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Abstract 

We introduce the Logic Foundry, a system for the rapid creation and integration of FPGA-based digital signal 

processing systems. Recognizing that some of the greatest challenges in creating FPGA-based systems occur in 

the integration of the various components, we have proposed a system that targets the following four areas of 

integration: design flow integration, component integration, platform integration, and software integration. 

Using the Logic Foundry, a system can be easily specified, and then automatically constructed and integrated 

with system level software. 

1 Introduction 

A*large number of system development and integration companies, labs, and government agencies 

(hereafter referred to as “the community”) exist that have traditionally produced digital signal processing 

applications requiring rapid development and deployment as well as ongoing design flexibility. Frequently, 

these demands are such that there is no distinction between the prototype and the “real” system. These 

applications are generally low-volume and frequently specific to defense and government requirements. This 

task has generally been performed by software applications on general-purpose computers. Often these general-

purpose solutions are not adequate for the processing requirements of the applications and the designers have 

been forced to employ solutions involving special-purpose hardware acceleration capabilities.  

These special-purpose hardware accelerators come at a significant cost. The community does not possess 

the large infrastructure or volume requirements necessary to produce or maintain special-purpose hardware. 

Additionally, the investment made in integrating special-purpose hardware makes technology migration difficult 

in an environment where utilization of leading-edge technology is critical and often pioneered. Recent 

improvements in Field Programmable Gate Array technology have made FPGA’s a viable platform for the 

development of special-purpose digital signal processing hardware [1], while still allowing design flexibility and 
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the promise of design migration to future technologies [2]. Many entities within the community are eyeing 

FPGA-based platforms as a way to provide rapidly deployable, flexible, and portable hardware solutions. 

Introducing FPGA components into DSP system implementations creates an assortment of challenges 

across system architecture and logic design. Where system architects may be available, skilled logic designers 

are a scarce resource. There is a growing need for tools to allow system architects to be able to implement 

FPGA-based platforms with limited input from logic designers.  Unfortunately, getting designs translated from 

software algorithms to hardware implementations has proven to be difficult. 

Current efforts like MATCH [3] have attempted to compile high-level languages such as MatLab directly 

into FPGA implementations. Certain tools such as C-Level Design [4] have attempted to convert “C” software 

into a hardware description language (HDL) format such as Verilog HDL or VHDL that can be processed by 

traditional FPGA design flows. Other tools use derived languages based on C such as Handel-C [5], C++ 

extensions such as SystemC [6], or Java classes such as JHDL [7]. These tools give designers the ability to more 

accurately model the parallelism offered of the underlying hardware elements. While these approaches attempt 

to raise the abstraction level for design entry, many experienced logic designers argue that these higher levels of 

abstraction do not address the underlying complexities required for efficient hardware implementations. 

Another approach has been to use “block-based design” [8] where system designers can behaviorally model 

at the system level, and then partition and map design components onto specific hardware blocks which are then 

designed to meet timing, power, and area constraints. An example of this technique is the Xilinx System 

Generator for the MathWorks Simulink Interface [9]. Using this tool, a system designer can “develop high-

performance DSP systems for Xilinx FPGA’s. Designers can design and simulate a system using MatLab, 

Simulink, and a Xilinx library of bit/cycle-true models. The tool will then automatically generate synthesizable 

Hardware Description Language (HDL) code mapped to Xilinx pre-optimized algorithms” [9]. However, this 

block-based approach still requires that the designer be intimately involved with the timing, and control aspects 

of cores in addition to being able to execute the back-end processes of the FPGA design flow. Furthermore, the 

only blocks available to the designer are the standard library of Xilinx IP Cores. Other “black-box” cores can be 

developed by a logic designer using standard HDL techniques, but these cannot currently be modeled in the 

same environment. Annapolis MicroSystems has developed a tool entitled “CoreFire” that uses pre-built blocks 

to obviate the need for the back-end processes of the FPGA design flow, but is limited in application to 

Annapolis MicroSystems hardware [10]. In both of the above cases, the system designer must still be intimate 

with the underlying hardware in order to effectively integrate the hardware into a given software environment. 
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  Some have proposed using high-level, embedded system design tools, such as Ptolemy [11], and Polis 

[12]. These tools emphasize overall system simulation and software synthesis rather than the details required in 

creating and integrating FPGA-based hardware into an existing system. An effort funded by the DARPA 

Adaptive Computing Systems (ACS) was performed by Sanders (now BAE Systems) [13] that was successful in 

transforming an SDF graph into a reasonable FPGA implementation. However, this effort was strictly limited to 

the implementation of a signal processing datapath with no provisions for runtime control of processing 

elements. Another ACS effort, Champion [14], was implemented using Khoros’s Cantata [15] as a development 

and simulation environment. This effort was also limited to datapaths without runtime control considerations. 

While datapath generation is easily scalable, control synthesis is not. Increased amounts of control will rapidly 

degrade system timing, often to the point where the design becomes unusable.  

In the brief survey above of relevant work, we have observed that while some of these efforts have focused 

on the design of FPGA-based DSP processing systems, there has been less work in the area of implementing and 

integrating these designs into existing software application environments. Typically a specific hardware 

platform has been targeted and integration into this platform is left as a task for the user. Software front-ends are 

generally designed on an application-by-application basis and for specific software environments. Because the 

community requirements are often rapidly changing and increasing in complexity, it is necessary for any 

solution to be rapidly designed and modified, portable to the latest, most powerful processing platform, and 

easily integrated into a variety of front-end software application environments.  In other words, in addition to the 

challenge of creating an FPGA-based DSP design, there is another great challenge in implementing that design 

and integrating it into a working software application environment. 

To help address this challenge we have created the “Logic Foundry”. The Logic Foundry uses a “platform-

based” design approach. Platform-based design starts at the system level and “achieves its high productivity 

through extensive, planned design reuse … productivity is increased by using predictable, pre-verified blocks 

that have standardized interfaces” [8]. To facilitate the rapid implementation and deployment of these platform-

based designs, we have identified four areas of integration as targets for improvement in a rapid prototyping 

environment for digital signal processing systems. These four areas are design flow integration, component 

integration, platform integration, and software integration. 

Design Flow Integration - In addition to standardized component development methodologies [16][17], 

we have also proposed that these pre-verified blocks, be assembled with all the information required for back-

end FPGA design automation. This will allow logic designers to “integrate” the FPGA design flow into their 
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components. With tools we have developed as part of the Logic Foundry, a system designer can perform back-

end FPGA processing automatically without any involvement with the technical details of timing and layout. 

Component Integration - We have proposed that any of the aforementioned pre-verified blocks, or 

components, that are presented to the high level system designer should consist of standardized interfaces that 

we call portals. Portals are made up of a collection of data and control pins that can be automatically connected 

by the Logic Foundry while protecting all timing concerns. The Logic Foundry was built with the requirement 

that it had to handle run-time control of its components; therefore we have designed a control portal that can 

scale easily with the number of components in the system without adversely affecting overall system timing.  

Platform Integration - With the continuing gains in hardware performance, faster FPGA platforms are 

continually being developed. These platforms are often quite different than the current generation platforms. 

This can cause portability problems if the unique platform interface details have been tied deeply into the FPGA 

design (e.g., memory latency). Additionally, underlying FPGA technology changes (for example, from Altera to 

Xilinx) can easily break former FPGA designs.  Because of the community’s need to frequently upgrade to the 

latest, most powerful hardware platforms, Logic Foundry components are developed in a platform independent 

manner. By providing abstract interface portals for system input/output, and memory accesses, designs can be 

easily mapped into most platform architectures. 

Software Integration - In addition to the hardware portability challenges, software faces the same issues as 

unique driver calls and system access methodologies become embedded deeply in the software application 

program. This can require an application program to be substantially rewritten for a new FPGA platform. It is 

also desirable to be able to make use of the same FPGA acceleration platform from different software 

environments such as Python, straight C code, MATLAB, or Midas 2k [18] (a software system developed by 

Rincon Research for digital signal processing). For example, the same application could be used in a fielded 

Midas 2k application as a researcher would access in a MATLAB simulation. Porting the application amongst 

the various environments can be a difficult endeavor. In order to accommodate a wide variety of software front-

ends, the Logic Foundry isolates front-end software applications environments and back-end processing 

environments through a standardized API. While other tools such as Handel-C and JHDL provide and API that 

allows software to abstractly interact with the I/O interfaces, the application must still be aware of internal 

hardware details. Our API, known as the DynamO API, provides dynamic object creation for the software front-

end that completely encapsulates both I/O details and component control parameters such register addresses and 
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control protocols. Using the DynamO object and API, an application programmer interacts solely with the 

conceptual objects provided by the logic designer. 

Each area of integration in the Logic Foundry can be used independently. While the Logic Foundry 

provides easy linkages between all areas, a user might make use of but one area, allowing the Logic Foundry to 

be adopted incrementally throughout the community. For clarity, we will begin the Logic Foundry discussion 

with a design example, explaining how the design would be implemented in an FPGA, and then how a software 

system might make use of the hardware implementation. Section 2 introduces this design that will serve as an 

example throughout the paper. Sections 3 through 6 detail the four areas of integration, and how they are 

addressed by the Logic Foundry design environment. 

2 Design Example 

For an FPGA-based system example, we examine a signal processing system that contains a 

Tune/Filter/Decimate (TFD) process being performed in a general-purpose computer (see Figure 1). The TFD is 

a standard digital signal processing technique used to downconvert a tuned signal to baseband and often 

implemented in FPGA’s [19].  

 

Figure 1: Tune/Filter/Decimate 

We would like to move the TFD functionality to an FPGA platform for processing acceleration. Inside the 

FPGA, the TFD block will be made up of three cores, a tuner with a modifiable frequency parameter, a FIR 

filter with reloadable taps, and a decimator with a modifiable decimation amount. The tuner core will contain a 

numerically controlled oscillator (NCO) core as well.  The TFD will be required to interface to streaming inputs 

and streaming outputs that  themselves interface via the pins of the FPGA to the general-purpose host computer. 

The system will stream data through the TFD in blocks of potentially varying size. While this is occurring, 

the system may dynamically change the tune frequency, filter taps, or decimation value in both a data-
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asynchronous and data-synchronous manner. We define a data-asynchronous parameter access as a parameter 

access that occurs at an indeterminate point in the data stream. A data-synchronous parameter access occurs at a 

determinate point in a data stream. 

  The output of the TFD will be read into a general-purpose computer where software will pass the result on 

to other processes such as a demodulator. We would like to input the data from either the general-purpose 

computer or from an external I/O port on the FPGA platform. Rather than have a run-time configurable option, 

we would like to be able to quickly make two different FPGA images for each case. 

In our example, we assume that we will be using an Annapolis MicroSystems Starfire [20] card as an FPGA 

platform. This card has one Xilinx FPGA, plugs into a PCI bus, and is delivered with software drivers. Our 

systems application software will be Midas 2k [18]. 

3 Design Flow Integration 

An FPGA design flow is the process of turning an FPGA design description into a correctly timed image 

file with which to program the FPGA. Implementing a design on an FPGA requires that (typically) a design be 

constructed in a hardware description language (HDL) such as Verilog HDL or VHDL. This must be done by a 

uniquely skilled logic designer who is generally not as involved in the system design process. It is important to 

note that often, due to the difference in resources between FPGA’s and general-purpose processors, the realized 

algorithm on an FPGA may be quite different than the algorithm originally specified by the system designer.  

While many languages are being proposed as system design languages (among them C++, Java, and 

MATLAB), none of these languages perform this algorithmic translation step. A common belief in the industry 

is that there will always be a place for the expert in the construction of FPGA’s [21]. While an expert may be 

required for optimal design entry, many mundane tasks are performed in the design process using a unique set of 

Electronic Design Automation (EDA) tools. It is desirable to automate many of these steps without inhibiting 

the abilities of the skilled logic designer. 

3.1 MEADE  

To more efficiently integrate FPGA designs into a user defined EDA tool flow, we have developed 

MEADE – the Modular, Extensible, Adaptable Design Environment [22,23]. MEADE has been implemented in 

Perl because of its widespread use in the community and dominant success as a glue language and text parser, 

two requirements for an integration framework for FPGA design flows. 
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MEADE requires users to specify a node to represent a design “building block.” A node can be a small 

function such as an adder, or a large design like a Turbo-Decoder. Furthermore, nodes can be connected to other 

nodes or contain other nodes, allowing for design reuse and large system definitions.  In the TFD example, 

nodes exist for the TFD, the tuner, the filter, the decimator, and the NCO within the tuner (see Figure 2). 

 

Figure 2: MEADE Node Structure for the Tune/Filter/Decimate 

MEADE nodes are directory structures with an accompanying database that fully describes the aspects of 

the node.  The database is contained in a .meade subdirectory via persistent Perl objects [24]. The database 

includes information about node elements such as HDL models and testbenches, target and included libraries, 

and included packages.  This information includes file location, any node children, and special “blackboards” 

that can be written and read by MEADE components for extensible requirements. 

MEADE nodes also provide the ability to specify unique ‘builds’ within a given node. Using the build 

mechanism, a node can be delivered with Verilog HDL, VHDL, and SystemC implementations, or with generic, 

Xilinx, or Altera implementations. These builds can easily be specified by a top level so that if an Altera build is 

desired, the top node specifies the Altera build, and then any build that has an Altera option uses its custom 

Altera elements. Those elements that are generic continue to be used.  

To manipulate the nodes and node information, MEADE contains an extensible set of MEADE procedures, 

actions, and agents. MEADE procedures are sequences of MEADE actions. A MEADE action can be 

performed by one or more MEADE agents. These agents are used to either perform specific design flow tasks or 

encapsulate EDA tools. For example, a “Simulation” procedure can be defined that has a sequence of actions – 

“Make”, “Debug Setup”, “Simulate”, “Debug” and “Output Comparison” (see Figure 3). If a design house has 

multiple different simulators, such as Mentor Graphics ModelSim or Cadence NC-Sim, or third party debuggers 

such as Novas Debussy, an agent for each simulator exists and is selectable by the user at run-time. The same 

holds true for any other tools (analysis, synthesis, etc.).  We have currently implemented simulation agents for 
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Mentor Graphics ModelSim simulator, analysis agents for ModelSim and Novas’ Debussy debugger, and 

synthesis agents for Synplify’s Synplicity synthesis tool. 

 

Figure 3: The MEADE Simulate Procedure 

MEADE provides node generation procedures that construct standard nodes with HDL templates for the 

design and testbenches. To accommodate rapid testbench construction, MEADE employs a client/server 

testbench model [25] and supplies a group of test modules for interfacing to HDL debuggers. Design flow 

scripting is typically automated by MEADE, but custom tool scripts can be designed by the node designer. This 

information is localized to the node being designed, by the designer building the node. When used in a larger 

system, the system designer does not need to know the information required to build a sub-node, as that 

information is automatically acquired from the sub-node by MEADE. This feature makes MEADE nodes very 

usable as methods of IP transfer between different design groups using MEADE.  

3.2 EP3 

While most of the flow management in MEADE can be done by tracking files and data through the 

MEADE agents, some processes require that files be manipulated in unique and complex manners. Additionally, 

this manipulation is not always desirable to be done in the background in the event that the core designer may 

have expert custom tailoring that the agent designer cannot anticipate. In these instances, we have found that a 

preprocessor step is an excellent option for many of the detailed MEADE files.  

The advantage to using a preprocessor rather than a code generation program is that it gives the HDL 

designer the ability to use automation where wanted, but the freedom to enter absolute specifications at will. 

This is an important feature when developing sophisticated systems as the designer typically ventures into areas 

that the tool programmer had not thought of. Traditional preprocessors come with a limited set of directives, 

making some file manipulations hard or impossible. To this end we developed the extensible Perl pre-processor 
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(EP3) [26]. EP3 enables a designer to create their own directives and embed the power of the Perl language into 

all of their files – linking them with the node and enabling MEADE to dynamically create files for its processes. 

Because it is a preprocessor rather than an explicit file manipulator, the designer can easily and selectively enact 

or eliminate special preprocessing directives in choice files for specific agents. 

Originally, EP3 was designed as a Verilog HDL preprocessor, but as it was developed, we decided that it 

should be simply an extensible standard preprocessor with the ability to dynamically include directive modules 

(for Verilog HDL, VHDL, etc.) at compile time or in the middle of a run. EP3 scans a file, looks for directives, 

strips off the delimiter, and then calls a function of the same name. The standard directives are defined within 

the EP3 program. Library-directives or user-defined directives may be loaded as Perl modules via a command 

line switch for inclusion at the beginning of the EP3 run. Perl subroutines (and hence EP3 directives) may be 

dynamically included during the EP3 run by simply including the subroutine in the text of the file to be 

preprocessed. 

EP3 has been extended to not only parse files, but to read in specification files, build large tables of 

information, and subsequently do dynamic code construction based on the information. This allows for a simple 

template file to create a very complex HDL description with component instantiations and interconnections 

done automatically and with error checking. 

3.3 Design Flow Integration Example 

Consider the construction of the NCO node in the TFD example. We begin by first creating a MEADE node 

with the command: meade node NCO.  This creates a directory entitled NCO. Inside of this directory, src 

and sim subdirectories are created. Template source files (NCO.ep3, NCO_pkg.ep3, and NCO_tb.ep3) 

are copied from the global MEADE configuration space and modified with the new node name NCO.  Element 

objects for each of these files are automatically created in the node’s database. The database would also be 

populated with a target compilation library for the node and a standard build. The package file includes the 

VHDL component specification for this entity – this definition is automatically included in the design file and 

the testbench automatically by EP3 so that component specifications can be entered once rather than the several 

times standard HDL entry requires. The testbench file includes modules that provide system and data clocks, 

resets, and interfaces to debuggers in a format for run-time configuration by the MEADE simulation agents.  

After editing the files to create the desired VHDL component, the command meade make will invoke the 

EP3 agent to run EP3 on the files and produce the output files NCO.vhd, NCO_pkg.vhd, and 
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NCO_tb.vhd. The make procedure is often a subset of other procedures and does not necessarily have to be 

run independently. Entering the command meade sim will execute the default simulator, MentorGraphics’ 

ModelSim. This involves the creation of a modelsim.ini file that provides linkages to all required 

simulation libraries. In a low-level node such as this one, there are few libraries – however, all of the MEADE 

support modules that are included in the testbench have their libraries automatically included in the 

modelsim.ini file at this time. The command line (which can be quite extensive) is formed for the 

appropriate options and the simulation is run. There are many options that can be handled by the simulation 

agent, such as whether or not the simulation is to be interactive or batch mode, which debugger format is to be 

used for data dumps, and simulation frequency to name a few. Simulation output is directed to an appropriate 

text output files or simulation dump files and managed for the user as are any simulation make files that are 

created to avoid excessive recompiles.  Using similar procedures in MEADE, the node can be run through a 

debugger (meade analyze), or synthesized to a structural netlist (meade synthesize). 

Using MEADE, designers who may be either learning a hardware description language or unfamiliar with 

the nuances of many of the tools are able to effectively construct and debug designs. MEADE has been used 

successfully to automate mundane aspects of the design flow in many applications, including HDL file 

generation and manipulation, generation of simulation, analysis, and synthesis configuration files, tool 

invocation, and design file management. Admittedly, some designers find tool encapsulation intrusive and 

would rather work outside of MEADE when developing cores. In these cases, a finished design can be 

encapsulated by MEADE in a relatively simple manner. 

Upon node completion, everything about the node is encapsulated in the MEADE database. This includes 

such features as which files required for simulation, which files are required for synthesis, required simulation 

libraries and simulation target libraries, and any sub-nodes that may be required by the node. When the tuner 

component is constructed, a child reference to the NCO node is simply included in tuner’s required element 

files. When any MEADE operations are performed on the tuner node, all tool files and command lines are 

automatically constructed to include the directions specified in the NCO node.  

4 Component Integration 

One of the challenges in rapidly creating FPGA-based systems is effective design reuse. Many designers 

find it preferable to redesign a component rather than invest the time required to effectively integrate a 

previously designed component. As integration is typically done in the realm of the logic designer, a system 
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designer cannot prototype a system without requiring the detailed skills of the logic designer. The Logic 

Foundry provides a component abstraction that makes component integration efficient and provides MEADE 

constructs that allow a system designer to create prototype systems from existing components. 

A Logic Foundry component specifies attributes and portals. If you think of a component as a black box 

containing some kind of functionality, then attributes are the lights, knobs, and switches on that box. 

Essentially, an attribute is any publicly accessible part of the component, providing state inspectors and 

behavioral controls. Portals are the elements on a component that provide interconnection to the outside and are 

made up of user-defined pins. 

4.1 The Attribute Interface 

Other attempts at component-based FPGA-based development systems have assumed that the FPGA 

implementation is simply a static data modifying piece in a processing chain [13,14]. Logic Foundry 

components are designed assuming that they will require run-time control and thus are specified as having a 

single attribute interface through which all data asynchronous control information flows. The specification of 

this interface is left as an implementation-specific detail for each platform (interface mapping to platforms is 

described in Section 5).  Each FPGA in a system has exactly one controlling attribute interface and every 

component has exactly one attribute interface. All data asynchronous communications to the components are 

done through this interface. 

An attribute interface consists of: an attribute bus, a strobe signal from the controlling attribute interface, 

and an event signal from each component. We have implemented the attribute bus with a tri-state bus that 

traverses the entire chip and connects each component’s attribute interface to the controlling attribute interface 

(see Figure 4). Because attribute accesses are relatively infrequent and asynchronous, the attribute bus uses a 

multi-cycle path to eliminate timing concerns and minimize routing resources. Using a simple incrementer 

component that has an input, an output, and a single amount attribute, we have effectively implemented a design 

for 1 incrementer, 10 serial incrementers, and 50 serial incrementers with no degradation in performance.  

Each component in a system has a unique address in the system. The controlling attribute interface decodes 

this address and enables the component via a unique strobe line from the controlling attribute interface to the 

addressed component. These strobe lines are distributed via delay chains and are also used by the components 

for attribute bus synchronization. Using delay chains costs very little in an FPGA as there are typically a large 

number of unused registers throughout a design. Data and control are multiplexed on the bus and handled by 

state machines in each component which provide address, control, and data buses inside each component. 
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Each component also has an individual event signal that is passed back to the controlling attribute interface. 

With the strobe and the event lines, communication can be initiated by each end of the system. This architecture 

elegantly handles data-asynchronous communication requirements for our FPGA-based processing systems. 

 

Figure 4: The Attribute Interface 

Consider the case in the TFD example where a user wishes to dynamically alter the decimation amount. 

With the implementation that we have developed for the Annapolis MicroSystems Starfire board, the application 

would first write the controlling attribute interface with: the component address of the decimator; the address of 

the amount register within the decimator component; the number of words in the transfer; the data to be written; 

and a control word to initiate the transfer. The controlling attribute interface then begins the process of 

transferring the data across the attribute bus using the distributed delay chain to strobe the component enable. 

When the transfer is completed, the controlling attribute interface sets a done flag in its control register and 

awaits the next transfer.  

4.2 Data Portals   

Components may have any number of input/output portals, and in a DSP system, these are generally 

characterized by a streaming data portal. Each streaming portal is implemented using a FIFO with ready and 

valid signals (see Figure 5). Using FIFO’s on the inputs and outputs of a component isolates both the input and 

the output of each cell from timing concerns as all signals going to and coming from an interface are registered. 

This allows components to be assembled in a larger system without fear of timing restrictions arising from 

component loading. 

By using FIFO’s to monitor data flow, flow control is automatically propagated throughout the system. It is 

the responsibility of every component to ensure that this behavior is followed inside the component. When an 
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interface cannot accept data, the component is responsible for stopping. If the component cannot stop, then it is 

up to the component to handle any dropped data. In our DSP environment, each data transfer represents a 

sample. By using flow control on each stream, there is no need to insert delay elements for balancing stream 

paths – synchronization is self-timed [27].  

FIFO’s are extremely easy to implement in modern FPGA’s by using the Lookup Table (LUT) as a small 

RAM component. So, rather than providing a flip-flop for each bit as a registration between components, a 

single LUT can be used and (in the case of the Xilinx Virtex part), a 16 deep FIFO is created. In the Virtex 

parts, each FIFO controller requires but 4 configurable logic blocks (CLB’s). In the larger FPGA’s that we are 

targeting, this usage of resources is barely noticeable.  Control of the FIFO is performed with simple valid and 

ready signals. Whenever both valid and ready are active, data transitions. 

 

Figure 5: Component FIFO interface 

In the TFD example, each component receives input and output FIFO’s. Note that the NCO inside of the 

tuner component is simply a MEADE node and not a component, and thus receives no FIFO’s. This allows 

logic designers to build components out of many sub-nodes, but expose only the top level component to the 

system designer. 

4.3 The Component Specification File 

A component is implemented as a MEADE node that contains a component specification file (see Figure 6: 

The Component Specification File). The component specification file describes any attributes for a component, 

as well as a component’s ports and the pins that make up those ports. In the TFD example, attributes can be 

declared of varying widths, lengths, and initial values. The attribute can be written by the system, the hardware, 

or both. Attribute addresses may be auto-generated. Because attribute ports, and streaming data in and out ports 

are standard for components, EP3 directives exist to construct these ports. However, any port type can be 

declared. 
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Figure 6: The Component Specification File 

A component’s attributes can have an open-ended number of parameters, including address, size, depth, 

initial values, and writing source (either hardware, software, or both).  

The Component specification file is included via EP3 in the component HDL specification. EP3 

automatically generates all of the attribute assignments and read statements and connects up the attribute 

interface. This has to be done in the actual HDL specification because synthesis tools require that all 

assignments to a given register occur in the same process block. Because the component author likely wants 

internal access to most of the created attributes, EP3 has to insert the system portion of the attributes in the same 

process block. This same Component specification file is ultimately parsed by the top level software to describe 

to the system the view of the component.  

It should also be noted that all attribute addresses are relative to the component. Components are 

individually addressed by the attribute interface. In this manner, multiple instances of the same component can 

easily coexist with identical attribute addresses, but different component addresses. 

4.4 Component Integration Example 

The component construction process is very similar to the node construction process described in Section 

3.3 as a component is simply a special type of MEADE node. Consider construction of the decimator 

component from the TFD example. Entering the command: meade component decimator creates a 

MEADE node entitled decimator. In addition to the node’s design and template files (which represent an 

incrementer by default), a standard component definition file is also copied into the node. This file can be edited 

to add or subtract any component attributes or portals.  

In the case of the decimator component, the definition file would not have to be altered as the stock 

definition file has an input portal, an output portal, and a single attribute entitled amount. The 
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decimator.vhd file would be edited to change the templates increment function to a decimate function. The 

portions of the template file that manage the attribute interface and portal FIFO instantiations would noarmally 

remain unaltered as they are auto-generated via EP3 directives.. 

The testbench template contains servers for the data portals as well as the attribute portal so that system 

level commands (portal writes/reads and attribute sets/gets) can be simulated easily in the testbench. While most 

of the testbench would be unaltered, the stimulus section of the testbench would be modified to make the 

appropriate attribute set/get calls and portal writes and reads. 

Performing simulation or synthesis procedures on the component node is identical to the standard MEADE 

node. This process is simplified greatly by MEADE as the FIFO interconnects, attribute interfaces, and 

testbench modules are all automatically included as child nodes by MEADE without any intervention from the 

component node designer. 

5 Platform Integration 

When designing on a particular platform, certain aspects of the component such as memory and control 

interfaces are often built into the design. This poses a difficulty in altering the design, even on the same 

platform. Changing a data source from an external source to Direct Memory Access (DMA) from the PCI bus 

could amount to a considerable design change as memory resources and data availability are considerably 

altered. This problem is exacerbated when completely changing platforms. However, as considerably better 

platforms are always being developed, it is necessary to be able to rapidly port to these platforms. 

Some work has recently been undertaken in this arena as a joint venture between Wind River with their 

Board Support Package (BSP) and Celoxica’s Platform Abstraction Layer (PAL) [28]. A similar methodology 

was undertaken by JHDL [7] with its HWSystem Class. These efforts attempt to abstract the I/O interfaces 

between a processing platform and its host software environment, allowing an application that is developed on 

one platform to be migrated to another platform. However, the issues of platform-specific I/O to destinations 

other than the host software environemnt and on-board memory interfaces are not specifically addressed. 

To combat this problem, the Logic Foundry employs an abstract portal for all design level interfaces. A 

Logic Foundry design is specified in a design node (as opposed to a component node) with abstract portals. 

Design nodes represent complete designs that are platform independent and use generic portals. Abstract portals 

are connected to component portals when building a design. These abstract portals can then be mapped to a 

specific platform portal in what we call an implementation node. This form of interface abstraction is common 
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in the design of reusable software; our contribution here is to develop its capabilities in the context of FPGA 

implementation and DSP hardware/software integration. 

5.1 Abstract Portal Types 

There are various portal types for differing needs. While new portal types can easily be developed to suit 

any given need, each abstract portal type requires a corresponding implementation portal for every platform. For 

this reason, we attempt to reuse existing portals whenever possible. We currently support three portal types: the 

Streaming Portal, the Memory Portal, and the Block Portal.  

5.1.1 The Streaming Portal 

A streaming portal is used whenever an application expects to stream data continuously. Depending on the 

implementation, this may or may not be the case (compare an A/D converter direct input to a PCI bus input that 

is buffered in memory via a DMA), but the design will be able to handle a streaming input with flow control. 

A streaming input portal consists of a data output, a data valid output, and a data ready input. The design 

deasserts the data ready flag when it cannot accept data. Whenever the valid and ready signals are asserted, data 

transitions occur across the portal. A streaming output portal is identical to a streaming input portal with the 

directions changed. Streaming portals connect directly to the streaming portals of a component (see Figure 7). 

 

Figure 7: Streaming Portals 

Streaming portals may be implemented in many different ways – among these, a direct DMA input to the 

design, a direct hardware input, a gigabit Ethernet input, or a PMC bus interface. At the design level, all of these 

interface types can be abstracted as a streaming portal. 

5.1.2 The Memory Portal 

There are different types of memory accesses that need to be accounted for: local memory, external 

memory, dedicated memory and an arbitered memory, dual-port varieties, etc.  All memory portals consist of 

data in, data out, address, read enable, write enable, and clock pins. We provide a group of portals that build on 

these common characteristics.  
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5.1.2.1 Local (on-chip) Memory 

For many FPGA applications, we allow the assumption that the design has access to some amount of 

dedicated local memory (e.g., Block RAMS in a Xilinx Virtex Part). The Logic Foundry integrates such local 

memories as sub-nodes of a design rather than memory portals as the performance and control gains are too 

significant to be ignored. This does not greatly affect portability as successive generations of FPGAs tend to 

have more local memory rather than less. Additionally, drastically limiting the amount of memory available to a 

design would likely require algorithmic changes that would render the design unportable anyway. 

5.1.2.2 Design External Memory 

In the case of the dedicated memory, it may be desirable to pipeline memory accesses so that data can be 

rapidly streamed with a little latency. In the case of an arbitered memory, the memory portal must follow a 

transaction model, holding its memory access request until an acknowledgement is given. These two conflicting 

models must be merged into a single abstract memory portal. We do this by changing the read enable and write 

enable lines to read request and write request lines, respectively, and adding control pins for an access 

acknowledgement. By using these control signals for every external memory portal, the implementation will be 

able to map the abstract memory portals to available memory resources, using arbitered or dedicated memories 

wherever appropriate. 

One issue in the memory portal is the variable width of the memory port. By specifying a width on the 

portal, we will currently allow mapping to a memory implementation that is as wide as or wider than specified, 

padding the unused bits. This can result in an inefficient use of memory when the abstract width is specified as 8 

bits and the actual memory is 32 bits wide. In this situation, it might be desirable to pack memory words into the 

larger memory, however, each memory write would have to be replaced by a read-modify-write, thus slowing 

memory access times. When the situation is reversed and the implementation memory is smaller than the 

abstract memory portal, the implementation will be forced to do address modifications and multiple read/write 

accesses for each memory access request.  

This situation can be addressed intelligently in certain cases. Consider the case where four memories hold 

four separate arrays to be processed in a vector fashion. If the data is 8 bits wide, all of the memories can be 

implemented by one 32 bit wide memory that shares address control.  

5.1.3 The Block Portal 

A block portal is similar to the memory portal and provides the same memory interface to access a block of 

data. It differs from the memory portal in that the block portal also provides transfer initiation control signals 
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that allow an entity on the other side of the portal to transfer in/out the block. The block portal differs from the 

streaming portal in the location of the transfer initiation control. In the streaming portal, all transfers are initiated 

outside of the design block and the design block responds in a continuous manner. In the block portal, transfer 

initiation and block size are dictated by the block portal.  

5.2 The Design Specification File 

Logic Foundry designs are constructed as MEADE nodes that contain a design specification file. The 

design specification file describes the components included in a design as well as the design portals.  

Components are connected to other components or portals via their ports.  

The design specification file is included via EP3 in the design HDL specification. The design HDL 

specification is a shell HDL template that is completely filled in as EP3 instantiates and interconnects all of the 

design components. The portals become nothing more than HDL ports in the top level HDL design file. EP3 

checks to ensure that all port connections are correct in type, direction, and size. It also assigns addresses to each 

component. 

However, in the HDL testbench, all of the portals supply test models so that the design can be fully 

simulated as a platform independent design. Figure 8 shows a sample design specification file for the TFD 

design. In this design, data portals are created (named import and export). The components required are declared 

and then the components and the portals are connected. The attribute portals of the design and the components 

are automatically connected. 

 

Figure 8: Design Specification File 
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In the MEADE design node, the top level HDL specification is generated via EP3, and the entire design can 

be simulated and synthesized with MEADE. If a Filter/Tune/Decimate (FTD) is desired rather than the TFD, the 

connection order is changed and the MEADE procedures can be rerun.  

5.3 The Implementation specification file 

The final platform implementation is implemented as a MEADE node that contains an implementation 

specification file. The implementation specification file includes the design to be implemented as well as a map 

for each portal to an implementation-specific interface.  Additionally, individual components of the design may 

be mapped to different FPGAs on a platform with multiple different FPGAs. For the purposes of this work, we 

will focus on a single FPGA implementation and do the implementation by hand. If a platform consists of both 

an FPGA and a DSP chip, the system we are describing would provide an excellent foundation for research 

work in automated partitioning and mapping for hardware software co-synthesis [29]. 

The implementation specification file (see Figure 9) is included via EP3 in the implementation HDL 

specification. Essentially, the implementation HDL specification is a shell HDL template that is completely 

filled in as EP3 instantiates and interconnects all of the interfaces objects and the design core.  

 

Figure 9: Implementation Specification File 

In the implementation file, platform-dependent mappings (starfire_map represents a mapping call for the 

Annapolis MicroSystems Starfire board) map implementation-specific nodes to the design portals desired. In 

this example, a dma_stream_in node exists that performs the function of a stream_in portal on a Starfire board. 

This node has parameters that indicate which on-board memory to map to, the start address, and the size of the 

memory being used. 
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6 Software Integration 

Another challenge encountered when creating a special-purpose hardware solution is the custom software 

that must be developed to access the hardware. Often, a completely new software interface is developed for each 

application to be placed on a platform. When changing platforms, the entire software development process may 

be redone for the new application. It is also desirable to embed the performance of FPGA-based processors into 

different application environments. This requires understanding of both the application environment and the 

underlying FPGA-based system – knowledge that is difficult to find.  

To resolve this problem we have developed the Dynamic Object (DynamO) model. The DynamO model 

consists of a DynamO object, a DynamO API, DynamO front-ends, and DynamO back-ends. The DynamO 

object represents the entire back-end system to the front-end application with a hierarchial object that 

corresponds to the hierarchy of components and portals that were assembled in the Logic Foundry design. These 

elements are accessed via the DynamO API. The DynamO API represents the contract that DynamO back-ends 

and front-ends need to follow. The front-ends are plug-ins to higher level development environments like 

MATLAB, Python, Perl , and Midas 2k [18]. Dynamo back-ends are wrappers around the board-specific drivers 

or emulators such as the Annapolis Starfire board [20].  

6.1 The Dynamic Object (DynamO)  

The DynamO object consists of a top level system component. This is a container for the entire back-end 

system. DynamO components can contain portals, attributes, and other components.   In addition to these 

objects, methods and parameters are provided that allow the DynamO API to uniquely interact with the given 

object. In the case of the TFD example on the Annapolis Starfire board, a DynamO Starfire back-end creates a 

DynamO object with a top level system component TFD. This component would contain an input portal, an 

output portal, and three components, tuner, filter, and decimator. Each of these components would themselves 

contain an attribute, frequency, taps, and amount, respectively (see Figure 10). 



 

Page 21 of 29 

 

Figure 10: The DynamO Object 

Along with the objects, the DyanmO Starfire back-end would attach methods for attribute sets and gets, and 

portal reads and writes. Embedded within each object is the information required by the back-end to uniquely 

identify itself. For example, while the frequency attribute of the tuner component, the taps attribute of the filter 

component,  and the amount attribute of the decimator component would all use  the same set/get methods for 

attributes, the component and attribute addresses embedded within them would be different. 

Using the DynamO methodology, any back-end reconfigurable system can dynamically be built by a back-

end based on the current configuration of the hardware. While the Logic Foundry uses a consistent attribute 

interface for all components and thus has but one interface method, a DynamO back-end could be constructed 

with different types of attribute access and multiple methods. By attaching these different methods to the 

required attributes on object build, the same level of software application independence can be achieved. 

6.2 The DynamO API  

The DynamO API represents the contract that DynamO back-ends and front-ends need to follow. The 

DynamO API consists of calls to allocate a system, set and get attributes, and write and read portals. These calls 

are implemented by the back-end library as the functionality is unique to each back-end platform (see Figure 

11). 

The API ‘System’ call requires a system specification file as an argument. The very beginning of this file 

points to a back-end implementation and a library to parse the rest of the specification file. In this manner, 

different back-ends can, if desired, have their own specifications unique to a given platform.  By making the 

parsing of a specification file the responsibility of the back-end, there is no limitation on future back-end 

implementations. The result of the system call is an object representing the system being allocated (typically an 

FPGA board).  
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Each attribute in the system is writable by the back-end, front-end, or even both. This can be specified in 

the component specification file. The back-end is responsible for providing a method for attribute sets/gets. If a 

user is using the complete Logic Foundry implementation, then software wrappers around the board drivers 

exist that use the FPGA attribute portal to write the component attributes.   

Portals are designed to have simple read/write interfaces. The DynamO API uses a packet structure to 

communicate with portals. This allows portals to differentiate between control and data and allows data-

synchronous control to be passed into the portal rather than asynchronously through the attribute interface. The 

underlying FPGA hardware must be configured to handle these packets as well.  

 

Figure 11: The DynamO API 

6.3 DynamO Back-Ends 

The DynamO back-end connects a platform to the DynamO API. When the DynamO is allocated, the back-

end provides a library method to parse the specification file, and returns a hierarchical DynamO object that 

contains all of the information for the requested system. In this manner, the application environment is given an 

object with methods that represent the architecture of the system that is to be interacted with. No understanding 

of the implementation details of the underlying hardware is required.  

While we hope that others find the Logic Foundry easy to use, it is important to note that the DynamO 

specification file does not require anything from the Logic Foundry. A designer could build a completely unique 

implementation, and then specify the underlying objects and methods for accessing them in a specification file.  
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6.4 DynamO Front-Ends 

A DynamO front-end is possible for many software application environments. It is easier to implement 

applications in a multi-threaded environment as the application does not have to be concerned with the 

possibility of blocking on portal reads and writes. We have already implemented a DynamO front-end for C++, 

Python, and Rincon Research’s Midas2k DSP environment. 

The DynamO front-end is responsible for taking the DynamO object returned by the system method and 

transforming it into an object that the software environment can understand and access. For instance, using a 

Python front-end, the DynamO object is recreated in Python objects, with its methods mapped to the supplied 

DynamO object methods. Figure 12 demonstrates how a Python application script would interact with the 

DynamO API and the DynamO object in the TFD design example. Note that there is absolutely no evidence of 

implementation-specific details such as register addresses or communication protocols. 

 

Figure 12: Python DynamO Example 

7 Experimental Results 

We have developed the Logic Foundry including all of the major building blocks described – VHDL 

implementations for MEADE, EP3, attribute interfaces, component abstractions and interface portals, the get/set 

and data write/read portions of the DynamO API, DynamO back-ends for the Annapolis MicroSystems Starfire 

board, and Dynamo front-ends for C++, Python, and Midas 2k. To test the effectiveness of the Logic Foundry, 

three systems have been developed, a series incrementer, the TFD, and a Turbo Decoder. 
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7.1 Incrementer Design 

The incrementer component consists of a streaming input portal, a streaming output portal, and an amount 

attribute that is added to the input before being passed to the output. We experimented with the incrementer 

component using an Annapolis MicroSystems Starfire board. This platform consists of four memory ports 

attached to an FPGA. Annapolis MicroSystems provides a shell for the FPGA, DMA bridges to transfer data 

from the PCI bus to the memory, and software driver calls to perform the DMA’s. To create the streaming input 

and output portals, we modified the DMA bridges to add control for streaming data into and out of memory. 

Additionally, a DynamO library was created that provided portal write and read methods using the Annapolis 

DMA Driver calls wrapped with the extra control to manage the modifications to the DMA bridges. 

To control the Starfire card, Annapolis MicroSystems supplies driver calls to do addressable I/O via the PCI 

bus. However, the control is tightly timed and the Annapolis MicroSystems architecture implementing our 

portal functionality requires 7 control elements at the top level. When the number of elements attached to the 

control bus begins to exceed 10 or so elements, achieving the required timing of 66 MHz on a Xilinx XCV1000-

4 can be difficult. For the Logic Foundry, we have built an attribute interface for all component control in the 

Starfire system and created DynamO interfaces to set/get attributes via this interface. The Starfire control bus is 

thus required to connect only to the DMA bridges, the attribute interface, and any top level control registers 

required for operation. These connections remain constant with the addition of new components.  

To test the scalability of the Logic Foundry architecture, we created incrementer designs consisting of 1, 

10, and 50 incrementer components connected together in series. In each case, system timing remained the same 

as the synthesis and layout tools were able to achieve the required 66 MHz control timing for the Starfire control 

bus, while the attribute interface scaled using the multi-cycle attribute bus (see Table 1). It was initially our 

intention to do a design consisting of 100 serial incrementers, however, we reached a limit for the XCV1000 

parts that only allows a tri-state net to drive 98 locations. This limits an XCV1000 part to 98 components which 

is acceptable for our typical designs. 

To create the different designs, we used a simple Perl script to generate the design specification files that 

instantiate and connect the components. All of the simulation, synthesis, and place and route steps were 

performed using simple MEADE commands. 
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7.2 TFD Design 

In order to create the TFD design, we began with an NCO element created by using the Xilinx Coregen 

tool. This resulted in a Xilinx-specific structural VHDL file. To contain this file, an NCO node was created in 

MEADE. An element object was created for the Xilinx VHDL file and the node object was edited to contain this 

element.  This node was then wrapped by a tuner. To accomplish this, a new component node was created and 

its element object was edited to point to the NCO node as child node. The component definition file was edited 

to contain a phase increment attribute for the NCO (rather than a frequency attribute), and then the component 

VHDL files were edited to instantiate the NCO, provide portal connectivity and control, and perform the tuner 

function by multiplying the NCO outputs with the tuner’s inputs. These files, in their preprocessed state, contain 

approximately 50 lines of user-edited VHDL code for component functionality and 100 lines of total code. The 

attribute interfaces and portal FIFO instantiations are all automatically included via the preprocesser. The 

processed VHDL files contain approximately 240 lines of VHDL code. The number of automated lines of code 

will vary depending on the number of attributes in the component. This same process was performed to create 

the filter component (using an fir VHDL file created by the Xilinx Coregen tool). The decimator component 

was created with a few simple additions to the default MEADE template. 

When all three components were completed, a design specification file was created (see Figure 8) as well as 

an implementation specification file (see Figure 9). These files were used by MEADE to create a complete 

implementation for the FPGA, and system controlling software via the DyanmO interfaces.  

In order to test the ease of component reuse in the Logic Foundry, we opted to create a FTD system out of 

the TFD system components. To accomplish this task, the design specification file was altered to change the 

connection order of the three components. MEADE was used to recreate the design using the same 

implementation specification file. DyanmO front-end objects were automatically changed due to the change in 

the design specification file. In both cases, control timing was achieved and system timing was limited by the 

speed of the tuner component (see Table 1). 

7.3 The Turbo Decoder Design 

Our final design was to take a large design (several thousand lines of VHDL code) written outside of 

MEADE, but with a view to fitting into the Logic Foundry attribute/portal design structure. When the design 

was completed, it was wrapped with a MEADE component in the same manner as the tuner described above. 

The Turbo Decoder design created unique challenges – firstly, the streaming portal design would not work as 
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the Turbo Decoder worked on blocks of data and had to individually address these blocks of data. For this 

reason we created the block portal interface described in Section 5.1.3.  

The Turbo Decoder design required seven attributes and these were easily included via the attribute 

interface model. Implementing the block portals was more difficult as the completed Turbo Decoder design 

required eight unique block portals, five of which requiring simultaneous access. As the Starfire board had but 

four memories, this was a problem. However, as some of the portals did not require independent addressing, we 

were able to merge them into a single memory and achieve an implementation that required four independently 

addressable memories. To accomplish this, we hand edited the implementation VHDL file and did not auto 

generate it from the implementation specification file.  

This example showed that we could take a design and use some of the Logic Foundry without requiring 

tight integration into the whole of the Logic Foundry. Software integration was done automatically, and the 

component architecture of the Logic Foundry was used, but the top level FPGA implementation specification 

and Turbo Decoder design and test was performed outside of the Foundry.  

7.4 Summary of Designs 

Table 1 shows results for each of the test designs implemented for the XCV1000-4 FPGA on the Annapolis 

MicroSystems Starfire board. Because control on this system is achieved via a 66 MHz PCI bus, the control 

clocks were all constrained to achieve this timing. In the case of the incrementer designs , the system clock 

performance was limited by the portal implementations.  The other designs (TFD, FTD, TurboDecoder) were 

limited by issues internal to their design components. Further development will be done to optimize the portal  

implementations for this architecture. The differences within design groups (incrementers and downconverters) 

are attributable to variances in the Xilinx software. The pseudo-random nature of the algorithms often results in 

variances. By doing a more extensive place-and-route operation, we would likely see these numbers converge. 

Table 1: Summary of Designs 

 Control Clk System Clk LUT’s FlipFlops BlockRams 

1 Incrementer 68.648 62.278 1328 1809 5 

10 Incrementers 68.078 65.557 2007 2244 5 

50 Incrementers 66.885 70.299 4959 4076 5 

TFD 68.018 35.661 2873 2238 6 

FTD 67.604 35.177 2873 2222 6 

TurboDecoder 67.290 39.787 17031 5600 27 



 

Page 27 of 29 

8 Conclusion 

We have introduced the Logic Foundry and shown how this approach allows for the rapid prototyping and 

deployment of FPGA-based systems. By using MEADE and EP3, a design engineer can rapidly create and 

operate on design components. These components can be entered in a library for efficient reuse by system 

designers. By using MEADE and EP3, system engineers can create an FPGA image file without requiring the 

specialized design tool knowledge of a logic designer. Using design portals for interface abstractions, designs 

can be created in a platform independent manner and easily ported from one FPGA platform to another where 

implementation portals exist. Finally, by using the DynamO software construction, applications can be built that 

have no dependence on the underlying FPGA platform and can easily be ported from platform to platform. 

Inserting a platform into a different software environment can also be done with relative ease. 

While the entire Logic Foundry fits together as a whole, it is important to recognize that each piece can be 

used independently. One design house may simply want to use MEADE and EP3 as automation tools for FPGA 

construction, where another design house may want to use the DynamO aspects without requiring any of the 

FPGA construction mechanisms. 

Our future work will focus on the complete implementation of the data-synchronous control packets, 

component event control, and the control write/read portions of the DynamO API. We will also be integrating 

the Chameleon board from Catalina Research Incorporated as a demonstration of platform migration. 

Additionally, we plan on implementing a DynamO front-end for MATLAB as well as a DynamO back-end for 

SystemC to allow algorithm emulation in software. We have implemented the Logic Foundry at Rincon 

Research and the tool is being used extensively in the development of high performance FPGA implementations 

of DSP applications, including turbo coding, digital downconversion, and despreading applications. 
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