politically viable' in the Y14.5 
committee world. 

 Finally, I am convinced that we are missing one or more facts or properties pertinent to size. Thus I view the 
material in this paper as pertinent but incomplete. 

* * 
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