
The Cognitive Foundry:
A Flexible Platform for Intelligent Agent Modeling

Justin Basilico, Zachary Benz, Kevin R. Dixon

Sandia National Laboratories
P.O. Box 5800 MS 1188

Albuquerque, NM 87185-1188
{jdbasil, zobenz, krdixon}@sandia.gov

Keywords: cognitive model, machine learning, agent simulation

ABSTRACT: The Cognitive Foundry is a unified collection of tools for Cognitive Science and Technology
applications, supporting the development of intelligent agent models. The Foundry has two primary components
designed to facilitate agent construction: the Cognitive Framework and Machine Learning packages. The Cognitive
Framework provides design patterns and default implementations of an architecture for evaluating theories of
cognition, as well as a suite of tools to assist in the building and analysis of theories of cognition. The Machine
Learning package provides tools for populating components of the Cognitive Framework from domain-relevant data
using automated knowledge-capture techniques. This paper describes the Cognitive Foundry with a focus on its
application within the context of agent behavior modeling.

1 Introduction

The Cognitive Foundry is a unified collection of software
tools for Cognitive Science and Technology (CS&T)
applications. CS&T is a developing field at the
intersection of cognitive science, computer science, and
engineering that takes fundamental concepts from
cognitive science and neuroscience and deploys systems
implementing these ideas. To further the goals of this
multidisciplinary field, we have designed the Foundry to
be a robust, extensible platform to support research, rapid
prototyping, and system deployment, while adhering to
rigorous software-engineering principles. Instead of
pushing a single theory of cognition, the Foundry contains
reusable software components and algorithms designed to
support a wide variety of development needs. The
software architecture of the Foundry promotes reusability,
maintainability, and cross-platform compatibility, without
sacrificing computational resources by leveraging best-in-
class numerical packages.

2 Why the Cognitive Foundry

As the Sandia National Laboratories CS&T program grew
from its infancy, the use cases for our cognitive-modeling
software evolved as well, driven by both researcher- and
customer-centric needs. For basic-research
experimentation, researchers wanted a reusable toolkit
that allowed the rapid prototyping and visualization of
new ideas and hypotheses in modeling cognition, as well
as statistical-validation techniques to compare
performance against a standard battery of existing results
from the literature. Our customers have expressed an

increasing interest in automatically populating cognitive
models through automated knowledge-capture algorithms,
processing large amounts of data efficiently, parallel and
distributed computation, and verifiable software-
development processes. We meet these seemingly
divergent requirements by creating a graduated set of
programmer interfaces that enable both research
experimentation and system deployment, and the Foundry
assists users by providing a set of tools that accompany
those interfaces. For example, if a particular project
would benefit from parallel computation, then the user
can implement the rather simple methods associated with
the Concurrent Cognitive Module interface. The Foundry
then automatically provides the mechanisms to execute
the code in a parallel fashion, with no additional burden
placed on the user. We chose this graduated-interface
strategy to support both the general case by providing a
robust set of core functionality while also providing the
infrastructure for rapidly constructing special-purpose
applications that may require more intricate or onerous
functionality. The manifestation of the Cognitive
Foundry philosophy is that we provide a number of
interfaces, some of which are easy to implement, while
others may be more time consuming. The more
interfaces, or functionality, that a Foundry developer can
implement, the more Foundry tools can be brought to bear
on the problem. Thus, users can select the parts that
provide the best benefit to a specific project. The
Foundry’s Cognitive Framework provides a reusable
framework for building agents and experimenting with
cognitive simulation. The Machine Learning package
provides a large library of powerful learning algorithm
implementations that can be used on their own or to create

components of the Cognitive Framework. Each
component in the Cognitive Foundry is a tool that we
have found useful for building cognitive models and
cognitive systems.

2.1 Benefits of the Cognitive Foundry
One of the primary lessons learned from the maturation of
Sandia’s CS&T program is that the Cognitive Foundry
must provide coverage and support of a cognitive system
from idea to deployment, not just a cognitive simulation.
The Cognitive Foundry’s modularity allows users to
determine which components are necessary, or provide
value, to a particular project by selecting the tools used to
solve common cognitive-systems tasks, while being
assured that rigorous software-engineering quality
processes have been employed. The Foundry also
provides a well-defined path for components to
incorporate the latest research ideas and transition them
into a deployed system. Applications built on the
Cognitive Foundry’s Framework and Machine Learning
packages can immediately make use of new modules for
cognitive simulation and new algorithms that conform to
the common set of interfaces.

2.2 Communicating with the Cognitive Foundry
The Cognitive Foundry is written in the Sun Java 1.5
programming language. We have also developed several
other ways to interoperate with the Cognitive Foundry
from non-Java applications, as shown in Figure 1. For
example, we have created a native-machine interface that
allows applications written in other programming
languages, such as ANSI C/C++ or Microsoft .NET (C#,
Visual Basic) to call directly into the Foundry API. The
Cognitive Foundry also has a Network Interface library to
facilitate connecting to, viewing, controlling, and
launching models over a network. Finally, The Cognitive
Foundry has a graphical user interface to support the
inspection or manipulation of cognitive models during
creation and execution.

2.3 Design Methodology
On a philosophical level, the design of the Cognitive
Foundry has followed a graduated interface approach.
That is, the Cognitive Foundry is built on top of a set of
well defined, hierarchical interfaces. For example, the
Cognitive Foundry defines the functionality that a
Cognitive Model (a memory space, collection of modules,
etc.) and Multivariate Minimization Algorithm (an
objective function, an iteration loop, etc.) must possess.
The Cognitive Foundry then provides one or more default
implementations of these interfaces. However,
developers can always create their own tailor-made
implementations if existing ones do not meet their needs,
allowing researchers to test new ideas and hypotheses
quickly. Since other tools in the Cognitive Foundry
provide functionality at the interface level, new
implementations can automatically exploit existing
functionality provided by other components in the
Foundry by conforming to a defined interface. There are
several benefits to this interface-centric component-based
approach. It provides an easy mechanism for customizing
existing object implementations in the Foundry. It also
gives the ability to pick the specific objects from the
Foundry that are useful for a certain application. Finally,
it creates an integration point for many applications,
which defines an easy transition path from research to
deployment.

3 Cognitive Framework

The Foundry’s Cognitive Framework is a modular
software architecture for cognitive simulation designed
for use in CS&T applications. The Cognitive Framework
itself is a collection of interfaces, which allows
Framework users to either leverage the existing tools in
the Framework or specify different implementations to fit
their specific needs in order to test new ideas and
hypotheses.

3.1 Cognitive Model
The Cognitive Framework is designed so that different,
and possibly competing, elements of a “theory of
cognition” can be instantiated as desired, as shown in
Figure 2. This is accomplished by having a Cognitive
Module perform some aspect of a psychologically
plausible cognitive process. A Cognitive Model, then,
contains a collection of Cognitive Modules whose
purpose is to instantiate some aspect of cognition. The
main components of a Cognitive Model are shown in
Figure 3. Conceptually, Cognitive Modules are the
workhorse classes inside a Cognitive Model. A Cognitive
Model and its corresponding Cognitive Modules use a
single central container to store all state information,
called a Cognitive Model State. The state contains the
sufficient information needed to allow a Cognitive Model

Cognitive
Framework

C / C++ / .NET
Application

Common
Package

Native Interface

Remote
Application

Network
Interface

Java Application
/ GUI

Machine
Learning

Figure 1. Dependency graph diagram of Cognitive
Foundry components and interoperability methods.

Cognitive Foundry

to resume execution later, or on another machine, without
altering the results of a simulation. Furthermore, the
Cognitive Model State can be sent across a network to
distribute computation and exploit the parallelization
inherent in many cognitive agent simulations. The
Cognitive Framework supports the serialization of
Cognitive Models using a binary format, human-editable
XML, or comma-separated values.

3.2 Cognitive Module
The Cognitive Module interface gives users fine-grained
control of what aspects of a “theory of cognition” are
incorporated into a particular Cognitive Model. The
primary functionality of a Cognitive Module is contained
in its “update” method. The update method is given the
current Cognitive Model State, along with the previous
state of the Cognitive Module and the current set of
sensory inputs. The update method of each Cognitive
Module returns its state for the next time step. Cognitive
Modules can pass information to one another through the
Cognitive Model State object, which contains a
blackboard-like component where information can be
posted and read by any Cognitive Module.

3.3 Cognitive Element (Cogxel)
The Framework operates on a key data structure interface:
the cogxel. Cogxel stands for “cognitive element” and is
modeled after the word “pixel,” which means picture
element. A cogxel is the fundamental unit of data in the
Cognitive Framework. Cogxels normally reside in the
Cognitive Model State (blackboard), as they represent the

overall state of the model. Cogxels are accessed by a
high-level “semantic label” that describes the data
contained by cogxel, such as “Heart Rate” or
“Context12345.” Cogxels are in turn stored in a manner
that allows constant-time lookup of the data contained by
the cogxel, allowing efficient retrieval along with
semantically meaningful storage. A default cogxel
implementation consists of a semantic label and a scalar
activation level. However, being an interface, other
applications have created their own cogxel
implementations that use bindings, activation flags, etc.
Thus, cogxels can be adapted to fit the specific needs of
an application or a theory of cognition, such as to model
symbolic, non-symbolic, or structured information.

3.4 Lightweight Implementation
The Cognitive Framework Lite is an implementation of
the Cognitive Framework interfaces that abide by the
specifications set forth by some of our customers and
stakeholders. It is specifically designed for having many
agent models within a larger simulation. It is a “lite”
version of the interfaces because it does not allow for the
dynamic addition or removal of modules while the model
is running. This means that all modules must be added to
the model at its creation time. This allows for compact
data structures and a simple, fast update loop within the
model. The “lite” version of the model can run within a
high-performance computing (supercomputer)
environment, with many models executing on a single
processor with a minimal memory footprint. The “lite”
implementation also contains lightweight
implementations of some basic cognitive modules, such
as a semantic network and perception modules.

3.5 Concurrent Implementation
Cognitive Models requiring significant computational
resources can employ a concurrent implementation of the
Cognitive Framework. For example, we are currently
developing a theory of analogical reasoning using
physiological models of visual and prefrontal cortex that

Figure 3. Cognitive Model components. One object
encapsulates the entire state of the model. The design
emphasizes modularity and state encapsulation.

Cognitive Model

Cognitive
Module

Cognitive Model State
(Current)

Cogxel State
(Blackboard)

Cogxel

Cognitive
Module
State

Theory of
Cognition

Figure 2. Life-cycle diagram of a Cognitive Module.
Knowledge capture techniques are used to populate a
module from data. Verification and validation is done
on a completed module.

Knowledge
Capture

Manual
Knowledge
Elicitation

Automated
Knowledge

Capture

Theory of
Cognition

Cognitive Module

Theory of
Cognition

Verification
and Validation

Statistical
Validation

Software
Engineering
Verification

Machine
Learning

Mathematical Foundation

GUI

Excel XML
Psychological

Verification

employs large numbers of computational units
representing cortical columns in the human brain. The
concurrent implementation provides a means for
distributing computation in parallel across available
computing resources on local machines, namely multi-
core and multi-processor computers. It also provides the
basis for future extensions of the Cognitive Framework to
support distributed computation across networked
computational resources.

The concurrent implementation breaks up the update
method of a Cognitive Module into three steps: read state,
evaluate, and write state. A concurrent cognitive model
can then operate as follows: all modules read required
input state information sequentially, followed by parallel
execution of each module’s evaluate method, with the
update method completed by having each module write
out its state information in sequence. The Cognitive
Foundry provides a default implementation of this parallel
computation, which employs a thread pool with a user-
defined number of threads onto which module evaluations
are scheduled for execution. In this way, a user may fully
utilize multiple cores and processors on a desktop
computer for model execution. Future implementations
will allow distributed computation through evaluations on
network compute resources.

3.6 Perception Module
Every CS&T application needs a way to glean
information from the environment. The Cognitive
Framework accomplishes this by specifying a perception
module, capable of taking some external data source and
transforming relevant information from it into a form that
other modules can process (i.e., cogxels). Perception is
represented as a module such that different approaches to
perception can be experimented with, and possibly
combined.

3.7 Manual Knowledge Elicitation and Automated

Knowledge Capture
Perhaps the most intricate and application-specific step in
creating a Cognitive Model is providing the proper set of
parameters needed to configure the Cognitive Modules.
Some Cognitive Modules can use predefined parameter
sets, but most need to be loaded with domain-specific
information. In general, there are two approaches to solve
this problem: manual knowledge elicitation and
automated knowledge capture. Manual knowledge
elicitation involves a structured interview with a subject
matter expert and the subsequent encoding of this
information into a form that the Cognitive Foundry can
understand. The Cognitive Foundry provides support for
manual knowledge elicitation through both user-interface
components and human-editable input file formats, such
as Microsoft Excel and XML. Not surprisingly, manual

knowledge elicitation is quite labor intensive and
intractable for application domains where there are many
interacting factors, as the combinatorics get out of hand
quickly. Furthermore, slight changes in the application
domain require a complete retooling of the elicitation
process, generally resulting in another interview of the
subject matter expert. The alternative approach,
automated knowledge capture, involves collecting a
relevant set of data in the application domain and then
using that data along with a set of machine-learning, or
data-mining, algorithms to create the necessary
information needed for the Cognitive Module. The
Cognitive Foundry provides support for this approach
through the Machine Learning package, discussed in
section 4.

The main constraint that automated knowledge-capture
techniques have is that they all require relevant data for
the problem they are addressing, usually in large amounts.
If no relevant data exists, or can be readily collected, then
automated knowledge-capture techniques may not be of
much help in solving the problem. However, if a user has
access to, or a mechanism to collect, relevant data, then
an automated knowledge-capture technique probably
exists that can accurately populate a cognitive model to
predict or categorize the problem at hand. In some cases,
real data may have to be augmented with synthetic data to
provide enough support for the automated knowledge-
capture algorithms. However, there exist procedures for
this augmentation as well.

The Foundry contains a Framework-Learning integration
package that was designed so that components of the
Cognitive Framework package could be used in
conjunction with machine-learning algorithms. In other
words, this provides users of the Cognitive Framework
inline access to the large collection of automated
knowledge-capture algorithms from the Machine
Learning package by automatically populating Cognitive
Modules from data without the tedious process of manual
knowledge elicitation. By using the modules of the
Framework-Learning package, a developer can
automatically create models of behavior and cognitive
processes gathered from disparate data sources.

3.8 Cognitive Model Factory
A Cognitive Model Factory is a container that holds the
complete recipe for making a Cognitive Model: the full
list of modules and all of their parameters. Having a
factory allows multiple copies of the same model to be
instantiated and provided different inputs. It also provides
a mechanism for modules to share static information
across Cognitive Model instances so that the data does not
have to be copied, thus saving memory in large-scale

simulations. To borrow an example from physics, all
oxygen-16 molecules are identical; they have the same
static parameterization. To create a simulation of many
interacting oxygen molecules, it is not necessary to copy
the parameterization of an oxygen molecule for each
model; they can share this static information. This saves
memory and the needless computation used to copy the
redundant parameterization. Cognitive Model Factories
provide an analogous functionality, allowing Cognitive
Modules to share static information across many
instances.

3.9 Using the Output of a Cognitive Model
The final step in integrating a Cognitive Model into a
CS&T application is to determine how to use the output
of the model for the application. By this, we mean using
information contained within cogxels to perform some
sort of behavior or action for an agent within its
environment. Typically, this is accomplished by
determining the semantic labels for the cogxels containing

the relevant output information for generating actions.
However, an application can access and make use of any
cogxel in the Cognitive Model State, which means it has a
vast amount of information regarding the internal state of
the Cognitive Model to make use of when generating an
action. Figure 4 illustrates the overall operation of a
Cognitive Model.

The Cognitive Foundry contains graphical user-interface
tools that can display the outputs, and internal state, of a
Cognitive Model. While a predefined user interface may
not be applicable for a particular end-user application,
developers often find it helpful for rapid-prototyping or
debugging purposes. Following the design philosophy of
the Foundry, the piece components of the user interface
may serve as the basis for various end-user applications.

3.10 Example Implementation of a Cognitive Model
The design of the Cognitive Foundry supports cognitive
simulation at many levels of fidelity from low-level
connectionist networks to high-level, abstract symbolic
approaches. We have used the Cognitive Foundry for a
variety of research projects, including building a model of
driving difficulty, agents in economic and social
simulations, and evaluating trainee performance in a
simulated environment. Here we present a brief overview
of an application of the Cognitive Foundry for a current
project underway to better elucidate how the Foundry
helps support cognitive simulations. The project entails
constructing a model of human analogical reasoning
based on published psychological and physiological
literature and research into human performance on a
visual test of intelligence. For this model, the level of
fidelity to be simulated is that of a single cortical column
within the human brain. Currently we are employing
Fuzzy Adaptive Resonance Theory (ART) models as an
abstract representation of a cortical column. Individual
cortical column models are assembled in a connectionist
manner that plausibly models the human visual
processing stream and prefrontal cortex. Following
training, the model is presented with representative visual
problems from the visual test of intelligence and for each
the model’s output is its answer to the problem, chosen
from a multiple choice set.

The Foundry enables the straightforward construction,
training, and evaluation of this model. A perception
module models the human primary visual cortex’s
orientation columns. This module takes as an input a
rasterized visual intelligence test problem and outputs
real-valued cogxels representing the degree to which a
given line orientation is detected in the input image in
each of a set of retinotopic receptive areas. Cortical
columns are implemented as cognitive modules. Each
cognitive module contains a single Fuzzy ART as well as

Figure 4. Operation of a Cognitive Model. A) A
perception module takes an external input, processes
it, and produces outputs which are stored in cogxels in
the Cognitive Model State. B) The Cognitive Model
State contains current cogxel values that change as the
model is run across multiple update steps. C)
Cognitive modules take inputs in the form of cogxels
from the shared Cognitive Model State, perform
implementation specific processing, and then typically
write outputs back to cogxels in the shared state. D)
The model's state and the associated activity of the
modules represent its embodiment of a model of
cognition; some modules may produce external
outputs that can be used for purposes such as model
evaluation or for allowing a model to control external
components, such as in an embedded system

Cognitive
Module

Cognitive Model State

Cogxel

Cogxel

Cogxel

Cogxel

Perception

Module

Cognitive
Module

Cognitive
Module

01110000110
Input to Model

11001001001
External Output

A

B

C

D

a description of what cogxels the module should use as its
input. The input cogxel description provides the
mechanism for determining the wiring of the overall
connectionist network of cortical columns. The overall
Cognitive Model contains the perception module and each
of the cortical column modules, and is implemented using
the concurrent model implementation previously
described.

Running the model is handled by the Foundry, and
involves presenting an input image to the model during an
update step. Refer to Figure 4 for an overview of the
operation of the model. Internally, the Cognitive
Framework presents the image as input to the perception
module, causing it to produce output cogxels. These
cogxels reside in the blackboard-like Cognitive Model
State. As the model is run across multiple update steps,
each module retrieves the appropriate input columns from
the Cognitive Model State, and produces its own output
cogxels. In this model, these outputs are real-valued
vectors produced by the Fuzzy ART contained within a
given module.

By employing the Foundry, the team was able to focus on
the implementation details of the cortical columns and
overall wiring of the model without having to separately
devote effort to creating the framework for constructing,
training, and evaluating the model. Furthermore, the
concurrent implementation provided by the Foundry
allows for a significant reduction in computation time for
model training and evaluation. Finally, the robust set of
machine learning algorithms included in the Foundry
(described in section 4 below) provided the team with a
strong foundation for implementing project specific
functionality.

4 Machine Learning Package

The Cognitive Foundry’s Machine Learning Package
provides a wide variety of optimized, verified, and
validated general- and special-purpose algorithms for
machine learning: the analysis and characterization of
large datasets, function minimization, parameter
estimation, prediction, and categorization. The package is
highly extensible, meant for allowing the rapid-
prototyping of applications based on machine learning
and the development of new or experimental algorithms
and architectures. Typically, in machine learning, there
are various conflated components: the object being
created, the learning algorithm used to create the object,
the data upon which the algorithm operates, the
performance measure, and statistical validation. For
example, we can create a neural network using gradient
descent with a mean squared-error cost function.
However, there are many neural-network architectures
(feedforward, recurrent, different activation functions,

etc.), many different learning algorithms (conjugate
gradient, Levenberg-Marquardt, Quasi-Newton, etc.),
many different cost functions, and many validation
techniques. Unless these components are decoupled, the
combinatorics quickly becomes onerous. In keeping with
the design philosophy of the Cognitive Foundry, the
Machine Learning package separates each of these
components and eliminates the need for Foundry users to
write special-purpose code. This allows users of new
functions (e.g., neural-network architectures) to use
existing learning algorithms and, conversely, creators of
new learning algorithms to test their ideas on different
functions.

4.1 Why a Machine Learning Package?
We created the Machine Learning package to support
using automated knowledge-capture techniques to
populate cognitive models. Many such techniques are
based on machine-learning algorithms. Furthermore, our
research group had several implementations of similar
machine-learning algorithms written in different
programming languages, with slight variations on similar
approaches. The Machine Learning package is a common
repository of these algorithms, so that they may be easily
integrated into different applications and projects.

Due to the decoupling of the learning algorithm from the
object being learned, the Machine Learning package
allows rapid prototyping and experimental testing of
different algorithms, approaches, and function
approximators and categorizers. The package
accomplishes this through the systematic use of interfaces
and generics to encapsulate the needs of each algorithm,
including their inputs, outputs, and parameterizations. We
followed an object-oriented design for the entire package
so that the different algorithms utilize common,
interchangeable subcomponents, such as cost functions
and statistical validation. This approach greatly simplifies
the integration of exiting machine-learning algorithms to
new problems and, conversely, to apply new machine-
learning algorithms to existing problems and datasets.
We did this to focus on experimenting with different
algorithms and parameterizations to create machine-
learning systems embedded into CS&T applications. The
design of the Machine Learning package makes wide use
of Java generics and, together with the decoupling of the
piece components of a machine-learning system, the
source code tends to be very similar to pseudo-code from
textbooks and research papers. This has the result of
greatly increasing the reusability of elements in the
package and increasing the level of verification and
validation of the algorithms.

4.2 Learned Functions
One of the key concepts of the Machine Learning package
is the separation of the machine-learning algorithm from
the function created by the algorithm, which is typically
some form of function approximator or categorizer. For
example, consider a prototypical function approximator,
the artificial neural network. Many machine-learning
algorithms can estimate locally optimal parameters for
neural networks, such as gradient descent, genetic
algorithms, and inverted quadratic line search. However,
each of those machine-learning algorithms can estimate
the parameters of a much broader class of function
approximators. Separating the function approximator
from the machine-learning algorithm means that we only
have to write a learning algorithm once, instead of the
combinatorial explosion that occurs in the cross product
of function approximators and learning algorithms. The
package contains many standard and specialty function
approximators such as artificial neural networks, linear
systems, dynamical systems, k-nearest neighbors,
polynomials, categorizers, decision trees, support vector
machines, and mixture of Gaussians. Furthermore, the
Cognitive Foundry allows developers to create their own
functional forms, or to chain together existing functions,
to create new functional architectures, making the
Machine Learning Package highly extensible. A
fundamental ability for function approximators and
categorizers is the ability to express itself as a vector of
tunable parameters. In this form, many learning
algorithms can automatically tune the parameters of
function approximators to achieve some desired result.

4.3 Learning Algorithms
The main paradigm of the learning package is that a
learning algorithm is given a dataset from which to create
a new learned object, typically a function approximator or
categorizer. This creates a clear separation between the
input to the algorithm, the output from the algorithm, and
the parameters of the algorithm. There exist two primary
learning interfaces: the Batch Learner interface and the
Online Learner interface. Batch Learners operate only
after all data have been collected, while Online Learners

can operate concurrently as data are being collected.
Each of these learners operates in a supervised or
unsupervised manner. Supervised-learning algorithms
learn to generalize from example input-output pairings,
while unsupervised-learning algorithms attempt to
discover patterns in an unlabeled dataset to achieve some
goal (Duda, Hart, & Stork, 2001). We will discuss each
of these techniques in the following sections.

4.3.1 Supervised-Learning Algorithms
Supervised-learning algorithms take a dataset of input-
output pairs and generalize them to as-yet-unseen inputs
by finding parameter sets that minimize a cost function.
Commonly these algorithms yield “function
approximators” or “regression” when the outputs are real
valued and “categorizers” when the outputs are discrete
valued. We provide a wide variety of supervised-learning
algorithms such as derivative-free algorithms, gradient-
based methods, linear regression, algebraic solvers, kernel
methods for both regression and categorization, and
decision trees for both regression and categorization. We
also have implemented meta-learning algorithms such as
ensemble methods, which demonstrate the power of
having a unified set of interfaces implemented by a
variety of learning algorithms. A typical design pattern
for a supervised learning algorithm is shown in Figure 5.

4.3.1.1 Derivative-Free Algorithms

There is a class of parameter-estimation algorithms that
do not require gradient information to find a (locally)
minimum-cost parameter set of a function. That is, to
find the optimal solution, these algorithms only require
function evaluations. While these algorithms are the most
general, and can find optimal parameters for functions
that are highly nonlinear with nonanalytic or inexistent
derivatives, they tend to be less efficient than gradient-
based algorithms when gradient information can be
computed or approximated.

We have implemented standard derivative-free algorithms
including Direction Set (Powell’s) Method, Downhill
Simplex (Nelder-Mead) algorithm, Genetic Algorithms,
and Simulated Annealing.

4.3.1.2 Gradient-Based Algorithms

A more restrictive class of parameter-estimation
algorithms are those that require gradient information to
find a (locally) minimum-cost parameter set of a function.
These algorithms usually perform better than non-
gradient-based methods.

We have implemented standard gradient-based algorithms
including Quasi-Newton Minimization (BFGS),
Levenberg-Marquardt Estimation, Conjugate-Gradient
Minimization, and Gradient Descent. Many of these

Supervised
Learning
Algorithm

Target
Data

Function
Approximator

Parameters

Figure 5. Typical supervised learner design pattern.

Input
Data

Cost
Function

Statistical
Validation

algorithms are also guaranteed to converge using
approximated differentiation procedures by estimating the
parameter Jacobian from function evaluations alone.
Oftentimes, gradient-based algorithms with approximated
derivatives are more efficient than derivative-free
algorithms. We have implemented automated
differentiation procedures for arbitrary functions to give
users the ability to try different gradient-based and
derivative-free algorithms.

4.3.1.3 Special-Purpose Solvers

Some special-case functions have closed-form or iterative
optimal solutions. These functions may be used with the
general-purpose algorithms mentioned above or with
solvers that exploit particular features of these special
functions. For example, we have implemented solvers for
linear regression, linear systems, linear dynamical
systems, multivariate Gaussians, and so forth. Not
surprisingly, these special-purpose solvers are typically
more efficient than general-purpose solvers for the same
functional form.

4.3.1.4 Kernel Methods

We have extensive support for kernel-based methods,
including a set of useful kernel functions and tools for
composing kernel functions. Kernels allow certain
machine-learning algorithms to extend to nonvector data
by defining a similarity measure between two inputs that
fulfill the properties of a kernel function. As such, the
library utilizes generics for kernels, which promotes the
creation of kernels for new data types, which may in turn
be plugged into existing kernel-based algorithms. We
have implemented several kernel-based learning
algorithms for categorization, regression, and clustering.

4.3.1.5 Ensemble Methods

Ensemble methods typically take a simple function and
combine several together to create sophisticated responses
to novel inputs, similar to voting schemes, game theory,
or stock-market collaboration. Ensemble methods are a
natural fit for the Cognitive Foundry’s Machine Learning
package because each machine-learning algorithm
conforms to a standard interface that allows algorithms
that create the same function to be interchanged, meaning
that algorithms conforming to the same interface can be
automatically combined using an ensemble-learning
algorithm that utilizes the output of each learning
algorithm. We have implemented several ensemble
methods including Bagging and AdaBoost.

4.3.2 Unsupervised Learning Algorithms
Unsupervised-learning algorithms take a high-
dimensional space, potentially a “Big Data” problem, and
map it to a low-dimensional and (hopefully) simpler

space. These algorithms are useful for understanding
complicated relationships, identifying statistical
regularities, and visualization. Our set of unsupervised
algorithms emphasizes principal components analysis and
clustering algorithms, such as k-means clustering,
agglomerative clustering, reductionist clustering, and
affinity propagation. The clustering algorithms are based
on a user-defined distance metrics that allow all
unsupervised algorithms to be easily adapted to new types
of data. We also exploit singular value decomposition and
eigenvector decomposition for dimensionality reduction.
For automated knowledge capture, unsupervised learning
algorithms, such as the clustering algorithms listed above,
are used to discover contexts, latent patterns, and
relationships for a Cognitive Model automatically.

4.4 Experiments and Performance Evaluation
We have created objects that automatically evaluate the
performance of learning algorithms against a dataset
using statistical-hypothesis testing techniques. These
“Experiment” objects automatically provide performance
confidence bounds using generally accepted validation
techniques, such as n-fold, leave-one-out (jackknife), and
bootstrap validation. For each experiment, a user specifies
the dataset, learning algorithms, validation methodology,
performance criteria, and summary statistics. The output
of an experiment is a confidence interval describing the
performance range and statistical confidence in the
experiment, making it easy to compare different learning
algorithms, algorithm parameters, or functional forms in a
statistically significant manner.

4.5 Statistics Package
The Cognitive Foundry also includes a comprehensive
Statistics package for performance analysis and statistical-
hypothesis testing, in addition to providing many
probability distributions for modeling purposes.

4.5.1 Null-Hypothesis Testing
The goal of null-hypothesis testing is to determine if two
distributions of data are different in a statistically
significant sense. In other words, can the observed results
be due to chance? This gives a user of the Cognitive
Foundry a quantifiable confidence on the performance of
the system. Different statistical tests have different
assumptions, and it is necessary to find the test
appropriate for the problem at hand.

This package contains the standard statistical tests such as
Student-t Test, Analysis of Variance (ANOVA or F-Test),
z Test, Kolmogorov-Smirnov Test, Fisher Sign Test,
Wilcoxon Signed Rank Test, Mann-Whitney U Test
(Wilcoxon Rank-Sum Test), Receiver-Operator
Characteristic, and others. Given the well-designed
structure of the Cognitive Foundry, it is easy to use the

appropriate null-hypothesis test for the given problems
facing a project.

4.5.2 Confidence Bounds
From estimates based on different datasets, it is often
useful to determine what possible values a parameter
could take. For instance, what is the likely room
temperature from a set of noisy thermometer readings?
Likewise, how many experiment subjects do we need to
achieve a margin of error of at most ±3%? To answer
these types of questions, we have implemented the
standard confidence-bounds routines such as Student-t,
Gaussian, Chebyshev, Markov, and Bernoulli.

5 Common Math Package

The main purpose of the Common Math package is to
provide a common foundation of useful mathematical
routines for building applications. Much of our research
and many applications require mathematical rigor, and the
main component of the Common package is to facilitate
matrix and vector computation, decompositions, and
solver routines, in both dense and sparse representations.
Dense-matrix computation tends to be faster than its
sparse-matrix counterpart, however, many “Big Data”
applications simply cannot use a dense-matrix
representation. The Cognitive Foundry gives users the
flexibility to choose the representation that best suits their
needs. The basic definitions of a matrix and vector are
interfaces, which gives Foundry users the freedom to
write their own Matrix package. The default Matrix
package in the Cognitive Foundry is based on the publicly
available Matrix Toolkits for Java (MTJ) library. MTJ
performs its computations, decompositions, and solvers
using callbacks into the best-in-class native libraries
LAPACK and BLAS, resulting in computational speeds
competitive with other heavily optimized computational
packages. If these native libraries are not available, MTJ
will redirect the calls to platform-independent Java
versions of LAPACK and BLAS, which are slower than
the native versions. This flexibility allows Cognitive
Foundry applications to use the most efficient
computational engine available, while preserving cross-
platform compatibility.

6 Related Work

Agent-based (Wooldrige & Jennings, 1995) and cognitive
simulation is an active area of research, and there are
many cognitive architectures in existence, such as ACT-R
(Anderson & Lebiere, 1993) and SOAR (Laird, Newell,
& Rosenbloom, 1987). The Foundry’s Cognitive
Framework builds upon previous research in cognitive
frameworks at Sandia by Forsythe and Xavier (2002).
However, unlike cognitive architectures that are built

around a single theory of cognition, the Foundry promotes
modularity and experimenting with various aspects of
different theories of cognition. This provides a value
added over existing architectures in that the relevant
cognitive components can be utilized to fill project
specific needs. This includes the ability to choose the
appropriate level of modeling fidelity for a given
application. The Foundry is also different in its focus on
integrated automated knowledge capture and the ability to
create lightweight cognitive components that are easy to
embed in agents and stand-alone CS&T applications.

An example of a project that incorporated different
cognitive architectures is the Agent-Based Modeling and
Behavior Representation (AMBR) Model Comparison
project (Gluck & Pew, 2001), which involved comparing
the performance of different cognitive architectures in
modeling the behavior of an air traffic controller. The
Foundry is designed to support combining and comparing
existing models of cognition developed within its
environment, similar to the comparisons performed using
the HLA environment in AMBR. It also provides its own
robust library for the development of new models, and for
the combination of new and existing models.

There are also other libraries of machine-learning
algorithms in existence, such as Weka (Witten & Frank,
2005) and RapidMiner, formerly YALE (Mierswa, Wurst,
Klinkenberg, Scholz, & Euler, 2006). However, the
Foundry’s learning package differs from existing
packages in several ways. First, the Cognitive Foundry
does not force users to create datasets in a fixed data
structure for the machine-learning algorithms, such as
vector data. Instead, the Foundry algorithms are
implemented so that they can be used with a variety of
data structures by its use of generic type parameters. The
Foundry’s Machine Learning package is also different
because it spans the entire development cycle of a
learning system from data collection, analysis,
experimentation, rigorous tools for performance
validation, and deployment into applications, including
embedded systems. The package is targeted at making it
easy to embed the function created through learning into
other applications, such as agent models, which
distinguishes it from other packages that are focused
primarily on data mining and visualization.

7 Conclusions and Future Work

We have presented the Cognitive Foundry and its two
primary components that relate to agent behavior
modeling: the Cognitive Framework and Machine
Learning packages. For future work, we would like to
create a graphical user interface to increase the ability of
users with little computer-programming experience to
create cognitive models and machine-learning systems.

We also plan on adding new cognitive modules, learning
algorithms, and other packages, such as text and image
analysis, to the Foundry.

8 References

Anderson, J., & Lebiere, C. (1993). The Atomic
Components of Thought. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Duda, R. O., Hart, P. E., & Stork, D. G. (2001). Pattern
Classification. New York, NY: Wiley-Interscience.

Forsythe, C., & Xavier, P. G. (2002). Human emulation:
Progress toward realistic synthetic human agents. In
Proceedings of the 11th Conference on Computer-
Generated Forces and Behavior Representation.

Gluck, K. A. and Pew, R. W. (2001) Overview of the
Agent-based Modeling and Behavior Representation
(AMBR) Model Comparison Project. In Proceedings of
the 10th Conference of Computer Generated Forces and
Behavior Representation.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987).
SOAR: An Architecture for General Intelligence.
Artificial Intelligence, 33 (1), 1-64.

Mierswa, I., Wurst, M., Klinkenberg, R., Scholz, M. &
Euler, T. (2006). YALE: Rapid Prototyping for Complex
Data Mining Tasks. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-06).

Witten, I. H. & Frank, E. (2005) Data Mining: Practical
machine learning tools and techniques, 2nd Edition. San
Francisco: Morgan Kaufmann.

Wooldridge, M., & Jennings, N. R. (1995). Intelligent
Agents: Theory and Practice. In Knowledge Engineering
Review.

Acknowledgements

This work was partially funded by the Office of Naval
Research, Code 30. Sandia is a multiprogram laboratory
operated by Sandia Corporation, a Lockheed Martin
Company, for the United States Department of Energy
under contract DE-AC04-94AL85000.

Author Biographies

JUSTIN BASILICO is a researcher at Sandia National
Laboratories in Albuquerque, NM. He received his B.A.
in Computer Science from Pomona College and his M.S.
in Computer Science from Brown University. His

research interests include machine learning, cognition,
information retrieval, statistical text analysis, and human-
computer interaction.

ZACHARY BENZ is a researcher at Sandia National
Laboratories in Albuquerque, NM. He received his B.S.
in Engineering at Harvey Mudd College and his M.S. in
Computer Science at the University of New Mexico. His
research interests are in cognition, cognitive modeling and
statistical text analysis.

KEVIN R. DIXON is a researcher at Sandia National
Laboratories in Albuquerque, NM. He received his B.S.
and Ph.D. from Carnegie Mellon University in Electrical
& Computer Engineering. His research interests are in
statistical pattern recognition, dynamical systems, human-
machine interaction and adaptive control.

