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Abstract

The paper presents expressions for semi-empirical mechanistic identification of specific cutting and edge force coefficients for a
general helical end mill from milling tests at an arbitrary radial immersion. The expressions are derived for a mechanistic force
model in which the total cutting force is described as a sum of the cutting and edge forces. Outer geometry of the end mill is
described by a generalized mathematical model valid for a variety of end mill shapes, such as cylindrical, taper, ball, bull nose,
etc. The derivations follow a procedure originally proposed for a cylindrical end mill. The procedure itself is improved by includ-
ing the helix angle in evaluation of the average edge forces. The resulting expressions for the specific force coefficients are verified

by simulations and experiments.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Reliable quantitative prediction of cutting forces in
milling is essential for prediction of power and torque
requirements, machine-tool vibrations, workpiece sur-
face quality and geometrical accuracy, and chatter-free
cutting parameters. The cutting force model commonly
employed for this purpose is a mechanistic one
assuming the cutting force to be proportional to the
cross-sectional area of the uncut chip [1]. The pro-
portionality constant is called the specific cutting force
coefficient or specific cutting pressure and depends on
the cutter geometry, cutting conditions, and workpiece
material properties.

Two types of mechanistic cutting force models are
found in the machining literature. In the first one, the
effects of shearing mechanism due to the chip generat-
ing process on the tool’s rake face and effects of rub-
bing and ploughing mechanisms on the flank face are
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lumped into one specific force coefficient for each cut-
ting force component (tangential, radial, and axial).
This model has been used by many researchers [2-4].
Its disadvantage is a considerable variation of the spe-
cific force coefficient with the average chip thickness
which complicates analytical calculations. In the
second model, the shearing and ploughing effects are
characterized separately by the respective specific cut-
ting and edge force coefficients [5-8]. Since the coeffi-
cients are relatively independent of the average chip
thickness this model appears to be more suitable for
analytical work [5]. However, there are twice as many
coefficients to be determined as in the simplified
lumped model.

In this study, the second model is used, with the
total cutting force composed of the tangential, radial,
and axial components. The specific cutting and edge
force coefficients for each force component can either
be predicted from the mechanics theory of machining
or experimentally determined from cutting tests. Pre-
diction of coefficients is based on mechanics of general
oblique cutting and requires knowledge of the funda-
mental cutting quantities, such as workpiece material
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shear stress, shear angle, and friction coefficient [5].
These quantities have to be estimated from the orthog-
onal cutting tests, and form an orthogonal database for
a given tool-workpiece material pair. Once the orthog-
onal database has been established, the specific cutting
and edge force coefficients can be predicted for any
turning, drilling, and milling operation, given the tool
edge geometry and the cutting conditions. Orthogonal
database is particularly useful for the design of milling
cutters, since the coefficients can be predicted before
the cutter has been manufactured. When the orthog-
onal database is not available or the tool has very com-
plex cutting edges, the specific cutting and edge force
coefficients have to be identified mechanistically, from
the cutting tests with the given tool and workpiece
material. The method adopted in the present study
requires a set of milling tests at different feed rates but
constant radial and axial immersions. Assuming linear
dependence of the average force on feed, the coeffi-
cients are obtained by equating the analytical expres-
sions for the average cutting and edge forces to their
measured counterparts [5]. If the analytical expressions
cannot be derived, the coefficients can be estimated
empirically, by minimizing the discrepancy between the
predicted and measured cutting force dependencies on
the tool rotation angle [7,8]. Despite the disadvantage
of the required new set of experiments for each tool
geometry, the semi-empirical mechanistic approach is
relatively quick and quite common in industrial prac-
tice and research laboratories.

The main difficulty associated with the mechanistic
identification of the specific cutting and edge force
coeflicients appears to be the derivation of the analyti-
cal expressions for the average milling forces from
which the expressions for the coefficients are to be
obtained. The machining literature available to the
authors provides the analytical expressions for the
average forces and the coefficients only for the cylindri-
cal end mill [5], which has the simplest outer geometry
among a variety of end mills used in the manufacturing
industry today. For more complicated end mill geome-
tries, the coefficients have been either predicted from
an orthogonal database [6,9] or identified empirically
by a least squares fit [7,8].

This paper presents the expressions for estimation of
the specific cutting and edge force coefficients for a
general helical end mill. The derivations follow the pro-
cedure outlined in Ref. [5]. Outer geometry of the end
mill is described by a generalized mathematical model
[9] which is valid for a variety of end mill shapes, such
as cylindrical, taper, ball, bull nose, etc. In the final
expressions for the coefficients, the geometrical proper-
ties of the mill are represented by six constants that can
be evaluated analytically for all helical and non-helical
end mills modelled, except for the rounded helical end
mills, for which three geometric constants need numeri-

cal evaluation. The required milling tests can be con-
ducted at an arbitrary radial immersion. The immersion
conditions of the cut enter the expressions in the form
of five constants that are independent of the end mill
geometry and can also be evaluated analytically. The
derived expressions for the coefficients are verified by
simulations and experiments involving various mill
shapes.

2. Geometry of a general end mill

A generalized model of the end mill outer geometry
was introduced in Ref. [9]. Similarly to the represen-
tation used by CAD/CAM systems, the generalized
model describes the cutter envelope by seven geometric
parameters: D, R, R,, R., o, f, and H (Fig. 1). The
parameters are independent of each other, but subject
to geometrical constraints that ensure realizable cutter
shapes. A variety of end mill shapes can be defined by
these parameters. For example, the cylindrical, ball,
and bull nose end mills are defined by, {D, R, R,, R;, 2,
p,H} ={D,0,D/2,0,0,0,H}, {D,D/2,0,D/2,0,0, H},
and {D,R,D/2 — R, R,0,0, H}, respectively.

In order to evaluate the cutting forces acting on the
mill, the cutting edge geometry, chip load, and the cut-
ting force components (tangential, radial, and axial)
have to be identified at each point along the helical cut-
ting edge. A point P on the cutting edge is character-
ized by elevation z, radial distance r(z) from the cutter
axis, axial immersion angle x(z), and radial lag angle
(z) (Fig. 2). The axial immersion angle is defined as
the angle between the cutter axis and normal of the
cutting edge at point P. The radial lag angle is the
angle between the line connecting P to the cutter axis
and tangent to the cutting edge at the cutter tip O.
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Fig. . Geometry of a general end mill. Dashed lines separate three
geometrically different zones of the mill.
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Fig. 2. Chip load, axial immersion angle, radial lag angle, and differential cutting forces at point P.

The location of P on the j-th cutting edge is defined
by a vector in cylindrical coordinates as:

r(¢;,z) = 1(¢;, z) (ising; + jcosgh;) + kz(;). (1)

The radial immersion angle of the j-th edge varies with
elevation z as:

$j(2) =+ (= 1), —¥(2), (2)

where ¢ denotes the immersion angle of the reference
edge (j = 1) and ¢, = 2n/N denotes the pitch angle for
a cutter with N uniformly spaced teeth. The expres-
sions for the radial lag angle y(z) and distance r(z)
depend on the geometry of the cutter envelope.

The envelope of the cutter can be divided into three
zones (Fig. 1): (a) the bottom straight part of the cutter
(between points O and M), called cone zone, (b) the
rounded part of the cutter (between points M and N),
called arc zone, and (c) the upper straight part of the
cutter (between points N and S), called taper zone. The
cutters may have one, two, or all three zones; the cylin-
drical end mill has only the taper zone, whereas the
ball end mill may have both the arc and taper zones,
depending on the parameter H, etc. The radial dis-
tance, axial immersion angle and radial lag angle
dependencies on elevation z in the three zones are as

follows [9].
Cone zone, z < M.:
z tanig z
= -lo

r(z) = tano’ ()

Arc zone, M, < z < N.:

r(z) =R+ R\/1— (1 —E), (z) = (1 — E)tan,

k(z) = arcsinv 1 — E2

k(z)=oa. (3)

= cose Prana’

E(z)=(R.—2z)/R.
(4)

Taper zone, N. < z:

r(z) = Nr+ (2 = Nojtanp, §%(2) = g - logr(2),
T ¢ tani,
k(=) =5 F, W) = V)
(5)

In Eqgs. (3)(5), 1o denotes the nominal helix angle,
while M,, M., N,, and N, denote the cylindrical coordi-
nates of points M and N (Fig. 1). In the taper zone,
cutters may be ground with a constant helix angle and
variable lead or constant lead and variable helix angle.
The lag angles ¥© and ¥ in Eq. (5) correspond to
the former and latter cases, respectively. More detailed
description of the local helix and radial lag angle
dependencies in the three zones can be found in Ref.

9.
3. Mechanistic cutting force model

The differential tangential (dF,), radial (dF;), and
axial (dF,) cutting forces acting on the infinitesimal
cutting edge segment are [0]:

dFi(9;, k) = KiedS + Kich(¢;, x)db, (6a)
dFj(¢;, k) = KiedS + Kich(¢h;, x)db, (6b)
dFa.j((bja K) = K,edS + Kach(d)ja K)db (60)

K. and K represent the specific cutting and edge force
coefficients, respectively. The uncut chip thickness / is
measured normal to the cutting edge, and varies along
the cutting edge as (Fig. 2):

h(¢;, ) = sising;sink, (7)
where s, denotes feed per tooth. db = dz/sinx is the
chip width. dS is the edge length of the cutting segment

which varies with elevation z. dS can be derived from
Eq. (1) as:

dS = |dr| = d¢\/rz(¢) +((9))+(=(9))’, (8)
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with ’ denoting the derivative with respect to ¢. Taking
into account the dependencies of r, ¢, and  on z, the
differential edge length is given by:

4(2) = =/ (W )+ ()41, )
where ' now denotes the derivative with respect to z.
The differential forces are thus functions of radial
immersion angle ¢ and elevation z:

dFi;(9;,z) = KiedS(2) + Kiesising;dz, (10a)
dF (¢, 2) = KedS(z) + Kiesising;dz, (10b)
dFaj(¢;,2) = KaedS(z) + Kacsising;dz. (10c)

The tangential, radial, and axial forces are resolved
in the feed (X), normal (Y), and axial (Z) directions by
a transformation:

de;/(¢j7 Z)
dF,‘"J(‘bj’ Z)
dFZJ(d)j, Z)
—Cos¢h; —sinksing; —cosksing;
= | sing; —SINKCOS¢); —COSKCOSP;
0 COSK —sink
dF (¢, 2)
x | dF (e, 2) |. (11)
dFaJ(¢jv Z)

The forces acting on the j-th cutting edge are obtained
by integrating Eq. (11) along the axial depth of cut:
22
Eid) = | aE(5. ). (12
Z1

z

The integration boundaries z; and z, depend on the
immersion of each cutting edge. Finally, the contribu-
tions of all cutting edges are summed in order to
obtain the total feed, normal, and axial forces acting
on the cutter:

N
F(¢$) = F; (). (13)
=1

4. Identification of specific force coefficients

Given the cutter geometry and immersion con-
ditions, only the specific cutting and edge force coeffi-
cients remain unknown in the right-hand side of
Eq. (10). The coefficients can therefore be determined
by equating the measured cutting forces with the corre-

sponding analytical expressions. For this purpose, a
procedure outlined in Ref. [5] is adopted here. It is
based on equating the measured and analytical average
cutting forces per tooth. The analytical expression for
the average forces is:

L [Farsno. 20 (14)

xyz —
¢p bg J 21

where ¢, and ¢, denote the start and exit radial
immersion angles, respectively. For convenience, the
subscript j has been dropped. The analytical calcula-
tions are greatly simplified by assuming the average
forces per tooth period to be independent of helix
angle so that 1) =0 can be set. However, a simple
numerical experiment reveals that the assumption is
valid only in the absence of edge forces, i.e. for K, = 0.
As shown below, for K. # 0, it is necessary to consider
non-zero helix angle in evaluation of the cutting edge
length dS (Eq. (9)).

In order to derive expressions which relate the aver-
age forces and specific cutting and edge force coeffi-
cients, Eq. (14) has to be integrated. First, the
integration along the elevation z is carried out. Due to
10 =0, the immersion angle ¢ is independent of z
(Eq. (2)), and the integration boundaries z; and z, are
independent of ¢. The instantaneous cutting forces at
immersion angle ¢ are:

—Kiesin2¢p —2Ksin’¢p  —2K,sin’¢ | [ 4

St .2 . .
=3 2Kesin“p  —Kiesin2¢p  —K,sin2¢ A
0 —2K,sing 2K, sing A
—Kiecos¢p —Kesing —Kyesing B
+ | Kiesing —Kiecosp —Kyecosp | | By |, (15)
0 —Kae K B3

where the constants 4, and B, denote the integrals:
Z) Z) Z)

Ay = J dz, A= J sink(z)dz, Az = J cosk(z)dz,
1 1 |

(16a)

B, :Jzzds(z)7 Bzzrzsimc(z)dS(z), B3=JZZCOSK(Z)dS(Z)-

21

Z1 Z1

(16b)

A. and B, represent the influence of cutter geometry on
the average cutting and edge forces, respectively, and
are therefore called the geometric constants. They have
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to be evaluated for each zone of the cutter (see Appen-
dix A).

Next, the instantaneous forces are averaged over the
radial immersion angle yielding:

F.,
_J/
F.
Cody (Co— C) s (Co— Cr)As
= ;—; —(C,—C1)41 C34, G343
0 —Cs43 CsA>
K. —C4B; CsB, CsBs Kie
X | K¢ —i—d)ip —CsB, —CyBy, —C4Bs K |,
K, 0 2Ci1B; —-2C\B; K,

(17)

where the immersion constants C. contain the terms
depending on the immersion angles:

I PPN — el
¢ :%qﬂiiﬂ G 7%sm2¢ b Cy = sing bo a18)
C; = ZcoquS&*, Cs = cosrf)\d)ix.

Eq. (17) represents the average cutting forces per
cutter tooth as a linear function of feed s:

F. =Fcsi+ Fe. (19)

F. and F. can be obtained experimentally from mill-
ing tests conducted at a series of feeds s, but constant
radial and axial immersions. F,. and F,. correspond
respectively to the slopes and intercepts of the straight
lines which approximate the dependence of the mea-
sured average cutting forces on feed.

Finally, by equating Egs. (17) and (19), two systems
of linear equations are obtained, whose solutions are the
specific cutting and edge force coefficients, K. and K:

Ko — 2TC .C3FXC—(C2—C1)F))C (208,)
TN (G-
21
Kie=————-+
©ON(A45+ 43
A>((Cy — C\)F oo + C3F,0)  AsF.]
y 2(( 2 1) F e + 23 yc)_ 3Lz . (20b)
C§+(C2—C1) CS ]
21
K»zi
NG+ A
A3((Cy — C\)F oo + C3F)  AoF.]
« 3(( 2 1)F v + 23 }c)+ 24z . (200)
C§+(C27C1) CS i

-2 ) C4er + CSFye

K. = 21
te NB] CA% + C52 ) ( a)
2n
Kie = ————
“ NB+B)
B2(C5er - C4Fye) BSF7e
X = 21b
[ CI+C2 2C |’ (21b)
2n
Kae = 7
“N(B+ Bg) )
% |:B3(C5er - C4Fye) . B2er:| (21C)
Ci + C? 2¢y |

It follows from these expressions that the tangential
force coeflicients K, are not influenced by the forces in
Z direction. The expressions for K,. (K,.) can be
derived from K. (K..) simply by reversing the sign in
front of F.., and switching the constants A, and A5 (B,
and Bj).

Using Egs. (20) and (21), the specific cutting and
edge force coefficients can be determined for a general
end mill from cutting tests at an arbitrary radial
immersion. As noted already in Ref. [5], the simplest
expressions for the coefficients with respect to the
radial immersion are obtained for slotting, ¢ = 0 and
¢Pox =T, where C; =1/2, C;=C3=C4 =0, Cs = =2.
With respect to the cutter envelope, the simplest coeffi-
cients are found for the cylindrical end mill, where
Al = Az =d, Bl = Bz = a/COSlo, A3 = B3 = 0, and a is
the cutting depth used in the milling tests. Substituting
these constants into Egs. (20) and (21), the same
expressions for K. are obtained as in Ref. [5], whereas
K differ by a factor cosiy due to the helix angle.

5. Simulation and experimental results
5.1. Simulations

The derived expressions for the specific cutting and
edge force coefficients were first verified using simu-
lated data generated by numerical integration of
Eq. (12). The coefficients used in the simulations were
calculated from the orthogonal database for a TigAlyV
titanium alloy provided in Refs. [5,10]. The simulations
were performed for various cutter geometries covering
all three zones of the cutter envelope. In the following,
the results are presented for cylindrical, ball, and gen-
eral end mills (Table 1).

5.1.1. Cylindrical end mill

Envelope of the cylindrical end mill has only the
taper zone for which the geometric constants are given
by Eq. (A.8). The average cutting forces per tooth were
evaluated for a set of five feeds s =
{0.04, 0.08, 0.12, 0.16, 0.2} mm/tooth at the cutting
depth a=4 mm. The theoretical coefficients K.
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Table 1

Geometry of end mills used in simulations. o, denotes the rake angle

End mill D (mm) R (mm) R, (mm) R. (mm) o (%) B() H (mm) N 1) o ()
Cylindrical 8 0 4 0 0 0 20 2 45 0
Ball 8 4 0 4 0 0 20 2 20 12
General 8 2.8 1.6 3.5 20 10 20 2 30 10

predicted from the orthogonal database and used in the
numerical integration depend on the instantaneous
undeformed chip thickness s which varies with immer-
sion angle (Eq. (7)). As a consequence, the predicted
K. also vary with h. However, the estimated K. are
constant and represent the average coefficients needed
to generate the average cutting force observed. In order
to be able to reliably verify the derived formulae for
the coefficients, two numerical experiments were carried
out. In the first, the theoretical K. were kept constant
at the average of the predicted values for the five feeds
considered, whereas in the second experiment, the
theoretical K. were allowed to vary with undeformed
chip thickness. The specific edge force coefficients
remained constant for all simulations, K.=
[24,43, —3] N/mm.

The estimated coefficients K. and K. from the two
numerical experiments are listed in Tables 2 and 3 for
up- and down-milling at various radial immersions. In
the case of constant coefficients (Table 2), the agree-
ment between the theoretical and estimated values is
excellent for all radial immersions considered. Also
shown in Table 2 are the edge coefficients obtained
when neglecting the helix angle. As expected, the coeffi-
cients are overestimated by a factor of 1/cosiy = /2.

Table 3 shows the estimates in the case of variable
theoretical K, which is a more realistic example. The
estimated K. for different radial immersions are very
similar, although they tend to decrease slightly as the
radial immersion decreases. The estimated K. are
reasonably close to the corresponding theoretical
values, whereby the tangential and axial coefficients are
over- and underestimated, respectively. Again, neglect-
ing the helix angle increases the estimated K by a fac-

tor of v/2.

Table 2

To examine the effect of deviations in the estimated
K. on cutting force prediction, the forces in 50%
down-milling were predicted using the theoretical vari-
able coefficients and the coefficients obtained from 10%
up-milling tests. The resulting force traces (Fig. 3) are
practically indistinguishable what indicates that the
deviations in K. and K, observed in Table 3 are negli-
gible. Also shown in Fig. 3 are the predictions achieved
using the zero-helix edge coefficients, K.o. While the
predicted and theoretical force traces match qualitat-
ively, differences are observed in the amplitudes of F,
and F).

5.1.2. Ball end mill

Envelope of the ball end mill consists of the arc and
taper zones (Table 1). In contrast to the cone and taper
zones, axial immersion angle x within the arc zone var-
ies along the cutter axis. Since the specific cutting force
coefficients depend on k, a series of cutting depths has
to be considered in experiments for the variation of K
with x to be determined. For this purpose, the cutting
depths from 0.04 to 5.0 mm at 0.04 mm increments
were used in the simulations. For ¢ < 4 mm, only the
arc zone of the mill is engaged in the cut, while for
4 < a < 5 mm, the entire arc zone and part of the taper
zone are cutting. The average cutting forces per tooth
were calculated for the same set of feeds as for the cyl-
indrical end mill.

Fig. 4 shows the variation of the estimated K. and
K with cutting depth for down-milling tests at various
radial immersions. The results for up-milling are simi-
lar. The tangential and radial cutting force coefficients
increase slightly after an initial decrease, whereas the
axial cutting force coefficient increases monotonously
and significantly. As expected, K. reach their limit

Estimated K. (in N/mm?) and K. (in N/mm) for the cylindrical end mill using constant theoretical K. = (1844.1, 513.0, 1118.7] N/mm2 (see

text). Ko are obtained for 19 = 0

Immersion ch Krc ch Ktc Krc ]<ac ch,O ]<rc,0 Kac,O
100% 1844.1 513.0 1118.7 24.0 43.0 -3.0 33.9 60.8 —4.2
50%-down 1843.9 512.8 1118.5 24.0 43.0 -3.0 33.9 60.8 —4.2
50%-up 1844.4 512.9 1118.9 24.0 43.0 -3.0 33.9 60.8 —4.2
25%-down 1844.5 513.3 1119.0 24.0 43.0 -3.0 33.9 60.8 —4.2
25%-up 1844.0 513.0 1118.6 24.0 43.0 -3.0 33.9 60.8 —4.2
10%-down 1844.4 513.2 1118.9 24.0 43.0 -3.0 339 60.8 —4.2
10%-up 1843.9 513.0 1118.6 24.0 43.0 -3.0 33.9 60.8 —4.2
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Table 3

Estimated K. (in N/mmz) and K (in N/mm) for the cylindrical end mill using variable theoretical K. (see text). K are obtained for 19 = 0
Immersion ch Krc Kac ch Krc Kac ch,O Krc<0 Kac,O
100% 1799.9 500.7 1087.3 26.6 43.7 -1.1 37.6 61.8 -1.6
50%-down 1789.3 509.8 1087.1 27.4 43.2 -1.1 38.8 61.1 -1.6
50%-up 1796.1 487.2 1087.5 27.0 44.6 -1.1 38.2 63.0 -1.6
25%-down 1763.0 493.8 1070.4 28.3 44.1 —0.5 40.0 62.4 -0.7
25%-up 1764.2 487.6 1070.1 28.2 443 -0.5 39.9 62.6 —0.7
10%-down 1745.5 481.3 1058.6 28.6 44.5 -0.2 40.5 62.9 -0.3
10%-up 1742.8 489.2 1058.3 28.7 44.1 -0.2 40.6 62.4 —-0.3

value at the end of the arc zone, a = R, and remain
constant in the taper zone, a > R. Also shown in Fig. 4
are the average theoretical K. at s, = 0.12 mm/tooth,
evaluated as suggested in Ref. [10]. The agreement
between the estimated and theoretical K is reasonable
for the tangential and radial coefficients and very good
for the axial coefficient. Overall, the estimates obtained
using different radial immersions agree well. For
a < 0.3 mm, smaller radial immersions yield larger
coefficients than larger immersions, while for
a > 0.3 mm, the situation is reversed. The largest
deviations between the estimates of different immer-
sions are observed for K., and lie within +6% around
the mean value. The estimated specific edge force coef-
ficients also vary a little with cutting depth and radial
immersion, but nevertheless remain close to the con-
stant theoretical values.

In Fig. 5, the predicted cutting force traces are com-
pared for 50% down-milling at @ = 0.2 and 4.5 mm.
The predictions were made using the theoretical vari-
able coefficients and those estimated from 10% down-
milling tests. At @ = 0.2 mm, the predicted forces agree
very well, despite differences between the theoretical
average and estimated coefficients. The agreement of
the predictions for a = 4.5 mm is even better.

5.1.3. General end mill
For the last simulation example, a general end mill
with all three zones was devised (Table 1), with 20 mm

1000
800
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200

Cutting forces [N]

—200

—400
0 60 120 180 240 300 360

Rotation angle [deg]

Fig. 3. Comparison of cutting forces for down-milling with the cyl-
indrical end mill; 50% radial immersion, s = 0.1 mm/tooth,
a =4 mm. Lines: predicted using the theoretical coefficients (thin
solid), the coefficients estimated from 10% up-milling tests (thick
dashed), same as the latter, but with K (thick solid).

constant lead in the taper zone. Since the specific cut-
ting force coefficients are constant in the cone and
taper zones, if suffices to identify their values at one
cutting depth per zone. In the arc zone, the coefficients
vary with axial immersion so that they have to be
determined at a series of cutting depths. The same set
of feeds as for the first two examples was used.

Fig. 6 shows the estimates of K. and K, from up-
milling tests at various radial immersions. As expected,
the cutting force coefficients are constant within the
cone and taper zones, and vary monotonously within
the arc zone. Rather abrupt changes of K. values are
observed at the transitions between the cutter zones.
The estimates obtained at the various radial immer-
sions agree well. Again, the specific edge force coeffi-
cients are overestimated and vary with cutting depth
within the arc zone, but their values are still reasonably
near the constant theoretical values.

Finally, the cutting forces for 50% up-milling were
predicted using the theoretical and estimated coeffi-
cients (10% up-milling). The cutting depth was set to 4
mm so that all three cutter zones were engaged in the
cut. The predicted forces from both sets of coefficients
are practically indistinguishable (Fig. 7).

5.2. Experiments

For experimental verification of the derived formulae
for the specific cutting and edge force coefficients, cyl-
indrical, bull nose, and ball end mills were employed
(Table 4). In order to avoid excessive vibration, short
mills were used, with overhang to diameter ratio of 4.
The workpieces made of aluminum alloy AIMgSi0.5
were machined on a CNC milling center. The cutting
forces in the feed, normal, and axial direction were
measured by a three-component dynamometer. The
signals were low-pass filtered with a cut off frequency
of 1 kHz, and sampled at a frequency of 50 kHz. For
all experiments, spindle speed was held constant at
4000 rpm, and minimal quantity lubrication was used.

5.2.1. Cylindrical end mill
Specific cutting and edge force coefficients were esti-
mated from 100%, 50%, and 25% radial immersion up-
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milling tests at a cutting depth ¢ =2 mm and feeds
st = {0.08, 0.10, 0.12, 0.14, 0.16} mm/tooth. The
tests were repeated four times at each combination of
cutting parameters. The mean estimates of K. and K,
are listed in Table 5. The specific cutting force coeffi-
cients K. obtained from different radial immersions
agree well. K. increases slightly with decreasing immer-
sion, while no such trend is observed for K. and K.
The tangential and radial edge force coefficients, K.
and K., decrease markedly as immersion decreases,
whereas K, remains unchanged.

Fig. 8 shows the average measured and predicted
cutting force traces for one cutter revolution during
50% up-milling. The average measured traces were
averaged over more than 100 cutter revolutions. The
predictions and measurements agree very well. A dis-
crepancy is observed mainly in the feed force, F,,
where the larger K. values estimated from the tests at
lower immersions result in smaller force amplitude.
Also contributing to the discrepancy between the pre-
dicted and measured forces is the cutter runout. A
detailed inspection of the measured forces reveals that
the force traces corresponding to engagement of the
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individual cutting edges differ, what indicates that the
two edges are not identical. Also note that the mea-
sured forces do not vanish during the non-cutting por-
tion of the cutter revolution period, but fluctuate
around zero. Regardless of their cause, these fluctua-
tions affect the mean forces per tooth period and thus
distort the estimates of specific force coefficients
obtained from milling tests at partial radial immer-
sions.

Cutting forces [N]

0 60 120 180 240 300 360
Rotation angle [deg]

Fig. 7. Comparison of cutting forces for up-milling with the general
end mill; 50% radial immersion, s = 0.1 mm/tooth, a =4 mm.
Lines: predicted using the theoretical coefficients (thin solid) and
coefficients estimated from 10% up-milling tests (thick dashed).

5.2.2. Bull nose end mill

The envelope of the bull nose end mill has two zones,
arc and taper. In order to estimate the variation of the
specific force coefficients within the arc zone, milling
tests were conducted at depths « = {0.1, 0.2, 0.44,
0.75, 1.11, 1.5} mm. Except for «=0.1 mm, the
depths were chosen such that the increments of the axial
immersion angle x were constant. In the taper zone,
a=1.75and 2 mm were selected. The feeds s =
{0.08, 0.1, 0.12, 0.14, 0.16} mm/tooth were used in
both zones. Full immersion and 50% radial
immersion up-milling tests were repeated four times
at each depth and feed. In the taper zone, however,
the full immersion tests were plagued by chatter so
that the coefficients were estimated only from the
half-immersion  tests. Individual estimates were
obtained for each of the four repeated tests separ-
ately, whereas the average coefficient was estimated
by combining the average forces per tooth from all
four tests. The results are summarized in Fig. 9.
As expected, the estimated specific cutting force
coefficients K vary significantly with cutting depth. K.
and K. decrease at small depths and increase
towards the end of the arc zone, while K,. increases
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Table 4

Geometry of end mills used in experiments

End mill D (mm) R (mm) R, (mm) R. (mm) a () B() H (mm) N© 10 ()
Cylindrical 8 0 4 0 0 0 20 2 45
Bull nose 10 1.5 3.5 1.5 0 0 16 2 30
Ball 8 4 0 4 0 0 20 2 30
Table 5

Estimated K. (in N/mmz) and K, (in N/mm) for the cylindrical end mill

Immersion K Ko K. K Kie K
100% 561.2 204.3 194.4 16.2 6.7 22
50%-up 617.2 235.8 188.3 9.3 1.8 2.4
25%-up 644.5 209.7 196.3 4.2 0.7 2.0

monotonously. In the taper zone, K. are approxi-
mately constant. The specific edge force coefficients
K. exhibit much less variation with cutting depth
than K, although a distinct change of K. and K is
observed between the two zones. The estimates from
100% to 50% immersion tests agree well, except for
a = 0.1 mm, where the estimate of K. from the 100%
immersion test is much lower than that from the 50%
immersion. It can also be observed that scatter of the
individual estimates is more pronounced at small
depths and it is on average larger for the 50% than
for the 100% immersion tests.

In order to enable prediction of cutting forces at
depth increments other than those considered in the
experiments, the estimated dependence of the average
coefficients on cutting depth was approximated by a
4th order polynomial. Examples of predicted force tra-
ces using the two sets of estimated coefficients are
shown in Fig. 10 for 100% and 50% up-milling at
a=0.75 mm. The predicted traces are very similar
what confirms that the two sets of coefficients are
practically equivalent. Also shown in Fig. 10 are the
average measured force traces. The predictions and

@ 2 @
3 3 3

Cutting forces [N]
<

Loy
SIS
S o

-150

180
Rotation angle [deg]

Fig. 8. Comparison of cutting forces for up-milling with the cylin-
drical end mill; 50% radial immersion, s = 0.14 mm/tooth,
a=2.0 mm. Lines: measured forces (thin solid), predicted forces
using coefficients estimated from 100% (thick solid), 50% (thick
dashed), and 25% (thick dash-dotted) up-milling tests.

measurements agree quite well. The discrepancies
observed are mainly due to the cutter runout.

5.2.3. Ball end mill

The ball end mill envelope is also composed of the
arc and taper zones. Experiments with 50% radial
immersion down-milling were carried out at a series of
11 depths a={0.14, 0.3, 0.54, 0.83, 1.17, 1.56, 2,
2.47, 2.96, 3.48, 4} mm within the arc zone, and at
a = 4.4 mm in the taper zone. The selected depths from
0.14 mm onwards correspond to constant increments
of the axial immersion angle x in the arc zone. The
feeds were s; = {0.08, 0.1, 0.12, 0.14} mm/tooth. The
tests were repeated five times at each cutting depth and
feed. The individual and mean estimates of the specific
force coefficients are shown in Fig. 11. Again, the spe-
cific cutting force coefficients vary significantly with
cutting depth. The initial decrease of K. and K. at
small cutting depths is followed by a gradual increase
of their values towards the end of the arc zone,
whereas K,. increases monotonously throughout the
entire arc zone. Despite some local distortions, the
average dependencies of K. on cutting depth are quali-
tatively in good agreement with those obtained from
the simulations (Fig. 4). As expected, no systematic
variations of the specific edge force coefficients are
observed so that K. can be considered practically con-
stant.

The estimated dependence of specific force coeffi-
cients on cutting depth was approximated by a 4th
order polynomial which was then used in predicting the
cutting forces. The predictions and measurements are
compared in Fig. 12 for a = 0.54, 2, and 4 mm. Apart
from the cutter runout, the predicted and average mea-
sured force traces agree very well. The effect of runout
is most expressive in the feed force F, trace at
a = 0.54 mm, and it appears to diminish at larger cut-
ting depths. Note that the discrepancy between the pre-
dicted and measured axial forces F. grows with cutting
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Fig. 10. Comparison of cutting forces for up-milling with the bull
nose end mill; 100% (top panel) and 50% radial immersion,
sy = 0.14 mm/tooth, @« =0.75 mm. Lines: measured forces (thin
solid), predicted forces using coefficients estimated from 100% (thick
solid) and 50% up-milling tests (thick dashed).

depth. This is presumably caused by the cutter and
workpiece—dynamometer vibrations which have the
strongest effect on F, since its amplitude is relatively
small. Cutting forces predicted using constant specific
force coefficients obtained from the tests at a =
0.54 mm are also shown in Fig. 12. These predictions
agree well with the measured forces only at depths
close to @ = 0.54 mm. The more the depth used in pre-
dictions differs from the depth used to estimate the
constant coefficients, the larger the discrepancy
between the predicted and measured forces. As noted
already in Ref. [10], if the variable specific force coeffi-
cients are not available, the constant coefficients esti-
mated at the half of the arc zone should provide
reasonable predictions across the entire arc zone.

6. Conclusions

The expressions for semi-empirical mechanis-
tic identification of specific cutting and edge force
coefficients for a general helical end mill from milling
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tests at an arbitrary radial immersion were presented in
the paper. The expressions are based on the commonly
used mechanistic cutting force model which describes
the total cutting force as a sum of the cutting (shear-
ing) and edge (ploughing) forces. The outer geometry
of the end mill was described by a generalized math-
ematical model. Derivation of the analytical expres-
sions for the average cutting forces per tooth period
followed the procedure proposed in Ref. [5]. The pro-
cedure was improved by considering non-zero helix
angle in evaluation of the average edge forces.
By equating the analytical and measured average
forces, expressions for the specific cutting and edge
force coefficients were obtained. In these expressions,
the end mill geometry and the radial immersion con-
ditions are represented by six and five constants,
respectively. The constants can be evaluated analyti-
cally for all non-helical and almost all helical end mills
modelled. The exception are the rounded helical mills,
for which three geometric constants have to be calcu-
lated numerically.

The derived expressions were verified by simulations
and experiments involving various end mill shapes and
radial immersions. The simulation examples confirmed
validity of the expressions and also showed that taking
non-zero helix angle into account improves the esti-
mates of the edge force coefficients. The experimental
examples revealed that milling tests at various radial
immersions can result in moderately different estimates
of the force coefficients. The main reason for the devia-
tions appear to be the fluctuations of the cutting forces
recorded in the non-cutting portions of the tool revol-
ution period in partial immersion milling where no
tool-workpiece contact is expected and the cutting
forces should be zero. The fluctuations were probably
caused by tool and/or workpiece-dynamometer vibra-
tions, they had much smaller amplitude than the forces
during cutting, and were therefore insignificant in the
full immersion milling. However, full immersion mill-
ing is more vulnerable to chatter vibrations so that in
cases when variation of the coefficients with axial
immersion angle is to be determined, partial radial
immersions may be the only alternative.
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The main contributions of this paper can be sum-
marized as: (1) the expressions for the semi-empirical
mechanistic identification of the specific cutting and
edge force coefficients were derived for a general end
mill. This extends the applicability of the identification
method from the geometrically simplest, cylindrical end
mill to a variety of end mill shapes describable by the
employed generalized mathematical model, such as
ball, bull nose, taper, taper ball, etc. (2) The derived
expressions take non-zero helix angle into account
which significantly improves the estimates of the edge
force coefficients. (3) The milling tests required by the
procedure can be conducted at an arbitrary radial
immersion for any cutter geometry considered.

Acknowledgements

JG gratefully acknowledges the support of the
Alexander von Humboldt Foundation.

Appendix A. Geometric constants for the cutter
zones

The geometric constants A4, and B, are defined by
Eq. (16) which is repeated here for convenience:

22 22 22
A = J dz, 4, = J sink(z)dz, Az = J cosk(z)dz,
z z 1

(A.la)

22

Z)

sink(z)dS(z), By :J_ cosk(z)dS(z).

21

Blzjde(z), B, :J

21

(A.1b)

The expressions for A, and B, in the three cutter zones
are given in the following.

A.1. Cone zone, z < M.

The differential edge length is:
dz

dS(z) = coslgsing (A-2)

The geometric constants are:

Ay =z|2, Ay=sina-z|?, A3 =cosu-z|2, (A.3a)

1 1 -
B1:7~'2|2a BZZ 'Z|if7 = Ctg(x : |:?

cosigsino - cosly - cosyy -
(A.3b)

A.2. Arc zone, M, < z < N,
The differential edge length is:
1

ds(z) = dZ\/tan210< +VvI1— E2) T (A4)

with E(z) = (R. —z)/R. The geometric constants
are:
Al - :Zlv

)

R . 2
Ay = — 3 (Evl — E2 + arcsmE)

1 72
Ay =—(Rz—-=
: R( - 2>

22

Bl — d# <+\/1-1—E> !

22

, (A.5a)

21

1-EY

Z1

Z)
B, = dZ\/tan210< +VI-F >(1—E2) +1,

Z1

- E2
(A.5b)

The integrals for B, have to be evaluated numeri-
cally. In the case of non-helical ball end mill, 1y =0,

B, — ‘Edz\/tan%o( +\/1—E2>

21
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the differential edge length is dS(z) = dz/V'1 — E2, and
B, can be determined analytically:

Bi = —RarcsinE|, By=z|2, By=RVI—E?| . (A.6)
21

A.3. Taper zone, N, < z

If the cutter is ground with constant helix angle i
and variable lead L, the differential edge length is

dz

dS(z) =——. A7
) cosipcosf (A7)

The geometric constants are:
Ay =z|2, Ay=cosf-z|Z, A3=sinfi-z|2, (A.8a)

1 - 1 , tan -
31:7'Z|;;, D = . |;T’ 3 = ﬁ |ZT
cosipcosf COoS1g COSI

(A.8Db)

If the cutter is ground with constant lead L, the helix
angle 1 varies with elevation z. Denoting the nominal
helix angle by 1, the differential edge length is:

ds(z) = ng ; V(F/G)? +1, (A.9)

with F =r(z)/tanf and G = L/(2ntanf). The cutting
geometric constants A, are the same as for the constant
helix case (Eq. (A.8a)), while the edge geometric con-
stants are:

1
B, ZW<F‘/ G2+F2+Gzlog(F+ v G2+F2)>
B, =Bjcosfi, B;=Bsinf

)
)
1

(A.10)
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