
ARTICLE IN PRESS

Robotics and Computer-Integrated Manufacturing 25 (2009) 560– 569
Contents lists available at ScienceDirect
Robotics and Computer-Integrated Manufacturing
0736-58

doi:10.1

� Corr

E-m
journal homepage: www.elsevier.com/locate/rcim
A novel open CNC architecture based on STEP-NC data model and IEC 61499
function blocks
M. Minhat a, V. Vyatkin b,�, X. Xu a, S. Wong b, Z. Al-Bayaa b

a Department of Mechanical Engineering, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
b Department of Electrical and Computer Engineering, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
a r t i c l e i n f o

Article history:

Received 29 January 2008

Received in revised form

11 March 2008

Accepted 26 March 2008

Keywords:

IEC 61499 standard

Function blocks

STEP-NC

CNC machine

Distributed control systems
45/$ - see front matter & 2008 Elsevier Ltd. A

016/j.rcim.2008.03.021

esponding author. Tel.: +64 9 3737599.

ail address: v.vyatkin@auckland.ac.nz (V. Vya
a b s t r a c t

Modern manufacturing industries demand computer numeric controllers, having higher level input

languages than outdated G-code, and less proprietary vendor dependencies. IEC 61499 is a new

standard for distributed measurement and control systems, that enables portability and interoperability

of embedded controllers, along with the ease of their mapping to arbitrary distributed networking

hardware configurations. This paper demonstrates that the IEC 61499 reference architecture can be

successfully used to create a computer numeric controller, offering interoperability, portability,

configurability, and distribution characteristics. The layered CNC-FB architecture is proposed, which

simplifies the design of a CNC machine controller with the architecture layers responsible for data

processing, data storage and execution. In combination with the object-oriented Model-View-Control

design pattern, the CNC-FB architecture supports the design framework, in which simulation of the

machining becomes natural and inherent part of the design process, with seamless transition from

simulation to actual machining. The implemented controller was tested in both the model and on an

actual milling machine.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Computer numerical control (CNC) devices are the brains of
machine tools used in all manufacturing industries. Since the
1950s, CNCs have gone through several generations, following the
state-of-the-art computational platforms. The way of their
programming, however, remains almost unchanged. The low level
G-code programming language is still used in most of the CNCs.
The G-code language was designed in the era when paper tape
was the medium for moving data between computers and CNC
systems. Today an average microprocessor can easily process
complex three-dimensional data, and CNC machining is the only
operation in the design-to-manufacturing pipeline that is not
using full-fidelity product and process information.

A typical design-to-product chain is shown in Fig. 1. Nowadays
the G-code programs are generated by the computer aided
manufacturing (CAM) tools, using the geometrical data from
computer aided design (CAD) tools as the input. However, CNCs of
different vendors implement different versions of G-code which
lacks any portability and leads to proprietary CAD–CAM–CNC
chains [1,2]. In order to generate G-code programs for different
CNCs, CAM tools need to know not only the particular brand and
ll rights reserved.

tkin).
model of a CNC, but also need to have a detailed description of
the machine tool and their peripherals such as cutting tools
and other auxiliary components. This information is being
handled by a special unit within a CAM tool called ‘‘postproces-
sor’’ which operates with full knowledge of: (i) G-code,
(ii) machine-tools and (iii) libraries of cutting tools. The
postprocessor generates exact scenario of machining which is
described in a G-code file.

As illustrated in Fig. 1, software tools (such as CAD, CAM), CNCs,
and machine tools, are designed with versatility in mind. For
example, CAM tools can read output data formats of different CAD
tools, machine tools can be equipped with, and driven by different
CNCs. Machine tools can also use other devices provided by
different vendors. CNCs, however, can accept programs only in
their proprietary versions of G-code. This hinders the flexibility of
manufacturing processes, especially within extended global
enterprises. In order to manufacture a certain product on a certain
manufacturing site, the company may need to pass on their full
information, database and data model of the product. The G-code
language is clearly insufficient for this. Even though existing CNC
systems have become more and more sophisticated, incompat-
ibility between their proprietary data restricts further productiv-
ity enhancement of CNC-based machining. Furthermore, since
each system has its own data format, the same information must
be entered multiple times into multiple systems leading to
redundancy and possible errors.

www.sciencedirect.com/science/journal/rcm
www.elsevier.com/locate/rcim
dx.doi.org/10.1016/j.rcim.2008.03.021
mailto:v.vyatkin@auckland.ac.nz


ARTICLE IN PRESS

Fig. 1. Automated design-to-product chain.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569 561
The implementation chain would have been much easier if a
standard format for describing geometrical and machining informa-
tion had existed, and if the CNCs could have directly read and
understood such documents and immediately carry out machining.
For this reason, a new language, STEP-NC, has been created and
standardized as ISO 14649-1 [3]. STEP-NC is envisaged to be a single
language used throughout the design and manufacturing imple-
mentation chain. However, in order for it to be used on modern
CNCs, specific software tools are required to translate STEP-NC
descriptions to the proprietary G-code of the particular CNC.

Today’s CNC manufacturers offer most of the features either in
a built-in package or in the made-to-order manufacturing mode.
Hierarchically, CNC machine tools are facing numerous chal-
lenges. They become more and more complicated and require
decentralized control [4,5]. Their internal structure needs to be
flexible and customisable. The control needs to be implemented
as a network of several embedded computing devices, inter-
changeable depending on different applications area or target
markets. Machine tools are often a part of an automated
manufacturing system and therefore have to interoperate with
other automated machines, such as robots, transport, storage and
so forth. As such, they can be substituted by other similar tools
from other vendors. Thus CNCs have to be easily integrated into
automation systems, interoperating with programmable logic
controllers (PLCs), other CNCs, embedded control devices, etc.

In this paper we propose a novel open architecture of CNC which
aims to meet the above mentioned challenges and provides some
insight into a new generation of CNC with open, flexible architecture.
The idea is illustrated in Fig. 2. The new generation CNC will be
capable of accepting STEP-NC data directly. The software architec-
ture of this CNC is based on the open reference architecture known
as the IEC 61499 ‘‘function blocks’’ standard [6]. The IEC 61499
function blocks will enable easier program distribution, integrated
visualization and improved real-time control characteristics. CNC
milling machines or machining centres are the targeted machine
tools in this research. The hardware architecture of the future CNC
will be flexible and distributed. It allows for scaling its computing
power, memory and interfaces up to particular needs.
2. Related works on CNC systems

The primary challenge for CNC systems is the agility in
implementing various manufacturing strategies driven by market
changes. New research results [7,8] show that the agility can be
achieved if the machine controller unit is based on open
architectural concepts [9] rather than proprietary hardware or
software architectures.

Since G-code programs describe only plain machining com-
mands, a richer programming language is required to cater for
other automated operations. Such a language needs to be open
and rich to handle CNC machines of different vendors. Therefore,
vendor-neutrality and component-interoperability can be thought
of as two fundamental features of an open system [10]. Ultimately,
the main goal for research projects on open CNCs is to develop a
vendor-neutral, tool-neutral and controller-neutral architecture of
CNC.

A common CNC executes G-code programs, which are
generated as a result of planning and scheduling in CAM tools.
When designing a CNC machine, it is important to consider its
dynamics, electrical components and mechanical structure [11].

The idea of an open CNC [12,13] is to create an integration
platform, on which the specific software components (handling
the particulars of specific machines) can be easily integrated with
a core CNC functionality (planning, scheduling and execution). An
open CNC will be able to interoperate with extensible set of
machine tools, cutting tools and CAD formats. One possible
approach to the integration is to use a personal computer (PC) as a
hardware platform with an operating system simplifying the
integration.

Thus, Gordon and Hillery [14] introduced Microsoft Windows-
based CNC, programmed with the MINT language, which is a
structured form of BASIC designed for motion control applica-
tions. The motion control was implemented using the Baldor
Nextmove BX 3-axis servo motion controller that was supplied
with a linear motor system. The motion control unit commu-
nicated with a PC via an RS-232 serial link, and was capable of
storing and executing entire part programs. Since many CNC
functions are very computation intensive and require hard-real
time performance, the real-time operating system QNX has been
used in some research works [7]. Powerful multitasking mechan-
isms of PC operating systems (such as Windows or QNX) bring
extra advantages to CNC implementation, e.g. such a CNC can
provide disturbance estimation and monitor subsystem to control
and monitor features such as torque and over-cutting state. The
proposed kernel software [10] organizes and manages various
control software modules dynamically by using process and
resource models. The kernel software enables the CNC to be easily



ARTICLE IN PRESS

Fig. 2. Current CNC vs. future open extensible CNC.

Fig. 3. Function block model.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569562
reconfigurable and adaptable to new machines by adding new
interface software modules.

Making CNCs more intelligent is another quest from both CNC
makers and users. Some of the recent developments include a
digital signal processor (DSP) for an EDM (electro-discharge
machining) machine [15], Virtual CNC [16] and an intelligent
STEP-NC controller [9].

Chang proposed in [15] a monitor and controller of the ignition
delay percentage of the discharge pulses, to maintain the rate of
erosion in the EDM process. A flexible program calculates an
accurate ignition delay percentage and then presents the results on a
digital-to-analogue converter. Erkorkmaz and Wong presented in
[16] a technique for rapid identification of machine tool drives. The
proposed strategy uses commanded and measured axis profiles and
requires minimal intervention to the servo control loop. The
methodology is fairly general and applicable to linear or ball screw
drives, controlled with commonly used controllers such as P, PI, PID,
P-PI Cascade or Adaptive Sliding Mode Control; with or without feed
forward dynamic or friction compensation. The identified models
were used in a Virtual CNC system for predicting the contouring and
tracking errors to different part programs.

There is a great deal of research on the CNC architectures based
on STEP-NC. Han et al. in [9] proposed a novel framework based
on multi-agent for implementing an intelligent STEP-NC con-
troller. The architecture allows for analysis of process routine and
the specific requirements for the intelligent STEP-NC controller.

Most of the above-mentioned CNC systems are still under
influence of G-code. The ultimate goal, however, is to machine
directly from the part program bypassing ‘postprocessor’ and
G-code. Currently there is no CNC which can process CAD-enriched
machining data directly. In this paper, we present an open CNC
architecture that is based on STEP-NC data model and IEC 61499
function block reference architecture. The architecture: (i) supports
bidirectional information flow in the design and manufacturing
chain; (ii) adopts the concept of feature-based machining for CNCs
so that higher-level information can be made available at the CNC
machines; (iii) enables an autonomous and more intelligent CNC;
(iv) supports a distributed process planning scenario; (v) is modular,
reusable and open; (vi) is scalable, extensible and portable.
3. Overview of the IEC 61499 architecture and MVC design
pattern

3.1. IEC 61499 architecture

A function block is a software unit that encapsulates
algorithms which can be designed to behave in a similar way as
an electronic device or a circuit. This means that a function block
can represent a small task in a control plan or it can encapsulate
multiple small control units. The unit, designed for a specific
purpose, contains the process algorithm and control state
machines needed to accomplish a specific task (Fig. 3).

There are three standard classes of function blocks defined in
IEC 61499: basic function blocks, composite function blocks and
service interface function blocks. Each function block has a set of
input and output variables. The input variables are read by the
internal algorithm when it is executed, while the results from the
algorithm are written to the outputs.

The basic block type encapsulates algorithms and has an
execution control chart, giving this block type the flexibility to
model many different components. An example, defining basic
function block type X2Y2, is seen in Fig. 4. In basic function blocks
of IEC61499 a state machine (called Execution Control Chart, ECC
for short) defines the reaction of the block on input events. The
reaction can consist of execution of algorithms computing some
values as functions of input and internal variables, resulting in
emitting of one or several output events. In Fig. 4 (right side) the
ECC and an algorithm are shown. The state REQ has one associated
action that consists of calling the algorithm REQ followed by
emitting of the output event CNF afterwards. The algorithm
computes Out ¼ X2–Y2.

A composite function block can encapsulate a network of
multiple blocks (both basic and composite), interconnected by
external data sources. An example is given in Fig. 5, where the same
X2–Y2 function is implemented as a network of three function blocks,
doing addition, subtraction and multiplication, respectively. This
network can be encapsulated in a composite function block with the
same interface as the function block X2Y2 from Fig. 4. The possibility



ARTICLE IN PRESS

Fig. 4. A basic function block type description: interface, ECC and algorithm REQ.

Fig. 5. Implementing X2–Y2 as a network of function blocks.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569 563
to include composite FBs within other composite FBs enables a
hierarchical system description. This is useful for defining multi-
layered architectures. In our case, the developed CNC architecture is
layered with layers responsible for data processing, data storage and
execution. The separation of the functions into layers enables
flexibility of the controller. The FB-based architecture also enables
modelling and simulation to be tightly integrated with the design
process. Before execution, the controller can be validated by either
simulation or formal verification.

In the IEC 61499 architecture, the function performed by the
system is specified as an application, which may reside in a single
device or be distributed among several devices. The application
consists of a network of function blocks connected by data and
event connections. The control system is specified as a collection
of devices interconnected and communicating with each other by
means of one or more communication networks.

The use of function blocks makes the control device openly
programmable and easily reconfigurable. IEC 61499-compliant
devices can easily interface one another, thus providing for
seamless distribution of different tasks across different devices
[17,18]. The user may create own program using the standard
function blocks. Thus, the IEC61499 architecture enables encap-
sulation, portability, interoperability and configurability. Port-
ability means that software tools and hardware devices can accept
and correctly interpret software components and system config-
urations produced by other software tools. With interoperability,
hardware devices can operate together to perform the cooperative
functions specified by one or more distributed applications. With
configurability, devices and their software components can be
dynamically configured (selected, assigned locations, intercon-
nected and parameterized) by multiple software tools.
3.2. Software implementation: FBDK and FBRT

Function block development kit (FBDK) [19] is the software
tool, widely used in the IEC 61499-related research projects. The
tool allows for the graphical development of both function blocks
and function block-based systems. FBDK compiles the developed
function block types into Java programming language. The object-
oriented nature of this language enables consistent implementa-
tion of function blocks. In addition, the platform independence of
Java leads to portability of the implemented controller.

The use of FBDK can be combined with other Java development
tools, for example, Eclipse Integrated Development Environment,
especially when sophisticated Java code (e.g. 3D visualization) or
interfacing peripheral devices (e.g. parallel port) need to be
encapsulated into function blocks. The function block applica-
tions, designed using FBDK, are executed with Java virtual
machine and the function block runtime (FBRT) library of
standard FB types.

3.3. Model-View-Control design pattern

The object-oriented Model-View-Control (MVC) software design
pattern was adapted by Christensen in [20] for industrial control. Its
applicability has been proven for the IEC 61499 architecture. More
details on implementing MVC with function blocks can be found in
the book by Vyatkin [21]. The pattern is represented graphically in
Fig. 6. The core part of the pattern is the closed-loop object–con-
troller interconnection. In software, the object is represented by an
interface to its data sources (say sensors) and signal consumers
(actuators). The object can be substituted by its model—a software
entity having the same interface and simulating object’s behaviour.
Several models can be used depending on the required accuracy and
the purpose of modelling.

The proposed novel CNC framework in this research was
developed using the concept of MVC, which enables full simula-
tion and rendering of the CNC system, driven by the actual
controller code.
4. Layered architecture of the novel CNC

The architecture of the proposed CNC controller (i.e. the Con-
trol part in the MVC architecture) is layered and is implemented



ARTICLE IN PRESS

Fig. 6. Architecture based on the MVC design pattern.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569564
using function blocks. The use of the layered software architec-
ture as the framework for CNC design enables flexibility in
adopting the controller to new machines and computer hardware/
software platforms. The layers are selected to separate the
functional units into a hierarchical structure so that the controller
becomes more readily maintainable, as modifications can be done
to a particular layer without compromising the functionality of
other layers. Each layer is designed to utilize the services of the
lower one.

There are three groups of functions as the backbone of the
layers: (i) input and data distribution of machining features,
(ii) data storage/buffering and (iii) output of physical signals and
process execution. The complete architecture consists of five
layers as shown in Fig. 7. In addition to the three groups of
functions mentioned above, two more layers are added: process
planning (Layer 5) and 3D co-ordinates (Layer 3). Functions of all
layers are encapsulated in function blocks. Communications
between all of the layers are implemented by the communication
function blocks Publish and Subscribe.

The layers are further divided into two categories as shown in
the right-hand side of the diagram: ‘‘Input Model and FB Generic
Data Program’’ and ‘‘Machine Specific or Native Program’’. The
former contains primarily generic data whereas the latter contains
machine specific data. All layers (5–1) are described as follows.

Layer 5 (planning) is to provide definitions on security plane,
cutting tool, workplan, workpiece, clamping position and so forth.
Layer 4 (Machining features) is implemented by a library of
function blocks that parameterize machining features and
machining data. It generates the tool paths required for the
respective features. Function blocks are used for directing and
managing features and shape coordinates to accept or collect data
entered either manually by user, or automatically from other data
sources.

The input types required for initialization purposes include:
�
 Travel limits (the maximum travel displacement of each axis).

�
 Work piece dimensions.

�
 Work piece origin.

�
 Tool start point (home positions).

An additional set of input options is used to enable the operator
to assemble the tool path of the shape. It consists of the following
options:
�
 Customized shapes blocks: Each block represents a basic shape,
such as a rectangle or a circle. Each of those blocks generates
the sequence of coordinates, required to construct the shape
using the dimensions, provided as an input.
�
 Text file: The library of this layer also contains a file reader
block designed to read the coordinates of a design part from a
text file.

�
 Point-to-point: Manual point-to-point mapping required to

build the tool path.

Layer 3 (store/buffer) stores all the points and feed rates
required to execute a complete job on the machine tool as a
coordinator, with function blocks making and receiving requests
from the point memory storage. The relative velocities are then
passed to the Layer 2.

Layer 2 (process execution) is a coordination layer. Function
blocks make and receive requests from the point memory storage,
and calculate the feed rate for each individual axis, before sending
updated physical signals to the output device. In addition, it waits
for a confirmation from Layer 1 (physical output) before proceed-
ing to the next point.

Layer 1 (physical output) activates the motion control. In the
case of the milling machine the required frequency and number of
pulses are calculated from the given distance and feed rate.
5. The prototype system

A prototype of the proposed CNC architecture has been
implemented on a testbed, a PC controlled CNC vertical milling
machine. The CNC machine is a 3-axis mill. The machine is
supplied with a PC-based EMC (enhanced machine control)
controller and a motor control unit that drives three stepper
motors. The hardware of the PC and the motor control unit are
used for the prototype system. A PC is used to run a Java-based
function block execution platform. It is envisaged that embedded
devices, capable of running function blocks, will be capable of
deploying the same solution.

5.1. Software implementation

The functional layers of the proposed CNC are encapsulated in
function blocks as discussed in the previous section. Based on the
design data of a part, the corresponding function block application
is generated. At this stage, such applications were created
manually, following the developed architectural pattern. It is
envisaged that in the full implementation, this step will be
performed by software tools, translating STEP-NC data into the
function block application. The function block application uses
instances of function blocks defined in Layer 4 in the proposed
CNC architecture. The numeric data of the STEP-NC file are
translated into parameters of the function blocks.

The features, implemented by function blocks in Layer 4, are
translated into trajectories, i.e. sequences of points and stored in
Layer 3. Moving between the points is implemented by the
motion controller function blocks Layer 2, which will calculate an
output to the axes motors from the sampled positions, generated
by the calculated trajectory points. The output, generated from the
motion controller is passed onto the discrete input/output (I/O)
interface function blocks in Layer 1, which send the control signals
to the motor’s drivers.

The proposed CNC structure is presented in Fig. 8. The CNC is
implemented as a system configuration of four devices (in IEC
61499 terminology): Model, Display3D, Controller and Physical-
Out, corresponding to View, Model, Control and Interface as in the
extended MVC architecture. The process starts with STEP-NC data
model of the part that is represented (manually for now) by the
Layer 5 function blocks. It is then translated to the function block
application Control (allocated in the ‘‘Controller’’ device), which is



ARTICLE IN PRESS

Fig. 7. Layered CNC-FB architecture of the novel CNC architecture.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569 565
composed of the function blocks from Layer 4 and is using
services of Layer 3. Execution containers (resources in IEC 61499
terminology) are used to separate these layers out into distinct
tasks. The Layer 5, for example consists of the following resources:
�
 Machine (travel dimensions).

�
 Workpiece (dimensions).

�
 Workpiece_start.

�
 Tool_start.
The ‘‘Model’’ device contains the function block application,
modelling uncontrolled behaviour of the machine tools. Given
input control signals the model changes its state as the real
machine tool does. It feeds the parameters of the current state
to the device DISPLAY3D which can render FB applications.

The PhysicalOut device sends the control signals, generated
by the function of Layer 1 in the controller to the parallel port of a
PC, on which the configuration is executed. The devices commu-
nicate with one another by means of communication function
blocks.

This system configuration, with minimal changes, can be
executed on any computing platform supporting the IEC 61499
function blocks. As shown in Fig. 8, it can be a PC with direct
peripheral connection to a machine tool (right side), or an
embedded device with a distributed architecture (left side). In
the latter case, the motor drives, corresponding to three axes and
the display are connected to the main processing unit via a
field area network (fieldbus). With this motor control, only a
direction signal and a single pulse are required to move a motor
a single step in any direction. The desired behaviour of physical
interface is to utilize the raw data calculated in the controller
(feed rate (mm/min)) to control the real machine (i.e. to produce
the signals required to drive the motors). Two parameters
are required to be supplied to the input interface of the motor
driver circuit: direction and speed. Direction is determined by
a signal being true or false, while speed is represented by a
sequence of pulses.



ARTICLE IN PRESS

Fig. 8. System structure based on the MVC pattern.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569566
In the prototype system, the physical interface of the PC with
the motor drives is implemented using its parallel port. The
dependency on this particular hardware solution was captured by
creating an abstract device model, called ParallelPortDev. The
implementation of the device relies on the RXTX library [22],
providing programming access to the hardware. The device model
allows a specific library of function blocks to provide user
interfaces to the motor drives via the parallel port of the PC. The
access process includes opening the parallel port stream and
calculating the required direction and number of steps to traverse.
This is communicated to the ParallelMotor function block (Fig. 9)
which generates the required output sequence of data to execute
the motor control, and in turn drives the motors on the machine.
At the completion of the sequence the parallel port stream is
closed. Other function blocks in the library were implemented to
encapsulate direct communication to any or all output pins of the
parallel port.

A composite function block, using the services of the
ParallelMotor function block, is designed to handle velocities
and number of steps of all three motors. It can be easily extended
to accommodate the fourth motor. This function block generates
an output sequence which is written to the parallel port, and in
turn drives the motors on the machine.
5.2. Implementation of the MVC design pattern

The Model of the machine is the core part of the MVC
architecture. Machine modelling is done by taking into account
machine’s structure, its physical dimensions, number of axes
available and the type of inputs, outputs and movement expected.
Geometrical parameters of the features are used as input
parameters in the corresponding function blocks. The workpiece
data model will provide point-to-point connection to simulate the
tool path movement, same to the role of a Tool Path Generator in a
traditional CNC. The controller needs to generate two types of
signals: target signals and velocity signals (one for each individual
axis). Target signals correspond to the coordinates (X, Y, Z) of a
destination, and the velocity signals represent the vectored feed
rate of each axis.

The Movement_Estimator function block (Fig. 10(a)) determines
the data for the planned path, which is then fed into an axis model
block that estimates the next point to be represented on the axis.
The Axis_Model (Fig. 10(b)) block is used to represent a linear axis
control unit to define an axis in the system by capturing its details.
Therefore, in order to create the 3D representation of a model,
three Axis_Model blocks are needed to denote the (X, Y, Z)
coordinates of the next point. This block will take the speed and
direction inputs for an axis and update its coordinate position. It
can then be used for each of the X, Y and Z axis control.

Further limits were added to the model to reflect the
constraints of the machining boundaries. These include the
maximum travelling speed and the maximum travel distances
along each of the three axes.
5.3. Visualization

The Visualization component of the MVC architecture is
implemented in a 3D virtual environment through the Java
extension, Java3D. The developed visualization engine can render
workpieces and cutting tools. Travel constraints and axes relation-
ships are also modelled.

The engine is accessible through the ImageDev3D device,
and utilizes a library of rendering function block types such as
RenderAxis3D, RenderWireBox3D, RenderCylinder3D and RenderLine3D.



ARTICLE IN PRESS

Fig. 9. ParallelMotor function block.

Fig. 10. (a) Movement_Estimator function block and (b) Axis_Model function

block.

Fig. 11. Overview of function block 3D rendering.

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569 567
3D rendering is achieved in a three-step process. First a JFrame
object is extended to support 3D rendering. This is done by
creating a 3D Universe within it. JFrame itself is a native object
in the 2D library Java.Swing, and handles the creation of a window
object in which to render. Next, an interface to the function block
environment is created. This interface is called the ImageDev3D.
This is encapsulated as a function block device (as it represents
a separate subsystem). An extended JFrame object is added as a
child of the ImageDev3D. In the final step, separate function
blocks are created that define a particular shape. These function
blocks construct Shape 3D objects which can be rendered in
the 3D Universe. The geometric data are transferred to the JFrame
that exists in the ImageDev3D. The entire process is depicted in
Fig. 11. In this way it is possible to render multiple instances of any
shape, as long as there is a function block for each instance.
Furthermore it allows other more complex geometries to be
created with ease.

Each shape added to the 3D Universe is coupled with a
transform object that allows a user to manipulate the translation,
rotation and scale of the shape. Modifying the transform object
allows dynamic motion of a shape without comprising the
original shape data. In addition the 3D visualization supports
some typical navigation abilities as seen in many other 3D
packages—namely rotate, zoom and pan. This enhances the user-
friendliness of the interface.
5.4. Sample part

The starting point of the process is STEP-NC data, which
contains information such as ‘‘Workplan’’, ‘‘Workingstep’’, ma-
chining strategy, machining features and cutting tools. The
prototype system was tested by manufacturing several parts,
one of which is the first example in the annex of ISO 14649-11 [23]
as shown in Fig. 12(a). The data shown in the figure is included in
the STEP file.

The current prototype system only uses wireframe models
to represent a workpiece and the maximum travel constraints
(Fig. 13). The cutting tool is represented by a cylinder. Two types of



ARTICLE IN PRESS

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569568
lines are visible in the model, one representing the ideal tool path
(Fig. 13(a)), and the other the actual traversed path (Fig. 13(b)).
Motion is visualized by constantly updating the transformations
for each of these elements. The 3D visualization mirrors what one
would expect of the milling machine. This allows for a preview of
the controller motion, and can be used as a virtual verification
method.

Testing of the system was first completed using the 3D
visualization. Following this the Sherline CNC vertical mill was
engaged with the same part information as used in the
simulation. The resulting part matched the simulation in terms
of dimensions of the shape machined as well as machining speed.
6. Conclusions and future work

To meet the challenges of the ever globalized manufacturing
economy, agile, distributed, interoperable and intelligent compu-
ter numerical controlled machine tools are one of the key
Fig. 12. Sample part from ISO 14649-11.

Fig. 13. 3D visualization of the milling process.
enablers. Possible ways of replacing the current control language,
i.e. G-codes, has been researched in recent years. The proposed
CNC controller uses the IEC 61499 architecture as its development
platform and STEP-NC as the input data model. Compliance with
the STEP-NC standard will help to transfer the data across
different companies and manufacture the corresponding part on
different machine tools. The prototype system has a layered
structure. This type of organization simplifies the transition
between simulation and real machining, and substitution of one
milling machine by another.

The CNC architecture proposed in this paper has been tested
through a prototype system, using a CNC vertical milling machine
and proved that use of function block technology can allow
development of an open and distributable CNC system. This also
enables separate functional units of the controller to be
implemented on other devices.

In addition to the distributable nature of the prototype system,
the proposed controller can also support remote management and
configuration, a feature that could be useful in an environment
featuring multiple machine tools (e.g. flexible manufacturing
systems). Thanks to the successfully implemented MVC design
methodology, the architecture and its prototype system support
real-time machining simulation. Hence the system can also be
used as a virtual machining tool.

To cater for tool path planning, a library representing basic
machining features should be developed as well as a higher level
machining planning. Further work will also include deployment
on embedded devices with pulse width modulation (PWM)
generators to enhance the performance of the prototype system.



ARTICLE IN PRESS

M. Minhat et al. / Robotics and Computer-Integrated Manufacturing 25 (2009) 560–569 569
Extensibility will be addressed by extending 3-axis to 4 and/or
5-axis control function, which will be achieved by implementing
the corresponding function blocks at Layer 3 of the architecture.
With respect to interoperability, the output interfaces to other
machine tools need to be implemented as function blocks and
device types, belonging to the layer 1 of the CNC-FB architecture.

References

[1] Wang H, Xu X, Tedford JD. An adaptable CNC system based on STEP-NC and
function blocks. Int J Prod Res 2007;45(17):3809–29.

[2] Xu XW, Wang L, Rong Y. STEP-NC and function blocks for interoperable
manufacturing. IEEE Trans Automat Sci Eng 2006;3(3):297–307.

[3] ISO 14649-1. Data model for computerized numerical controllers: part
1—overview and fundamental principles. International Standards Organiza-
tion; 2003.

[4] Kovacic M, Balic J. Evolutionary programming of a CNC cutting machine. Int J
Adv Manuf Technol 2003;22(1–2):118–24.

[5] Wang L. Integrated design-to-control approach for holonic manufacturing
systems. Robotics Comput Integrated Manuf 2001;17(1–2):159–67.

[6] IEC 61499. Function blocks for industrial-process measurement and control
systems-part 1: architecture. Geneva: International Electrotechnical Commis-
sion; 2005.

[7] Chen F, Yang Y, Weng P, Fu P. Application for control system analysis using
system analysis toolkit. J Comput Inf Systems 2007;3(1):49–56.

[8] Kramer TR, Proctor F, Xu X, Michaloski JL. Run-time interpretation of STEP-
NC: Implementation and performance. Int J Comput Integrated Manuf
2006;19(6):495–507.

[9] Han S, Liu Z, Yang X, Zhao J. Research on architecture of open CNC system
based on component technology. Nongye Jixie Xuebao/Trans Chin Soc Agric
Mach 2007;38(10):127–31.
[10] Park S, Kim S-H, Cho H. Kernel software for efficiently building, re-
configuring, and distributing an open CNC controller. Int J Adv Manuf Technol
2006;27(7–8):788–96.

[11] Jöhnson A, Wall J, Broman G. A virtual machine concept for real-time
simulation of machine tool dynamics. Int J Mach Tools Manuf 2005;
45(7–8):795–801.

[12] Wang Y, Liu T, Fu H, Han Z. Open architecture CNC system HITCNC and key
technology. Chin J Mech Eng (English edition) 2007;20(2):13–6.

[13] Wang L, Brennan RW, Balasubramanian S, Norrie DH. Realizing holonic
control with function blocks. Integrated Comput Aided Eng 2001;8(1):81–93.

[14] Gordon S, Hillery MT. Development of a high-speed CNC cutting machine
using linear motors. J Mater Process Technol 2005;166(3):321–9.

[15] Chang Y-F. DSP-based ignition delay monitor and control of an electro-
discharge machining process. Intell Automat Soft Comput 2007;13(2):139–51.

[16] Erkorkmaz K, Wong W. Rapid identification technique for virtual CNC drives.
Int J Mach Tools Manuf 2007;47(9):1381–92.

[17] Wang L, Jin W, Feng HY. Embedding machining features in function blocks for
distributed process planning. Int J Comput Integrated Manuf 2006;19(5):
443–52.

[18] Wang L, Hao Q, Shen W. A novel function block based integration approach to
process planning and scheduling with execution control. Int J Manuf Technol
Manage 2007;11(2):228–50.

[19] FBDK—Function Block Development Kit. Online: /www.holobloc.comS,
access date: December 2007.

[20] Christensen J. Design patterns for systems engineering with IEC 61499,
Verteilte Automatisierung-Modelle und Methoden für Entwurf, Verifikation,
Engineering und Instrumentierung, Ch. Döschner, ed. Magdeburg. Germany:
Otto-von-Guericke-Universität; 2000.

[21] Vyatkin V. IEC 61499 function blocks for embedded control systems design:
Instrumentation Society of America, 2007.

[22] RXTX Java Library. Online: /http://users.frii.com/jarvi/rxtx/index.htmlS,
accessed January 2008.

[23] ISO 14649-11. Data model for computerized numerical controllers: part
11–process data for milling. International Standards Organization; 2003.

http://www.holobloc.com
http://users.frii.com/jarvi/rxtx/index.html

	A novel open CNC architecture based on STEP-NC data model and IEC 61499 function blocks
	Introduction
	Related works on CNC systems
	Overview of the IEC 61499 architecture and MVC design pattern
	IEC 61499 architecture
	Software implementation: FBDK and FBRT
	Model-View-Control design pattern

	Layered architecture of the novel CNC
	The prototype system
	Software implementation
	Implementation of the MVC design pattern
	Visualization
	Sample part

	Conclusions and future work
	References


