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Abstract

Solid Models are the critical data elements in mod-
ern Computer-Aided Design (CAD) environments, describ-
ing the shape and form of manufactured artifacts. Their
growing ubiquity has created new problems in how to ef-
fectively manage the many models that are now stored in
the digital libraries for large design and manufacturing
enterprises. Existing techniques from engineering litera-
ture and industrial practice, such as group technology, rely
on human-supervised encodings and classification; tech-
niques from the multimedia database and computer graph-
ics/vision communities often ignore the manufacturing at-
tributes most significant in the classification of models.

This paper presents our approach to manufacturing
similarly assessment of solid models of mechanical parts
based on machining features. Our technical approach
is three-fold: (1) perform machining feature extraction
to map the solid model to a set of STEP AP 224 ma-
chining features; (2) construct a model dependency graph
from the set of machining features; (3) find the near-
est neighbors to the query graph using an iterative im-
provement search across a database of other models. We
also present empirical experiments to validate our ap-
proach using our testbed, the National Design Repository
(http://www.designrepository.org).

The contribution of this research is the first fully auto-
mated technique for machining feature-based comparisons
of mechanical artifacts. We believe that this work can lead
to radical changes in the way in which design data is man-
aged in modern engineering enterprises.

1. Introduction

We present an approach to comparing the manufacturing
similarity of solid models of machined artifacts based on
their machining features. Increasingly, manufacturing en-
terprises must maintain vast digital libraries and databases
of Computer-Aided Design (CAD) and Computer-Aided
Process Planning (CAPP) knowledge. Such information in-
cludes the parametric solid models of parts and assemblies,
as well as Numeric Control (NC) machining programs, pro-
duction plans and cost data.

Our research goal is to develop methods to interrogate
large knowledge-bases of solid models of machined artifact
in order to enable variational process planning and cost esti-
mation. This work is part of the National Design Repository
project (http://www.designrepository.org),
which is an ongoing effort to collect and archive “open
source” CAD data and solid models and develop data
management technologies for handling engineering
information.

Given that we have a large Repository we wish to search,
and a new solid model to use as a query, our technical ap-
proach is three-fold:

1. Perform feature extraction to map the solid model
to a set of STEP AP 224 machining features.

If operating inside a CAD environment, one could plan
to retain the design features as new models are cre-
ated. However, as has been often noted, design fea-
tures are not necessarily in one-to-one correspondence
with manufacturing features. For legacy data and for
solid models that are converted between modeling sys-
tems, there may not be any readily available feature
information. Our work uses automatic feature recogni-
tion, based on the FBMach1 System from Allied Sig-

1FBMach is the “Feature-Based Machining Husk,” and is a copyrighted



nal [4, 20] to generate feature data to be used in the
indexing algorithms.

2. Construct a model dependency graph from the set of
machining features.

Given the set of machining features for an artifact,
our model dependency represent an intermediate data
structure to be used to model feature interactions and
dependencies. Our belief, which this paper empirically
tests, is that machined parts with similar feature sets
and similar feature interactions have a high probabil-
ity of possessing similar manufacturing plans. Model
dependency graphs capture the feature interactions in
a given set of features.

3. Find the nearest neighbors to the query model
among those in the Design Repository.

Based on the model dependency graphs, interroga-
tion of the Repository becomes a task of comparing
the model dependency graph of a query part to those
in the database. The specific comparison that we
are interested in is that of the largest common sub-
graph. The general problem of determining the largest
common subgraph for a given pair of graphs is NP-
complete [14]. However, in the context of our prob-
lem, we observe:

� First, it is not necessary to find the largest com-
mon subgraph: Since we are only concerned
with similarity, it is simply necessary to find
a “sufficiently” large common subgraph of two
MDG’s to determine their similarity. Hence,
we can use an iterative improvement algorithms
for the largest common subgraph computation.
Specifically, an iterative improvement search al-
gorithm (a variant on hill-climbing/gradient de-
scent search [36]) that exploits the feature infor-
mation in the extracted machining features.

� Second, there is a great deal of domain knowl-
edge present in the CAD model and in the ma-
chining features that can reduce the search space.
For example, we will only consider mappings
that compare similar feature types (i.e., holes
map to holes, not to pockets). Additional con-
straints about vertex degree and size, location,
and orientation can also be considered.

We exploit this knowledge to create tractable methods
for manufacturing similarity comparisons among solid
models.

term of the AlliedSignal Corporation, Federal Manufacturing Systems,
presently part of Honeywell (soon to be part of General Electric Corpo-
ration).

This paper presents our algorithms as well as empirical
experiments based on Allied Signal’s FBMach Machining
Feature Recognition Husk on a set of 259 CAD models
from the National Design Repository. The primary contri-
bution of this research is our overall approach to performing
machining similarity comparisons among manufactured ar-
tifacts found in modern engineering databases. Ours is the
first fully automated technique for machining feature-based
comparisons of mechanical artifacts. To achieve this end,
this work has created novel data structures, heuristic search
and graph comparison techniques that can be applied to a
number of important problems in engineering databases and
manufacturing process planning. We believe that our work
creates part of a foundation that will advance our abilities to
manage digital data in distributed engineering enterprises.

2. Background and Related Work

In engineering practice, indexing of parts and part fam-
ilies had been done with group technology coding [39].
Group technology facilitated process planning and cell-
based manufacturing by imposing a classification scheme
on individual machined parts. GT codes specified classes
using alphanumeric strings. These techniques were devel-
oped prior to the advent of inexpensive computer technol-
ogy, hence they are not rigorously defined and are intended
for human, not machine, interpretation. At one level, we
see our research as augmenting traditional group technol-
ogy coding schemes by providing a completely digital pro-
cess for storage and comparison of solid models. It should
be noted, however, that at other levels the approach we ad-
vocate is not limited to categorization of solid models of
machined parts. In recent experiments, we have begun to
study how our graph-based approaches can be used to index
assemblies, design process knowledge, and CAD data from
other domains (e.g., AEC).

2.1. Machining Feature Recognition

Primarily in the areas of manufacturing process plan-
ning and solid modeling, past research efforts have devel-
oped a variety of techniques for reasoning about geomet-
ric and topological information. Much research has been
done in the area of automatic feature recognition from three-
dimensional solid models [22, 33, 24, 25, 46]. Marefat
et al. [24, 27, 26] introduced a novel way of integrating
evidence-based reasoning with geometry for process and
inspection planning. Marefat’s recent work [3] has fo-
cused on how to more effectively adapt new planning tech-
niques to process planning. Vandenbrande, Han, and Re-
quichia [45, 46, 21, 22] integrated knowledge-based sys-
tems with solid modeling to identify machining features
and perform process planning for machined parts. Some



of the author’s past work on geometric reasoning for man-
ufacturing feature identification and process planning in-
cludes [34, 33, 16].

2.2. Comparisons of Shape and Solid Models

The literature in this area is rather brief, consisting of
results from engineering, computer science and, in particu-
lar, computer vision communities. Elinson et al. [13] used
feature-based reasoning for retrieval of solid models for use
in variant process planning. Cicirello and Regli [30, 6, 7]
examined how to develop graph-based data structures and
create heuristic similarity measures among artifacts—work
which this paper extends to manufacturing feature-based
similarity measurement. Other recent work from the En-
gineering community includes techniques for automatic de-
tection of part families [29] and topological similarity as-
sessment of polyhedra [41].

The mainstream computer vision research has typically
viewed shape matching in approximate domains, such as
from models generated from range and sensor data. Work
at the University of Utah [42, 12, 43] enables reverse engi-
neering of designs by generating surface and machining fea-
ture information off of range data collected from machined
parts. Jain et al. and Virage Inc. [15] have been working
with Informix to build DataBlades for handling multimedia
data such as pictures (GIF, JPEG, etc.) and, more recently,
CAD data. Their approach is based on the creation of “fea-
ture vectors” from 2D images that capture concepts such as
color, density, and intensity patterns. Their work in extend-
ing these techniques to 3D CAD data treats the CAD infor-
mation as sets of point clouds (such as generated with range
data) to be compared. While we believe these techniques
hold promise, they fail to exploit the availability of 3D solid
models representing the CAD data, as well as the engineer-
ing information included with CAD data about tolerances,
design/manufacturing features, and inter-part relationships
that occur in assemblies.

One example where CAD data is employed is the 3D
Base System [11, 10] from Dartmouth College. 3D Base
operates by converting CAD models (a solid model or sur-
face model) into an IGES-based neutral exchange file. A
voxel (3D grid) representation is generated from the IGES
data and then used to perform pair-wise comparisons among
the CAD files using geometric moments of the voxels and
by comparing other per-computed part features (such as sur-
face area). Their work operates only on the gross-shapes of
single parts and does not operate directly on the solid mod-
els. It does not consider information pertaining to manufac-
turing or design features, tolerances, or design knowledge
that might be present in the corporate database; the vox-
elization approach would be impractical to scale to electro-
mechanical assemblies, where inter-part relationships and

models of function and behavior are much more significant
than gross shape properties.

Many other techniques find their roots in computer vi-
sion and computer graphics [2, 40, 9]. These, while power-
ful, are not suitable for off-the-shelf use in similarity match-
ing of solid models.

3. Technical Approach

3.1. Machining Feature Recognition

While our technical approach involves automatic recog-
nition of machining features, this paper is not presenting
specific new advances in feature recognition. The central
contribution of this work is the methodology for machin-
ing similarity comparison of solid models, which is inde-
pendent of which feature recognizer and which set of ma-
chining features one wishes to compare against. We impose
three requirements on the feature recognition module:

1. Recognizes Machining Features: Recognizers that
return shape or form features are not of significant
use in assessing machining similarity among artifacts.
As has been noted previously [18], machining features
contain manufacturing process knowledge in addition
to shape information.

2. Recognizes Interacting Features: Feature interac-
tions significantly influence the process plans and se-
lection of machining operations and fixtures [35]. Fur-
ther, all but the most trivial of machined parts have in-
teracting features.

3. Potential to Return Multiple Feature Interpreta-
tions: In some cases it might be useful to consider
the feature space of available machining operations
in order to assess the properties of an artifact. The
problem of multiple interpretations has been widely
studied [19] and greatly influences selection of pro-
cess plans. Using feature cover (i.e., the total set of
possible machining features) to create the index allows
comparisons among artifacts to broaden the considera-
tion to include parts with process plans that come from
similar feature spaces.

There are many academic and research prototype feature
identification systems. For a recent survey on machining
feature recognition from solid models, interested readers
are referred to [23]. In this research, we chose to use one of
the few available industrial systems: the Feature-Based Ma-
chining Husk (FBMach) [4, 5] from AlliedSignal, Federal
Manufacturing Technologies in Kansas City. FBMach is a
robust library of machining features and feature recognition
algorithms. It comprises approximately 10 man-years of ef-
fort and several hundreds of thousands of lines of code.



FBMach uses three different approaches to define sur-
face features: (1) automatic recognition, (2) interactive
recognition and (3) manual identification. The automatic
recognition uses a procedural algorithm to search for fea-
ture hints and then creates feature instances using the hints
without user interaction. The interactive recognition allows
the user to provide some hints for FBMach to use in gen-
erating the feature instances. For example, the user may
identify a pocket by selecting its bottom face. The man-
ual identification allows the user to create a feature instance
by adding each face to the feature individually and defining
each face’s role in the feature (side, bottom, top, etc.). FB-
Mach implements a human-supervised reasoning approach,
which has also been explored by van Houten [44] along a
different direction. Such a human-supervised reasoning is
often quite useful for producing good feature models.

We used a slightly modified version of FBMach that
translated unattributed ACIS .sat-based solid models into
sets of STEP AP 224 [38] NC machining feature volumes.
The feature sets returned by FBMach were used to create
the Model Dependency Graphs described in the next Sec-
tion and were the basis of the empirical results described in
Section 4.

3.2. Definition and Generation of Model Depen-
dency Graphs

A Model Dependency Graph (MDG) is defined in [6]
as a representation of the design features and inter-
dependencies of those design features of a CAD model.
This graph is a directed acyclic graph and has some unique
characteristics. The nodes of this graph correspond to in-
dividual design features. An edge between two nodes cor-
responds to some spatial dependence between the features
(i.e. ȧ non-empty intersection of the feature volumes). The
direction on the edges capture the order that design features
were applied during the design phase.

Observation: D-morphisms of Model Dependency
Graphs. Let G1 and G2 be two MDGs for the same solid
model resulting from different orderings of a feature set
F = ff0; : : : ; fng (such as shown in Figure 1). G1 and
G2 are D-morphic. A proof of this property appeared
previously in [6].

For a given pair of graphs G1 = (V1; E1) and G2 =
(V2; E2) a D-morphism is formally defined in [14] as a
function f : V1 ! V2 such that for all (u; v) 2 E1 ei-
ther (f(u); f(v)) 2 E2 or (f(v); f(u)) 2 E2 and such that
for all u 2 V1 and v0 2 V2 if (f(u); v0) 2 E2 then there
exists a v 2 f�1(v0) for which (u; v) 2 E1.

As defined above, the model dependency graph is not im-
mediately applicable to machining features. If we knew the
order in which the machining operations were performed,

then perhaps it would be directly applicable. In this case,
the D-morphism property would also apply. In this paper
we are considering machining features that are extracted
post facto. We do not know what order they were performed
and will not attempt to designate some arbitrary and mean-
ingless ordering on the machine features. Rather we will
exploit an undirected version of the MDG which we shall
call the Undirected Model Dependency Graph.

Undirected Model Dependency Graph: The undirected
model dependency graph (UMDG) G = (V;E) for a solid
model is defined as a set of nodes G = ff0; : : : ; fng where
the fi are the machining features that have been extracted
from the model. The edge set E of the UMDG can be de-
fined as: E = fffi; fjgg such that vol(fi) \ vol(fj) 6= ;g.

Figure 1. (From [6]) Pictured is a single solid
model and several alternative feature-based
models, and one possible CSG tree, that can
produce it. On the right are the MDGs for
each of these alternatives—note that they are
all D-morphic to one another.

3.3. Part Retrieval

To compare the similarity of two solid models, compute
the size of the largest common subgraph (LCS) of the corre-
sponding UMDGs. The largest common subgraph problem



is to find a pair of subgraphs, one from each of the two input
graphs, such that the subgraphs in question are isomorphic
to each other and the largest such subgraphs in terms of the
number of edges. As noted earlier, the largest common sub-
graph problem (LCS) is NP-complete and the existence of
an algorithm computable in polynomial time is not likely to
exist.

We are primarily concerned with the manufacturing fea-
ture similarity among artifacts. Hence, knowing the abso-
lute largest common subgraph of the UMDGs is not neces-
sary. Instead, a “large enough” common subgraph is sought.
There exist some inexact solutions in the literature including
an approach using a two-stage Hopfield neural network [37]
and a meta-optimized genetic algorithm [8]. There are also
some inexact solutions to the very closely related problem
of error-correcting isomorphism including a decision tree
approach [28], a linear programming approach [1], and a
genetic algorithm [47].

We develop an heuristic measure method for the com-
putation of the LCS based on a variant of iterative im-
provement search (specifically, hill-climbing/gradient de-
scent) [36]. To further refine and narrow the search space,
our algorithm utilizes the domain knowledge present in the
CAD model. For example, we will only consider mappings
that compare similar feature types (i.e., holes map to holes,
not to pockets). Additional constraints about vertex degree
and size, location, and orientation can also be considered.

The following sections present our approach. While this
is not guaranteed to find an isomorphism if one exists, it al-
lows for a measure of manufacturing similarity based on the
best result obtained from executing some number of restarts
of the algorithm.

3.4. MDG Approximate Matching Algorithm

In searching for the LCS, first, arbitrarily choose an ini-
tial mapping between the nodes of the two graphs (i.e., for
each node ofG1 choose at random a node ofG2 such that no
two nodes ofG1 are mapped to the same node of G2). Next,
swap the mappings of the two nodes that reduce the value
of the evaluation function the most. If there is no swap that
reduces the value of the evaluation function, but there are
swaps that result in the same value (i.e., a plateau has been
reached), choose one of those at random. The algorithm
ends when either every possible swap increases the value
of the evaluation function or it makes P random moves on
the plateau. Values of P ranging from constant values to
P = jV1j2 (where V1 is the vertex set in the smaller graph)
have been experimented with.

The evaluation function is the count of the number
of mismatched edges. That is, the evaluation func-
tion, H = jEj such that G1 = (V1; E1) is the
smaller of the two graphs being compared, G2 =

(V2; E2) is the larger of the two graphs, and E =
f(u; v) 2 E1 such that (((paired(u); paired(v)) 62
E2 ^ (paired(v); paired(u)) 62 E2)) _ label(u) 6=
label(paired(u)) _ label(v) 6= label(paired(v))g. As
a measure of similarity employ the value H � =
minfH1;:::;Hng

jE1j
where H1; : : : ; Hn are the final values of H

from up to n random restarts of the algorithm and E 1 is
the edge set of the smaller graph. The function “paired(x)”
above returns the node y 2 V2 that is currently mapped to
the node x 2 V1. The function “label(x)” used above re-
turns the label, or attributes, of the node x.

Algorithm 1: Largest Common Subgraph
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs
being tested. P is the number of moves to make on a plateau
before giving up.
Output: H = 0 if the LCS is found to correspond to a sub-
graph isomorphism. Otherwise, H is returned where H is
the number of mismatched edges when the algorithm halts.
LCSGRADIENTDESCENT(G1; G2; P )
(1) Pairings = GETRANDOMPAIRINGS(G1;G2)
(2) i = 0
(3) BestResult = H(G1; G2;Pairings)
(4) while (BestResult> 0) ^ (i < P )
(5) if H(G1;G2 ,APPLYSWAP(Pairings,BestSwap))<

BestResult
(7) Pairings= APPLYSWAP(Pairings,BestSwap)
(8) i = 0
(9) BestResult= H(G1;G2 , Pairings)
(10) else
(11) if H(G1;G2 , APPLYSWAP(Pairings,BestSwap)) =

BestResult
(12) Pairings=

APPLYSWAP(Pairings,BestSwap)
(14) i = i+ 1
(15) else
(16) i = P

(17) return BestResult

The node labels may contain as little or as much informa-
tion as you choose. For the experiments that are described
later, the node labels were simply the type of feature, such
as “hole” or “pocket”. However, by incorporating more in-
formation into the node labels such as dimensions or ori-
entation, we can further restrict allowable mappings which
will increase the algorithm’s performance by reducing the
search space. Incorporating more information in the node
labels will also obtain a more meaningful similarity mea-
sure. For example, by incorporating a notion of dimension
into the labels then a really large block with a tiny hole will
not be found similar to a little block with a larger hole.

Algorithm 1 is the algorithm developed and described
for computing the largest common subgraph using itera-
tive improvement. In the algorithm, Pairings refers to
the mapping between the nodes of the two graphs. And
GETRANDOMPAIRINGS returns a random mapping as de-
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Figure 2. Two of the test parts from the DOE TEAM Project. Note that, while they appear very similar,
they have variations in features, geometry and topology—as well as orientation with respect to the
world coordinate system. Both of these parts are available from the National Design Repository at
http://www.designrepository.org.

Algorithm 2: Similarity
Input: G1 = (V1; E1); G2 = (V2; E2), the two graphs
being compared. R is the number of restarts.
Output: S = 0 if the smaller of the two graphs is the largest
common subgraph. Otherwise, S is returned where S is
the smallest result of R restarts of LCSGradientDescent di-
vided by the number of edges in the smaller of the two input
graphs.
SIMILARITY(G1; G2; R)
(1) i = 1
(2) BestResultThusFar = LCSGRADIENTDESCENT(G1; G2; P )
(3) while (BestResultThusFar> 0) ^ (i < R)
(4) BestResultThusFar = min fBestResultThusFar,

LCSGRADIENTDESCENT(G1;G2; P ) g
(5) i = i+ 1
(6) return BestResultThusFar

minfjE1j;jE2jg

scribed above. H is the evaluation function that counts the
number of mismatched edges given two graphs and a map-
ping between the nodes in these two graphs. BestSwap is
the swap from the set of all possible swaps between pair-
ings that results in a mapping with the smallest value for H .
APPLYSWAP returns the mapping that results from applying
the given swap to the given mapping. The algorithm is of
polynomial time complexity. It takes O(N 2) time to choose
the best swap. In the worst possible case, by choosing the
best swap at each step the evaluation function is simply re-
duced by one and therefore can look for the best swap as
many as jEj times. It takes time in O(jEj) to compute the

evaluation function. Also in this worst case, the algorithm
reaches a plateau as often as possible and takes P random
moves on each of these plateau before finding the swap that
reduces the evaluation function. So therefore the worst case
complexity of the algorithm is O(P �E 2+P �E�N2). If P
is a constant then the complexity is simply O(E 2+E�N2).
To obtain a similarity measure, the smallest result of r exe-
cutions of this algorithm is divided by the number of edges
in the smaller of the graphs. Algorithm 2 is the random
restart algorithm for similarity assessment. The similar-
ity algorithm simply calls the matching algorithm r times.
Since r is constant the complexity is O(E2 �N2).

4. Empirical Results

We ran the FBMach feature recognizer over a set of 259
solid models for real world and realistic machined parts.
The parts were chosen from the National Design Repository
and the feature output was used to generate MDGs for each
of the models—these MDGs formed the indexing scheme
against which we performed queries. The parts were se-
lected based on their diversity and that they were machined
parts, many of which were from industry. We conducted
several “query by example” experiments, selecting a rep-
resentative solid model as a target and letting our matcher
estimate the distance from the other models in the dataset to
the target.
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Figure 3. The Simple Bracket example, orig-
inally from [17]. When used as a query,
the query processor identifies several parts,
including variations on the bracket, in the
“most similar” category.

Testbed Description: The National Design Repository.
The National Design Repository [32, 31] is a digital library
of Computer-Aided Design (CAD) models and engineering
designs from a variety of domains. The objective is to fur-
ther the state-of-the-art in academic and industrial research
in Computer-Aided Engineering by building a public cata-
log of real-world design examples. The Repository provides
benchmark designs in a variety of formats to serve as refer-
ence data to aide developers and students.

The Repository currently contains over 55,000 files
maintained in multiple data file formats2. Contribu-
tions have been made by many major research lab-
oratories, companies and academic institutions. Cur-
rently there are 10 gigabytes of CAD models and re-
lated information. All data is freely available for users
around the world. More information is available at
http://www.designrepository.org.

How to interpret the histograms and model matching
results. Figures 2 to 5 give histograms of the results of
running a comparison of the query model (shown in the
upper-left of each Figure) against the MDGs of all of the
other models indexed by FBMach in the Design Reposi-
tory. Reading the histograms from left-to-right, the parts on
the left are more similar to the query and the parts on in the
right most buckets are the least similar from a machining
standpoint.

The distance between solid models is measured as the

2This includes solid models in STEP AP 203, ACIS .sat, Autodesk
.dxf and .dwg, IGES, Bentley .dgn, Parasolid .xmt and other formats
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Figure 4. The Bracket example, originally
from [16]. Several variations on the bracket
appear in the near hits buckets of the his-
togram.

minimal percentage of mismatched edges as calculated over
the course of several runs of the LCS approximate MDG
matcher. Referring to the histograms, the vertical axis (Y
axis) is a count of the number of solid models falling into
each one of the six buckets; the horizontalX axis is the per-
centage of mismatched MDG edges (i.e., the ratio of mis-
matched edges to total number of edges in the smaller of the
two MDGs). For example, referring to Figure 2 (c), there
were 5 models whose MDG’s exactly matched (or were em-
beddable in) that of the query model; 3 models with 20% or
fewer mismatched edges; 5 models with 21%-to-40% mis-
matched edges; 15 with 41%-60% mismatches; 23 models
with 61%-to-80%; and 208 models with greater than 80%
mismatches. In this way, the histograms show a partition
of the parts into groups based on the estimated distance be-
tween their MDG and the MDG of the query object.

The comparisons, as noted in Section 3, amounts to
a subgraph isomorphism check and distance measure, the
CPU time needed to execute these checks were quite
reasonable—often running in real time. We hypothesize
this performance is achieved because we are operating on
labeled graphs and that the iterative improvement approach
allows us to control the duration of the search. In this class
of experiments, we ran the search with 10 random restarts
and took the best matches off of the 10 trials. Specific CPU
times from a Sun UltraSPARC 30 workstation are noted be-
low with each example.

Four Example Queries. Four (4) of the parts in the
Repository were selected as query models. Their selection
was based on the knowledge that, in each case, there were
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Figure 5. The Socket example, originally
from [33]. A variations on the socket appears
in the nearest hit bucket.

models existing in the Repository which indeed would have
similar process plans.

TEAM Part: Figures 2 (a) and (b) show the two TEAM
Parts, from the US Department of Energy’s Technolo-
gies Enabling Agile Manufacturing (TEAM) Project.
Note that they are both three axis machined parts with
minor variations in features, geometry and topology.
When TEAM2 was used as a query (Figure 2 (b)),
TEAM (Figure 2 (a)) and several other three axis ma-
chined parts with similar features and topology appear
in the near hit category. For this query, it took 304.71
CPU seconds to search across all 259 models.

Simple Bracket: Figure 3 shows a simple bracket, a part
with about a dozen possible machining feature that can
be made in three or four set ups (depending on toler-
ance constraints). The histogram shows the result of
comparing the features in this model to those of the
others in our Repository. For this query, it took 5.4
CPU seconds to search across all 259 models.

Bracket: Figure 4 shows a more complex bracket struc-
ture. The histogram of results from this query show
two variations on the bracket appearing in the left-most
classes of models. Note that these variations change
the setups and the feature types (drilled holes to ma-
chined slots) but have similar shape properties. Further
note that the vast majority of models fall in to the least
similar categories. For this query, it took 21.27 CPU
seconds to search across all 259 models.

Socket: Figure 5 shows the Socket example, consisting of
22 machining feature instances and machinable in four

setups. Note that a near duplicate of the socket appears
in the most similar category. For this query, it took
95.44 CPU seconds to search across all 259 models.

5. Discussion and Conclusions

This paper presented our approach to using machin-
ing features as an index-retrieval mechanism for storing
solid models. We believe that this work represents the the
first fully automated technique for machining feature-based
comparisons of mechanical artifacts. Our hope is that this
type of approach, combining raw b-Rep data with machin-
ing feature knowledge, will enable to radical changes in the
way in which design data is managed in modern engineer-
ing enterprises.

Our approach enables us to interrogate large databases
of solid models and perform queries based on manufactur-
ing similarities among the artifacts. While we have not yet
performed a comprehensive analysis of the manufacturing
data for each of the parts in our Design Repository, our em-
pirical results suggest that this is a promising approach to
information and data management for design and manufac-
turing process knowledge.

Research Contributions and Future Work. Some of the
research contributions of this work include:

A Model Indexing and Query Scheme: We showed that
the MDG is a useful mechanism for archival and re-
trieval of models in CAD databases and can be em-
ployed using a “query by example” paradigm. Us-
ing algorithms for computing the largest common
subgraph, and introducing some engineering domain
knowledge, we have created a general technique for
archiving large numbers of solid models and retrieving
them based on the similarity of their machining fea-
tures. We believe that this technique can be refined
and will have impact on how CAD data is stored and
managed.

Variational Process Planning Search Engine: Based on
the MDG, one can create query artifacts that partition
the database of solid models into different morphism
classes—based on how similar in structure each model
is to the query model. We believe that this approach
can be refined to detect meaningful part classes and
families in large sets of engineering models. This can
form the basis for more intelligent Product Data Man-
agement (PDM) systems and tools for variational de-
sign and variant process planning.

Process Selection and Cost Estimation Engine:
Corporate Design and Manufacturing databases
often store manufacturing cost and process data.



With the techniques presented, we can design Active
CAD Agents that assist designers during detailed
design by comparing the in-process design artifact to
those previously created. In this way, the agent can
provide feedback on potential manufacturing process
choices (e.g., when a design that is categorized as
similar was made with stereolithography, perhaps
stereolithography should be considered for the new
design) and expected cost (e.g., using data from the
existing process plan for similar parts).

Currently, our research considers only plain, unattributed
solid models—there are no tolerances, manufacturing at-
tributes, surface finish specifications, etc. In the future, we
believe that additional domain knowledge can be used to
refine our techniques. Information about engineering toler-
ances, surface finishes, constraints and parametrics, etc. all
can be used to augment the basic techniques presented here.
Further, we would like to explore how to implement multi-
ple feature views onto the Repository by including feature
data generated by different feature recognition techniques.
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