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Summary

In this report, we describe, justify and assess the quality of our design

for a 3D scanner using Microsoft Kinect.

A 3D model of an object can be obtained by taking both color and

depth images from different viewpoints. We developed a streamline

and a novel combination algorithm for this task. In the process, we

had to solve problems involving noise, miss-alignment between color

and depth, combination of different viewpoints and meshing. The

final mesh can be converted to a format that can be fed into the

RepRap 3D printer.

We provide justifications for some of our major design choices such

as meshing methods, combination, alignment. And we also assess the

quality of our final design with respect to the revised requirements

and find that the final design satisfies all our original requirements.

Appendix A provides details of our combination algorithm, appendix

chap:meshsoft provides an overview of software that take pointclouds

to meshes, and appendix C provides an overview on the alignment

procedure dealing with color/depth mismatch.

We thank Orbis Mutual Funds for sponsoring this course and Prof.

Jason Foster for his enthusiasm and helpful suggestions throughout

this course.

Our code is hosted at http://code.google.com/p/kinnectproj/.

http://code.google.com/p/kinnectproj/
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Chapter 1

The Design

1.1 Overview of the design

The design can be divided into a few main parts, corresponding to each section

in this chapter. A basic description is given here, with more details to follow in

the respective chapters. See figure 1.2 for a more detailed flowchart.

Raw Data Denoise Alignment Point Cloud

Cloud to Mesh3D applications Combine

Figure 1.1: simple overview of this design, a more detailed flowchart is on figure
1.2.

First, images are taken from different viewpoints of some object. The sensor

image first goes through a few preprocessing steps so it has less noise than raw

sensor inputs. The denoised images then go through an alignment procedure

which aligns depth images with color images. The aligned image gets converted

to a point cloud in world-coordinates. Point clouds from adjacent viewpoints are

1



combined pairwise into a single point cloud. And all point clouds eventually get

combined together to form a single point cloud model for the whole object. Point

cloud can be converted to a mesh by sampling and adding edges as well as faces.

Lastly, the RepRap host software can take the mesh and print the object scanned.
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Figure 1.2: Flowchart overview of this design
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1.2 Preprocessing steps

Raw depth input from the sensor is very noisy (See figure 1.3). However, because

the structured light used to get depth image is randomly projected, noise in each

depth frame is different from another. It is therefore possible to take advantage

of multiple captures and using all those information to denoise the image.

We take the following approach called weighted robust averaging. If the sensor

returns black, meaning the depth is unknown, then the value is not averaged into

the final image; otherwise, the final depth value is the average of several frames.

To be more precise, let d1, d2, ..., d9 ∈ R640×480 be 9 consecutive frames. Let

W 1,W 2, ...,W 9 ∈ R640×480 be the corresponding weight images. So W k
ij = 0 if

dkij = NoReading and W k
ij = 1 otherwise. Define� as the pixel-wise multiplication

operations. Then the final output D is:

D =

∑9
i=0W

i � di∑9
i=0W

i

Where the division is also pixel-wise.

Figure 1.3: The sensor input. left image: sensor input before robust averaging
right image: after robust averaging

4



Figure 1.4: Miss-aligned image. The red arrows are miss-aligned by a large
amount on the color and depth images [1].

1.3 Alignment

1.3.1 The problem

This problem is due to the way the Kinect sensors works. Kinect uses different

camera at different locations for color and depth. Furthermore, the infrared laser

projector is at yet a different location from depth, and color cameras. So miss-

alignment is to be expected. See figure 1.4 for a demonstration of this problem

[1].

1.3.2 The solution

Since we would like to build a 3D colored model, we have to solve this problem.

The major objectives of this component are two folds:

• Take a depth image and construct the corresponding 3D scenery in a Carte-

sian coordinate system. The coordinates are in meters.

• Find the mapping between a pixel in the depth image with another pixel

in the color image.

The solution to those two problems are well-studied within the Kinect com-

munity, and a solution used in this project is outlined in C with greater detail.

5



1.4 The point cloud

The input from the Kinect is a 2D array of depth values and color measures,

but the output PLY file format as well as the combine algorithms in the next

section works on point clouds. So it is necessary to convert the 2D arrays to a

point cloud form. The conversion is done in the constructor of the pointcloud

class. In essence, it simply goes over the 2-D array point by point and applies the

alignment algorithm mentioned in previous section. The code is optimized for

performance by using matrix operations instead of loops, so it imposes no over-

head for the program. After conversion, the data are stored into two lists: one for

vertex coordinates and another for its color. The two lists share the same index.

The reason for separating the coordinates and color is because the combination

algorithms only need to use the coordinate values. This implementation makes

the list more manipulable.

Other than the constructor, three more methods are defined for this class:

addition, clipping, and PLY output. The addition operation is overloaded to

concatenate two objects together, which is done by concatenating all internal

matrices. A clipping method is defined to cut off extraneous points around the

object. The input variables defines the 6 planes that forms a cube, and the

method will search in the point cloud and delete all points that are outside the

cube. The code is written so that clipping on one side a time is also possible. The

PLY output method follows the PLY file format standard by first printing out

the headers and then a list of all points in the point cloud. The coordinates are

scaled 1000 times when output, because the internal unit used in this project is

meter, while the RepRap software used in 3D printing assumes all coordinates in

millimeters ([2]). The PLY format specification is unit-less (any unit can be used

for the coordinates) so this scaling will not affect the portability of the outputted

PLY file.

1.5 Combination step

Once we have a bunch of point clouds, we can compare them pairwise and extract

the transformation between them. We extract the rotation matrix R ∈ R3×3 and

6



the translation vector t ∈ R3 from each pair of adjacent point clouds. The detailed

algorithm is described in A, which is based on [3] and [4].

After all these transformations are extracted, each point cloud is modified

by its respective transformation, and all point clouds are combined into a single

point cloud in the world coordinate.

The combination algorithm works by simulated annealing on the variance σ2

as EM steps are taken. With bigger variance, combination algorithm looks for

rough matches, and with smaller variance, finer matches. An uniform component

is also added to the Gaussian mixture in [3] to deal with outliers. The process

stops when 20% of the data are explained by the uniform component. For more

details on this algorithm we developed, see A. We also tried a Bayesian model for

this task, also described in A, which unfortunately does not meet performance

standards using Markov Chain Monte Carlo for inference.

There is one last hack used for combination. Because we do pairwise combi-

nation, errors accumulates so the last frame does not necessarily wrap back to

the first frame. So we introduce an ad-hoc algorithm forcing all transformation

matrices to multiply to identity. We use an iterative procedure.

P = R1R2...Rn

We would like to modify each Ri by a small amount, to make P = I. This

can be done using the following iterative procedure, for each i from 1 to n:

1. Set Pi = R′−1i−1R
′−1
i−2...R

′−1
1 and Qi = RiRi+1...Rn

2. Set the correction term Di = Q−1i Pi = I + ∆. D should equal to I if no

error accumulation, so ∆ represent the error of how far from I we are.

3. Take the nth root: C = D1/n ≈ I + ∆/n

4. Set R′i = CRi

5. Multiply by R′−1i on both sides of the equation, and repeat.

Upon each iteration, the product P becomes more like identity.

7



1.6 Mesh

Existing 3D applications often support 3D models in mesh format. We use a

third-party software MeshLab to convert a point cloud model to a triangular

mesh model.

We first subsample the point cloud using the Poisson Sampling algorithm.

This process forces all vertices to be uniformly distributed, while also eliminating

the noisy data points. Next, we apply the Poisson Surface Construction operation

to construct the 3D mesh. It is worth noting that the resulting mesh does not

include color information at this point. In the final step, we run the Vertex

Attribute Transfer operation to transfer the color information from the original

point cloud onto the new mesh model. The transfer algorithm uses a simple

closest point heuristic to match the points between the two models. Moreover,

MeshLab also allows users to export all the operations described above into a

single script file (.mlx). The script can be invoked using a shell script adhere to

the specifications of MeshLabServer [5].

See B for a detailed comparison between alternative meshing softwares.

1.7 RepRap

Although RepRap indicated PLY as a recommended file format on its official

site ([6]), the actual software can only read STL file and RepRap-specific (none-

portable) RFO file. The STL must be in binary form (ASCII format will not

load properly) and has unit of millimeter ([2]). The PLY file is already in unit of

millimeter, so the only thing left to do is converting PLY format to STL (MeshLab

is chosen to do this job simply because previous steps used it). It is important to

note that STL does not support color, the color information is lost (the RepRap

printer cannot print color anyways).

After the file has been converted to STL format, it can be loaded into the

RepRap host program and used to generate the 3D object in the machine! See

[7] for how to use RepRap host program to print parts. The printing is time

consuming, for example, printing a toy bear requires about 11 hours.

8



1.8 Accessing our code, replicating the results

First, you would need the Mercurial source control system to access the up-to-

date code. The code is hosted at http://code.google.com/p/kinnectproj/.

A few original dataset and results can be found in the Downloads section.

If you would like to become a contributor, email one of us. Our email can be

found in this project page.

9
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Chapter 2

Justifications

2.1 Using Python as the programming language

2.1.1 Expressiveness

The process shown in the flowchart is quite complicated, and most steps in the

process are not performance intensive. Therefore, we would like to be able to work

in an environment where we can rapidly prototype both known algorithms and

our ideas. Python is known to be much more expressive than other alternatives.

2.1.2 Interactivity

Since Python is an interpreted language, we are able to run our programs inter-

actively, with the freedom of making modifications while running. This was a

very helpful and commonly used technique during the design process. A common

scenario goes like this:

• Part A of our program finished running for the first time

• We get to Part B of this program that was never executed before

• Part B has a bug in it

• We fix the bug and continue

10



This would not be possible with compiled language unless we save all our

intermediates results in files, which introduces considerable overhead.

2.1.3 Numerical Package

Good OpenSource numerical and plotting packages like NumPy, SciPy and mat-

plotlib are avalable for the Python language. This project involves tons of nu-

merical computations.

2.1.4 Extensibility to GPU

If our core code are written in Python, we can easily substitute the NumPy

package used by GNumPy. The code can then be ran on a GPU, which offers

a speed improvement up to 30 times. GNumPy [8] is based on CUDAmat [9],

which is in turn based on CUDA.

2.1.5 Familiarity, OpenSource and availability of support

Finally, there are possibly other languages that are expressive and have nice

numerical packages such as MATLAB, C++, Java etc. Python is separated by

the following important attributes.

• people in this team are familiar with Python

• Python is OpenSource and has a global standard

• many people use the language so it is widely supported

2.2 Using OpenKinect as driver

In the current market, there are two primary Kinect open source drivers: libfreenect

and OpenNI. In order to choose the driver that best suits our needs, here is a list

of requirements that the chosen Kinect driver must support:

• Python wrapper

11



• Control the tilting motor

• RGB data callback

• Depth data callback

• Run on Linux

Both drivers meet the requirements listed above, however at the time of our

initial research, python wrapper was not available for openni. In terms of func-

tionalities, OpenNI provides a rich set of middleware features such as full body

analysis, gesture detection and hand point analysis that are outside of the scope

of this project. Although, it can be helpful to have a rich set of external libraries,

but it also affects the portability of the final software. Overall, libfreenect was

chosen over OpenNI, for its simple design and its support for Python [10; 11].

2.3 Meshing

The general problem of converting a point cloud to a mesh model is thoroughly

studied in the field of computer graphics [12] [13], as there is a number of third-

party software available that we could use to perform this operation. In order

to choose which application is the most suitable for this project, here are the

requirements and criteria that we used for our selection process:

• Performance: It is critical that the final mesh closely resemble to the input

point cloud in terms of physical dimensions and also color coating. More-

over, there are some noisy data from the point cloud such as layer overlaps

that the software should adjust and ignore.

• Time: The whole process time should be fast and comparable with the

timing of the other components. We dont want this step to be the bottleneck

of the overall flow.

• Cost: The whole aim of this project is to make a cheap 3D scanner. Hence,

if free open source software can handle the job reasonably well, we dont

want to waste money on commercial software.

12



• Automation: The whole process should be automated. Ideally, we want to

write a shell script to execute the whole operation. The script specifies the

input file in a point cloud form and the output should a 3D model file in

the corresponding mesh form.

• Platform: So far, all the implementations are done on Ubuntu Linux ma-

chines. Hence, Linux based programs are preferred.

See B for a detailed comparison between different meshing softwares. Mesh-

Lab was chosen as the best fit for this project.

2.4 Using the PLY file format

The RepRap official website provided three recommended file formats for repre-

senting a 3D object: STL, PLY, and COLLADA [6].

The STL (StereoLithography) format is a commonly used file format for 3D

prototyping. A STL file is simply a list of triangles that the object is composed

of. No colour or texture information is stored. [14].

The PLY polygon file format is a simple portable file format between different

design tools. It breaks the 3D object into multiple polygons, and stored the

information of each polygon in a list. On top of the vertices and surface normal

vectors that are supported by STL format, PLY format can also store colour,

transparency, texture information, and even user customized variables.

The COLLADA file format is intended for lossless information conversion

between different 3D design software. It defines a XML schema for all object

attributes across multiple 3D design programs and a COLLADA file is simply a

XML file that follows the schema. It supports much more properties that a PLY

file does, such as curves and animation [15].

All three file formats are supported by MeshLab and other major graphic

processing programs, so they are all portable formats. Because a triangle is

basically a 3-edge polygon, the PLY format is a superset of STL format. PLY

can store all required information specified in the requirement, while STL is

missing the color information. As a result, PLY format is preferred instead of

STL. The COLLADA format is much more complicated than PLY but the extra

13



information it supports is beyond the scope of this project. Since PLY already

provided all required information, there is no need to use the COLLADA format

which will make the programming work much harder to implement. As a result,

the PLY file format was chosen as the official output format [16].

2.5 Combination Method

A large part of the combination algorithm is based on published works [3; 4].

After making several important modifications inspired by [4] and based on [3],

the algorithm generally works well. Runtime can still be quite long, and scales

quadratically with the number of points sampled. The final algorithm takes be-

tween 10 minutes (for 1000 points sampled) and 5 hours (for 5000 points sampled)

on a i7 2.5GHz computer. This amount of time is negligible compared to the time

needed to print the object (11 hours on RepRap). On the other hand, the al-

gorithm is highly parallelizable, and can almost be made n times faster if ran

on n processors. The exact algorithm published also had similar performance

characteristics.

We also tried a Bayesian model using Markov Chain Monte Carlo for inference,

the performance is even worse. See Appendix A for more information.
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Chapter 3

Assessments

In this section, we will use the set of requirements and criteria outlined in the

Revised Requirements document as the metrics to evaluate the quality of our

project from different aspects.

3.1 Assessment against requirements

3.1.1 The software must be compatible with any Kinect

device

The constants described in section Alignment works pretty well with all three

Kinect devices that we have purchased for this project. Moreover, there is also

a way to derive those constants for an individual Kinect to optimize the perfor-

mance [17].

3.1.2 Produce a 360 degrees 3D model

The final output 3D model delivers a 360 degrees view. Moreover, the merging

heuristic makes no explicit assumptions about sequential frames. Hence, we can

also take two separate frames for both the top and the bottom of the scanning

object and have them merged to the final model as well.

15



3.1.3 Display only the scanning object

In order to clip unwanted scenes from the object, we construct a magic cube based

on a set of parameters. All surroundings outside of the cube are ignored. This

means that the user has to estimate both the size of the object and its distance

away from Kinect before conducting the clipping operation. The parameters can

be reused if all scanning objects are of similar size and the distance between

Kinect and the object is relatively constant.

3.1.4 Output to standard 3D format

The final output file is in the PLY format, which is a standard 3D format designed

to store 3D data from scanners [15].

3.2 Assessment against Criteria

3.2.1 Technical Criteria

3.2.1.1 Filter input noise

To eliminate the amount of noise, a number of measures have been taking. First,

we use the robust weighted averaging method to achieve a more stable depth

image. In addition, the clipping process removes the surrounding from the real

object. The merging heuristics also assume a certain amount of outliers (20%).

Finally, the Poisson Sampling algorithm enforces an even vertex distribution

throughout the whole model. Overall, as illustrated in the figures shown pre-

viously, the final output model does an excellent job in regards to noise filter.

Color mapping: In general, the color mapping error is relatively small, within a

few pixels. The main bottleneck for this criterion is Kinect itself, because the

color images only have a resolution of 640x480 pixels. At the moment, the color

coating can be blurry on 3D models. However, we expect the color quality to be

improved if more data points are provided from Kinect. Computation time: The

major bottleneck in terms of computation time is the merge component. The

algorithm has a complexity of N2. If we use a sample size of 1000 points, this

translates to a running time of roughly 10 minutes. Depending on the complexity
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of the object, 1000 sample points may be enough for simple objects such a box,

but not sufficient for more sophisticated objects such as a real person. Hence,

the computation time is acceptable for the purpose of 3D printing. However, the

speed is insufficient for fast response applications such as 3D video streaming.

3.2.1.2 Adhere to software design pattern

The entire program is comprised of python code, shell scripts, and MeshLab

scripts. During the implementation stage, we tried our best to comment all

changes and also avoid hardcoded programs to deliver a generic implementation.

Moreover, there is an online code repository that all team members share [18].

This allows all members to synchronize to the latest work and also provides a

safety mechanism to backup all code onto the cloud server.

3.2.1.3 The output format to be supported by other existing applica-

tions

The output model is of type PLY, which is supported by a variety of 3D appli-

cations such as Maya and RepRap.

3.2.1.4 Relative accuracy

The relative accuracy between the real object and its 3D model is within a few

centimeters. This variation is mainly due to rounding errors when performing

the point cloud to mesh conversion.

3.2.1.5 Handle complex objects

The objects tested so far are a drawer, a soy sauce bottle, a box, a bear, and a real

person. The outcome is relatively accurate for the first 4 objects. The algorithm

performs well against both convex and concave objects. The soy sauce bottle

had a hole around the handle; this void space was also reflected in the output

model. In the case of a real person, although the general 3D shape resembled

to the actual person, the color mapping was poorly constructed. However, since

the person was rotating himself in order to capture image frames from all 360

17



degrees, the input data are less accurate than the other static objects. Overall,

we believe the scanner is fairly accurate against household items.

3.2.1.6 Scan range

The software doesnt impose further physical restrictions in terms of the scanning

range; the range fully depends on the camera limitations on Kinect.

3.2.2 Application Criteria

The software should not be restricted to a specific application. If a particular

application is very appealing, but requires a hardware upgrade from the current

Kinect, we would still like to demonstrate its feasibility although the application

may not necessarily be practical at the present moment. Below are three possible

applications that we purposed in the initial requirement document:

3.2.2.1 3D printing

3D printing is a time consuming application, for the computation time is non-

critical in this case. However, the printing job may require a high relative accuracy

with respect to the real object. Depending on the size of the object, a precision

in the order of centimeters may or may not fulfill the accuracy requirement.

3.2.2.2 3D Animation

This application requires low relative accuracy and no specific constraint for the

computation time. It is a good match to the current state of the project.

3.2.2.3 3D live stream

While accuracy is not very important in live streaming, the output has to be de-

livered instantaneously. The current running time takes over 10 minutes, however

it is possible to improve the performance dramatically with the help of 100+ core

GPUs.
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3.2.3 Economic Criteria

The major objective of this project is to build a 3D scanner using Kinect as cheap

as possible. A brand new Kinect costs $149.99 at any BestBuy local store [19].

Initially, we planned to build a rotation apparatus, such that the scanning object

can be placed on it to rotate around. However, the merging algorithm doesnt

assume all captured frames to have the same rotational axis; hence there is no

need for such apparatus. Moreover, both OpenKinect and MeshLab are open

sources project that are freely available to the general public. As result, the total

cost of building our Kinect 3D scanner is equivalent to the cost of Kinect itself.
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Appendix A

Combination Algorithm

A.1 Introduction

Readers are assumed to understand basic mixture models and EM algorithm in

this appendix. See relevant chapters in Bishop’s text [20].

A.1.1 The problem

We would like to reconstruct 3D models of objects from images and depth maps

of the object from different viewpoints. The input data is shown in figure A.1.

These inputs are then converted to a point cloud. A point cloud P is a set

of points P = {pi}Mi=0. Where M is the number of points in this cloud, and

pi = {x, y, z, a}, contains the spatial coordinates of a point and some attributes

a of this point such as its color and other properties.

A point cloud corresponding to figure A.1, with colors is shown in figure A.2.

We would like to build a full 3d reconstruction of an object from such point

clouds taken in different viewpoints. Now the problem is combining these point

clouds - with each point cloud having considerate overlap with its neighboring

point clouds. However, each pair of adjacent point clouds is related by some

unknown transformation. We require this transformation to be a rotation, plus

translation. The goal is to find the rotation matrix R ∈3 R3 and translation

vector t ∈ R3.
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Figure A.1: The sensor input. top image: depth map, whiter color means farther
away, pure black means the value is unknown due to sensor limitations (shadow of
projected light used for depth detection. The Kinect sensor uses the structured
light method for depth capturing.). bottom image: the corresponding RGB
map
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Figure A.2: Point clouds with color, seen from two different viewpoints of the
above capture. This is obtained with some alignment and other processing steps,
from the data shown in figure A.1. But the process is straight-forward, just takes
some work.
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A.1.2 The Methods

We quickly outline our approaches here, with a lot more details in the sections

to follow. The problem can be formulated somewhat probabilistically, We do

realize that the formulation is not the most natural. Also note that colors and

other attributes are completely ignored, so we only deal with shapes here. One

approach is EM, and the other is MCMC on a Bayesian model.

Basically, we could treat each point in some point cloud as a mixture compo-

nent in a Gaussian mixture model (GMM) with mean equal to location of that

point, and some variance σ2. Then we can try to maximize the probability of this

GMM generating some adjacent point cloud as data. Notice each point cloud is

rigid, so the mean and variance of a GMM cannot be changed freely as in the

regular EM method for GMMs. Instead, we rotate, translate all means of each

mixture component by a specific rotation matrix R ∈3 R3 and translation vector

t ∈ R3. To a first approximation, if we can maximize the likelihood, with respect

to R and t, of generating an adjacent point cloud, then the R and t which maxi-

mizes the likelihood can be treated as the solution. Similarly, a vague prior can

also be added to R and t since the object might be rotated in a somewhat regular

way, and we may incorporate our prior belief into this framework. Slightly more

complexity arises from having to deal with systematic outliers, since adjacent

point clouds are not completely the same, but just have considerate overlap (say

80% overlap). Note that outliers here include both measurement errors, as well

as the systematic outliers due to non-overlapping parts.

A.2 A probabilistic formulation

A.2.1 Basic formulation

Given two point clouds, P andQ, where P = {p1, p2, ..., pM} andQ = {q1, q2, ..., qN}.
Each point in the point clouds, pi = {xi, yi, zi, a}, qi = {x′i, y′i, z′i, a} where the

attributes a is completely ignored in what to follow except when rendering the

final images (so color information. inside the attributes vector, is NOT used at

all, although color does contain a lot of potential information). From now on, we

drop the attributes term and treat elements in the point cloud as 3d vectors.
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we treat points in point cloud P as data, and points in point cloud Q as

mixture components.

Let Q′ = {q′1, q′2, ..., q′N} where q′i = Rqi + t. Now the task is to find rotation

matrix R ∈3 R3 and translation vector t ∈ R3, so that the likelihood of generat-

ing the data points P under Gaussian mixture components with means Q′ and

variance σ2. It is sensible for this task to use the same variance in all directions

and for all components, or at least use the same specific prior of variance for all

components. we will also use the same mixing proportions. Think of it as an

“cloud” of uniform thickness so that its shape should match another cloud. The

variance should not vary significantly as in usual GMMs.

The basic framework is presented in the coherent point drift paper [4], and an

EM algorithm specific for this application is presented in [3]. The EM algorithm

we used also does annealing and accounts for outliers, which are not in the second

paper. But we refer to these two papers without providing excessive details on

the EM approach, except a few additions we made that are not mentioned in the

paper.

A.2.2 Our additions to EM

GMM is very sensitive to outliers, especially with small variance. So it is sensible

to add a single component with large variance, or just a uniform component to

deal with all these outliers.

Simulated annealing is also a sensible addition to the EM algorithm. σ can

be annealed, so it matches big features first and focus on precision later on. For

the EM approach, we anneal σ until 20% of the data is explained by the outlier

component and 80% are explained by the Gaussian components.

A.3 The EM approach

The EM approach can be summarized as follows. We refer readers to [3] and [4]

for more details.

Repeat until σ < σstop or when 20% of data are explained by the uniform

component
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• E-step: Evaluate the M ×N responsibility matrix

• M-step:Use the responsibility matrix to evaluate R and t. Force R to have

unit determinant by singular value decomposition

• σ = σ × α

Where α = 0.9 ∼ 0.98 is the annealing rate.

A.4 Some experiments

A.4.1 A 2D experiment first

we first generate artificial data with unknown R and t. The algorithm was able

to recover R and t to within 1% error in component magnitudes. The true transla-

tion is t = [1, 0.5, 0.2], and the recovered translation is t = [1.00466532, 0.50431795, 0.20684235].

Performance on other fake datasets are similar. Some samples are shown in fig-

ures A.3 and A.4 with an entire “arm” of outliers. Other experiments yielded

similar results.
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Figure A.3: Matching cubic curves. Green scatter shows the original mixing
components location. Red scatter shows the data location. Blue scatter shows
the new mixing component location
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Figure A.4: Matching cubic curves. Green scatter shows the original mixing
components location. Red scatter shows the data location. Blue scatter shows
the new mixing component location
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A.4.2 3D reconstruction

Then we sample points and apply this method to the 3D soysauce dataset. The

combination result is shown in figure A.5.

Figure A.5: Matching real pointclouds. Left is the combined pointcloud, with
many visible outliers. Middle is the topview. Right is after meshing the point-
clouds

A.5 The Bayesian approach

Readers are assumed to have some background in Bayesian inference and MCMC

methods to understand this section.

The application here may not be the most natural application for MCMC

methods, since a point estimate is required in the end and it is sensible for this

estimate to be the mode instead of the posterior average. So simple MAP actually

does seem somewhat more natural, but we would like to deal with outliers in a

systematic way, and use prior information effectively. These complications make

the model intractable so I use MCMC. I am also interested in comparing the

performance of MCMC vs. EM in this task. The EM algorithm presented in [3]

did not work well at all, while my customized EM method with annealing seems

rather inefficient.
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A.5.1 The model

Recall we have two pointclouds, P and Q, where P = {p1, p2, ..., pM} and Q =

{q1, q2, ..., qN}. Set Q′ = {q′1, q′2, ..., q′N} where q′i = Rqi+t. We treat P as the data

pointcloud, and Q as the mixture component pointcloud. Mixing proportions

under the outliers GMM are constants, and sums to a total of Π = (m+a)/(M +

a + b) and Π/M each, where m =
∑

i oi a, b are constants for the beta prior for

outlier indicators. Once a point is labeled outlier then it comes from an uniform

component, with mixing proportion 1−Π. Alternatively, we may also use a GMM

with larger variance to allow for softer assignments.

So, the simpler model (model A) is as follows:

pi ∼

{
GMM(Q′, σ2

0) : oi = 0

Uniform(−l, l) : oi = 1

oi|θ ∼ Bernoulli(θ)

θ ∼ Beta(a = 4, b = 16)

log(σ0) ∼ N(−4, 0.1)

R ∼ Uniform(rotationmatrices)

t ∼ Uniform(−l, l).

The slightly more complicated version is:

pi ∼

{
GMM(Q′, σ2

0) : oi = 1

GMM(Q′, σ2
1) : oi = 0

oi|θ ∼ Bernoulli(θ)

θ ∼ Beta(a = 4, b = 16)

log(σ0) ∼ N(−4, 0.1)

log(σ1) ∼ N(−2, 1)

R ∼ N(rotationmatrices, R0, σR)

t ∼ Uniform(t0, σt).

29



Problem domain knowledge is built into the prior. In this case, the object we

are interested in have roughly a radius of decimeters. As a result, E[log(σ1)] = −2.

The feature size that should be matched are roughly centimeters, or even sub-

centimeter, so E[log(σ0)] = −4 with small variance. These values come from my

beliefs, but arbitrarily specifying the prior means of σ0, σ1 in log domain is much

better than arbitrarily specifying σ0, σ1 themselves. We use Uniform(−l, l) to

mean an uniform distribution that has range −l to l in all dimensions.

In the simple case, R and t, can be assumed to be have uniform distributions

over its domain. Since R is a rotation matrix, it really only has 3 degrees of

freedom, instead of 9, which is its dimension. we do random walk first, to get

R′ = R+ e and then do SVD to get R = UCV , and finally get the new R as UV .

For the actual application, we might have a rather good idea of what R and t

might be, although we do not know them exactly, and this can be incorporated

into the prior for R and t. This is another attraction of the Bayesian approach, as

such information is rather important and cannot be naturally incorporated into

the EM algorithm.

A.5.2 The updates

So the state space consists of R, t, σ0, σ1, o1, ..., oM with θ integrated out.

We use Metropolis-Hasting updates for this task. Specifically, we just use

Metropolis updates for R, t, σ0 and σ1 with a normally distributed step. On the

other hand, the outlier indicator variables could benefit from some heuristics.

Since the so-called outliers here are actually systematic, it is conceivable to pro-

pose according to neighboring components as well as fit. We will start with just

proposing the opposite value and then look into the more complicated proposal

method later. The probability of proposing a datapoint to be outlier can be the

fraction of its nearest r neighbors that are also outliers.

Because this is a mixture model. There is also significant potential for com-

putation savings in updating the outlier indicators. Only the change in log likeli-

hood of element i needs to be evaluated without looking at all the others, which

remain unchanged. The sum of the mixing proportions from inlier and outlier

components then need to be saved to get this computation saving.
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We only use the simple model above, and proposing opposite values for outlier

indicators in this project.

31



Appendix B

Comparison between different

meshing softwares

We compared 3 different meshing softwares, and conclude Meshlab is the best.

B.1 CloudMesh-0.1x

CloudMesh is an open source software that is readily available on source forge

[21]. We were able to download the full source code. Unfortunately, the program

was developed using Visual Studio, this means that the application can only run

natively on Windows machines. Moreover, the program only supports the .off file

format, which only includes 3D vertices with no colors. Lastly, the performance is

very weak against noisy point clouds. As shown in figure B.1, the exterior surface

of the soy sauce bottle is very rough. In addition, there should be an empty gap

around the handle; however the gap is filled up with undesired meshes.

B.2 VRMesh v6.0 Studio

VRMesh is a commercial software that specializes in point cloud to mesh con-

version. We were able to test the demo version of the software, which includes a

set of useful features. The overall performance is impressive; the operation time

ranges between few seconds to a couple minutes. However, the single-user license
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Figure B.1: The mesh model of the soy sauce bottle using CloudMesh.

costs $2995 [22], which is outside of our budget range.

B.3 Meshlab v1.3.0

MeshLab is an open source, portable, and extensible system for the processing

and editing of unstructured 3D triangular meshes [23]. The software supports

all major OS platforms: Linux, Windows and MacOSX. The source code can

be readily downloaded on its source forge website. The interface is quite simple

to use, as there is a step-by-step instruction guide that provide all the details

to convert a point cloud to a mesh model [24]. Depending on the size of the

point cloud, the operation time varies between a few seconds to a minute. The

conversion is fairly accurate, as illustrated in figure B.2. We first subsample the

point cloud using the Poisson Sampling algorithm. This process forces all vertices

to be uniformly distributed, while also eliminating the noisy data points. Next,

we apply the Poisson Surface Construction operation to construct the 3D mesh.
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It is worth noting that the resulting mesh does not include color information at

this point. In the final step, we run the Vertex Attribute Transfer operation to

transfer the color information from the original point cloud onto the new mesh

model. The transfer algorithm uses a simple closest point heuristic to match the

points between the two models.

Figure B.2: Output results using MeshLab

Moreover, MeshLab also allows users to export all the operations described

above into a single script file (.mlx). The script can be invoked using a shell script

adhere to the specifications of MeshLabServer [10].

Overall, we believe MeshLab is the perfect software to use for this project, as

it fulfills all the requirements that we discussed.
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Appendix C

Alignment Methods

The major objectives of this component are two folds:

• Take a depth image and construct the corresponding 3D scenery in a Carte-

sian coordinate system. The coordinates are in meters.

• Find the mapping between a pixel in the depth image with another pixel

in the color image.

C.1 Depth coordinates to world coordinates

By default, the depth images are 640x480 pixel arrays with each pixel having a

depth value between 0 and 2047. It is easy to construct a greyscale image of such

array as shown in figure C.1. In the figure, a darker coloured pixel represents a

spot location nearer to the depth camera, while a brighter pixel locates farther

to the camera. Moreover, the black regions are areas that the camera cannot see

given the shooting angle.

Given that in greyscale image, black is defined with a value of 0 and white

is defined with a value of 256 [25], we can see that there is an increasing rela-

tionship between the depth value and the real distance. Indeed, there exists a

linear relationship between the depth measurement and its inverse distance to

the camera.

The data points were collected experimentally [26] and are showcased in C.2.

It is worth noting all experimental data discussed in this section were not collected
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Figure C.1: Greyscale image of a depth array

by us; however, we did run a series of sample tests. Our findings did match closely

with the claims. Now that we know the z-axis value of our world coordinates. To

find both x-axis and y-axis values, it is just a matter of image projection using

the formula listed below:

P3D. x = ( x d − cx d ) ∗ P3D. z / fx d

P3D. y = ( y d − cy d ) ∗ P3D. z / fy d

P3D. z = depth ( x d , y d )

A point cloud is a set of vertices in a three-dimensional coordinate system. If

we take each pixel on the depth image and convert each of them to its perspective

world coordinate, the point cloud is thus constructed.

C.2 Color and Depth Mapping

At this stage, the point cloud only contains vertices with no color. The next step

is to add RGB values to each of those vertices. In order to do, we must map each

vertex with its corresponding pixel on the color image.
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Figure C.2: Relationship between depth measurements and inverse distances

As illustrated on figure C.4, both the color image and the depth image are

taken simultaneously. We can choose the four corners of the check board as feature

points (marked with red arrows) to analyze the mapping relationship. Contrary to

common sense, the mapping relationship is non-linear. The displacement between

the color camera and the depth camera implies an affine transformation between

the two images in both rotation and translation. Here are the formulas that we

used in our implementation [1]:

P3D ’=R.P3D + T

P2D rgb . x=(P3D ’ . x∗ f x r gb / P3D ’ . z ) + cx rgb

P2D rgb . y=(P3D ’ . y∗ f y r gb / P3D ’ . z ) + cy rgb

R and T represent the rotational and the translational matrices respectively,

while fx rgb, fy rgb, cx rgb and cy rgb are intrinsic values associated with the

Kinect device. Nicolas Burrus, a PhD student in computer vision did significant
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Figure C.3: Constants used for the conversion to world coordinates

Figure C.4: Same checker board on both the depth image and the color image

works to derive those constants. We took the values that he purposed and ran a

number of sample tests with different objects. The formula works genuinely well

with small deviations. Accordingly, we modified some of the values slightly to

introduce a better fitting for our own Kinect.
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