
CAD Tools for Creating Space-filling 3D Escher Tiles

Mark Howison

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2009-56

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-56.html

May 1, 2009

Copyright 2009, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

CAD Tools for Creating Space-filling 3D Escher Tiles

by Mark Howison

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for
the degree of Master of Science, Plan II.

Approval for the Report and Comprehensive Examination:

Committee:

Professor Carlo H. Séquin
Research Advisor

(Date)

* * * * * * *

Professor Jonathan R. Shewchuk
Second Reader

(Date)

CAD Tools for Creating Space-filling 3D
Escher Tiles

Mark Howison
Computer Science Division

University of California, Berkeley
mhowison@berkeley.edu

May 1, 2009

Abstract

We discuss the design and implementation of CAD tools for creating dec-
orative solids that tile 3-space in a regular, isohedral manner. Isohedral tilings
of the plane, as popularized by M. C. Escher, can be constructed by hand or
using existing tools on the web. Specialized CAD tools have also been devel-
oped for tiling other 2-manifolds. This work addresses the question: How can
we generate interesting tilings of 3-space? To generate boundary representa-
tions of 3D tiles, we have implemented an interactive constrained Delaunay
triangulation algorithm. In addition, we have designed a specialized mesh-
cutting algorithm used in layering extruded 2D tiles to create intricate space-
filling designs. We describe visual debugging methods used during the imple-
mentation of these two geometric algorithms, and also explain user-interface
decisions we made in designing the CAD tools. Finally, we show examples
of 3D tilings that are derived from extruded 2D shapes and from 3D cubic
lattices.

2

1 Introduction

M. C. Escher’s intricate tilings [12] are well known and appreciated by many peo-

ple; the intriguing, natural looking shapes that tile the plane in a regular manner

have fascinated mathematicians, artists, and tiling hobbyists (Fig. 1). Without the

help of computer graphics tools, it is difficult and labor-intensive to create aesthet-

ically pleasing tilings of this kind. Because of the widespread interest in such pat-

terns, many easy-to-use graphics tools have been created and made available on the

web, allowing people with no training in the graphics arts or in computer science to

experiment with and generate innovative regular patterns [11].

Such tilings can also be created on surfaces other than the plane. Figure 1b

shows a spherical tiling made from 60 identical tiles made on a rapid prototyping

machine [25], and a hyperbolic tiling in the Poincaré disks, where the tiling be-

comes infinitely dense towards the rim of the circular domain. In fact, all planar

tilings can be generalized to hyperbolic patterns by simply packing more instances

of the tile around its sides. Spherical tilings, on the other hand, are limited to the

symmetries of the Platonic solids, since they have the added constraint of closing

smoothly around the back of the sphere. There are several tiling generators on

the web for hyperbolic tilings [7], and also for spherical tilings [24]. In some iso-

lated experiments, Escher-like tiling patterns have also been placed on symmetric

surfaces of higher genus, e.g., onto a torus [21] and onto a genus-3 surface with

tetrahedral symmetry (Fig. 1d) [14]. In both cases, specially designed CAD tools

were created to address the particular challenges of those tasks.

Prompted by the emergence of affordable layered manufacturing machines and

rapid-prototyping services, we began to explore the possibility of making Escher-

like tilings that would regularly and seamlessly fill 3-space. This exploration space

is much larger than in the case of planar and 2D tilings. First, there are many more

symmetry groups in 3-space than in the plane. Second, the 3D tiles can be of a

1

(a) (b)

(c) (d)

Figure 1: Escher-like tilings on 2-manifolds: (a) in the plane; (b) on a sphere; (c) in
the Poincaré disk; and (d) on a genus-3 “Tetrus” surface.

2

genus higher than zero, they can interlink with their neighbors, and they can even

be knotted! An exploratory paper [15] surveys many of these possibilities, and

concludes that different approaches and tools would be needed to design such tiles.

We present CAD tools that aid in the construction of isohedral tiles of genus

zero, with complex surfaces that may or may not resemble shapes found in nature.

In 3-space, new challenges arise for the development of appropriate CAD tools.

The data structures and geometrical algorithms are more complex; but also there

are user interface issues arising from the limitations of projecting a 3D object onto

a 2D viewing screen and the geometric interdependences caused by the imposed

symmetries. With 2D tilings, a single comprehensive view can show the prototype

tile and its nearest neighbors, but this is not true for 3D tilings. If we display only

one isolated tile, then we can see at most half of its surface, and if we display

more than one tile, the neighboring tiles can occlude features of the prototype tile.

Furthermore, it is important to view all faces that are modified as the result of an

editing operation, yet because of the tile’s symmetries, these faces are typically

opposite each other on the tile’s surface. In the following, we address these issues

and present CAD solutions.

2 Simple 2½-Dimensional Tilings

As a warm-up exercise, we started by constructing an editing tool for a 2½D tile.

A tile that tessellates 2-space is extruded into a slab, and layers of these tiles are

stacked to fill 3-space. The 2D outline of the tile can be designed with one of the

many available 2D tools, but additional facilities are needed for shaping the top

and bottom surfaces of this tile. This intermediate 2½D design tool allowed us to

explore suitable data structures and geometrical algorithms, and to debug them in a

less complicated context than the full 3D case.

3

(a) (b) (c) (d)

Figure 2: Four 2D symmetry groups: (a) IH01, hexagonal domain with translational
symmetry; (b) IH41, rectangular domain with translational symmetry; (c) IH79,
right-triangle domain with 4-fold rotational symmetry; and (d) IH31, kite-shape
domain with 6-fold rotational symmetry.

Figure 3: IH01 shown with nearest neighbors.

In our 2½D editor, we have implemented four symmetry groups (Fig. 2). The

first is a simple isohedral tiling with only translational symmetry (IH01; type p1 [5];

Conway notation: o [1]). The simplest repeatable unit of this tiling (its fundamental

domain) is a skewed hexagon in which opposite sides are identical, translated copies

4

of one another. A similar group, IH41, uses a rectangular instead of hexagonal

domain with the same translational symmetries. A third example uses higher-order

symmetries (IH79; type p4; Conway notation: 442). Its fundamental domain is an

isosceles right triangle in which the two legs transform into one another by a 90◦

rotation around the shared vertex, and half the hypotenuse maps into the other half

by a 180◦ rotation around its midpoint. Finally, IH31 (type p6; Conway notation:

632) is similar to IH79, but has 6-fold symmetry around its shared vertex and a

kite-shaped fundamental domain.

Figure 4: 2½D Escher tiles: height-editing of the top surface.

The construction of a 2½D Escher tile occurs in two distinct phases. From a

user’s perspective, the first phase resembles that of existing 2D Escher tile editors.

The user picks a symmetry group and is given a basic shape that represents the

fundamental domain of this group. This tile can be modified in the context of all its

neighbors and the whole tiling array. Any change made to a segment of the edge of

a tile is readily replicated on all corresponding edge segments on all other displayed

tile instances. The user can also decorate the interior of the tile with extra points

and line segments.

In the second editing phase, the whole tile is extruded uniformly to a chosen

5

thickness, and then the top surfaces can be further modeled into a non-planar height

field by moving vertices—both on the boundary and in the interior of the tile—up

or down in the vertical direction. During this edit phase, a single tile is displayed as

a 3D object that can be arbitrarily rotated around its center of gravity, allowing the

designer to choose a convenient viewing direction that best shows the 3D deforma-

tions being performed. To allow some structured height-editing, multiple vertices

can be selected (highlighted in red in Fig. 4), and all their heights can be changed

simultaneously by the same amount by simply dragging one of those vertices up or

down in a direction perpendicular to the base plane of the tile.

As a default case, the bottom surface of the tile is modified in exactly the same

way as the top surface, so that the 3D tiles stack on top of one another in a single

prismatic column that also fits together laterally with neighboring columns to fill

3-space (Fig. 5).

In a more interesting 3D isohedral tiling, subsequent layers of these tiles can

be shifted with respect to one another, so that, for instance, the belly of a bird-like

tile rests on top of the wings of the bird in the layer below. In our CAD tool, we

have restricted ourselves to isohedral tilings; thus, the lateral offset from one layer

to the next one above must always be the same. This lateral offset is conveniently

specified at the end of Phase I of the editing process, by grabbing the single edited

proto-tile and shifting it laterally with respect to the complete 2D tiling (Fig. 6).

The bottom surface of each tile is given by a combination of different parts of the

top surfaces of the tiles in the layer below. In essence, the outline of the prototype

tile is used as a “cookie cutter” to carve out a suitable mesh from the height field

formed by all the top surfaces of all the tiles in the layer below. This carved-out

mesh is then connected with vertical, prismatic side walls to the top surface of the

proto-tile to form a closed, watertight, 2-manifold boundary representation of the

2½D Escher tile, which is suitable as input to any layered manufacturing machine.

6

(a)

(b)

Figure 5: 2½D Escher tiles: (a) 3 identical tiles, white tiles seen from top, red seen
from bottom; and (b) the 3 tiles stacked on top of one another.

7

(a) (b)

(c)

(d)

Figure 6: Offset 2½D Escher tiles: (a) proto-tile of symmetry IH79; (b) top and
bottom view of the extruded 2½D tile; (c) four tiles put together in one layer; and
(d) two more tiles placed in the laterally offset layer above.

8

3 Interactive Constrained Delaunay Triangulation

We create a mesh for the final boundary representation of the Escher tile by per-

forming a constrained Delaunay triangulation of the interior of the proto-tile during

Phase I. It is advantageous to show the designer the resulting triangulation after ev-

ery edit step in Phase I, so that she can readily judge whether that triangulation is

rich and robust enough to allow for the formation of the desired extruded features

during Phase II. Also, having a mesh available during Phase I provides a convenient

data structure in which to locate new points and check for illegal edit moves, e.g.,

boundary deformations that would lead to a self-intersecting boundary.

Figure 7: The Delaunay triangulation has the properties that (a) the circumcircle
through any triangle encloses no other vertices of the triangulation; and (b) a non-
Delaunay triangulation can be converted into a Delaunay one by flipping any edge
(green) shared by two adjacent non-Delaunay triangles to an new edge (blue) shared
by Delaunay triangles.

We perform Delaunay triangulation because it generates aesthetically pleasing

triangulations with few sliver triangles (i.e., elongated triangles with one or two

small angles). This is due to its “locally equiangular” [22] guarantee that, given

any two adjacent triangles, their shared edge will be the one that maximizes the

minimum of the six angles within both triangles. This is equivalent to the property

9

of Delaunay triangulations that the circumcircle of any face (i.e., the unique circle

that passes through all three of the face’s vertices) does not enclose any other ver-

tices of the triangulation [10], [22] (see Fig. 7). The Delaunay triangulation is also

“globally equiangular” in that it maximizes the minimum angle over all faces of the

triangulation, as compared to any other triangulation of the same vertices [22].

Writing a truly robust library for constrained Delaunay triangulation is a diffi-

cult task, and we contemplated using the well-tested Triangle package [17]. How-

ever, several considerations discouraged us from taking this approach. First, Tri-

angle only operates in batch mode, delivering the Delaunay triangulation after all

the constrained points and line segments have been placed. It seemed wasteful to

run this process after every new placement or slight movement of a point in the

proto-tile. Second, we wanted to develop our tile editor as a web-ready Java appli-

cation, but a Java implementation of Triangle does not exist. Triangle’s C codebase

could be retooled to use the Java Native Interface, or a platform-specific Triangle

executable could be called remotely on ASCII mesh data files from within Java, but

both of these solutions would compromise the portability of our application.

Therefore, we decided to implement an interactive algorithm for creating and

modifying a Delaunay triangulation as the designer edits a tile. Potentially, this

could be a daunting task, considering how much effort was spent in the development

of Triangle on issues of precision and numerical stability. Triangle uses adaptive

precision arithmetic to achieve robustness without sacrificing much speed [17], but

these methods are complicated and difficult to implement. We opted for a simplified

version of adaptive arithmetic that was easier to implement while still providing

similar performance benefits.

Although we represent coordinates as floating-point values, our editor is limited

by screen resolution. Designers never input coordinates, and they judge the results

visually to decide whether the resulting mesh fits their needs. We want to discourage

10

the generation of many narrow sliver triangles, since overly complicated geometry

cannot be realized accurately by the layered manufacturing machines used to fabri-

cate the tiles. Thus, our triangulation algorithm automatically merges vertices that

are placed too closely together, and subdivides and snaps line segments to new ver-

tices that are placed too closely to them. If the result of a merge is not acceptable,

the designer can always grab a vertex in question and move it to a slightly different

location.

3.1 Robustness

Delaunay triangulation algorithms use two geometric predicates: 1) the orientation

test, which determines if a vertex lies left, right or on top of a line; and 2) the

in-circle test, which determines if a vertex lies inside, outside, or on top of the

circumcircle of a triangle. Round-off errors from floating-point arithmetic can cause

wrong results, such that an algorithm cannot correctly determine which side of a

line a vertex lies on, or whether a point is inside or outside of a circumcircle.

As an alternative to using floating-point arithmetic, vertex locations can be re-

stricted to rational numbers, allowing for integer arithmetic that is always exact

when there is enough bit precision. There are several downsides to this approach,

however. First, integer arithmetic requires error-handling code to prevent overflow

conditions. Second, implementing rotations is awkward because many common an-

gles have irrational values in their rotation matrices (e.g. 45◦ and
√

2), which have

to be rounded. Finally, modern CPUs are optimized for floating-point operations,

not integer arithmetic.

Exact (or arbitrary-precision) arithmetic can be used to circumvent floating-

point round-off errors. Unfortunately, most implementations of exact arithmetic are

notoriously slow. Alternatively, adaptive precision methods can provide the same

robustness, but with less sacrifice in performance. Because both the orientation and

11

in-circle tests rely on the sign of a determinant, a “floating-point filter” can be used

to determine if the magnitude of the determinant as calculated by floating-point

arithmetic is small enough to be affected by round-off error; if it is, exact arith-

metic routines are used to increase the precision of the calculation until it can be

guaranteed to have the correct sign [4]. While Shewchuk’s [18] adaptive precision

method uses several levels of filter, we have opted for a simpler one-level method

that invokes an arbitrary precision routine whenever a floating-point calculation’s

uncertainty surpasses the filter threshold. Although this approach is not as efficient

as the multi-level method, it is easier to implement while exhibiting similar perfor-

mance benefits.

3.2 Delaunay Triangulation Algorithms

There are many existing algorithms for computing unconstrained Delaunay trian-

gulations in batch mode [19]. Shamos and Hoey [16] developed an O(n log n)

divide-and-conquer algorithm for computing the Voronoi diagram, the dual of the

Delaunay triangulation, which can then be converted into the Delaunay triangu-

lation in linear time. Subsequent divide-and-conquer algorithms [6] bypass the

Voronoi diagram, construct the Delaunay triangulation directly, and have simpler

implementations.

An O(n log n) sweepline algorithm by Fortune [3] sorts vertices along an axis,

then uses a moving front perpendicular to the axis that accrete edges as it intersects

vertices. Faces can be added as soon their circumcircles fall behind the front, and

hence can’t contain new vertices.

One of the easist algorithms to implement is Lawson’s [10] incremental in-

sertion algorithm that starts with a global bounding triangle and iteratively adds

vertices by splitting the triangle that encloses the inserted vertex and performing in-

circle tests and edge flips to maintain a Delaunay triangulation. Proofs of the math-

12

ematical properties backing this technique can also be found in a succinct treatment

by Sibson [22]. The running time of Lawson’s algorithm depends on the search

routine used to identify the triangle in the existing triangulation that encloses the

vertex to be inserted.

We chose to implement Lawson’s algorithm, because of its ease of implemen-

tation, and in particular because there is a straightforward modification to support

constrained Delaunay triangulations. Constrained edges are simply flagged and

then ignored during the in-circle test phase of the algorithm so that they cannot be

flipped.

Rather than use a global bounding triangle for our incremental insertion algo-

rithm, we chose to handle boundary edges and vertices explicitly since we represent

that data to enforce the symmetry constraints of the tile. Boundary vertices contain

a field that specifies the other boundary vertices they are paired with via symmetry

contraints, and are stored in a doubly-linked list to facilitate operations that need to

treat the boundary as a polygon separate from the triangulation (e.g. when testing to

prevent situations where the boundary could become self-intersecting.) Although

we could technically support mirror symmetries via scaling by a negative value, in

practice these are not currently supported because of the additional complexity of

inverting the direction of all half-edges in a mirror copy of a tile.

The insertion search is normally the bottleneck for an incremental insertion al-

gorithm. Several optimizations exist that use tree or graph data structures to more

efficiently locate insertion sites in the existing triangulation [19]. Our situation is

different, however, since we are running in interactive mode rather than batch mode,

and the time between user inputs is sufficient for even a slow search routine to fin-

ish. That said, we have implemented two refinements to Lawson’s search routine,

which follows triangles in the direction of the insertion site until it finds the con-

taining triangle. First, we use a heuristic that stems from our specific application:

13

designers will likely add features as localized groups of vertices and constraints.

Therefore, we use the last inserted vertex as the search origin for the subsequent

insertion. Second, we temporarily load neighboring copies of the tile so that we do

not have to walk around concavities in the boundary (Fig. 8). Because we are not

using a convex global bounding triangle, this modification is neccessary, as concav-

ities in the boundary can cause a naive triangle walking routine to hang, which is

what initially led us to pursue the neighbor-copy approach.

Figure 8: A location search for a point in triangle B starts at vertex A, the last
inserted vertex. The search walks along the faces in as straight a line as possible.
If it encounters the boundary of the tile, it continues into the adjacent tile, which is
loaded temporarily for this purpose.

3.3 Constrained Edge Insertion and Polygon Filling

We support constrained edges to provide the designer with explicit control of the

interior features of the tile. Our insertion routine is the same as Kao and Mount’s

[8]. Assuming that the endpoints of the constraint segment already exist in the tri-

14

angulation, the edge is inserted by first removing all existing edges that lie between

the endpoints. If one of these existing edges is itself a constrained edge, we in-

stead add an additional vertex at the intersection, bisect the existing edge, then add

two constrained edges that connect the endpoints and the new vertex. Clearing the

edges between the endpoints and adding the new edge leaves two polygonal holes

in the triangulation, which we fill with a polygon-filling algorithm. For ease of

implementation, we use a worst-case O(n2) algorithm published by Anglada [1],

although in practice it typically runs in O(n log n) time. The algorithm starts at the

newly inserted constrained edge, which is “visible” to the other vertices of the poly-

gon, meaning that those vertices can be connected to the visible edge’s endpoints

without leaving the polygon. Next, the algorithm finds the vertex with the largest

circumcircle through the visible edge to form a triangle lying inside the polygon.

This procedure is recursively applied to the polygons that remain on either side of

the new triangle.

3.4 Interactive Triangulation and Non-convex Boundaries

Because of the user’s interaction with the design environment, we implemented a

constrained Delaunay algorithm that incrementally performs triangulation opera-

tions as the user specifies modifications. Originally, we did not update the trian-

gulation as the user modified the tile boundary and interior, but instead required a

separate “triangulation” stage. The triangulation algorithm, which added in edges

from a length-sorted list of all possible edges, was slow, non-Delaunay, and had

problems with numerical instability. The incremental algorithm described here is

superior in its running time, its stability, and its ability to provide immediate feed-

back to the user.

We support both removal and relocation of vertices in the existing triangula-

tion. Interior vertices are removed by flipping edges in the star of edges eminating

15

from the point until there are no more than four edges left in the star. The re-

maining three or four edges are removed, leaving behind either a single face or a

quadrilateral which is filled with a valid diagonal. The triangulation is restored to

a Delaunay triangulation by performing in-circle tests on all edges affected by the

vertex removal and flipping them when needed. Relocation of an interior vertex is

implemented simply as a removal plus a re-insertion. However, special care has to

be taken to preserve constrained edges. Whenever a constrained edge is removed,

its endpoints are added to a queue so that it can be re-inserted after the vertex has

been relocated.

Removing boundary vertices is more difficult. We connect the adjacent bound-

ary vertices with a new boundary edge and perform a flood search to find and re-

move any interior edges that intersect the new boundary edge or lie outside the new

boundary. This may leave a polygonal hole along the new boundary edge, but the

new boundary edge is a visible edge and we apply the same polygon-filling algo-

rithm as for constrained edge insertion.

We allow boundary vertex relocations as long as they do not create a self-

interseting boundary. This leaves the following three cases:

1. Relocating the boundary vertex along one of its two existing boundary edges.

This is the simplest case and is similar to relocating an interior vertex. We

insert a boundary vertex at the new location and then remove the boundary

vertex at the old location.

2. Relocating the boundary vertex into the exterior of the tile. We reassign

the vertex’s coordinates, but there may be edges attached to the vertex that

now intersect the boundary. Therefore, we remove all attached non-boundary

edges and then fill the resulting polygon (Fig. 9).

3. Relocating the boundary vertex into the interior of the tile. In this case, there

16

may be edges and vertices that now lie outside the boundary. We walk along

both boundary edges of the relocated vertex to remove any intersecting edges,

perform a flood search to identify and remove any remaining geometry that

lies outside the boundary, and fill the resulting polygon (Fig. 10).

In cases 2 and 3, the polygons do not necessarily have visible edges. Therefore,

we must use a polygon-filling algorithm that works for arbitrary simple polygons.

We borrowed an existing Java implementation of Seidel’s [13] algorithm from the

open-source J3D1 project.

Figure 9: Relocating a boundary vertex into the exterior: (a) moving the vertex
causes the attached edges to intersect the boundary; (b) the attached edges are re-
moved, leaving a hole; and (c) the hole is filled.

Figure 10: Relocating a boundary vertex into the interior: (a) moving the vertex
creates intersections and leaves geometry dangling outside the boundary; (b) the
intersecting and dangling geometry is removed; and (c) the hole is filled.

1http://code.j3d.org/

17

Figure 11: The yellow tile mesh serves as the top face of the 2½D tile, but the
bottom face must be cut out of the underlying layer that has been laterally offset.

4 Mesh-Cutting Algorithm

The bottom mesh of a laterally-offset 2½D Escher tile is generated using a cookie-

cutter operation that crops the appropriate geometry from the top meshes of the

tiles in the underlying layer (Fig. 11), allowing the layers to align properly and fit

together seamlessly (Fig. 6). Once a lateral offset has been specified (Fig. 12a), we

form the cookie cutter by copying the tile mesh, retaining only the boundary edges

and triangulating the interior with temporary edges (Fig. 12b) to facilitate subse-

quent vertex insertions. Then we move the cookie cutter to the offset location and

walk along its boundary to find all the intersections with the underlying landscape.

The underlying landscape is made up of many copies of the tile mesh, which have

been subjected to the tile’s symmetries. But when we start the boundary walk, we

only load the copy that contains the first vertex of the cookie-cutter boundary. As

18

the cookie cutter traverses boundary edges in the landscape, we load on demand the

appropriate adjoining mesh copy. This on-demand approach bypasses the problem

of determining a priori the planar extent of the cookie cutter across the mesh copies

forming the underlying landscape.

Figure 12: Cookie cutter operation: (a) a cookie cutter contour (blue) lies offset
from the underlying landscape (gray), whose meshes will subsequently be loaded
on demand; (b) intersection points (green) are found by walking the cookie cutter
boundary, which is temporarily filled with interior edges (gray) to enable later ver-
tex insertions; (c) edge fragments in the active queue are added as constrained edges
(magenta); and (d) the remaining landscape edges lying inside the cookie cutter are
found via flood fill and added as constrained edges (magenta).

When the cookie cutter crosses an underlying edge, the intersection point is

added to its boundary (Fig. 12b), and the fragment of the edge projecting inside

19

the cookie cutter is retained and placed in an active fragment list. To catch all the

fragments that might arise when an underlying edge is bisected multiple times from

different directions, new fragments are checked for intersections with all existing

fragments in the list. As an additional optimization, we have implemented separate

lists for each underlying edge to reduce unnecessary intersection tests. When the

boundary walk finishes, all active fragments and their endpoints are added to the in-

terior of the cookie cutter, and are marked as constrained edge segments (Fig. 12c).

The algorithm performs a flood search on the endpoints to collect any remaining

edges of the landscape that lie inside the cookie cutter (Fig. 12d). The resulting

cookie-cutter mesh now contains all of the cropped geometry of the underlying

landscape and becomes the bottom mesh of the 2½D tile. Quadrilateral side-wall

faces are added between corresponding boundary edge segments in the top and bot-

tom meshes, and the resulting watertight boundary representation can be output in

.STL format, which is understood by almost all layered manufacturing machines.

The cookie-cutter problem was another motivation to implement our own con-

strained Delaunay triangulation library in Java. Tackling this problem with Trian-

gle, for example, is possible but not straightforward. In particular, we would have

to identify the extent of the underlying mesh needed to cover the contour, and copy,

transform, and aggregate that geometry at the start (as opposed to loading the ge-

ometry on demand). Next, we would constrain all of the edges to prompt Triangle’s

automatic splitting of intersecting edges, and finally remove all geometry exterior

to the contour using Triangle’s “triangle-eating virus” mechanism [17]. However,

many 2½D tile designs utilize offsets that create coinciding vertices and/or partly

coinciding edge segments between the cookie cutter and the landscape, e.g., when

an interior feature on the top mesh is lined up with a boundary feature on the bot-

tom mesh. While Triangle would compute exact intersections and retain finely

detailed geometry, our algorithm instead merges vertices, so that multiple inter-

20

sections within an ε-neighborhood are represented by only a single vertex in the

cookie-cutter mesh. Although this merging does not result in an exact solution,

the resulting cookie-cutter mesh retains enough detail to be accurately printed on a

layered manufacturing machine.

5 Visual Debugging

Sophisticated algorithms are difficult to debug using traditional text-based debug-

gers and methods. This is especially true of geometric algorithms, because the

data is inherently visual and difficult to interpret when presented as textual output,

e.g. as coordinate values. Visual debugging output can leverage the tuned visual

processing capabilities that humans enjoy.

In the case of the triangulation and mesh-cutting algorithms described above, we

found that animating and visualizing the algorithms helped us to identify extreme,

difficult, and unexpected cases. Moreover, we were able to isolate and visualize

subtasks within the algorithm, as opposed to waiting to receive one visual output

at the termination of the algorithm and then working backwards to determine the

faulty subtask.

We implemented our visual debugging system in Java2D by overriding the

event-queue repainting mechanism and inserting events mid-algorithm to create vi-

sual “breakpoints.” In addition, these breakpoints can take geometric objects, such

as points or halfedges, as arguments, causing them to be highlighted in the visual

debugging output (Fig. 13).

The idea of implementing a visual debugging system for geometric algorithms

is not new. GeoLab2 and GeoSheet3 are examples of feature-rich environments

2http://www.ic.unicamp.br/˜rezende/GeoLab.htm
3http://www.ece.northwestern.edu/˜dtlee/theory/gs_tech_1_html/

gs.html

21

for developing, testing, visualizing, and animating geometry algorithms in C/C++.

Both packages wrap low level graphics libraries such as Xfig and Xlib to provide

convenient graphical output calls that can be inserted mid-algorithm, similar to our

breakpoint feature. We chose to implement our own visual debugging system be-

cause we needed a Java-based solution and because of the ease of integrating it into

our existing application, which already displayed triangulation output in Java2D

and supported saving and loading dynamically created test cases.

Figure 13: A breakpoint during a visual debugging session: a halfedge and vertex
are highlighted (red) and the system is waiting for user input to proceed.

6 Three-Dimensional Cubic-Lattice Tilings

There exist many more symmetry groups and tiling groups in 3-space than in the

plane. In our 2½D tile editor, we have realized only four planar symmetry groups,

22

but have created a modular framework that allows for incorporation of other tiling

symmetries at a later time. For instance, we could use the complete set of 91 iso-

hedral tiling parameterizations as categorized by Kaplan and Salesin [9]. To our

knowledge, there is no similar categorization of 3D tiling groups, and the number

of possibilities is much larger than in 2D.

Figure 14: Fundamental domains of 3D tilings, and nearest neighbors: (a,b) a trun-
cated octahedral cell based on the body centered cubic lattice; and (c,d) a rhombic
dodecahedral cell based on the densest sphere packing.

In our 3D tile editor, we have created two tiling groups. For both, we start

by displaying a corresponding polyhedron representing the fundamental domain.

The first tiling is derived from the body centered cubic lattice, with a truncated

octahedron as its fundamental domain (Fig. 14a, b). However, we only consider

translational symmetries, and thus allow the user to perform arbitrary affine distor-

tions of the underlying coordinate system. In this scheme, each cell has 14 nearest

neighbors, and its fundamental domain can always be represented as a polyhedron

with 7 pairs of opposite, parallel, and identical faces. A second tiling that we have

explored is based on the densest sphere packing, with the rhombic dodecahedron as

its fundamental domain (Fig. 14c, d). Again, since we only consider translational

symmetries, this domain can be distorted into a polyhedral shape with 6 pairs of

opposite, parallel, and identical faces.

23

6.1 Pane-based Editing Workflow

Initially, the 3D fundamental domains are not offered to the user as objects that can

be freely edited in a 3D domain. Instead, there is again a Phase I of the editing

process, where we present the individual faces of the fundamental domain to the

user as 2D “panes” that can be decorated with extra vertices and edges. These are

later manipulated to create 3D free-form shapes during a second editing phase. To

provide context, the 14 or 12 panes of the whole domain are always shown as a 3D

object that can readily be rotated around its center of gravity with a “crystal ball” or

“orbit” interface [2]. A “special” click into one of these panes of the fundamental

domain snaps that pane into the display plane and loads the 2D editor described

above. “Special clicking” subsequently into any of the other panes will initiate

the most direct rotation that will bring that pane to the front, so as to preserve the

orientation context and minimize the user’s confusion [2].

Figure 15: Pane-based construction of a 3D Escher tile: (a) Phase I: editing the
triangulation of an individual pane; and (b) Phase II: free-form 3D editing of the
pane.

In this 2D edit mode, any of the face’s internal vertices and line segments can

be added, deleted and moved, and will instantly result in a clean Delaunay trian-

gulation obtained through our incremental algorithm (Fig. 15a). Boundary vertices

24

can be added onto existing boundary line segments, but cannot be moved, because

this would cause other faces of the fundamental polyhedron to become non-planar.

For these 2D edits, each face uses its own local coordinate system with the origin

at the centroid of the face. Another special click restores the 3D crystal ball view.

In Phase II of the 3D shape editing process, local 2D coordinates for each pane

are transformed into 3D vertices that can now be manipulated in 3-space. The last

vertex the user selects defines an axis through the center of mass of the tile, and

the user can translate the entire selection parallel along that axis, or in the plane

perpendicular to the axis. We interpret the cursor’s position in the XY -plane of the

view screen as if it were in the perpendicular plane after it has been rotated through

the minimal angle that brings it parallel with the view plane (Fig. 15b).

If additional detail is needed beyond what is possible with the tesselated panes,

new vertices can be added by subdividing a face or edge. These edits are kept

as purely local changes, however, with no attempt to optimize the resulting mesh

or clean up sliver triangles. If the designer cannot achieve the desired result, and

needs many more vertices in a particular pane of the fundamental polyhedron, we

provide a limited roll-back option. The designer may return to the 2D edit mode

for that particular pane and modify its triangulation, then return to the Phase II 3D

edit mode. During this transition, the 3D information of all the vertices associated

with any other panes is maintained, and only the Delaunay mesh for the rolled-back

pane is recalculated. Any 3D information that belongs solely to this modified pane

needs to be re-entered from scratch.

We chose this pane-based workflow model as a trade-off between the needs for

maintaining the logical equivalence between corresponding panes in the fundamen-

tal polyhedron and the desire for a truly free-form shape editor. We quickly rejected

the idea of representing the whole 3D tile as a volumetric object partitioned into a

collection of 3D tetrahedra. A constrained 3D Delaunay tetrahedralization does

25

not even exist for all sets of constraints, and implementing a conforming Delaunay

tetrahedralization code would be considerably more work than the 2D triangulation

code we have already created [20]. Moreover, there is no need to modify the inte-

rior of the tile. Instead, we require only an appropriate boundary representation to

display the tile on the screen and to manufacture it on a rapid prototyping machine.

6.2 User Interface Issues

Occlusion is probably the largest obstacle to free-form editing of 3D tiles. Because

of the translation symmetry of the fundamental domains we have chosen, editing a

face that is visible in the current view will cause changes to the opposite face of the

tile, but the opposite side is occluded when the tile is rendered opaquely. Often, it

is important to see the symmetry-induced changes on the opposite face. Creating a

convex feature such as a fish fin on one side of the tile will create a concave feature

such as an eye socket on the opposite side, and the designer may need to strike

a delicate balance between concavity and convexity to achieve the desired artistic

effect. To address this issue, we have implemented a dual-camera view that shows

the complete convex/concave pairings (Fig. 16).

Because both 3D fundamental domains are based on a cubic lattice, they can be

scaled and skewed into parallelepiped lattices and remain space-filling. What is the

easiest way to manipulate this affine transform, which has nine degrees of freedom

(three for the scale factors in each direction, and six additional skew factors)? We

have created a widget with exactly nine control points, each restricted to one degree

of freedom. The widget maintains the same orientation as the camera, and dragging

a control point projects the XY motion of the mouse in the view plane onto the

one-dimensional axis of the control point (Fig. 17).

26

Figure 16: Dual cameras simaultaneously show a convex feature (left camera) and
its corresponding concave feature (right camera).

Figure 17: A skew widget provides 9 control points, each with one degree of free-
dom.

27

Figure 18: Displaying the nearest neighbors: (a) neighbors are scaled to 50%
around their center of mass; and (b) neighbors are scaled to 100%, but translated
slightly along the normal of their adjoining face, to reveal the interface between
tiles.

3D tilings can have complicated interlocking features. We have experimented

with rendering faces transparently and with omitting faces to reveal the interior

faces of the opposite side of the tile, but in both cases the resulting display is clut-

tered and confusing. Instead, we display nearest neighbors that are scaled and trans-

lated to reveal the interface between adjoining tiles (Fig. 18). The scaling is applied

in relation to each neighbor’s center of mass, and the translation factor moves them

radially outward along the normals of the faces where they adjoin.

6.3 2D vs. 3D Editing

Editing a 3D tile is inherently more restrictive than a 2D tile because of the lack of

interior decorations, which in 3D would lie inside the tile’s volume and hence be

occluded in any opaque, solid rendering. A decoration of a 3D tile can only make

28

use of the tile’s boundary surface, which is entirely subject to symmetry constraints.

Creating a desirable feature on one face of the tile will lead to a symmetrically

linked feature on the opposite side of the tile, only with opposite concavity. Adding

a concave feature such as an eye to a fish-shaped tile requires accommodating the

symmetrically opposite convex feature, perhaps as a fin (e.g., Fig. 21c). In contrast,

a 2D tile allows unrestricted addition of decoration vertices and edges within its

interior, so that features that clarify the content of the tile, such as eyes and fins, can

be freely “painted” in the tile’s interior without regard to symmetry constraints.

In designing 2½D tiles, we can draw on an existing “vocabulary” of aestheti-

cally pleasing 2D tilings from Escher’s sketchbook, and use these as starting points

(e.g., Fig. 19a). Unforunately, there is no similar 3D sketchbook. Possibly, as

artists attempt to create 3D tilings, a larger vocabulary of complementary shapes

will emerge.

7 Results

We have produced both 2½D and 3D tilings of 3-space. Starting with sketch 127

from Escher’s sketchbook [12] (Fig. 19a), we traced a bird-shaped contour and

added constraint edges (Fig. 19b) that could be used later to form ridges along the

bird’s back when we formed the height field (Fig. 19c). An offset was chosen to

allow the thickness of the bird’s head and body to complement the thinness of its

wings (Fig. 20a). After editing the height field, the resulting 2½D tile fills 3-space

in laterally offset sheets (Fig. 20b).

To create a 3D tile of a fish based on the rhombic dodecahedron lattice, we

started with an earlier prototype that was created in the SLIDE [23] environment

and uses Bézier patches for the 12 faces (Fig. 21a). We added control points

analagous to Bézier control points to the initial rhombic dodecahedron in our 3D

29

tile editor (Fig. 21b), along with additional control points and constraints for form-

ing the fish’s eyes and mouth. After free-form editing of these control points, we

generated a 3D fish tile complete with fins, eyes, and mouth (Fig. 21c). The nearest

neighbors (Fig. 22) join together to form a “school” of fish that fill 3-space.

(a) (b)

(c) (d)

Figure 19: A 2½D bird tile: (a) Escher’s sketch 127 provides the basic contour;
(b) interior vertices and constrained edges are added to provide control points for
editing the height field; (c) the chosen offset; and (d) the edited height field.

30

(a) (b)

Figure 20: A 2½D offset tiling: (a) displaying the laterally offset layer that lies
below the tile; and (b) manufactured tiles.

Figure 21: A 3D tiling based on the rhombic dodecahedron lattice: (a) an initial
prototype that uses Bézier patches for the faces; (b) creating similar Bézier patch
control points in our 3D editor, along with control points for eye and mouth features;
and (c) the finished tile after free-form editing.

8 Conclusions

As part of the development of a 3D Escher-tile editor, we have addressed and over-

come several interesting challenges. In particular, we have implemented a tile editor

that is simultaneously easy to use while offering a fair amount of flexibility in the

design of 2½D Escher-tile surfaces. A generalization of this 2½D “pane” editor

forms the basis for our 3D tile editor, which allows more general deformation of

the surface elements of an arbitrary genus-zero 3D Escher tile. An important side

product of this work is our Java constrained Delaunay triangulation library, which

31

(a)

(b)

(c)

Figure 22: A “school” of 3D fish tiles: (a) nearest neighbors at 50% and 100%
scaling, to demonstrate how they fill 3-space; and (b,c) manufactured tiles.

32

we have released as jmEscher under an open-source license on Google Code.4 We

anticipate that such a library will prove useful for other Java-based interactive mesh-

editing applications.

The move from 2½D to 3D tile design introduces new user interface problems.

When should the application perform Delaunay triangulation and how should a user

specify control points, then manipulate them in 3D using the 2D input of a mouse?

We have addressed these with our pane-based editing workflow and our use of radial

selection axes. We also implemented dual cameras to help reveal features that are

occluded during the editing process due to the symmetry constraints of the tile, and

interactive display of the tile’s nearest neighbors to show how the tiling interlocks.

Finally, we have created a widget for specifying an affine transform, which enables

global editing operations such as elongating the tile or skewing it.

Despite the implementation of specialized user interface features, designing 3D

Escher tiles remains difficult. This is due to the nature of the symmetry contraints

imposed on the surface of the tile, and a lack of existing 3D tessellated artwork to

draw on. With some careful thought and planning, however, we have successfully

produced examples of 2½D and 3D space-filling Escher tilings using these CAD

tools.

References

[1] J. H. Conway, H. Burgiel, and C. Goodman-Strauss. The Symmetries of

Things. A. K. Peters, Wellesley, MA, 2008.

[2] G. Fitzmaurice, J. Matejka, I. Mordatch, A. Khan, and G. Kurtenbach. Safe

3D navigation. In Proceedings of the 2008 Symposium on Interactive 3D

Graphics and Games, pages 7–15, 2008.

4http://code.google.com/p/jmescher

33

[3] S. Fortune. A sweepline algorithm for Voronoı̈ diagrams. Algorithmica,

2(2):153–174, 1987.

[4] S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computational

geometry. In Proceedings of the Ninth Annual Symposium on Computational

Geometry, pages 163–172. Association for Computing Machinery, 1993.

[5] B. Grünbaum and G. C. Shephard. Tilings and Patterns. W. H. Freeman and

Co., New York, 1986.

[6] L. J. Guibas and J. Stolfi. Primitives for the manipulation of general sub-

divisions and the computation of Voronoı̈ diagrams. ACM Transactions on

Graphics, 4(2):74–123, 1985.

[7] D. E. Joice. Hyperbolic tessellations. http://aleph0.clarku.edu/

˜djoyce/poincare/PoincareApplet.html.

[8] T. C. Kao and D. M. Mount. Incremental construction and dynamic main-

tenance of constrained Delaunay triangulations. In Proceedings of the 4th

Canadian Conference on Computational Geometry, pages 170–175, 1992.

[9] C. S. Kaplan and D. H. Salesin. Escherization. In Proceedings of the 27th

Annual Conference on Computer Graphics and Interactive Techniques, pages

499–510, 2000.

[10] C. L. Lawson. Software for C1 surface interpolation. In J. Rice, editor, Math-

ematical Software III, New York, USA, 1977. Academic Press.

[11] D. Schattschneider. Computer software for tiling. http://www.geom.

uiuc.edu/software/tilings/TilingSoftware.html.

[12] D. Schattschneider. M. C. Escher: Visions of Symmetry. W. H. Freeman and

Co., New York, 1990.

34

[13] R. Seidel. A simple and fast incremental randomized algorithm for computing

trapezoidal decompositions and for triangulating polygons. Computational

Geometry: Theory and Applications, 1:51–64, 1991.

[14] C. H. Séquin. Patterns on the Klein quartic. In Bridges Conference, pages

245–254, London, August 4–9 2006.

[15] C. H. Séquin. Intricate isohedral tilings of 3D Euclidean space. In Bridges

Conference, pages 139–148, Leeuwarden, The Netherlands, July 24–28 2008.

[16] M. I. Shamos and D. Hoey. Closest-point problems. In 16th Annual Sym-

posium on Foundations of Computer Science, pages 151–162, Berkeley, CA,

October 1975. IEEE Computer Society Press.

[17] J. R. Shewchuk. Triangle: Engineering a 2D quality mesh generator and De-

launay triangulator. In M. C. Lin and D. Manocha, editors, Applied Computa-

tional Geometry: Towards Geometric Engineering, pages 203–222, 1996.

[18] J. R. Shewchuk. Adaptive precision floating-point arithmetic and fast robust

geometric predicates. Discrete and Computational Geometry, 18:305–363,

1997.

[19] J. R. Shewchuk. Lecture notes on Delaunay mesh generation. Computer

Science Division, University of California at Berkeley, 1999.

[20] J. R. Shewchuk. Constrained Delaunay tetrahedralizations and provably good

boundary recovery. In Eleventh International Meshing Roundtable, pages

193–204, 2002.

[21] Y. Shon. Escher tiling on the torus. CS285 course project, U.C. Berkeley,

Berkeley, CA, May 2002.

35

[22] R. Sibson. Locally equiangular triangulations. The Computer Journal,

21(3):243–245, 1978.

[23] J. Smith. SLIDE: Educational rendering system for 3D interactive dynamic

environments. Master’s thesis, U.C. Berkeley, Berkeley, CA, May 2003.

[24] J. Weeks. Kaleidotile. http://www.geometrygames.org/KaleidoTile.

[25] J. Yen and C. H. Séquin. Escher sphere construction kit. In Interactive 3D

Graphics Symposium, pages 95–98, March 19–21 2001.

36

