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Abstract. Geometric Dimensioning and Tolerancing (GD&T) is a crucial step in the life 
cycle of industrial products and assemblies. Even though, powerful quality tools and 
product improvement methodologies have been largely addressed through many works, 
actual assembly analysis methods have considered -at large extent- only 2D-
dimensional and geometric variation sources. Besides, major C.A.T. systems 
developed, to date, have failed to meet, rigorously, the semantic integrity of the GD&T 
standards (ANSI Y14.5M-82, ASME Y14.5M-94). Since tolerance analysis and 
tolerance synthesis in  assemblies are highly required for assembly optimization, among 
other tasks, we shall assess some relevant works both in deterministic and statistical 
approaches. Limitations and critics regarding these methods are emphasized in the 
conclusion.  
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1. Introduction 
 
 Tolerances are considered as the production limits that can be held within economic 
boundaries based on the unit manufacturing cost of the product. The tolerance 
representation and propagation in assemblies are, then, required to, among other tasks, 
ensure functional design, answer Assembly Sequence Analysis (A.S.A.) queries, and 
optimize the product cost. The aim is to ascertain optimized assemblies which are 
functionally acceptable.  
 
In nowadays C.A.D./C.A.M. systems, extensive use of hybrid C.S.G., B-rep and/or Half-
space modelers has been performed by methods which have tackled syntax and semantics 
of tolerances as it is described in the GD&T standards [Dim82] [Dim94]. However, at 
some extend, only a few works have achieved noteworthy success in addressing the 
problem, as such [Mat98]. This is because the description provided in  of the Y14.5M-82 
and other ISO standards do not help enhance reasoning to integrate meaningful tolerance 
information into solid models. Not only definitions given in the tolerancing standards and 
the data structure templates implemented in actual C.A.D./C.A.M. systems do not match 
rigorously with each other, but also, tolerance development and tolerance communication 
activities have grown-up independently from research in C.A.D./C.A.M. systems. As a 
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result, most C.A.D./C.A.M. systems [Req80] [Req83] [Ros86] [Che87] have achieved a 
fair success to cope with the tolerance specifications, comprehensively. In fact, 
tolerancing parts and assemblies is one step more complicated than it is likely seems to 
be. This is because, till recently, the standard definitions given to tolerances are 
concerned by geometrical (i.e., form and fit) and functional sufficiency, distinctively. 
Yet, nowadays, tolerances interrelate with empirical analysis methods (D.O.F. including 
stressful noise factors, etc.), computer analysis methods(various M.C. and geometric 
simulation methods, etc.) as well as economic analysis tools (quality loss function, life 
cycle cost models, etc.)[Cre97].  
  
Section II and III reviewed methods for assembly tolerance analysis and assembly 
tolerance synthesis, respectively. Along with, limitations inherent to each method are 
emphasized. The concluding remarks section enumerates problems still under study in 
tolerance analysis/synthesis areas and questions still waiting for answers.     
 
 
2. Assembly tolerance analysis 
 

A typical tolerance analysis/synthesis system is shown in Figure 1. Simply 
speaking, in tolerance analysis (also referred to as tolerance control), the tolerance set 
assigned to components is checked and interactively redesigned so that the specified 
functional requirements are satisfied with a given level of confidence. In tolerance 
propagation (also referred to as tolerance allocation), tolerances are distributed among 
components and interactively redesigned on the basis of economical criteria.  
 
Tolerance analysis falls under: worst case (sometimes called limit stacking, a sure-fit 
model, or the arithmetic law model) and statistical (sometimes called statistical fit model 
or the variance law model). Simulated vs analytical, one, two or three-dimensional space,  
and, combination of these approaches are also another variant of classification. 
 
 
2.1 Worst case approach 
 
 The worst case paradigm consists in taking maximum or minimum material 
condition for each individual component. This is performed regarding the process in use 
and features functionalities. For male-female assemblies, M.M.C. is considered for 
functional gage and L.M.C. when the preservation of material for wall thickness is 
required. The philosophy behind worst case method is to ensure a complete 
interchangeability of the assembly components, i.e., parts are checked, individually, 
rather than a population of parts as this is the case with statistical tolerancing.  
Since it is unlikely that all dimensions would take their extreme values, at once, the worst 
case methodology may lead to unjustified tight tolerances which means an unjustified 
increase of the cost-effective of the assembly.  
 
 
Given an assembly dimension chain, the design equation can be expressed as: 

),....,,( 21 nCtCtCtfSt   (1) 

where, St is the worst case/random sum dimension tolerance and Cti the worst 
case/random variable relevant to the ith assembly component tolerance. 
 
In the worst case approach, the mathematical model for the tolerance stack up is:  
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Where, Cti represents the Component tolerance of component i, St is the sum tolerance of 
the assembly dimension chain, f(Ct1, Ct2, �, Ctn) is the assembly function describing the 
resulting dimension tolerance of the assembly and ai  is the sensitivity of the ith 
component tolerance. Note, in most cases, ai equals +1 or �1 depending on the direction 
of variation. 
 
Figure 2 gives an example for one-dimension worst case tolerance analysis. 
 
2.2 Statistical tolerance approach 
 
 Statistical tolerance (S.T.) analysis implicitly supposes that a given fraction of the 
assemblies would be rejected in exchange of wider tolerances and better cost control 
[Sri97] [Bra97]. Statistical tolerancing seeks to shift the engineer's focus from unit-to-
unit inspection to inspection of randomly selected samples of a product population. The 
S.T. is attractive because, among others, i) the ST analysis is less expensive in 
comparison with worst case tolerance analysis, ii) it is better adapted to answer design 
queries in some industrial fields, where the design and the manufacturing precision far 
surpass the manufacturing process capability, iii) and finally, because quality based 
methods such as the S.P.C. (Statistical Process Control) or the S.Q.C. (Statistical Quality 
Control) are nowadays totally embraced by statistical design practitioners. Therefore, 
many statistical methods have been developed to tackle statistical tolerance 
analysis/synthesis. In the following sections, some statistical based methods are described 
 
 
2.2.1 The moment based methods 
 
 Early, the linear stack up method, also termed the Root Sum Squares method 
(RSS), was proposed by Mansoor [Man63]. Consider equation (1), Mansoor [Man63] 
stipules that the worst case combination would occur when St is linear, the Cti are 
assumed independent and normally distributed. 
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For one dimensional assemblies, let consider: 
 
 component dimensions combine linearly  
��������i.e.,, ),....,,( 21 nCtCtCtfSt  linear, 

 the Cti are independent random variables and are assumed normally distributed 
from the nominal,  

 the mean and standard deviation of each component dimension are known a 
priori, 
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 ai  is the sensitivity of the ith component tolerance which equals +1 or �1 
depending on the direction of variation, 

 we made use of the �three sigmas� rule, hereinafter, presented,  
 
The first two moments are:   
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where, St, Cti, st and Cti are the means and standard deviations of St and Cti, 
respectively  
and, the sum tolerance is: 
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Based on the central limit theorem assumption, St is normally distributed, regardless of 
the distributions of the assembly component dimensions. The convergence to the normal 
distribution can be more rapid if the tolerances, Cti, are inversely proportional [Geo86] to 
the sensitivities, ai. Another point; major mechanical assemblies have been assumed to 
combine in a linear way. This has made the linear stack up method very popular. Yet, in 
some applications, the linear stack up cannot be applied. Evans [Eva75] proposed an 
alternative using Taylor series approximation.   
Parkinson [Par85] generalized the RSS method. St is formally expressed as: 
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Where, Z is the number of standard deviations desired for St and the Cti which are 
supposed normally distributed.  
The rule of � three sigmas� (or the rule of six sigmas) is a special case (Z equals 3) of 
the Parkinson model.   

P {St - 3St < St < St + 3St} =  (3) = 0.9973 = 99,73%  1 

Where,  (x) is the error function. 
 
Because ±3 range of the St or any component dimension distribution, Cti,, would lay 
within 99.73% (so near to 100%) of its tolerance range, the rule of �three sigmas� is more 

than satisfactory for statistical tolerance analysis. 
 
Bjorke [Bjo89] used a similar method based on the Beta distribution of the component 
tolerances and a Gaussian distribution for the sum function. However, the method has 
made use of the central limit theorem, which means, inaccurate calculations when a few 
assembly components are being considered(<30).  
 
Chase and Greenwood [Cha88] used a modified statistical model with a correction factor, 
C (C  1.5), to adjust statistical models which do not represent rigorously the actual 
assembly distribution. For the ±3 normal distribution: 
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Chase and Greenwood [Cha88] have also developed a mean shift model (fi  0, 1]) 
arguing that the mid-point of the tolerance zone of each assembly component can be 
defined as a fraction of its tolerance range. The sum dimension tolerance is, then, 
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Note that the method [Cha88] do not help assign the shift factors and supposes that all 
component dimensions are normally distributed. 
 
In [Nig95], a rectangular distribution to approximate linear tolerance chains has been 
used. The method yields an important concentration at the extremes limits and ignores 
any skewness of the real distribution. 
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p is the allowable percentage of the assemblies which are out of the specified limits. 
 
In the case where the number of the assembly components is rather low ( 30), which is 
not rare in mechanical assemblies, the assume that all component dimensions are 
independent and the sum being normally distributed is misleading (central theorem). 
Furthermore, normal distributions assume that the location of the tolerance zones are 
symmetric which is inappropriate to describe major manufacturing processes because of 
the unpredictable nature of the systematic variations (tool wear, material cutting, etc.) 
which are inherent to the manufacturing processes.  
 
Non-linearity is another problem encountered in statistical tolerance analysis, especially, 
when geometric tolerances of form, location, runout or/and profile are considered. 
Inaccuracies in non-linear stack up analysis can lead to false yield of assemblies. With an 
exception made for one dimensional chains, this is true regardless of the type of the chain 
link [Ash98]. For one-dimensional chains, one can reasonably build on linear 
combination of populations of parts by linearizing non-linear dimensions using Taylor 
series, or a Monte-Carlo simulation. 
 
The composition rules (i.e., methods for combining variabilities and composing criteria 
when tolerances interact) which are currently considered for worst case and statistical 
approaches differ from one criterion to another. In the worst case parametric tolerancing 
we use the worst case stack up and minimum chain rule. In the worst case geometric 
tolerancing there exist many rules controlling the interaction of dimension chains 

[Voe98], though, there is no rule for dimensional chaining. An example of interacting 
dimension chains is given in Figure 3. For the statistically chained parametric dimensions 

[Voe98], the only widely adopted rule is the summed mean and summed variances rule. 
 
 
2.2.2 The Taguchi method  
 
 The Taguchi method is a statistical Design Of Experiment (DOE) technique 
which has been broadly implemented in both statistical and deterministic tolerance 
analysis/ synthesis [Kus95][Sko97]. The Taguchi quality loss function is used as a metric 
to evaluate the impact of the design parameters on the functional variability. 
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This integral equation shows how, on average, money L(y) is lost over time T (product 
life time) as a measurable design parameter (y) deviates from its intended value [Cre97]. 
Tolerances are designed so that the functional variability for optimized control factors 
(set  of points) is established with limit customer loss. Typically, the limits are based on 
the ±3 rule. The method developed by Taguchi is capable of designing an efficient cost 
effective experiment in an easy way. The factors (independent variables) are identified 
using an appropriate D.O.E. technique so that the main effects, as well as, their 
interactions can be ascertained. The factors control the performance function which is 
made up of the dependant variables. Many D.O.F. techniques are available [Kus95]. In 
the case the number of factors is small, the Latin Square (L.S.) technique, a variant of the 
Latin Hypercube Sampling (L.H.S.) technique [Rub81] which is used to generate a 
random vector X = (X1,.., Xk) with a fixed k, is recommended. However, when the 
number of factors is, rather, large, we can use, either, the fractional factorial method 
(developed by Dr. Taguchi) or other orthogonal arrays to determine the effect of factors 
and their interactions.  
In tolerance analysis, component dimensions are considered as factors to which a limited 
set of discrete values (levels) are given. This differs with the Monte-Carlo simulation 
method where a significant number or trials are being considered. In tolerance synthesis, 
the component dimensions correspond to the factors and the manufacturing processes, 
which are used to obtain each component, correspond to the levels. The total cost 
(function of response) is the objective function to be minimized. Further details on the 
use of the Taguchi method in tolerance analysis/synthesis are provided in references 
[Kus95][Cre97].     
 
 
 
2.3 Simulated methods 
 
 Simulated methods have also been developed to support propagation/control of 
tolerances in assemblies [Ash98] [Sko97] [Tur87] [San99]. Tolerance analysis using the 
Monte-Carlo simulation consists in simulating each instance of the assembly component 
dimensions, then, accumulate them to deduce the sum dimension (functional 
requirement). Repeating the process many times for sufficient number of samples, the 
distribution function of the sum dimension can be obtained. Among all, the Monte-Carlo 
(M.C) simulation technique is the most popular. Even though, the M.C technique is 
simple to implement in computers, however, it requires a large number of samples, 
sometimes, its is slow in converging and it is usually said that the M.C method is useful 
for solving problems with moderate accuracy (5-10%). For accurate computation of 
simulated data with a reasonable number of samples, numerous variance reduction 
techniques have been devised; we quote, the antithetic variables [Rub81], the Latin 
hypercube sampling [Rub81], the importance sampling [Sko97] (i.e., a technique which 
samples from another distribution -the importance function- rather than the distribution 
being evaluated), and, the correlation method [Sko97] (i.e., a technique which substitutes 
the function being evaluated by an approximation function).  
In the Product Assembly Modeler (P.A.M.) system [Ash98], tolerance analysis and 
synthesis has been performed using the M.C simulation method and the assumption of a 
beta distribution of the sum dimension.  
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3. Assembly tolerance synthesis 
 
 Tolerance synthesis, also referred to as tolerance propagation, tolerance allocation 
or tolerance assignment, is the �opposite� of tolerance analysis procedure.  
The tolerance synthesis procedure is controlled by two opposing requirements, namely, 
maintaining optimal quality and minimizing the production cost. The former objective 
would lead to tight tolerances, however, the latter would release them. In Varghese et al 

[Var96], the tolerance synthesis process was defined as an optimization problem whose 
objective function is the manufacturing cost and the constraints include the assembly 
yield, the confidence level, and the tolerance limits. 
 
Since, it is impossible to work out a cost tolerance model for each type of manufacturing 
process and machine, several production cost models have been devised [Don93]. Table 
1 gives some among others. The choice of the allocation method depends on the cost 
tolerance model being chosen. Even though, it is admitted that the Lagrange multipliers 
method yields the best results in tolerance allocation, it cannot be applied steadily to most 
tolerance functions. In Kumar et al [Kum92], a summary of commonly known allocation 
methods is given (see Table 2). 
Deterministic tolerance synthesis methods use process tolerances data handbooks and 
empirical best practice rules. However, statistical approaches made use of statistical 
design techniques such as the Taguchi method [And93].  
 
For statistical tolerance synthesis, numerous methods are available. The Finite Difference 
(F.D.) methods are used in the design of the objective function from samples of data. The 
Monte-Carlo simulation is, then, run for each point to obtain the design function data. 
Because of the accuracy of the Monte-Carlo technique (proportional to the square root of 
the number of samples used), the conventional finite difference methods prove 
prohibitive. Gadallah and Elmaraghy [Gad94] proposed a regression analysis technique 
which is similar to finite differences but the points are more spaced.  
Recently, to remedy the finite difference limitations, global optimization algorithms such 
as the genetic algorithms [Sko97] [Lee93] [Ian95] and the simulated annealing [Kir83] 
have been employed for statistical tolerance synthesis. Both methods are heuristic search 
methods. Genetic algorithms are suitable to model the tolerance synthesis problem and 
they have shown a high capability to tackle assemblies with interacting dimension chains 
(an example is given in Figure 3). The Simulated Annealing algorithm (S.A.) (i.e., a 
simulation of the thermodynamic process of cooling a liquid very slowly) is appropriate 
to solve non-linear optimization problems. Originally, the S.A. algorithm has been used 
by Zang and Wang [Zha93], for discrete tolerance optimization. Then, it has been 
extended to cope with continuous distributions and statistical propagation. An 
implementation is found in the PAM system [Ash98].  
 
 
4. Concluding remarks 
 
The paper has surveyed some research issues relevant to tolerance analysis and tolerance 
synthesis in assemblies. Despite, much attractive theoretical work has been performed, on 
one hand, and numerous implementations have been experimented, on the other hand, 
still numerous drawbacks and limitations need be overcome [ Tra00]. 
 

    In many works, component tolerances are assumed distributed on a range 
of six sigma range (±3ó) with the process nominal value symmetrically 
centered at the design nominal value. This does not meet the Y14.5M-82 
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specifications of classes and grads of fit which are not obligatory centered 
between the bilateral tolerance limits. Besides numerous geometric 
tolerances of form and localization are far representative by normal 
distribution laws.  

    Major tolerance control and tolerance allocation methods which have 
been developed to date, implicitly, used the Regardless of Feature Size 
(R.F.S.) mating condition. Maximum Material Conditions (M.M.C.) and 
Least Material Conditions (L.M.C.) are less developed to chart size and 
geometric deviations. Although, in real life practice, M.M.C. and L.M.C. 
are much more required either in inspection or manufacture. 

    Many works have described mathematical models for Virtual Conditions 
Boundaries, yet, most have failed to stick scrupulously to the definitions 
provided by the ANSI Y14.5M-82 or the ASME Y14.5M-94 standards.  

    In many tolerance analysis/synthesis implementations, topological, 
geometric and manufacturing information inherent to tolerance chains are 
still defined manually. The development of reasonings for automatic 
tolerance chains generation are still necessary. 

    Because the simulation methods are not capable to generate exact 
solutions and may demand important computational loads, much 
emphasis should be placed on developing further methods which are 
based on sensitivity analysis approaches. The contributing tolerances are, 
therefore, identified and necessary level adjustments are carried out so 
that converge to the solution with minimum iterations can be achieved, 

   Most methods developed in tolerance analysis are 1D or 2D. A very few 
methods have addressed the 3D chain tolerance analysis models, 
extensively, yet highly required in actual C.A.E. packages. Moreover, 
little work have experimented how 1D, 2D or 3D chains can intervene in 
applications such as process planning, or the inspection processes, 

    Many broadly distributed C.A.T. solutions proved prone to errors because 
of the unreliable and non-repeatable measurements taken with touch-
trigger C.M.M. probes. Also, datum planes and axes models have made 
"abusive" use of the best fit surface methods. Though, some critics 
emerge whether the best fit surfaces techniques do represent appropriately 
high points and set up features. The considerations put on the probe sizes, 
the number of points as well as the scattering of these points have made 
the best fit surfaces techniques controversial. Furthermore, most C.A.T. 
solutions have totally ignored fixtures as prohibitive, yet, required to help 
inspect size, form and location gages.    

    In many circumstances, size alone is not worth charting, yet, many 
C.A.T. solutions have adopted such a concept. A truer functional design 
mean should, rather, consider the difference between the virtual 
condition, i.e., a constant worst case boundary which is generated by the 
additive effect of size and geometric controls (this is obtained from either 
the M.M.C. or the L.M.C.) and the resultant condition, i.e., a nonconstant 
worst case boundary which is generated by controls of the size and the 
geometry , concurrently. Instead, the true design mean would be the 
intermediate size between the virtual condition  (M.M.C. or  L.M.C) and 
the L.M.C (whether in M.M.C. concept) or M.M.C (whether in L.M.C 
concept). Meadows [Mea 98] went further and proposed graphing the 
difference between the functional mean (halfway mark between the 
virtual condition  and the L.M.C) and the actual mean (halfway mark 
between the as-produced worst case boundary and the L.M.C).      
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 For compliant sheet metal assemblies, variations do not stack up as with 
rigid assembly components. Additional models are still required to better 
assess tolerance analysis and synthesis for compliant sheet metal 
assembly. 
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Figure 1. A block diagram of a typical assembly tolerance analysis/synthesis system. 
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Figure 2.  Design function A, assures the circlips not to make contact with both the shaft groove 
(3) and the roller bearing (4), simultaneously. The associated assembly dimension 
chain involves the component dimensions ai, with i the pieces number:  

B = B1-(B4+B3+B4'+B2)  
 

FIGURE 3. An example of an implicit interrelated tolerance dimension chains. The tolerance chains associated to the 
design  functions C and D involve the same component dimension C3 and D3. This is also true with C5, 
B5, and D5. 
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Math Principle Cost Model Model author 

Discrete Cti = ti; i= 1, 2,.., n 

0-1 programming: Ostwald & 

Huang 

Combinatorial: Monte & Datseris 

Branch and bound: Lee & Woo 

Reciprocal Ct = a0 / t Lagr. Multipl: Chase & Greenwood 

Reciprocal Squared Ct = a0 / t² Lagr. Multipl: Spotts 

Reciprocal Power Ct = a0 t 
-a

1 Lagr. Multipl: Sutherland & Roth 

Reciprocal Power Ct = a0 t 
-a

i Non linear Program.: Lee & Woo 

Exponential Ct = a0 exp (-a1t) Lagr. Multipl: Speckhart 

Exponential/reciprocal power Ct = a0 t 
�a

1 exp (-a2t) Non linear Prog.: Michael & Siddal 

Piecewise linear Ct = ai � bi ti Linear programming: Bjorke & Patel 

Modified Exponential Ct = a0 exp (-a1a2 t) + a3 - 

Combined RP and Exponential  Ct = a0 + a1/t² + a3 exp (-a4 t) - 

Linear and Exponential Ctt = a0 + a1 t + a2 exp (-a3 t) - 

Cubic Polynomial Ct = a0 + a1 t + a2 t² + a3 t
3 - 

Forth order Polynomial Ct = 


4

0i

ai t
i 

 

- 

Fifth order Polynomial Ct = 


5

0i

ai t
i 

 

- 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1*. Cost-tolerance 
functions 
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Math Principle Math Cost Model Model Author 

Discrete St - Cti  0  - 

Proportional scaling d1/Ct1 = d2/Ct2 = �.=dn/Ctn 

 Cti   St 

- 

Constant Precision factor Cti =  P(di)
1/3 

P = 


1/3
id

St where,  Cti   St  

 

- 

LaGrange Multiplier Cti =  - (1/bi) ln (exp (k) / ai bi)  

where, K =  (ln ai bi/bi) - St /  (1/bi) 

Spotts 

Geometric Programming Cti = St / A + ln ((ai bi G /R) ) / bi  

where, A =  (1/bi); 

            R =  ai 
(1/A bi) 

            G = (1/bi)
(1/A bi) 

 

 

- 

Linear Programming Min  Ci Cti + A� 

 Cti   St 

Cti  0 

 

- 

Non Linear Programming Non linear programming function  - 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*: di: dimension of component i;  
   Cti: Component tolerance of part i;  
   St: sum tolerance of an tolerance chain in assembly;  
   Ci:  slope of the ith linearized cost tolerance curve;  
   ai, bi: cost tolerance parameters;  
   and, P: precision factor. 

Table 2*. tolerance allocation methods48 

yield  Assembly No Satisfied tolerances Redesign of 
component 
etc.) simul. anneal.,  (genetic, gradient,  Optimization 
algorithms 
 Allocation models,  Cost tolerance 
models, 
 Datums,  Statistics,  Simulation 
techniques (MC, 
etc.), 

 Numerical 
methods, 
 random errors, deterministic & Manufacturing   Manufact.Process the Simul. of  model Assembly & components geometry of Nominal calculat. yield  Assembly No Satisfied  Datums,  Statistics,  Simulation 
techniques (MC, 
etc.), 

 Numerical 
methods, 
 random errors, deterministic & Manufacturing   Manufact.Process the Simul. of  model Assembly & components geometry of Nominal calculat. Cost tolerance 
models, 
 Allocation models,  Optimization 
algorithms 
 (genetic, gradient,  simul. anneal., etc.) Redesign of 
component 
tolerances 


