

Realizando cálculos para o aparelho divisor (II)

O problema

Na aula anterior você aprendeu a fazer vários cálculos para o aparelho divisor. Mas, o assunto ainda não está esgotado.

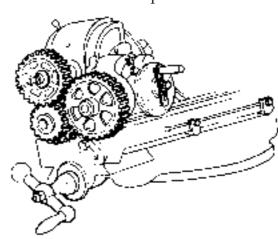
Há casos em que não existe um disco divisor que possua o número de furos que você precisa. Além disso, talvez você tenha uma fração que não pode ser simplificada. Como fazer nesses casos?

Esse é o problema que tentaremos resolver nesta aula. Estude-a com atenção, porque, se você quiser ser um bom fresador ou um ferramenteiro, terá de saber resolver esse problema muito bem.

Nossa aula

Divisão diferencial

Imagine que você tem de calcular o número de voltas na manivela de um aparelho divisor para fresar uma engrenagem com 97 dentes e sabendo que a coroa do divisor tem 40 dentes.


Aparentemente, esse parece ser um problema igual aos outros que você já estudou e resolveu. A fórmula é a mesma, ou seja:

$$Vm = \frac{C}{N} = \frac{40}{97}$$

No entanto, o que parece ser a solução não é. E você sabe por quê?

Bem, primeiramente, não existe um disco divisor com 97 furos. Além disso, aquela fração não pode ser simplificada.

Adivisão diferencial é usada para resolver esse problema. Ela é um processo de correção do número de dentes feito por meio do uso de um conjunto de engrenagens.

A divisão diferencial é usada sempre que for necessário fresar uma engrenagem com um número primo de dentes maior do que 49. Isso porque 49 é o maior número de furos do disco da nossa fresadora.

Recordar é aprender

Número primo é o número inteiro que só pode ser dividido por si mesmo e pela unidade.

Cálculo com divisão diferencial

Vamos retomar, então, os dados do problema:

C = 40 (dentes da coroa)

N = 97 (número de divisões desejadas)

O cálculo com divisão diferencial será feito passo a passo. Acompanhe.

1. Encontrar um número arbitrário, que não seja primo, próximo ao número de dentes da engrenagem a ser fresada. Para o nosso problema, vamos escolher 100, ou seja, N' = 100 (lê-se "ene linha").

Dica

A escolha do número é realmente arbitrária, ou seja, não depende de nenhuma regra. Por isso, pode ser que o número escolhido "não dê certo" e seja necessário escolher outro e refazer os cálculos.

2. Calcular o número de voltas na manivela para N' = 100:

$$Vm = \frac{C}{N'} = \frac{40}{100}$$

Simplificando:

$$Vm = \frac{40 \div 10}{100 \div 10} = \frac{4 \cdot 2}{10 \cdot 2} = \frac{8 \text{ f}}{20 \text{ D}}$$

Com esse passo, temos o seguinte resultado: para fresar cada dente, é necessário avançar 8 furos no disco divisor de 20 furos.

O problema é que se o cálculo parar por aqui, a engrenagem terá 100 dentes e não 97. Por isso, temos de realizar mais algumas etapas.

3. Achar a diferença entre o número de dentes desejado e o número arbitrário, ou entre o número arbitrário e o número de dentes desejados. Isso vai depender de qual número é o maior.

$$100 - 97 = 3 (\triangle N)$$

Com esse resultado, podemos calcular o número de dentes das engrenagens auxiliares que serão usadas para corrigir a diferença de 3 dentes do nosso exemplo. A correção será feita pela movimentação do disco divisor.

4. Calcular as engrenagens. Para isso, usa-se a fórmula:

$$\frac{Zmot}{Zmov} = \frac{C.\Delta N}{N'}$$

Em que: **Zmot** é a engrenagem motora,

Zmov é a engrenagem movida,
C é o número de dentes da coroa,
N ' é o número arbitrário de dentes,
∆ N é a diferença entre N e N'.

Voltando ao problema e substituindo os valores na fórmula, temos:

$$\frac{Zmot}{Zmov} = \frac{40.3}{100}$$

$$\frac{Zmot}{Zmov} = \frac{120}{100}$$

A fração resultante significa que a engrenagem motora (Zmot) deverá ter 120 dentes e a engrenagem movida (Zmov), 100.

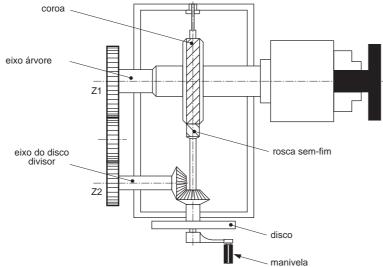
5. Verificar se no jogo de engrenagens auxiliares da fresadora existem as engrenagens calculadas.

Dica

Geralmente, as fresadoras são acompanhadas de um jogo de engrenagens auxiliares com os seguintes números de dentes: 24 (2 engrenagens), 28, 32, 36, 40, 44, 48, 56, 64, 72, 80, 84, 86, 96 e 100.

Mais uma vez, você verifica que não existe engrenagem com 120 dentes no jogo. Então você passa para o próximo passo.

6. Trabalhar a fração $\frac{120}{100}$, dividindo-a ou multiplicando-a por números inteiros, até encontrar um resultado que corresponda a duas das engrenagens existentes no jogo.

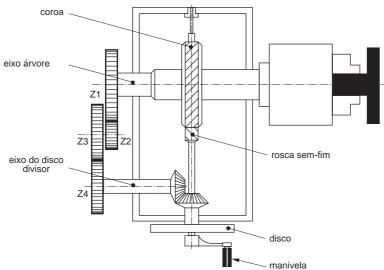

$$\frac{120 \div 10}{100 \div 10} = \frac{12}{10}$$

$$\frac{12.8}{10.8} = \frac{96 \text{ (motora ou } Z_1)}{80 \text{ (movida ou } Z_2)}$$

Ou seja, a engrenagem motora deverá ter 96 dentes e a engrenagem movida deverá ter 80 dentes.

Para a montagem, a engrenagem motora (Z_1) deverá ser fixada no eixo da árvore do divisor e a engrenagem movida (Z_2) deverá ser montada no eixo do disco.

Porém, nem sempre são usadas apenas duas engrenagens para a correção. Conforme o caso, a fração é desmembrada em duas e você terá de calcular 4 engrenagens.


Como exemplo, vamos imaginar que você já aplicou a fórmula $\frac{Zmot}{Zmov}$, simplificou a fração até obter o resultado $\frac{12}{7}$.

Como você faz o desmembramento dessa fração? Na realidade, o método é o da tentativa e erro até encontrar os números que correspondem aos das engrenagens que você tem no jogo auxiliar. Para a fração $\frac{12}{7}$, você pode fazer: $\frac{12}{7} = \frac{4 \cdot 3}{7 \cdot 1}$. Então, você desmembra e tem:

$$\frac{Zmot}{Zmov} = \frac{4 \cdot 8}{7 \cdot 8} = \frac{32}{56} = \frac{Z_1}{Z_2}$$

$$\frac{Zmot}{Zmov} = \frac{3 \cdot 24}{1 \cdot 24} = \frac{72}{24} = \frac{Z_3}{Z_4}$$

Observe que as frações tiveram seus numeradores e denominadores multiplicados por um mesmo número e, como resultado, você obteve Z1 = 32, Z2 = 56, Z3 = 72, Z4 = 24, que são números de dentes das engrenagens existentes no jogo da fresadora.

Tente você também

Para que você não se perca no meio de tantas informações, vamos dar uma paradinha para alguns exercícios.

Exercício 1

Calcule o número de voltas da manivela e as engrenagens para fresar uma engrenagem com 51 dentes em um divisor com coroa de 40 dentes. Solução:

Dados disponíveis:
$$N = 51$$

 $C = 40$
 $N' = \text{arbitrário (vamos escolher 50)}$
 $\Delta N = N - N'$

Fórmula para o cálculo do número de voltas da manivela:
$$Vm = \frac{C}{N'}$$

 $Vm = \frac{40}{N}$

Fórmula para o cálculo das engrenagens:
$$\frac{Zmot}{Zmov} = \frac{C \cdot \triangle N}{N'}$$

$$\frac{Zmot}{Zmov} = \frac{40 \cdot 1}{N} = \frac{C \cdot \triangle N}{N'}$$

Exercício 2

Calcule o número de voltas da manivela e as engrenagens auxiliares para fresar uma engrenagem com 131 dentes em um divisor com coroa de 40 dentes. Faça o cálculo para 4 engrenagens.

Solução:

Dados:

$$\begin{split} N &= 131 \\ N' &= 128 \text{ (arbitrário)} \\ C &= 40 \\ \triangle N &= N - N' \\ Vm &= \frac{C}{N} = \frac{40}{128} = \\ \frac{Zmot}{Zmov} &= \frac{C \cdot \triangle N}{N'} = \frac{40 \cdot 3}{128} = \end{split}$$

Determinação das engrenagens intermediárias

Você pensa que já está tudo pronto? Não está, não! Você deve selembrar que no começo da lição, calculamos o valor de duas engrenagens e obtivemos Z_1 = 96 e Z_2 = 80.

Como essas duas novas engrenagens que foram montadas estão distantes uma da outra, é preciso colocar uma ou duas engrenagens intermediárias, que serão responsáveis pela transmissão do movimento.

14

O que você precisa notar, entretanto, é que quando uma ou duas engrenagens intermediárias são montadas no aparelho divisor, isso pode alterar o sentido de giro do disco.

Assim, se o disco girar no mesmo sentido da manivela, será maior cada divisão do material com o qual se fresará a engrenagem .

Isso significa que você terá menos dentes que o número arbitrário (N') escolhido para o cálculo. No nosso exemplo, N' = 100.

Essa redução corresponde justamente ao valor DN = 3. Então, teremos, na verdade, 100 - 3 = 97 que é o valor desejado para a solução do problema.

Neste caso, é preciso usar apenas uma engrenagem intermediária.

Mas você deve estar se perguntando: "E se eu colocasse duas engrenagens intermediárias? O que aconteceria?".

A colocação de duas engrenagens intermediárias resultaria em um sentido de giro do disco contrário ao sentido da manivela.

Com isso, cada divisão no material a ser fresado seria menor e, por causa disso, você teria mais dentes do que o número arbitrário (N' = 100).

O acréscimo seria $\Delta N = 3$, ou seja, N = 100 + 3. Nesse caso, a engrenagem ficaria com 103 dentes, o que estaria errado.

Isso mostra como é importante a colocação das engrenagens intermediárias. Elas determinam o sentido de giro do disco divisor.

O sentido de giro do disco, por sua vez, determina se a correção será para menos ou para mais.

As possibilidades de combinações entre engrenagens e números arbitrários e as respectivas quantidades de engrenagens intermediárias podem ser resumidas no quadro a seguir.

NÚMERO DE ENGRENAGENS	NÚMERO ARBITRÁRIO (N $^\prime$)	QUANTIDADE DE ENGRENAGENS
DO CÁLCULO	ESCOLHIDO	INTERMEDIÁRIAS
2	maior que N	1
2	menor que N	2
4	maior que N	
4	menor que N	1

Tente você também

Agora queremos que você treine esse cálculo que acabamos de ensinar.

Exercício 3

Determine a quantidade de engrenagens intermediárias, sabendo que o cálculo foi feito para duas engrenagens e que N' é 120 e N é 123.

Exercício 4

Quantas engrenagens intermediárias serão necessárias para transmitir movimento para o disco do divisor, sabendo que o cálculo foi feito para 4 engrenagens e que N' é igual a 130 e que N é igual a 127.

Teste o que você aprendeu

Vamos agora testar o quanto você realmente se esforçou para aprender este cálculo. Leia novamente a lição. Se precisar, refaça os exercícios. Gaste quanto tempo for necessário para aprender tudo com segurança.

Só depois faça os exercícios a seguir. Mas... sem olhar, viu?

Exercício 5

Calcule o número de voltas na manivela e as engrenagens auxiliares e intermediárias necessárias para fresar uma engrenagem com 71 dentes em um divisor com coroa de 40 dentes.

Exercício 6

Quantas voltas na manivela será necessário dar e quais serão as engrenagens auxiliares e intermediárias necessárias para fresar uma engrenagem com 137 dentes, sabendo que você terá de usar um divisor com coroa de 40 dentes?

Exercício 7

Para fresar uma engrenagem com 93 dentes, quantas voltas de manivela serão necessárias e quais serão as engrenagens auxiliares e intermediárias, sabendo que o divisor tem uma coroa com 60 dentes?