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Chapter 1

Introduction

1.1 High-Speed Milling and Applications

High Speed Milling, like other metal cutting processes, is a kind of chip-
forming machining process, in which the unneeded work-piece material is
removed by a well-shaped cutting tool. “High-speed”, in general, refers to
cutting and/or rotational speeds that are significantly higher, say 10 times
higher, than those used in conventional milling. For example, in high
speed cutting aluminum (say, type: Al 7075) with a ball-end mill coated
with TiCN, the cutting speed vc (m/min) can reach 2,000 m/min or above.
In high speed cutting hard steel (say, ORVAR steel: HRC 52) with a
carbide ball-end mill (e.g. type: PWZH8074118TAX made by
SANDVIK), the cutting speed can reach 800 m/min or even above with
cooling fluid, for example, Blaser 2000 (7%). Figure 1.1 (a) and (b) show
some examples in application for high-speed machining in comparison
with conventional machining.

Saloman was one of the first proponents of high speed machining. After
he filed his application for German patent on machining at high cutting
speeds in 1931, it took more than 50 years until appropriate machines with
high rotational speeds were available for the practical application of high-
speed milling technology.
The considerable increase of material removal rate at high-speed cutting
justifies machining parts that would previously have been made by other
manufacturing methods for example casting or forging.
In addition by combining separate components into a single part machined
at high-speed, the costs of assembly and fixture storage can be
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substantially reduced and the strength and rigidity of them can be
significantly improved.
Important applications of high-speed milling include manufacture of thin
walled, ribbed, aluminum components for aircraft and transmission cases
for automobile and machining of sculptured surfaces in die and mold
making.
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1.2 Challenges for Force Evaluation and Chatter
Prediction in High-speed Milling

To make full use of the high speed milling technology, we need first to
understand the cutting process and then optimize the process by correctly
selecting cutting parameters.

Instantaneous cutting force information helps us to know the chip load at
any instant during cutting and thus facilitates the understanding of chip
formation mechanism and the optimization of NC (numeric control)
programs.
In high-speed milling, however, force measurement and/or evaluation is a
challenging task. The high-speed milling process is characterized by
intermittent strong impact when the tool enters/exits the workpiece
material.
The force produced at high rotation/cutting speed contains high
harmonics, which are usually in the neighborhood of the milling system’s
natural frequencies.
These high frequency harmonic excitations make the milling system
vibrate at or near the system’s resonance frequencies and thus result in
dynamic noise in the force measurement due to the low damping of the
dynamometer.
If these high frequencies are filtered out with a low pass filter, the cutting
force signals may also be significantly filtered out together with the
dynamic noises.

To optimize the cutting process, we need to find the optimal cutting
conditions and cutting parameters to avoid chatter vibration and maximize
the metal removal rate.
Chatter is a self-excited vibration due to interaction of the structural and
process dynamics.
To analytically predict chatter, we require the knowledge of the system
dynamics, i.e., modal parameters of the machine structure and process
constant (i.e., specific cutting force).
In high-speed milling, chatter frequency detected from tests is often about
1 ~ 5 kHz. In a modern machine, the geometrical are very small so that the
stiffness in the joints is very high and the damping is very small, resulting
in high natural frequencies and low damping. These high natural
frequencies and low damping (i.e. dynamic very compliant machine) are
responsible for those high chatter frequencies.
Measuring the high harmonic frequency components of the transfer
functions of the tool/tool-holder/spindle structure is quite difficult or
impossible with hammer excitation (see Figure 4.4 (a) and (b) in section
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4.2.3). The process constant is also not easy to obtain in case of high
speed milling due to the difficulties in force measurement (see section
3.3).

1.3 Objective and Major Achievements

The objective of this dissertation, is to measure and evaluate the
instantaneous high-speed milling force and to find the optimal cutting
parameters (i.e., the most stable cutting zone in terms of spindle speed and
depth of cut) to avoid chatter vibration.

New strategies have been developed within this doctoral research for
evaluating the cutting force and obtaining the analytical stability lobes
(see Figure 2.3 in Chapter 2) for chatter avoidance and process
optimization in high-speed milling.
To evaluate the high-speed milling force, the force compensation method
and the force coefficient identification technique are developed and
verified.
A study of the cutting process by comparing the specific cutting force at
different cutting speeds is also given in this thesis.
A practical way of identifying the natural frequencies and damping ratios
of the structure and the process constant without measuring the transfer
functions of the milling system as seen at the tip of the tool has been
developed and described in detail. As a result, analytical prediction of
chatter becomes feasible.
A strategy for selection of optimal spindle speed and axial depth of cut to
avoid chatter vibration is thus developed and verified in high-speed
milling of aluminum.
Based on this strategy, it is possible to incorporate the stability lobes into
CAD/CAM systems to avoid chatter rather than measure the transfer
functions and specific cutting forces separately before cutting.

1.4 Overview of this Thesis

In order to help readers to have insight into dynamics, force evaluation,
chatter avoidance, and process optimization in high speed milling, the
contents of this dissertation are organized as follows:

The second chapter (Chapter 2 “State of the Art of Force
Measurement/Evaluation and Chatter Avoidance”) introduces the
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instantaneous cutting force measurement and evaluation technique, which
is essential for the modeling of the milling system’s dynamics and helpful
for the study of the cutting process. This chapter also reviews the research
on chatter control in milling and overviews the state of the art of chatter
control strategies.
The third chapter (Chapter 3 “Cutting Forces in High-speed Milling”)
describes Kienzle’s formula currently used in the force evaluation and the
dynamic model of a dynamometer. A compensation method to take the
dynamic effect of the dynamometer into account for high-speed milling
force measurement is illustrated. The strategy for evaluating specific
cutting forces in high-speed milling is developed and explained in detail
in this chapter. Force prediction in 5-axis milling with a helical-fluted
cutter is discussed. A study of the milling process by comparing the
specific cutting forces at different cutting speeds is illustrated in this
chapter as well.

The fourth chapter (Chapter 4 “Chatter in High-Speed Milling”) presents
the measurement result of the frequency response function (FRF) of a
typical tool/tool-holder/spindle assembly used in high-speed milling.  The
influence of transient vibration on tool wear and part surface roughness in
high-speed milling of hard steel is experimentally investigated and
discussed. Chatter vibration in high-speed milling of aluminum and steel
with different cutting parameters is studied. The test results are presented.
The method for analytical prediction of stability lobes in high-speed
milling is described in detail for both a single and multiple degree-of-
freedom system. Finally the strategy for the selection of optimal spindle
speed to avoid chatter is described and experimentally verified in high-
speed milling of aluminum.

The fifth chapter (Chapter 5 “General Conclusions and Future Work”)
gives the main conclusions drawn from this research and
recommendations for the future.
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Chapter 2

State of the Art of Force
Measurement/Evaluation and
Chatter Avoidance

2.1 Cutting Force Measurement/Evaluation

Cutting force information facilitates the theoretical and experimental
study of tool failure and tool life, system dynamics and the optimization
of NC programs. It is important, by adjusting spindle speed and/or feed
and/or engagement parameters, to maintain reasonable loads on
machine/cutting tool.

Researchers all over the world have contributed constantly to the
improvement and enlargement of the know-how in force measurement,
estimation and modeling.
Peters, Vanherck and Van Brussel [43] have done valuable work in
measuring the dynamic force coefficient in turning operation. Armarego,
et. al. [6, 7] developed a computer-aided predictive cutting model for face
milling allowing for eccentricity, cutter deflections and tooth run-out.
Altintas et. al. [2, 4, 5] have also contributed series of papers to the
mechanistic modeling of the cutting force in milling. Tlusty and Smith
[56, 71] overviewed the modeling and milling simulation process. Many
other force evaluation-related research works can also be found in
publications (for example, [1, 8, 9, 10, 12, 13, 23, 24, 27, 28, 29, 31, 37,
41, 46, 47, 49, 58, 59, 60, 62, 63, 64, 74, 75, 76, 82, 83, 84, 85, 86, 87]).
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All the above mentioned research has however been done in conventional
cutting/milling. Whatever kind of force model is used to predict/evaluate
the cutting force, the force coefficients of the model need to be identified
from experimental force measurements. In conventional milling, this is
usually done by measuring the cutting force components with a
dynamometer. The force measurement in conventional milling is
relatively easier than that in high-speed milling. Direct measurement of
high-speed milling force is a challenging task.

In high-speed milling, strong impact is induced while the tool enters/exits
the work-piece material. The measured force signals are significantly
deteriorated by the dynamic noise as mentioned in section 1.2. There are
very limited publications found to deal with high-speed milling force
measurement/evaluation.
Several solutions have been suggested for the evaluation of high-speed
milling forces. For example, Schulz and Hock [48] tried to re-compute the
forces for a linear system by knowing the transfer functions of the milling
systems. Rotberg, Shoval and Ber [46] suggested to calculate the total
cutting forces based on the basic cutting force functions obtained from an
experiment under a low impact cutting condition.
Through this doctoral research, force compensation and coefficient
methods (see section 3.4 and 3.5) are developed.

2.2 Chatter Avoidance

Another key issue in terms of process optimization in high-speed milling
is the instability of the cutting process. The process dynamics depend on
the values of the machining parameters such as spindle speed and depth of
cut. During cutting the structural and process dynamics are intrinsically
coupled.
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The cutting force excites the machine tool structure, which responds with
a tool relative displacement. This displacement in turn induces fluctuating
dynamic forces.
The coupling effect can be described by a closed feedback loop, as
schematically shown in Figure 2.1.
Chatter is a kind of self-excited vibration, which is the result of the
interaction between the structure and the cutting process when the closed
loop milling system becomes unstable.
Chatter results from the regeneration of chip thickness by the mechanism
of the regenerative dynamic cutting process, as schematically illustrated in
Figure 2.2.

In Figure 2.2, we see that regeneration of chip thickness variation results
from the phase shift between the present dynamic displacement and the
previous one when the tool passed the same point as indicated through the
time delay factor in the diagram.
With the knowledge of chatter phenomenon and the fundamental
mechanism behind it, manufacturers attempt to design machine tools
(including tool-holder/tool clamping assembly) with sufficient stiffness
and damping so that chatter problem can be minimized in cutting.
When chatter does occur, system parameters such as spindle speed, depth
of cut can be adjusted to avoid chatter.

Van Brussel [77] studied the chatter problem in turning operation as his
Ph.D dissertation under the supervision of Peters. Vanherck did many
research works in this field including developing a passive control
approach. He used irregularly spaced teeth in a milling cutter to combat
the regenerative effect. Tlusty et. al. [66, 67, 68, 69, 70, 71, 72, 73] did a
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lot of research in analyzing the regenerative effects on the system’s
instability and described how the sound generated by chatter can be used
for recognition of the occurrence of chatter. Altintas, Y. and Budak, E. [3]
presented an analytical method to predict chatter in milling and derived a
model of the dynamic milling process by considering Fourier series
expansion of the time varying milling force coefficients and taking the
average component of it. Eigenvalues of the dynamic milling expression
are therefore calculated analytically by selecting a chatter frequency
around the dominant structure’s modes. The chatter free axial depth of
cuts and spindle speeds are finally analytically formulated as a function of
the structure’s transfer functions at the tool-workpiece contact zone, static
cutting force constants, number of teeth and radial depth of cut. Besides
the above-mentioned research, there has been considerable work in
techniques for chatter suppression/prediction in the world: see for
example [15, 16, 18, 19, 20, 21, 22, 33, 34, 40, 44, 50, 51, 52, 53, 54, 57,
61, 65, 66, 69, 78, 79, 80, 81].

In summary, two general strategies have been developed for chatter
avoidance. One is the active process control technique through a feedback
control system or the passive control approach with intentionally designed
cutter geometry. The other is the process planning method by predicting
the stable/unstable zones based on the analytical stability lobes calculated
(see for example Figure 2.3).

These two strategies face challenges in case of high-speed milling. The
former needs to design a reliable feedback control system with a very
quick response. The latter requires the frequency response function (FRF)
of the structure as seen at the tip of the tool and the specific cutting forces

F ig u re  2 .3 : S tab il ity  lo b es   d e lim itin g  s ta b le /
u n s tab le  c u ttin g  z o n es .

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.2

x 10
4

0

2

4

6

8

10

12

14

  
    

D e p th  o f  c u t a  (m m )p

U n s ta b le  c u ttin g  zo n es

S ta b le  cu tt in g  z o n e s

S p in d le  sp eed  (re v /m in )

   m in             a.
T h e  m in im u m  v a lu e



11

for the models. Both the transfer functions and specific forces in case of
high-speed milling are not easy to obtain as mentioned in section 1.2.
Smith et. al. and Tlusty [55] attempted to detect chatter in high-speed
milling with a microphone and stabilise the cutting process by regulating
the spindle speed. The disadvantage of this method is that when you
detect the occurrence of chattering, the part being machined has already
been damaged on the one hand and on the other hand the regulated spindle
speed by this way may not be optimal.
A practical way to obtain the analytical stability lobes for chatter
avoidance in high-speed milling has been developed and verified by the
author of this thesis and will be described in detail in Chapter 4.
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Chapter 3

Cutting Force in High Speed
Milling

3.1 Introduction

Instantaneous force data are helpful for theoretical and experimental
studies of the cutting process. The need for readily available and reliable
quantitative instantaneous force information is emphasized by the metal
cutting industry.
There is an amount of previous research in this field (refer to section 2.1).
In this chapter, the study of cutting force is done from the particular point
of view of high-speed milling. The dynamics of a dynamometer is
discussed in detail.  A force compensation method is introduced to take
the dynamic effect of the dynamometer into account for force
measurement. A technique of evaluating the force coefficients is also
presented. In addition, a way of predicting cutting force in 5-axis milling
with complicated tool geometry is described by using Kienzle’s force
model. A study of the milling process by comparing the specific cutting
forces at different cutting speeds is illustrated in this chapter as well.

3.2 O. Kienzle’s Empirical Force Model

3.2.1 Influential Factors on Cutting Force

There are a lot of factors that influence cutting force. In general, they are
physical/chemical properties of the workpiece/tool materials and the
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cutting conditions used for a specific machining process.
The material properties include hardness, yield/shear strength, thermal
conductivity, melting point, and so on. At high speeds, material
temperatures increase. The heat is concentrated in the chip and the
workpiece keeps cool. Peak stresses decrease due to thermal softening of
the material. The softening effect could decrease the magnitude of the
cutting force.
The cutting conditions include the cutting parameters (for example,
cutting/rotation speeds, feed rate, and width of cut), tool type/geometry,
and lubrication type. In high speed milling, increase of cutting speed will
induce a strong impact at the material entry/exit. This impact may result in
a significant dynamic force variation and structural vibration in the
neighbourhood of the system’s resonance frequencies. The dynamic
vibration noise will deteriorate the measured force signals.
It is unrealistic to include all these influential factors in a simple equation
to model the cutting force. There are many methods in practice to
calculate cutting forces for various milling operations. These methods are
all based on empirical force models such as linear force model [10],
exponential force model [7], mechanistic force model [2], and high-order
force model [4].

3.2.2 O. Kienzle’s Force Model

O. Kienzle took just a few direct factors into account and established a
simple equation to model the cutting force in turning. This formula has
proved sufficient in terms of accuracy for many applications.
The basic Kienzle equation is written as Fc = kc A. The cross section of the
cut (A) is a function of both the nominal cut thickness and the width of
cut. The specific cutting force kc depends on the properties of the
tool/work-piece material pair (hardness, strength, and friction
coefficient…), the lubrication type, cutting speed, and geometrical tool
parameters. Experimental results in turning have shown that the specific
cutting force kc can be further expressed as kc = kc1.1 h

-mc. Where kc1.1 and
mc are material-dependent constants and h is the thickness of cut.
Although O. Kienzle’s force formula has been verified for the case of
turning operation, this formula can still be used for the calculation of the
tangential force component in a wide range of engagement (chip
thickness) of milling operation except at the material entry/exit. The
specific cutting force kc and the constant mc in O. Kienzle’s force formula
are calculated from the measured cutting force data, which are usually
acquired from a specific cutting process by the use of a dynamometer.
The force measurement with a dynamometer in milling, particularly in
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high-speed milling, is more difficult than that in turning (see section 1.2).

3.3 Milling Force Measurement

3.3.1 The Measuring Chain

A force measuring chain is functionally illustrated in Figure 3.1. It mainly
consists of the dynamometer on which the workpiece is clamped, charge
amplifier, and PC.
In milling, the cutting force produced from the chip formation process
between the cutter and workpiece acts on the workpiece and is transmitted
to the dynamometer. The exerted force leads to a deformation of the
piezoelectric sensors of the dynamometer. The deforming piezoelectric
sensors produce electric charges in correspondence with the relative
deformation of the sensors. These electric charges are processed following
several steps of signal conditioning and digitalization. At last a data file is
saved in memory for the user.

                                  

Figure 3.1: Force measurement and data acquisition devices
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The validity of the acquired force data through the above measuring chain
depends not only on the accuracy of all the calibrated hardware devices
used and their parameter settings, but also the dynamic effect of the
dynamometer itself, particularly when measuring forces in high-speed
milling. In conventional milling, the tooth passing frequency is usually
much lower than the natural frequencies of the dynamometer, say, less
than one third of them. In high speed milling, however, the tooth passing
frequency and/or the high harmonic frequency components induced from
the impact force at material entry/exit are often in the neighborhood of the
natural frequencies of the dynamometer. The vibration of the structure
including the dynamometer therefore significantly deteriorate the
measured force signals because the high frequency harmonic components
of the cutting force are in the neighborhood of the dynamometer’s natural
frequencies and thus are exaggerated in the output signals.
To take into account the influences of the dynamometer’s dynamics on the
force measurement, dynamic models of the dynamometer need to be
established.
The piezoelectric sensors of the dynamometer can be treated as elastic
bodies and thus can be mechanistically described by means of spring-
damper-mass model and its equivalent scheme can be shown in Figure 3.2
for a single degree-of-freedom case.

Where:
F is the exerting force component on the top plate of the dynamometer
together with workpiece.
M is the effective mass of the dynamometer.
K is the static stiffness of the dynamometer.
C is the damping coefficient.
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Assuming that the machine structure has an infinite stiffness, the dynamic
stiffness (G(s)) of the milling system can be mathematically written as

KCsMs)s(G 2 ++=

Where: s is the Laplace variable.

Given that the equivalent voltage building-up capacitance of the charge
amplifier is Cg and that the sensitivity of the sensor in Coulomb per unit
displacement is KTs, then the relationship between input cutting force
(F(s)) and output voltage (V(s)) for an ideal measuring chain is
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The cutting force (F(t)) in discrete time can be readily computed from the
inverse Fourier transform as follows:
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Where:
fo is the fundamental frequency (Hz)
N is the number of points sampled in a chosen window.
V(n) are the measured voltages in discrete time.
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Noting that the damping coefficient (C), compared with the stiffness (K),
is very small, the equation of F(jk) can therefore be simplified as
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If the significant highest harmonic frequency component of the force
inputs is in the valid measurement range, say, less than one third of the
natural frequency of the dynamometer, then the nonlinear term {–M[(k –
1)2πfo}

2 in the equation can also be neglected. This equation is further
simplified as
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It means that the output voltage is proportional to the input force by a
factor (Scale). The force measurement is based on this linear relationship.
The relationship holds when the highest harmonic frequency component
of the input force is very low compared with the dynamometer’s natural
frequencies, say, less than one third of the dynamometer’s natural
frequencies if the mass of the workpiece can be negligible.
In high speed milling, however, it is normal that tooth frequencies and/or
high harmonic frequency components are of two thirds or in the
neighborhood of the dynamometer’s natural frequency. To obtain the
cutting force data in high speed milling, compensation/discounting of the
inertia forces is necessary to improve the measurement results.
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3.4 Compensation Method in High-Speed Milling
Force Measurement

The basic idea of the compensation method is that the inertia force of the
workpiece together with the dynamometer’s equivalent mass has to be
taken into account to compensate for the dynamic effect of the
dynamometer. The accelerations of the workpiece in a global reference
system (i.e. a Newton inertia reference system) are measured with
accelerometers.

3.4.1 Experimental Set-up

A schematic presentation of milling operation and the arrangement of the
measurement system are shown in Figure 3.3. The tests were conducted
on a 3-axis high-speed milling machine (Matsuura FX-5G). A KISTLER
dynamometer Type 9265B together with a clamping plate Type 9443B
was used to measure the three force components. In addition, two three-
component PCB shear accelerometers Type 356B08 with a frequency
range of 0.5~5,000 Hz were applied to measure the accelerations of the
work-piece during cutting. The two accelerometers were symmetrically
arranged on the opposite faces of the workpiece. A KISTLER charge
amplifier device Type 5017A and DSA200 (Dynamic Signal Analyser
series 200) with D-TAC (Difa Transfer And Control) software were used
for data acquisition. The cut-off frequencies of the low pass filters inside
the charge amplifier device were all set at 10 kHz.

3.4.2 Force and Acceleration Measurements
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For the purpose of comparison two tests were done. One is conventional
milling with a relatively low speed. The other is high-speed milling. The
machining conditions used for both cases are listed in Table 3.1:

Table 3.1: Machining conditions (in dry cutting)
Test 1 Test 2

Cutting tool Ball-end mill: ∅10(mm)
    PWZH80 7418TAX

No. of teeth: 2

Ball-end mill: ∅10(mm)
 PWZH80 74118TAX

No. of teeth: 2
Workpiece C45 (HRC 23) C45 (HRC 23)
Spindle speed n=1196 (rpm) n=6373 (rpm)
Cutting Speed vc=38 (m/min) vc=200 (m/min)
Feed/tooth fz=0.05 (mm) fz=0.02 (mm)
Depth of cut ap=1 (mm) ap=0.4 (mm)
Pick feed ae=5 (mm) ae=5 (mm)

Both the X-axis force and acceleration measured from Test 1 are given in
Figure 3.4 (a) (b) and 3.5 (a) (b), respectively. The sampling frequency
used in Test 1 is 6.4 kHz. The window is 0.1 (s). Low pass anti-aliasing
filters were all automatically set at 3.2 kHz in the DSA 200 system. The
measured force signals (see Fig. 3.4 (a)) are approximately repeating
sharp curves and the most significant harmonics are within the frequency
range of about 0 ~ 1.375 kHz (see Fig. 3.4 (b)). The acceleration signals
(see Fig. 3.5 (b)) indicate two peaks at about 1.05 and 1.37 kHz.
The X-axis force and acceleration measured from Test 2 are given in
Figure 3.6 (a) (b) and Figure 3.7 (a) (b), respectively. In Test 2, the
sampling frequency is 25.6 kHz. The force curves (see Fig. 3.6 (a)) are
also approximately periodic and sharp. Similarly as in Test 1 the
harmonics with frequencies higher than 1.375 kHz are not significant (see
Fig. 3.6 (b)). However the acceleration signals (see Fig. 3.7 (b)) show that
the most significant harmonics are within the frequency range of 0.8 ~ 4
kHz and also two peaks appear at about 1.1 and 1.85 kHz. The amplitudes
of the accelerations (see Fig. 3.7 (a)) are significantly larger than those in
Test 1 (see Fig. 3.5 (a)).

3.4.3 Force Modification by Considering the Inertia Effect

These experimental results proved that the higher the cutting and rotation
speeds, the higher the risk of inducing relatively high frequency vibrations
with their harmonic frequencies in the neighbourhood of the
dynamometer’s resonance frequency (1.8 kHz). Thus the force signals
measured may significantly be distorted due to inertia effects.
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After discounting the inertia force, the modified cutting force is

Fmod = Fmeas – Finertia

Where:
Fmod   is the modified cutting force (N).
Fmeas is the directly measured cutting force (N)
Finertia is the inertia force (N), or (me+mw)a, here: me (kg) is the equivalent
mass of the dynamometer, mw (kg) is the mass of workpiece,  and a (m/s2)
is the measured acceleration.

For both Test 1 and Test 2, the mass of the workpiece is 5 kg and the
equivalent mass of the dynamometer is 11 kg. After taking into account
the inertia forces, we recalculate the X-axis forces using the above
equation. The results are shown in Figure 3.8 (a) (b) and Figure 3.9 (a) (b)
for Test 1 and 2, respectively. Comparing Figure 3.8 (a) with Figure 3.4
(a) and also Figure 3.9 (a) with Figure 3.6 (a), we find that the distortion
of the force signals for Test 2 is obvious.
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3.5 Identification of Force Coefficients in High
Speed Milling

The disadvantage of using previous compensation method is that we have
to measure the accelerations on the dynamometer. In this section, a
strategy to identify the force coefficients and then the cutting force in
high-speed milling without measuring the dynamometer’s accelerations is
developed. In this method, an engagement matrix of a force model is
firstly defined as functions of the nominal cutting parameters. A set of
simultaneous equations is then established by considering the dynamic
noise effect on the measured results. Force coefficients of the force model
are worked out from these equations and cutting force can be calculated
from the models.

3.5.1 Engagement Matrix of a Force Model

A schematic presentation of the milling operation is shown in Figure 3.10.
Fx and Fy are the force components along the X- and Y-axis, respectively,
in the global system XOY. Ft and Fr are the tangent and radial forces.

We use an engagement-dependent matrix together with the force
coefficients to model the X and Y force components. The engagement
matrix is only dependent on the nominal cutting parameters.
Mathematically these force components (Fx and Fy) can be expressed as
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Where the matrix U is called engagement matrix. kt and kr are force
coefficients of the model. The elements (uij, i, j=1, 2) of U depend on the
nominal cutting conditions, i.e. spindle speed, feed per tooth, depth of cut,
and the position angle α of the tool tip.

3.5.2 Equations

From equation (1), we can calculate the total theoretical X and Y forces in
the XOY system (see Figure 3.10). The real measured forces might be
significantly distorted by dynamic noise in a high-speed milling force
measurement.
The dynamic noise signals can be expressed as the difference between the
directly measured force and the theoretical force in both the X-axis and Y-
axis directions.
Here we consider only the two lowest frequency harmonic components as
defined by the window related for the FFT analysis of the force signals.
This window is taken equal to the tooth period. Or mathematically in the
frequency domain as
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Where Fxnos(jω0) and Fynos(jω1) are the harmonic components of the
dynamic noise force signals in the X- and Y- direction at tooth frequency
(ω0) and double tooth frequency (ω1=2ω0), respectively. Fxmes(jω0) and
Fymes(jω1) are the harmonic components of directly measured X and Y-
axis force signals at these two frequencies, respectively.

We have known that the amplitude of each harmonic component of the
measured output voltage is proportional to the amplitude of the
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corresponding harmonic component of the input force signals by a factor
(Scale) only when the inertia term ({–M[(k – 1)2πf0}

2) can be negligible
(see section 3.3.2).
We assume that at angular frequencies ω0 and ω1 the inertia terms (–Mω0

2

and –Mω1
2) can be neglected. The dynamic noise signals are thus mainly

contributed by those harmonics with frequencies higher than ω1. In the
frequency domain, these noise signals (i.e., Fxnos and Fynos) at frequencies
ω0 and ω1 can be considered equal to zero, i.e.,

0)j(F)j(F 1xnos0xnos =ω=ω (5)

0)j(F)j(F 1ynos0ynos =ω=ω (6)

From equation (5) and (6), combining with equation (3) and (4), we can
work out the force coefficients kt and kr.

To have a physical understanding of the above equations, we consider for
example the X-axis cutting force and graphically present the relationship
(equation (5)) as shown in Figure 3.14.
Figure 3.11 (a) and (b) are the theoretical X-axis cutting force in the time
and frequency domain respectively.
Figure 3.12 shows the frequency response function (FRF) of the
dynamometer in the X-axis direction.
The directly measured X-axis force is given in Figure 3.13 (a) and (b) in
the frequency and time domain respectively.
It is clear that the measured force signals are significantly distorted by the
inertia effect at frequency ω2.
The difference of the measured force and the theoretical one in the
frequency domain indicates the induced dynamic noise harmonic
component as shown in Figure 3.14.
We find that at frequency ω0 and ω1, amplitudes are both almost equal to
zero. But at the frequency ω2, the amplitude is significantly high. This is
due to the fact that the input force signal at frequency ω2 is significantly
amplified because the dynamometer has a very small damping ratio (about
0.005~0.01) and ω2 is in the neighbourhood of the dynamometer’s natural
frequency ωn (see Figure 3.12).
If we use a low pass filter to filter out this dynamic noise, then the
harmonic component at frequency ω2 of the actual input force signals will
be also filtered out.
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3.5.3 Experiments and Application

A ball-end mill with two cutting edges was used in the tests. Figure 3.15
schematically shows the ball end mill engagement.
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As an example, we use Kienzle’s force model to define the engagement
matrix U. According to Kienzle’s empirical law the cutting force is
determined by the specific cutting force multiplied by the cross section of
the engagement. The instantaneous force components Fx and Fy (refer to
Figure 3.10) in the global coordinate system were measured by the
dynamometer during cutting. The tangent and radial force components Ft

and Fr can be computed through the coordinate transformation from the
global (XOY) to the local system (consisting of the Ft and Fr axes) given
the rotation angle α. The cross section (S) during the engagement for a
ball-end mill can be approximated from the depth of cut (ap), feed per
tooth (fz) and the position angle α, i.e.

)sin(afS pz α⋅⋅= (7)

The cutting force Ft and Fr in the local system are

)sin(afkSkF pzttt α⋅⋅⋅=⋅= (8)

)sin(afkSkF pzrrr α⋅⋅⋅=⋅= (9)

The transformation matrix from local to global system is

Z

O X

Y

O X

Ball end mill

Workpiece

R

 ae

   ap

Figure 3.15: A schematic presentation of the ball end mill

α

 fz

Feed direction
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Substituting (8) and (9) into the above equation, after simple manipulation
we obtain
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Comparing this matrix equation with equation (1), the engagement matrix
is therefore defined as
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Where: n is the spindle speed, t is time.

The milling tests were conducted on a 3-axis high-speed machine tool
(Matsuura FX-5G).
To measure the total X and Y axis forces (Fx and Fy ) in the global system
(see Figure 3.10), we used a KISTLER dynamometer (type 9265B)
together with a clamping plate (type 9443B). The static stiffness of the
dynamometer in both the X and Y directions is 1 kN/μm. Natural
frequency in both the X and Y directions is about 1.8 kHz.
A KISTLER charge amplifier 5017A and a Dynamic Signal Analyzer
DSA200 with Difa Transfer and Control software D-TAC are employed
for the data acquisition.
The cut-off frequencies of the low pass filters inside the charge amplifier
device were all set at 10 kHz.
The experimental set-up of the tests is the same as shown in Figure 3.3 in
section 3.4 but without the accelerometers. The machining conditions
used are given in Table 3.2
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Table 3.2: Machining conditions

Cutting tool
Ball-end mill

Type:PWZH8074118TAX
Diameter: 10 mm

Number of teeth: 2
Work-piece Steel C45 (HRC 23)
Fluid Dry
Spindle speed n = 8486 (rpm)
Cutting Speed vc = 267 (m/min)
Feed per tooth fz = 0.015 (mm)
Depth of cut ap= 2 (mm)
Pick feed ae = 4 (mm)
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Figure 3.16 (a): X-axis force in the time
domain for 5 revolutions
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Figure 3.16 (b): X-axis force in the
frequency domain for 5 revolutions
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Figure 17 (a): Y-axis force in the time
domain for 5 revolutions
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Figure 3.17 (b): Y-axis force in the
frequency domain for 5 revolutions
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The instantaneous force components Fx and Fy were measured by the
dynamometer.
Sampling frequency used is 25.6 kHz. The measured force components Fx

and Fy are periodic in the time domain. Based on the sampling frequency
and spindle speed used in the tests, a total of 2048 sampling points were
acquired with a measuring time of 0.078 seconds.
The measured X and Y force signals for 5 revolutions of cutting are
shown in Figure 3.16 (a) (b) and 3.17 (a) (b).

We take just 180 sampling points each for Fx and Fy from one cycle of the
rotation of the spindle. We make the assumption that the force signals are
repeated at the spindle period. The data from one revolution are therefore
sufficient for us to identify the force coefficients.
Figure 3.18 (a) (b) and 3.19 (a) (b) show the measured X and Y force
component data for one revolution and their Fast Fourier Transform
(FFT).
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Figure 3.18 (a): X-axis force in the time
domain for 1 revolution
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Figure 3.18 (b): X-axis force in the
frequency domain for 1 revolution
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Figure 3.19 (a): Y-axis force in the time
domain for 1 revolution

Figure 3.19 (b): Y-axis force in the
frequency domain for 1 revolution
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The position angle α can be discretised with an increment of 2 degree in
correspondence with the 180 sampling points.
The engagement matrix U defined by equation (10) is expressed as
functions of position angle α, which is function of time t.
By taking Fourier transform of the elements (uij, i, j=1, 2) of the matrix U,
we can equivalently define the engagement matrix in the frequency
domain.
The ball-end mill used in this tests has 2 teeth. We chose the FFT
rectangular window to coincide with the period of 1 spindle revolution.
180 points were sampled per revolution.
The fundamental harmonics is at the spindle frequency. The second
harmonics is at the tooth passing frequency.  The second and fourth
harmonics of the force signals in the frequency domain thereby
correspond to the first and second harmonics (i.e. at the frequencies ω0

and ω1), respectively.

Taking Fast Fourier transform of the elements (uij) of the engagement
matrix (U) (see equation (10)) and substituting the values (see Table 3.2)
for the parameters fz and ap, we can readily work out the engagement
matrix at the first and second tooth passing frequencies. The results are
given as follows:
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The harmonics of the measured force signals at the frequency ω0 and ω1

can be directly computed from Fast Fourier Transform as
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After substituting the above results into equations (3) and (4), we can get
the absolute values of the dynamic noise signals Fxnos and Fynos as
functions of the force coefficients kt and kr.
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From equation (5) and (6), the values of these two coefficients can be
worked out. The results are kt=3844 N/mm2 and kr=2052 N/mm2.

This calculation is based on the assumption that the force component
signals are exactly repeated at the spindle period.
In reality, the force component signals measured are not exactly periodic
at the spindle period. The signals are also not periodic at the tooth period
due to many factors such as tooth run-out, periodic vibrations, and so on.
The spectrum of the measured force signals in the  frequency domain  by
using different window lengths are thereby not identical to each other.
The X and Y force components can be easily calculated by using equation
(1) with the known values of kt and kr as well as the engagement matrix U
(see equation (10)).

Figure 3.20 and Figure 3.21 show the directly measured force components
(solid curves) and the calculated ones (dashed curves) by using the
identified force coefficients kt and kr.
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Figure 3.20: The measured X-axis force (solid
curve) and the calculated one (dash curve)
using the identified force coefficient values
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Figure 3.21: The measured Y-axis force (solid
curve) and the calculated one (dash curve)
using the identified force coefficient values
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3.6 Force Prediction in 5-axis milling with a
helical-fluted Cutter

The method of identification of force coefficients in section 3.5 is based
on the assumption that the cutting force can be modelled by a linear force
model (see section 3.5 the definition of engagement matrix) and the cutter
used has a negligible helical angle. In this section, the cutting force is
predicted by using O. Kienzle's force formula (see section 3.2.2) in 5-axis
milling with a helical fluted ball end mill. Due to the complexity of the
tool geometry, several steps are needed to obtain the total instantaneous
cutting force.
Firstly, a geometric model of the helical fluted ball end mill is developed.
Secondly, operation geometry, i.e., the entrance/exit angle, is defined
based on the established geometric model. Thirdly, the three force
components (tangential, radial, and axial forces) on a small incremental
element of cutting edge are locally computed from the O. Kienzle's force
formula and their relations. After transforming the force values expressed
in the local system into the global system, the total force is finally
obtained by the integration along the active cutting edge segment and the
summation for all teeth.

3.6.1 Geometric Model of a Helical Fluted Ball-Nose

Ball-nose's geometry is shown in figure3.22. A helical cutting edge BO1P
on the semi-sphere (center O' and radius O'P=R0 normal to plane PMN) of
the ball part has its projection PHN (H is O1's projection), which is

Z’

O’

X’
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K B
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 η

 α = 0

α η−
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Figure 3.22: A geometric model of a ball nose
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tangential to a reference line PM in the plane. O'-X'Y'Z' is a Newton
inertia Cartesian system. O1-X1Y1Z1 is a local rectangular system with its
origin (O1) fixed on BO1P, its bottom plane (X1-Y1) paralleled to PMN,
and axis (Y1) perpendicularly intersecting O'P at K. If the reference line
PM fixed with cutter at tip P rotates from angular position α=0 to α in O'-
X'Y'Z' system, then gyration radius KO1 with the lag angle of  η relative to
PM must have a position angle of �� −  in the same system.

Considering right triangle O'KO1, we have

       22
10

2
1

2'2
0 R)HOR(KOKOR +−=+=    (KO1=R, O'O1=R0)           (1)

For a typical-formed ball-nose mill its
helix pitch keeps constant but its helix
angle reduces gradually from
maximum value (β0) at point B to zero
at tip P along BO1P, and furthermore
lift O1H is determined by the values of
β0, R0, and η, as shown in figure 3.23.
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Combining (1) and (2), solving for R,
we obtain
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From equations (2) and (3), taking
position angle �� − into account,
Point O1's coordinates in O'-X'Y'Z' therefore can be easily written as
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3.6.2 Operation Geometry – Entrance/Exit Angle

Boundary curve-dependent entrance/exit angles, measured in reference to
Y-axis of a global static system O-XYZ, indicate the starting/finishing of
active cutting along each circle (i.e. circle parallel to XY-plane). During
one revolution gradually engaged different zones of tool edges cut off a
ball-shaped workpiece profile bounded by three curves AB, BE and AE,
as shown in figure 3.24.
If the top surface of the workpiece is flat, both AB and BE are arcs of the

circles that have center [0 0 -(R0-ap)] and radius 2
p0

2
0 )aR(R −− ; [0 0 0]

and R0 respectively. However AE is part of the intersection between the
semi-sphere and the cylindrical surface created from the last previous tool
path. It is worth noting that the cylindrical surface is an idealized model.
In fact there exist scallops in the feed direction besides in the X direction.
Based on the above discussion AB, BE and AE's equations in O-XYZ are
identified with
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And also boundary points A, B,
and E's coordinates are
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Assuming that the cutter is inclined both in and perpendicular to the feed
direction with the lead and tilt angles of δf and δn, respectively, the
transformation matrix from system O'-X'Y'Z' to system O-XYZ is

To'-o= 
⎥
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⎢
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⎣
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⋅⋅−

⋅−⋅

nfnff

nn
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�cos�cos�sin�cos�sin

�sin�cos0

�cos�sin�sin�sin�cos

So the above boundary curve equations, as well as points A, B, and E's
coordinates in O-XYZ can be expressed in the O'-X'Y'Z' system through
this transformation matrix. By substituting cutting edge's Z'-axis
coordinate-- )1�cot�(R 00 −⋅ --for the Z' values in the boundary curve
equations written in O'-X'Y'Z' system, after some manipulations we can
figure out Y'-axis coordinates on curves AB, BE, and AE. Similarly by
equalizing the Z' values between cutting edge's and intersections' (i.e.
points A, B, and E), three critical values of η corresponding to A, B, and
E, are found. The entrance/exit angles as a result can immediately be
calculated as 2kπ+ )R/Y(cos '1− according to the different ranges of η.

3.6.3 Force Prediction

For a finite element of the cutting edge its length is

222 dZdYdXb ++=

Differentiating 1
'OO  and substituting into the above equation, thus
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After transforming the feed vector per tooth [ ] 'OZf  in O-XYZ into the O'-

X'Y'Z' system, namely, [ ] 'OZf = [TO'-O]-1 [ ]OZf  the thickness of cut (h) can

be readily approximated by projecting [ ] 'OZf onto vector [ ] 'O1OO , or
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⋅

⋅
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The magnitude of the instantaneous tangential force on the element b is
determined by cm-1

1.1cc hbkF ⋅⋅= , and its direction coincides with the X1-

axis (refer to figure 3.22). The magnitudes of the related radial and axial
forces are computed from the equations: crr FKF ⋅=  and caa FKF ⋅=   (Kr

and Ka are constants). Their directions are along the Y1 and Z1 axes,
respectively.
The transformation matrix from O1-X1Y1Z1 to O'-X'Y'Z' is given by

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
η−α−
η−α−

η−α
η−α−

=−

1

0

0

0

)cos(

)sin(

0

)sin(

)cos(

T '
1 OO

The force vector in O-XYZ is therefore equal to
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Now three force components in O-XYZ have been worked out for a small
element of the cutting edge. Provided that the rotation angle (αn) and the
location angle (ηn) of the nth tooth are equally spaced, the total force

components therefore are found out by integrating and summing GF  for

all the active edge segments, or mathematically

∑ ∑
= =

⋅⋅⋅=
Z

1n

J

1j
GTG FGF

Where:

G = ⎨
0

1
   

[ ]
)else(

)��k2,��k2��( .ex.entnn ++⊆−

 Z:  tooth number of the cutter.
J: element number of the active edge within the range of [0, ηmax].
The angles αent. and αex. are calculated as given in section 3.6.2.
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3.6.4 Experimental Verification

In the experiment, a helical ball end mill is used. Its nose radius is 5 mm;
maximum helix angle is 400; number of teeth is 2. Type of workpiece
material is steel (C45 HRC 23). Values of force coefficients are kc1.1=1765
N/mm2 and Ka=0.15, Kr=0.4. The value of material index is mc=0.25.
Inclination angles of the tool with respect to the workpiece are δf=0 and
δn=0.
Cutting parameters are depth of cut: ap=2 mm; width of cut: ae=5 mm;
spindle speed: n=3187 rpm. Cutting Speed: vc=100 m/min; feed rate: is
vf=127 mm/min; feed /tooth: fz=0.02mm.
The milling tests were conducted on a 3-axis high-speed machine tool
(Matsuura FX-5G)). The total X and Y axis forces (Fx and Fy ) in the
global system O’-X’Y’Z’ (see Figure 3.22) were measured by a KISTLER
dynamometer (type 9265B) together with a clamping plate (type 9443B).
A KISTLER charge amplifier 5017A and a Dynamic Signal Analyzer
DSA200 with Difa Transfer and Control software D-TAC are employed
for the data acquisition. Sampling frequency is 12.8 kHz. The cut-off
frequencies of the low pass filters inside the charge amplifier device were
all set to 6.4 kHz (refer to Figure 3.3 in section 3.4 for the experimental
set-up of the tests).
The predicted and measured instantaneous X-axis and Y-axis forces are
given as follows (see a MatLab program in Appendix A):

Figure 3.25: A comparison of predicted and measured X- and Y- axis forces
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3.7 Analysis of Specific Cutting Forces at
Different Cutting/Spindle Speeds

The force model used in the section 3.6 is the O. Kienzle's force formula,
which has an exponential form, i.e. the force coefficient kc in this model is
function of the cut thickness. This exponential form is powerful for
cutting force prediction, but a simple linear form of it is easier to
manipulate than the exponential one if we use it in the coupling equations
of process and structural dynamics to predict chatter.

Two questions thus need further clarification or investigation. Does the
specific cutting force change with chip thickness in milling as it happens
in turning? Does the specific cutting force still remain constant when
increasing cutting speed? The experimental results showed that the
specific cutting force in milling remains almost constant over a wide
range of engagement values (cut thickness), except at material entry. The
specific force varies at different cutting speeds.

The cutting speeds used in the tests are 15, 30, 80, 160, and 214 m/min
and the corresponding spindle speeds are 598, 1196, 3187, 6373, and 8486
rpm, respectively. The instantaneous force components were measured by
the KISTLER dynamometer in the feed and normal to the feed directions,
i.e., Fx and Fy components (refer to Figure 3.3 in section 3.4 for the
experimental set up and Figure 3.10 in section 3.5 for a schematic
presentation of milling operation).

At low cutting speeds (15 m/min and 30 m/min), the measured force
component signals are not distorted by vibration noise as shown in Figure
3.26 and Figure 3.27 (thick curve).
These force data can be directly used for the identification of the specific
forces. The tangential and radial force components Ft and Fr (also refer to
Figure 3.10 in section 3.5) were readily computed by doing some
mathematical transformations from the global system (Fx and Fy axes) into
the local one (Ft and Fr axes), as shown in Figure 3.28.
The specific cutting forces in the tangential and radial directions versus
rotation angles of the tool are shown in Figure 3.29.

The result proves that at a low cutting speed, the specific forces kt and kr

remain almost constant over a wide range of engagement values (cut
thickness) except at the material entry. Based on this investigation, we can
use the linear or simplified form of the O. Kienzle's force formula to
analyze the instability of the cutting process for milling operation, as done
in the model developed in section 3.5. This justifies the use of such
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simplified model to calculate stable cutting forces or specific cutting force
coefficients.

In relatively high speed milling, however, a strong impact is induced
while the tool enters the work-piece material, especially for milling hard
material.

The force signals are significantly deteriorated by dynamic noise, as
shown in Figure 3.30, Figure 3.31, and Figure 3.32 at speeds of 80, 160,
and 214 m/min, respectively, by thick solid curves.

2
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The method to pick out the stable cutting force signals (see also Figure
3.30, Figure 3.31, and Figure 3.32 by thin solid curves) from the noised
measurement signals has been given in section 3.5.

Figure 3.33 shows the calculated results of the specific tangential and
radial forces (kt and kr) for different cutting speeds. From the kt and kr

values (see Figure 3.33), it is obvious that the specific tangential and
radial cutting forces are not constant for different cutting speeds.

22
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3.8 Summary

In high speed milling, strong impact takes place when the tool enters/exits
the workpiece material due to the high cutting/rotation speeds.
The cutting force contains high harmonic components, which are in the
neighbourhood of the dynamometer’s natural frequencies. These high
frequency harmonic excitations make the milling system vibrate at and/or
near the resonance frequencies of the dynamometer and thus result in
dynamic noise in force measurement.
If these high frequencies are filtered out with a low pass filter, the cutting
force signals may also be significantly filtered out together with the
dynamic noises. To measure and evaluate high-speed milling force, the
dynamics of the dynamometer have to be taken into account.

In this chapter, the basics of force measurement and the influences of the
dynamics of the dynamometer on the measured force signals have been
discussed in detail.
A force compensation method is illustrated to compensate for the dynamic
effects of the dynamometer on the measured force output.
A strategy for identification of specific forces in high-speed milling is
developed based on the directly measured noise signals from a
dynamometer. The force model employed in this strategy uses a
simplified O. Kienzle’s force formula, i.e. a linear form.
Force prediction for 5-axis milling with complicated tool geometry is
described also in this chapter.
In addition, experimental study of the specific cutting forces in milling has
proved that a simplified O. Kienzle's force formula can be used to model
the instantaneous cutting forces over a wide range of engagement values
(cut thickness), except at material entry. This is helpful for analyzing the
system instability, as will be discussed in Chapter 4 (“Chatter in High
Speed Milling”).
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Chapter 4

Chatter in High Speed Milling

4.1 Introduction

The cutting force discussed in Chapter 3 is a theoretical/stable force. Its
dynamic component (variation) can be traced back to forced vibrations of
some structural elements (machine, dynamometer, …). The structure’s
response is a steady state response. Any transient vibration of the structure
decays exponentially.
In an unstable or “chatter” case, the amplitude of the structure’s response
increases, and at the limit of stability the magnitude of the vibration
remains constant.
Whether or not chatter occurs depends on the closed-loop characteristic
equation of the structural and process dynamics, i.e., the impulse response
of the coupling system.
The focus of this chapter is on the structure’s transient response during
cutting. Some of the important concepts in the theory of structural
dynamics are first briefly reviewed. The measured frequency response
function (FRF) of the tool/tool-holder/spindle assembly given in this
chapter helps readers have a general feeling of the impulse response of the
high-speed milling machine structure.
The influence of tool holders on tool wear and part surface roughness in
high-speed milling of hard steel was experimentally investigated and
explained by the effect of transient vibration on the cutting process.
Chatter in high-speed milling is studied both, in an experimental and
analytical way. A technique for chatter detection in high-speed milling is
suggested. A lot of tests have been done to study the influences of the
cutting parameters on chatter. Some of the test results in high-speed
milling of aluminium/steel are presented and discussed.
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Analytical prediction of chatter is described in detail in this chapter and
verified in high-speed milling of aluminium for a single and multiple
degree-of-freedom system. Finally, a strategy for selection of optimal
spindle speed to avoid chatter is developed and experimentally justified
for high-speed milling of aluminium.

4.2 Structural Dynamics Fundamentals and
Frequency Response of the High-Speed Milling
Machine Structure – Tool/Tool-holder/Spindle
Assembly

Some basic and important concepts and equations of the structural
dynamics, which will be used in the following sections, are overviewed
here with the discussion of a single/multiple degree-of-freedom system.

4.2.1 A Single-Degree-of-Freedom System

A viscously damped single degree of freedom system model is shown in
Figure 4.1. It is well known that the governing equation of its dynamics is

)t(f)t(xK)t(xC)t(xM =++ ���          (4.1)

Where:
M: the mass
C: the damping
K: the stiffness

:x�� the acceleration
:x� the velocity

x: the response displacement
 t: the time variable
f(t): the external force.

Or equivalently with Laplace variable (s):

)s(F)s(H)s(X =           with   )KsCsM/(1)s(H 2 ++=

H(s) is called transfer function. The system’s characteristic equation is

0KsCsM 2 =++
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The solutions to this equation give the system’s poles as

[ ] ( )M/K)M2/(C)M2/(Cs 2
2,1 −±−=            (4.2)

In equation (4.2), we notice that when C= MK2 ,

[C/(2M)]2 – (K/M) = 0.

Let the damping ratio cC/C=ξ (Cc = MK2 ),

So, If ξ=1, the system is critical damped. If ξ>1, the system is over
damped. If ξ=0, there is no damping, and n2,1 j)M/K(js ω±=±= . ωn is

called the un-damped natural frequency. If 0<ξ<1, the system is under

damped, then rn2,1 js ω±ξω−=  (ωr = 2
n 1 ξ−ω ). –ξωn is called the

damping factor and ωr is called the damped natural frequency.

The solution to the homogeneous system equation (4.1) gives

ts
2

ts
1

21 exex)t(x +=

Where: x1 and x2 are initial condition dependent constants.

For an un-damping system (ξ=0) with initial displacement (X0) and
velocity (V0), the system’s response x(t) is sinusoidal with constant
amplitude:

( ) )tsin(/VX)t(x n
2

n0
2

0 α+ωω+=          ( ) )V/Xtan( 0n0
1 ω=α −

For an under-damped system (0<ξ<1), the impact response x(t) of the
system is sinusoidal but its amplitude decays in the time domain.

For a Dirac impulse response, the response x(t) can be calculated from the
inverse Laplace transformation as

1

2
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)M2j(1
)s(H)t(h

−
−
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⎞
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⎛
−
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−

ω==

The terms 1/(j2Mωr) and -1/(j2Mωr) are called residues, which define the
initial amplitude. They are a pair of conjugates.
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By replacing s (=jω), after some simple manipulation the transfer function
H(s) can be expressed in terms of K, ξ and ωn as

]K)2j/[()j(H n
22

n
2

n ωξω+ω−ωω=ω

H(jω) is called frequency response function (FRF).

The real part (Re) and imaginary part (Im) of H(jω) can be found as

( )
( )[ ] ( ) K
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ωωξ
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All these basic concepts for a single degree-of-freedom system can
naturally be extended to a multiple degree-of-freedom system.

4.2.2 A Multiple-Degree-of Freedom System

A viscously damped two-degree-of-freedom system model is shown in
Figure 4.2. The equations of motion of the system are

)t(f)t(xK)t(xK)t(xC)t(xC)t(xM

)t(f)t(xK)t(x)KK()t(xC)t(x)CC()t(xM

21222122222
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Or in matrix notation (after deleting t)
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The dynamic equations of a multiple degree-of-freedom system can
generally be written as

[ ]{ } [ ] { } [ ] { } { }fxKxCxM =⋅+⋅+⋅ ���
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Where:
[M]: the mass matrix
[C]: the damping matrix
[K]: the stiffness matrix
{ }:x�� the acceleration vector

{ }:x� the velocity vector

{ }:x the response vector
{f}: the external forcing vector

Or

( ){ } ( )[ ] ( ){ }sfsHsx ⋅=             with  [ ] [ ] [ ] 12 )KsCsM()]s(H[ −++=

[H(s)] is called the transfer function matrix.

The system characteristic equation is the determinant of the dynamic
stiffness matrix, i.e.

[ ] [ ] [ ] 0)KsCsMdet( 2 =++

The roots of this equation give the system’s poles.

For each pole (sr), we have the following simultaneous equations:

[ ] [ ] [ ] { } { }0x)KsCsM( r
2

r =++

A non-zero solution {x} of the simultaneous equations defines a modal
vector or mode shape vector.
From the basic theory of linear algebra, the inverse of a matrix can be
calculated from its ad-joint matrix and determinant. Thus [H(s)] can be
further expressed as

[ ] [ ] [ ]
[ ] [ ] [ ])KsCsMdet(

)KsCsM(adj
)]s(H[
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2
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++=

By applying the partial fraction expansion, we obtain
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F ig u re  4 .2 : A  s p r in g -d a m p e r-m a ss  m o d e l
fo r  a  tw o  d e g ree s  o f fr ee d o m  s y s te m
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Where:
sr: the pole of the system, i.e., sr = – ξωn + jωr.
sr

*: the conjugate of sr,  sr
* = – ξωn – jωr.

[A]r: the residue matrix.
[A]*

r: the conjugate matrix of the residue matrix [A]r.

The transfer function matrix thus has the form:

[ ]
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A

s�j

A
)]�j(H[

[H(jω)] is called the frequency response function matrix.
Each element of [H(jω)] is called the frequency response function.

Therefore the frequency response function (FRF) can be interpreted as the
sum of a number of components, each equivalent to the response of a
single-degree-of-freedom system.

4.2.3 The FRF Measurement of the High-Speed Milling Structure –
the Tool/Tool-Holder/Spindle

The experimental set-up of the
FRF measurement is schematically
shown in Figure 4.3. Two
accelerometers (ax and ay) (Type:
PCB, 303A) were used to measure
the X- and Y-axis response upon
hammer (type: PC, 208/C03)
excitation along the X-axis
direction. The tool holder (Type:
Tribos, Shunk) together with a ball
end mill (Type: PWZH8074118
TAX) was connected to the
spindle with a draw bar force.
The diameter of the tool is 10 mm.
The number of teeth is 2. The
overhang is 40 mm.
The device DSA200 (Dynamic Signal Analyser series 200) with D-TAC
(Difa Transfer And Control) software was used for data acquisition. The
low pass filter inside the DSA200 is set to 12.8 kHz. Sampling Frequency
is 102.4 kHz. A total of 4096 points were sampled in this measurement.

 fx
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The measured hammer excitation force (fx) and acceleration response (ax

and ay) are shown in Figure 4.4 (a) ~ Figure 4.6 (a) in the time domain and
Figure 4.4 (b) ~ Figure 4.6 (b) in the frequency domain.
The frequency response functions (x/fx and x/fx) together with their real
and imaginary parts are given in Figure 4.7 (a) ~ (c) and Fig. 4.8 (a) ~ (c).
From Figure 4.7 (c) or Figure 4.8 (c), we find that in the frequency range
of 0 ~ 1.2 kHz, there are two modes at the frequencies of 0.72 and 1.05
kHz. Some modes at the frequencies even higher than 1.05 kHz may also
be possible.
In section 4.4, we will see that chatter frequency in high-speed milling can
occur at 3 kHz or even above, due to the very high stiffness of the
assembly.
However, it is difficult to obtain the very high harmonic components of
the FRF by using hammer excitation. To obtain a very high frequency
component, say, 3 kHz, we have to make the impact time between the tip
of the hammer and the surface of the structure very small, say, in an order
of microseconds. This is very difficult or impossible with hammer
excitation, which is controlled by a hand.
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Figure 4.4 (a): Hammer impact force
(f) in the time domainx

Figure 4.6 (a): Y-axis acceleration
response (a) in the time domainy

Figure 4.5 (a): X-axis acceleration
response (a) in the time domainx

Figure 4.5 (b): X-axis acceleration
response(a) in the frequency domainx

Figure 4.4 (b): Hammer impact force
(f) in the frequency  domainx
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4.3 Influence of Transient Vibration on Tool Wear
and Part Surface Roughness in High Speed
Milling of Hard Steel

4.3.1 Discussion of Effective Clearance Angle in a vibrating Cutting
Process

The strong impact in high-speed milling excites the machine structure to
vibrate at its dominant mode(s). A schematic presentation of a vibrating
slotting operation is shown in Figure 4.9.

The vibration of the tool/tool-holder/spindle assembly relative to the
workpiece changes the effective clearance angle of the tool. The variation
of clearance angle, especially with a negative angle increases tool wear.
The amplitude of the vibration increases part surface roughness.
Figure 4.10 illustrates a vibrating tool at different positions during cutting.
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The nominal chip thickness value is h. The tool is moving from A to E.
The vibration of the tool with respect to the work-piece changes the chip
thickness (see the waved curve ABCDE).
When the tool moves downward along curve ABC, the clearance angle
decreases first from A to B and takes its minimum value at B (interference
may occur depending on the slope of the curve at that point) and then
increases from B to C.
When the tool moves upward along curve CDE, the clearance angle
increases from C to D and takes its maximum value at position D and then
decreases from D to E.

The higher the vibration frequency, the steeper the slope of the vibration
curve and the smaller the clearance angle.
A very small clearance angle will increase the friction/interference at the
interface of the tool flank and machined surface, and thus will increase
tool wear.
The lower the damping of the machine tool structure, the larger the
amplitude of the vibration.
The large amplitude of vibration will increase surface roughness.

Even in a stable cutting, transient vibration always occurs. With different
type of tool holder, the structure’s natural frequency and damping may be
different and thus has different transient response.
The transient vibration arising from the intermittent impact of the milling
operation, especially in high-speed milling of hard materials, will
influence tool wear and surface roughness even if all other conditions are
equal.

4.3.2 Observation of Tool Wear and Surface Roughness with
Different Types of Tool-Holders in High-Speed Milling of Hard Steel

Several tests have been done to observe tool wear and surface roughness
in high-speed milling of hard steel with different types of tool holders.
The tests were conducted on a 3-axis high-speed milling machine
Matsuura (Type: FX-5G).
The cutting conditions for all these tests were equal except the type of tool
holder used, as listed in Table 4.1.
In each test, the tool flank wear (VB value) and workpiece roughness (Ra

value) were measured every 8 minutes of cutting.
The measured results of VB and Ra for Test 1~ Test 5 are shown in Figure
4.11 (a) (b) ~ 4.15 (a) (b), respectively. The cutting processes are all
stable. No chatter marks appeared on the workpiece.
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From Figure 4.13 (a) (b) to 4.15 (a) (b), we find that the tool life and
surface roughness are comparable with each other.
It implies that the transient vibrations at dominant modes with these tool
holders are also comparable.
In Figure 4.11 (a) (b), we find that tool life with tool-holder Spantang is
much shorter than that with others, but the surface roughness is
comparable with the others.
So the dynamic behaviour with tool holder Spantang is significantly
different from others.
It means that the natural frequency at dominant mode with tool holder
Spantang is much higher than that with others, but the damping is
comparable.
Figure 4.12 (a) (b) shows that with tool holder Hydro1, tool life becomes
the longest and the mean value of surface roughness is the lowest.
Hence the natural frequency at dominant mode with tool holder Hydro1 is
the lowest or its damping is the highest, or both.

So machine structure with high damping and low natural frequency is in
favour of tool life and surface smoothness in cutting.

Table 4.1: Machining conditions
Test 1~Test 5

Tool Holder Types

Test 1: Spantang
Test 2: Hydro1
Test 3: Specile
Test 4: Hydro2
Test 5: Tribos

Cutting tool
Carbide Ball mill

Type: PWZH8074118TAX
Diameter: 10(mm)

No. of teeth: 2
Work-piece ORVAR Steel (HRC52)
Fluid Blaser 2000 (7%)
Spindle speed n=17,000 (rpm)
Feed/tooth fz=0.142 (mm)
Depth of cut ap=0.2 (mm)
Pick feed ae=0.2 (mm)
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4.4 Experimental Investigation into Chatter
Vibration in High Speed Milling with Different
Cutting Parameters

To study the influence of cutting parameters on chatter, we need first to
develop a technique for chatter detection.
In high speed milling, the chatter frequency detected is about 1 ~ 5 kHz or
even above. A very high chatter frequency is difficult/impossible to detect
with a dynamometer or accelerometer.
For example, assuming that the cutting process is chattering at frequency
say 3 kHz, then the system’s response as seen on the workpiece surface is
almost zero because the vibration frequency (3 kHz) is much higher than
the natural frequencies of the machine table including the dynamometer.
As a result, we can not acquire any signal from the dynamometer or an
accelerometer attached onto the workpiece.
However, a microphone is powerful to detect the chatter vibration. When
there is chatter, the vibration at chatter frequency will dominate the
tool/tool-holder/spindle structure’s dynamics. Noise arising from the
vibrating cutting process contains a dominant harmonic component at this
chatter frequency. After analysing the noise in the frequency domain, we
know whether or not chatter occurs.

4.4.1 Chatter Detection in High Speed Milling

Experimental results prove
that there is no chatter if
the harmonic frequency of
the highest peak of the
noise signals in cutting is
almost equal to one of the
three dominant frequencies
of the ambient noise
detected before cutting or
equal to the multiples of the
tooth passing frequency.
Otherwise a chatter
frequency must have been
detected with a relatively
high level of amplitude. A lot measurements and tests have been done on
the machine tool Matsuura (Type: FX-5G). A microphone is placed close
to the workpiece to measure the audio signals (see Figure 4.16).
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An end mill with 2 teeth and diameter of 10 mm is used in a dry cutting.
The type of the tool holder is Shrink (Hauser). The workpiece material is
aluminium. The measured noise at different spindle speeds without
material cutting, i.e. air cutting, are listed in Table 4.2 as follows:

Table 4.2: The measured three dominant frequencies and amplitudes of
noise in air cutting

Air cutting
1  2 3Spindle

speed
(rpm)

Tooth
freq.
(Hz)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

5,000 167 4685 32 1061 28 937 23
5,500 183 3092 27 2061 25 2127 17
6,000 200 2249 83 3373 55 1124 16
6,500 217 1217 54 2437 35 3656 23
7,000 233 3934 62 2622 49 4572 41
7,500 250 2813 68 3182 49 1405 38
8,000 267 1499 70 3393 33 3001 28
8,500 283 3604 84 3190 34 1593 32
9,000 300 1689 105 3816 57 5068 56
9,500 317 4027 117 1783 115 3566 53

10,000 333 4239 218 1878 157 1874 59
10,500 350 4449 266 1972 128 3936 61
11,000 367 4660 455 2066 148 4122 63
11,500 383 4872 324 2161 160 2155 96
12,000 400 5081 299 2255 114 2249 68
12,500 417 5293 312 2350 99 2343 63
13,000 433 5504 135 2444 104 4888 43
13,500 450 2539 147 5078 107 2531 73
14,000 467 5266 153 2633 137 5925 87
14,500 483 2727 126 5455 115 2719 109
15,000 500 5644 106 2822 79 2813 69
15,500 517 2916 74 3279 68 5832 59
16,000 533 3011 338 3011 163 6770 66
16,500 550 3095 162 6210 126 2124 109
17,000 567 3095 144 6210 115 2124 106
17,500 583 6588 171 3283 126 6720 74
18,000 600 3386 188 3375 158 6772 157
18,500 617 3480 489 6961 179 4834 93
19,000 633 3575 432 7149 218 3562 149
19,500 650 3669 738 7337 297 3815 102
20,000 667 3764 408 7572 245 3750 106
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Table 4.3 and Table 4.4 show the measured noise in stable material
cutting with feed per tooth fz = 0.1 mm and depth of cut ap= 2 and 4 mm,
respectively. No chatter occurs in these two cases of test.

Table 4.3: The measured three dominant frequencies and amplitudes of
noise in a stable material cutting (without chatter) (ap=2 mm, fz=0.1mm)

Material cutting
1 2  3Spindle

speed
(rpm)

Tooth
freq.
(Hz)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

5,000 167 2289 35 1061 27 1227 24
5,500 183 1168 27 2061 21 4852 18
6,000 200 2249 49 3373 41 4317 18
6,500 217 1217 25 3655 24 370 21
7,000 233 3930 68 2969 31 3202 29
7,500 250 2812 74 4218 57 3181 21
8,000 267 3393 54 3000 51 1498 39
8,500 283 1594 81 3604 42 4774 40
9,000 300 3817 189 1688 179 3377 30
9,500 317 1782 144 4027 105 3564 49
10,000 333 4240 241 1877 92 3746 58
10,500 350 1970 121 4451 71 1966 49
11,000 367 4660 424 2064 126 4128 62
11,500 383 4874 131 2159 106 4308 51
12,000 400 2253 169 5084 90 4505 65
12,500 417 2347 180 5296 103 2342 73
13,000 433 2442 155 5506 127 2435 73
13,500 450 2536 196 5073 91 5718 79
14,000 467 2630 166 5261 136 5928 109
14,500 483 5458 89 2725 72 5449 69
15,000 500 5642 50 2812 47 6347 36
15,500 517 2914 120 5829 61 6558 48
16,000 533 3009 194 2999 131 6019 118
16,500 550 3093 459 3104 438 2124 69
17,000 567 3188 222 6398 104 3199 92
17,500 583 3292 135 3281 110 6585 104
18,000 600 3380 229 6760 101 7596 87
18,500 617 3462 97 3475 85 6949 71
19,000 633 3568 227 3556 84 7138 59
19,500 650 3662 333 3649 137 3241 78
20,000 667 3757 239 3742 128 3607 82
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Table 4.4: The measured three dominant frequencies and amplitudes of
noise in a stable material cutting (without chatter) (ap=4 mm, fz=0.1mm)

Material cutting
1 2  3Spindle

speed
(rpm)

Tooth
Freq.
(Hz)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

5,000 167 2289 38 2123 31 1104 24
5,500 183 1032 23 2332 21 2064 20
6,000 200 2252 73 1122 31 926 26
6,500 217 1217 42 2433 23 2440 17
7,000 233 3198 104 3931 72 2621 60
7,500 250 3427 101 3177 79 2808 78
8,000 267 3002 65 1497 50 3389 40
8,500 283 1591 123 1594 84 3601 47
9,000 300 1688 160 3813 71 1684 39
9,500 317 1782 116 4024 59 331 34

10,000 333 4237 122 1876 116 5628 72
10,500 350 4449 186 1970 81 4445 60
11,000 367 4661 160 4119 66 2064 49
11,500 383 2154 106 4308 75 4873 54
15,000 500 2818 105 2811 70 5636 62
18,500 617 3466 300 6932 143 3456 130
19,000 633 3560 349 7127 159 3481 91

The experimental measurement results justify the criterion for chatter
detection. For example, at spindle speed of 19,000 rpm, in air cutting one
of the dominant frequencies is 3562 Hz (amp. 149) (see Table 4.2). In
material cutting without chatter at depth of cut ap=2 mm, the dominant
frequency is 3568 Hz (amp. 227) (see Table 4.3), and also at ap=4 mm,
3560 Hz (amp. 349). These values of frequency are close to each other.
Vibrations at those frequencies are thus all damped transient ones with
relatively low amplitude compared to that in a chatter case. The cutting
process is stable. No chatter marks appeared on the machined part surface.
The measured noise during cutting is mainly contributed by the ambient
and/or damped transient vibration noise.
Table 4.5 gives the measured results in an unstable cutting (chatter) case.
Comparing the measured dominant chatter frequency and amplitude at a
given spindle speed to those in Table 4.2 ~ 4.4, we find that the measured
noise in the chatter case is not mainly contributed by the ambient noise
and/or forced vibration noise. The harmonic frequencies of forced
vibration must be multiples of the teeth passing frequency. Instead the
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measured noise in Table 4.5 is mainly contributed by chatter vibration
with relatively high amplitude. The chatter frequency is near the natural
frequency of a dominant mode of the tool/tool-holder/spindle structure.

Table 4.5: The measured three dominant modes in an unstable cutting
case, i.e., with chatter   (ap=4 mm, fz=0.1mm)

Material cutting
 1 2 3Spindle

speed
(rpm)

Tooth
freq.
(Hz)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

Freq.
(Hz)

Amp.
(ratio)

12,000 400 3116 972 3515 347 4314 150
12,500 417 3184 744 3599 516 4016 150
13,000 433 3241 694 3672 235 6915 115
13,500 450 3326 451 3776 442 3328 101
14,000 467 3123 1213 3585 222 5259 175
14,500 483 3657 553 3175 497 3177 328
15,500 517 3281 835 3797 386 2912 316
16,000 533 3057 1228 3589 1221 3004 290
16,500 550 3650 960 3101 820 3103 247
17,000 567 3692 489 3130 479 3194 395
17,500 583 3151 1191 3735 405 3289 278
18,000 600 3801 742 3204 615 3371 166
19,500 650 3031 1136 3677 612 3645 340
20,000 667 3051 1110 3714 849 3054 808

4.4.2 Cutting Parameter’s Effect on Chatter Vibration in High Speed
Milling

Chatter is self-excited vibration due to the interaction of the cutting
process with structural dynamics. A change of cutting parameter means a
change of the characteristics of the closed-loop milling system (see Figure
2.1 and 2.2 in Chapter 2). The characteristic equation of the closed-loop
determines the stability of the cutting process, i.e., whether or not chatter
occurs. The settings of cutting parameters include the depth of cut (or chip
width) and spindle speed. The overhang of the tool is also crucial for the
process stability.
In the following case studies, tests were all conducted on a 3-axis high
speed machine Matsuura (Type: FX-5G). Different depth of cut, tool
overhang to diameter ratios, and spindle speed were used in dry cutting.
In each set of tests, we change only one parameter for example depth of
cut and all others remain the same.



61

Case 1: The Effect of Depth of Cut (or Chip Width) on Chatter
Vibration

Two test results are given here, as shown in Figure 4.17 for test 1 and
Figure 4.18 for test 2.
In Test 1, only one speed was used. The end mill used has 3 teeth. The
type of tool holder is Collet (NIKKEN). The feed per tooth is 0.05 mm.
Two different depths of cut (i.e., ap = 1, 2 mm) were used for a slot
milling at the same spindle speed of 18,000 rpm.
A microphone together with other data acquisition devices was used to
measure the audio signals and detect chatter if any (refer to the schematic
experimental set-up in Figure 4.16) and the criterion for chatter detection).
The experimental results show that increase of depth of cut will increase
the instability of the cutting process. As shown in Figure 4.17, the
amplitude of the chatter
vibration at a depth of cut of
2 mm is higher than at 1
mm.
The increasing amplitude at
chatter frequency will
increase the slope of the
vibration curve (see section
4.3.1) and thus increase tool
wear. But it, in turn,
increases the process
damping due to the friction
at the interface of tool flank
and machined surface.
So the measured chatter
frequency at the depth of cut
of 2 mm is slightly lower
than that at 1 mm (see Figure
4.17).
In Test 2, different spindle
speeds were checked.
An end-mill with 2 teeth was
used. The type of tool holder
is Shrink (Hauser). The feed
per tooth is 0.1 mm.
The experimental results are
shown in Figure 4.18.
The test results justify the
observation made in Test 1.
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Case 2: The Effect of the Ratio of the Tool Overhang to Diameter on
Chatter Vibration

We know that increase of depth of cut will increase process instability and
at very low depth of cut there is no chatter as shown in Figure 4.18 of
Case 1.
It implies that a transitional state or stability limit must exist at each
spindle speed.

To see the influence of the ratio of the tool overhang to diameter on
chatter, we thus just compare the stability limit at the same spindle speed
for two different overhangs of the same tool.

In tests, two different overhangs (i.e., L1=60 mm and L2=65 mm) of an
end mill with a diameter of 16 mm and the number of teeth of 4 are used.
Feed per tooth (fz) is 0.05 mm for all the tests. The type of tool holder is
Collet (NIKKEN). The data acquisition system and chatter detection
techniques are the same as those used in Case 1.

Figure 4.19 shows the experimentally detected stability limits with
overhangs of 60 and 65 mm, respectively, at the spindle speeds of 12,705,
14,753, 15,500, 18,000, 21,000, and 23,000 rpm.

This experiment proved that the longer the overhang, the lower the
stability.
The static stiffness of the
tool/tool-holder assembly
with an overhang of 60
mm is obviously higher
than that of 65 mm.
The test results show that
decrease of static
stiffness of the tool/tool-
holder assembly will
decrease the stability of
the cutting process.
This is one of the main
reasons why the static
stiffness of the tool/tool
holder assembly used for
high-speed milling is
very high.
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Case 3: The Effect of Spindle Speed on Chatter Vibration

Unlike in case 1 and case 2, change of spindle speed will change process
stability in a more complicated way. Two test results are given in Figure
4.20 and 4.21. The cutting conditions for Test 1 and 2 are illustrated in
Table 4.6 and 4.7, respectively. We find that in some speed range, there is
no chatter, but in some others there is chatter. This phenomenon is
explained by the “lobe effects” of the stability, which will be discussed in
section 4.5 (“Analytical Prediction of Chatter in High-speed Milling”).

Table 4.6: The cutting conditions for Test 1
Workpiece Aluminium
Cutting tool End mill: ∅10(mm), No. of teeth: 2
Tool holder Shrink (Hauser)
Fluid Dry
Spindle
speed

14,000; 15,000; 16,000;
16,500; 17,500; 19,000; 20,000 (rpm)

Feed/tooth fz = 0.1 (mm)
Depth of cut ap= 4 (mm)

Table 4.7: The cutting conditions for Test 2
Workpiece Steel C45 (HRC 23)
Cutting tool Ball-end mill: ∅10(mm), No. of teeth: 2
Tool holder Shrink (Hauser)
Fluid Dry
Spindle
speed

3,000, 6,000, 9,000, 10,000,
12,000, 14,000, 16,000 (rpm)

Feed/tooth fz = 0.1 (mm)
Depth of cut ap= 2 (mm)
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4.5 Analytical Prediction of Chatter in High
Speed Milling

The reason why the cutting process loses its stability under some cutting
conditions as the previous test results show (section 4.4) is that during
cutting, dynamic feedback forces are induced from the transient vibration.
The induced dynamic force and its effect on the stability of the cutting
process will be studied in detail in this section. The method for analytical
prediction of chatter and the strategy for selection of optimal spindle
speed will be described and verified for a single and multiple degree-of-
freedom system in high-speed milling of aluminium.

4.5.1 Dynamic Forces Induced from Vibrating Cutting Process

Figure 4.22 (a)
illustrates a dynamic
cutting process.
The waviness of chip
thickness around the
nominal value (h)
produces a dynamic
force component,
which is in phase
with the dynamic
deviation of chip
thickness, as shown
in Figure 4.22 (b).

In addition, the
clearance angle takes
its minimum value at
B corresponding to a
maximum dynamic
force. It takes its
maximum value at D
corresponding to a
minimum force.

At position A, C, and
E, the force is equal
to a mean value.
The induced
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dynamic force due to the change of effective clearance angle is
schematically plotted in Figure 4.22 (c). It has 900 phase shift with the
chip variation force (Figure 4.22 (b)).
Given that cutting speed is vc and vibration frequency is fc, the wave
length (λ) is then expressed as

λ = vc / fc

It is clear that if the vibration frequency (fc) keeps unchanged, the higher
the cutting speed (vc), the longer the wave length, the smaller the slope of
the vibration curve at the corresponding point, the larger the clearance
angle, the lower the dynamic force induced.

At high-speed milling, this kind of dynamic force will not be taken into
account in the following force models for chatter analysis.

4.5.2 Modelling of the Dynamic Milling Force Due to the Variation of
Chip Thickness

Here we consider only
the vibration of the
tool/tool-holder/spindle
assembly in the XOY
(i.e., horizontal) plane, as
shown in Figure 4.23.
The position angle of the
tooth j is φj. Feed (fz) is in
the X-axis direction.
Dynamic displacements
(x(t) and y(t)) of the tooth
j will influence the chip
thickness (h), which is
measured in the radial
direction (Fr).
The modulation of chip
thickness at present tooth path depends on position angle (φj) of the tool
and the dynamic displacements. It can be expressed as

Δhj(φj) = [x(t)sin(φj) + y(t)cos(φj)] gj(φj)

Where:
gj(φj) is a unit step function, its value is given as follows:
gj(φj) = 0 (out of cut) or gj(φj) = 1  (in cut)
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The dynamic tangential (Ftj) and radial (Ftj) cutting forces acting on tooth j
are both proportional to the axial depth of cut (ap) and chip thickness
variation (Δhj) over a wide range of engagement (see section 3.7 in
Chapter 3), i.e.,

           Ftj = kt ap [Δh(φj)]
           Frj = kr ap [Δh(φj)]

Where:
kt: the tangential specific force
kr: the radial specific force

The dynamic force variation in the XOY system for tooth j at the present
path is calculated from the coordinate transformation as

Fxj(t) = – Ftj cosφj –  Frjsinφj

Fyj(t) = – Ftj sinφj –  Frjcosφj

After summing the cutting force components contributed by all the teeth,
we have

Fx (t)= ∑Fxj(t)
Fy (t)= ∑Fyj(t)

Where:
j = 0,…N-1  (N: the number of teeth).

Combining the above equations, after some mathematical manipulation, a
matrix form of the dynamic X- and Y-axis force (Fx1(t) and Fy1(t)) at the
present tooth path is
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Where:
Fx1(t): the X-axis force at present tooth path
Fy1(t): the Y-axis force at present tooth path
ap: the depth of cut
aij(t) (i, j = 1, 2): the time varying directional milling force coefficients.

Unlike in turning, the force direction in milling changes with time due to
the time varying coefficient aij(t). Their value are given as follows:
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a11 (t) = [(1/2)] ∑{–gj[kt sin2φj + kr(1–cos2φj)]}

a12 (t) = [(1/2)] ∑{–gj[kt + kt cos2φj + krsin2φj]}

a21 (t) = [(1/2)] ∑{gj[kt – kt cos2φj – krsin2φj]}

a22 (t) = [(1/2)] ∑{gj[kt sin2φj – kr(1+cos2φj)]}

Where:
φj = ωt + j(2π / N)
j = 0,1,2, … N-1
ω: the angular spindle speed
N: the number of teeth

Similarly the X- and Y-axis force (Fx2 and Fy2) produced from the chip
waves left by the previous tooth path with tooth period T are found as
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By considering x(t –T) = e –TD x(t) and y(t –T) = e –TD y(t), here D is the
differential operator d/dt (see a mathematical proof in Appendix B), we
can rewrite the above equation as
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The total dynamic force with considering the present and previous tooth
path is therefore calculated as
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4.5.3 Modelling of the Structural Dynamics

From section 4.2.2, we know that the equation of motion of a multiple
degree-of-freedom system is generally given as

{X(s)} = [H(s)]{F(s)}



68

Where:
{X(s)}:  the tool displacement vector relative to the work-piece
{F(s)}: the total cutting force vector
[H(s)]: the transfer matrix as seen at the tool tip.

For milling operation with vibration in both X- and Y-axis direction, the
above equation can be further written as
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Where:
x(s), y(s): the X- and Y-axis displacement of the tool relative to
workpiece, respectively
hij(s) (i, j = 1, 2): the element of [H(s)]
Fx(s), Fy(s): the dynamic X- and Y-axis force, respectively

To discuss a time varying system, we rewrite the above model in the time
domain as
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Where:
D: the differential operator d/dt
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4.5.4 Characteristic Equation of the Closed-Loop System

Combining equation (4.3) and (4.4) yields the equation of motion of the
closed-loop system (after eliminating x(t) and y(t)):
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Or simplified as
}0{D)(t,a p =⋅⋅+ FBF              (4.5)
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Noting that the time varying directional force coefficient aij(t) is a periodic
function with the period of  T , thus a solution to F has the form of

PF ⋅= ste

Where:
P: a periodic function vector with period T.
s: a complex parameter.

We expand the periodic function P into the Fourier series as

tjk

k
k e ω

∞

−∞=
⋅= ∑PP

Where:
Pk: the kth Fourier series coefficient of P, i.e.,

dte
T

1 T

0

tjk
k ∫ ω−⋅= PP

ω: the angular frequency (equal to 2π / T)

Substituting PF ste=  into equation (4.5), we have
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Or equivalently
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Considering  )jks(t,eeD)(t, t)jks(t)jks( ω+⋅=⋅ ω+ω+ BB , after making
substitution we obtain
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Be aware that the summation is for all possible k values. Crossing the
common term est, it yields
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Multiplying both sides by (1/T)e-jnωt and integrating in [0, T], we have
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We know that P and B(t, s+jkω) are periodic with period of T. Supposing
that the n Fourier series coefficient of P is Pn and the (n-k) Fourier series
coefficient of B(t, s+jkω) is Bn-k(s+jkω), a simplified form is given as
follows:
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Equation (4.6) defines numbers of simultaneous linear equations in terms
of Pi (i = 0, ±1, ±2, ±3, …). The equation (4.6) has nontrivial solutions if
and only if its determinant is zero. Letting the coefficient matrix of
equations (4.6) be Cp(s, T), thus the characteristic equation of the closed
loop system is found as

det(Cp(s, T, ap)) = 0

When n, k = 0, a zero order approximation of this characteristic equation
is thus given as

0(s)Ba1 0p =⋅+ (4.7)
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Similarly the first order approximation with n, k = 0, –1, +1 is

0
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Where:
Bi is the ith Fourier series coefficient of B(t, s).

4.5.5 Chatter Prediction for a Single-Degree-of-Freedom System with
the Zero Order Approximation Method

Figure 4.24 is a
schematic presentation
of a single degree of
freedom system in
milling operation.
For a single degree of
freedom system, the
dynamic displacement
R(t) of the structure, as
seen at the tool tip, has
to be on the same line,
as shown by the mode
direction with a
position angle α
relative to X-axis.
Fx+y is the total
dynamic cutting force,
i.e. the vector
summation of X- and
Y-axis force (Fx and
Fy) at position angle φj

of the jth tooth. It
exerts on the
workpiece. From
Newton’s third law in
mechanics, a react force of Fx+y must act on the tool tip.
This counter-force in general can be decomposed into two components,
one in the mode direction and the other perpendicular to the mode
direction. In the case of a single-degree-of-freedom system, the force

  φj

X

Y

F ig u re  4 .2 4 : T h e  s c h e m a tic  p re s e n ta tio n  o f  th e  
v ib ra tio n  o f  to o l/ to o l -h o ld e r /s p in d le  a s s e m b ly
in  m i ll in g  f o r a  s in g le -d e g re e -o f - fr e e d o m  s y s te m

F x

F y

 f z

W o rk p ie c e

O

M o d e  d ir e c tio n

 α

R ( t )

F R  ( t)

F x + y

F x

F y

180 − α0

 α − 900

F  c o s (1 80  

x

− α)
0

F  c os (
y

α − 90 )
0

F x + y

F  co s( 18 0  

x

− α) +
0

F  c o s(
y

α − 90 )
0



72

normal to the mode direction has no influence on the dynamics of the
structure. It must be balanced to remain no movement in the direction
perpendicular to the mode direction.
Assuming that the component of the total dynamic force Fx+y when
projected on the mode direction is FR(t), we use the structural dynamic
model (see equation 4.4 in section 4.5.3) and write it for a single degree of
freedom system as

R(t)= h(D) FR(t)              (4.8)

Where:
FR(t): the component of the total dynamic force Fx+y in the mode direction
R(t): the total vibration displacement
h(D): the transfer function in terms of operator D, i.e.

]K)D2D/[()D(h n
22

n
2

n ξω++ωω=  (Refer to the FRF in section 4.2.1)

The magnitude of force FR(t) can be calculated as the summation of the
components of both Fx(t) and Fy(t) projected on the mode direction (see
the geometric presentation of this relationship in Figure 4.24), or in a
matrix form as
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Substituting the X- and Y-axis force (see equation 4.3 in section 4.5.2),
we have
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To establish the relationship between the force FR(t) and the total
displacement R(t) as seen at the tool tip, we decompose the total
displacement R(t) into two components, one in the X-direction and the
other in the Y- direction (x(t) and y(t)), i.e.
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Combining equation (4.9) and (4.10), with some mathematical
manipulation we obtain (after deleting t)
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Combining equation (4.11) and (4.8) yields
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The characteristic equation with zero order approximation for a single
degree-of-freedom system can thus be found as (see equation (4.7) in
section 4.5.4)
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After substituting h(s) and B0(s), it yields
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Cp is the average value of (1/KT)a0 over the period T (based on zero order
approximation). It depends on structure stiffness K, tooth period T and a0.
Notice that the time varying coefficients a11, a12, a21 and a22 are time
variant with period T (see the definition of aij (i, j = 1, 2 ) in section 4.5.2).
Hence a0 is also time variant with period T (see the expression of a0 below
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equation 4.11). Its value depends on mode direction α and the time
varying coefficients aij, which are function of the specific cutting force kt

and kr, the number of teeth N, unit step function gj and the angular spindle
speed ω.

Letting s = jωc (at stability limit), we have
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After rearranging the above equation and taking into account
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or  rewritten as two simultaneous equations:
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Eliminating pp
2
n Caω of equation (4.12) and (4.13), after making some

simple mathematical manipulation, we obtain

)
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Equation (4.14) establishes the relationship of the teeth passing period,
chatter frequency, natural frequency, and damping ratio.
It implies that the dynamic characteristics of the structure ωn and ξ can be
picked out if the same mode is responsible for two cases of chatter, i.e., at
different spindle speeds, i.e. different T values.
Furthermore the constant Cp can also be found from equation (4.12) and
(4.13) given a known limit depth of cut ap and measured chatter frequency
ωc as well as the natural frequency ωn and damping ratio ξ for a given
spindle speed (see equation 4.17 below).
The stability lobes for a single degree of freedom system can therefore be
readily calculated by using previous equations. More specifically, from
equation (4.14), after rearrangement we have
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ωcT is the angular distance traveled by the tooth at the chatter frequency
ωc during tooth period T. Thus ωcT presents the phase shift of two
successive tooth engagements.

The tooth period T is then derived as
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Spindle speed (n) can be calculated from tooth passing period T, i.e.,
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Where:
N is the number of teeth.

The Limit depth of cut (ap) is found from equation (4.12) and (4.13) as
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=                    (4.17)

The mapping of spindle speeds (n) and depths of cut (ap), which are
calculated from equations (4.16) and (4.17), respectively, defines a group
of curves in a graph with spindle speed (n) and depth of cut (ap) as co-
ordinates. They are so-called stability lobes (see Figure 2.3 in section 2.2
of Chapter 2).

To have a physical understanding of these equations (4.14) ~ (4.17), we
discuss the possible values of phase shift (ωcT).

Case 1: phase shift ωcT = 2kπ  (k = 0, 1, 2…)

For a harmonic vibration x(t) in the X direction, letting x(t) = sin(ωct) with
vibration amplitude of 1 for simplicity and at limit stability (i.e. amplitude
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of x(t) equals that of previous tooth path x(t – T), both equal to 1), we
have the following derivation of x(t – T) :

)t(x)tsin()k2tsin()Ttsin()]Tt(sin[)Tt(x ccccc =ω=π−ω=ω−ω=−ω=−

Similarly, for the harmonic vibration y(t) in the Y direction, we have

)t(y)tsin()k2tsin()Ttsin()]Tt(sin[)Tt(y ccccc =ω=π−ω=ω−ω=−ω=−

The derivations prove that the dynamic vibration (at the stability limit) at
the present and previous path is equal. Thus the chip variation is zero and
hence the dynamic force is zero, too.
This is an ideal case, in which no chatter can happen because the total
dynamic feedback force is zero.

Case 2: the phase shift: 2kπ+ π < ωcT < 2kπ+ 2π   (k = 0, 1, 2…)

If 2kπ+ π < ωcT < 2kπ+ 2π, then

0)Tsin(and0)
2

T
tan( c

c <ω<ω

From equation (4.14), we derive

ωc > ωn   (because ωn >0 and ξ >0).

It implies that the chatter frequency is always in the negative part of the
real part of the frequency response function (FRF) of the machine
structure (refer to the measured real part of the FRF in Figure 4.7(a) and
4.8 (a) of section 4.2.3).

In addition, from equation (4.13), we derive that

  0dta
KT

1
C

T

0 0p <⋅⋅= ∫

The sign of Cp is dependent on time varying force coefficient a0 (see the
definition of a0 in equation 4.11).
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The negative value of Cp means the dynamic cutting force (FR(t)) in the
mode direction is in anti-phase (i.e.,1800) with displacement (R(t)), as
shown in Figure 4.24.

After dividing both the numerator and denominator of the right hand side
of equation (4.17) by ωn

4, and making some rearrangement, we have
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(See the expression of the real part of the FRF in section 4.2.1)

So, the limit depth of cut is inversely proportional to the real part of the
frequency response function (FRF) of the structure.
It is obvious that the lower the static stiffness K, the larger the absolute
value of Re[h0(jω)], and the lower the limit depth of cut ap,  thus the lower
the stability of the cutting process.
This agrees with the experimental results shown in Figure 4.19 of section
4.4.2 case 2.

The minimum ap is obtained when Re[h0(jω)] takes its maximum negative
value. Let r = ωc/ωn, and take the derivative of the function of ap with
respect to variable r, we find that when ξ+= 21r  the minimum value of

ap is

)0a(
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)21(K2
a 0

0
min <

−
ξ+ξ=
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In addition, we write the expression of phase shift (ωcT) of equation
(4.15) as

),2,1,0k(k2Tc �=π+ε=ω
Or equivalently

)2(k2/f/f tc π<ε<=π+πε=

Where:
fc: the chatter frequency (Hz).
ft: the tooth passing frequency (Hz).
k: the highest integer to meet the above equation.
ε: the phase shift (radian) of  the two successive tooth passes after
crossing the angle of 2kπ.

The value of ε is given as (see equation (4.15))
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Where:
Re[h0(jω)]: the real part of the frequency response function (FRF)
Im[h0(jω)]: the imaginary part of the frequency response function (FRF)
(see the expression of the imaginary part of the FRF  also in section 4.2.1)

The value of (ε/2π)
corresponds to the
fractional part of the
ratio (fc/ft).
The phase shift (ε) is
thus determined by the
ratio of the real part to
imaginary part of the
FRF, as graphically
shown in Figure 4.25.

The integer number k is
the number of waves
contained over the
phase shift.
A graphic presentation
of the regenerative
relationship is shown in
Figure 4.26.
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We know that when
ξ+= 21r  (r=ωc/ωn),

the depth of cut (ap)
takes its minimum
value (amin).
The corresponding
critical phase shift can
be calculated as
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It is worth noting that
the maximum dynamic
force occurs when ε =
π (full anti-phase), but
it doesn’t correspond to the least stability. Instead the minimum depth of
cut ap corresponds to the critical phase shift εc, which depends on the
damping of the structure.

Case 3: the phase shift: 2kπ < ωcT < 2kπ + π   (k = 0, 1, 2…)

If  2kπ < ωcT < 2kπ+π, then

0)Tsin(and0)
2

T
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c >ω>ω

From equation (4.14), we derive

ωc < ωn   (because ωn >0 and ξ >0).

It means that the chatter frequency is always in the positive region of the
real part of the frequency response function (FRF) of the machine
structure (also refer to the measured real part of the FRF in Figure 4.7(a)
and 4.8 (a) in section 4.2.3).
In addition, from equation (4.13), we have

Cp > 0.
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The positive value of
Cp means the dynamic
cutting force (FR(t)) in
the mode direction is
in phase (i.e., 00) with
dynamic displacement
(R(t)), as shown in
Figure 4.27.

Many tests and
measurements have
been done on the
machine Matsuura
(Type: FX-5G) in
high speed milling
aluminium to observe the possible values of phase shift for these two
cases.
In each test, chatter frequencies at stability limits were detected with a
microphone (refer to the experimental set-up in Figure 4.16 in section
4.4.1). Some of the experimental results are listed in Table 4.8 for Case 2
and Table 4.9 for Case 3 as follows:

Table 4.8: the experimental results for Case 2, i.e.,
2kπ + π < ωcT < 2kπ + 2π,   k = 0, 1, 2…

Test 1 Test 2 Test 3 Test 4
Chatter freq. (Hz) 4179 5486 3933 2813
Amplitude (ratio) 481 1543 277 1072

Speed (rpm) 22,000 23,000 21,000 23,000
Tooth period  (s) 0.00014 0.0009 0.00013 0.0017
Phase shift (rad.) 35.81 29.97 17.65 23.05
No. of waves (k) 5 4 2 3

ε (degree) 2510 2770 2910 2400

tan(ωcT/2)  – 1.389 – 0.8792 – 0.6829 – 0.7849
Tool type End mill End mill End mill End mill

Tool diameter (mm) 10 10 16 10
No. of teeth 2 3 4 6
Tool holder

Type
Shrink

(Hauser)
Collet

(NIKKEN)
Collet

(NIKKEN)
Shrink

(Hauser)
Overhang (mm) 41 30 70 51

Fluid Dry Dry Dry Dry
Feed/tooth (mm) 0.1 0.05 0.05 0.1

Depth of cut (mm) 4 4 3 2

  φ

j

X

Y

F ig u re  4 .2 7 : T h e  d y n a m ic  c u tt in g  fo rc e  F ( t ) is
in  p h a s e  w i th  th e  d is p la c e m e n t  R (t ) in  th e  m o d e  
d ire c t io n  fo r  a  s in g le  d e g re e  o f  f re e d o m  s y s te m  

R

F x

F y

 f z

W o rk p ie c e

M o d e  d ir e c tio n

 αR ( t)
F R  ( t)

F x + y
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Table 4.9: the experimental results for Case 3, i.e.,
2kπ < ωcT < 2kπ + π,   k = 0, 1, 2…

Test 5 Test 6 Test 7 Test 8
Chatter freq. (Hz) 3801 3173 2805 3151
Amplitude (ratio) 481 607 1112 1191

Speed (rpm) 18,000 14,550 12,705 17,500
Tooth period (s) 0.0017 0.0014 0.0012 0.0017
Phase shift (rad.) 39.80 27.40 20.81 33.94
No. of waves (k) 6 4 3 5

ε (degree) 1200 1300 1120 1440

tan(ωcT/2)  1.7532 2.1516 1.4884 3.1350
Tool type End mill End mill End mill End mill

Tool diameter (mm) 10 10 16 10
No. of teeth 2 3 4 2
Tool holder

type
Shrink

(Hauser)
Collet

(NIKKEN)
Collet

(NIKKEN)
Shrink

(Hauser)
Overhang (mm) 30 40 60 30

Fluid Dry Dry Dry Dry
Feed/tooth (mm) 0.1 0.05 0.05 0.1

Depth of cut (mm) 4 2 3 4

From Table 4.8 and 4.9, it is clear that different cutters with different tool
overhangs may have different dynamic characteristics (i.e. different
natural frequency and
damping as well as mode
direction, as also mentioned
in section 4.3.1). Thus the
measured chatter frequency
is different (see the
experimental result in Test
4 for Case 2 in Table 4.8
and in Test 5 for Case 3 in
Table 4.9.

Generally speaking, any
change of the tool/tool-
holder type and/or cutting
parameters may change the
dynamic behaviour of the
cutting process and thus
influences the process
stability and change the

X

Y

F ig u re  4 .2 8 : A  sc h e m a tic  p re se n ta t io n  o f  th e  
tu rn in g  o p e ra tio n  in  w h ic h  th e  d y n a m ic  fo rc e
F R  ( t)  i s  a lw a y s  a n t i-p h a se  w ith  th e  d y n a m ic  
d isp la c e m e n t R ( t) .

W o rk p ie c e

O

M o d e  d ire c tio n

 α
R (t)

F R  ( t)

To o l

C h ip  fo rn a t io n
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chatter frequency and phase shift as well.
It is worth noting that in turning the chatter frequency (ωc) is always
larger than the natural frequency (ωn) because the dynamic force (FR(t)) is
always anti-phase with the dynamic displacement ((R(t)), as discussed in
Case 2 (see a schematic presentation of the turning operation in Figure
4.28).
In milling, however, this is not always the case as shown in Figure 4.27, in
which the dynamic force FR(t) is in phase with the dynamic displacement
(R(t)).

Application and Verification

An example together with the experimental result is given here to
illustrate the method of chatter prediction for a single degree of freedom
system in high-speed milling of aluminium.
The test was done on the 3-axis high-speed milling machine tool Matsuura
(FX-5G). The type of tool holder is Shrink (Hauser). The end mill has 2
teeth. Its diameter is 10 mm. No fluid is used in cutting. Feed per tooth is
0.1 mm. The data acquisition and acoustic measurement system are the
same as those given in section 4.4.1 (also refer to the experimental set-up
in Figure 4.16).
To identify the characteristics of the structural and process dynamics, two
chatter frequencies are needed at two different speeds with different limit
depths of cut.  The state of chatter at a limit depth of cut is just the
transitional state from no chatter to chatter.
During tests, at speeds of 12,000 and 12,500 rpm, two chatter frequencies
are measured as 3116 and 3184 Hz with limit depths of 3.5 and 4 mm,
respectively.
The tooth periods of these two spindle speeds are 0.0025 and 0.0024
seconds, respectively (noting that the number of teeth is 2).
After substituting these values into the phase shift equation (4.14), we
obtain the following two simultaneous equations:

)
2

0025.0)31162(
tan()31162(2)31162( n

22
n

⋅π⋅πξω=⋅π−ω

)
2

0024.0)31842(
tan()31842(2)31842( n

22
n

⋅π⋅πξω=⋅π−ω

The solutions to these equations are

ωn = 19332 (radian/s) or 3077 (Hz) and ξ = 0.0163.
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It means that the vibration mode with a natural frequency of 3077 Hz and
damping ratio of 0.0163 is responsible for these two cases of chatter
vibrations.
The constant Cp is found from equation (4.17), i.e.,

)(a2

4)(
C

2
c

2
n

2
np

2
c

2
n

222
c

2
n

p ω−ωω
ωωξ+ω−ω

=

Putting the values of ωn and ξ plus ap=3.5 mm and the chatter frequency
ωc = 2π (3116) radian/s into the above equation, we have

Cp = -0.01 (1/mm)

With ap = 4 mm and chatter frequency ωc = 2π (3184) radian/s, we obtain
Cp = -0.009 (1/mm), which is almost equal to -0.01 (1/mm). This check on
Cp value justifies the point that the same mode is responsible for these two
cases of chatter vibration at different spindle speeds.
The spindle speed (n) and depth of cut (ap) can be readily computed by
using equation (4.16) and (4.17) for different values of k and ωc, i.e.,

),2,1,0k(
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(see a MatLab program in
Appendix C).

Stability lobes for the case
of a single-degree-of-
freedom system are thus
figured out and shown in
Figure 4.29 together with
experimental observations.

This example shows a good
agreement between the
calculated lobes and the
experimental observations.

Figure 4.29: Stability Lobes  and test results
for one  degree of freedom system to predict
chatter vibration.
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This is due to the fact that the structural dynamics of the milling system in
this case is dominated by one mode. It is tool/tool-holder assembly
dependent. Unfortunately, in many other cases of the tests, the structural
dynamics are dominated by two or even three modes.
A technique in chatter prediction for a multiple-degree-of-freedom system
therefore needs to be developed. This is done in next section.

4.5.6 Chatter Prediction for a Multiple-Degree-of-Freedom System

For a multiple degree of freedom system, the interaction of different
modes of the structure makes the coupled dynamic behaviour more
complicated than that for a single degree of freedom system. A case of
two degrees of freedom system is shown in Figure 30.

  φj

X

Y

F ig u re  4 .30 : A  sc he m a tic  p re se n ta tio n  o f th e  v ib ra tio n  o f To o l/
to o l-ho ld e r /sp in d le  s truc tu re  fo r  a  2  d eg re e -o f- f re ed om sy s tem  
a n d  th e  g ra ph ic  p re sen ta t io n  o f  th e  fo rce  re la t io nsh ip s  

F x

F y

 f z

W o rk p ie c e

O

M od e  1

 α

F x + y

180 − α0    β − 1800

F R  2 ( t)
  β

M od e  2

F R 1( t)

R  2 ( t) R  1 ( t)

F x R 1

180 + α −β0

270 −β0

    α − 900

F y R 1
   β − α

F x R 1

F y R 1
F x + y R 1

F x + y R 1
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We assume that two independent dynamic displacements R1(t) and R2(t)
as seen at the tool tip take place during cutting. These two dynamic
vibrations occur on the lines Mode 1 and Mode 2, respectively. Position
angles of Mode 1 and Mode 2 with respect to X-axis are α and β,
respectively.
R1(t) and R2(t) can both be decomposed as two vibration components on
X- and Y-axis, i.e. x1(t) and y1(t) for R1(t), and x2(t) and y2(t) for R2(t), Or
mathematically
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From equation 4.3 in section 4.5.2, we can calculate the resultant dynamic
X- and Y-axis force components FxR1(t) and FyR1(t) from displacement
R1(t), and also FxR2(t) and FyR2(t) from R2(t), separately, i.e.
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The X- and Y-axis force components FxR1(t) and FyR1(t) both can further
be decomposed as two components on mode 1 and Mode 2, i.e. QxR1 and
PxR1 for FxR1(t), and QyR1 and PyR1 for FyR1(t), as illustrated in Figure 4.30
by two triangles of forces.
From the basics of geometry, we have
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Solving for QxR1, QyR1, PxR1 and PyR1, we obtain
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The vector summation of FxR1 and FyR1 gives the dynamic force Fx+yR1

resulting from the displacement R1(t) (see a triangle of forces in Figure
4.30). Fx+yR1 is equivalent to the vector summation of QxR1, QyR1, PxR1 and
PyR1 (see a triangle of forces also in Figure 4.30).

We make summation of QxR1 and QyR1, both parallel to the line Mode 1,
and also summation of PxR1 and PyR1 both parallel to the line Mode 2.
Hence, the total dynamic force components QR1 and PR1 parallel to Mode
1 and Mode 2, respectively, are found as follows:
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Or equivalently in a matrix form
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Similarly, the total dynamic force components QR2 and PR2, resultant from
R2(t), parallel to Mode 1 and Mode 2, respectively, can be expressed as
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Combining equation (4.18) and (4.20), and also equation (4.19) and
(4.21), we have
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Finally, the total dynamic force components FR1(t) and FR2(t), resultant
from both R1(t) and R2(t), parallel to Mode 1 and Mode 2, respectively,
are written as
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Notice that in equation 4.22 and 4.23, the element aij(t) (i, j = 1, 2) of the
engagement matrix is time varying with tooth period T (see the definition
of aij(t) in section 4.5.2). We again use zero order approximation and
calculate its average value as follows:
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After replacing aij(t) of equation (4.22) and (4.23) by their corresponding
average values Aij and taking Laplace transform, we can rewrite equation
(4.22) and (4.23) with complex variable s as
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Where:

⎟⎟⎠

⎞
⎜⎜⎝

⎛
=

2221

1211

AA

AA
]A[

Equation (4.25) can also be rewritten as

⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
)s(P

)s(Q

)s(P

)s(Q

)s(F

)s(F

2R

2R

1R

1R

2R

1R

Or more specifically

)]s(R
cos

cos
)s(R

sin

cos
][A][T)[e1(a

)s(F

)s(F
21

Ts
p

2R

1R
⎥
⎦

⎤
⎢
⎣

⎡
β
β

+⎥
⎦

⎤
⎢
⎣

⎡
α
α

−=⎥
⎦

⎤
⎢
⎣

⎡ −

Let

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
β
β

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
α
α

2

12

21

1

a

a

cos

cos
]A][T[and

a

a

sin

cos
]A][T[ ,

we simplify the above equation as
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aa  is a scalar matrix depending on [T], [A], α and β.

The equations of motion with mode-coupling terms for a two degree-of-
freedom system are found as
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Where:
M1, M2: the mass of mode 1 and mode 2, respectively
C1, C2: the damping of mode 1 and mode 2, respectively
K1, K2: the stiffness of mode 1 and mode 2, respectively
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Or equivalently in a matrix form
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Assuming that the mode coupling effects can be negligible, we simplify
the matrix [D] as
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So the characteristic equation of a two-degree-of-freedom system is
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The two uncoupled single-degree-of-freedom systems are described by the
following equations:
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Stability lobes are thus defined by these two equations with s = jω. It
means that the lobes for a two-degree-of-freedom system can be figured
out by the principle of superposition, i.e., superposing the plots of the two
sets of lobes in a single stability diagram with spindle speed and depth of
cut as the axes.
The same idea can be used for a general multiple-degree-of-freedom
system.

Application and Verification

To verify this technique for a multiple-degree-of-freedom case, many tests
have been done. The following example shows the procedure of finding
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the stability lobes to predict chatter for a two-degree-of-freedom system.
The machining conditions are listed in Table 4.10.

Table 4.10: Machining conditions
Machine tool Matsuura (FX-5G)
Cutting tool Helical End-mill
Tool diameter 16 (mm)
Number of teeth 4
Tool holder Collet (NIKKEN )
Tool hangover 60 (mm)
Work-piece aluminium
Fluid Dry
Spindle speeds 14750 and 15500, 12700 and 23000 (rpm)
Pick feed 20 (mm)
Feed per tooth 0.05 (mm)

We started the machining at a depth of cut of 2 mm and used an increment
of 1 mm. The transitional state was found from the depth of cut of 3 to 4
mm at the spindle speed of 14,750 rpm. The chatter frequency detected is
840 Hz with the highest amplitude of 958. So the limit depth of cut is set
as 3.5 mm.
Similarly another transitional state was found at the spindle speed of
15,500 rpm with a limit depth of cut of 3.8 mm. The chatter frequency is
850 Hz.

From equation (4.14), after putting into these values of the chatter
frequencies and tooth periods (i.e. 0.001 and 0.0009 (second) for the
speeds of 14,750 and 15,500 rpm, respectively, with the number of teeth
4), we obtain the following simultaneous equations:

)
2

001.0)8402(
tan()8402(2)8402( n

22
n

⋅π⋅πξω=⋅π−ω

)
2

0009.0)8502(
tan()8502(2)8502( n

22
n

⋅π⋅πξω=⋅π−ω

Soloving these equations, we obtain

ωn=5047 (rad./s) or 803 (Hz)

ξ = 0.09
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Putting the values of ωn and ξ,
ap=3.5 mm and ωc=2π(840)
(radian/s) into equation (4.17),
the constant Cp is calculated as
-0.07 (1/mm) for ωc=2π(840)
(radian/s) and  -0.06 (1/mm) for
ap=3.8 mm and ωc=2π(850)
(radian/s).
The stability lobes for one
mode are therefore calculated
by using equation (4.16) and
(4.17) and shown in Figure
4.31.

To find the other mode, we try
cutting at the speed of 23,000
rpm.
A chatter frequency of 2610 Hz
was detected. This is far away
of the former chatter frequency
which was around 840 ~ 850
Hz.
So, this clearly indicates that it
might relate to a different
vibration mode.
Searching for another spindle
speed yielding chatter at a
similar frequency resulted at
12,700 rpm with chatter
frequency 2800 Hz.
Applying the same procedure as
before, the natural frequency
and damping ratio were found
as

ωn=16967 (rad./s) or 2700 (Hz)

ξ = 0.025.

The constant Cp is -0.016
(1/mm) for ap=3 mm and
ωc=2π(2610) (rad./s) and -0.012
(1/mm) for ap=4 mm and ωc
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=2π(2800) (rad./s) at spindle speed 23,000 and 12700 rpm, respectively.
Stability lobes were calculated, as shown in Figure 4.32.

The stability lobes for a two-degree-of-freedom system are just the
superposition of these two lobes and shown in Figure 4.33 together with
the experimental checks.
A narrowed relatively stable zone is identified. Its spindle speed is about
12,500 ~ 13,500 rpm if we consider only the high-speed range of 6,000 ~
24,000 rpm.

4.5.7 A Strategy for Selection of Optimal Spindle Speed to Avoid
Chatter

To optimize the cutting process and avoid chatter, we need a practical and
systematic way by which a most stable zone can be found. A strategy for
selection of optimal cutting parameters for chatter avoidance is illustrated
in Figure 4.34.
We know that the depth of cut has the most significant influence on the
occurrence of chatter. We start cutting from a suitable depth of cut at a
given spindle speed of interest and increase or decrease the depth of cut,
for example starting at 2 mm with an increment or decrement of 1 mm for
machining of aluminum.
After the first cut the decision will be made for the further cut, based on
whether or not chatter occurs. The technique for chatter detection has been
given in section 4.5.6.
If there is no chatter, we will increase the depth of cut by the specified
increment until chatter starts to occur or vice versa.
In the tests, normally three or four cuts are sufficient to identify a
transition between stable and unstable machining. When a transitional
state has been found, the limit depth of cut at which chatter starts to occur
and the chatter frequency at that specific spindle speed are recorded.
This process is repeated to detect another transitional state. From the two
known transitional states, the method introduced in section 4.5.5 is used to
obtain the stability lobes for that mode, which is responsible for the
chatter.
The local optimal stable zones are thus figured out based on the single-
degree-of-freedom solution. We select the most stable speed, or the one
with a possible highest limit depth of cut.
If during that optimization process, we detect chatter at a significantly
different chatter frequency (and might point to a second vibration mode),
we repeat the same procedure to obtain another set of stability lobes that is
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responsible for the chatter detected at that frequency. This might lead to a
2nd set of stability lobes caused by a second vibration mode.
The procedure might then be repeated to identify a 3rd dominant mode and
associated lobes if other chatter frequency or vibration modes are
detected.
By following this iteration, a global optimal stable zone can be found after
taking into account all possible dominant modes.
Fortunately, in practice after accounting for two or three modes good or
even optimal cutting conditions can be found.
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4.6 Summary

Chatter is an instability problem occurring during cutting. Whether or not
chatter occurs depends on the closed-loop characteristic equation.
In high-speed milling, chatter frequency detected (refer to section 4.4) is
often about 1 ~ 5 kHz. It implies that the machine structure’s stiffness is
relatively high compared to conventional machines.
For example, the measured FRF of the tool/tool-holder/spindle structure
with hammer excitation (section 4.2) proves that a mode at the frequency
of 1.05 kHz exists.
However, very high frequency modes in machine structures are difficult to
measure with hammer excitation.
In this chapter, a method has been developed to identify modal parameters
and process constant in high-speed milling.
Based on the understanding of high-speed milling coupled with structural
dynamics (section 4.5.1 ~ 4.5.4),  the structure’s natural frequencies and
damping ratios together with the process constants are found out from the
cutting process itself for both a single (section 4.5.5) and multiple degree-
of-freedom system (section 4.5.6) without doing measurements separately
before cutting.
Experimental results given in section 4.4 prove that process stability is
influenced by cutting parameters (spindle speed and depth of cut) and the
structure’s stiffness (the tool overhang).
A method for chatter prediction based on calculated stability lobes (i.e., in
terms of spindle speeds and depth of cut at stability limit) is described in
details in this chapter and verified in high-speed milling of aluminum.
It is worth noting that the process models developed in section 4.5.1~
4.5.2 are only justified for high-speed milling cases. In conventional
milling, the dynamic force induced from the variation of clearance angle
may not be negligible (see section 4.5.1 and also 4.3.1). Those forces are
not included in the models.
The strategy (section 4.5.7) for finding the most stable zone, i.e. the
optimal spindle speed, shows the benefit of incorporating the stability
lobes into CAD/CAM systems to predict good cutting conditions and
avoid chatter in high-speed milling.

`
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Chapter 5

General Conclusions and
Future Work

Main Conclusions

In this dissertation, the instantaneous cutting forces and chatter vibration
in high-speed milling have been studied.

• Cutting Forces in High Speed Milling

High speed milling is characterized by intermittent strong impact when
the tool enters/exits the work-piece material. This strong impact due to
high cutting speed produces high harmonic frequency components. Teeth
passing frequency due to high spindle speed is also very high in high
speed milling.
These high frequency harmonic excitations from strong impact and high
teeth passing frequency make the structure vibrate in the neighborhood of
the natural frequencies of the dynamometer.
The measured force signals are hence significantly distorted by the
dynamic noise. If we use a low pass filter to filter out the noise, the high
frequency harmonic components of the cutting force signals will be
filtered out together with the dynamic noise as well.
As a result, we have to take the dynamic effects of the dynamometer into
account in measuring/evaluating the high speed milling forces.

This thesis work proposes a force compensation method to discount the
resultant inertia force of the workpiece together with the dynamometer.



96

This inertia force can be calculated from the accelerations measured and
the equivalent mass of both the dynamometer and workpiece.

In addition, from this research a force coefficient method is developed.
This method uses a new strategy to evaluate the instantaneous cutting
forces in high speed milling. Firstly, the concept of engagement matrix is
defined as functions of the nominal cutting parameters (spindle speed,
feed per tooth and depth of cut) as well as the position angle of the tool
tip. Secondly, the force signals are measured with a dynamometer.
Thirdly, the set of simultaneous equations is established in the frequency
domain based on the measured force signals. The force coefficients are
worked out from these equations. Cutting forces are therefore readily
identified based on these coefficients and the engagement matrix.

Moreover, this research has proven that O. Keinzle’s force formula, which
has been verified in turning operation, can still be used for milling
operation in a wide range of engagement (chip thickness). By using O.
Keinzle’s formula for milling operation, the author introduces a technique
to predict the instantaneous cutting force in 5-axis high speed milling with
complicated tool geometry like e.g. a helical-fluted ball end mill.

Furthermore, an experimental observation of specific cutting forces at
different cutting/spindle speeds has been done to have a
feeling/understanding of the high speed milling process from the
perspective of instantaneous cutting forces.

• Chatter Vibration in High Speed Milling

One of the key issues on process optimization is to avoid chatter and
maximize the metal removal rate. Generally speaking, two strategies have
been used for chatter suppression/avoidance in conventional milling. One
is the online process control technique. The other is the process planning
approach. These two strategies face challenges in high speed milling. The
former needs to design a reliable feedback control system with a very
quick response. The latter requires the frequency response function (FRF)
of the structure, as seen at the tip of the tool, and the specific cutting
forces for the models. The FRF is usually measured with hammer
excitation. The specific cutting forces are obtained with a dynamometer.
Chatter frequency detected in high speed milling is often very high (say
about 1 ~ 5 kHz) due to the very high stiffness of the machine structure –
the tool/tool-holder/spindle assembly. The very high frequency mode is
difficult/impossible to measure with hammer excitation on one hand and
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the specific forces are also not easy to obtain due to the difficulties in high
speed milling force measurement on the other.

A new method is developed from this research to obtain the knowledge of
modal parameters and process constants in case of high-speed milling.
The basic idea of this method is that the structure’s natural frequencies
and damping ratios together with the process constants are picked out
from the cutting process itself without doing measurement separately
before cutting.

This doctoral research also develops a new technique for chatter detection.
This technique takes into account the three dominant harmonic
components of the acoustic noise, measured separately in air and material
cutting, and compares their frequencies and amplitudes to tell whether or
not chatter occurs.

Furthermore, through this research work coupling models of the structural
and process dynamics for both a single and multiple degree-of-freedom
system are derived from the fundamentals of chatter theory. These models
have been successfully applied to analyze process stability. By using these
models, the author has satisfactorily explained a new observation – the
phase shift can have the value beyond the range [2(0.5+k)π, 2(k+1)π] for
a single degree-of-freedom system. This observation contradicts the
generally accepted viewpoint, i.e. phase shift must always lie in the range
of [2(0.5+k)π, 2(k+1)π] for a single degree-of-freedom system.

Finally a new strategy for finding the most stable cutting zone at the
optimal spindle speed is developed from this research. This iterative
strategy shows the bright future in using CIM technology to maximize
metal removal rate.

• Recommendations for Future Research

Developing a kind of software, which can be incorporated into the
existing data acquisition system to measure instantaneous high-speed
milling forces.

Using the developed optimization strategy to machine hard materials and
comparing both the tool-wear and surface roughness to those without
using the optimization strategy.
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Appendix A

MatLab Program for Force Prediction

%Input
clear;
%correction coefficients
ro=10;
io=15;
c1=(109-1.5*ro)/100;
c2=(94-1.5*io)/100;
c3=1.3;
c4=0.9;

%force model coefficients and index
kc11=1765;  kc=kc11*c1*c2*c3*c4;  kf=0.3;  kb=0.3;   mc=0.25;

%tool parameters
Ro=5;  Bo=pi/6;  Z=2;

%cutting conditions
ap=1.5;  ae=3;   fz=0.05;

%setting initial values
I=61;
J=30;

%Main program
%calculating the limits of location angles
gc=(Ro-(Ro*Ro-ae*ae/4)^0.5)/Ro*cot(Bo);
gmax=ap/Ro*cot(Bo);

%spacing both rotation and location angles
a=2*pi/I;
g=gmax/J;

%setting empty matrices
Ftg=zeros(3,I);
Jsum=zeros(3,J);
Fgn=zeros(3,Z);
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T=zeros(3,Z);

%force computation
for i=1:I
for j=1:J
for n=1:Z

%fixing entrance and exit angles and active cutting ranges
an(n)=i*a+(n-1)*2*pi/Z;
gn(n)=j*g;
if round((an(n)-gn(n))/(2*pi))<=(an(n)-gn(n))/(2*pi)
kn(n)=round((an(n)-gn(n))/(2*pi));
else
kn(n)=round((an(n)-gn(n))/(2*pi))-1;
end;
if gc<=gn(n) & gn(n)<=gmax
xae=ae-Ro*(gn(n)*cot(Bo)*(2-gn(n)*cot(Bo)))^0.5;
yae=-(2*Ro*ae*(gn(n)*cot(Bo)*(2-gn(n)*cot(Bo)))^0.5-ae*ae)^0.5;
R=Ro*(1-(1-gn(n)*cot(Bo))^2)^0.5;
if xae>=0
aentn(n)=acos(yae/R);
else
aentn(n)=acos(yae/R)+2*(pi-acos(yae/R));
end;
else
aentn(n)=pi/2;
end;
aexn(n)=3*pi/2;
if 2*kn(n)*pi+aentn(n)<=an(n)-gn(n) & an(n)-
gn(n)<=2*kn(n)*pi+aexn(n)
G(n)=1;
else
G(n)=0;
end;

%calculating the width(b) and depth(h) of cut and transformation matrix
b(n)=g*((Ro^2*(1-(1-
gn(n)*cot(Bo))^2)+(Ro^2*cot(Bo)^2)+(Ro^2*cot(Bo)^2*(1-
gn(n)*cot(Bo))^2)/(1-(1-gn(n)*cot(Bo))^2)))^0.5;
h(n)=((fz*(1-(1-gn(n)*cot(Bo))^2)^0.5)*abs(cos(an(n)-gn(n))))^(1-mc);
T(:,n)=[-cos(an(n)-gn(n))-kf*sin(an(n)-gn(n));sin(an(n)-gn(n))-
kf*cos(an(n)-gn(n));kb];
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%total force calculation
Fgn(:,n)=kc11*b(n)*h(n)*T(:,n)*G(n);
sum(Fgn')';
Jsum(:,j)=sum(Fgn')';
Ftg(:,i)=sum(Jsum')';
end;
end;
end;

%calculating mean forces
for m=1:I
mFtgx(m)=mean(Ftg(1,:));
mFtgy(m)=mean(Ftg(2,:));
mFtgz(m)=mean(Ftg(3,:));
end;

%Output
x=1*a*180/pi:a*180/pi:I*a*180/pi;
%whitebg;
plot(x,Ftg,'k');
hold on
plot(x,mFtgx,'r');
plot(x,mFtgy,'g');
plot(x,mFtgz,'b');
hold off
and
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Appendix B

Derivation of Mathematical Equation

For functions x(t – T) and x(t), we have the following equation

)t(xe)Tt(x TD−=−

Where:
t: a real variable
T: a constant
D: the operator d/dt

Proof:
From Taylor expansion formula, we have
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Appendix C

MatLab Program for Lobe Computation

%stability lobe simulation for single degree-of-freedom system

clear;
rpm_try=13500;
ap_try=3.5;
a_max=[5];
a_min=[2];
freq_natur=[3051/1.1];
rpm_start=12000;
rpm_max=24000;
interval=10;
phase_shift=[0;0.75];
num_tooth=4;
num_natur=1;
num_wave=15;

%model the best and the worst possible spindle speeds for each modes
for k=1:num_natur
   num_wave=12;
   %create best_row and worst_row of the num_wave
   for j=1:num_wave
      best_row(j)=60*freq_natur(k)/(num_tooth*(j+phase_shift(1)));
      worst_row(j)=60*freq_natur(k)/(num_tooth*((j-1)+phase_shift(2)));
   end;
   %cut of the rpms of both the best and worst rows to fit into rpm_start

while(num_wave>1)&(best_row(num_wave)<rpm_start)&(worst_row(nu
m_wave)<rpm_start)&(best_row(num_wave-1)<rpm_start)
      best_row(num_wave)=[];
      worst_row(num_wave)=[];
      num_wave=num_wave-1;
   end;
   %cut off the rpms of both the best and worst rows to fit into rpm_max
   [nu,num_worst]=size(worst_row);
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   while
(num_worst>1)&(worst_row(1)>rpm_max)&(best_row(1)>rpm_max)&(
worst_row(2)>rpm_max)
      best_row(1)=[];
      worst_row(1)=[];
      num_worst=num_worst-1;
   end;
   %combine the two rows
   rpm_best_worst=sort([best_row worst_row]);

   %assign possible depths of cut to the best and worst cases
   [n,M]=size(rpm_best_worst);
  m=M/2;
  for i=1:2:2*m-1
   ap(i,k)=a_max(k);
  end;
  for i=2:2:2*m
   ap(i,k)=a_min(k);
  end;

%find the coefficients of the curves--left and right ones with respect to the
lowest points
   for i=1:2:2*m-1
      an(i,k)=(ap(i,k)-ap(i+1,k))/(rpm_best_worst(i)-
rpm_best_worst(i+1))^2;
   end;
   for i=2:2:2*(m-1)
      an(i,k)=(ap(i+1,k)-ap(i,k))/(rpm_best_worst(i+1)-
rpm_best_worst(i))^2;
   end;

%interpolate the ap values for the whole speed range for all possible
modes
     for i=1:2:2*m-1
          if rem((rpm_best_worst(i+1)-rpm_best_worst(i)),interval)==0
              num_points(i,k)=(rpm_best_worst(i+1)-
rpm_best_worst(i))/interval;
          else
              num_points(i,k)=fix((rpm_best_worst(i+1)-
rpm_best_worst(i))/interval)+1;
          end;
       for j=1:num_points(i,k)
           rpm_wave_matrix(j,i)=rpm_best_worst(i)+(j-1)*interval;
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           f(j,i)=an(i,k)*(rpm_wave_matrix(j,i)-
rpm_best_worst(i+1))^2+ap(i+1,k);
       end;
    end;
    for i=2:2:2*(m-1)
          if rem((rpm_best_worst(i+1)-rpm_best_worst(i)),interval)==0
             num_points(i,k)=(rpm_best_worst(i+1)-
rpm_best_worst(i))/interval;
          else
             num_points(i,k)=fix((rpm_best_worst(i+1)-
rpm_best_worst(i))/interval)+1;
          end;
      for j=1:num_points(i,k)
            rpm_wave_matrix(j,i)=rpm_best_worst(i)+(j-1)*interval;
           f(j,i)=an(i,k)*(rpm_wave_matrix(j,i)-rpm_best_worst(i))^2+ap(i,k);
      end;
   end;

[row,col]=size(f);
num_tot=row*col;
ap_tot_col=reshape(f,num_tot,1);
rpm_tot_col=reshape(rpm_wave_matrix,num_tot,1);

%cancel zeros of ap_tot_col and rpm_tot_col
i=1;
count=1;
    while count<=num_tot
        if ap_tot_col(i)~=0
           count=count+1;
           i=i+1;
        else
           count=count+1;
           ap_tot_col(i)=[];
           rpm_tot_col(i)=[];
       end;
    end;

    %set ap_tot_col and rpm_tot_col to the rpm_max range
    [num_rpm_max,n_]=size(rpm_tot_col);
    i=1;
    count=1;
    while (count<=num_rpm_max)&(rpm_tot_col(count)<=rpm_max)
       count=count+1;
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       i=i+1;
    end;
    while count<=num_rpm_max
       ap_tot_col(i)=[];
       rpm_tot_col(i)=[];
       count=count+1;
    end;

 % save the information of rpm_tot_col of each mode and set up two
matrices to store rpm and ap for all modes
    [R,c]=size(rpm_tot_col);
   first_elem(k)=rpm_tot_col(1);
   R_tot(k)=R;
   for i=1:R
     rpm_tot_matrix(i,k)=rpm_tot_col(i);
     ap_tot_matrix(i,k)=ap_tot_col(i);
   end;
   f=[];
   rpm_wave_matrix=[];
end;
%(ending the for k=1:natur loop here)

%find the row number of starting rpm for each k
  first_max=max(first_elem);
  for k=1:num_natur
     i=1;
     while rpm_tot_matrix(i,k)<first_max
      i=i+1;
     end;
      row_rpm_start(k)=i;
  end;

%calculate the number of each k from the starting rpm to the end of each
k
for k=1:num_natur
   num_st_end(k)=R_tot(k)-row_rpm_start(k)+1;
end;

%set up new common matrics to store rpm and ap
num_common=min(num_st_end);
for k=1:num_natur
   for i=1:num_common
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      rpm_matrix_common(i,k)=rpm_tot_matrix(row_rpm_start(k)+i-1,k);
      ap_matrix_common(i,k)=ap_tot_matrix(row_rpm_start(k)+i-1,k);
   end;
end;
ap_min=ap_matrix_common;

%plot(rpm_matrix_common,ap_matrix_common,'b');
plot(rpm_matrix_common(:,1),ap_matrix_common(:,1),'k');
hold on
%plot(rpm_matrix_common(:,2),ap_matrix_common(:,2),'b');
%plot(rpm_matrix_common(:,3),ap_matrix_common(:,3),'g');
%plot(rpm_matrix_common(:,1),ap_min,'r');

%find N most stable speeds rpm and ap
N=12;
rpm_min=rpm_matrix_common(:,1);

for n=1:N
   [val_max,pos_max]=max(ap_min);
   most_stable_rpm(n)=rpm_min(pos_max);
   ap_reference(n)=val_max;
   ap_min(pos_max)=[];
   rpm_min(pos_max)=[];
end;

%find the shift value of the lobe with the specified lobe shape by a_max
and a_min values
i=1;
%find the position of rpm_try by the i value
while rpm_matrix_common(i)<rpm_try
   i=i+1;
end;
%set the shift value and change the ap_matrix_common value
ap_shift=ap_try-ap_matrix_common(i);
ap_matrix_common=ap_matrix_common+ap_shift;

plot(rpm_matrix_common,ap_matrix_common,'r');
ap_shift
most_stable_rpm
ap_reference
a_max



118

%stability lobe simulation for a multiple degree-of-freedom system

clear;
ap_ch=[4;4];
fc=[3116;3184];
rpm_chat=[12000;12500]/60;
rpm_start=12000/60;
rpm_max=23000/60;
num_tooth=2;

%find damping ratio (c) and natural frequency (fn) with e=2pi-
2arctan(r^2-1/2cr),r=fc/fn
wcT1=2*pi*fc(1)/rpm_chat(1);
wcT2=2*pi*fc(2)/rpm_chat(2);
a1=sin(wcT1)/(1-cos(wcT1))/fc(1);
a2=sin(wcT2)/(1-cos(wcT2))/fc(2);
fn=sqrt((a1*fc(1)*fc(1)-a2*fc(2)*fc(2))/(a1-a2));
c1=a1*(fn*fn-fc(1)*fc(1))/(2*fn*fc(1));
c2=a2*(fn*fn-fc(2)*fc(2))/(2*fn*fc(2));
r1=fc(1)/fn;
r2=fc(2)/fn;
a1
a2
fn
c1
c2
c=c1
%find system and process coefficient with blim=co/Re[G]=co*((1-
r^2)^2+4*c^2*r^2)/(1-r^2)
co1=ap_ch(1)*(1-r1^2)/((1-r1^2)^2+4*c^2*r1^2);
co2=ap_ch(2)*(1-r2^2)/((1-r2^2)^2+4*c^2*r2^2);
co1
co2
if (co1>0)&(co2>0)
   co=mean([co1 co2]);
end;
if (co1<0)&(co2<0)
   co=abs(mean([co1 co2]));
end;
if (co1<0)&(co2>0)
   co=co2;
end;
if (co2<0)&(co1>0)
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   co=co1;
end;

%find the range of number of waves (Nst ~Nmax) within the defined
speed range (rpm_start ~ rpm_max)
Nmax=fix(fn/(num_tooth*rpm_start));
Nst=fix(fn/(num_tooth*rpm_max));

%find the lobe alim and corresponding rpm_spin from Nmax to Nst

if Nmax~=0
   N=Nmax:(-1):Nst;
else
   N=0;
end;
r=1.0005:0.002:0.002*8+1.0005;
N
[row,n_wave]=size(N);
[ro,n_point]=size(r);

for k=1:n_wave
   for i=1:n_point
      er(i)=2*pi-2*atan((r(i)^2-1)/(2*c*r(i)));
      rpm_spin(i,k)=60*fn*r(i)/(num_tooth*(N(k)+er(i)/2/pi));
      alim(i,k)=co*((1-r(i)^2)^2+4*c^2*r(i)^2)/(1-r(i)^2);
      alim_plot(i,1)=abs(alim(i,k));
      rpm_spin_plot(i,1)=abs(rpm_spin(i,k));
   end;
   rpm_spin(1,k)
   plot(rpm_spin_plot,alim_plot,'k');
   hold on;
   alim_plot=[];
   rpm_spin_plot=[];
end;


