
Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009, pp. 6-20

JGOOSE: A REQUIREMENTS ENGINEERING TOOL TO INTEGRATE I*
ORGANIZATIONAL MODELING WITH USE CASES IN UML

JGOOSE: UNA HERRAMIENTA DE INGENIERÍA DE REQUISITOS PARA LA
INTEGRACIÓN DEL MODELADO ORGANIZACIONAL I* CON EL MODELADO DE

CASOS DE USO EN UML

André Abe Vicente1   Victor F. A. Santander 2,4   Jaelson B. Castro 3   Ivonei Freitas da Silva4

Francisco G. Reyes Matus2

Recibido el 10 de enero de 2007, aceptado el 11 de marzo de 2009
Received: January 10, 2007   Accepted: March 11, 2009

RESUMEN

En los días actuales los sistemas computacionales se caracterizan por su complejidad, dinamismo y gran importancia
estratégica. En este complejo escenario de especificación de software, generar documentación de alta calidad es una difícil
tarea. En general los clientes no saben exactamente lo que desean y muchas veces los requisitos del software no reflejan las
reales necesidades de los clientes y del ambiente organizacional. Es bastante común encontrar requisitos inconsistentes e
incompletos. En este contexto, uno de los grandes desafíos está en la necesidad de integrar los requisitos organizacionales
y funcionales del sistema computacional que será desarrollado. En este trabajo se presenta la herramienta computacional
JGOOSE (Java Goal Into Object Oriented Standard Extension) que permite integrar diagramas de casos de uso en UML
con requisitos organizacionales representados utilizando la técnica i*. Se presenta la utilización de la herramienta en el
caso de estudio de un Sistema de Gestión de Evento Científico.

Palabras clave: Casos de uso, modelado organizacional, soporte computacional.

ABSTRACT

Nowadays Computational Systems are being characterized by their complexity, dynamism and great strategic importance.
In this complex context of software specification, generating high quality documentation is very difficult. Usually, clients are
not sure about their needs and sometimes software requirements do not represent clients and organizational environment
needs. Inconsistent and incomplete requirements are very frequent. One of the challenges to solve this problem is to
integrate organizational and functional requirements of the system to be developed. In this paper the JGOOSE (Java Goal
into Object Oriented Standard Extension) tool used to assist requirement engineers in the development of use cases from
the organizational models represented by i* technique is presented. To validate the tool, it was used and applied to the
Conference Management System case study.

Keywords: Use cases, organizational modeling, computational tool.

1	 Instituto de Ciências Matemáticas e Computação. Universidade de São Paulo (USP). Av. Trabalhador São-carlense, No 400. São Carlos-SP, Brasil.
E-mail: avicente@icmc.usp.br

2	 Universidad de Talca. Facultad de Ingeniería. Curicó,Chile. E-mail: vsantander@utalca.cl, freyes@utalca.cl
3	 Centro de Informática. Universidade Federal de Pernambuco (UFPE). Recife - PE, Brasil. E-mail: jbc@cin.ufpe.br
4	 Universidade Estadual do Oeste do Paraná (UNIOESTE). Cascavel Paraná. Brasil. E-mail: ifreitas@unioeste.br

INTRODUCTION

The detection of most software project problems takes
place on the initial steps of modeling software systems.
These initial steps are called requirements engineering
process (RE) and the main activities of this process can be

defined as elicitation, analysis, negotiation, specification,
management and requirement validation [23].

Understanding the necessity and meeting customers
goals have always been one of the biggest challenges of
Software Engineering. Requirement Engineering focus

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

7Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

on proposing methods, techniques and tools that help
comprehension and requirement registration process that
the software must accommodate. Different from other
software engineering sub-areas, the requirements area
must deal with the knowledge involving interdisciplinary,
social science and cognitive science aspects [13].

The main reason for failures in the RE is the lack of
an adequate organization understanding by software
systems developers, also caused by the frequency that
organizational changes occur, and the changes which can
not be accommodated by existing software systems [1].
During the requirements analysis phase, analysts with
the stakeholders help, need to identify the organizational
goals and the functional and non-functional requirements
associated with the computer system being developed.
Consequently, requirements engineer should examine
and model the stakeholders’ interests, and how they
should be seen or negotiated, by various alternative
organizational systems structures and environments.
However, the production of quality specifications is
relatively difficult.

In this context, it is important to highlight Eric Yu’s
propose [25], which expresses the importance of separating
the early and late requirement elicitation phases. Early
requirement phase activities are typically informal, and
usually describe functional, organizational and non-
functional requirements. This phase emphasizes the
understanding of motivations and reasons that support
system requirements. Late requirement phase activities
are usually focused on the completeness, consistency and
automated verification of requirements.

Framework i*, proposed by Yu [25] allows intention,
relationship and motivation modeling among organizational
members. From these models you can have a better
understand of organizational environment functioning,
human and work relations among the organization
participants. With this information, the computational
requirements solution for the organizational processes
can be better elicited and specified.

However, actually the most used methodologies to
developed computational systems are object oriented
methodologies. Object oriented software have been
developed using UML (Unified Modeling Language) [5]
which is a broad format and well defined to modeling
systems for oriented objects development, providing
viewing patterns mechanisms, specification, development
and software systems documentation.

On the other hand, most modern computational systems
have been developed by using object oriented methodology.
Object oriented software have typically been developed
by using UML, which is a broad, well defined modeling
system for object oriented developments, supplying viewing,
specification, and construction mechanism patterns, and
software system documentation.

The UML generally employs use cases to describe in a
clearly and consistently way what the system should do
through interactions between users and software systems.
Use Cases are responsible for the decision and description
of system functional requirements. However, the success
of the software project depends primarily on a good
understanding of the company`s organization environment
and its processes in terms of objectives, business rules,
tasks, resources and the relationships among its actors. In
the context of requirements engineering, these aspects can
be translated as the system organizational requirements or
initial requirements (early requirements), and the Unified
Modeling Language does not have adequate mechanisms
for modeling these aspects.

In many studies [1, 6, 8, 19-21] the authors argue that
UML support only the capture phase of final requirements.
Even using mechanisms like business use cases, previous
studies state that UML can not show how the system
reaches its desired organizational goals, the motivations to
develop the system, which alternatives are considered and
alternative consequences to the stakeholders. Therefore,
we concluded that we must use another technique like i*
to represent such aspects, which focus is to describe not
only the organizational relationships between the various
organizational actors, but also the understanding of the
reasons involved in the decision process.

Thus this paper proposes integration between i* framework
and the object oriented modeling using the UML modeling
language. This integration process is based on many
researches, among them [1]. These researches not only
support this integration, but propose guidelines for the
use of mapping technology to integrate i* and UML
use cases [20 - 21] or UML class diagrams [8, 18-19].
Moreover, some of these papers propose integration in a
semi-automated way through the implementation of tools
[2, 18] that make this process easier.

This paper briefly presents mapping guidelines proposed
in [19-20], which allow deriving UML use cases from the
organizational models developed with i* framework. In
addition, it’s described a software tool called JGOOSE
(Java Goal into Object Oriented Standard Extension)
which was developed in this research to provide semi-

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

8 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

automatic support of these guidelines. To validate the
software tool, a Conference Management System Case
Study is presented.

The paper is organized as follow: in the section “EARLY
REQUIREMENTS Capture USING I* Technique”,
the use of i* framework to capture the early system
requirements is described. In the next section, an overview
of the proposed mapping of use cases from i* organizational
models is presented, together with guidelines that propitiate
this mapping. In “JGOOSE TOOL” describes the tool
developed to support this mapping and then, a case
study using the tool is presented. Finally, the final paper
considerations and future effort are made.

EARLY REQUIREMENTS Capture USING I*
Technique

The i* framework was developed to support the analysis
process and conceptual modeling, under a strategic
(motivations and reasons) and intentional vision of processes
that involve many participants called Actors. These
Actors depend on one another to reach objectives/goals,
execute tasks and provide resources. Different from other
modeling techniques, which typically describe a process
in terms of activity and flow stages between entities, i*
technique is distinguished for being concerned on the
reasons or motivations that are associates to the behavior
aspects of the process. In general, traditional modeling
techniques allow the description of component system
(actors) in terms of its state, capacity (processes that can
execute) and behavior (how and when the processes are
executed), but they can not express the reasons involved
in the processes (the motivation).

Further than assisting the requirement engineering process
in its initial specification phase, the i* technique can be
applied in other areas [25] such as, business re-engineering
process, analysis of organizational impacts, software
processes modeling, and also for the development of
agent-oriented systems [7, 21].

Two models are considered to describe these areas: the
Strategic Dependency Model (SD) and the Strategic
Rationale (SR) model. The Strategic Dependency Model
is composed of Nodes and links.. Knots represent the
actors in the environment and the links represent the
dependency between the actors. The actor is an entity
that carries an action to fulfill a goal, in the organizational
environment context. Actors on one another to reach
objectives, carry through tasks, and get resources in the
organizational environment. The actor who depends on

any form of another actor is called Depender and the
actor who answers and satisfies the Depender is called of
Dependee. The object or element of dependence between
Depender and Dependee is called of Dependum. Therefore
there will be a relationship of the type Depender →
Dependum → Dependee. The Strategic Rationale Model
is a complementary model to the Strategic Dependency
model. This model allows understanding in a detailed form,
the reasons between each actor and its dependences.

While the Strategic Dependency Model provides an
abstraction level, in which it only models the external
relationships between actors, the Strategic Rationale
Model allows a bigger understanding regarding the
actor’s strategic reasons in relation to the organization
processes and how to express it. The model of Strategic
Reasons assists the Requirements Engineering process,
allowing that process elements and the reasons that ones
express. In the Requirement Engineering, the Strategic
Rationale Model can be used to understand how systems
are related/involved in actors routines of the organization
to generate alternatives, as well as model and support
the reasoning of organizational actors regarding these
alternatives.

While the Strategic Dependency Model provides an
abstraction level, in which it only models the external
relationships between actors, the Strategic Rationale
Model allows a bigger understanding regarding the
actor’s strategic reasons in relation to the organization
processes and how they are expressed. The model of
Strategic Reasons assists the Requirements Engineering
process, allowing the expression of process elements and
the reasons supporting them. In Requirement Engineering,
the Strategic Rationale Model can be used to understand
how systems are related/involved in actors routines of the
organization to generate alternatives, as well as model and
support the reasoning of organizational actors regarding
these alternatives.

Figures 1 and 2 present the use of the i* technique
through the Conference Management System modeling.
This model was introduced in [27], and it was modeled
through the Tropos framework in [22]. The models SD and
SR on figure 1 and 2, respectively, represent the external
dependencies between the organizational actors, as well
as the internal strategic reasons of these actors, in relation
to the involved processes in a conference management
that will use a software called Conference Management
System to administer the article submission process and
publication of proceeding events. Figures 1 and 2 present
a correspondent number for easier reference to these
elements throughout the text.

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

9Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

Several scientific events (conferences, congresses,
symposiums, meeting…) frequently congregate researchers
and practitioner communities of the area, having as
main focus the spreading of work results that involve
topics related to the event, offering activities as lectures,
tutorials, mini-courses and presentation of techno-

scientific articles. Generally, each activity is supervised
by a specialized program committee who is responsible
for the critical selection of work to be presented. In
this manner, we consider this conference management
application domain.

Figure 1.	 Strategic Dependency Model – Conference Management System – Early Architecture Release (Adapted from
[2]).

angela
Nota
editor:

no respondieron si tienen fig. 1 y fig. 2 de mejor calidad

pp. 9 y 10

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

10 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

In figure 1 it can be observed that a conference involves
many individuals. During the submission phase, Authors
(Author (5) actor) submit papers are informed if their
articles were received and a submission identification
number (13) is issued by the system. In the revision
phase, the committee (Chair (3) actor) must deliver to the
article revision contacting potential reviewer (Reviewer
(2) actor) and asking them to revise a number of articles
according to their expertise. Eventually, revisions are
requested and generally they decide on the acceptance or
rejection of the submissions. In the final phase, the Authors
(Author (5) actor) need to be notified of the decisions
and, in case of acceptance of the article, production and
submission of the revised version of their articles will
be requested. The publisher (Publisher (4) actor) must
collect the final versions and print the event proceedings.

In spite of supplying tips on why the processes are
structuralized in a certain way, the Strategic Dependency
Model (SD) (illustrated in figure 1) does not support enough
elements to suggest, explore and evaluate alternative
solutions. As the analysis process continues, additional
responsibilities for the Conference Management System
are discovered. These responsibilities will be represented in
Strategic Rationale Model (SR) illustrated in figure 2.

The Strategic Rationale Model (SR) of figure 2 expands
the actor who represents the Conference Management

System (1) delegating some tasks to it on which External
actors to the system depend on these tasks. These tasks
are summarized as follow:

•	 Manage Submission Phase (7.1): that is divided in:
1.	 Collect Submission Paper
2.	 Assign Submission Number

•	 Evaluate Propose for review (9.1) that is decomposed
in five sub-tasks:
1.	 Set Personal Profile
2.	 Evaluate Interest in Subject Paper
3.	 Evaluate Time Availability
4.	 Evaluate Relevance of Conference
5.	 Collect Papers Review

•	 Manage Review Phase (8.1) that is divided in:
1.	 Propose Paper Review
2.	 Select “n” Reviewers of Paper Research Area
3.	 Assign Paper Reviewer
4.	 Collect Papers Review

The initial version of the Conference Management System
supports the submission, revision and notification phases
of the conference management process. There is a version
modeled which improves this initial version, decomposing
the Conference Management System in four functions for
the agents: Submission Supervisor, Revision Supervisor,
Notification and Copyholder Supervisor. However, for
our Case Study it was used only the early requirements

Figure 2.	 Strategic Rationale Model-Conference Management System - Early Architecture Release (Adapted from [2]).

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

11Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

modeling represented from the Strategic Dependency
diagram of the figure 1 and Strategic Rationale diagram
represented by figure 2, which expands the actor who
represents Conference Management System.

DERIVING UML USE CASES FROM EARLY
REQUIREMENTS

The mapping guidelines proposed by Santander [19,
20] have as objective to associate i* models (SD and
SR Diagrams) for UML Use Case diagrams. The initial
stage of this integration process is the development of
SD and SR models of the system that illustrate the early
requirements of a computational system.

In general, the mapping process occurs from SD and SR
organizational models, which initiates the integration and
discovery process of the use cases for one target system of
the organization. In the first moment (step 1), the actors for
the UML Use Case diagrams are discovered and later, the
use cases are discovered for these actors (step 2), as well
as the main and alternative flows (primary and secondary
scenes) of the discovered use cases (step 3).

The input in this integration process is the Strategic
Dependency (SD) Model for steps 1 and 2. Through
SD Model it can be detected which i* actors in has a
dependence relation with the System, as well as detecting
which elements (goal, tasks, soft-goals and resources) lik
these actors to the system. The main and alternative flows
descriptions of use cases (step 3) are derived from the
Strategic Rationale Model (SR). These flows derived from
the internal links of the computational system, which can
be divided in decomposition links and means-end links.

The used guidelines to derive use cases from the i*
modeling were defined in [19, 20] and are summarized
as follow:

1º Proposal step: Actor Discovery

Guideline 1: all i* actor should be considered as a possible
mapping for actor in use case;
For example, the Reviewer Actor (2) can be analyzed -
see figure 1.

Guideline 2: initially, we must analyze if the i* actor is
external to the intended computational system. In case that
the actor is external to the system, the actor is considered
candidate actor in Use Cases;

For example, the Reviewer actor (2) –figure 1– is external
to the Conference Management System (1) and can be a

candidate for a Use Cases actor. The Publisher actor (4)
has dependence relation only with the Chair actor (3),
thus this actor is not considered a candidate Actor for a
Use Case.

Guideline 3: if the actor is external to the system, it should
be guaranteed that the actor in i* is a candidate actor in
the Use Case diagram. For this purpose, the following
analysis is necessary:

	 Sub-Guideline 3.1: verify if there is exists at least
one dependence of the actor analyzed in relation
to the i* actor in i* that represents the intended
computational system; The Reviewer actor in i*
can be mapped for Use Case actor, considering its
associate dependencies (e.g. Paper Reviewed (10)),
that characterize its importance in the context of its
interaction with the Conference Management System.

Guideline 4: i* actors in i*, related through IS-A mechanism
in the organizational models and individually mapped
for use case actors in use (applying guidelines 1, 2 and
3), will be related in the use cases diagram through the
<<generalization>> relationship.

For example, ISA relationship between Author (5) and
Accepted Author (6) in figure 1, can be mapped for a
generalization relationship between these actors in the
Use Cases diagram (see figure 8).

After all the actors have been discovered their respective
Use Cases can be found.

2º Proposal step: Use Cases Discovery

Guideline 5: for each discovered actor in step 1,
we should observe all dependences (dependum) of
the actor view point as dependee in relation to the
actor that represents the intended computational
system (computational system → dependum → actor),
aiming to discover use cases for the analyzed actor;

	 Sub-Guideline 5.1: to evaluate goal dependences -
each such dependence must directly be mapped for
actor use case.

	 For example, in figure 1, the Reviewer Profile
Configured dependence (12) between Conference
Management System (1) (Depender) and Reviewer
(2) (Dependee) can be mapped for the Use Case
Reviewer Profile Configured

	 Sub-Guideline 5.2: to evaluate task dependences -
each such dependence must directly be mapped for
actor use case.

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

12 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

	 Sub-Guideline 5.3: to evaluate resource dependences
- each such dependence must directly be mapped for
actor use case.

	 Sub-Guideline 5.4: all the soft-goals dependences
are not mapped - normally this dependence type
is associated in the organizational modeling to a
non-functional requirement associated with the
computational system. Thus, this dependence type
is mapped for a non-functional requirement of the
intended system. These requirements can be visualized
in step 3 of the tool (figure 6) through the button
“Show NFRS”.

In the example of the figure 1 we don’t have a task or
resource relationship and so, the sub-guidelines 5.2 and 5.3
can not be applied due to the non existence of a relation
type “computational system → task/resource → actor”.

Guideline 6: analyze special situations, where an actor
discovered (following the step 1), has dependencies (as
depender) in relation to an i* actor that represents intended
computational system or part of it. (actor → dependum →
computational system). These dependencies, according
to [18], usually generate Use Cases, due to the fact that
the dependee is a software system and the depender (Use
Case actor) must interact with the system to achieve the
goal associated with the generated Use Case.

For example, in figure 1, the dependence Submission
Number (13) between Author (5) (depender) and Conference
Management System (1) (Dependee) can be mapped for
a Use Case Submission Number.

Guideline 7: classify each Use Case according to the type
associated to its goal (contextual goal, user goal, sub-
function goal). This guideline is based on the classification
proposal by Cockburn [8].

•	 A business goal represents an high-level intention
related to business processes, that the organization
or users have in the organizational environment
context.

•	 A summary goal represents an alternative to the
satisfaction of the business goal.

•	 An user goal results in the direct discovery of
an excellent and valid functionality for the actor
organization using the software system.

•	 Finally, sub-function level goals are necessary to
reach objective of user.

To support requirements engineers to identify new Use
Cases and to have a better understand of the same ones,
it is recommended to generate a table that contains the
actor, its Use Case and the corresponding guideline (see
table 1).

Table 1.	 Mapped Use Cases Example – Conference
Management System.

Dependence
Actor

Dependence Dependence
Type

Guideline

Reviewer Reviewer Profile
Configured

Goal G5,G5.1

Author Paper Submited Goal G.6

After identified all the Use Cases for the actors now it
we can follow the next step for the detailed description
of the same ones.

3º Proposal step: Use Cases main and alternative flow
description and discovery.

Guideline 8: to analyze each actor and its relationships
in the SR Model to extract information that can lead to
the description of main and alternative flows, as well
as pre-conditions and pos-conditions of the discovered
actor use cases.

	 Sub-Guideline 8.1: to analyze the sub-components
in a task decomposition linking in a possible mapping
for steps in the primary scenario description (main
flow) of use cases.

	 Sub-Guideline 8.2: to analyze means-end links type
in a possible mapping for alternative steps in the use
cases description.

	 Sub-Guideline 8.3: to analyze the relationships
of sub-components dependences in the Strategic
Rationale model in relation to other actors of the
system. These dependences can originate pre-conditions
and pos-conditions for the discovered use cases.

For example, we can generate a Use Cases description
based in Submission Phase Managed Autonomously
dependency (7) (see figure 2) that occurs between the
Chair actor (3) and the Conference Management System
(1). This dependency is mapped for Use Case through
guideline 6. This Use Case satisfied by the task set that
decomposes the Manage Submission Phase (7.1). The
Manage the Submission Phase task is decomposed in the
tasks: Collect Submission Paper and Assign Submission
Number. These sub-tasks are mapped for the main scenario
steps of the Submission Phase Managed Autonomously
Use Case.

Guideline 9: To investigate the possibility to derive new
use cases goals from the steps observations in the scenarios
(events flows) of the discovered use cases. Each step of
a use case must be analyzed to verify the possibility of
being refined in a new use case.

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

13Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

A Guideline 9 is not supported by the current version of
JGOOSE tool. However, it will be implemented in posterior
versions of the tool, using an interaction mechanism
with the requirements engineer who makes possible the
generation of new Use Cases.

Guideline 10: To develop the use case diagram using the
discovered use cases, as well as observing the relationships
of the < < include> >, < < extend> > and < < generalization>
> used to structure the use cases specifications.

The presented guidelines represent a systematic means
to derive use cases from organizational models in i*.
However, the analysis effort can significantly be reduced
with the support of a computational tool. Therefore, aiming
to provide a semi-automated support for these guidelines
JGOOSE tool was developed and it is described in the
next section.

JGOOSE TOOL

The JGOOSE tool (Java Goal Into Object Oriented
Standard Extension) [30][29] was developed using Java
1.5 [12] and Eclipse IDE [10].

The mapping process described in the previous section
was executed in JGOOSE tool from diagrams i* created
by the OpenOME tool (Open Organizational Modeling
Environment) [16] or OME3 [14] to UML use cases
and they are showed in the tool. The main change in
the JGOOSE tool comparing with its previous version
(GOOSE) [3] is the new adopted systematic implementation
that makes it more flexible to integrate with other tools,
and significantly improves its usability. Previously the
tool built the use cases diagram through the extension
Rose Extensibility Interface, an interface that allows
customization of menus, creating scripts to automate
tasks and access to elements of the Rational Rose tool.
However, the GOOSE development made the application
dependent on the Rational Rose proprietary tool.

In JGOOSE tool, the diagram and its textual description are
displayed in the tool (figure 6) and it is also stored in Java
classes, where, through new versions of JGOOSE tools, there
is a possibility to translate into specific UML CASE tool
format or the XMI standard (XML Metadata Interchange)
[26]. The XMI standard use proposed by the OMG [15] has
become a widespread standard for data exchange between
CASE tools, making information exchange easier between
different tools through a standard flexible format that can
be easily decipherable to the information.

JGOOSE tool progress regarding its previous version
(GOOSE) is listed bellow:

1)	 New guidelines
•	 Development of sub guideline 5.4 that concerns

about softgoals that are mapped as a possible
non-functional requirement (NFRs) related to
the system.

•	 Development of guideline 8.1 that concerns about
softgoals that are part of tasks decomposition and
are mapped as special requirements in the Use
Case description.

2)	 New features: new features were designed for a clearer
i*>> UML Use Case mapping process with JGOOSE.
For example, the information of all elements in one
i* TELOS file which would be mapped to Actors and
Use Cases with its descriptions.

3)	 TELOS File: support for open files generated by
OME3 and OpenOME Tool.

4)	 Tool Development using Object Oriented of Java
Language. The i* objects and mapped Actors, Use
Cases and relationships between then are generated
with Java Classes that represents these objects in a
consistent way.

5)	 Use Cases Textual Description as the Cockburn‘s
template [9] .

JGOOSE tool use

The internal structure tool (represented by the figure 3)
is basically:

(1)	 Specific tokens capture in a TELOS file generated
by the OpenOME or OME3 tool. This information
describes the objects in the i* SD / SR diagram, their
elements (actors, goals, tasks, soft-goals and resources)
and its links (dependency, task decomposition and
mean-end links) and all the attributes that characterize
these objects.

(2)	 Store the Diagram SD / SR using data structure:
Define a data structure that stores SD / SR diagram
information.

(3)	 Map the SD/SR Structure to a data structure that
represents UML Use Cases: guidelines proposed
by Santander will be used [20] (guidelines 7 and 9
weren’t developed).

(4)	 Translate the Use Cases Structure to the XMI
standard (XML Metadata Interchange): feature
aimed to generate an tool output format that can be
open by some UML CASE tools. This feature will
be coded in future versions of the tool.

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

14 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

The necessary steps to map a model SD / SR stored in
a TELOS file (*. tel) to an Use Cases diagram using the
JGOOSE Tool are described bellow with the tool screenshots
that illustrate its operation (figures 4, 5 and 6):

•	 STEP 1 - Information capture of TELOS file: The
user must open a TELOS file that stores a SD/SR
diagram. This command can be executed through the
“Open TELOS File” button (Abrir Arquivo TELOS) or
in the “Arquivo » Open TELOS File” file menu. After
this step, the i* actors are showed and the user must
choose one actor who will represent the Computer
System. Moreover this first screen shows all Actors,
Elements and mapped Links of Telos file.

•	 STEP 2 – Guidelines Selection: The guidelines D.1
- D.4 will always be default selected. The guidelines
D.8 - D.8.3 (see section 3) may be selected only if

the model selected by step 1 is a SR model, only
this model provides information to find the events
flow for a Use Case. In this step, the user can also
read a brief tutorial about the mapping guidelines
(figure 5).

•	 STEP 3 – Mapped Actors, Use Cases and
descriptions: Finally on the 3rd and final stage shows
mapped Actors, IS-A Actors, Use Cases, and their
descriptions as well as Non-Functional Requirements
(NFRs), and the guidelines that was used to map such
elements. This information is displayed in the user
interface (figure 6).

The following section presents the case study Conference
Management System described in figures 1 and 2. This
case study was aided by JGOOSE tool.

Figure 3. Internal structure of JGOOSE tool for mapping i * - UML Use Cases.

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

15Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

Figure 4.	 Step 1- JGOOSE tool Main Window.

Figure 5.	 Step 2 - Guidelines mapping selection.

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

16 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

Figure 6.	 Step 3 - Actors, Use Cases and mapped Scenarios for the Conference Management System.

CASE STUDY

The mapping process of SD and SR models described in
figures 1 and 2 to UML Use Cases occurs semi-automatically
using the JGOOSE tool and this process derives Actors,
Use Cases and your descriptions. This mapping process
is described below:

1st Step – Mapping Actors

Figure 1 represents the Strategic Dependency model
(SD) of the Conference Management System. It displays
numbers corresponding to some of the elements in order
to facilitate the reference in the text.

Initially, the tool uses the Step 1 guidelines, observing each
of the actors (1 - 6) in the Strategic Dependency Model
(figure 1) for a possible actor mapping in a Use Case
Model. Thus, the actors Conference Management System
(1), Reviewer (2), Chair (3), Publisher (4), Author (5),
Accepted Author (6) are assessed. The actor Conference
Management System (1) should not be mapped because
it represents the computer system to be developed. The
actor that represents the computer system is selected by
the user in the 1st step of the tool. The actor Publisher
(4) is not mapped either, because he doesn’t have any

relationship with the Actor that represents the Computer
System. The other actors are mapped and Accepted Author
(6) is mapped with a <<generalization>> relationship,
because of their IS-A relationship with actor Author (5)
(see guideline 4).

Finally the table 2 shows mapped and not mapped Actors
and their respective guidelines.

Table 2.	 Mapped Actors – Conference Management
System.

Actor Guideline Mapping

Chair G.1, G.2 and G.3 Mapped

Reviewer G.1, G.2 and G.3 Mapped

Author G.1, G.2 and G.3 Mapped

Accepted Author G.1, G.2 and G.4 Mapped

Publisher G.1, G.2 Not Mapped

Conference
Management System

G.1 Not Mapped

2nd Step – Use Cases Mapping

Next, in Step 2, the JGOOSE tool looks for Use Cases
examining the relationship between actor’s dependencies

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

17Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

and the computer system (Conference Management System)
in the SD model (figure 1). You can observe relationships
mapped between “Mapped Actors » Dependency » System”
and “System » Dependency » Actor mapped”:

•	 Reviewer: Reviewer Profile Configured (12) and Paper
Reviewed (10) goals link the actor Reviewer (2) already
mapped for actor’s use case to the computer system
represented by Conference Management System (1) and
therefore are mapped to Use Cases using sub-guidelines
of guideline 5 (“System » dependum » Reviewer”).
The resource Paper (15) and the goal Proposal Review
Evaluated Autonomously (11) has connection with the
system like “Reviewer » dependum » System” and
should be mapped following guideline 6.

•	 Chair: the Submission Phase Managed Autonomously
(8) and Review Phase Managed Autonomously (9) goals
links the actor Chair (3) already mapped for Use Case’s
actor and consequently are mapped to Use Cases using
guideline 6. The resource Papers Reviewed (14) also
has link with the computer system and consequently
it is mapped using the guideline 6.

•	 Author: The Paper Submitted goal (7) and the
Submission Number resource (13) are connected with
the system through the already mapped actor Author
(5). Hence, they are mapped to Use Cases using the
guideline 6.

•	 Accepted Author: The actor has no element connected
to the system. However it inherits all the actor’s use
cases already mapped by Author (5).

Table 3 summarizes the step 2, showing the dependencies
mapped to use cases and their respective actors.

3rd Step - Building Use Cases Description (Scenarios)

Finally, based on the guideline 8.1 of 3rd step of guidelines,
the JGOOSE tool generates the steps of use cases:
Submission Phase Managed Autonomously (7), Review
Phase Managed Autonomously (8) Proposal for Review
Evaluated Autonomously (9), observing the decompositions
in the SR model (figure 2).

A first draft of the main scenario, according to the
template proposed by [9] is generated for each use case.
The description for the Use Case Review Phase Managed
Autonomously can be seen in figure 7. Although, the main
scenario generated should be properly examined and
rewritten and rearranged by the requirements engineer.
Thus, after following mapping guidelines, the JGOOSE
tool generates the Actor and use cases relationship (showed
in figure 6) mapped to the Conference Management

System and the main scenario steps for the Submission
Phase Managed Autonomously, Proposal for Review
Evaluated Autonomously and Review Phase Managed
Autonomously use cases.

Figure 8 illustrates the UML Use Case diagram for the
Conference Management System, which you can view the
actors Author, Accepted Author linked to actor Author
by a generalization link, Reviewer, Chair and their Use
Cases.

Table 3.	 Use Cases Mapped – Conference Management
System.

Dependency
Actor

Dependency
Dependency

Type
Guideline

Reviewer Reviewer Profile
Configured

Goal G.5
G.5.1

Reviewer Paper Reviewed Goal G.5
G.5.1

Reviewer Paper Resource G.6

Reviewer Proposal
for Review
Evaluated

Autonomously

Goal G.6

Chair Submission
Phase Managed
Autonomously

Goal G.6

Chair Review Phase
Managed

Autonomously

Goal G.6

Chair Papers
Reviewed

Resource G.6

Author Paper Submitted Goal G.6

Author Submission
Number

Resource G.6

Figure 7.	 Use Case Specification – Review Phase Managed
Autonomously.

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

18 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

Figure 8.	 Use Case Diagram – Conference Management
System.

CONCLUSION AND FUTURE WORKS

 In this paper, it was argued that use cases development
can be improved with the use of i* technique. In [6]
the authors describe some of the benefits of use cases
development from the i* technique. The integrated use of
organizational modeling i* and UML Use Cases modeling
provide a consistent link between computer systems
allowing better assessment of the dynamics in business
processes and organizational environments.

Initially, this paper presented guidelines that allow the use
of i* organizational models in the scenarios development
in Use Cases form. Afterwards, the JGOOSE tool is
presented with its operation, which provides support in
the semi-automatic use of the guidelines. The guidelines
and the tool were applied to a Conference Management
System case study, getting the system UML Use Cases.
From the case study was possible to see that information in
both, existing strategic dependency and strategic rationale
model, serve as a basis for the development a Use Case
diagram that meets the customers / users goals. In this
context, we should emphasize the support offered by
the JGOOSE semi-automated tool which minimizes the
requirements engineers’ effort in Use Cases mapping when
applying the proposed guidelines. Additionally, to help
this mapping process, the JGOOSE tool supports some
usability, flexibility and portability requirements which
are fundamental aspects in a computational tool design.

Some related work are cited below: Pedroza’s [17] and
Alencar’s [18] proposal which aims to derive classes
diagram from i* models; Rosa`s and Santander`s [29,
31], which works with the requirement elicitations for
legacy software proposing mapping the DFDs (Data Flow

Diagrams) to i* models; and Estrada’s work [11] that
suggests organizational and functional goals derived from
business models. Moreover, Silva’s [22] work related to
Tropos Project [24] proposes a mapping from i* technique
to a architecture level of Multi-Agent Systems.

In the automation mapping process aspect, we have some
tools available, such as GOOD (Goals into Object Oriented
Development) [8] and its improved version XGOOD
(eXtended Goal Into Object Oriented Development)
[18], that map i* objects to UML Classes Diagram, and
the GOOSE tool (Goal Into Object Oriented Standard
Extension) [3], the JGOOSE previous version tool, which
maps i* objects to UML Use Cases diagram.

Nowadays we are investigating the possibility of the integrate
the present proposal to the OOMethod [32]. OOMethod is
a methodological approach with tools to support automatic
code generation from OO conceptual models. We believe
that our proposal can help to generate OO conceptual
models from i* models in a better systematic way.

In future endeavor we will address the following
aspects:

•	 Mapping process Improvement, as well as JGOOSE
tool interface;

•	 use the tool in other case studies, mainly studying the
tool behaviour in more complex diagrams SD/SR;

•	 Improving the tool, enabling the UML Use Cases
mapping saved in XMI standard [4] which are
compatible with a larger number of UML CASE
tools;

•	 Adequately treat non-functional requirements using
NFR Framework proposed in [28].

Acknowledgements

This work was supported by the following research
grants: CAPES-DGU Proc. BEX1959/08-5, PIBIC/
UNIOESTE/PRPPG (019/2005-PRPPG) and CNPq
(130012/2008-4).

REFERENCES

[1]	 F. Alencar, J. Castro, G. Cysneiros and J. Mylopoulos.
“From Early Requirements Modeled by i* Technique
to Later Requirements Modeled in Precise UML”.
III Workshop de Engenharia de Requisitos. Rio de
Janeiro, Brasil. 2000.

Vicente, Santander, Castro, Freitas da Silva and Reyes: JGOOSE: A requirements engineering tool to integrate i* organizational modeling with use…

19Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

[2]	 F.M.R. Alencar, F.P. Pedroza, J. Castro, C.T.L.
L. Silva and R.A. Ramos. “XGOOD: A Tool
to Automatize the Mapping Rules between I*
Framework and UML”. IDEAS´06 - IX Workshop
Iberoamericano de Ingeniería de Requisitos y
Ambientes de Software. La Plata, Argentina.
2006.

[3]	 M. Brischke, V. Santander and J. Castro. “GOOSE:
A Tool for integrating Organizational and Functional
Modeling”. Jornadas Chilenas de Computación -
V Workshop Chileno de Ingeniería de Software.
Valdivia, Chile. 2005.

[4]	 S. Brodsky, G. Doney and T. Grosse. “Mastering
XMI Java Programming with XMI, XML, and
UML”. John Wiley & Sons, New York, USA.
2002.

[5]	 G. Booch, J. Rumbaugh and I. Jacobson. “UML:
Guia do Usuário”. Elsevier. 2ª Edição. Rio de
Janeiro, Brasil. 2005.

[6]	 J. Castro, F.M.R. Alencar, V.F.A. Santander and
C.T.L.L. Silva. “Integration of i* and Object
Oriented Models” (to appear). In: Eric Yu, John
Mylopoulos, Neil Maiden, Paolo Giorgini. (Org.).
Social Modelling for Systems. MIT Press. Vol. 1,
p. 19. 2006.

[7]	 J.F.B. Castro, M. Kolp and J. Mylopulos. “Towards
Requirements-Driven Information Systems
Engineering: The Tropos Project”. Information
Systems Journal, Elsevier, Amsterdam, The
Netherlands. 2002.

[8]	 G.A. Cysneiros. “Ferramenta Para o Suporte do
Mapeamento da Modelagem Organizacional em
i*”. Dissertação de Mestrado. Universidade Federal
de Pernambuco. Recife-PE, Brasil. 2001.

[9]	 A. Cockburn. “Writing Effective Use Cases, Humans
and Technology”. Addison-Wesley. 2000.

[10]	 E. Project. “Eclipse Project”. 2006. Fecha de
consulta: Novembro de 2006. URLs: http://www.
eclipse.org

[11]	 H. Estrada, A. Martínez, O. Pastor y J. Sanches.
“Generación de Especificaciones de Requisitos
de Software a partir de Modelos de Negocios:
un Enfoque basado en Metas”. V Workshop de
Engenharia de Requisitos WER’02. Valencia,
España. 2002.

[12]	 Sun Developer Network (SDN). “Java 2 Platform
Standard Edition (J2SE) 1.5”. 2006. Fecha de
consulta: Noviembre de 2006. URLs: http://java.
sun.com/j2se/1.5.0/

[13]	 J.C.S.P. Leite. “Requisitos: a ponte entre a
organização e o software”. Palestra da Rio Info -
Seminário Internacional de Engenharia de Software.
2006.

[14]	 E. Yu. “Organization Modelling Environment”.
2002. Fecha de consulta: Dezembro de 2006.
URLs: http://www.cs.toronto.edu/km/ome

[15]	 OMG. “Object Management Group (OMG)”. 2006.
Fecha de consulta: Abril de 2006. URLs: http://
www.omg.org

[16]	 E. Yu and Y. Yu. “OpenOME Organization
Modelling Environment”. 2006. Fecha de consulta:
Dezembro de 2006. URLs: http://www.cs.toronto.
edu/km/openome

[17]	 F. Pedroza, F.M.R. Alencar, J.F.B. Castro, F.R.
C. Silva e V.F.A. Santander. “Ferramentas para
Suporte do Mapeamento da Modelagem i* para
a UML: eXtended GOOD – XGOOD e GOOSE”.
WER’04 - Workshop em Engenharia de Requisitos.
Tandil, Argentina. 2004.

[18]	 F.P. Pedroza. “Automatizando as Regras de
Mapeamento entre a Modelagem i* e a Modelagem
UML usando XMI para Implementação de um
Simulador de Rede Ópticas”. Dissertação de
Mestrado. Universidade Federal de Pernambuco.
Recife-PE, Brasil. 2005.

[19]	 V.F. Santander and J.F Castro. “Deriving use
cases from organizational modeling”. IEEE Joint
International Requirements Engineering Conference
- RE 02. Essen, Germany. 2002.

[20]	 V.F.A. Santander. “Integração de Modelagem
Organizacional com Modelagem Funcional na
Engenharia de Requisitos”. Tese de Doutorado.
Universidade Federal de Pernambuco. Recife-PE,
Brasil. 2002.

[21]	 I.G.L. Silva. “Projeto e Implementação de Sistemas
Multi-Agentes: O Caso Tropos”. Dissertação de
Mestrado. Universidade Federal de Pernambuco.
Recife-PE, Brasil. 2005.

[22]	 C.T.L.L. Silva, J. Castro, P.A.J. Tedesco, A.M.
D. Moreira and J. Mylopoulos. “Improving the

Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

20 Ingeniare. Revista chilena de ingeniería, vol. 17 Nº 1, 2009

architectural design of multi-agent systems: the
tropos case”. International Workshop on Software
Engineering for Large-Scale multi-agent systems -
SELMAS06. International Conference on Software
Engineering ICSE. Shanghai, China. 2006.

[23]	 I. Sommerville and G. Kotonya. “Requirements
Engineering: Processes and Techniques”. John
Wiley & Sons. New York, NY, USA. 1998.

[24]	 Tropos. “Tropos - Requirements-Driven Development
for Agent Software”. 2006. Fecha de consulta:
Agosto de 2008. URLs: http://www.troposproject.
org

[25]	 E. Yu. “Modelling Strategic Relationships for
Process Reengineering”. Phd Thesis. University
of Toronto. 1995.

[26]	 XMI “Object Management Group OMG XML
Metadata Interchange (XMI) Specification”. 2005.
Fecha de consulta: Março de 2006. URLs: http://
www.omg.org/technology/documents/formal/xmi.
htm

[27]	 F. Zambonelli, N.R. Jennings and M. Wooldridge.
“Developing multiagent systems: The gaia
methodology”. ACM Trans. Softw. Eng.
Methodology. Vol. 12 Nº 3, pp. 317-370. 2003.

[28]	 L. Chung, B.A. Nixon, E. Yu and J. Mylopoulos.
“Non-Functional Requirements in Software
Engineering”. Kluwer Academic Publishers.
2000.

[29]	 M.C.S. Rosa. “Elicitação de Requisitos Funcionais
e Não-Funcionais em Software Legado com
Ênfase na Engenharia de Requisitos Orientada a
Objetivos”. Monografia de graduação. Universidade
Estadual do Oeste do Paraná. Cascavel-PR, Brasil.
2005.

[30]	 A.A. Vicente “Ferramenta JGOOSE - Java Goal Into
Object Oriented Standard Extension”. 2006. Fecha
de consulta: Maio de 2007. URLs: http://andvicente.
googlepages.com/aav(undergraduate)

[31]	 V.F.A. Santander, A. Abe Vicente, F. Koerich e J. F.B.
Castro. “Elicitação de Requisitos Organizacionais,
Não-Funcionais e Funcionais em Software Legado
com Ênfase na Engenharia de Requisitos Orientada
a Objetivos”. X Workshop Iberoamericano de
Ingeniería de Requisitos y Ambientes de Software.
Isla Margarita, Venezuela. 2007.

[32]	 O. Pastor and J.C. Molina. “Model-Driven
Architecture in Practice: A Software Production
Environment Based on Conceptual Modeling”.
Springer. 2007.

