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A B S T R A C T

Complex surface parts are widely used in aerospace, automotive, and precision molds. Modern manufacturing
aims to improve the machining accuracy and efficiency of these parts. The machining accuracy of surface parts
can be significantly improved using a series of error compensation technologies to compensate for machining
errors. Based on the analysis of the measurement data of the parts, empirical mode decomposition (EMD)
method is used to decompose the machining errors into systematic and random errors, which are used to modify
the numerical control (NC) codes to compensate for the systematic errors of the surface parts. An example of a
complicated surface part proves that the method proposed in the current study can effectively improve the
machining accuracy of surface parts.

1. Introduction

The applications of complex surfaces increase with the rapid de-
velopment of modern technology, and modern manufacturing industry
requires highly precise applications. The computer numerical control
machining accuracy of complex surfaces is affected by various factors,
such as manufacturing system, vibration tool size, machine tool thermal
deformation, programming, and machining method errors, as well as
machine tool deformation. Machining errors must be compensated to
improve machining accuracy. Researchers conducted in-depth research
on the compensation of machining errors. Topal et al. [1] studied the
numerical control (NC) process, suggested a prediction method to solve
the cutting force caused by the radial deformation of a workpiece, es-
tablished the relationship between the cutting force and the deforma-
tion of the empirical formula, and compensated errors off-line. Cheng
et al. [2] proposed a new geometric error compensation method based
on the Floyd algorithm and the product of exponential screw theory.
Based on the topological structure and the measured data, the volu-
metric geometric error modeling was established by the product of
exponential screw theory. The improved Floyd minimum distance
method was used to build the error compensation model by adjusting
weight. The Floyd method was proven to improve the machining pre-
cision of a machine. Cho et al. [3] developed a complex surface profile
online inspection system and proposed a machining error compensation
method based on online measurement technology. Cho combined
polynomial neural network algorithm and data inspection method in a
model to calculate machining errors under machining conditions and

used an iterative algorithm to modify the tool path to complete error
compensation. The validity of the method is verified by experiments.
Poniatowska et al. [4] proposed a regression analysis and spatial sta-
tistical method to determine the CAD machining pattern model. The
offline correction NC code is then used to compensate for the systematic
errors of NC machining. The results indicate the significance of com-
pensation effect and efficiency. Wei et al. [5] established a compre-
hensive mathematical model of geometric and thermal errors, used the
CNC system coordinate offset function, and applied a self-developed
integrated error real-time compensation system. Errors are compen-
sated online in real time. The results indicate a satisfactory effect, al-
though the NC codes and soft hardware are unchanged by the method.
Chen et al. [6] integrated online inspection and compensation and used
spatial statistical analysis to process the residuals of the surface re-
gression model to decompose systematic and random errors; systematic
errors are compensated online.

Two kinds of machining errors compensation methods exist. The
first type is based on error source analysis and compensation.
Machining errors are calculated and compensated according to error
source modeling. The other type is based on the part measurement data
to be analyzed and compensated. Machining errors are calculated and
compensated appropriately by comparing the measured surface with
the theoretical surface. However, studies on error compensation for
complex surface parts based on the empirical mode decomposition
(EMD) are scarce. Based on part measurement data analysis, EMD is
used in the current study to decompose machining errors. Machining
errors are decomposed into systematic and random errors, and the
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systematic errors of the machined part are compensated appropriately.
The method exhibits the remarkable effects of improving the machining
precision of surface parts.

2. Complex surface machining error description

Some differences are observed between the processed part and
theoretical surfaces in the NC machining process because of the error
sources. These differences are called machining errors. The machining
errors of complex surfaces are generally described by the errors of the
theoretical points on the surface along the normal vector directions.
The normal distances between the machining and theoretical surfaces
can be converted to the minimum distances from the actual measuring
points to the theoretical surface. Assuming that the coordinates of the
measured point are p X Y Z( , , ),A A A the corresponding normal is n, and n
intersects the theoretical surface at point p∗,which is the corresponding
measured point on the theoretical surface. Assuming that the co-
ordinates of the theoretical point is ∗p X Y Z( , , ),T T T the distance between p
and p∗ is the minimum distance from measured point p to the theore-
tical surface (surface machining errors). Fig. 1 shows that surface ma-
chining error can be expressed as

= − + − + −ε X X Y Y Z Z( ) ( ) ( )A T A T A T
2 2 2 (1)

where ε is the machining error at each point on the surface; X Y Z, ,T T T are
the coordinate values of theoretical point p∗; X Y Z, ,A A A are the co-
ordinate values of measured point p. The sign convention in this paper
is that machining errors caused by undercutting are denoted as positive
errors and the errors caused by overcutting are denoted as negative
errors.

In the surface part machining, machining errors are difficult to
avoid and the machining errors of the curved surface become a per-
sistent problem because of the influence of error factors. Machining
errors can be decomposed into systematic and random errors by con-
sidering the measurement data from the surface part. Machining ac-
curacy can be improved after part re-machining by compensating the
systematic errors. Therefore, machining errors can be analyzed and
compensated by integrating all error factors. Practical applications
verify that under certain process conditions, the combined effects of
various error sources lead to machining errors, and the effects exhibit a
certain degree of stability and repeatability. The differences between
the machined surface and the theoretical surface include size, shape,
and microscopic errors, such as surface roughness errors. The surface of
the machined surface part is measured, and the measured data are re-
constructed in the current study to obtain the new surface, which is
compared with the theoretical surface to identify deviations. When
machining reference is unchanged, the differences can be regarded as
machining errors.

In theory, machining errors are the sum of random and systematic
errors. Machining errors are directly compensated for in most studies.
However, the compensation process is faulty because random errors are
difficult to compensate for. Systematic errors are generally larger than

random errors. Thus, compensating for systematic errors can solve the
main problem. Only the systematic errors in machining errors are
compensated in this study to solve the key problem of compensation
errors. Therefore, the two types of errors must be decomposed.

3. Machining error decomposition based on the empirical mode
method

To decompose the machining errors, a machining error decom-
position method based on EMD is presented in the current study. The
systematic and random errors in the machining errors of a part can be
decomposed by EMD successfully, and the systematic errors can be
compensated.

3.1. Empirical mode decomposition

The EMD [7] is a signal-processing method proposed by Huang et al.
of the National Aeronautics and Space Administration. EMD is data-
based with good adaptive linear characteristics. Thus, EMD is theore-
tically applicable to any type of signal decomposition, especially for
non-linear and non-stationary signals. Therefore, EMD method is
widely used in astronomy, oceanography, biology, earth science, and
civil engineering [8–11] but has limited use in mechanical engineering,
especially in machining error analysis.

EMD decomposes arbitrary signals into one or several intrinsic
modal functions (IMF), and the intrinsic modal function obtained
through decomposition satisfies the following constraints:

(1) The numbers of extreme and zero-crossing points in the entire data
sequence is at most one;

(2) At any point in time, the mean value of the upper and under en-
velopes determined by the signal maxima and minima, respectively,
is zero.

EMD decomposes the fluctuation or trend in different scales step-by-
step. A series of data sequences with different characteristic scales is
generated. The resulting data sequence is IMF [12]. The EMD decom-
position of signal data x(t) is essentially a “sifting” process. The com-
bination of this method with the actual data decomposition process is
summarized below. Fig. 2 presents the accelerated speed response of a
mechanical gear vibration test.

(1) First, all extreme points on x(t) must be identified, and all max-
imum and minimum points must fit into the upper and lower en-
velopes of x(t) (As indicated by the dashed lines in Fig. 2) by using
the cubic spline interpolation function. The upper and lower en-
velopes should contain all signal data. The average of the upper and
lower envelopes is designated as m1 (As indicated by the thick solid
line in Fig. 2). The difference between x(t) and m1 is defined as h1,
i.e.

− =x t m h( ) 1 1 (2)

h1 should be an IMF. However, a new extreme point is generated be-
cause of the overshoot and undershoot phenomena in envelope fitting.
Therefore, the decomposition must be performed multiple times. In the
second sifting process, the data for processing is h1, and the envelope
mean is m11, Thus,

− =h m h1 11 11 (3)

The sifting process is repeated k times to obtain

− =−h m hk k k1( 1) 1 1 (4)

Until h1k meets the IMF conditions, the sifting process breaks off. The
first IMF is obtained, i.e.,

=c t h( ) k1 1 (5)

p*

p

n

Fig. 1. Minimum distance from a point to the surface.
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This IMF is the highest frequency in the entire signal data sequence.
In the actual decomposition process, the mean m1k of the upper and
lower envelopes cannot be zero. A criterion must be determined to halt
the sifting process. Thus, Huang et al. proposed the cessation of the
sifting criteria as follows:

∑

∑
=

−−

−

SD
h t h t

h t

| ( ) ( )|

| ( )|

T

k k

T

k

0
1( 1) 1

2

0
1( 1)

2

(6)

When the SD is less than the typical value, the sifting process is stopped.
The typical value for SD can be set between 0.2 and 0.3.

(2) Subtracting c(t) from x(t) yields the new data sequence r(t) with the
removed high frequency components. Hence,

− =x t c t r t( ) ( ) ( )1 1 (7)

where r1(t) is treated as the new data x(t), and it is subjected to the
same sifting process described above. The IMF …c t c t( ), , ( )n2 can be ob-
tained during the sifting process until the rn(t) satisfies the termination
condition. By summing up Eqs. (6) and (7), we obtain

1 2 3 4 5 6 7 8 9 1 1 1

-20

-1

0

1

2

A
cc

el
er

at
ed

 sp
ee

d/
m
s-2

t/s

Fig. 2. Acceleration speed response of a mechanical
gear vibration test.
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∑= +x t c t r t( ) ( ) ( )
i

n

i n
(8)

Thus, the data is decomposed into n intrinsic empirical modes and a
residue, which can either be the mean trend or a constant.

The most significant and important information in the original

Fig. 7. Machining process of an example surface part.

(a) 3-dimensionally distribution of 1600 measured
points on the part surface  

(b) Measurement path of 1600 measured points  
on the part surface 

Fig. 8. Distribution of the measured points of the surface part.

Fig. 9. Offline inspection of the surface part.
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Fig. 10. Histogram of the machining errors of the surface part without compensation.

0
20

40
60

80

0

20

40

60

80
0

0.05

0.1

0.15

0.2

0.25

X/mm

Y/mm

E
rr

or
/m

m

Fig. 11. Distribution of machining errors without compensation.
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signal is concentrated in the first few IMF components of EMD de-
composition. The trend information in the original signal curve is dis-
tributed in the residue [13].

3.2. Systematic error decomposition

Various forms of systematic errors exist, but the changes are regular.
Systematic errors can be determined from the IMF components and the
residue by analyzing the form of systematic errors. By analyzing various

forms of systematic errors, some systematic error forms must be in-
cluded in the residue [13,14]. The systematic errors of periodic varia-
tion must be determined according to the nature of systematic errors
and their deterministic characteristics. At varying frequencies of the
IMF components, low-frequency IMF components must be categorized
to periodic variation of system errors. However, whether high-fre-
quency IMF components can be categorized to the periodic variation of
system errors need to be judged. Autocorrelation and spectral analyses
of the IMF component are combined in the current study to extract the
cyclical systematic errors. Autocorrelation analysis can be employed to
obtain signals in different periods of dependence or similarity [15,16]
and to extract the signal cycle. However, when the periodic signal with
noise is extracted, the periodic signal must have a high signal-to-noise
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Fig. 12. Results of the machining errors decomposed by EMD.

Table 1
Correlation coefficients of each IMF component.

IMF 1 IMF 2 IMF 3 IMF 4 IMF5 IMF 6 IMF 7 IMF8 IMF9

0.0241 0.0032 0.0829 0.0515 0.0825 0.0959 0.0047 0.1928 0.9178
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Fig. 13. Spectrum of IMF 1–96.
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ratio [17].
The main steps of the correlation coefficient method for the IMF

component include determining the correlation coefficient of each IMF
component and the original signal. The bigger the correlation coeffi-
cient value of IMF component and the original signal is, the bigger the
correlation between IMF component and the raw error is, and vice
versa. The typical value of the correlation coefficient is 1/10 of the
maximum value of the correlation coefficient in the IMF component. If
the correlation coefficient is less than the typical value, it is an invalid
IMF component. If the correlation coefficient is greater than or equal to
the typical value means that the IMF component is effective. However,
the correlation coefficient method is less discriminative, and the dif-
ferent effects are not obvious. Thus, the signal near the typical value is
easy to miscalculate. In this case, each IMF component is analyzed by
spectral analysis to determine whether each IMF component contains
periodic systematic errors. Therefore, the decomposition of systematic
errors of IMF components is actually the decomposition of small peri-
odic systematic errors. The entire decomposition process includes de-
composing the machining errors into several IMF components and into

a residue using EMD. Autocorrelation analysis method is used for each
IMF component to determine whether periodic variation systematic
errors exist. Finally, spectrum analysis method is used to determine
whether each IMF component contains periodic variation systematic
errors.

3.3. Decomposition of random errors

The sum of systematic and random errors is the machining errors. In
theory, as long as one of the error components is known, the other part
of the error component is obtained based on the difference. After se-
parating the systematic error components using the EMD error de-
composition method, random errors can be obtained by subtracting
systematic errors from machining errors.

4. Compensation of machining errors

The actual positions of the tool center and the relationship between
the theoretical positions with the compensation method for the
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machining errors are determined in the current study. The accuracy of
part machining is improved by compensating for the points of a certain
quantity. The basic principle of machining compensation technology is
offsetting the tool path by a certain distance and processing the part to
meet accuracy requirements. The key to machining compensation
technology is establishing the relationship between the actual and
theoretical positions of the tool center. Surface machining errors are
based on the normal vector errors of the actual machining surface
shown in Fig. 3. Theoretical point coordinate ∗p x y z( , , ) is set. The
measured point coordinate ′ ′ ′p x y z( , , ) is set. The normal vector of the
actual machining surface is n u v w( , , ). The distance between the two
points is machining error ε. The relationship graph corresponding to the
amount of compensation in the X, Y, and Z axes is shown in Fig. 4. The
amount of compensation εr in the X, Y, and Z directions is the projection
value in the direction normal to the surface along each direction, i.e.,
ε u ε v ε w· , · , ·r r r . In this study, the amount of compensation ≠ε ε ε,r r is the
systematic error of the machining error decomposed by EMD. The
theoretical position of the tool center is ∗p x y z( , , ), and the actual ma-
chining position of the tool center is ′ ′ ′p x y z( , , ). The relationship

between the two variables is as follows:

⎧

⎨
⎩

′ = −
′ = −
′ = −

x x ε u
y y ε v
z z ε w

·
·
·

r

r

r (9)

When the relationship between the theoretical and actual ma-
chining positions and the amount of error compensation is obtained, the
data of the inspected points can be compensated. A new theoretical
surface is fitted by importing the compensated points to the software
UG. The NC code is generated again, and the comparison of the tool
path before and after compensation is indicated in Fig. 5. The research
program flow of the machining error compensation technology is
shown in Fig. 6.

5. Experimental verification

To verify the effectiveness of the compensation method based on
EMD in improving the machining accuracy of complex surfaces, a
complicated surface part machining experiment was performed. The
surface part was inspected offline after the first machining. The in-
spection accuracy of the offline inspection is high and easy to realize.
Thus, the offline inspection scheme was adopted. A coordinate mea-
suring machine (CMM) was used to measure the surface of the ma-
chined part. The measurement results were obtained and analyzed. The
systematic and random errors among the machining errors were de-
termined through EMD decomposition. Error compensation was used to
compensate the systematic errors and to obtain the compensated NC
code. According to the NC codes after compensation, the surface part
was reprocessed under the same conditions and inspected using the
CMM.

The machining device was a three-axis vertical machining center
(Fanuc 0i-MD Numerical control system). The part was made of alu-
minum alloy, and the blank sizes were 100mm×100mm×60mm.
The NC program for the surface machining was generated by UG.

The finishing cutting conditions were as follows:

Ball-end cutter diameter: 6 mm;
Feed rate: 213mm/min;
Spindle speed: 3000 r/min;
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Tool path: 45-degree line cut method;
Step: residual height mode;
Maximum residual height: 0.003mm.

The machining process is shown in Fig. 7.
The measurements were carried out on a Hexagon CMM (QUINDOS

software, MPEE= 0.9+ L/400 μm), which was equipped with a touch
probe with a diameter of 5mm.

The part was moved to the high-precision measurement table after
finishing and then measured by the CMM. The 3-dimensionally dis-
tribution of 1600 points on a complex surface is presented in Fig. 8(a).
The raw errors distribution of the 1600 measuring points is arranged
using the method of head to tail as shown in Fig. 8(b). The measure-
ment process is indicated in Fig. 9. The machining errors of the part
surface are obtained based on the measured data. The machining error
histogram of the part surface is shown in Fig. 10, and the machining
error distribution of the part surface is shown in Fig. 11. Figs. 10 and 11
show that the maximum and average machining errors of the surface
are 207.2 μm and 101.9 μm, respectively.

Based on the empirical mode method described in the current study,
the machining errors were decomposed in MATLAB as shown in Fig. 12.
The machining errors were decomposed into nine IMF components,
where IMF 1–8 were the intrinsic mode functions and IMF 9 was the
residue, which satisfies the convergence criterion of Formula (6). The
correlation coefficients of the IMF 9 components decomposed with the
raw machining errors are shown in Table 1. The spectrum of each IMF is
indicated in Fig. 13. Table 1 shows that the correlation between the IMF
9 component and the raw machining errors is the largest, and the ty-
pical value is 1/10 of the correlation coefficient of IMF 9, i.e., 0.09178.
IMF6 and IMF8 contain periodic variation systematic errors; however,

the correlation coefficients of the IMF3, IMF4 and IMF5 components are
similar to the typical value. Based on the spectrogram of each IMF
component in Fig. 13, the IMF3, IMF4, and IMF5 components contain
periodic variation systematic errors. Therefore, according to the con-
tent described above, IMF3, IMF4, IMF5, IMF6, IMF8 as well as the
residue of IMF components contain systematic errors decomposed by
EMD. The comparison between machining and systematic errors and
the systematic error distribution are shown in Figs. 14 and 15, re-
spectively

After the machining errors were decomposed into systematic and
random errors, the systematic errors were compensated for. Using
Formula (9) in MATLAB to modify the theoretical surface of each
measurement points, the point cloud was imported into the UG, which
regenerated the theoretical surface and CAD model and generated new
NC codes. According to the new NC codes, another new work blank was
re-machined under the same conditions, and the part surface is in-
spected again. The machining errors of the processed surface were
obtained by analyzing the measured data. The histogram and dis-
tribution of the machining errors after compensation are shown in
Fig. 16 and Fig. 17, respectively. By comparing Figs. 10 and 16, and
Figs. 11 and 17, the average value of machining errors were reduced
from 101.9 μm to 25.3 μm, and the maximum error decreased from
207.2 μm to 51.2 μm. Machining accuracy increased by 75.2%. The
results indicated that the proposed method can effectively improve
machining accuracy.

Actually, the erors after compensation based on systematic errors
also include a predominant contribution of the random errors. So the
machining errors are not uniformly distributed on the surface. On one
hand, the random errors can not be completely decomoposed by EMD
method. On the other hand, the machining conditions during the
compensation process are not just the same as the first machining.

In order to prove that the decomposition process is necessary, a
contrast experiment was conducted to compensate the raw machining
errors directly under the same machining conditions. The machining
error histogram of the part surface is shown in Fig. 18, and the ma-
chining error distribution is shown in Fig. 19. Figs. 18 and 19 show that
the maximum, minimum, average machining errors of the surface are
71.2 μm, −144 μm and 23.15 μm, respectively. And these figures also
show that the overcutting occurred result from the undecomposed
random errors, which are embraced in compensated errors.
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Table 2
The comparison of two methods for machining error compensation/mm.

EMD compensation Origin machining error compensation

Average valve 0.0253 0.02315
Maximum valve 0.0512 0.0948
Minimum value 1.0000e−05 −0.144
Standard deviation 0.0069 0.0288
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The comparison of two methods for machining error compensation
is shown in Table 2. It can be seen that the standard deviation of origin
machining error compensation is greater than that of EMD compensa-
tion. The random errors have some inevitable effects on error com-
pensation, thus it is necessary to apply the decomposition method to
improve part machining accuracy.

6. Conclusions

Machining errors are complex nonlinear and non-stationary signals
consisting of systematic and random errors. To improve the machining
accuracy of the surface, machining errors were initially decomposed
into several IMFs and a residue based on EMD. Systematic errors were
detected among the IMF and residue, and they were compensated.
Based on the comparison before and after the compensation, the ma-
chined surface accuracy after compensation increased by 75.2%. The
result verified that EMD and the machining error compensation method
significantly improved machining accuracy. The proposed method can
be employed without considering complex error sources. The method
focuses on the decomposition and compensation of the measurement
errors of machining errors, which simplifies the machining error com-
pensation problem.
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