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ABSTRACT:  The Cognitive Foundry is a unified collection of tools for Cognitive Science and Technology 
applications, supporting the development of intelligent agent models. The Foundry has two primary components 
designed to facilitate agent construction: the Cognitive Framework and Machine Learning packages. The Cognitive 
Framework provides design patterns and default implementations of an architecture for evaluating theories of 
cognition, as well as a suite of tools to assist in the building and analysis of theories of cognition. The Machine 
Learning package provides tools for populating components of the Cognitive Framework from domain-relevant data 
using automated knowledge-capture techniques. This paper describes the Cognitive Foundry with a focus on its 
application within the context of agent behavior modeling.  
 
1 Introduction 

The Cognitive Foundry is a unified collection of software 
tools for Cognitive Science and Technology (CS&T) 
applications. CS&T is a developing field at the 
intersection of cognitive science, computer science, and 
engineering that takes fundamental concepts from 
cognitive science and neuroscience and deploys systems 
implementing these ideas.  To further the goals of this 
multidisciplinary field, we have designed the Foundry to 
be a robust, extensible platform to support research, rapid 
prototyping, and system deployment, while adhering to 
rigorous software-engineering principles. Instead of 
pushing a single theory of cognition, the Foundry contains 
reusable software components and algorithms designed to 
support a wide variety of development needs. The 
software architecture of the Foundry promotes reusability, 
maintainability, and cross-platform compatibility, without 
sacrificing computational resources by leveraging best-in-
class numerical packages. 
 
2 Why the Cognitive Foundry 

As the Sandia National Laboratories CS&T program grew 
from its infancy, the use cases for our cognitive-modeling 
software evolved as well, driven by both researcher- and 
customer-centric needs.  For basic-research 
experimentation, researchers wanted a reusable toolkit 
that allowed the rapid prototyping and visualization of 
new ideas and hypotheses in modeling cognition, as well 
as statistical-validation techniques to compare 
performance against a standard battery of existing results 
from the literature.  Our customers have expressed an 

increasing interest in automatically populating cognitive 
models through automated knowledge-capture algorithms, 
processing large amounts of data efficiently, parallel and 
distributed computation, and verifiable software-
development processes.  We meet these seemingly 
divergent requirements by creating a graduated set of 
programmer interfaces that enable both research 
experimentation and system deployment, and the Foundry 
assists users by providing a set of tools that accompany 
those interfaces. For example, if a particular project 
would benefit from parallel computation, then the user 
can implement the rather simple methods associated with 
the Concurrent Cognitive Module interface.  The Foundry 
then automatically provides the mechanisms to execute 
the code in a parallel fashion, with no additional burden 
placed on the user.  We chose this graduated-interface 
strategy to support both the general case by providing a 
robust set of core functionality while also providing the 
infrastructure for rapidly constructing special-purpose 
applications that may require more intricate or onerous 
functionality.  The manifestation of the Cognitive 
Foundry philosophy is that we provide a number of 
interfaces, some of which are easy to implement, while 
others may be more time consuming.  The more 
interfaces, or functionality, that a Foundry developer can 
implement, the more Foundry tools can be brought to bear 
on the problem.  Thus, users can select the parts that 
provide the best benefit to a specific project.  The 
Foundry’s Cognitive Framework provides a reusable 
framework for building agents and experimenting with 
cognitive simulation. The Machine Learning package 
provides a large library of powerful learning algorithm 
implementations that can be used on their own or to create 



components of the Cognitive Framework. Each 
component in the Cognitive Foundry is a tool that we 
have found useful for building cognitive models and 
cognitive systems. 
 
2.1 Benefits of the Cognitive Foundry 
One of the primary lessons learned from the maturation of 
Sandia’s CS&T program is that the Cognitive Foundry 
must provide coverage and support of a cognitive system 
from idea to deployment, not just a cognitive simulation. 
The Cognitive Foundry’s modularity allows users to 
determine which components are necessary, or provide 
value, to a particular project by selecting the tools used to 
solve common cognitive-systems tasks, while being 
assured that rigorous software-engineering quality 
processes have been employed. The Foundry also 
provides a well-defined path for components to 
incorporate the latest research ideas and transition them 
into a deployed system.  Applications built on the 
Cognitive Foundry’s Framework and Machine Learning 
packages can immediately make use of new modules for 
cognitive simulation and new algorithms that conform to 
the common set of interfaces. 
 
2.2 Communicating with the Cognitive Foundry 
The Cognitive Foundry is written in the Sun Java 1.5 
programming language. We have also developed several 
other ways to interoperate with the Cognitive Foundry 
from non-Java applications, as shown in Figure 1.  For 
example, we have created a native-machine interface that 
allows applications written in other programming 
languages, such as ANSI C/C++ or Microsoft .NET (C#, 
Visual Basic) to call directly into the Foundry API.  The 
Cognitive Foundry also has a Network Interface library to 
facilitate connecting to, viewing, controlling, and 
launching models over a network.  Finally, The Cognitive 
Foundry has a graphical user interface to support the 
inspection or manipulation of cognitive models during 
creation and execution. 
 

2.3 Design Methodology 
On a philosophical level, the design of the Cognitive 
Foundry has followed a graduated interface approach. 
That is, the Cognitive Foundry is built on top of a set of 
well defined, hierarchical interfaces. For example, the 
Cognitive Foundry defines the functionality that a 
Cognitive Model (a memory space, collection of modules, 
etc.) and Multivariate Minimization Algorithm (an 
objective function, an iteration loop, etc.) must possess.  
The Cognitive Foundry then provides one or more default 
implementations of these interfaces.  However, 
developers can always create their own tailor-made 
implementations if existing ones do not meet their needs, 
allowing researchers to test new ideas and hypotheses 
quickly.  Since other tools in the Cognitive Foundry 
provide functionality at the interface level, new 
implementations can automatically exploit existing 
functionality provided by other components in the 
Foundry by conforming to a defined interface. There are 
several benefits to this interface-centric component-based 
approach. It provides an easy mechanism for customizing 
existing object implementations in the Foundry. It also 
gives the ability to pick the specific objects from the 
Foundry that are useful for a certain application. Finally, 
it creates an integration point for many applications, 
which defines an easy transition path from research to 
deployment. 
 
3 Cognitive Framework 

The Foundry’s Cognitive Framework is a modular 
software architecture for cognitive simulation designed 
for use in CS&T applications.  The Cognitive Framework 
itself is a collection of interfaces, which allows 
Framework users to either leverage the existing tools in 
the Framework or specify different implementations to fit 
their specific needs in order to test new ideas and 
hypotheses. 
 
3.1 Cognitive Model 
The Cognitive Framework is designed so that different, 
and possibly competing, elements of a “theory of 
cognition” can be instantiated as desired, as shown in 
Figure 2.  This is accomplished by having a Cognitive 
Module perform some aspect of a psychologically 
plausible cognitive process.  A Cognitive Model, then, 
contains a collection of Cognitive Modules whose 
purpose is to instantiate some aspect of cognition. The 
main components of a Cognitive Model are shown in 
Figure 3.  Conceptually, Cognitive Modules are the 
workhorse classes inside a Cognitive Model.  A Cognitive 
Model and its corresponding Cognitive Modules use a 
single central container to store all state information, 
called a Cognitive Model State.  The state contains the 
sufficient information needed to allow a Cognitive Model 
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Figure 1. Dependency graph diagram of Cognitive 
Foundry components and interoperability methods. 
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to resume execution later, or on another machine, without 
altering the results of a simulation.  Furthermore, the 
Cognitive Model State can be sent across a network to 
distribute computation and exploit the parallelization 
inherent in many cognitive agent simulations.  The 
Cognitive Framework supports the serialization of 
Cognitive Models using a binary format, human-editable 
XML, or comma-separated values. 
 
3.2 Cognitive Module 
The Cognitive Module interface gives users fine-grained 
control of what aspects of a “theory of cognition” are 
incorporated into a particular Cognitive Model. The 
primary functionality of a Cognitive Module is contained 
in its “update” method. The update method is given the 
current Cognitive Model State, along with the previous 
state of the Cognitive Module and the current set of 
sensory inputs. The update method of each Cognitive 
Module returns its state for the next time step.  Cognitive 
Modules can pass information to one another through the 
Cognitive Model State object, which contains a 
blackboard-like component where information can be 
posted and read by any Cognitive Module. 
 
3.3 Cognitive Element (Cogxel) 
The Framework operates on a key data structure interface: 
the cogxel. Cogxel stands for “cognitive element” and is 
modeled after the word “pixel,” which means picture 
element.  A cogxel is the fundamental unit of data in the 
Cognitive Framework.  Cogxels normally reside in the 
Cognitive Model State (blackboard), as they represent the 

overall state of the model.  Cogxels are accessed by a 
high-level “semantic label” that describes the data 
contained by cogxel, such as “Heart Rate” or 
“Context12345.”  Cogxels are in turn stored in a manner 
that allows constant-time lookup of the data contained by 
the cogxel, allowing efficient retrieval along with 
semantically meaningful storage.  A default cogxel 
implementation consists of a semantic label and a scalar 
activation level.  However, being an interface, other 
applications have created their own cogxel 
implementations that use bindings, activation flags, etc. 
Thus, cogxels can be adapted to fit the specific needs of 
an application or a theory of cognition, such as to model 
symbolic, non-symbolic, or structured information. 
 
3.4 Lightweight Implementation 
The Cognitive Framework Lite is an implementation of 
the Cognitive Framework interfaces that abide by the 
specifications set forth by some of our customers and 
stakeholders. It is specifically designed for having many 
agent models within a larger simulation.  It is a “lite” 
version of the interfaces because it does not allow for the 
dynamic addition or removal of modules while the model 
is running. This means that all modules must be added to 
the model at its creation time. This allows for compact 
data structures and a simple, fast update loop within the 
model.  The “lite” version of the model can run within a 
high-performance computing (supercomputer) 
environment, with many models executing on a single 
processor with a minimal memory footprint. The “lite” 
implementation also contains lightweight 
implementations of some basic cognitive modules, such 
as a semantic network and perception modules. 
 
3.5 Concurrent Implementation 
Cognitive Models requiring significant computational 
resources can employ a concurrent implementation of the 
Cognitive Framework.  For example, we are currently 
developing a theory of analogical reasoning using 
physiological models of visual and prefrontal cortex that 

Figure 3. Cognitive Model components. One object 
encapsulates the entire state of the model. The design 
emphasizes modularity and state encapsulation. 
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employs large numbers of computational units 
representing cortical columns in the human brain.  The 
concurrent implementation provides a means for 
distributing computation in parallel across available 
computing resources on local machines, namely multi-
core and multi-processor computers.  It also provides the 
basis for future extensions of the Cognitive Framework to 
support distributed computation across networked 
computational resources. 
 
The concurrent implementation breaks up the update 
method of a Cognitive Module into three steps: read state, 
evaluate, and write state.  A concurrent cognitive model 
can then operate as follows: all modules read required 
input state information sequentially, followed by parallel 
execution of each module’s evaluate method, with the 
update method completed by having each module write 
out its state information in sequence. The Cognitive 
Foundry provides a default implementation of this parallel 
computation, which employs a thread pool with a user-
defined number of threads onto which module evaluations 
are scheduled for execution.  In this way, a user may fully 
utilize multiple cores and processors on a desktop 
computer for model execution.  Future implementations 
will allow distributed computation through evaluations on 
network compute resources. 
 
3.6 Perception Module 
Every CS&T application needs a way to glean 
information from the environment.  The Cognitive 
Framework accomplishes this by specifying a perception 
module, capable of taking some external data source and 
transforming relevant information from it into a form that 
other modules can process (i.e., cogxels). Perception is 
represented as a module such that different approaches to 
perception can be experimented with, and possibly 
combined. 
 
3.7 Manual Knowledge Elicitation and Automated 

Knowledge Capture 
Perhaps the most intricate and application-specific step in 
creating a Cognitive Model is providing the proper set of 
parameters needed to configure the Cognitive Modules. 
Some Cognitive Modules can use predefined parameter 
sets, but most need to be loaded with domain-specific 
information.  In general, there are two approaches to solve 
this problem: manual knowledge elicitation and 
automated knowledge capture. Manual knowledge 
elicitation involves a structured interview with a subject 
matter expert and the subsequent encoding of this 
information into a form that the Cognitive Foundry can 
understand. The Cognitive Foundry provides support for 
manual knowledge elicitation through both user-interface 
components and human-editable input file formats, such 
as Microsoft Excel and XML.  Not surprisingly, manual 

knowledge elicitation is quite labor intensive and 
intractable for application domains where there are many 
interacting factors, as the combinatorics get out of hand 
quickly.  Furthermore, slight changes in the application 
domain require a complete retooling of the elicitation 
process, generally resulting in another interview of the 
subject matter expert.  The alternative approach, 
automated knowledge capture, involves collecting a 
relevant set of data in the application domain and then 
using that data along with a set of machine-learning, or 
data-mining, algorithms to create the necessary 
information needed for the Cognitive Module. The 
Cognitive Foundry provides support for this approach 
through the Machine Learning package, discussed in 
section 4. 
 
The main constraint that automated knowledge-capture 
techniques have is that they all require relevant data for 
the problem they are addressing, usually in large amounts. 
If no relevant data exists, or can be readily collected, then 
automated knowledge-capture techniques may not be of 
much help in solving the problem.  However, if a user has 
access to, or a mechanism to collect, relevant data, then 
an automated knowledge-capture technique probably 
exists that can accurately populate a cognitive model to 
predict or categorize the problem at hand.  In some cases, 
real data may have to be augmented with synthetic data to 
provide enough support for the automated knowledge-
capture algorithms.  However, there exist procedures for 
this augmentation as well. 
 
The Foundry contains a Framework-Learning integration 
package that was designed so that components of the 
Cognitive Framework package could be used in 
conjunction with machine-learning algorithms.  In other 
words, this provides users of the Cognitive Framework 
inline access to the large collection of automated 
knowledge-capture algorithms from the Machine 
Learning package by automatically populating Cognitive 
Modules from data without the tedious process of manual 
knowledge elicitation.  By using the modules of the 
Framework-Learning package, a developer can 
automatically create models of behavior and cognitive 
processes gathered from disparate data sources. 
 
 
3.8 Cognitive Model Factory 
A Cognitive Model Factory is a container that holds the 
complete recipe for making a Cognitive Model: the full 
list of modules and all of their parameters. Having a 
factory allows multiple copies of the same model to be 
instantiated and provided different inputs. It also provides 
a mechanism for modules to share static information 
across Cognitive Model instances so that the data does not 
have to be copied, thus saving memory in large-scale 



simulations.  To borrow an example from physics, all 
oxygen-16 molecules are identical; they have the same 
static parameterization.  To create a simulation of many 
interacting oxygen molecules, it is not necessary to copy 
the parameterization of an oxygen molecule for each 
model; they can share this static information.  This saves 
memory and the needless computation used to copy the 
redundant parameterization.  Cognitive Model Factories 
provide an analogous functionality, allowing Cognitive 
Modules to share static information across many 
instances. 
 
3.9 Using the Output of a Cognitive Model 
The final step in integrating a Cognitive Model into a 
CS&T application is to determine how to use the output 
of the model for the application. By this, we mean using 
information contained within cogxels to perform some 
sort of behavior or action for an agent within its 
environment. Typically, this is accomplished by 
determining the semantic labels for the cogxels containing 

the relevant output information for generating actions. 
However, an application can access and make use of any 
cogxel in the Cognitive Model State, which means it has a 
vast amount of information regarding the internal state of 
the Cognitive Model to make use of when generating an 
action. Figure 4 illustrates the overall operation of a 
Cognitive Model. 
 
The Cognitive Foundry contains graphical user-interface 
tools that can display the outputs, and internal state, of a 
Cognitive Model.  While a predefined user interface may 
not be applicable for a particular end-user application, 
developers often find it helpful for rapid-prototyping or 
debugging purposes. Following the design philosophy of 
the Foundry, the piece components of the user interface 
may serve as the basis for various end-user applications.  
 
3.10 Example Implementation of a Cognitive Model 
The design of the Cognitive Foundry supports cognitive 
simulation at many levels of fidelity from low-level 
connectionist networks to high-level, abstract symbolic 
approaches. We have used the Cognitive Foundry for a 
variety of research projects, including building a model of 
driving difficulty, agents in economic and social 
simulations, and evaluating trainee performance in a 
simulated environment.  Here we present a brief overview 
of an application of the Cognitive Foundry for a current 
project underway to better elucidate how the Foundry 
helps support cognitive simulations.  The project entails 
constructing a model of human analogical reasoning 
based on published psychological and physiological 
literature and research into human performance on a 
visual test of intelligence.  For this model, the level of 
fidelity to be simulated is that of a single cortical column 
within the human brain.  Currently we are employing 
Fuzzy Adaptive Resonance Theory (ART) models as an 
abstract representation of a cortical column.  Individual 
cortical column models are assembled in a connectionist 
manner that plausibly models the human visual 
processing stream and prefrontal cortex.  Following 
training, the model is presented with representative visual 
problems from the visual test of intelligence and for each 
the model’s output is its answer to the problem, chosen 
from a multiple choice set. 
 
The Foundry enables the straightforward construction, 
training, and evaluation of this model.  A perception 
module models the human primary visual cortex’s 
orientation columns.  This module takes as an input a 
rasterized visual intelligence test problem and outputs 
real-valued cogxels representing the degree to which a 
given line orientation is detected in the input image in 
each of a set of retinotopic receptive areas.  Cortical 
columns are implemented as cognitive modules.  Each 
cognitive module contains a single Fuzzy ART as well as 

Figure 4. Operation of a Cognitive Model.  A) A 
perception module takes an external input, processes 
it, and produces outputs which are stored in cogxels in 
the Cognitive Model State.  B) The Cognitive Model 
State contains current cogxel values that change as the 
model is run across multiple update steps.  C) 
Cognitive modules take inputs in the form of cogxels 
from the shared Cognitive Model State, perform 
implementation specific processing, and then typically 
write outputs back to cogxels in the shared state.  D) 
The model's state and the associated activity of the 
modules represent its embodiment of a model of 
cognition; some modules may produce external 
outputs that can be used for purposes such as model 
evaluation or for allowing a model to control external 
components, such as in an embedded system 
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a description of what cogxels the module should use as its 
input.  The input cogxel description provides the 
mechanism for determining the wiring of the overall 
connectionist network of cortical columns.  The overall 
Cognitive Model contains the perception module and each 
of the cortical column modules, and is implemented using 
the concurrent model implementation previously 
described. 
 
Running the model is handled by the Foundry, and 
involves presenting an input image to the model during an 
update step. Refer to Figure 4 for an overview of the 
operation of the model. Internally, the Cognitive 
Framework presents the image as input to the perception 
module, causing it to produce output cogxels.  These 
cogxels reside in the blackboard-like Cognitive Model 
State.  As the model is run across multiple update steps, 
each module retrieves the appropriate input columns from 
the Cognitive Model State, and produces its own output 
cogxels.  In this model, these outputs are real-valued 
vectors produced by the Fuzzy ART contained within a 
given module. 
 
By employing the Foundry, the team was able to focus on 
the implementation details of the cortical columns and 
overall wiring of the model without having to separately 
devote effort to creating the framework for constructing, 
training, and evaluating the model.  Furthermore, the 
concurrent implementation provided by the Foundry 
allows for a significant reduction in computation time for 
model training and evaluation.  Finally, the robust set of 
machine learning algorithms included in the Foundry 
(described in section 4 below) provided the team with a 
strong foundation for implementing project specific 
functionality. 
 
4 Machine Learning Package 

The Cognitive Foundry’s Machine Learning Package 
provides a wide variety of optimized, verified, and 
validated general- and special-purpose algorithms for 
machine learning: the analysis and characterization of 
large datasets, function minimization, parameter 
estimation, prediction, and categorization.  The package is 
highly extensible, meant for allowing the rapid-
prototyping of applications based on machine learning 
and the development of new or experimental algorithms 
and architectures. Typically, in machine learning, there 
are various conflated components: the object being 
created, the learning algorithm used to create the object, 
the data upon which the algorithm operates, the 
performance measure, and statistical validation.  For 
example, we can create a neural network using gradient 
descent with a mean squared-error cost function.  
However, there are many neural-network architectures 
(feedforward, recurrent, different activation functions, 

etc.), many different learning algorithms (conjugate 
gradient, Levenberg-Marquardt, Quasi-Newton, etc.), 
many different cost functions, and many validation 
techniques. Unless these components are decoupled, the 
combinatorics quickly becomes onerous.  In keeping with 
the design philosophy of the Cognitive Foundry, the 
Machine Learning package separates each of these 
components and eliminates the need for Foundry users to 
write special-purpose code.  This allows users of new 
functions (e.g., neural-network architectures) to use 
existing learning algorithms and, conversely, creators of 
new learning algorithms to test their ideas on different 
functions.  
 
4.1 Why a Machine Learning Package? 
We created the Machine Learning package to support 
using automated knowledge-capture techniques to 
populate cognitive models.  Many such techniques are 
based on machine-learning algorithms. Furthermore, our 
research group had several implementations of similar 
machine-learning algorithms written in different 
programming languages, with slight variations on similar 
approaches.  The Machine Learning package is a common 
repository of these algorithms, so that they may be easily 
integrated into different applications and projects.   
 
Due to the decoupling of the learning algorithm from the 
object being learned, the Machine Learning package 
allows rapid prototyping and experimental testing of 
different algorithms, approaches, and function 
approximators and categorizers.  The package 
accomplishes this through the systematic use of interfaces 
and generics to encapsulate the needs of each algorithm, 
including their inputs, outputs, and parameterizations. We 
followed an object-oriented design for the entire package 
so that the different algorithms utilize common, 
interchangeable subcomponents, such as cost functions 
and statistical validation. This approach greatly simplifies 
the integration of exiting machine-learning algorithms to 
new problems and, conversely, to apply new machine-
learning algorithms to existing problems and datasets.  
We did this to focus on experimenting with different 
algorithms and parameterizations to create machine-
learning systems embedded into CS&T applications.  The 
design of the Machine Learning package makes wide use 
of Java generics and, together with the decoupling of the 
piece components of a machine-learning system, the 
source code tends to be very similar to pseudo-code from 
textbooks and research papers.  This has the result of 
greatly increasing the reusability of elements in the 
package and increasing the level of verification and 
validation of the algorithms. 
 



4.2 Learned Functions 
One of the key concepts of the Machine Learning package 
is the separation of the machine-learning algorithm from 
the function created by the algorithm, which is typically 
some form of function approximator or categorizer. For 
example, consider a prototypical function approximator, 
the artificial neural network.  Many machine-learning 
algorithms can estimate locally optimal parameters for 
neural networks, such as gradient descent, genetic 
algorithms, and inverted quadratic line search.  However, 
each of those machine-learning algorithms can estimate 
the parameters of a much broader class of function 
approximators.  Separating the function approximator 
from the machine-learning algorithm means that we only 
have to write a learning algorithm once, instead of the 
combinatorial explosion that occurs in the cross product 
of function approximators and learning algorithms.  The 
package contains many standard and specialty function 
approximators such as artificial neural networks, linear 
systems, dynamical systems, k-nearest neighbors, 
polynomials, categorizers, decision trees, support vector 
machines, and mixture of Gaussians.  Furthermore, the 
Cognitive Foundry allows developers to create their own 
functional forms, or to chain together existing functions, 
to create new functional architectures, making the 
Machine Learning Package highly extensible.  A 
fundamental ability for function approximators and 
categorizers is the ability to express itself as a vector of 
tunable parameters.  In this form, many learning 
algorithms can automatically tune the parameters of 
function approximators to achieve some desired result. 
 
4.3 Learning Algorithms 
The main paradigm of the learning package is that a 
learning algorithm is given a dataset from which to create 
a new learned object, typically a function approximator or 
categorizer. This creates a clear separation between the 
input to the algorithm, the output from the algorithm, and 
the parameters of the algorithm. There exist two primary 
learning interfaces: the Batch Learner interface and the 
Online Learner interface. Batch Learners operate only 
after all data have been collected, while Online Learners 

can operate concurrently as data are being collected.   
Each of these learners operates in a supervised or 
unsupervised manner.  Supervised-learning algorithms 
learn to generalize from example input-output pairings, 
while unsupervised-learning algorithms attempt to 
discover patterns in an unlabeled dataset to achieve some 
goal (Duda, Hart, & Stork, 2001).  We will discuss each 
of these techniques in the following sections. 
 
4.3.1 Supervised-Learning Algorithms 
Supervised-learning algorithms take a dataset of input-
output pairs and generalize them to as-yet-unseen inputs 
by finding parameter sets that minimize a cost function.  
Commonly these algorithms yield “function 
approximators” or “regression” when the outputs are real 
valued and “categorizers” when the outputs are discrete 
valued.  We provide a wide variety of supervised-learning 
algorithms such as derivative-free algorithms, gradient-
based methods, linear regression, algebraic solvers, kernel 
methods for both regression and categorization, and 
decision trees for both regression and categorization. We 
also have implemented meta-learning algorithms such as 
ensemble methods, which demonstrate the power of 
having a unified set of interfaces implemented by a 
variety of learning algorithms. A typical design pattern 
for a supervised learning algorithm is shown in Figure 5. 
 
4.3.1.1 Derivative-Free Algorithms 

There is a class of parameter-estimation algorithms that 
do not require gradient information to find a (locally) 
minimum-cost parameter set of a function.  That is, to 
find the optimal solution, these algorithms only require 
function evaluations.  While these algorithms are the most 
general, and can find optimal parameters for functions 
that are highly nonlinear with nonanalytic or inexistent 
derivatives, they tend to be less efficient than gradient-
based algorithms when gradient information can be 
computed or approximated. 
 
We have implemented standard derivative-free algorithms 
including Direction Set (Powell’s) Method, Downhill 
Simplex (Nelder-Mead) algorithm, Genetic Algorithms, 
and Simulated Annealing.  
 
4.3.1.2 Gradient-Based Algorithms 

A more restrictive class of parameter-estimation 
algorithms are those that require gradient information to 
find a (locally) minimum-cost parameter set of a function.  
These algorithms usually perform better than non-
gradient-based methods. 
 
We have implemented standard gradient-based algorithms 
including Quasi-Newton Minimization (BFGS), 
Levenberg-Marquardt Estimation, Conjugate-Gradient 
Minimization, and Gradient Descent. Many of these 
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algorithms are also guaranteed to converge using 
approximated differentiation procedures by estimating the 
parameter Jacobian from function evaluations alone.  
Oftentimes, gradient-based algorithms with approximated 
derivatives are more efficient than derivative-free 
algorithms.  We have implemented automated 
differentiation procedures for arbitrary functions to give 
users the ability to try different gradient-based and 
derivative-free algorithms. 
 
4.3.1.3 Special-Purpose Solvers 

Some special-case functions have closed-form or iterative 
optimal solutions.   These functions may be used with the 
general-purpose algorithms mentioned above or with 
solvers that exploit particular features of these special 
functions.  For example, we have implemented solvers for 
linear regression, linear systems, linear dynamical 
systems, multivariate Gaussians, and so forth.  Not 
surprisingly, these special-purpose solvers are typically 
more efficient than general-purpose solvers for the same 
functional form. 
 
4.3.1.4 Kernel Methods 

We have extensive support for kernel-based methods, 
including a set of useful kernel functions and tools for 
composing kernel functions. Kernels allow certain 
machine-learning algorithms to extend to nonvector data 
by defining a similarity measure between two inputs that 
fulfill the properties of a kernel function. As such, the 
library utilizes generics for kernels, which promotes the 
creation of kernels for new data types, which may in turn 
be plugged into existing kernel-based algorithms. We 
have implemented several kernel-based learning 
algorithms for categorization, regression, and clustering. 
 
4.3.1.5 Ensemble Methods 

Ensemble methods typically take a simple function and 
combine several together to create sophisticated responses 
to novel inputs, similar to voting schemes, game theory, 
or stock-market collaboration.  Ensemble methods are a 
natural fit for the Cognitive Foundry’s Machine Learning 
package because each machine-learning algorithm 
conforms to a standard interface that allows algorithms 
that create the same function to be interchanged, meaning 
that algorithms conforming to the same interface can be 
automatically combined using an ensemble-learning 
algorithm that utilizes the output of each learning 
algorithm. We have implemented several ensemble 
methods including Bagging and AdaBoost. 
 
4.3.2 Unsupervised Learning Algorithms 
Unsupervised-learning algorithms take a high-
dimensional space, potentially a “Big Data” problem, and 
map it to a low-dimensional and (hopefully) simpler 

space.  These algorithms are useful for understanding 
complicated relationships, identifying statistical 
regularities, and visualization. Our set of unsupervised 
algorithms emphasizes principal components analysis and 
clustering algorithms, such as k-means clustering, 
agglomerative clustering, reductionist clustering, and 
affinity propagation.  The clustering algorithms are based 
on a user-defined distance metrics that allow all 
unsupervised algorithms to be easily adapted to new types 
of data. We also exploit singular value decomposition and 
eigenvector decomposition for dimensionality reduction.  
For automated knowledge capture, unsupervised learning 
algorithms, such as the clustering algorithms listed above, 
are used to discover contexts, latent patterns, and 
relationships for a Cognitive Model automatically. 
 
4.4 Experiments and Performance Evaluation 
We have created objects that automatically evaluate the 
performance of learning algorithms against a dataset 
using statistical-hypothesis testing techniques.  These 
“Experiment” objects automatically provide performance 
confidence bounds using generally accepted validation 
techniques, such as n-fold, leave-one-out (jackknife), and 
bootstrap validation. For each experiment, a user specifies 
the dataset, learning algorithms, validation methodology, 
performance criteria, and summary statistics. The output 
of an experiment is a confidence interval describing the 
performance range and statistical confidence in the 
experiment, making it easy to compare different learning 
algorithms, algorithm parameters, or functional forms in a 
statistically significant manner. 
 
4.5 Statistics Package 
The Cognitive Foundry also includes a comprehensive 
Statistics package for performance analysis and statistical-
hypothesis testing, in addition to providing many 
probability distributions for modeling purposes. 
 
4.5.1 Null-Hypothesis Testing 
The goal of null-hypothesis testing is to determine if two 
distributions of data are different in a statistically 
significant sense.  In other words, can the observed results 
be due to chance?  This gives a user of the Cognitive 
Foundry a quantifiable confidence on the performance of 
the system.  Different statistical tests have different 
assumptions, and it is necessary to find the test 
appropriate for the problem at hand. 
 
This package contains the standard statistical tests such as 
Student-t Test, Analysis of Variance (ANOVA or F-Test), 
z Test, Kolmogorov-Smirnov Test, Fisher Sign Test, 
Wilcoxon Signed Rank Test, Mann-Whitney U Test 
(Wilcoxon Rank-Sum Test), Receiver-Operator 
Characteristic, and others.  Given the well-designed 
structure of the Cognitive Foundry, it is easy to use the 



appropriate null-hypothesis test for the given problems 
facing a project.   
 
4.5.2 Confidence Bounds 
From estimates based on different datasets, it is often 
useful to determine what possible values a parameter 
could take. For instance, what is the likely room 
temperature from a set of noisy thermometer readings?  
Likewise, how many experiment subjects do we need to 
achieve a margin of error of at most ±3%?  To answer 
these types of questions, we have implemented the 
standard confidence-bounds routines such as Student-t, 
Gaussian, Chebyshev, Markov, and Bernoulli. 
 
5 Common Math Package 

The main purpose of the Common Math package is to 
provide a common foundation of useful mathematical 
routines for building applications. Much of our research 
and many applications require mathematical rigor, and the 
main component of the Common package is to facilitate 
matrix and vector computation, decompositions, and 
solver routines, in both dense and sparse representations. 
Dense-matrix computation tends to be faster than its 
sparse-matrix counterpart, however, many “Big Data” 
applications simply cannot use a dense-matrix 
representation.  The Cognitive Foundry gives users the 
flexibility to choose the representation that best suits their 
needs.  The basic definitions of a matrix and vector are 
interfaces, which gives Foundry users the freedom to 
write their own Matrix package.  The default Matrix 
package in the Cognitive Foundry is based on the publicly 
available Matrix Toolkits for Java (MTJ) library.  MTJ 
performs its computations, decompositions, and solvers 
using callbacks into the best-in-class native libraries 
LAPACK and BLAS, resulting in computational speeds 
competitive with other heavily optimized computational 
packages.  If these native libraries are not available, MTJ 
will redirect the calls to platform-independent Java 
versions of LAPACK and BLAS, which are slower than 
the native versions.  This flexibility allows Cognitive 
Foundry applications to use the most efficient 
computational engine available, while preserving cross-
platform compatibility. 
 
6 Related Work 

Agent-based (Wooldrige & Jennings, 1995) and cognitive 
simulation is an active area of research, and there are 
many cognitive architectures in existence, such as ACT-R 
(Anderson & Lebiere, 1993) and SOAR (Laird, Newell, 
& Rosenbloom, 1987). The Foundry’s Cognitive 
Framework builds upon previous research in cognitive 
frameworks at Sandia by Forsythe and Xavier (2002). 
However, unlike cognitive architectures that are built 

around a single theory of cognition, the Foundry promotes 
modularity and experimenting with various aspects of 
different theories of cognition. This provides a value 
added over existing architectures in that the relevant 
cognitive components can be utilized to fill project 
specific needs. This includes the ability to choose the 
appropriate level of modeling fidelity for a given 
application.  The Foundry is also different in its focus on 
integrated automated knowledge capture and the ability to 
create lightweight cognitive components that are easy to 
embed in agents and stand-alone CS&T applications.  
 
An example of a project that incorporated different 
cognitive architectures is the Agent-Based Modeling and 
Behavior Representation (AMBR) Model Comparison 
project (Gluck & Pew, 2001), which involved  comparing 
the performance of different cognitive architectures in 
modeling the behavior of an air traffic controller. The 
Foundry is designed to support combining and comparing 
existing models of cognition developed within its 
environment, similar to the comparisons performed using 
the HLA environment in AMBR. It also provides its own 
robust library for the development of new models, and for 
the combination of new and existing models. 
 
There are also other libraries of machine-learning 
algorithms in existence, such as Weka (Witten & Frank, 
2005) and RapidMiner, formerly YALE (Mierswa, Wurst, 
Klinkenberg, Scholz, & Euler, 2006). However, the 
Foundry’s learning package differs from existing 
packages in several ways. First, the Cognitive Foundry 
does not force users to create datasets in a fixed data 
structure for the machine-learning algorithms, such as 
vector data. Instead, the Foundry algorithms are 
implemented so that they can be used with a variety of 
data structures by its use of generic type parameters. The 
Foundry’s Machine Learning package is also different 
because it spans the entire development cycle of a 
learning system from data collection, analysis, 
experimentation, rigorous tools for performance 
validation, and deployment into applications, including 
embedded systems. The package is targeted at making it 
easy to embed the function created through learning into 
other applications, such as agent models, which 
distinguishes it from other packages that are focused 
primarily on data mining and visualization. 
 
7 Conclusions and Future Work 

We have presented the Cognitive Foundry and its two 
primary components that relate to agent behavior 
modeling: the Cognitive Framework and Machine 
Learning packages. For future work, we would like to 
create a graphical user interface to increase the ability of 
users with little computer-programming experience to 
create cognitive models and machine-learning systems.  



We also plan on adding new cognitive modules, learning 
algorithms, and other packages, such as text and image 
analysis, to the Foundry.  
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