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Preface

This book is meant to be a basic text for courses in the engineering design of
systems at both the upper division undergraduate and beginning graduate
levels. The book is the product of many years of consulting on numerous
portions of the system development process, research into the use of systems
engineering in industry, and six years developing a course on the engineering
design of systems. During the development of this book, I found that many
engineers did not understand systems engineering. Even those that do may not
have a good perspective on a complete and unified process for engineering a
system. The desire to suppress the number of decisions being made during
design is quite strong in most engineers. While engineers have learned modeling
throughout their academic life, and most have developed models during the
practice of engineering, very few engineers working on systems are knowledge-
able of the modeling techniques required in systems engineering. In addition,
most engineers are not aware of methods for using models during the systems
engineering process. As a result, I adopted the following themes in formulating
this book:

1. Defining the design problem in systems engineering is one of several keys
to success and can be approached systematically using engineering
techniques.

2. The design problem in systems engineering is defined in terms of
requirements. These requirements evolve from a high-level set of mission
and stakeholders’ requirements to detailed sets of derived requirements.

3. The design process will fail if the requirements are defined too narrowly,
leaving little if any room for design decisions and raising the possibility
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that no feasible solution exists. The design problem should be well
defined and decision rich.

4. For the design problem to be well defined, the evolving sets of
requirements must be complete (none missing), consistent (no contra-
dictions), correct (valid for an acceptable solution), and attainable (an
acceptable solution exists). While it is not possible at this time to state
requirements mathematically and prove these properties, it is possible to
develop mathematical and heuristic representations of the design
problem to assist in evaluating the presence of these properties.

5. The characteristics of the requirements will not be achieved if scenarios
defining how the system will be used are not elaborated in detail, the
interactions among the system and other systems are not defined, and
the stakeholders’ objectives are not understood. Each of these requires a
different kind of modeling to be successful.

6. The design problem is not likely to be well defined if the requirements do
not address every relevant phase of the system’s life cycle.

7. The design problem is not likely to be well defined if the requirements do
not contain stakeholder preferences for comparing feasible designs
against each other.

8. The keys to understanding many of the modeling techniques for
developing requirements, defining architectures, and deriving require-
ments are found in discrete mathematics: set theory, relations and
functions, and graph theory.

9. Integration requires a well-defined design, including a design of the
qualification process for verification, validation, and acceptance. A
systematic process of design provides all of the necessary inputs for
defining the qualification process.

10. Early validation of the evolution of the definition of the design problem
needs to be pursued vigorously to ensure that the definition of the design
problem does not change as the problem is defined in greater detail.

11. Qualification of the system is the key issue in integration. Qualification
includes verification and validation of both the requirements and the
system design, followed by the stakeholders’ acceptance. There are many
methods for qualifying the system; these methods must be chosen
judiciously.

12. Successful qualification also requires that decisions about what should be
tested be made in a systematic way that balances the two conflicting
objectives of not wasting resources and obtaining stakeholder acceptance.

The major changes for the second edition are descriptions of The Object
Management Group’s Systems Modeling Language (OMG SysMLt) and the
introduction of new terminology. SysML is introduced in Chapter 1, defined in
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some detail in Chapter 3, and referenced in other chapters. The major changes
in terminology were motivated by suggestions from readers to be less focused
on specific application domains. Originating requirements has become stake-
holders’ requirements. Originating Requirements Document has become Sta-
keholders’ Requirements Document. The operational architecture has become
the allocated architecture. New material has been added in Chapter 1 to
enhance the introduction of the engineering of systems. Additional material in
Chapter 1 describes different types of systems and outlines the various
attributes of the value provided by systems engineering. Minor changes have
been made to several other chapters as well. Finally, I have added a large
selection of historical references for systems engineering.

The book is divided into three major parts: (1) Introduction, Overview, and
Basic Knowledge; (2) Design and Integration Topics; and (3) Supplemental
Topics. The first part provides an introduction to the issues associated with the
engineering of a system. Next, an overview of the engineering process is
provided so that readers will have a context for the more detailed material.
Finally, basic knowledge needed for the core material is presented. Homework
problems are provided at the end of each chapter.

Chapter 1 defines a system, systems engineering, the life cycle of a system,
and then introduces systems engineering processes. This material sets the stage
for the details that follow.

Chapter 2 provides an overview of the details that are to come by presenting
a number of basic concepts; these concepts include an operational concept,
objectives, requirements, functions, items, components, interfaces verification,
validation, and acceptance. The relations among these concepts are also
addressed.

Chapter 3 provides an overview of modeling and the types of modeling
needed in engineering systems. Modeling methods associated with SysML are
then introduced and described. While IDEF0 is not part of SysML, this topic
has been kept in Chapter 3 as an important part of the modeling concepts
described in this book.

Chapter 4 presents basic discrete mathematics. The purpose of the discrete
mathematics is to demonstrate the mathematical rigor for which systems
engineering must strive and to provide a language with which we can discuss
key issues. Examples of such important concepts are the distinction between a
relation and a function and why this is critical for engineering a system; a
partition of the elements of a set that can be applied to many systems
engineering concepts (e.g., requirements); and partial orders of functional
execution.

Chapter 5 extends the discussion of discrete mathematics to graph theory so
that the graphical communication structures commonly used in the engineering
of systems can be seen to have substantial problems as rigorous mathematical
representations. On the other hand, the difficult concepts in Chapter 4 can be
effectively represented with graphs for analysis and communication.
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Part 2 covers the critical material required to understand the major elements
needed in the engineering design of any system: requirements, architectures
(functional, physical, and allocated), interfaces, and qualification.

Requirements development is approached as a systematic process in Chapter
6. This systematic process involves the definition of an operational concept of
the system (including usage scenarios), a description of the involvement of the
system with other systems, and an objectives hierarchy of the stakeholders
across all phases of the system’s life cycle. A partition of requirements is
employed to discuss the systematic approach for defining requirements.

Definitions of the functional, physical, and allocated architectures are
provided as well as the detailed methods for developing these architectures in
Chapters 7 through 9. Chapter 7 begins with several definitions that are needed
to enable a meaningful discussion of the topic. The notion of a functional
architecture is defined. An emphasis is placed on process modeling in Chapter
7. However, additional material is presented in Chapters 3 and 12 on data and
behavioral modeling methods, as well as other approaches for process model-
ing. (This material can be used while discussing Chapters 7 through 9.)
Modeling approaches for partitioning a function into segments are discussed.
Key topics are feedback and control within the functional decomposition and
evaluating the architecture for shortfalls and overlaps. Chapter 7 also addresses
the functionality needed for error detection and recovery as well as tracing the
input/output requirements to functions and items.

Chapter 8 introduces the distinction between the generic and instantiated
physical architectures. The morphological box is used to demonstrate the
generation of multiple instantiated physical architectures. The graphical
representation of the physical architecture is discussed along with notions of
centralized, decentralized, and distributed architectures. Finally, fault-tolerant
architectures are described.

Chapter 9 defines the allocated architecture and discusses the allocation of
functions to components, the tracing and derivation of requirements, the
analysis of activation and control structures, and the conduct of various
analyses (risk, performance, and trade-off).

Chapter 10 characterizes interfaces; discusses the functions associated with
interfaces in several contexts (communications systems and software design);
describes interface architectures; and discusses interface design as it impacts
system performance as part of the design process.

Finally, qualification of the system (Chapter 11) during integration requires
the understanding of the stakeholders’ needs and the qualification methods that
are typically used. Deciding what to test and how to test it is critical in this
phase of the development process. All of the topics in Chapters 6 to 11 are
addressed in a rigorous and systematic manner, consistent with the general,
practical application of systems engineering in industry.

Homework exercises are provided on each of these topics from Part 2 for
several real but simple systems that are familiar to all students: an automatic
teller machine (ATM), an air bag, and the OnStar system of Cadillac. A case
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study is available over the web to give the students a sample of the solutions to
the homework. Readers are encouraged to access a limited version of a
commercial system engineering software product (CORE) to enhance the
conduct of these homework exercises and the educational mission of this book.

Finally, two additional key topics are introduced in the third part: methods
for data, process, and behavior modeling and decision analysis. Chapter 12
addresses the topics of data modeling, process modeling, and behavior
modeling. Many alternate approaches for each of these modeling areas are
described in detail so that teachers using this text can substitute the material
most relevant to their program for the IDEF0 process modeling in Chapter 3.
(A few minutes of IDEF0 instruction will be required in any course because of
the extensive use that I have made of an IDEF0 model of the systems
engineering process in Appendix B.)

Chapter 13 presents the key topics of decision analysis as an integrative way
of supporting the many decisions that are part of the design and integration of a
system. These decision analytic topics include the development and quantifica-
tion of values (objectives, value functions, and trade offs), and the modeling of
uncertainty regarding facts.

The homework problems and the case study of the elevator are defined with
the express purpose of having the student demonstrate the level of under-
standing necessary to perform the engineering activities described in the book.
In developing these homework exercises I have taken the position that
demonstrating an ability to discuss how to do systems engineering is a
necessary but not a sufficient level of understanding. The CORE software
(that is appropriate for use with this book is available via the web: http://
www.vitechcorp.com) takes the tedium out of performing these systems
engineering activities as well as reinforcing the basic concepts behind the
activities. The case material related to an elevator system can be downloaded
from the following web site: http://www.theengineeringdesignofsystems.com.

Many of the ideas for this book have originated with Alexander Levis. I have
benefited greatly from my conversations with him. Jim Long introduced me to
much of the systems engineering process and has since provided many thought-
provoking concepts and ideas since we first met in 1991. Ron Howard guided
me through the Ph.D. process and provided me with a wonderful foundation in
decision analysis. This foundation in decision analysis is at the heart of the
methods proposed in this hook. I have worked on several consulting over the
last 20 years with Terry Bresnick; Terry’s comments and questions have helped
shape much of my thinking on the application of decision analysis to the
engineering design of a system. Andrew Sage has seen several drafts of the book
and provided many very useful comments, including suggestions for its title.
Many faculty members who taught from the first edition have provided useful
comments that led to improvements.

Sanford Friedenthal and Abe Meilich were kind enough to review portions
of the original manuscript when it was near completion. Both Sandy and Abe
provided very valuable comments for improving the quality of the material
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and its presentation. Sandy has given me a great deal of information and
encouragement to include the SysML material in this second edition.

Several colleagues at George Mason University and Stevens Institute of
Technology have provided many useful comments and suggestions. I wish to
thank Kathryn Laskey, William Miller, and Mike Pennotti.

Several students and teaching assistants have contributed to sections of these
notes. Cathy Brown provided a substantial extension of the requirements for
the elevator case study. John Van Ormer extended the physical architecture of
the elevator. Jahan Araghi extended my initial case study on the ATM as part
of his Master’s project. Tong Zhang and Parham Pasha provided some
examples on sets, relations, and graphs. Christine Salter provided extensive
support in addressing topics that needed revision, developed solutions for
homework problems, and provided solution material for the OnStar and ATM
problems. Several student groups provided material on which the air bag case is
based. Meg Giordana and Barry Liner provided extensive comments on the
qualification material. Tim Parker developed two case studies for use in
Chapters 8 and 9: the FBI Fingerprint Identification System and the Wide-
Area Augmentation System of the Federal Aviation Administration. Steve
Charbonneau provided interesting insights about state charts as part of his
M.S. Thesis. The SYST 520 class at George Mason University during the
spring of 1998 provided many extensive and useful comments on an early draft
of the first edition.

I wish to thank all of these individuals, as well as many others with whom I
have conversed on these topics, for stimulating me to complete this effort.

One of the most difficult aspects of writing this book has been to decide
which material to include and which to leave out. There is still a great deal more
to be said on the topics covered in this book and on some additional topics that
were not included. More importantly, there is still a great deal more to discover,
at least on my part.

DENNIS M. BUEDE

Reston, Virginia

November 2008
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Part 1

Introduction, Overview, and
Basic Knowledge



Chapter 1

Introduction to Systems
Engineering

1.1 INTRODUCTION

A system is commonly defined to be ‘‘a collection of hardware, software,
people, facilities, and procedures organized to accomplish some common
objectives.’’ The stakeholders for the system hold these objectives. Never forget
that the system being addressed by one group of engineers is the subsystem of
another group and the supersystem of yet a third group. The objective of the
engineers for a system is to provide a system that accomplishes the primary
objectives set by the stakeholders, including those objectives associated with the
creation, production, and disposal of the system. To accomplish this engineer-
ing task, the engineers must identify the system’s stakeholders throughout the
system’s life cycle and define the objectives of all of these stakeholders. These
objectives typically address the triad of cost, schedule, and performance —
cheaper, faster, and better.

A major characteristic of the engineering of systems is the attention devoted
to the entire life cycle of the system. This life cycle has been characterized as
‘‘birth to death,’’ and ‘‘lust to dust.’’ That is, the life cycle begins with the gleam
in the eyes of the users or stakeholders, is followed by the definition of the
stakeholders’ needs by the systems engineers, includes developmental design
and integration, goes through production and operational use, usually involves
refinement, and finishes with the retirement and disposal of the system.
Ignoring any part of this life cycle while engineering the system can lead to
sufficiently negative consequences, including failure at the extreme. In

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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particular, developing a system that has not adequately addressed the stake-
holders’ needs leads to failures such as the ‘‘highway to nowhere’’ near San
Francisco, which was stopped by political pressure brought to bear by home-
owners on the surrounding hills overlooking the bay. The view of the bay that
these homeowners enjoyed and thought was an associated right of the property
they owned would have been blocked by the highway. Similar commercial
failures that did not consider the needs of the stakeholders in sufficient detail
include the personal computers IBM PC Jr. and the Apple LISA. This is not to
say that the adherence to methods and models put forth in this book or any
other will guarantee success or even the absence of failure. Rather the methods
and models proposed here do attend to the entire life cycle of the system and
provide a process that makes sense, can be tailored to various levels of detail as
dictated by the complexity of the system being addressed, and attend to all of
the details that many engineers during years of practice in systems engineering
have determined to be useful.

The concepts of design and integration are critical to the methods addressed
in this chapter and the book. The word design is used by many professions
(artists, architects, all disciplines of engineering) and is claimed by each.

The American Heritage Dictionary [Berube, 1991] defines design as:

de-sign (di-zin’) v. -signed, -signing, -signs. –tr. 1. To conceive in the mind; invent:

designed his dream vacation. 2. To form a plan for: designed a marketing strategy

for the new product. 3. To have a goal or purpose; intend. 4. To plan by making a

preliminary sketch, outline, or drawing. 5. To create or execute in an artistic or

highly skilled manner. –intr. 1. To make or execute plans. 2. To create designs. –n.

1. A drawing or sketch. 2. The invention and disposition of the forms, parts, or

details of something according to a plan. 3. A decorative or artistic work. 4. A

visual composition; pattern. 5. The art of creating designs. 6. A plan; project. 7. A

reasoned purpose; intention. 8. Often designs. A sinister or hostile scheme: He has

designs on my job. y

All but the third and eighth definitions for the noun usage will apply at various
times during the course of this book.Design during the engineering of a system as
discussed in this book is the preliminary activity that has the purpose of satisfying
the needs of the stakeholders, begins in the mind of the lead engineer but has to be
transformed into models employing visual formats in a highly skilled manner for
success to be achieved. While this book addresses the engineering methods and
models used during the design process, there is always an element of artistry that
is required for the design process and the system to be successful.

Integration brings all of the detailed elements of the overall design together
through a process of testing (or qualification) to achieve a valid system for
meeting the needs of the stakeholders. Engineers of appropriate disciplines
perform integration according to the specifications defined by the design of the
system’s engineers. The integration process involves testing or qualification of
both the elements of the system and the system itself to ensure that the system
meets the ultimate needs of the stakeholders.
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This chapter first provides an overview of the issues and process associated
with the engineering of a system. This overview addresses the phases of the
system’s life cycle, describes the importance of performing the engineering of a
system well, provides a definition for the engineering of a system, introduces the
key process model for the engineering of a system called the Vee model,
describes the richness of decisions that are inherent in the engineering process,
and discusses the diversity of expertise required for this engineering process.
Section 1.3 describes process models that have been adopted by the software
engineering community. Architectures play a key role in the engineering of
systems and are introduced next. Requirements, Section 1.7, play a major role
in the engineering of a system because they serve the role of defining the
engineering design problem and capturing the key information needed to
describe design decisions. The life cycle of the system is next examined in
more detail. Finally, the Vee model for engineering a system is described in
more detail.

The key method addressed in this chapter is the process used to perform the
engineering of systems. Supplementing this discussion of the engineering
method are discussions of the key concepts needed to understand the method
at an introductory level. This method is presented as a process model; models
and modeling are discussed in detail in Chapter 3 so the reader is asked to
accept the notion of the process discussion as a discussion of a model until more
detail on models can be provided in Chapter 3.

1.2 OVERVIEW OF THE ENGINEERING OF SYSTEMS

The development process in systems engineering is commonly viewed [Forsberg
and Mooz, 1992; Lake, 1992] as a decomposition (or design) process followed
by a recomposition (or integration) process (see Sidebar 1.1). During the
decomposition process, the stakeholders’ requirements are analyzed and
defined in engineering terms and then partitioned into a set of specifications
(or specs) for several segments, elements, or components. It is critical that this
design process be broad in perspective so that nothing is left out and every
contingency is considered. Systems engineers must be ‘‘big picture’’ people.
Depth is only achieved by much iteration through the design process, as many
as are needed until the system’s specifications are sufficiently detailed for
individual configuration items (CIs) to be built or purchased. This design
process defines what the system must do, how well the system must do it, and
how the system should be tested to verify and validate the system’s perfor-
mance. To do this the systems engineers must maintain a very clear focus on the
objectives that the system’s stakeholders (users, owners, manufacturers, main-
tainers, trainers, etc.) have defined for the system.

One of many possible representations of the life cycle of a system is shown in
Figure 1.1, beginning with the identification of the need for the system and
progressing through the retirement of the system. Some of the phases of the life
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cycle are accomplished in parallel, as the diagram tries to depict; exactly which
phases occur in parallel depends upon the type of system, the organization, and
the context. For additional detail see Driscoll [2007].

As shown in Figure 1.1, design includes the preliminary system design as well
as parts of the identification of need and concept definition. Parts of the
identification of need and concept definition include the development of a basic
idea and the first embodiment of the idea; these two initial activities are often
called invention and are usually not part of the engineering of a system.
Invention has a heavy technological and scientific focus. The last portions of
the identification of need and concept design phases, plus preliminary system
design, address the initial or follow-on commercialization of the idea based
upon a specific statement of stakeholders’ needs.

SIDEBAR 1.1

The term systems engineering dates back to Bell Telephone Laboratories in
the 1940s [Schlager, 1956; Hall, 1962; Fagen, 1978]. Fagen [1978] traces the
concepts of systems engineering within Bell Labs back to early 1900s and
describes major applications of systems engineering during World War II.
RCA used the ‘‘systems approach’’ during the research and development
of the electronically scanned, black and white television [Engstrom, 1957].
In 1943 the National Defense Research Committee established a Systems
Committee with Bell Laboratories support to guide a project called C-79,
the first task of which was to improve the communication system of the Air
Warning Service. An unpublished chapter on systems engineering in the
Bell system suggested that the first use of the phrase ‘‘systems engineering’’

Concept
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Identification
of Need

Refinement

Preliminary
System
Design

Detailed
Configuration
Item Design

System
Integration

Production &
Manufacturing

Deployment

Operation

Retirement

Maintenance

Time

Training

FIGURE 1.1 Phases of the system life cycle.
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within the Bell system was in a memo in the summer of 1948. Systems
engineering was identified as a unique function in the organizational
structure of Bell Laboratories in 1951.

Involvement in the earliest intercontinental ballistic missile (ICBM)
program, starting with Atlas, is the most well-known of early systems
engineering activities.

Hall [1962] asserts that the first attempt to teach systems engineering as
we know it today came in 1950 at MIT by Mr. Gilman, Director of
Systems Engineering at Bell. The first book on Systems Engineering was
written by Goode and Machol in 1957, titled System Engineering – An
Introduction to the Design of Large-Scale Systems.

Hall [1962] defined systems engineering as a function with five phases:
(1) system studies or program planning; (2) exploratory planning, which
includes problem definition, selecting objectives, systems synthesis, sys-
tems analysis, selecting the best system, and communicating the results;
(3) development planning, which repeats phase 2 in more detail; (4)
studies during development, which includes the development of parts of
the system and the integration and testing of these parts; and (5) current
engineering, which is what takes place while the system is operational and
being refined.

The RAND Corporation was founded in 1946 by the United States
Air Force and created systems analysis, which is certainly an important
part of systems engineering.

The Department of Defense entered the world of systems engineering
in the late 1940s with the initial development of missiles and missile-
defense systems [Goode and Machol, 1957].

Paul Fitts addressed the allocation of the system’s functions to the
physical elements of the system in the late 1940s and early 1950s [Fitts,
1951].

There is special bibliography at the back of the book devoted to
historical references.

The products of the design process serve as the inputs to the hardware and
software design of detailed configuration item (CI) design. The CIs then reenter
the systems engineering process during system integration for integration
testing, verification, and validation. Further adjustments to the design occur
during the refinement phase. The life-cycle phases associated with the engineer-
ing of the system are shaded in Figure 1.1. The term concurrent engineering
simply means that the systems engineering process should be done with all of
the phases (and their associated requirements) of the system life cycle in mind
[Prasad, 1996]. This notion of concurrent engineering is a key concept
addressed in this book.

The importance of systems engineering is highlighted by examining a
generally accepted relationship between the phases of the system life cycle
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and the commitment versus the incursion of costs. The time associated with the
system’s life cycle is plotted on the x-axis; note the time increments are notional
and should not be interpreted as equal to the relative length of the four stages
being addressed. See Prang [1992] for an illustration based on computer boards.
(Prang is also referenced in Scheiber [1995].) Figure 1.2 shows the major phases
of the system life cycle on the horizontal axis. The curves represent the cost
committed, based upon engineering design decisions, and the cost incurred,
based upon actual expenditures. As can be seen, about 80% of the cost of the
system is committed by the end of design and integration, while only about
20% of the actual cost for the system has been spent. Obviously, mistakes made
in the front end of the system life cycle can have substantially negative impacts
on the total cost of the system and its success with the users and bill payers.

There have been many definitions of systems engineering put forward
since the 1950s when systems engineering became a profession. Table 1.1
provides several of these definitions. There are two important trends to note
over the 20-year span of these definitions. First, the role of management in the
systems engineering process is made explicit in the definitions from the 1990s.
Second, the three pillars of engineering success (cost, schedule, and technical
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FIGURE 1.2 Cost commitment and incursion in the system life cycle.
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TABLE 1.1 Definitions of Systems Engineering

Source Definitions of Systems Engineering

Mil-Std 499A,

1974

The application of scientific and engineering efforts to:

(1) transform an operational need into a description of system

performance parameters and a system configuration through the

use of an iterative process of definition, synthesis, analysis,

design, test, and evaluation; (2) integrate related technical

parameters and ensure compatibility of all related, functional,

and program interfaces in a manner that optimizes the total

system definition and design; (3) integrate reliability,

maintainability, safety, survivability, human, and other such

factors into the total technical engineering effort to meet cost,

schedule, and technical performance objectives.

Sailor, 1990 Both a technical and management process; the technical process is

the analytical effort necessary to transform an operational need

into a system design of the proper size and configuration and to

document requirements in specifications; the management

process involves assessing the risk and cost, integrating the

engineering specialties and design groups, maintaining

configuration control, and continuously auditing the effort to

ensure that cost, schedule, and technical performance objectives

are satisfied to meet the original operational need.

Sage, 1992 The design, production, and maintenance of trustworthy systems

within cost and time constraints.

Forsberg & Mooz,

1992

The application of the system analysis and design process and the

integration and verification process to the logical sequence of the

technical aspect of the project life cycle.

Wymore, 1993 The intellectual, academic, and professional discipline the primary

concern of which is the responsibility to ensure that all

requirements for a bioware/hardware/software system are

satisfied throughout the life cycle of the system.

Mil-Std 499B

draft, 1993

An interdisciplinary approach encompassing the entire technical

effort to evolve and verify an integrated and life-cycle balanced

set of system people, product, and process solutions that satisfy

customer needs. Systems engineering encompasses: (a) the

technical efforts related to the development, manufacturing,

verification, deployment, operations, support, disposal of, and

user training for system products and processes; (b) the

definition and management of the system configuration; (c) the

translation of the system definition into work breakdown

structures; and (d) development of information for management

decision making.

INCOSEa, 1996 An interdisciplinary approach and means to enable the realization

of successful systems.

a INCOSE is the International Council on Systems Engineering, a professional society of systems
engineers. INCOSE’s definition of a system is an interacting combination of elements, viewed in
relation to function.
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performance) from the 1970s evolve to concerns over the life cycle, namely
concurrent engineering.

The American Heritage Dictionary [Berube, 1991] defines engineering as:

The application of scientific and mathematical principles to practical ends such as

the design, construction, and operation of efficient and economical structures,

equipment, and systems.

The following definitions of engineering and the engineering of systems are
adopted here:

Engineering: discipline for transforming scientific concepts into cost-effective
products through the use of analysis and judgment.

Engineering of a System: engineering discipline that develops, matches, and
trades off requirements, functions, and alternate system resources to achieve
a cost-effective, life-cycle-balanced product based upon the needs of the
stakeholders.

Figure 1.3 shows the design and integration process as a ‘‘Vee’’ with the
emphasis of this model of the engineering process for a system being on the
activities that the engineers perform. The left or decomposition side of the Vee
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FIGURE 1.3 Systems engineering ‘‘Vee’’ (after Forsberg and Mooz [1992]).
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coincides with the three phases at the beginning of the life cycle from Figure 1.1.
Time proceeds from left to right in Figure 1.3, just as it did in Figure 1.1. The
process is initiated at the top left of the Vee with the definition of the
operational need of the stakeholders. The focus of the decomposition and
definition process (or design) is the movement from an operational need to
system-level requirements to specifications for each component to the specifica-
tions (or specs) for each CI. Since time is moving from left to right in Figure 1.3,
parallel work on high- and low-level design activities is not only permitted but
encouraged. The iterative nature of this design process, from high-level issues
such as stakeholders’ requirements to low-level issues such as component and
CI design, is accomplished by moving vertically in the Vee over short
increments of time. This vertical movement during the design process is critical
to success and has been observed in studies of expert designers [Guindon, 1990].
Note, this Vee model does not emphasize the interaction with the stakeholders
even though that interaction is assumed to occur in order to enable the
engineering processes depicted in the Vee model.

The horizontal line, drawn just under the middle intersection of the Vee in
Figure 1.3, depicts the hand off of the final products of the design process, the
CI specs, to the discipline (or design) engineers, those engineers whose
orientation is electrical, mechanical, chemical, civil, aerospace, computer
science, and the like and whose job it is to produce a physical entity. This
dividing line can be drawn higher or lower to signify decreasing or increasing
overlap between design and integration activities. As the dividing line is drawn
in Figure 1.3, the sloping lines of the middle portion of the Vee can be extended
until they meet the dividing line, with the resulting very modest overlap between
design and integration. If the dividing line is raised above the intersection of the
sloping lines of the Vee, there would be no intersection of design and
integration. This complete separation of design and integration is often sought
in practice to enhance contractual relationships between procurer and supplier
of the system; however, this separation negatively impacts the schedule and cost
associated with the development of the system. There is significant integration
and qualification activity that should take place during design, as is discussed in
Chapter 11. In many systems engineering activities the horizontal dividing line
between systems engineering and the discipline engineers is drawn significantly
lower than shown in Figure 1.3.

The right-hand side of the Vee depicts the integration and qualification
activities of the engineering of a system. Integration involves the assembly of
the CIs into components, the assembly of lower level components into higher
level components, and the assembly of high-level components into the system.
All of this assembly involves testing (or qualification) of the newly assembled
system elements to determine whether the assembled element meets the set of
requirements (or spec) that the design phase had established for that element;
this qualification is called verification. Finally, after the system is verified
against the system requirements, the system must be validated. After valida-
tion, the stakeholders determine whether the system is acceptable. Naturally,
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there are problems throughout this process that require modifications to be
made either to the design of the elements of the system or to the requirements
that were developed during design. Recall that time is running from left to right
in Figure 1.3; the Vee process allows for the low level of verification of CIs to be
happening in parallel with some high-level validation and even acceptance
activities.

A sample of the movement from operational need to CI specs is given for a
race car in Table 1.2. The first column states the operational need or mission
requirement: Win the Indianapolis 500. Associated with this need are stake-
holders’ requirements concerning the pretrial average speed and the average
speed during the race with the expected number of yellow flags and pit stops
(note the numbers in Table 1.2 are notional and are not accurate reflections of
race conditions). System-level requirements can then be derived that are more
meaningful during engineering. As an example, the key system-level require-
ment involves the g-g space of a vehicle [Milliken and Milliken, 1995]. Race
cars, when driven by experienced drivers, are always changing velocity in speed
or direction. (Recall that speed is the velocity you are traveling in your direction
of travel. But when traveling around a curve, you also have a component of
velocity perpendicular to your direction of travel.) Therefore the acceleration
ability of the car in both longitudinal and lateral directions (see Fig. 1.4) is
critical in the design process. Figure 1.4 portrays the g-g curve for a single car
driven by three racers (charts a-c); the bottom right space (chart d) is the
inferred g-g space of the vehicle. Finally, each of these system-level require-
ments is ‘‘flowed down’’ to component-level requirements, such as the engine’s
horsepower and the drag coefficient of the body of the race car. (Note the true
values of these parameters are closely guarded secrets of racing teams.) This
process continues until the requirements for CIs are defined, establishing a
hierarchy of requirements, from mission or need down to the CIs.

The system integration process starts during the decomposition and defini-
tion (or design) process. As part of design, the integration and qualification

TABLE 1.2 Racecar Example of Requirements and Tests

Operational Need or Mission
Requirements–Partially
Validated by Operational Test
(Proven by Real World
Experience)

System Level
Requirements–Verified
by System Level Tests

Component Level
Requirements–Verified by
Component Level Tests

Win the Indianapolis 500

. Pretrial average speed of

215mph.

. Average speed in the ‘‘500’’

of 190mph.

. Top speed of X mph.

. Acceleration in all

directions, ‘‘g-g’’

space

. Average standard pit

time of Y sec.

. Engine horsepower of x

Btu.

. Body’s drag coefficient

of y

. Range per tank of gas of

z mi.

12 INTRODUCTION TO SYSTEMS ENGINEERING



plans are developed. The purpose of qualification is the verification and
validation of the system’s design. Verification addresses the following question:
Does the component, element, segment, or system meet its requirements, or
have we built the component, y, system right? On the other hand, validation,
which is often combined with acceptance testing, demonstrates that the system
satisfies the users’ needs, or have we built the right system? Note, as verification
moves farther from the CIs and closer to the system, it is not possible to
conduct enough testing to prove anything statistically. Demonstration is often

FIGURE 1.4 ‘‘g-g’’ design region for a racecar (from Milliken and Milliken [1995]).
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the best that can be done. It is expected, though not desired, that there will be
issues and problems that arise as part of this qualification process. Decisions
must be made concerning relaxation of requirements versus design changes to
specific CIs and components. During the design phase, integration activities
should be planned to maximize the effectiveness of qualification within the
resources and time available. These planned activities are then carried out
during integration, with adaptations as needed. There should have been some
thought given during design about what the most likely adaptations would be
so that the integration phase has sufficient, built-in flexibility.

To be successful the engineering design of systems must embrace the notion
that many decisions are made during the development process. This is not a
controversial position to take. However, adopting the notion that these
decisions should be made via a rational, explicit process is not consistent
with much of the current practice in the engineering of systems. Table 1.3 lists a
sample of the many categories of development decisions. Chapter 13 provides a
method for addressing these decisions. An important philosophical point in
decision making is that decisions have to be made with the best information
available at the time, realizing that the outcomes associated with the decision
remain uncertain when the decision is made. Therefore, distinguishing between
a good decision and a good outcome is important. The material in this book
will also distinguish between the level of detail needed to make decisions in the
engineering of a system and the level of detail needed to ensure proper
implementation of the system’s components and CIs.

In order to accomplish this difficult job of engineering a system, people with
many different specialties must be involved on the systems engineering team.
The stakeholders are central to the success of this effort and need to be
represented on the systems engineering team. Discipline engineers with knowl-
edge of the technologies associated with the system’s concept are needed to
provide the expertise needed for design and integration decisions throughout
development. Discipline engineers not only come from traditional engineering
fields such as electrical, mechanical, and civil but also from the social sciences to
address psychological, informational, physical, and cultural issues. In addition,
systems engineers who model and estimate system-level parameters such as cost
and reliability fall in the category of discipline engineers. Analysts skilled in
modeling and simulation, more and more of which is done on the computer
rather than with scaled-down mock-ups of the system, are also important
members of this team. Engineers skilled in the processes (or methods) of
systems engineering form the nucleus of this collection of skills. These processes
and associated models are the nucleus of this book. Finally, managers that are in
charge of meeting cost and schedule milestones need to be present. These five
disciplines are depicted in the Venn diagram in Figure 1.5. Sidebar 1.2 describes
Joe Shea, who was hired by the National Aeronautics and Space Administra-
tion (NASA) in 1961 to take charge of systems engineering for the Office of
Manned Space Flight.
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TABLE 1.3 Sample of Decisions Made during System Design

Development Phase Examples of Decisions in Systems Engineering

Conceptual Design . Should a conceptual design effort be undertaken?

. Which system concept (or mixture of technologies) should be

the basis of the design?

. Which technology for a given subsystem should be chosen?

. What existing hardware and software can be used?

. Is the envisioned concept technically feasible, based on cost,

schedule and performance requirements?

. Should additional research be conducted before a decision is

made?

Preliminary Design . Should a preliminary design effort be undertaken?

. Which specific physical architecture should be chosen from

several alternatives?

. To which physical resource should a particular function be

allocated?

. Should a prototype be developed? If so, to what level of

reality?

. How should validation and acceptance testing be structured?

Full-scale Design . Should a full-scale deign effort be undertaken?

. Which configuration items should be bought instead of

manufactured?

. Which detailed design should be chosen for a specific

component given that one or more performance requirements

are critical?

Integration and

Qualification

. What is the most cost-effective schedule for implementation

activities?

. What issues should be tested?

. What equipment, people, facilities should be used to test each

issue?

. What models of the system should be developed or adapted to

enhance the effectiveness of integration?

. How much testing should be devoted to each issue?

. What adaptive (fallback testing in case of a failure) testing

should be planned for each issue?

Product Refinement . Should a product improvement be introduced at this time?

. Which technologies should be the basis of the product

improvement?

. What redesign is best to meet some clearly defined deficiency

in the system?

. How should the refinement of existing systems be

implemented given schedule, performance and cost

criteria?
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SIDEBAR 1.2

‘‘It was 1943 when he graduated (from high school), wartime, and Shea
heard about a special Navy program that would send him to college. y
Then the Navy sent him to M.I.T., and after that to the University of
Michigan. y

For the next several years Shea moved back and forth between
Michigan, where he eventually obtained his engineering doctorate, and
Bell Labs. It was an educational odyssey that took him from engineering
mechanics to electrical engineering to theoretical mathematics to physics
to inertial guidance. ‘‘The nouns change hut the verbs remain the same’’
became one of Shea’s sayings as he went from one specialty to another.

Then in 1956 Shea found out how it all fit together. At the age of
twenty-nine, Shea was named systems engineer for the radio guidance
project connected with the Titan I. ‘‘I didn’t know what ‘systems
engineer’ meant,’’ Shea said, but he learned quickly, traveling around
to the subcontractors on the Titan I, becoming a member of the small
fraternity of engineers who were coming of age in this new field. At night
after work they gather at a bar near the plant where they had been
working that day. They didn’t even drink that much, Shea recalled, they
were so busy talking — about testing, grounding, vibrational spectrums,
weights, stability, electrical interfaces, guidance equations, all the myriad
elements of the system that some lucky guy, like a systems engineer, got
to orchestrate.

By 1959 Shea had acquired enough of a reputation within the ballistic
missile fraternity for General Motors to hire him to run the advanced
development operation for its A.C. Sparkplug Division, which was trying

Management

SE
Process

Domain/
Stakeholders

Technology
(Engineering
Disciplines)

Modeling,
Simulation,
Analysis

FIGURE 1.5 Expertise required on the engineering team for a system.
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to wedge its way into the missile business. Shea was in charge of
preparing a proposal for the inertial guidance contract for the Titan II.
After the proposal won, Shea went back to administering the advanced
development office. But a year later, in September 1960, the contract he
had won was six months behind and Shea was called away to rescue it.

Shea began to discover that he had a knack for leading. His was not a
gentle style, but if he was tough on people who fell short, he was generous
and loyal to those who didn’t.y It didn’t make any difference what your
specialty was. Shea’s maxim was that if you understood it, you could
make him understand it — and once he did, you never had to explain it
again. The only problem was keeping up.

It was about this time that Shea discovered the uses of what he would
come to call his ‘‘controlled eccentricity.’’ When he was still at Bell, his
wife had bought him a pair of red socks as a joke. One day in a meeting he
absent mindedly put his feet up on the table, getting some laughs and
loosening up the meeting. So Shea started wearing red socks, not all the
time, but to important meetings. Eventually the socks were accepted as a
good-luck charm to wear to presentations. Even senior management at
General Motors, where putting one’s feet on a desk was discouraged and
wearing red socks was unthinkable, got used to the idea. y

Armed with his red socks and his puns and an emerging sense of how
good he was getting to be at this sort of engineering, Shea set out to
rescue the lagging Titan contract. He moved into the plant, and for five
days a week, all three shifts, he was there, catching catnaps on a cot set up
in his office. It was a pattern he would repeat later, during Apollo. The
reasons were partly motivational — people work harder when they see
the boss working all three shifts. ‘‘But it also lets you find out everything
that’s going on,’’ Shea said. ‘‘Things I’d find out at night, I’d get
corrected during the daytime.’’ Shea began handing out red socks as an
award for good performance. His enthusiasm and energy were infectious.

Shea pulled it off, making up the six months. [Murray and Cox, 1989,
pp. 121–123].

1.3 APPROACHES FOR IMPLEMENTING SYSTEMS ENGINEERING

We have just provided a description of what happens inside the process
associated with the design of an engineered system and are about to describe
several approaches for organizing that process. But let us step back a minute to
look at the bigger picture, as summarized in Figure 1.6. The system that we
have been tasked to design exists in a broader system, called the meta-system.
This meta-system contains other systems and is purposefully pursuing some
objectives. There is likely a sustainment system that is part of this meta-system
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that is providing supplies and support to one or more of the systems that
comprise the meta-system.

Some group has identified a problem with the achievement of the objectives
being attained by the meta-system and has tasked a development system
(organization) to design a system that will replace or upgrade one or more of
the systems in the meta-system. In order to understand how to design this new
or upgraded system, the people in the development system must understand the
meta-system or they will have little chance of success. Understanding the meta-
system includes the interaction between the system to be replaced and other
systems in the meta-system as well as the context or environment in which that
meta-system operates. We will refer many times in this book to the creation of
meta-system (or mission) requirements and an operational concept as ap-
proaches to achieving this understanding of the meta-system.

At some later time, after the meta-system has gone through many changes
for which the development system must be tracking and making adjustments,
the designed system will be deployed and become an operational system within
the changed meta-system first studied. Not only will the context of the meta-
system have changed but many of the systems inside the meta-system will have
changed. In fact, there may well be other development systems working on
some of these other systems in the meta-system, including the sustainment

FIGURE 1.6 Characterizing the broader systems’ design problem (after Martin [2004]).
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system. The introduction of the operational system may in fact introduce new
problems into the meta-system. Such potential problems should be imagined as
part of the development process and avoided or minimized via the design.

A final caution to the reader is that the development system (an organization
of systems engineers and other engineers and experts) must design itself to have
any chance of success. This design of the development system must emphasize
adaptability to the inevitable change going on in the meta-system as described
in Figure 1.6 as well as another meta-system in which the development system
exists.

The Traditional, Top-Down Systems Engineering (TTDSE) process has
evolved from the 1950s. Software engineers have evolved several approaches,
starting with a waterfall process, moving to spiral development and currently
focused on object-oriented design. Object-oriented (OO) software design
gained popularity in the early 1990s shortly after object-oriented programming
languages became available.

1.3.1 TTDSE

TTDSE (described in the overview in Section 1.2 and shown in Figure 1.7) is a
process for systems engineering that begins a thorough analysis of what the
problem is that needs to be solved; this is usually done with an analysis of the
current meta-system (the system of interest and its peers (external systems))
performing one or more missions for the primary stakeholders. The result of
this analysis is a statement of the problem to be solved. Based on this statement
of the problem to be solved, several potential, competing concepts for
implementing the system of interest are defined; this set of concepts should
initially include a very broad range of ideas, some of which are relatively
inexpensive while others are very expensive. Next there will be an analysis of the
competing concepts, resulting in the selection of the most favorable concept for
implementation. Note this analysis could really be many analyses. (This book
does not address the problem definition and evaluation of concepts. This
material is covered by most texts on problem solving for defining the problem
to be solved. See Checkland [1981], Klir [1985], and Warfield [1990]. Decision
analysis (Chapter 13) addresses the evaluation of concepts.)

On the basis of this selection, an operational concept and system-level
requirements are defined for that solution concept. These two products
(operational concept and system-level requirements) are a statement of the
problem being solved. Next, a layered (or onion peeling) iterative process begins
for creating an architecture, deriving requirements, and refining the needed test
system and associated data collection requirements. This layered process can
have as many layers as are needed; the bottom layer addresses the configuration
items (CIs) that the discipline engineers will design. Each layer repeats the same
process (defined in detail in Chapters 6 to 10 of this book). Systems engineers
commonly perform a great deal of analysis and modeling during each layer of
this process; trade studies are often conducted to examine alternate ways to
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proceed or solutions that optimize some objective (e.g., cost, reliability, weight)
while minimizing the impact on all other objectives.

Once the CIs have been designed and delivered for integration, the verifica-
tion, validation, and acceptance testing process begins. Each layer of the
decomposition process is verified against the associated derived requirements.
During the process requirements may be adjusted or the architecture and design
of the system may be modified as needed. At the system level, validation against
the concept of operations and acceptance testing (as defined by the stakeholders)
is conducted. Chapter 11 defines this process. If a positive result is obtained, the
system is deployed and systems engineering continues by analyzing the usage of
the system for needed modification and selecting upgrades that will be imple-
mented in the future. The actual upgrading of the system should follow the same
process as defined by the Vee-like structure in Figure 1.7.

TTDSE is primarily a process for designing the many pieces of a system in
such a way that many different organizations can be tasked to design one or
several pieces and all of the pieces can be integrated easily and effectively to
achieve the desired system. Other references for TTDSE are Blanchard and
Fabrycky [1998], Hatley and Pirbhai [1988], Sage [1992], and Wymore [1993].

1.3.2 The Waterfall Model of Software Engineering

One of the earliest concepts of the software engineering process was called the
‘‘waterfall’’ model by Boehm [1976], but introduced by Royce [1970]. The
waterfall model (Fig. 1.8) is characterized by the sequential evolution of typical
life-cycle phases, allowing iteration only between adjacent phases. The waterfall
model is known and discussed throughout the software and systems engineer-
ing communities and was the basis for Military Standard 2167A for software
development. The major problem with the waterfall process is that iteration
between phases that are widely separated is all too common.

1.3.3 The Spiral Model of Software Engineering

The spiral model (Fig. 1.9), developed in the 1980s [Boehm and Papaccio, 1988]
and then modified several times [Boehm, 1986, 1988], addressed the need to
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shorten the time period between the users’ statement of requirements and the
production of a useful product with which the users could interact. Too many
systems and software implementations were being produced and rejected
because the development life cycle took too long; valid requirements at the
beginning the cycle were no longer valid at the time of delivery. In addition,
new systems were degraded because the vestiges of learning about the system
domain tainted the early designs.

The spiral model has four major processes, starting in the top left of Figure 1.9
and moving clockwise: design, evaluation and risk analysis, development and
testing, and planning with stakeholder interaction and approval. These four
processes are repeated as often as needed. The radial distance to any point on the
spiral is directly proportional to the development cost at that point. The spiral
model views requirements as objects that need to be discovered, thus putting
requirements development in the last of the four phases as part of planning. The
early emphasis is on the identification of objectives, constraints, and alternate
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Operations and
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FIGURE 1.8 Waterfall model.
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designs. These objectives and constraints become the basis for the requirements in
the fourth step. There is also a major emphasis on evaluation and risk analysis as
part of the management activities. This management activity is to identify which
requirements are most important to discover early in order to minimize problems
associated with cost, schedule, and performance. The development effort is
composed of prototyping activities, which provide mock-ups of the software or
system that will enable the stakeholders to define their requirements. This third
step ends with evaluation and testing. The fourth step involves documenting
requirements gleaned from the intense prototyping interaction with the users
during the current trip around the spiral and planning the next trip around the
spiral. The number of iterations around the spiral is variable and defined by the
software or systems engineers. The final cycle integrates the stakeholders’ needs
into a tested and operational product.

Shortly after the spiral model was introduced, various authors [e.g., Boar,
1984] spoke of rapid prototyping as a development process. The rapid
prototyping process is meant to produce early, partially operational proto-
types. The use of these operational prototypes by stakeholders generates new
and improved requirements, as well as provides the stakeholders with increased
functionality via early releases of the system. Thus one could view rapid
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prototyping through the spiral process model in which the prototypes were
partially operational.

1.3.4 Object-Oriented Design

OO design followed from object-oriented programming in the 1970s. OO
design is a bottom-up process that begins by defining a set of objects that
need to be part of the system in order to achieve the system-level functionality
desired. Objects are thought to be basic building blocks that can perform
functions (methods) and contain information. Key properties of OO design are
inheritance and information hiding. Inheritance means that a general object
can be specialized by adding special characteristics; the specialized object will
‘‘inherit’’ all of the properties (methods and data) not overridden by the
specialization. Information hiding means that an object does not need to know
how another project is producing the information being sent to it, just what
that information is. Systems engineers had referred to this idea as modularity
for years. Besides being the basic building blocks of a system, objects are seen to
promote reusability, testability, and maintainability. For more information see
Ambler [1997].

1.4 MODELING APPROACHES FOR SYSTEMS ENGINEERING

Modeling techniques for designing systems were created as early as the early
1950s. These techniques addressed the connection of system components, the
decomposition of system functions, and dynamic behavior of the system. The
Unified Modeling Language (UML) was created by several of the OO gurus
who had developed their own approaches to modeling and decided an
integrated approach was needed. The US Department of Defense (DoD)
Architecture Framework (DoDAF) was developed within the Command,
Control, Communications, Computers, Intelligence, Surveillance and Recon-
naissance (C4ISR) community and then extended to all of DoD. The Object
Management Group’s Systems Modeling Language (OMG SysMLt) was
defined using UML 2.0 and moves the TTDSE process towards a goal desired
by many of a model-based version of systems engineering.

1.4.1 Modeling Approaches for TTDSE

The first modeling approach of TTDSE was the block diagram. Each block
represented a system component. Lines between the blocks represented the
exchange of information, energy, or physical entities. Next, N-squared (N2)
diagrams were created to capture a high level view of the flow of information,
energy and physical entities among the components at a given level of
abstraction for the system (see Lano [1990]). Next, the N2 diagram was
transformed to a functional perspective, the components being exchanged for
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major system functions. Function flow block diagrams were then developed to
capture the dynamics of the system’s behavior. Meanwhile, software designers
were creating data flow diagrams to model software systems. Manufacturing
designers were creating the Structured Analysis and Design Technique (SADT)
which was later transformed into Integrated Computer-Aided Manufacturing
(ICAM) Definition or IDEF0. Data flow diagrams, N2 charts, and IDEF0
diagrams all capture the same basic time-lapsed flow of information, energy,
and physical items among functions. State transition diagrams (or state
machines) were developed and enhanced by several engineering disciplines to
capture dynamic behavior; these techniques have been applied for some
TTDSE efforts. Finally, Petri nets have been developed to model the dynamics
of systems. Many TTDSE practitioners use some subset of these modeling
techniques. All of these techniques are covered in later chapters of this book.

1.4.2 UML

UML is a specification language for modeling objects that is approved by the
Object Manage Group. UML 2 was adopted in 2004 and is often described as a
graphical modeling language. Critical ideas underlying object-oriented model-
ing are multiple views at varying levels of abstraction, object, class, inheritance,
and extensibility. All useful approaches to systems and software engineering
use modeling approaches that enable modeling a system at multiple levels of
abstraction. An object is a basic building block of OO programming that can
receive messages, process data, and then send messages to other objects. An
object can be viewed as a component or actor that has the resources to receive,
process, and send data. A class in object-oriented terminology is a grouping of
related variables or functions; this is a key to addressing a system at multiple
levels of abstraction. Inheritance (now often called generalization) is the
process of creating instances of a class based upon specializations of class
parameters; this is often the key to software reuse. Extensibility is a way of
extending the UML modeling language. For example, stereotypes permit
extending elements of UML to a specific problem domain.

UML 2.0 contains 13 different diagram categories that can be aggregated
into three diagram types; see Table 1.4. Structure diagrams address those issues
or elements that are part of the system being modeled. Concepts for structure
diagrams include actor, attribute, class, component, interface, object, and
package. Behavior diagrams examine the activities that must happen in the
system being modeled. Behavior diagram concepts include activity, event,
message, method, operation, state, and use case. Interaction diagrams (con-
sidered by some to be a subset of behavior diagrams) address the flow of data
and control among the elements in the system being modeled. Concepts for
interaction diagrams include aggregation, association, composition, depends,
and generalization (or inheritance).

Some important ideas in UML are the use case diagram, which is a high level
view of the use cases; the class diagram, which describes the relationship
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between structural elements of the system and the external domain; and a set of
object diagrams that are more definitive than the class diagram about the
structural elements of the system and their relationships over time. Sequence
diagrams are a representation of scenarios or use cases, something that traces
back decades. The key design elements are the software objects.

The use case diagram and sequence diagrams define the requirements in a
qualitative way; there are seldom any quantitative performance requirements
and there are no non-functional requirements. Similarly, there is no top level
functional analysis; each object contains operations that can be performed and
data that can be used for those operations. UML is primarily a graphical
modeling language for creating abstractions or generalizations so that the
resulting software system will be more flexible and adaptable.

This UML process is more of a bottom-up design process in which the
components of the software are derived from more specific software objects
that are designed to be adapted from existing code or coded from scratch.
Useful references on UML are Ambler [2004] and Eriksson and Penker [1998].
Software engineers believe the appropriate model of their design is the code
itself so very little modeling and analysis is performed during this process.

1.4.3 DoDAF

The DoDAF provides three integrated views needed for a system architecture;
each of the three views is composed of subviews using graphical, tabular, and
textual descriptions. A data model is defined that defines entities and relation-
ships among the data elements that are part of these integrated views. This
effort began in 1995, produced version 1 and 2 of the C4ISR Architectural
Framework in 1996 and 1997 (respectively), and yielded version 1 of the
DoDAF in 2003. The Ministry of Defence (MOD) of the United Kingdom and
the North Atlantic Treaty Organization (NATO) have adopted similar archi-
tecture frameworks: MODAF and NAF, respectively.

The three top-level views are operational, systems, and technical. The
operational view addresses the organizational and human context in which
the system will be utilized. The systems view switches to the physical and

TABLE 1.4 Diagram Types for UML 2.0

Structure Diagrams Behavior Diagrams Interaction Diagrams

Class Activity

Component State Machine Collaboration–Communication

Composite structure Use case Interaction overview

Deployment Sequence diagram

Object Timing

Package
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functional world, starting outside the system and moving inside the system. The
technical view addresses standards and conventions. Each of three views has a
number of products, which are subviews for that higher level view that capture
a subset of the entities and relationships relevant to the view. It is important to
conceive of the DoDAF as containing a central database of all the entities and
relationships. Each product of each view is then a representation of a subset of
that central database. The developers of the DoDAF strove to create a
structure that would work for any type of system. Unfortunately, that
produced a framework that is too complex and extensive for any specific
system. References include Levis and Wagenhals [2000] and Dam [2006].

1.4.4 SysML

There has been a push among some systems engineers for an approach to
systems engineering that is less text-based and therefore more model-based.
The arguments against text-based processing are its inefficiencies for finding
errors and stress points, testing both performance and timing behavior in one
or more competing designs, and providing actionable information for trade
studies and design reviews. Ultimately, there is a need to examine performance
issues and conduct tests before the first prototype is completed. Software
engineers, for the most part, seem to have no problem with waiting until the
code is written to find out that there are major timing and latency problems.
Hardware has traditionally taken much longer to redesign so systems engineers
prefer to get the bad news early. This emphasis has led to model-based systems
engineering efforts, the most visible of which is SysML.

SysML is a visual modeling language that was adapted from UML 2.0 and
enhances the traditional top-down systems engineering process. SysML extends
the modeling language of traditional, top-down systems engineering; this
extension should make the traditional approach to systems engineering less
prone to errors and more efficiently implemented. Table 1.5 shows which UML
2.0 diagrams have been dropped (strikethrough), adopted (new), or modified
(modified) for SysML. The first thing to notice in Table 1.5 is that there is a new
column for requirements with a single diagram type. The column with the most
changes is the first column for structure diagrams. Here the class diagram has
been renamed to capture two different concepts associated with the physical
architecture: block definition and internal block connectivity of parts. A new
diagram, the parametric diagram, was created for modeling performance. The
package diagram was kept as is from UML 2.0. Within the category of
behavior diagrams, the activity diagram has been modified while the state
machine and use case diagrams have been kept as is. Finally, most of the
interaction diagrams have been dropped; the only remaining interaction
diagram is the sequence diagram. The implication of these changes is that
SysML places much greater emphasis on behavior compared to interaction
than UML does.

These diagram concepts will be introduced in later chapters of this book.
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The real challenge for SysML (and every other model-based approach) is to
include easily understood descriptions of the system design and the associated
requirements for non-engineering stakeholders. References for SysML are
Bock [2006] and Friedenthal et al. [2008].

1.5 INTRODUCING THE CONCEPT OF ARCHITECTURES

Levis [1993] has defined an analytical systems engineering process (for the left
side of the Vee process) that begins with the system’s operational concept and
includes the development of three separate architectures (functional, physical,
and allocated) as part of this decomposition. The functional (or logical)
architecture defines what the system must do (i.e., the system’s functions and
the data that flows between them). The physical architecture represents the
partitioning of physical resources available to perform the system’s functions.
The allocated architecture (see Fig. 1.10) is the mapping of functions to
resources in a manner that is suitable for discrete-event simulation of the
system’s functions and is analogous to Alford’s [1985] approach with behavior
diagrams. Figure 1.10 suggests that the functional and physical architectures
are developed independently of each other and then combined to form the
allocated architecture. This suggestion is inaccurate; the two architectures are
developed in parallel but with close interaction to ensure that the allocated
architecture is meaningful when the functional and physical architectures are
combined. Chapters 7, 8, and 9 address these three architectures and their
development in detail and discuss the interactive development of them.

Critical to this multiple-architecture approach is the balancing of informa-
tion among them. Three separate models must be developed to be complete:
data, process, and behavior models. The functional architecture includes the
first two (data and process) models and the initial behavioral model, as
discussed in Chapter 7. The behavioral model should be finished and exercised
as part of the allocated architecture; see Chapter 9. Each of these three models
must be integrated to define the three architectures properly.

TABLE 1.5 Diagram Types for SysML

Structure Diagrams Behavior Diagrams Interaction
Diagrams

Requirement
(new)

Class – renamed to be

Block Definition

Internal Block

Activity (modified) Collaboration

Communication

Interaction

overview

Sequence

diagram

Timing

Requirement

(new)State Machine

Component

Composite structure

Deployment

Object
Package

Use case

Parametric Design (new)
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Figure 1.11 shows an organization chart representation of a physical
architecture of the F-22 fighter. Note that this physical architecture includes
more than the F-22; the training and support systems are included as well. For
a life-cycle balanced (concurrent engineering) definition of the F-22, the
physical architecture should have been decomposed, as shown in Figure 1.12.

Graphical techniques, such as Figures 1.11 and 1.12, are invaluable because
they serve as an excellent communication medium; communication is one of the
most important functions of systems engineers. A physical architecture
subdivides the problem into manageable parts, permitting and encouraging
an iterative process and providing excellent documentation.

Figure 1.13 depicts the systems engineering design process in terms of
requirements and architectures in a similar manner as the waterfall process, a

Operational Concept

Functional
Architecture

Physical
Architecture

Allocated Architecture

FIGURE 1.10 Architecture development in the engineering of a system (after Levis
[1993]).
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FIGURE 1.11 Sample physical architecture (F-22 Type A Spec) (from Reed [1993]).
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sequential decomposition of requirements and the allocated architecture
(functions mapped to physical resources) by moving from left to right and
top to bottom. New students often ask the question, ‘‘What is the difference
between a requirement and a specification?’’ A requirement is one of many
statements that constrain or guide the design of the system in such a way that
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FIGURE 1.13 Design decomposition of architectures and specs.

Design & Integration
System

XYZ Weapon System

Operational
System

Training
System

Retirement
System

Avionics
Systems

Utilities &
Subsystems

Cockpit
Systems

Vehicle
Management

System

Electronic
Warfare

Navigation,
Identification

Processing

Controls
&

Displays

Stores
Management

Inertial
Reference

System
Radar

Manufacturing
System

Deployment
System

Refinement
System
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the system will be useful to one or more of its stakeholders. A specification is a
collection of requirements that completely define the constraints and perfor-
mance requirements for a specific physical entity that is part of the system. The
systems engineering design process involves defining all of the system’s
requirements and then bundling them by segmenting and refining into a
specification for each of the system’s segments, elements, components, and CIs.

1.6 REQUIREMENTS

Requirements for a system address the needs and objectives of the stakeholders.
Just as there is a hierarchy associated with the physical components of the
system, there is a hierarchy of requirements. At the top of the hierarchy are
mission requirements, which relate to needs associated with missions or
activities that are important to one or more groups of stakeholders. These
mission requirements typically involve the interaction of several systems, one or
more of which include individuals or groups of people and are therefore stated
in the context of the operation of the system in question with these other
systems, called the meta-system or supersystem or system of systems. Mission
requirements represent stakeholder preferences for the increased ability to
perform their activities with the introduction of the system in question at a
lower cost arid in a faster time than the existing capability.

Stakeholders’ requirements are statements by the stakeholders about the
system’s capabilities that define the constraints and performance parameters
within which the system is to be designed. Systems engineers take these high-
level, stakeholders’ requirements and derive a consistent set of more detailed
engineering statements of requirements as the design progresses. For the
purposes of this introduction requirements are divided into constraints and
performance indices. Some constraints are simple, for example, the system must
be painted a specific shade of green. Other constraints are the minimally
acceptable level associated with a performance requirement. A performance
requirement defines a desired direction of performance associated with an
objective of the stakeholders for the system. For an elevator system (which is
used throughout this book), a performance requirement might be to minimize
passengers’ waiting time. For any performance requirement there must also be
a minimum acceptable performance constraint or threshold and a design goal
associated with the index; this threshold dictates that no matter how wonderful
a design’s performance is on other objectives, performance below this threshold
on this requirement makes the design unacceptable. This is a very strong
statement of needs, and so minimal acceptable thresholds must be established
very carefully.

Every major organization, governmental or commercial, has established its
own guidelines for system or product development. The names and organiza-
tions of the several requirements documents vary somewhat but cover similar
material. Table 1.6 summarizes the common major requirements documents

30 INTRODUCTION TO SYSTEMS ENGINEERING



TABLE 1.6 Typical Requirements Documents

Document Titles Document Contents

Problem Situation or Mission

Element Need Statement, and

Systems Engineering

Management Plan (SEMP)

. Definition of stakeholders and their relationships

. Stakeholders’ description of the problem and its

context

. Description of the current system

. Definition of mission requirements

. Definition of the systems engineering

management structure and support tools for

developing the system

Stakeholders’ Need or

Stakeholders’ Requirements

Document (StkhldrsRD)

. Definition of the problem needing solution by

the system (including the context and external

systems with which the system must interact)

. Definition of the operational concept on which

the system will be based

. Creation of the structure for defining

requirements

. Description of the requirements in the

stakeholders’ language in great breadth but little

depth

. Trace of every requirement to a recorded

statement or opinion of the stakeholders

. Description of trade-offs between performance

requirements, including cost and operational

effectiveness

System Requirements Document

(SysRD)

. Restatement of the operational concept on which

the system will be based

. Definition of the external systems in engineering

terms

. Restatement of the operational requirements in

engineering language

. Trace of every requirement to the previous

document

. Justification of engineering version of the

requirements in terms of analyses, expert

opinions, stakeholder meetings

. Description of test plan for each requirement

System Requirements Validation

Document

. Documents analyses to show that the

requirements in the SysRD are consistent,

complete and correct, to the degree possible

. Demonstrates that there is at least one feasible

solution to the design problem as defined in the

SysRD
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that are produced during the beginning of the design phase. The Problem
Statement (or Mission Element Need Statement in the military) gets the process
rolling and identifies a problem for which a solution in the form of a system
(new or improved) is needed. This document supports and documents a
decision-making process to start a system development effort. The Systems
Engineering Management Plan (SEMP) then defines the systems engineering
development system.

Stakeholders’ requirements are found in the Stakeholders’ Requirements
Document (StkhldrsRD). This document is produced with or by the stake-
holders and is written in their language(s). Systems engineers need to be
involved in a substantial way in this activity, although not all systems engineers
share this view. Experience has shown that if this document is left to the
stakeholders, the document will be very incomplete. The systems engineers can
play a major facilitation role among the various groups of stakeholders as well
as bring an assortment of tools to bear on a difficult problem, the creation of
this document. These tools (a major focus of this book) ensure a greater
completeness and consistency. The methods and tools presented here are
equally applicable in the rest of the systems engineering process.

The systems engineer then begins restating and ‘‘deriving’’ requirements in
engineering terms, called system requirements, so that the systems engineering
design problem can be solved. This derivation of the StkhldrsRD becomes the
Systems Requirements Document (SysRD).

It is critical that the requirements in all of these documents address ‘‘what’’
and ‘‘how well’’ the system must perform certain tasks. Requirements do not
provide solutions but rather define the problem to be solved.

The Systems Requirements Validation Document defines requirements
associated with the verification, validation, and acceptance of the system
during integration. These requirements are high-level requirements that state
the needs of the stakeholders for qualifying the design of the system. These
requirements form the basis of the problem definition for creating the
qualification system that will be used during integration. In addition to defining
the high-level qualification requirements, this document should demonstrate
that if the systems engineering process continues, an acceptable solution is
possible. Unfortunately, this ‘‘existence proof’’ of a feasible solution is seldom
produced in practice, leading to a major downfall of many systems engineering
efforts. Namely, the realization many months (or years) later that not all of the
requirements can be satisfied, and the stakeholders must relax the requirements
that the engineers promised could be met.

Systems engineers have always desired to demonstrate the importance of
requirements and getting the requirements right, for example, complete,
consistent, correct. In the mid-1970s three organizations (GTE [Daly, 1977],
IBM [Fagan, 1974], and TRW [Boehm, 1976]) conducted independent studies
of software projects. These studies addressed the relative cost to fix a problem
based upon where in the system cycle the problem was found. Boehm [1981]
and Davis [1993, p. 25] compared the results of the three studies (see the first
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row of Table 1.7). The costs have been normalized so that the relative cost to
repair an average problem found in the coding phase is 10 units. These results
stood for twenty years. The next eight rows of Table 1.7 show results from
recent studies, summarized in Haskins et al. [2004]. As can be seen, the results
have held up well. Getting the requirements right is a very difficult task, and
therefore a task that is fraught with errors. An error that is caught during
requirements development can be fixed for about 10% of the cost associated
with an error caught during coding. Errors caught during maintenance in the
operation of the system cost about 20 times that of an error caught during
coding and 200 times the cost of an error caught during requirements
development. Unfortunately, many of these errors are not caught until late
in the life cycle, causing the expenditure of significant money.

1.7 SYSTEM’S LIFE CYCLE

There are many ways to define a system’s life cycle. However, the common
phases associated with a system are development, manufacturing, deployment,
training, operations and maintenance, refinement, and retirement. Systems
engineers have activities in all of these phases, but the primary phases of
concern to the systems engineers are development and refinement. Stakeholders
use and maintain the system in the operation and maintenance phase. A
common mistake is to envision these phases as distinct and separate in time. In
fact, it is common (though not required) to have four distinct periods:
development only, pre-initial operational capability development and testing,
operational use and refinement, and retirement. All but the first period have
multiple phases occurring in parallel, as shown in Figures 1.14 to 1.17.

TABLE 1.7 Comparison of the Relative Cost to Fix Software in Various Life Cycle
Phases

Source Phase Requirements Issue Found

Requirements Design Code Test

Boehm (1981) 1 5 10 50

Hoffman (2001) 1 3 5 37

Cigital (2003) 1 3 7 51

Rothman (2000) 5 33 75

Rothman Case B (2000) 10 40

Rothman-Case C 10 40

Rothman (2002) 1 20 45 250

Pavlina (2003) 1 10 100 1000

McGibbon (2003) 5 50

Mean 1 7.3 25.6 177

Median 1 5 10 50.5
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In the development period the systems engineering team receives resources
from the bill payer and begins the development of the system. This period
involves heavy interaction with the stakeholders as the requirements process is
begun, and the architectures and models for simulation and analysis are
initiated. However, this period ends when the manufacturing, deployment,
and training teams begin preparation for the system.

Development, manufacturing, deployment, and training activities are
pursued concurrently during the second period, after concurrent design
occurred in the first period. Specifications flow from the development process
to the other three. Manufactured, deployed, and training equipment flow to
development for testing. Interaction continues with the stakeholders as final
testing occurs, leading to the acceptance of the system by the stakeholders.
This period ends just as the first operational systems are being delivered to
the users.

The third period begins as users receive the first operational items. This
period also contains continued production of the system, as well as deployment
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FIGURE 1.18 Cycle model of systems Engineering (after Wenzel et al. [1997]).
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of and training on the system. Refinement of the design begins here. Manu-
factured items are sent to the deployment system, which delivers them to users.
One of the most difficult problems to solve adequately from the perspective of
the users is how to deploy upgraded items while the existing items are being
phased out. Training items are sent to the training system (if needed), which
produces trained operators and maintainers (O/M). Users and maintainers
provide feedback about what they like and do not like, which is used during the
refinement phase to make changes to the design, leading to upgrades of the
system.

Finally, the bill payer of the system decides when the useful life of the system
is over, beginning the initiation of the last period. The retirement phase may
take considerable time. As the system is removed from service, the deployment
system is used to transport the system from users to retirers. Note that this
retirement process can be very orderly, as is the case with military systems.
Alternatively, the retirement can be user-driven, as is the case with most
commercial products such as cars and computers.

Wenzel et al. [1997] describe the cycle model (see Fig. 1.18) which attempts
to capture many of the issues discussed in this chapter. The cycle model stresses
five cycles that include the elements of design and integration that have already
been discussed as well as the management aspects of systems engineering.
Table 1.8 describes these cycles in some detail. The first cycle satisfies the key
elements of stakeholder satisfaction, beginning with the determination of the
need and ending with the delivery of the system to satisfy those needs. The
development functions on this first cycle include requirements development
and creation of the system design. The second cycle (verification) addresses the
modeling, prototyping, and testing that must be part of the development
process; these cycles within the verification cycle enable the requirements and
the solution to be refined and verified. The third cycle enables management to
insert technologies and external resources into both the development and the
manufacturing processes to improve the chances of stakeholder satisfaction,

TABLE 1.8 The Cycles of the Cycle Model

Design and Integration Cycles Management Cycles

1. Core Cycle: Realization of stakeholder

needs, followed by requirements

development, design, manufacturing

and product delivery.

3. Technologies and External Resources

Cycle: Insertion of the appropriate

technologies and resources into the

systems engineering process.

2. Verification Cycle: Analysis,

simulation, prototyping, integration

and testing.

4. Controlling Cycle: Configuration

management of the design process and

multiple product releases and updates.

5. Strategic Check Cycle: Management

assessment and approval of product

development.
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subject to the constraints faced by management. The controlling cycle provides
configuration management throughout development and enables product
releases and updates throughout the system’s life cycle. Finally, top-level
management and stakeholder review and approval are included in the final
cycle.

1.8 DESIGN AND INTEGRATION PROCESS

Recall the design and integration Vee as identified by Forsberg and Mooz
[1992]. The Vee model defines five major functions for the design or decom-
position phase, as shown in Figure 1.19. Note that these functions must be
repeated for each stage of the decomposition process. A modification of the
more detailed design functions, as put forth by Forsberg and Mooz [1992], is
shown in Figure 1.20. This figure also shows how the Forsberg and Mooz
[1992] functions are grouped to be comparable to the five analytical systems
engineering functions.

The five detailed functions that comprise the design phase must address up
to five different dimensions of data; see van den Hamer and Lepoeter [1996]: (1)
system variants when the system is a member of a product family (e.g., personal
computers, automobiles); (2) system versions when the system is a product that
evolves over time (e.g., operating systems); (3) views of the system (e.g., data,
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FIGURE 1.19 Five major functions of the engineering design of a system.
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process); (4) hierarchical detail or onion peels (e.g., system, subsystem); and (5)
status of the data (e.g., stable and approved versus tentative or draft).

For many systems five modeling views [Karangelen and Hoang, 1994] are
critical for capturing the totality of a system: environment, data or informa-
tion, process, behavior, and implementation. The environmental view captures
the system boundary, the operational concept, and the objectives of the
system’s performance. The data or information view addresses the relation-
ships among the data elements that cross the system’s boundary and those
that are internal to the system; this view can be critical for information and
software systems but incidental to mechanical systems. The process view
examines the functionality of the system and is used to create the functional
architecture. The behavior view addresses the control structures in which the
system’s functions are embedded. The implementation view examines the
marriage of the physical architecture with the process and behavior views;
the allocated architecture represents the implementation view. In later
chapters these views and the tools that are used to execute them will be
addressed.

Figure 1.21 shows a modification of the Forsberg and Mooz [1992]
integration functions. Most of this activity is dedicated to the verification
that the integrated components, elements, and segments meet the derived
requirements (specifications) of the systems engineering process. The final
iteration of the integration functions is devoted to the validation of the system:
Is this system the system the stakeholders wanted? Will they accept the system?

Verification Requirements and
Constraints from Approved Baseline

Inspect and test
to verification

requirements to
prove readiness for

integration with
next assembly

CI to
be verified

Deficiencies

Integrate with
next CI and

repeat
verification

process

Correctable
Identify and

fix correctable
deficiencies

Document
uncorrectable
deficiencies

For uncorrectable
deficiencies, confirm

no impact to
integration and get
deviation approval

from buyer

Modify approved
technical baseline

to incorporate
deviation

Redesign

Yes

No

No

Yes

No

Yes

FIGURE 1.21 Functions of the systems engineering integration process.
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The answer to these questions are substantially determined by the extent to
which the systems engineers have kept the stakeholders involved throughout
the process. The greater the involvement, the more the stakeholders understand
what trade offs were made and why.

There are four primary methods for testing the system to complete the
verification and validation process: instrumented test using calibrated
equipment, analysis and simulation using equations and computers, demon-
stration or functional test using human judgment, and examination of
documentation using human judgment. As integration moves from CIs and
approaches the system level, human judgment must be relied upon more and
more because the cost of instrumented testing on the system as a whole is
prohibitive.

1.9 TYPES OF SYSTEMS

There are many possible ways to categorize systems:

natural vs. man-made

closed vs. open

static vs. dynamic

simple vs. complex

reactive vs. nonreactive

precedented vs. unprecedented

safety-critical vs. not safety-critical

high reliability vs. not high reliability

high precision vs. not high precision

human-centric vs. nonhuman

high durability vs. not high durability

Yet the process described in this book should work for all ‘‘man-made’’
systems, with some tailoring. Clearly, a great deal more engineering and
systems engineering is required for an unprecedented system (the Shuttle)
than for a precedented one (new automobile).

Magee and de Weck [2004] propose a two-dimensional classification
structure of systems that was derived from the work of several other authors.
The two dimensions include the character (energy, matter, etc.) of the major
output of the system as well as the type of operation or process being employed
to produce this major output. The major outputs of Magee and de Weck were
broadened to include:

Matter (M): physical objects, including organisms that exist unconditionally

Energy (E): stored work that can be used to power a process in the future
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Information (I): anything that can be considered an informational object

Value (Monetary) (V): monetary and intrinsic value object used for exchange

Magee and de Weck [2004] also broadened the list of operands or process
manipulators to include:

Transformation Systems: transform objects into new objects

Distribution Systems: provide transportation, i.e., change the location of
objects

Storage Systems: act as buffers in the network and hold/house objects over
time

Market Systems: allow for the exchange of objects mainly via the value layer

Control Systems: seek to drive objects from some actual state to a desired state

Table 1.9 provides an example for each of the 20 combinations in the Magee
and de Weck structure.

1.10 THE VALUE OF SYSTEMS ENGINEERING

There is very little empirical data about the value being added by systems (and
software) engineering. Cook [2000] paints a very bleak picture (Table 1.10).
True success is achieved only 20% of the time; complete failure occurs 30–40%

TABLE 1.9 System Classification by Magee and de Weck (2004)

Major Process
of Operand

Major Output

Matter Energy Information Value

Transform or

Process

Manufacturing

Plant

Power Plant Computer Chip Mint

Transport or

Distribute

Package

Delivery

Company

Power Grid

System

Telecommunication

Network

Banking

Network

Store or House Dam Dam Public Library Bank

Exchange or

Trade

Internet

Auction

Company

Energy

Market

News Agency Stock

Trading

Market

Control or

Regulate

Health Care

Company

Energy

Agency

International

Standards

Organization

Mondtary

Regualtor
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of the time. Honour [2006] provides a very tentative summary of a few, macro-
level metrics:

. Better technical leadership correlates to program success

. Better/more systems engineering correlates to shorter schedules by 40% or
more, even in the face of greater complexity

. Better/more systems engineering correlates to lower development costs by
30% or more

. Optimum level of systems engineering is about 15% of a total develop-
ment program

. Programs typically operate at about 6% systems engineering

Significantly more research is required at both the macro and micro levels of
the impact of good versus bad systems engineering on cost, schedule, and
performance across the system’s life cycle. Note when there are no systems
engineers assigned to a project, systems engineering is still being done, albeit
poorly.

How can systems engineering add value to the development, fielding, and
upgrade of a system? First, seeking the definition of the right problem to solve
and then seeking the right solution to that problem requires both a systematic
and creative process. The type of process that has proven successful at
optimizing profits in manufacturing would be the opposite end of the spectrum
from that needed for systems engineering. In manufacturing the product is well-
defined and the process is focused on refining this product to improve its
quality and reduce its cost, both of which are very measurable. In systems
engineering we are searching for a definition of the problem and an appropriate
solution, little of which is easily measured. Adding to the complexities of this
environment are multiple segments of the stakeholders (several types of users,
maintainers, suppliers, and billpayers, as well as potential victims) having very
different ideas of the problem and the preferred solution. In addition, there are

TABLE 1.10 Summary of Systems and Software Engineering Success and Failure

U.K. Ministry of Defence U.K. Civil information
Technology

U.S. Civil Information
Technology

Top 25 programs slipped

35–40 mo. on average

10–20% met success

criteria

16% project success

10% of projects missed key

technical requirements

40–50% late, over-budget,

or did not meet technical

goals

53% project challenged

40% failed or were

abandoned

31% project cancelled
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various disciplines of engineers vying to provide the solution; the best solution
often involves some integration across the solution space defined by the
engineering disciplines. Systems engineers typically resolve the issues of con-
flicting desires among stakeholders and competing designs among engineering
disciplines through trade studies. Central to these trade studies are the
objectives (conflicting though they may be) of the stakeholders and alternate
design solutions nominated by the members of the systems engineering team.

A second contribution made by systems engineers is to serve as a commu-
nication interface among the various segments of stakeholders, the various
disciplines of engineers, and between the stakeholders and engineers. This
interface task includes defining an appropriate language for all to use (at least
within the confines of this project) so that understanding can happen and
agreement can be achieved. While this contribution seems almost trivial, the
value added here can be huge.

Show stoppers are those issues in the definitions of the problem and solution,
which if not resolved could dramatically end the project or cause an inoppor-
tune failure in the future. Examples are the incorrect shape of the primary
mirror of the Hubble telescope (case study at the end of this chapter),
insufficient ‘‘error checking’’ software in the Ariane 5 launch system (case
study at the end of Chapter 11), and the insufficient requirements for the Air
Bag Safety Restraint system (case study at the end of Chapter 6) that would
have saved many lives. Part of the value of systems engineering is finding and
fixing these show stopper issues before they cause problems. Almost any testing
of the primary mirror of the Hubble telescope would have found a problem.
Determining the potential for buffer overflows of unprotected (error checked)
data fields on Ariane 5 could have been easily determined by examining the new
trajectories planned for Ariane 5. Imagining the devastation of air bags on
small children during slow speed accidents that would not otherwise be life
threatening is part of what systems engineering is all about.

It is well known in the systems and software engineering literature [Boehm,
1981; Haskins et al., 2004] that the earlier one finds a flaw in the design the less
money it takes to fix the error; see Table 1.7. Finding and fixing errors in the
design when the design is quite abstract, incomplete and in flux is the fourth
element of value adding associated with systems engineering. A key part of this
value-adding element is setting up measurement processes and feedback-
control loops so that progress can be checked and determined to be in or out
of bounds so that changes can be made quickly and cost-effectively.

Risk reduction is the final way in which systems engineers add value. Risk
issues are those characteristics of design alternatives that produce great
uncertainty about whether a specific solution can meet defined levels of
performance within the objectives hierarchy of the stakeholders. High risk
issues involve substantial uncertainty that a minimally acceptable level of
performance will not be achieved. Moderate risk issues may have less
uncertainty of meeting the minimally acceptable performance level or greater
uncertainty of attaining a desired level of performance above the minimum
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acceptable. Systems engineers are supposed to identify these high and moderate
risk issues and develop risk mitigation design alternatives. For example the
Hubble telescope team decided to have a second primary mirror built by a
subcontractor in case the prime contractor’s primary mirror was flawed.
Unfortunately, they did not require even a minimum amount of testing of
the prime contractor’s primary mirror.

1.11 SUMMARY

Engineering involves the practice of applying scientific theories to the develop-
ment, production, deployment, training, operation and maintenance, refine-
ment, and retirement of a system or product and its parts. The engineering
discipline that addresses the creation of a system that meets the needs of defined
stakeholders is systems engineering. The engineering of a system involves both
the design of the system’s components and configuration items (CIs) and the
integration of those CIs and components into a qualified system acceptable to
the stakeholders across the life cycle of the system.

The Vee model of the engineering of a system defines the design and
integration processes of TTDSE and form the basis for this book. These
processes are iterative. Design starts as a top-down process and is analogous to
peeling an onion to uncover the specifications associated with increasingly
detailed components of the system. However, the trade offs and decisions
associated with the design process are so complex and intertwined that there is
significant movement between low-level and high-level design issues. The key to
successful design is the isolation of design decisions using sound engineering
principles so that this movement between low- and high-level design issues is
consistent with the needs of the development process. There are logical
arguments for decreasing development costs by spending the money to conduct
a reasonable, systematic engineering effort of the total system.

Multiple types of architectures are introduced to differentiate between what
the system does (its functions) and what the system is (its resources) and how
the functions are allocated to the resources to enhance the cost-effectiveness
of the system in the eyes of the stakeholders. The functional and physical
architectures are developed in parallel to enhance the integration of them into
the allocated architecture.

Requirements are used to define the design problem being solved at various
levels of detail. Mission requirements define the problem in terms most
meaningful to the stakeholders, terms that relate to enabling the stakeholders
to accomplish tasks better, faster, and cheaper. Stakeholders’ requirements are
the next level of detail that constrain specific characteristics of the system so as
to achieve the mission requirements. Derived requirements relating to the
system and specific components are even more detailed constraints upon the
system. In addition to the requirements related to the system, qualification

1.11 SUMMARY 45



system requirements must be developed to address the verification, validation,
and acceptance of the system during integration.

The integration process receives less attention than the design process and is
often viewed as the yin (weaker, passive side) of development, design being the
yang (stronger, active side). However, integration cannot be passive after an
active design process. Rather, design and integration must proceed in harmony;
integration, if done well, actually improves as well as checks the design process.

There are at least five ways that good systems engineering adds value. First,
defining the problem clearly and well and then finding a good solution that
balances the needs of varying segments of stakeholders and the multiple
engineering disciplines. Second, systems engineers serve as a communication
interface among stakeholders and engineers. Finding showstoppers that are
present in the design and getting them fixed is the third value adding element.
Finding design errors early when these errors are still relatively cheap to fix is
the fourth. Fifth, systems engineers help identify high risk elements of the
design and develop risk mitigation strategies.

CASE STUDY: HUBBLE TELESCOPE TESTING DECISIONS

Lyman Spitzer of Princeton University (1946) suggested that a telescope
in space would eliminate the atmospheric effects that blurred images seen
on Earth. The National Academy of Sciences proposed launching a
telescope into space in 1972. NASA began the Hubble Space Telescope in
1977. After many project mishaps, the Hubble was ready to be launched
in 1986. However, the explosion of the shuttle Challenger delayed the
launch by 4 years. In April of 1990 the Hubble was launched; on May 20
the moment of truth arrived. At first the scientists were thrilled with the
data that was arriving from space; after further work though the scientists
noticed a spherical aberration. The Hubble was providing a resolution of
three times that available with telescopes on the ground, but the
originating requirement for Hubble had been ten times Earth-based
telescopes. In June 1993 the shuttle Endeavor carried a repair team to
the hobbled Hubble. The astronauts spent three days of painstaking
efforts to install a corrective ‘‘contact lens,’’ replace the original Wide-
Field and Planetary Camera, and replace the original solar panels to
eliminate jitter twice each orbit as the satellite crossed from daylight to
darkness. These repairs cost over $50 million.

When the first images from Hubble were examined, the scientists knew
that Hubble needed some adjustment. Several focusing tests were
proposed. The telescope was taken completely out of focus and then
brought slowly back into focus; this is a common approach to check for
errors in any optical device. Meanwhile another scientist wrote a software
program to simulate the images from a telescope with a spherical

46 INTRODUCTION TO SYSTEMS ENGINEERING



aberration in its mirrors. The test images were amazingly similar to the
simulated images, leading to a devastating conclusion.

The Hubble telescope is a two-mirror reflecting telescope, a special
type of Cassegrain telescope called a Ritchey-Chretien telescope. The
primary mirror (96 inches) and secondary mirror were to be hyperbolic in
shape; the manufacturing process is to grind the mirror as close as
possible to this shape and then polish the mirror to remove all possible
aberrations within the specified tolerances. During the grinding and
polishing process, tests were conducted with a computer-controlled
optical device, a reflective null corrector consisting of two small mirrors
and a tiny lens. Unfortunately, the spacing between the lens and the
mirrors was off by 1.3 millimeters. The aberration, 0.001 arcseconds from
the design specification, resulted in an error 100,000 times the size of the
desired 1/50 the wavelength of light.

Why was a mistake this large not detected? Photos taken during the
manufacturing process in 1981 showed the flaw, but the flaw was not
noticed in the photos or other testing. A knife-edge test was conducted on
the main mirror. This sophisticated and complex test produced results
showing that the null corrector results were incorrect. Either Perkin-
Elmer (the prime contractor) thought these results invalid and did not
report them to NASA, or NASA managers ignored them on the grounds
that the knife-edge test results were not correct. Two other tests could
have been conducted but were not. Eastman-Kodak was a competing
contractor and had built an identical primary mirror. The primary
mirrors could have been swapped and the null corrector tests rerun.
The second test was an end-to-end test conducted on the assembled
mirrors and other components. This test was deemed too expensive;
NASA claimed the test would have cost more than $100 million but soon
had to back down when independent estimates were 10 times lower, and
the Air Force could possibly have conducted tests using existing
equipment.

This testing situation was aggravated and explained by management
conflicts and mistakes within NASA and by cost overruns. NASA
devised a management structure that included two centers, Goddard
and Marshall. Marshall was given primary responsibility even though
Goddard had more experience in systems of this type. Lockheed Aero-
space was awarded the prime contract. Eastman-Kodak and Perkin-
Elmer competed for the job of the primary mirror. Eastman-Kodak had
more experience, but Perkin-Elmer provided a lower bid. Eastman-
Kodak was given a contract to produce a back up primary minor, a
risk mitigation strategy that could have been proven very insightful if the
flaw in the Perkin-Elmer mirror had been detected. [Feinberg, 1990;
Petersen and Brandt, 1995; Sinnot, 1990].
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PROBLEMS

1.1 Compare and contrast the waterfall, spiral, cycle, and Vee models of the
systems engineering process. In particular, what (e.g., functions per-
formed, time sequence of functions, outputs produced, interaction with
stakeholders) is the same in each of these processes and what is different?
Are there some categories of systems for which one process would be
better than the others? Use outside references to gain more information
on the waterfall and spiral models.

1.2 Describe your personal experience with a system whose capability
disappointed you. In your opinion, was this disappointment a design
mistake made by the system’s designers or the result of a trade-off
decision that had to be made during the system’s design? For example, a
keyboard that is too small to be as usable as you would like on a laptop
computer is the result of a trade-off decision. However, a keyboard with
a poor touch for typing is a design mistake. Consider the following
examples:

1.3 More often than desired, engineers are required to estimate quantities
related to some aspect of a system because the necessary data is not
available. Systems engineers often have to estimate quantities related to
the meta-system. There has been quite a bit of attention to estimation in
K-12; a common example is to estimate the number of gas stations in the
48 continental states of the United States.

a) How would you go about this? What are several ways to estimate
this quantity? Besides information about how many people there are
in the U.S. or how many cars there are in the U.S., what other
information do you know that might be related to the number of
gasoline stations?

b) Search the web and make a list of ways that other people have
tackled this problem. Does this list give you any new ideas? What are
they?
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Chapter 2

Overview of the Systems
Engineering Design Process

2.1 INTRODUCTION

This chapter provides a quick tour of many of the major concepts found in
Chapters 6 to 11. This tour is quite valuable as part of an academic course on
the engineering of systems because this chapter provides the context for the
detailed discussion to follow. However, the advanced reader may wish to skip
this chapter.

Section 2.2 addresses the processes for design and for integration and
qualification. Included here are definitions for key terms such as system,
function, and external system. Section 2.3 describes many of the key concepts
of the design and integration processes. Included in the design process are the
concepts of operational concept, external system diagram, objectives hierarchy,
requirements, functions, items, components, and interfaces. Verification, vali-
dation, and acceptance are discussed as part of the integration and qualification
process. Finally, Section 2.4 introduces the software product CORE, which is a
systems engineering tool used in selected portions of this book to enable the
student to practice and learn the many engineering concepts discussed here.

2.2 DESIGN PROCESS

This section begins by defining some key terms that set the stage for discussing
the engineering of a system. Then a more detailed discussion of the two legs of

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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the Vee process, design and integration (and qualification), are presented in
more detail than in Chapter 1.

2.2.1 Key Terms

As part of this overview of the design process, we must establish some
important definitions:

System: set of components (subsystems, segments) acting together to achieve a
set of common objectives via the accomplishment of a set of tasks.

System Task or Function: set of functions that must be performed to achieve a
specific objective.

Human-Designed System

� A specially defined set of segments (hardware, software, physical entities,
humans, facilities) acting as planned

� via a set of interfaces, which are designed to connect the components,

� to achieve a common mission or fundamental objective (i.e., a set of
specially defined objectives),

� subject to a set of constraints,

� through the accomplishment of a predetermined set of functions.

System’s External Systems: set of entities that interact with the system via the
system’s external interfaces. Note in Figure 2.1, the external systems can
impact the system and the system does impact the external systems. The
system’s inputs may flow from these external systems or from the context,
but all of the system’s outputs flow to these external systems. The external
systems, many or all of which may be legacy (existing) systems, play a major
role in establishing the stakeholders’ requirements.

System’s Context: set of entities that can impact the system but cannot be
impacted by the system. The entities in the system’s context are responsible
for some of the system’s requirements. See Figure 2.1.

System

External Systems

Context

are impacted by “System”

impacts, but not impacted by, “System”

FIGURE 2.1 Depiction of the system, external systems, and context.
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2.2.2 Design

As discussed in Chapter 1, design includes decomposition and definition of
both the requirements, or statement of the design problem, and the archi-
tectures, functional and physical representations of the system. The allocated
architecture addresses which physical resources of the system are going to
perform which functions, but also includes a mapping of all of the require-
ments to the physical resources of the system. As well as addressing the
system that must be operational for users, the design process should address
all relevant systems needed during the life cycle of this system: the develop-
ment system, of which the systems engineers are part; the manufacturing
system, if needed; the deployment system, if needed; any training systems that
are needed; a refinement system for system upgrades; and the retirement
system, if needed. Finally, the qualification systems for each of these systems
need to be addressed.

There are eight functions below that capture the complete systems engineer-
ing process. The first two (0a and 0b) are performed at the very beginning and
are really part of a general problem solving process. The last six functions (1–6)
are the focus of this book and are considered the core repetitive functions of the
systems engineering design process:

0a Define the problem to be solved

0b Define and evaluate alternate concepts for solving problem

1. Define the system level design problem being solved

2. Develop the system functional architecture

3. Develop the system physical architecture

4. Develop the system allocated architecture

5. Develop the interface architecture

6. Define the qualification system for the system

All eight of these functions are shown in Table 2.1 with their major inputs and
outputs. Chapters 6 through 11 address the last six functions, respectively. As
can be seen by the respective inputs and outputs of these functions, these last six
functions cannot be conducted in series but have to be concurrent. The resource
that performs these functions is the systems engineering team.

The first of the repetitive design functions has to create a definition of the
problem being solved for which the next five develop a set of designs (across the
system’s life cycle). The seven functions that comprise this first design function,
defining the design problem (stakeholders’ requirements), are:

1. Develop operational concept

2. Define system boundary with external systems diagram

3. Develop system objectives hierarchy

4. Develop, analyze, and refine requirements (stakeholders’ and system)
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5. Ensure requirements feasibility

6. Define the test system requirements

7. Obtain approval of system documentation

These seven functions are shown with their major inputs and outputs in Table 2.2.
There is an important distinction between the stakeholders’ requirements and the
system requirements. Stakeholders’ requirements are those requirements that the
system’s stakeholders agree define their needs. As such, the stakeholders’ require-
ments are written in the common language of the stakeholders (e.g., English,
Chinese). The system requirements are a translation of the stakeholders’
requirements into the appropriate engineering terminology (e.g., foot-pounds,
bits, and decibels). Chapter 6 presents more detail about this process.

The detailed processes for developing the functional, physical, allocated, and
interface architectures are not presented here because many of the concepts for

TABLE 2.1 Functions of the Design Process

Design Function Major Inputs Major Outputs

Define Problem To Be

Solved

Concerns and Complaints

by Stakeholders

Available Data from

Stakeholders

Definitions of Measures of

Effectiveness and

Desired Ranges

Constraints

Develop and Evaluate

Alternate Concepts for

Solving Problem

Ideas for Concepts from

All Interested Parties

Recommended Concept(s)

Objective Hierarchy &

Value Parameters for

Meta-System

Define System Level

Design Problem Being

Solved

Stakeholders’ Inputs Stakeholders’

RequirementsOperational Concept

Develop System

Functional Architecture

Stakeholders’

Requirements

Functional Architecture

Operational Concept

Develop System Physical

Architecture

Stakeholders’

Requirements

Physical Architecture

Develop System Allocated

Architecture

Stakeholders’

Requirements

Allocated Architecture

Functional Architecture

Physical Architecture

Interface Architecture

Develop Interface

Architecture

Draft Allocated

Architecture

Interface Architecture

Develop Qualification

System for the System

Stakeholders’

Requirements

Qualification System

Design Documentation

Systems Requirements
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these architectures are not appropriate for this overview. The decomposition of
the last function of design, developing the qualification system for the system, is
a replication of the design process for the system but with the focus on the
elements of the qualification system.

The design process, as presented here, is not a formal process in the sense
that success can be proved, designs can be proved to be correct, and so forth.
Some researchers have developed formal processes, primarily in software
engineering. These formal processes have not succeeded in software develop-
ment and are relatively rare in the engineering of systems. An example of such a
formal process for engineering design is Suh’s [1990] axiomatic design process.
Suh defines two major concepts— functional requirements and design para-
meters. He posits two axioms: (1) independence axiom: maintain the indepen-
dence of the functional requirements and (2) information axiom: minimize the
information content of the design.

While Suh introduces hierarchical decomposition in his axiomatic process,
there is not sufficient richness of concepts in his process to handle the
complexity of the engineering issues associated with the development of a
system. First, as will be discussed in Chapter 6, functional requirements are a

TABLE 2.2 Functions of the System-Level Design Problem

Design Function Major Inputs Major Outputs

Develop Operational

Concept

Stakeholders’ Inputs Operational Concept

System Concept

Input-output traces

Meta-system MOEs

Objective Hierarchy &

Value Parameters for

Meta-System

Recommended Concept

Define System Boundary

with External Systems

Diagram

Operational Concept System Boundary,

System’s Inputs and

Outputs

Develop System Objectives

Hierarchy

Operational Concept

Stakeholders’ Inputs

System-level Objectives

Hierarchy

Develop, Analyze and

Refine Requirements

(Stakeholders’ and

System)

Operational Concept Stakeholders’ & Systems

RequirementsSystem Boundary, Inputs &

Outputs Objectives

Hierarchy

Stakeholders’ Inputs

Ensure Requirements

Feasibility

Stakeholders’ & Systems

Requirements SE Team’s

Inputs

Design Feasibility

Define the Test System

Requirements

Stakeholders’ & Systems

Requirements

Stakeholders’ Inputs

Test System Requirements

Obtain Approval of

System Documentation

Stakeholders’ & Systems

Requirements

Stakeholders’ & System

Requirements

Documents
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derived entity that have no inherent meaning to the stakeholders; input and
output requirements are statements that relate to stakeholders needs. Second,
Suh’s process does not provide a sufficient process to develop and enable
validation of the requirements. Finally, the interaction of functions, compo-
nents, and interfaces, as described in this book but is missing in some richness
in Suh’s approach, is needed to deal with the generation and analysis of design
options, as well as guide the qualification of the system in terms of the
stakeholders’ needs.

2.2.3 Integration and Qualification

The second half of the Vee model, integration and qualification, is primarily a
bottom-up process that comprises integrating the most basic building blocks of
the system and verifying that these lower level components meet the specifica-
tions, or sets of requirements, that were developed for them during design.
However, before this integration and verification process begins, a validation of
the requirements development process should take place to attempt to
demonstrate that the low-level design solutions are still consistent with the
stakeholders’ needs. At the end of qualification come the important steps of
validating that the system that has been designed and verified does in fact agree
with the operational concept and is acceptable to the stakeholders. The
stakeholders include the bill payer, the users, the maintainers and supporters,

TABLE 2.3 Functions of the Integration and Qualification Process

Design Function Major Inputs Major Outputs

Conduct Early Validation Stakeholders’ Inputs Validated Requirements

Operational Concept Validated Operational

ConceptStakeholders’

Requirements

Derived Requirements

Conduct Integration and

Verification Testing

Configuration Items (CIs) Verification Testing

DocumentComponents

Verified Components and

System

Derived Requirements

Conduct System

Validation Testing

Verified System Validation Testing

Document

Validated System

Stakeholders’

Requirements

Stakeholders’ Inputs

Conduct System

Acceptance Testing

Validated System Acceptance Testing

DocumentAcceptance Test Plan

Accepted SystemStakeholders’ Inputs
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the manufacturers, the trainers, the deployers, the refiners, and the retirers. The
integration and qualification process can be divided into four segments:

1. Conduct early validation

2. Conduct integration and verification testing

3. Conduct system validation testing

4. Conduct system acceptance testing

Table 2.3 presents these four functions that comprise integration and qualifica-
tion with their major inputs and outputs. Each of these functions is described in
more detail in Chapter 11.

2.3 KEY SYSTEMS ENGINEERING CONCEPTS

This section provides a detailed discussion of key constructs for design and
integration. An operational concept, external system diagram, objectives
hierarchy, and requirements are the essential elements of the definition of the
design problem. Functions and items comprise the functional (or logical)
architecture. Components are the building block for the physical architecture.
Interfaces combined with the functional and physical architectures are key to
understanding the allocated architecture. Qualification is verification, valida-
tion, and acceptance during integration. Figure 2.2 provides an entity relation
diagram showing many of these concepts (or entities) and their relationships.

2.3.1 Operational Concept

An operational concept is a vision for what the system is (in general terms), a
statement of mission requirements, and a description of how the system will be
used. A set of scenarios describes how the system will be used by defining the
system’s interaction with other systems. For example, the operational concept
for an elevator system may begin with a description of cars that carry people
and equipment moving vertically in shafts. The mission requirements would
discuss the desired times that passengers would wait from the time they
requested service until they arrived at their destination. Next, the operational
concept would use scenarios such as those in Table 2.4 to define how the
elevator would be used during the elevator’s operational phase.

2.3.2 External Systems Diagram

Defining the boundaries of a system is critical but often neglected. An external
systems diagram is used to establish the bounds of the system and communicate
the results of this bounding process. This diagram can be created from the
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scenarios in the operational concept for the system and should he completely
consistent with those scenarios.

Figure 2.3 shows an external systems diagram for the operational phase of
the elevator using IDEF0, which is an acronym based on the following word
phrase: Integrated Definition for Function Modeling. (IDEF0 will be presented
in detail in the next chapter.) The systems are shown as arrows entering the
bottom of each box, their functions are verb phrases in the boxes, and their
inputs, controls, and outputs are shown as labels on lines entering from the left,
entering from the top, and exiting from the right of the boxes, respectively.
Many other process and dynamic modeling techniques can be used to draw and
represent the system’s boundaries, some of which are presented in Chapter 12.

On the basis of this diagram, the system is bounded by the definition of all of
the inputs (and controls) that enter the system, as well as the outputs that the
system must produce. The characteristics of these inputs and outputs can be
described, thus finishing the definition of the boundary of the system.

System

Item

ha s a

ha s a

is a

pe

lin ks

Components

External
Systems

Life
Cycle

PurposeContext

Physical
Entity

Interface

Function

Energy
Information

Entity

operates in

has a

has a

is ais ais a

carries

performs

performs

performs

performs

receives,
transforms,

send

built from

interacts
with via
items

links

links

operates in

FIGURE 2.2 Many of the concepts and their relationships.
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2.3.3 Objectives Hierarchy

The objectives hierarchy of a system contains a hierarchical representation of
the major performance, cost, and schedule characteristics that the stakeholders
will use to determine their satisfaction with the system. For example, stake-
holders evaluate an elevator system on the basis of the time spent waiting from
their arrival at the elevator until they are delivered at their desired floor.
Stakeholders are also concerned about the quality of the ride and the
availability of the elevator services. The stakeholder, who is responsible for
the building in which the elevator is located, is concerned about the monthly
operating cost of providing the elevator services. See Figure 2.4 for a sample
objectives hierarchy for the operational phase of the elevator.

2.3.4 Requirements

Requirements were defined in Chapter 1. Chapter 6 will address how to use the
operational concept and external systems diagram, as well as the objectives
hierarchy, to develop the stakeholders’ requirements. For now, the four categories
of requirements (input/output, technology and system-wide, tradeoff, and test)
are assumed; these definitions will be expanded and motivated in Chapter 6.

1. Input/output requirements: include (a) inputs, (b) outputs, (c) external
interface constraints, and (d) functional requirements.

2. Technology and system-wide requirements: consist of requirements that
address (a) technology to be incorporated into the system, (b) the suitability
(or ‘‘-ilities’’) of the system, (c) cost of the system, and (d) schedule issues
(e.g., development time period, operational life of the system).

TABLE 2.4 Sample Operational Concept Scenarios for an Elevator

1) Passengers (including mobility, visually and hearing challenged) request up service,

receive feedback that their request was accepted, receive input that the elevator car is

approaching and then that an entry opportunity is available, enter the elevator car,

request a floor, receive feedback that their request was accepted, receive feedback

that the door is closing, receive feedback about the floors at which the elevator is

stopping, receive feedback that an exit opportunity is available at the desired floor,

and exit the elevator with no physical impediments.

2) Passenger enters the elevator car, as described in 1, but finds an emergency situation

before an exit opportunity is presented, and notifies the police or health authorities

using communication equipment that is part of the elevator. Elevator maintenance

personnel create an exit opportunity.

3) A maintenance person needs to repair an individual elevator car; the maintenance

person places the elevator system in ‘‘partial maintenance’’ mode so that the other

cars can continue to pick up passengers while the car(s) in question is (are) being

diagnosed, repaired, and tested. After completion, the maintenance person places the

elevator system in ‘‘full operation’’ mode.

2.3 KEY SYSTEMS ENGINEERING CONCEPTS 57



 U
SE

D
 A

T
:

C
O

N
T

E
X

T
:

N
O

D
E

:
T

IT
L

E
:

N
U

M
B

E
R

:

A
U

T
H

O
R

: D
en

ni
s 

B
ue

de
PR

O
JE

C
T

: E
le

va
to

r 
C

as
e 

St
ud

y

N
O

T
E

S:
  1

  2
  3

  4
  5

  6
  7

  8
  9

  1
0

D
A

T
E

: 0
5/

24
/9

9
R

E
V

:
W

O
R

K
IN

G

D
R

A
FT

R
E

C
O

M
M

E
N

D
E

D

PU
B

L
IC

A
T

IO
N

R
E

A
D

E
R

D
A

T
E

P.
1

P
ro

vi
de

E
le

va
to

r
S

er
vi

ce
s

A
-0

P
as

se
ng

er
C

ha
ra

ct
er

is
tic

s

E
le

ct
ric

 P
ow

er
&

 E
m

er
ge

nc
y

C
om

m
un

ic
at

io
n

R
es

po
ns

e

S
er

vi
ce

, T
es

ts
 

&
 R

ep
ai

rs

R
eq

ue
st

 fo
r 

E
m

er
ge

nc
y 

S
up

po
rt

 &
 

E
m

er
ge

nc
y 

M
es

sa
geR

eq
ue

st
 fo

r
F

lo
or

 &
 

E
xi

t S
up

po
rt

R
eq

ue
st

 f
or

E
le

va
to

r 
S

er
vi

ce
 &

E
nt

ry
 s

up
p

or
t

B
ui

ld
in

g
R

eg
ul

at
io

ns

S
tr

uc
tu

ra
l

S
up

po
rt

,
A

la
rm

 S
ig

na
ls

&
 B

ui
ld

in
g

E
nv

iro
nm

en
t

M
od

ifi
ed

E
le

va
to

r
C

on
fig

ur
at

io
n

&
 E

xp
ec

te
d

U
sa

ge
 P

at
te

rn
s

P
as

se
ng

er
E

nv
iro

nm
en

t

A
ck

no
w

le
dg

m
en

t
th

at
 R

eq
ue

st
 W

as
R

ec
ie

ve
d 

&
 S

ta
tu

s
In

fo
rm

at
io

n

D
ia

gn
os

tic
 &

S
ta

tu
s 

M
es

sa
ge

s

E
le

va
to

r 
E

nt
ry

O
pp

or
tu

ni
ty

E
le

va
to

r 
E

xi
t

O
pp

or
tu

ni
ty

E
m

er
ge

nc
y

S
up

po
rt

R
eq

ue
st

E
le

va
to

r
S

er
vi

ce
s A

-1
1

U
se

E
le

va
to

r
S

er
vi

ce
s A

-1
2

M
ai

nt
ai

n
E

le
va

to
r

O
pe

ra
tio

ns A
-1

3

P
ro

vi
de

S
tr

uc
tu

ra
l

S
up

po
rt A

-1
4

P
as

se
ng

er
s'

 N
ee

ds

E
m

er
ge

nc
y

M
es

sa
ge

s

E
m

er
ge

nc
y

C
om

m
un

ic
at

io
n

P
as

se
ng

er
s

E
le

va
to

r 
S

ys
te

m
M

ai
nt

en
an

ce
 P

er
so

nn
el

B
ui

ld
in

g

P
as

se
ng

er
s

N
ee

di
ng

E
le

va
to

r
S

er
vi

ce
s

P
as

se
ng

er
s

in
 E

le
va

to
r

S
ys

te
m

R
ep

ai
r

P
ar

ts

E
xt

er
na

l S
ys

te
m

s 
D

ia
gr

am
 fo

r 
O

pe
ra

tio
na

l P
ha

se

E
le

va
to

r
E

nt
ry

/E
xi

t
O

pp
or

tu
ni

ty

M
ai

nt
en

an
ce

Q
ua

lit
y 

S
ta

nd
ar

ds

N
on

e
x

G
eo

rg
e 

M
as

on
U

ni
v.

A
-1

FI
G

U
R

E
2
.3

Ex
te

rn
al

sy
st

em
s’

d
ia

gr
am

fo
r

o
p
er

at
io

n
al

u
se

o
f

an
el

ev
at

o
r.

58



3. Trade-off requirements: are algorithms to enable the engineers of
the system to conduct (a) performance trade offs, (b) cost trade offs,
and (c) cost–performance trade offs.

4. System qualification requirements: have four primary elements: (a) how
the test data for each of the first categories of requirements will be
obtained, (b) how the test data will be used to determine that the real

Monthly Operating Costs
$1,500 - $1,000, Wt = 0.1

Average Wait (Routine)
35 - 27 sec, Wt = 0.3

Average Wait (Priority)
35 - 30 sec, Wt = 0.35

Average Transit Time
90 - 60 sec, Wt = 0.35

Time in System
Objectives, Wt = 0.35

Max'm Acceleration
1.5 - 1.25 m/s2, Wt = 0.3

Max'm Accel'n Change
2 - 1.5 m/s3, Wt = 0.5

Floor Leveling Error
0.7 - 0.3 cm., Wt = 0.2

Ride Quality
Objectives, Wt = 0.30

Operational MTBF
1 - 1.5 yrs, Wt = 0.5

Operational MTTR
8 - 4 hrs, Wt = 0.5

Availability
Objectives, Wt = 0.35

Operational Performance
Objectives, Wt = 0.9

Operational
Objectives

FIGURE 2.4 Fundamental objectives hierarchy for operational phase of elevator.
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system conforms to the design that was developed, (c) how the test data
will be used to determine that the real system complies with the
stakeholders’ requirements, and (d) how the test data will be used to
determine that the real system is acceptable to the stakeholders.

These requirements categories are relevant to each phase of the system’s life
cycle discussed above.

For now consider Table 2.5 to be an example of the input/output and
system-wide requirements for the operational phase of an elevator. Note that
these examples of requirements are shown in an outline or hierarchical format.
Also note that the real requirements — those statements that start with ‘‘The
Elevator system shally’’— are at the bottom of the hierarchy. Every entry of
the hierarchy that has another level below it is not really a requirement, but a
group of requirements.

2.3.5 Functions

A function is a transformation process that changes inputs into outputs. A
system is modeled as having a single, top-level function that can be decomposed
into a hierarchy of subfunctions. The system’s top-level function transforms all

TABLE 2.5 Sample Elevator Requirements for the Operational Phase

4.3 Stakeholders’ Requirements

4.3.5 Operational Phase Requirements.

4.3.5.1 Input/Output Requirements.

4.3.5.1.1 Input Requirements.

4.3.5.1.1.1 Emergency Support Inputs.

4.3.5.1.1.1.1 The system shall support manual overrides.

4.3.5.1.1.1.2 The elevator system shall allow passengers with a designated

pass key to assume complete control of an elevator car.

4.3.5.1.2 Output Requirements.

4.3.5.1.2.1 Passenger Environment Outputs.

4.3.5.1.2.1.1 The elevator car shall have adequate illumination.

4.3.5.1.4 Functional Requirements.

4.3.5.1.4.1 The elevator shall accept passenger requests and provide feedback.

4.3.5.1.4.2 The elevator shall move passengers between floors safely and

comfortably.

4.3.5.1.4.3 The system shall control elevator cars efficiently.

4.3.5.1.4.4 The system shall enable effective maintenance and servicing.

4.3.5.2 System-wide & Technology Requirements.

4.3.5.2.1 The system MTBF shall be greater than 1 year. The design goal is

1.5 years. Failure is defined to be a complete inability to carry

passengers.

4.3.5.2.2 The system MTTR shall be less than 8 hours. The design goal is

4 hours. Repair means the system is returned to full operating

capacity.
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of the inputs to the system into all of the outputs of the system. See Figure 2.5
for the elevator example using IDEF0. This system function can be taken
directly from the external systems diagram.

The top-level function is decomposed into subfunctions as part of the
development of the functional architecture. Each subfunction transforms a
subset of the inputs from the outside (plus some other internally generated
inputs) into a subset of the outputs (plus some other internally generated
outputs). This decomposition cannot be found in a book or dictated by the
stakeholders; the decomposition is a product of the engineers of the system and
is part of the architectural design process that is attempting to solve the design
problem established by the requirements. The decomposition can be carried as
deeply as needed to define the transformations that the system must be able to
perform. Figure 2.6 shows the first-level decomposition of the elevator system
function using IDEF0.

2.3.6 Items

Items are the inputs that are received by the system, the outputs that are sent by
the system to other systems, and the inputs that are generated internally to the
system and sent to other parts of the system to assist in the transformation
process for which the system is responsible. Items can be physical entities that
have mass and energy, or items can be information that are somehow
transformed into items with mass or energy to be transmitted from one
physical element to another. The external inputs and outputs of the elevator
are shown in Figure 2.5. Both the external and internal items of the elevator, at
the first level of functional decomposition, are shown in Figure 2.6.

2.3.7 Components

A component of a system is a subset of the physical realization (and the physical
architecture) of the system to which a subset of the system’s functions have
been (will be) allocated. A component could be the integration of hardware and
software, a specific piece of hardware, a specific segment of the system’s
software, a group of people, facilities, or a combination of all of these. As
with the requirements and functions, there is often a hierarchical structure to
the components that comprise the system. The first level decomposition of the
elevator into components is shown in Figure 2.7.

2.3.8 Interfaces

An interface is a connection resource for hooking to another system’s interface
(an external interface) or for hooking one system’s component to another (an
internal interface). Interfaces have inputs, produce outputs, and perform func-
tions. An interface can be as simple as a wire or conveyor belt or as sophisticated
as a global communication system (which is a system in its own right).
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2.3.9 Verification

As discussed in Chapter 1, verification addresses whether the system was built
right. In practical terms, verification is the determination that each configura-
tion item (CI), component, and the system meets the requirements for it during
the design phase. These requirements will be input/output or technology/
system-wide requirements. Inspection, testing, analysis and simulation, or
demonstration can establish this verification. Inspection and testing are most
common at the CI level. Demonstration and analysis/simulation are most
common at the system level.

2.3.10 Validation

Validation addresses whether the right system has been developed. Validation
gets back to the illusive needs of the stakeholders. One aspect of validation that
should be performed during the design phase of development attempts to
demonstrate the design problem is evolving properly from a high-level state-
ment in the operational concept that correctly reflects the needs of the
stakeholders to scenarios, stakeholders’ requirements, system requirements,
component requirements, and CI requirements. Stated another way this early
validation of the design problem demonstrates as completely as possible that the
design problem as defined by a large set of requirements for all of the CIs is the
same design problem as reflected in the operational concept and the minds of
the stakeholders.

Validation during the integration and qualification phase demonstrates that
the system that was designed and has been integrated meets the needs of the
stakeholders as defined by the operational concept. Validation of the system
stops short of the needs of the stakeholders because that will be addressed by
the acceptance of the design by the stakeholders.

2.3.11 Acceptance

The final step of integration and qualification is acceptance by the stakeholders;
do the stakeholders feel that the system as designed is acceptable? This
conclusion allows the stakeholders to compare the system to their own needs
and decide whether they will accept the system. The job of the engineers of the

Passenger Interface
Component

Elevator Control
Component

Elevator Cars
Component

Maintenance &
Service Component

Elevator System

FIGURE 2.7 Physical architecture of the elevator system.
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system during acceptance testing is to construct the proper set of test activities
and test equipment and facilities to provide the information needed by the
stakeholders for making their decision.

2.4 INTRODUCTION TO SysML

As described in Chapter 1, SysML is a visual modeling language for conducting
systems engineering. Sections 2.2 and 2.3 have introduced you to some of the
key terms and basic process for performing Traditional, Top-Down Systems
Engineering (TTDSE). Figure 2.8 shows the processes of TTDSE associated
with the left-hand side of the Vee model on the left hand side of the figure.
Included with these process elements of TTDSE are modeling activities that
should utilize a graphical modeling language. The right-hand side of Figure 2.8
shows the diagram types of SysML. Double-headed arrows in Figure 2.8 show
which modeling elements from TTDSE are addressed by which diagram types
of SysML. Naturally there are many to many-to-many and many-to-one
relations shown. There are also three modeling activities in TTDSE that are
not supported by SysML (requirements taxonomy; creativity; and the mor-
phological box for physical architecture alternatives and risk and trade studies).
Each of these topics is addressed in Chapters 6, 8, and 13, respectively. Also,

SysMLTTDSE
(1st edition of Eng’g Design of Systems)

Defining the Problem Being Solved
Operational Concept & External Systems Diagram

Concept, Meta-system MOEs
Input-output Traces

Objectives Hierarchy
Requirements Taxonomy
Requirements relations

Defining the Functional Architecture
IDEF0 (or other technique)

Defining the Physical Architecture
Creativity & Morphological box
Block diagram

Defining the Allocated Architecture
Allocating functions to components
Creating relations among all elements
Conducting performance analyses
Performing risk and trade studies

Defining Interfaces
Creating interface relations

Requirements Diagram

Use Case Diagram

State Machine Diagram

Activity Diagram

Package Diagram

Parametric Diagram

Internal Block Diagram

Block Definition Diagram

Sequence Diagram

FIGURE 2.8 Comparison of TTDSE and SysML.

2.4 INTRODUCTION TO SysML 65



there are two diagram types (use case and package) in SysML that are not
related to the elements of TTDSE from the first edition of this book; these two
diagram types will be covered in Chapter 3.

This figure should convey to you that SysML is a nearly complete and well-
designed, interconnected set of visual modeling diagrams that enable a
substantial improvement in model-based systems engineering. All elements of
the design process that we cover in this book are covered. Since the test system
is another system, SysML can be equally applied to the design and operation of
the test system, just as it can be applied to the design of the systems engineering
system of engineers, domain experts, technologists, and managers.

2.5 USE OF CORE (SYSTEMS ENGINEERING TOOL)

Part of the educational material provided with this book is an academic version
of a system engineering tool called CORE. (You may download the academic
version of CORE from http://www.vitechcorp.com.) The rest of this chapter
provides an overview of concepts embedded in CORE. Instructions for using
the tool can be obtained in the user’s manual and guided tour available with
CORE.

At its simplest, CORE is comprised of classes (e.g., requirements, functions,
items), examples or elements of those classes (e.g., specific requirement), and
relations. The most basic user activities of CORE are entering and editing
elements of the classes and establishing relations between elements of classes.
Other important activities include viewing products of the design data, saving
your work, and obtaining reports that document the design contained in the
database. The automated tutorial demonstrates these functions for a collection
management system as a sample problem.

2.5.1 Classes

Table 2.6 lists the classes in CORE 2.0. These classes contain both the major
elements of the systems engineering design process that are discussed in this
chapter as well as a number of supporting classes. For a given system, the job of
the engineers of the system is to define specific elements of the system for each
of these major classes (e.g., stakeholders’ requirements, functions, components,
and items).

2.5.2 Relations

As part of the engineering design process, requirements must be related to
functions and components using the specify relation, functions allocated to
components, and inputs and outputs assigned to interfaces. Table 2.7 defines
the relations available in CORE to define relationships within the design and
integration classes. These relations are fully compatible with the mathematical
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definition of relations in Chapter 4 and can be depicted graphically by directed
graphs as discussed in Chapter 5. For each relation there is an opposing
relation that reverses the direction of the relation. Table 2.7 shows the relations
(and their opposing relations in parentheses) and defines each relation by
identifying which class is on the left side (tail of the arrow) and which class is on
the right side (head of the arrow).

TABLE 2.6 Systems Engineering Classes in CORE

Class Definition of the Class

Category A general purpose element that can be used to represent such

concepts as Version Number, Element Classification, etc.

Component A physical entry that can represent the system; a subsystem or

further decomposition of the system, including a configuration

of a component; or an external system or the meta-system.

Defined Term An acronym or special term that needs to be defined as part of the

requirements process.

Document A source/authorization for information from stakeholders entered

into the system description database or reported from the

database.

Domain Set The number of iterations or replications in a control structure.

Function A process that accepts one or more inputs (items) and transforms

them into outputs (items). A function should have a completion

criterion for each exit.

Interface The logical connection between parts of the system’s architecture.

Issue A problem (as well as its resolution) with any element in the

system’s design.

Item Physical entities or data that flows within and between functions.

An item is an input to or output from a function.

Link The physical implementation of an interface.

Requirement A requirement extracted from the source documentation for a

system, or a refinement of a higher level requirement.

Requirements should be refined until only a single, testable

statement of a system’s feature remains.

Resource A characteristic (e.g., power, channels, instructions processed per

second) of one or more components that are used, captured, or

generated and can be depleted during the operation of the

system.

Risk The uncertainty of attaining/achieving a product performance

level or program milestone.

State/Mode Sometimes used as the highest level functional breakout to define a

set of functions that system performs at a point in time, e.g.,

startup, normal operation, recovery operations, shut down.

Verification

Requirement

The requirement to be met by the qualification system, the level at

which it must be met, the method of qualification, and current

qualification status.
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TABLE 2.7 Common Systems Engineering Relations

Relation (Opposing
Relation)

Definition Application

‘‘is part of’’; examples

include

refines

(requirements)

decomposes

(functions, items)

built from

(components)

(‘‘is a superset of’’)

The left side is a subset of the

right side. For example, the

requirement on the left side

incorporates the one on the

right, the function on the left

side is decomposed by the one

on the right.

Hierarchies of

requirements, functions,

items, components.

‘‘input to’’

(‘‘inputs’’)

The item on the left side is an

input to the function on the

right side.

Development of the

functional architecture

‘‘output from’’

(‘‘outputs’’)

The item on the left side is an

output from the function on

the right side.

Development of the

functional architecture

‘‘triggers’’

(‘‘triggered by’’)

The item on the left side triggers

the activation of the function

on the right side.

Development of the

functional architecture

‘‘defined by’’

(‘‘defines’’)

The state/mode on the left side

is defined by the function on

the left side.

Development of the

functional architecture

‘‘built from’’

(‘‘built in’’)

The left side (system or

component) is comprised of

the system or component on

the right side.

Development of the

physical architecture

‘‘exhibited by’’

(‘‘exhibits’’)

The state/mode on the left side

is exhibited by the component

on the right side.

Development of the

physical architecture

‘‘allocated to’’

(‘‘performs’’)

The function on the left side is

being assigned to the

component on the right side

for the purpose of execution.

Development of the

operational architecture

‘‘specifies’’

(‘‘specified by’’)

The requirement on the left side

specifies the function, state/

mode, item, component,

interface or link on the right

side.

Development of the

functional and

operational

architectures

‘‘transfers’’

(‘‘transferred by’’)

The link on the left side

transfers the item on the right

side.

Development of the

interface architecture

‘‘comprises’’

(‘‘comprised of’’)

The link on the left side

comprises the interface on the

right side.

Development of the

interface architecture

(Continued)
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One subtlety that has been ignored so far is the relating of requirements to
functions and items, or the system. Input/output requirements are defined in
such a way that each such requirement should be directly relatable to both
specific functions and items. Technology and system-wide requirements are
those requirements that cannot be related to specific functions or items but
must be satisfied by the system. As a result each input/output requirement is
traced to (or specifies) the lowest level function that receives the relevant input
or produces the relevant output, all of the functions that are above that
function in the functional decomposition, and the item directly relevant to that
requirement. (Note that the third category of input/output requirements is
function requirements; these requirements specify the top-level system function
because they define the decomposition of that function.) Similarly, each
technology and system-wide requirement specifies the system. Relating require-
ments to functions and the system through the specify relation is important
because this activity initiates the process of creating a set of requirements for
the system to satisfy and provides the material for subsets of the requirements
to be associated with specific components. These subsets of requirements
become the specifications that each CI design team must meet. (Note that the
requirements related to functions ultimately are assigned to the system and its
components when each function is allocated to one or more components for
execution.)

2.5.3 Documents

CORE enables you to design your document. However, the outline of the
document that will be used throughout this book is the System Description
Document (SDD), which can be found under the reports available from version
1.2 of CORE. This SDD outline (see Table 2.8) contains an initial section in
which a general description of the system would be provided; the operational
concept would be found here if CORE captured this material. The stake-
holders’ requirements are found in Section 2. Section 3 of the SDD is for the
requirements that are constraints; the approach taken here is to include all

TABLE 2.7. Continued

Relation (Opposing
Relation)

Definition Application

‘‘connects to’’

(‘‘connected to’’)

The link on the left side

connects to the component or

system on the right side.

Development of the

interface architecture

‘‘joins’’

(‘‘joined to’’)

The interface on the left side

joins the component on the

right side.

Development of the

interface architecture
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requirements as part of the stakeholders’ requirements so Section 3 can be
deleted. The section on performance objectives is for the objectives hierarchy.
Section 5 enables the systems engineering team to capture the design issues and
decisions, which are usually addressed as part of the allocated architecture.
Risk management is addressed in Section 6; this is the place that key
uncertainties are defined and the potential impact of bad outcomes defined.
The functional architecture is defined in Section 7 as both a process model and
behavioral model; CORE uses an N2 model for the system’s process and a
function flow block diagram model for the system’s behavior (both of these
models are covered in Chapter 12). The item dictionary (or data model) is
found in Section 8. The physical architecture is defined in Section 9, and the
interfaces that are derived from the combination of the item dictionary and the
physical architecture are defined in Section 10 of the SDD. The logical and
physical interfaces developed by the system engineering team are described in
Section 11. Section 12 provides a cross reference of requirements with the
selected test methods that will be used for qualification. Section 13 provides a
requirements specification matrix that associates functions and components
with the stakeholders’ requirements.

2.6 SUMMARY

This chapter has given definitions and provided discussions on the most
important concepts in the engineering of systems. The operational concept of
the system provides the theme for the system as viewed by the stakeholders and
defines scenarios depicting how its users will employ the system and how the
system will interact with other systems. The external systems diagram defines

TABLE 2.8 Outline of System Description Document

1. Primary System/Component Description

2. Originating (Stakeholders’) Requirements

3. Design Constraints

4. Performance Requirements

5. Issues & Decisions

6. Risks

7. Functional Behavior Models

8. Item Dictionary

9. Resources

10. Components

11. Interfaces

12. Requirements Traceability Matrix
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the interaction in terms of inputs and outputs with other systems and is
consistent with the operational concept. The objectives hierarchy of the system
lays out the performance, cost, and schedule objectives that the stakeholders
have for the system; this objectives hierarchy provides a satisfaction index for
the stakeholders for alternate system designs. The requirements of the system
provide constraints and performance ranges for the system in terms of inputs
and outputs, and its system-wide and technology-related characteristics. The
requirements also state the trade offs that the stakeholders are willing to make
in the development of the system and the constraints and performance ranges
associated with testing the system. These first four concepts deal with defining
the design problem.

Three additional concepts (functions, components, and interfaces) are part
of the design process. Functions are those activities performed by the system
(and all other systems) to transform inputs into outputs. Components are the
resources of the system that perform the system’s functions. Interfaces connect
components; external interfaces connect components of the system to compo-
nents of other systems, and internal interfaces connect components of the
system, to each other.

Throughout this entire process, from the operational concept through
requirements, it is important to remember that the engineers have to concern
themselves with more than just the operational system that the users of the
system want, but also the systems relevant to every stage of the life cycle of the
system (e.g., the development system, manufacturing system, the retirement
system).

This chapter described how to read an IDEF0 diagram; IDEF0 is a process
modeling technique that will be described in detail in the next chapter and used
throughout this book. The software product CORE that will be used exten-
sively in this book was described in terms of its classes and the relationship
between those classes for systems engineering. CORE’s data structure is based
upon a data modeling technique called entity–relationship (ER) diagrams and
is discussed in more detail in Chapter 12.

PROBLEMS

2.1 Use the requirements in Table 2.5 to define the elevator’s requirements.
Use the IDEF0 models in Figure 2.4 and 2.5 to define the functional
decomposition of the elevator system and to identify the external inputs
and outputs, as well as those that are internally generated and con-
sumed. Use the organization chart in Figure 2.6 to define the physical
decomposition of the elevator components.

Enter all of the above information on the elevator as the system into
CORE: enter the requirements shown in Table 2.5, enter the functions
shown in Figure 2.4 and 2.5, enter the items shown in Figure 2.5, and
enter the components shown in Figure 2.6 as elements of the
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corresponding classes. Then establish the relevant relations associated
with Table 2.7. These relations include hierarchies for the requirements
and functions as well as the system with its components. Use the
‘‘specify’’ relation to connect the requirements to the appropriate
function, item or system, designate items as inputs or outputs of the
relevant functions and allocate each function to the system or appro-
priate component.
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Chapter 3

Modeling and SysML Modeling

3.1 INTRODUCTION

This chapter serves two major purposes: describes models and their role in the
engineering of systems and introduces several modeling techniques associated
with SysML. The modeling techniques introduced in this chapter are use case
diagrams, sequence diagrams, IDEF0 (Integrated Definition for Function
Modeling), enhanced Function Flow Block Diagrams (EFFBDs), block dia-
grams, and parametric diagrams. IDEF0 is a process modeling technique that is
not part of SysML but will be utilized throughout this book.

Models, abstractions of reality, are critical in the engineering of systems.
These models start as very high level representations that address what needs
the system should meet and how, then progressively define how the system will
meet these needs. These models contain increasingly more mathematical and
physical details of the system as the design portion of the development phase
ends. The various engineering disciplines create even more detailed mathema-
tical and physical representations of the configuration items (CIs) before the
final prototype of each CI is produced for testing and integration. During the
qualification of the system design, these CI prototypes are tested with a test
system that itself is comprised of many models of the system’s components,
other systems and the context with which the system interacts, models of
scenarios that depict how the system will be used, and analysis and simulation
models for creating and analyzing the test results. In fact, models are so
pervasive in the engineering of systems that engineers must always remind
themselves not to confuse reality with the models of reality that are being
created, tested, and used.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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Every modeling technique is a language used to represent some part of
reality so that some question can be answered with greater validity than could
be obtained without the model. All languages have a set of symbols or signs,
known as semantics, that are used like we use letters and numbers to form
expressions. Similarly, every language has a syntax that defines proper ways of
combining the symbols to form thoughts and concepts. Section 3.2 summarizes
the descriptive versus normative purposes of models and then categorizes
models as physical, quantitative, qualitative, and mental.

SysML is a modeling language that is a modification of the Unified
Modeling Language (UML) for software engineering. SysML matches some-
what closely with the Traditional Top-Down Systems Engineering (TTDSE). In
Section 3.3 we will introduce SysML, including use case and sequence diagrams
for high level metasystem interactions, IDEF0 for process or activity modeling,
EFFBDs for dynamic behavior modeling, and block diagrams for the struc-
tural modeling and parametric models for modeling equations. Note SysML
also addresses requirements but uses textual representations of the require-
ments. Chapter 6 of this text addresses textual representations of requirements.

Use case diagrams capture the various systems that comprise the meta-
system, one of which is the system of interest. The use case diagram also
identifies a number of scenarios in which the systems in the use case diagram
interact during the relevant life cycle phase of the system of interest. Each of
these scenarios is then defined in more detail in a sequence diagram. Section 3.4
defines these diagrams and gives examples.

Process models address how outputs are transformed from inputs via some
function, activity, or task. There are numerous process modeling techniques in
use today, one of which is IDEF0. Other process modeling techniques (data
flow diagrams and N2 charts) are described in Chapter 12. Process models are
graphical representations that provide qualitative descriptions to explain how
inputs are transformed into outputs. These process models can be used at both
shallow and detailed levels of abstraction. IDEF0, presented in Section 3.5, is a
popular modeling technique because it has a rich and standardized semantics
and syntax.

Function flow block diagrams (FFBDs) and enhanced FFBDs (EFFBDs)
are part of SysML for capturing dynamic behavior in a representation that can
be simulated. EFFBDs are discussed in Section 3.6.

Block diagrams are used within SysML to capture the interconnections
between pairs of components within the physical architecture so that interfaces
between these pairs of components can be defined. Section 3.7 presents this
material.

Requirements diagrams are introduced in Section 3.8. Parametric diagrams,
used to capture variable relationships in systems of equations for simulating
system performance, are discussed in Section 3.9.

Exercise Problem 3.1 introduces a process model of the TTDSE process using
IDEF0 model. Selected pages of this IDEF0 model will be used in Chapters 6
through 11 to describe the methods that comprise this engineering process.
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3.2 MODELS AND MODELING

A model is any incomplete representation of reality, an abstraction. Models can
be physical representations of reality. A subscale aircraft is used in a wind
tunnel to test the aerodynamics of the real aircraft; this subscale aircraft does
not contain the instrument panel used by the pilot or the seats in which
passengers sit because they are not relevant (we think) for testing the
aerodynamics of the aircraft. Similarly, models can be mathematical. A random
number generator can be used to model the propensity of a coin to turn up
heads or tails in a flip. Similarly, we can develop either an analytic or a
simulation model of an aircraft’s aerodynamics or an information system’s
response to user inputs. The wind tunnel data taken from the physical model of
the aircraft can be used to refine the simulation data. The simulation data can
be used to guide additional wind tunnel tests. Qualitative models are also quite
useful. The set of requirements for a system is an example of a qualitative model
that serves as a model of the system’s performance and capabilities. Finally,
each of us has a number of mental models that we use in everyday life.
However, in every case the essence of a model is the question or set of questions
that the model can reliably answer for us.

Before describing the types of models, discussing the types of questions that
can be answered is important. The questions can be divided into three
categories: descriptive (or predictive), normative, and definitive. A definitive
model addresses the question of how should an entity be defined; this is the
major category of questions that will he addressed in this book. The focus is
building a definition of how the system is being designed, in terms of its inputs
and outputs, functions, and resources. A descriptive model attempts to predict
answers to questions for which the truth may or may not be obtained in the
future. Descriptive models are the most commonly used in science and
engineering. Executable models, which will be discussed in Chapter 12, are
descriptive models because they are predicting the behavior of the system’s
design in specific situations given the modeled design definition of the system.
Normative models address how individuals or organizational entities ought to
think about a problem and guide decision making. A normative model for
decision making, in particular deciding about the engineering of a system, is
developed in Chapter 13.

Every modeling technique requires a language to establish a representation
of reality. Models should be used to provide an answer to one or more
questions; these answers should provide greater validity or insight than is
possible without the model. Any language has semantics, a set of symbols or
signs, which form the basis of representations in the language. In addition,
every language has a syntax that defines proper ways of combining the symbols
to form thoughts and concepts.

Definitive models require a rich language, both in terms of semantics and
syntax, since these models are used to establish an interpretation of some aspect
of reality and communicate that interpretation to a broad range of people and
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possibly computers. This language must be understandable to its audience.
Unfortunately, richness and understandability often conflict with each other.
That is, making a modeling language richer usually makes it less under-
standable. A third aspect, formality, is useful for proving that certain
characteristics exist or do not exist; formality tends to conflict with both
richness and understandability.

Descriptive models are measured by their power or richness for addressing a
wide range of problems, understandability to both wide and narrow audiences,
and accuracy or precision with which they can be used to define the relevant
entity. Descriptive models can sometimes be tested as to their predictive accuracy
in various situations. This predictive accuracy must be understood by those using
the descriptive model because the ability to predict accurately in the situation in
which the model is being used cannot be known exactly. Nonetheless, talking
about descriptive models as being right or wrong is fruitless—all models are
wrong. Rather, the model’s usefulness in terms of predictive accuracy in general
and the cost of building and using the model are very relevant.

Normative models, on the other hand, cannot be tested but are judged on
their understandability and appeal across all disciplines in which they can be
used. A normative model for making decisions cannot be tested because the
world can never be examined in the same conditions with and without the use
of the normative model. Rather, the normative model is tested by decision
makers based upon the model’s ability to reflect the intuitions of the decision
makers or provide logical arguments that refute this intuition.

One possible taxonomy of models is shown in Table 3.1. This taxonomy
begins by breaking models into physical, quantitative, qualitative, and mental
models. A physical model represents an entity in three-dimensional space
and can be divided into full-scale mock-up, subscale mock-up, breadboard,
and electronic mock-up. Full-scale mock-ups are usually used to match
the interfaces between systems and components as well as to enable the
visualization of the physical placement of elements of the system. The design
of the Boeing 777 replaced the physical mock-ups with a very detailed three-
dimensional electronic mock-up. Subscale models are commonly used to
examine a specific issue such as fluid flow around the system. A breadboard
is a board on which electronic or mechanical prototypes are built and tested;
this phrase was legitimized in dictionaries in the mid-1950s but is not used as
much now.

Quantitative models provide answers that are numerical; these models can be
either analytic, simulation, or judgmental models. Simulation models can be
either deterministic or stochastic, as can analytic and judgmental models.
Similarly, these models can be dynamic (time varying) or static snapshots (e.g.,
steady state). An analytic model is based upon an underlying system of
equations that can be solved to produce a set of solutions; these solutions
can be developed in closed form. Simulation methods are used to find a numeric
solution when analytic methods are not realistic, such as when friction in some
form is introduced as an element of the model. When the equations involve the
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movement through time of a number of variables, we say the simulation is
dynamic, involving differential or difference equations. However, a simulation
need not involve time; the model may address spatial issues. Simulations that
include uncertainty are often called ‘‘Monte Carlo’’ simulations; Monte Carlo
simulations involve the repetitive solution of the same set of equations based
upon different samples of the underlying probability distributions for the
uncertainty specified in the equations. Judgmental models provide representa-
tions of real-world outcomes based solely on expert opinions. Explicit judg-
mental models are not used as often as the other types discussed here, but many
analysts have found them to be an extremely useful precursor to other
quantitative modeling activities.

Qualitative models provide symbolic, textual, or graphic answers. Symbolic
models are based on logic or set theory, samples of which are provided in
Chapter 4. Textual models are based in verbal descriptions; many models of the
social sciences use textual models in which a model is described in one or more
paragraphs. Many requirements documents in systems engineering are exam-
ples of textual models of the system’s ultimate performance. Graphical models
use either elements of mathematical graph theory or simply artistic graphics to
represent a hierarchical structure, the flow of items or data through a system’s
functions, or the dynamic interaction of the system’s components. This use of
artistic graphics as a modeling approach is often given the pejorative name of
‘‘view graph’’ engineering. Most engineers view graphical models as one step
above textual models. If graphical models can be based on mathematical graph
theory, then these qualitative models can be powerful additions to the systems
engineers’ toolkit.

Finally, we need to address the mental models that we all carry around inside
of us as abstractions of thought. The concept of a mental model arose in at least

TABLE 3.1 Taxonomy of Models

Model Categories Model Subcategories Typical Systems Engineering
Questions

Physical Full-scale mockup How much?

Subscale mock-up How often?

Breadboard How good?

Do they match?

Quantitative Analytic How much?

Simulation How often?

Judgmental How good?

Qualitative Symbolic What needs to be done?

Textual How well?

Graphic By what?

Mental Explanation All of the above!

Prediction

Estimation
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three separate communities relatively independently. Craik [1943] introduced
mental models to cognitive psychology as our foundation for reason and
prediction. Little was done with Craik’s concept of a mental model until the
early 1980s when Johnson-Laird [1983] and Gentner and Stevens [1983]
published two books on the subject. The research in cognitive psychology
has moved from the question of whether people do have mental models to the
question of how best to capture and utilize these mental models for educational
and other pursuits. The second field in which mental models became popular
and useful was that of manual control, comprised of both psychologists and
engineers. Early authors in the manual control field [Veldhuyzen and Stassen,
1977; Jagacinski and Miller, 1978; Rasmussan, 1979] addressed the use of
mental models by system operators for controlling and predicting system
performance. The third field to adopt mental models [Alexander, 1964;
Pennington, 1985] is our field of engineering and architectural designers.
Alexander [1964] discussed mental pictures as representations of the problem
definition and alternate solutions. Do you have a mental model of the street
network in your neighborhood, of your residence?

Engineers need to develop a mental model of the system on which they are
working to be successful. Modelers who are developing qualitative, quantita-
tive, or physical models clearly have to develop a mental model of the model
they are developing. The advantage of these non-mental models is that there is
a much clearer communication mechanism; mental models fall down in benefit
in terms of enabling communication among people. People engaged in the same
conversation may have a very different mental model but due to the imprecise
nature of natural language they often feel that they can agree with each other at
the end of a conversation even though their models of reality are quite different.

SIDEBAR 3.1

It is tempting to think that a quantitative model is more objective than a
mental model and, by extension, that a more complex quantitative model
is more objective than a less complex quantitative model. Certainly
more complex models are more explicit than less complex models. Also
the data inputs to these complex models are more specific and objective
appearing. However, we must always remember that any quantitative
model is developed via a mental process of one or more people and is
the product of their mental models. Therefore, it is a mistake to ascribe
objectivity to models. Complex mathematical models often have sub-
jective assumptions throughout their equations and data.

This book emphasizes the qualitative aspects of systems engineering. As a
result, this chapter introduces the qualitative modeling approaches in SysML
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and IDEF0. The next two chapters introduce the mathematics of set theory and
graph theory, which should provide some mathematical underpinnings and
limitations of these modeling approaches. Chapter 13 introduces decision
analysis as the quantitative method for framing the design decisions discussed
throughout this book.

The purpose in developing a model is to answer a question or set of questions
better than one can without the model. Often models are used to check each
other; non-mental models should always be used to check mental models. This
checking process is a two-way street; each model can be assumed to have
certain strengths (answers known to be valid within some degree of accuracy or
precision). These strengths can be used to help verify the abilities of the other
model. Ultimately, a model is developed to provide answers in an area for
which we feel we cannot get reliable answers any other way. However, we are
commonly looking for more than just an answer; we want to understand ‘‘why’’
the answer is what it is, that is, obtain insight into how the real world works.
Qualitative models are typically created to achieve agreement among indivi-
duals (shared visions) and to communicate that agreement to other people.
Quantitative and physical models are better mechanisms to provide insight.

The more specific a question or set of questions is that a model has to answer;
the easier it is to develop a model that can be useful. Models that are expected to
answer a wide range of questions or generic questions well are the most difficult
to develop and the least likely to provide insight into the logic for the answer.
The easiest questions to answer are those for which we are looking for a relative
comparison of alternate options: Which aircraft design weighs the most? How
much more does one design weigh than another? The hardest questions involve
providing an absolute answer: How much does this aircraft weigh?

The most effective process for developing and using a model is to begin by
defining the questions the model should be able to answer. (This is analogous to
defining the requirements for a system.) Then the model should be developed,
tested, and refined. The model should be validated, shown to be answering the
right questions. Finally, there should be some verification process to show that
the model is providing the right answers for known test cases. Now we are
ready to use the model for unknown test cases.

Often, there may be existing models that we believe are appropriate for use.
In this case we should again begin by defining the questions to be answered.
Then we can decide which model to use, perhaps with some enhancements.
There should again be a period of verification for the chosen model in relevant
cases before usage begins.

The incorrect approach to modeling is to begin by building or revising a
favorite model before we know what questions need to be answered. People
enthralled with the modeling process rather than the question answering
process employ this approach far too often. Modeling enthusiasts are more
interested in the intrinsic properties of the model than with the model’s ability
to answer important questions. Note the more complex the model, the harder it
is to obtain that insight we are seeking as to why the answer is what it is. This is
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why many experienced model builders opt for the most parsimonious (simplest)
model that will provide a reasonably accurate answer.

Before using a model, it is important to establish the validity of the model.
Model validity is difficult to establish and must first be defined. Recall from
Chapter 1 that a system’s validity addresses whether we have built the right
system. By extension model validity concerns whether we have built the right
model. Validity of a model has several dimensions: conceptual, operational,
and data. Conceptual validity addresses the model representation, that is, the
theories employed, the assumptions made. Conceptual validity addresses
whether the model’s structure is appropriate to answer the questions being
asked. For a qualitative model conceptual validity is the most important. For a
quantitative model the operational validity is key; that is, does the model’s
output behavior represent that of the real world for the questions being asked.
Finally, data validity addresses whether the appropriate inputs were employed
in building, testing, and using the model. Data validity for a qualitative model
addresses whether the right individuals were involved in creating the model and
whether they obtained access to the best set of information about the real world
during the creation process. For quantitative models, the selection of a
modeling technique may ride on what type of information will be available
for running the model. When input data is scarce, judgmental models are often
selected. In summary, establishing a model’s validity has to be tied to the
model’s ability to answer the questions that the model was designed to address.

Models have many potential uses in systems engineering: creation of a shared
vision, specification of the shared vision, communication of the shared vision,
testing the shared vision, estimation or prediction of some quantitative measure
associated with the system and selection of one design option over other design
options. The shared vision could be the inputs and outputs of the system, the
system’s requirements, the system’s architecture, or the test plan for validating
the system’s design. As can be seen, all but the last two uses involve a qualitative
activity. This is the basis for emphasizing the use of qualitative models as adjuncts
to our mental models in this book. Quantitative models remain important, but
qualitative models are not given their due value in engineering.

3.3 SysML MODELING

In Table 1.5 there were four topic areas defined for SysML modeling
[Friedenthal et al., 2008]: structure, behavior, interaction, and requirements.
This is the decomposition provided by the Object Management Group, Inc.
(OMG), which produced the specification for SysML.

Another way of viewing these categories that is more consistent with the
organization of this book would be:

1. meta-system modeling with use case and associated sequence diagrams as
well as requirements relations with requirements diagram
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2. behavior modeling of the system’s activities or processes (including both
static and dynamic modeling) using activity and state machine diagrams

3. structural modeling of the system’s components including block defini-
tion and internal block diagrams

4. parametric modeling of performance characteristics of the system

5. the process and structure of that the systems engineering team is taking
using package diagrams

Section 3.4 will introduce use case diagrams and sequence diagrams. This
material is presented in terms of the very important modeling of the system’s
interaction with other systems (or the meta-system) that is often not done.
Chapter 6 will revisit this material and provide more context about how to use
these diagrams.

Systems and software engineers have devised many ways to model processes
or activities, at all levels of granularity—meta-system, system, through
components. The activity or process modeling category within SysML includes
state machines, a new modeling technique that combines some properties of
Petri nets (see Chapter 12) and control flow diagrams as well as EFFBDs. Not
directly mentioned are the standard static, time-lapsed representations of
dynamic processes such as IDEF0, data flow diagrams, and N2 charts. This
text will continue to stress the value of static modeling techniques such as
IDEF0 as a stepping stone for getting to the more complex behavior models, as
well as for capturing the inputs and outputs that are passed from function to
function in the behavioral model. The process modeling approach primarily
employed in this book is IDEF0, which is described in Section 3.5. The SysML
framers did include state–machine models and activity diagrams (otherwise
called extended function flow block diagrams or EFFBDs). State-machine
models are discussed in Chapter 12. EFFBDs are described in detail here in
Section 3.6. Table 3.2 provides a categorization of process models into static
and dynamic, as well as into SysML versus non-SysML approaches. Chatper 12
covers most of the techniques not addressed here in Chapter 3. Chapter 7 will
return to this material and provide a process for building these types of models.

TABLE 3.2 Representation of process modeling techniques

Static View Dynamic View

SysML – State machines

Activity diagrams

EFFBDs

Non-SysML Data flow diagrams FFBDs

Control flow diagrams Behavior diagrams

N2 diagrams Petri Nets

IDEF0 diagrams Statecharts

ROOMcharts
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Structural modeling diagrams (block definition and internal block) are
described and illustrated in Section 3.7. These diagrams have a long history
in systems engineering and have finally been formally defined and standardized
by SysML. Chapter 8 will provide more detail on how to build these kinds of
models.

Systems engineers have historically built many types of performance
models of their system design so as to estimate final performance capabilities
of the design prior to fabrication of the initial prototypes. Chapter 9 introduces
the types of performance modeling commonly used in the engineering of
systems.

3.4 META-SYSTEM MODELING

In order to describe a modeling language we have to describe the way in which
the language is used to communicate to its readers/listeners. To describe a
language we need to identify the semantics (signs and symbols) and the syntax
(composition of signs and symbols) of that language. The following definitions
for semantics and syntax are taken from The American Heritage Dictionary
[Berube, 1991].

Semantics: study of relationships between signs and symbols and what they
represent.

Syntax: way in which words are put together to form phrases and sentences.

This and each of the following sections will describe the semantics of the
language tool. The syntax will then be described formally or via examples.

It is critical that there be a team of engineers and domain experts that is
performing the systems engineering process. This team can create a huge
problem for itself by diving right into the design of the system without first
learning about the other systems with which the focus of the design activity is to
interact. This is probably the most common and most major problem
encountered in the engineering of systems.

Chapter 6 introduces the operational concept, which includes scenarios or
use cases that are supposed to describe how the system interest will interact with
humans and other systems throughout its life cycle. It is in the operational
concept that the use case diagram and many sequence diagrams would be used
to describe these scenarios. Developing these sequence diagrams is a major part
of getting ready to develop the system’s requirements. This section provides the
fundamental semantics and syntax for using use case diagrams, sequence
diagrams and requirements diagrams within SysML.

The purpose of the use case diagram is to provide a higher level of how all of
the individual use cases or usage scenarios combine within the operational
concept to describe how the stakeholders think the system will be operated.
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This use case diagram originated in software engineering and is now commonly
employed within the engineering of systems.

The semantics of a use case diagram contains:

1. labeled stick figures for each class of humans or external systems

2. labeled ovals to define each use case

3. solid lines connecting stick figures and ovals

4. labeled dashed lines connecting ovals

The syntax is that there is a diagram for each relevant phase of the system’s
life cycle, (e.g., operations, training). For a given phase of the life cycle, the
appropriate classes of humans (e.g., operators, maintainers) and other external
systems are each given a stick figure. Then all of the possible interaction
sequences among the system and these classes of humans and external systems
are categorized and labeled as ovals. These interaction sequences are later
defined one at a time in a sequence diagram. Actually there is a significant
amount of iteration between the first draft of the use case diagram, the defining
of individual sequence diagrams, the improvement of the use case diagram, and
so on.

Figure 3.1 provides an example of a use case diagram for an elevator. The
stick figures are (1) passenger class of humans, (2) maintenance workers, (3)
building personnel, (4) a centralized service center including humans and other
technology assets, and (5) the building. The high level operational scenario is of
course to use and maintain the elevator. There are four extensions of this basic
scenario: responding to a fire, keeping the doors open, rescuing people from a
stopped elevator, and ensuring that the load on the elevator is within a safe
range. These extensions provide more detail about the basic scenario in specific
situations that may or may not occur. There are two other ovals on this use case
diagram for updates to the basic scenario that must always be present:
providing electric power and maintaining a comfortable environment. Finally,
there is one use case (fix the elevator) that does not involve passengers. In fact,
this would be a basic scenario with extensions and inclusions if we were
designing a real elevator.

For each labeled oval in the use case diagram there should be a sequence
diagram that defines the interactions among it and the other systems (including
people, facilities, etc.) that the use diagram depicts as relevant. The semantics of
a sequence diagram are:

� a labeled vertical line

� a labeled horizontal arrow that connects two or more vertical lines

One labeled vertical line represents the system of interest. Each vertical line
represents an external system with which the system interacts (exchanges inputs
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and outputs) during the use case. There must be at least two vertical lines. Time
is assumed to go from the top to the bottom of the vertical lines. The labeled
horizontal arrows represent the flow of items (information, energy, or physical
entities) between the systems that the horizontal arrows connect. These items
move in the direction of the arrow.

The syntax of sequence diagrams dictates that earlier flows in the use case
appear above later flows, but time is not represented in appropriately scaled
time units. Figure 3.2 provides a simple example for an elevator system in which
a potential passenger calls an elevator to go up or down.

One contentious issue in sequence diagrams is what the labels of the
horizontal arrows should represent. Many authors and practitioners label the
arrows with the function being performed by the system of interest. In this
book we adopt the convention of labeling the horizontal arrows with a name
that represents the item being transferred from one system to another. The
reason for this convention will be described in detail in Chapter 6 and is
associated with the contention that functional requirements should be written
about inputs and outputs rather than functions.

Finally, SysML provides a basic representation for defining requirements
and a broad set of representations for relating requirements to other require-
ments and system concepts. Rather than detail this part of SysML, we will use
the capabilities in CORE that were described in Chapter 2.

Passenger Take
Elevator

Respond
to Fire

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

Keep
Doors
Open

Rescue
from Stopped

Elevator

Ensure
Safe Weight

Level

Maintain
Comfortable
Environment

Provide
Electric
Power

Fix
Elevator

Maintenance
Person

Building
Personnel

Centralized
Service Center

Building

FIGURE 3.1 Exemplary use case diagram.
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3.5 STATIC BEHAVIORAL PROCESS MODELING WITH IDEF0

While IDEF0 was not included in SysML as a modeling technique, it will
continue to be used throughout this book. First, it provides a very useful
graphical representation of the interaction of the functional and physical
elements of a system. IDEF0 is definitely not a sufficient modeling representa-
tion for the engineering of systems since it is not precise enough to define a
unique dynamic representation of the system’s design. In fact, it is not even a
necessary modeling language since other languages have been successfully used
for decades in its place. However IDEF0 has gained wide acceptance and
standardization and also has been used successfully for decades as an approach
to start the modeling process.

The IDEF acronym comes from the U.S. Air Force’s Integrated Computer-
Aided Manufacturing (ICAM) program that began in the 1970s. IDEF is a
complex acronym that stands for ICAM Definition. The number, 0, is
appended because this modeling technique was the first of many techniques
developed as part of this program. More recently the U.S. Department of
Commerce [National Institute of Standards and Technology (NIST)] has issued
Federal Information Processing Standard (FIPS) Publication 183 [1993a] that

1: Up Service Request

4: Feedback that door is opening

5: Entry Opportunity

6: Floor Request

10: Feedback that door is opening

11: Exit Opportunity

8: Feedback that door is closing

9: Feedback about floor where stopped

7: Feedback that request was received

3: Feedback that car is on the way

2: Feedback that request was received

Passenger Elevator

FIGURE 3.2 Exemplary sequence diagram.
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defines the IDEF0 language and renames the acronym, Integrated Definition
for Function Modeling.

The roots of IDEF0 can be traced to the structured analysis and design
technique (SADT), developed and tested by Doug Ross at SofTech, Inc. from
1969 to 1973.

A sample of the modeling languages developed as part of the IDEF family
follows.

IDEF0: a major subset of SADT; focus is a functional or process model of a
system

IDEF1: focus is an informational model of the information needed to support
the functions of a system

IDEF1X: focus is a semantic data model using relational theory and an entity–
relationship modeling technique

IDEF2: focus is a dynamic model of the system

IDEF3: focus is both a process and object state-transition model of the system

3.5.1 IDEF0 Semantics or Elements

An IDEF0 model is comprised of two or more IDEF0 pages. The two
semantical elements of an IDEF0 page are functions and flows of material,
energy, or information.

A function or activity is represented by a box and described by a verb-noun
phrase and numbered to provide context within the model (see Figure 3.3). A
function in this context is a transformation that turns inputs into outputs.

Inputs to be transformed into outputs enter the function box from the left,
controls that guide the transformation process enter from the top, mechanisms
(physical resources that perform the function) enter from the bottom, and
outputs leave from the right.

A flow of material, energy or data is represented by an arrow or arc that is
labeled by a noun phrase (see Figure 3.4). The label is a noun phrase and
represents a set or collection of elements defined by the noun phrase. The label
is connected to the arrow by an attached line, unless the arc leaves the page, in
which case the label is placed on the appropriate edge of the page.

Verb...noun

phrase

A#

FIGURE 3.3 Syntax for an IDEF0 function.
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3.5.2 IDEF0 Diagram Syntax

An IDEF0 model has a purpose and viewpoint and is comprised of two or more
pages, each page being a syntactical element of the model. The IDEF0 model:

� Answers definitive questions about the transformation of inputs into
outputs by the system.

� Establishes the boundary of the system on the context page. This
boundary is explicated, if needed, as a meta description.

� Has one viewpoint; the viewpoint is the vantage or perspective from which
the system is observed.

� Is a coordinated set of diagrams, using both a graphical language and
natural language.

The A-0 page is the context diagram, which defines the inputs, controls,
outputs, and mechanisms (ICOMs) for the single, top-level function, labeled
A0. The context page establishes the boundaries of the system or organization
being modeled by defining the inputs and controls entering from external
systems and the outputs being produced for external systems.

Other pages in the IDEF0 model represent a decomposition of a function on
a higher page, with the exception of the external system diagram page, which is
described later. The number of subfunctions for any IDEF0 function is limited
to six, or possibly seven, for purposes of a readable display on a page. The
decomposition of a parent function preserves the inputs, controls, outputs, and
mechanisms of the parent. There can be no more, no less, and no differences.
Every function must have a control. An input is optional. Functional boxes are
usually placed diagonally on the page with the more control-oriented functions
being on the top left and the functions responsible for producing the major
outputs being on the bottom right. Arcs are decomposable, just as functions
are. Feedback is modeled by having an output from a higher numbered
function on a page flow upstream as a control, input, or mechanism to a lower
numbered function.

Arc decomposition and joining are necessary to minimize the number of arcs
on the upper pages of a model, enhancing the readability or communicability.
Arc decomposition and joining are handled by branching and joining, respec-
tively. The labeling conventions for joins and branches are shown in Figure 3.5.
If an arc is labeled before a branch and not labeled after the arc branches into

noun-phrase

FIGURE 3.4 Syntax for an IDEF0 flow of material or data.
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two or more segments (as shown on the first of four examples in Figure 3.5),
then the arc before the branch carries on after the branch. Similarly, if an arc is
labeled after two or more arcs join (see the second example in Figure 3.5), then
the label after the join also applies to the arcs before the join. If the label before
a branch (after a join) does not apply to one or more of the arcs after the branch
(before the join) then the arcs that deviate must have their own label. These
labels of the exception branches have to be subsets of the labels before the
branch (after the join), as shown in the bottom two examples of Figure 3.5.

Three different types of feedback are possible within an IDEF0 page:
control, input, and mechanism. (The general topic of feedback will be discussed
in more detail in Chapter 7.) Feedback in an IDEF0 diagram enables data or
physical resources to be sent against the flow, down and to the right, so that
closed-loop control can be used to improve key performance issues. The
semantical protocols for showing these three types of feedback are shown in
Figure 3.6. A control arc indicating feedback must go up and over the functions
involved, coming down on the function for which it is a control. Input feedback
is indicated by an arc that goes down and under the functions involved, coming
up and into the function for which it is an input from the left. Finally,
mechanism feedback must also be achieved by an arc that goes down and under
the function for which it is a mechanism.

A major difficulty with IDEF0 models is determining whether an item
should be an input or control. The primary distinction is that inputs are items
that are transformed or consumed in the functional process associated with the
production of its outputs. Controls, on the other hand, are not transformed or
consumed, but rather are information or instructions that guide the functional

A

A

B

A

A

B

A

A

B

A

A

B

means

means

means

means

A

A A

A ∪ B

FIGURE 3.5 Labeling conventions for branches and joins.
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process. Typical examples of controls are a blueprint and recipe instructions
(e.g., bake at 3751F for one hour, use a 9.5- by 12-inch baking pan). None-
theless, there are many times when it is very difficult to determine whether an
item is an input or control. In these cases, the decision is the author’s, with the
provision that every function must have at least one control while inputs are
optional.

Readers of an IDEF0 model are often surprised to see a function with a
control and output, but no input. This seems to suggest a counterexample to
the conservation of mass and energy in physics. Remember though that outputs
of a function in an IDEF0 model do not have to have mass or energy but can be
information. A common example of a function that can produce an output
without an input is a function that produces a time mark for other parts of the
system. This function receives a control whenever the time mark is needed and
uses its timekeeping resources to produce the time mark as an output.

3.5.3 IDEF0 Model Syntax

An IDEF0 model is a functional decomposition of the top-level, or A0,
function. The decomposition is a hierarchy, as shown in Figure 3.7. The
function numbers are shown on the right and the corresponding IDEF0 page
numbers are shown on the left.

The function that is being decomposed is the parent, while the functions
decomposing it are called its children. The node numbering process defines the
tree. The node numbering convention as shown in Figure 3.7 is summarized in
Table 3.3.

Mechanism Feedback

Input Feedback

down & under

label

Control Feedback

up & over
label

down & under label

FIGURE 3.6 Feedback semantics within an IDEF0 page.
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As an example of this decomposition process, the A0 page, shown in
Figure 3.8, defines the decomposition of the A0 function by three functions in
this case. Note there are two inputs, three controls, three outputs, and one
mechanism for the function A0; each of these ICOMs is given a generic label to
emphasize the conservation of ICOMs. On the decomposition of A0 into Al, A2,
and A3, there are again two external inputs, three external controls, three external
outputs, and an external mechanism. Note that I1, C2, C3, and M1 branch on
this A0 page. In addition, the joining of outputs from Al and A2 produces 02. A
number of internal items are produced, some of which branch and join.

IDEF0 models can also address the interaction of the system with other
systems. This interaction is modeled on the A-1 page, which takes the A0
function and places it in context with other systems or organizations. This
representation is often critical to understand the relationship of the system
being addressed to the system’s outside world and establishing the origination
of inputs and controls and the destination of outputs.

An IDEF0 model also has a data dictionary. An IDEF0 model should have
a glossary page that defines the special words and acronyms in the labels and

Page #’s  Function #’s

A-1

A-0

A0

A1, A3

A33

A0

A1 A2 A3

A11 A12 A13 A31 A32 A33 A34

A331 A332 A333 A335A334

A-0 A-12A-11 A-13

FIGURE 3.7 IDEF0 functional decomposition.

TABLE 3.3 IDEF0 Page Hierarchy

Page Number(s) Page Content

A–1 Ancestor or External System Diagram

A–0 Context or System Function Diagram (contains A0)

A0 Level 0 Diagram with first tier functions specified

A1, A2, y Level 1 Diagrams with second tier functions specified

A11, A12, y, A21, y Level 2 Diagrams with third tier functions specified

y y
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functions of the model. The data dictionary defines the arc decompositions.
These decompositions reflect the arc branches and joins in the model. The
dictionary also describes which functions use/produce which data elements.

3.5.4 IDEF0 Advanced Concepts

Advanced concepts to be discussed in this section are loops, tunneling,
functional activation rules, exit rules, and call arrows.

IDEF0 allows the use of loops to show memory storage and feedback
(see Figure 3.9). A loop is showing that there is feedback involved in the

Transform I1.1
into O1 & O2.1

as determined by
C1 & C2

using M1.1

Transform O2.1 & I1.2
into O2.2

as determined by
C2, C3 & O1
using M1.2

Transform I2
into O3

as determined by
C2 & C3

using M1.3

I1

I2

C1 C2 C3

O1

O2

O3

M1

M1.1

M1.2

M1.3

O2.1

O2.2I1.2

I1.1

A1

A2

A3

Transform I1 & I2
into O1, O2 & O3
as determined by

C1, C2 & C3
using M1

I1

I2

C1 C2 C3

O1

O2

O3

M1

A0

FIGURE 3.8 Functional decomposition in an IDEF0 model. Showing the preservation
of inputs, controls, outputs, and mechanisms.
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decomposition of the function shown with the loop. Usually the loop is not
needed because the feedback will be seen on the decomposition. If the function
is not going to be decomposed, it may be wise to show the loop. There are very
few instances in which a loop is appropriately shown.

Tunneling is a technique within IDEF0 to hide an input, control, output, or
mechanism in part of the model. The use of parentheses around either the head
or tail of an arrow depicts a tunnel in IDEF0. Parentheses around the head of
an arrow that is entering a functional box indicates that the input, control,
output, or mechanism associated with that arrow will not be seen on the
decomposition of that function; that is, the ICOM is going underground and
may or may not reappear. If the ICOM does reappear, it will have parentheses
around its tail to depict that it is exiting the ground. The rationale for tunneling
is that certain ICOMs are not particularly relevant for understanding the
functional model at specific levels of detail and therefore should not clutter up
these pages of the model.

Each function is activated when sufficient inputs and controls are present to
produce the relevant outputs, given those inputs and controls. This functional
activation is typically defined as a set of rules. A rule is a set of ‘‘if y, then
y‘‘statements, or pre-conditions and post-conditions. Boolean algebra is used
to specify these rules. These activation rules are embedded in each function; a
‘‘for exposition only,’’ or EEO page, is often used to articulate the activation
rules of a particular function or sets of functions.

For each function there are one or more exit criteria that determine when the
function has completed its execution. Typically, the exit criterion is associated
with the production of one or more outputs. If more than one output may be
produced by a given function, then it is critical to state the exit criteria.

The final advanced concept is that of a call arrow. A call arrow is an arrow
that breaks all of the rules of ICOMs that have been presented so far and is
seldom used in the author’s experience. The call arrow exits the bottom of an
activity’s box and points toward the bottom of the page; see FIPS Publication

label

label

Memory Feedback

Memory Storage

FIGURE 3.9 Memory semantics in IDEF0.
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183 [1993a] for an example. The label attached at the end of the call arrow
signifies another box that may be part of the IDEF0 model, or part of another
IDEF0 model. The call arrow is indicating that there is no decomposition of the
activity from which the call arrow is exiting, but that there is a decomposition
of the activity at the box associated with the label of the call arrow. The
advantage of the call arrow is that fewer pages need to be part of the IDEF0
model if several of the boxes have the same decomposition.

3.5.5 Systems Engineering Use of IDEF0 Models

A major emphasis in this book is the development of a functional architecture
for the system that defines what functions the system must perform to trans-
form the system’s inputs into its outputs. An IDEF0 model, minus the
mechanisms, can be used to define the functional architecture.

As part of the development of the allocated architecture the system’s
functions are allocated to the system’s components and CIs. This allocation
of functions is captured by adding the mechanisms to the functional architec-
ture, producing a description of the allocated architecture.

3.6 DYNAMIC BEHAVIORAL PROCESS MODELING WITH EFFBDS

Function flow block diagrams (FFBDs) were traditionally used in conjunction
with N2 diagrams as the original approach to functional decomposition
in systems engineering. (In this book we are substituting IDEF0 for N2

diagrams; N2 diagrams are covered in Chapter 12 for the interested reader.)
Later FFBDs were extended and enhanced to become EFFBDs. The extended
FFBDs added more types of dynamic control logic. The enhanced FFBDs
included some items into the models for better explication and understanding.
This section first presents the full set of control logic of EFFBDs. Then shows
how the items will be added.

An EFFBD model contains all of the information in an IDEF0 model plus
sufficient information to create a unique discrete event simulation of the
dynamic behavior of the system. This is quite an added benefit over the
IDEF0 model, but it also requires additional sophistication to create. The view
adopted here is that the IDEF0 model is a stepping stone to the completed
EFFBD model for beginning systems engineers. Many experienced systems
engineers can skip the IDEF0 model and create the EFFBD directly. However
there are many other experienced systems engineers who view the IDEF0
modeling process as an important learning and communication process for the
stakeholders.

An EFFBD model has pages just as an IDEF0 model does. In fact, one
could take an IDEF0 model, add control logic to each page, and end up with an
EFFBDmodel. So the EFFBD model provides a hierarchical decomposition of
the system’s functions with a control structure that dictates the order in which
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the functions can be executed at each level of the decomposition. The control
structure and arrival sequence of ‘‘triggers’’ (special control inputs) determines
this order. This makes the syntax and semantics of an EFFBD model identical
to that of an IDEF0 model.

The only semantical difference between an IDEF0 and EFFBD page is that
the EFFBD has control symbols and lines that are not present in IDEF0. These
control symbols and lines will be the main emphasis of this section.

In the original, or basic, FFBD syntax there were four types of control structure
that were allowed: series, concurrent, selection, and multiple-exit function. A set
of functions defined in a series control structure (see Figure 3.10) must all be
executed in that order. In fact, the second function cannot begin until the first
function is finished, and so on. (Note that in the diagrams shown in this chapter
the two nodes at each end with missing center panels on the top and bottom of the
functional rectangles are functions that are outside of the decomposition of the
system function.) Control passes from left to right in FFBDs along the arc shown
from outside (depicted by a function in a box with broken top and bottom lines)
and activates the first function. When the first function has been completed (i.e.,
the function’s exit criterion has been satisfied), control passes out of the right face
of the function and into the second function, and so on. (Note that the little solid
squares in the upper left corner of functions 1 and 2 are a software construct of
CORE that indicate the function has been further decomposed.)

The concurrent structure (Figure 3.11) allows multiple functions to be
working in parallel, thus this structure is sometimes called ‘‘parallel.’’ However,
the concurrent structure should not be confused with the concepts of parallel in
electric circuits or redundant systems. Essentially control is activated on all
lines exiting the first AND node and control cannot be closed at the second
AND node until all functions on each control line entering this second AND
are completed. This control structure is almost always appropriate for the
external systems diagram; the external systems typically act concurrently with
each other and the system in which we are interested. The concurrent control
structure is also common for the first level functional decomposition of the
system function.

A selection structure and a multiple-exit function achieve essentially the
same purpose: the possibility of activating one of several functions. The
multiple-exit function (see Figure 3.12) achieves this by having a function
placed at the fork of the selection process to make the selection explicit; this is
the preferred approach to the selection structure.

Ref.

1

Perform Design
Activities

2

Perform
Integration
Activities

Ref.

FIGURE 3.10 A series function flow block diagram.
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When the selection function has been completed, one of the two or more
emanating control lines is activated. Each control line can have zero, one, two,
or more functions on it. Additional control structures, such as concurrent, can
be placed on any of these exiting control lines. Once all of the functions on the
activated line have finished execution, control passes through the closing OR
node. Each exit criterion for the control lines exiting the multiple-exit function
appears has a label on the control line. (Note there is an exit criterion for every
function with only one exit but the exit criterion is not commonly shown on the
exiting control line. The engineer may add a label for this purpose if desired.)

For the selection construct, which is an exclusive or, the first OR node passes
control to one of the exiting control lines in a manner that is unspecified on the
diagram. This control line stays active until the set of functions on that control
line are completed; control then passes through the second OR node. Figure 3.9
would be a selection construct if the AND nodes were OR nodes. Since the
passing of control at the first OR node is not defined on the diagram, the author
strongly recommends the use of a multiple-exit function instead of the selection
control construct.

Additional control structures have been added to FFBDs to form what are
called enhanced FFBDs: iteration, looping, and replication. See Sidebar 3.2 for
a comparison of FFBD control constructs to structured programming.

Looping (Figure 3.12) is the repetition of a set of functions, based upon a
specific criterion. The loop control structure begins with an LP control
node and ends with a second LP node, as shown in Figure 3.12. The exit
criterion for a loop is shown on the line that closes the two LP nodes. In the
loop structure it is possible to exit the loop if the appropriate criterion has been
satisfied.

Ref. AND AND

1.1

Perform
System Level

Design Activities

1.2

Perform
Subsystem

Level Design ...

1.3

Perform
Component

Level Design ...

2

Perform
Integration
Activities

FIGURE 3.11 A concurrent control structure in an FFBD.
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SIDEBAR 3.2: STRUCTURED PROGRAMMING AND FFBD
CONSTRUCTS

These constructs are quite analogous to those of structured programming,
which began in the late 1950s and early 1960s with people such as Bohm,
Dijkstra, Jacopini, and Warnier [De Marco, 1979]. Initially, the goal of
structured programming was to define programming control structures
that enhanced readability and improved testing. However, the goal evolved
to define the control structures that would enable proving the correctness
of an algorithm. While correctness proofs are still a goal, it was clear to
these early investigators that program simplicity was critical. An inter-
mediate goal to a correctness proof became the identification of the
minimum set of logical constructs that would be sufficient to write any
program. Bohm and Jacopini [1966] showed that only two constructs are
necessary beyond the obvious series processing construct: ‘‘if-then-else’’
and ‘‘do-while.’’ The if-then-else construct is the equivalent of the multi-
exit function in FFBDs for situations in which a function does not need to
be repeated. For repetitive activities that fit within if-then-else, the looping
control structure is used. The iteration control structure is the same as the
do-while programming construct. The other FFBD control structures are
needed for implementation-peculiar issues of a system: Concurrent struc-
tures represent multiple resources of the system performing different
functions simultaneously, and replication represents multiple resources
performing the same function simultaneously.

Iteration is the repetition of a set of functions, as often as needed to satisfy
some domain set; this domain set must be defined based upon a number or an
interval. The iteration control structure begins with an IT control node and
ends with a second IT node, see Figure 3.12. The domain set for the iterative
repetition is shown on the line closing the two IT nodes.

Finally, replication is the repetition of the same function concurrently using
identical resources. This repetition is shown using the stacked paper icon; the
reader can see an example of this in the section of Chapter 12 on behavior
diagrams. This control structure is appropriate for certain physical designs and
some functional architectures.

In general FFBDs and EFFBDs do not show the inputs and outputs for
functions. However, the SysML examples of EFFBDs do show at least a subset
of the most important inputs and outputs, bringing the diagrams closer to
IDEF0 diagrams. Remember, IDEF0 has no way to capture the dynamic
information that EFFBDs do.
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3.7 STRUCTURAL MODELING OF THE SYSTEM’S COMPONENTS

Systems engineers have been using block diagrams since the beginning of
systems engineering. However there has been no standardization of how to
construct these block diagrams, no uniform syntax and semantics. SysML has
provided a much needed syntax and semantics. A block is some element within
the spectrum from meta-system down to configuration item (CI). Each element
represents a set of resources (people, hardware, software, etc.) that can be used
to perform one or more functions as inputs are transformed into outputs. The
purpose of the block diagram is to display which blocks are connected to others
based on either a hierarchical relationship or on a peer to peer basis. Block
definition diagrams represent hierarchical relationships such as how one block is
composed of several other blocks. Internal block diagrams show which blocks
within a higher level block are connected to each other via interfaces.

The semantics for the block definition diagram include a labeled rectangle to
define blocks, a labeled connector with a diamond on one end and an arrow
head on the other to show the hierarchical relationships. Figure 3.13 shows these
two syntactic elements. Note the full SysML semantics [Friedenthal et al., 2008]
includes many other elements, but these two are the basic ones that will be used
later in Chapter 8. Figure 3.14 shows the syntax of a block definition diagram
for the elevator system and its subsystems that was discussed in Chapter 2.

The semantics of an internal block diagram (see Figure 3.15) include a
labeled rectangle for the specific blocks that compose the higher level block that
is the subject of the diagram, small unlabeled blocks on the boundary of the
larger labeled blocks to define the connection between the block and the
interface to another block, and unlabeled lines to show the interfaces or ports

Name of Component

Name of subcomponent

Number of
multiplicities

Number of
multiplicities

Note “number of multiplicities” means the number of components that
are associated with the component on each end of the connector.
If  the multiplicity is1 at either end, the multiplicity is commonly left  blank.
Sample multiplicities include 0..1(zero to one), 0..*(zero to many),1..*
(one to many), 1..n (one to n),n (exactly n).

The labeled rectangle represents
a component (from meta-system
to CI) of  the system with the 
name  of the component inside
the rectangle.

The labeled connector shows a
decomposition relationship (from
the end with the diamond to the 
end with no diamond). An
abbreviated name of the 
component  that  is lower in the
hierarchy is often shown at the
end with no diamond.

FIGURE 3.13 Semantic elements of a block definition diagram.
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<<block>>
Elevator System

<<block>>

<<block>>

<<block>>

<<block>>

Hallway
Passenger
Interface

Elevator 
Controller

Elevator Car

Maintenance
and Service

h1

c1

m1

car

1..*

FIGURE 3.14 Exemplary block definition diagram (syntax) for an elevator.

Name of Component

The labeled rectangle represents a 
component (from meta-system to CI) 
of the system with the name of  the
component inside the rectangle.

The unlabeled connector shows a
connection relationship between two
components that comprise a higher
level component.

A port associated with the component 
and the connector, designating the
connection of the two.

FIGURE 3.15 Semantic elements of the internal block diagram.
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that connect blocks. Again, there are more elements of the semantics for an
internal block diagram but these will suffice for an introduction. Figure 3.16
shows an internal block diagram showing the interface connections among the
subsystems of the elevator.

3.8 REQUIREMENTS MODELING

SysML also includes diagrams for requirements modeling. These diagrams show
the requirements taxonomy being used by the systems engineering team. Far too
many systems engineering teams do not have a requirements taxonomy so this
feature of SysML should dramatically improve the practice of systems engineer-
ing. Chapter 6 of this book covers one possible requirements taxonomy.

In addition, SysML includes diagrams for showing the relationships
established by the systems engineering team between each requirements and
specific system functions, components, items (inputs and outputs of functions),
and interfaces. Establishing these kinds of relationships was covered in the
previous chapter as part of learning how to use CORE so it will not be repeated
here.

3.9 PERFORMANCE MODELING

SysML uses a combination of block definition and parametric diagrams to
enable the systems engineer to define performance and trade off models for use
as part of the design process. The semantics of the block definition diagrams for
performance modeling is not quite the same as that for block diagrams, see
Figure 3.17. A rectangle, called a constraint block, is used to define each major
variable for which an equation or constraint is defined. Besides the name of the
variable appearing in the rectangle, the constraint equation appears inside the
delimiters – {y}. In addition, a list of parameters used in the equation with
their mathematical abbreviations is shown in the rectangle below a separating

: Elevator Car [1..*] : Elevator
Controller

: Hallway
Passenger
Interface

: Maintenance
and Service

FIGURE 3.16 Exemplary internal block diagram for subsystems of an elevator system.
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line. The same sort of connecting line is used to show decomposition as in the
block diagram case. Multiplicities are not needed. Figure 3.18 shows an
example of a partial fundamental objectives hierarchy for a hypothetical
elevator system.

Name of Constraint Variable
{constraint equation}

--------------------- ------------ ------------ ------ ------

parameters

The labeled rectangle represents a
constraint variable for use in defining
the equations in the parametric
diagram.

The unlabeled connector shows a
decomposition relationship (from the
end with the diamond to the end with
no diamond).

FIGURE 3.17 Semantic elements for the block definition diagram used for perfor-
mance modeling.

FIGURE 3.18 Exemplary block definition diagram for the fundamental objectives
hierarchy of an elevator system.
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The second SysML diagram used as part of specifying a performance model
is called a parametric diagram. The parametric diagram contains roundtangles
for the variables with equations and rectangles for the input variables
associated with those equations. Regular lines are used to connect the concepts
in the roundtangles and rectangles. Finally, a small rectangle is used to show
connecting ports for the roundtangles. These connecting ports are associated
with variables being used in the equation. Figure 3.19 shows the semantics of
the parametric diagram.

3.10 SUMMARY

The role of qualitative modeling in the engineering of systems is essential. This
chapter introduced modeling, purposes of models, and categories of models
and discussed how engineers use models in the engineering of a system. Models
are used to answer questions for which better answers are needed than currently
exist; each modeling technique has its own language of symbols and conven-
tions for combining symbols into higher level concepts. A model is an
abstraction of reality; models were characterized for the purposes of this
book as mental, qualitative, quantitative, and physical. Each type of model has
its advantages in terms of the types of questions that it answers best, as well as
the development and operational costs for the model.

SysML’s diagrams were introduced. The meta-system approaches of use
case diagrams and sequence diagrams were described and illustrated for the
elevator system that will be used throughout this book to illustrate the
engineering of a system.

Next, IDEF0, a commonly used process modeling technique, was introduced
and described in sufficient detail so that the reader should not only be able to

Name of Input Variable Needed
in Constraint Equation

The labeled rectangle represents an
input  variable that is needed as part
of one of the constraint equations.

The labeled connector shows a
connection relationship between two
concepts, either constraints or input 
variables.

A port associated with a constraint
equation for a variable from another
concept.

The labeled round tangle represents a
constraint, as defined by an equation,
that  is needed in the performance model.

Name of Constraint &
Associated Equation

x                                                         x

FIGURE 3.19 Semantic elements for the parametric diagram.
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read an IDEF0 model authored by someone else but will be able with
additional practice to develop IDEF0 models on her or his own. This process
modeling technique was introduced here because this book concentrates on the
methods to be used in the engineering of systems, and some process modeling
technique is needed to describe these methods. IDEF0 has the advantage of
being a good communication tool as well as having a standardized syntax and
semantics that do not vary by organization and discipline.

Enhanced Function Flow Block Diagrams (EFFBDs) were described next as
a way to capture the dynamic execution of functions within the system.
EFFBDs have a general set of control structures that overlay the functional
decomposition in an IDEF0 model to capture the unique dynamics envisioned
within the system.

Next the block diagram semantics and syntax introduced by SysML were
presented for both block definition diagrams and internal block diagrams. The
former shows the decomposition of the physical architecture. The second shows
the interface connections within a specific decomposition of a component.

Finally the new concept of parametric diagrams to define the performance
modeling being done within the engineering of the system is presented.

PROBLEMS

3.1 Reproduce the IDEF0 diagrams of the process for engineering a system
in Appendix B using CORE. You must pay attention to details of
content as well as format. Both will be graded very carefully.

3.2 Create an FFBD diagram in CORE for each page of the IDEF0 model
in Appendix B using CORE. Write a justification for the control logic of
each diagram.

3.3 Describe at least three ways to estimate how much storage space would
be needed if all of the emails sent during a 24 hour period from all of the
people in the United States to anyone else in the United States were
intercepted.
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Chapter 4

Discrete Mathematics:
Sets, Relations, and Functions

4.1 INTRODUCTION

Chapter 4 introduces material from the field of discrete mathematics. Much of
this chapter will be review material (e.g., sets and functions) for most readers.
The concepts of sets, relations, and functions are defined, discussed, and
illustrated. A function, with which almost everyone is familiar, is shown to
be a specialization of a relation, which in turn is a specialization of a set.

There are some key concepts introduced here that will be referred to in many
of the succeeding chapters. For example, we will be discussing requirements
and requirements documents in Chapter 6. Many system-level requirements
documents are very large, larger than they need to be. These large system-level
requirements documents can contain thousands and even tens of thousands of
requirements. Examples might include:

� The system shall be able survive attacks from another computer system.

� The system shall be able survive buffer overflow attacks from another
computer system.

� The system shall be able to survive stack-based buffer overflow attacks
from another computer system.

� The system shall be able to survive stack-based buffer overflow attacks
from an internal employee.

� The system shall be able to survive buffer overflow attacks against its
operating system.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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� The system shall be able to survive buffer overflow attacks against its
application programs.

� The system shall be able to survive buffer overflow attacks originating in
emails.

� The system shall be able to survive buffer overflow attacks while connected
to web sites on the Internet.

� And more of the same.

In Chapter 6 we will present an approach to writing such requirements and
make the point that only one or a few of the above requirements should be in
the system-level requirements document. We will use the concept of a partition,
introduced and defined here in Chapter 4, to make this case. A partition, based
on the set theory introduced in this chapter, ensures that the requirements are
not overlapping and are complete. Satisfying the non-overlapping part will be
relatively easy, but it is amazing how often it happens in practice. Achieving the
completeness is a goal that is seldom, if ever, achieved. But there are
approaches based on a partition that can help. Many requirements documents
contain duplicate, triplicate, and higher copies of requirements. Over time some
of these copies of requirements get changed while others do not, resulting in
inconsistent requirements such as happened on the Space Shuttle for operations
in ambient temperatures, resulting in part in the explosion of the Challenger in
1986. Getting the concept of a partition of a set is key to many aspects of
systems engineering.

In Chapter 7 we will discuss functions that systems perform in transforming
their inputs into their outputs. When we have this discussion, you should
remember the definition of a mathematical function, which we cover here in
Chapter 4. What you may not have learned previously is the concept of a
mathematical relation, which is a weaker concept than that of a mathematical
function. In order to perform mathematical analyses of our system’s functional
architecture we will need eventually to be able to satisfy the mathematical
definition of a function, not simply a relation, provided in this chapter. We will
also need to recognize that we are dealing with relations when we are dealing
with higher level functions of a system. Ensuring that our functional decom-
position is a partition will arise again and again.

As part of the discussion of functional architectures in Chapter 7, we will be
talking about decomposing higher level functions into sets of lower level
functions. (Note the word set has been used again.) The mathematical concept
of composition is defined here in Chapter 4 and discussed relative to
hierarchical decomposition; mathematical composition will be shown to be a
very limited representation of the functional modeling described in Chapter 7.

Two advanced concepts, power set and partial ordering, are introduced in
this chapter. These concepts have great usefulness to the theoretical develop-
ment of the engineering of systems, most of which is beyond the scope of this
book but elements of which are discussed in Chapters 6, 7, and 9. The interested
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reader is referred to Mott et al. [1986] and Rosen [1995] for more details on set
theory. Larsen and Buede [2002] provide a mathematical structure for perform-
ing early validation of requirements using many of the set theory concepts
presented in this chapter.

Section 4.2 introduces the general concept of a set and then discusses special
characteristics of sets, including operations on sets, the partition of a set, and
the power set of a set. Section 4.3 defines relations in terms of sets. In particular,
important characteristics of relations are defined. The partial ordering on a set
is introduced and illustrated. Section 4.4 discusses functions and the composi-
tion of functions.

There are no models introduced in this chapter, but all of this material is
critical in understanding the development of models, as well as the power and
limitations of models. Software engineers often make much more use of the
discrete mathematics presented here than do the engineers of systems, but the
material has the same richness and importance to engineers of systems and
should be utilized to a fuller degree in the future. In addition, having a grasp of
this material is essential to carrying on a conversation about architectures with
many software engineers. I have seen systems engineers lose important and
valid arguments to software engineers because the systems engineers were not
equipped to understand what the software engineers were saying.

4.2 SETS

A set is a collection of well-defined objects, called elements or members. These
elements or members are said to belong to the set. Sidebar 4.1 defines the
mathematical symbols used in these and other definitions.

SIDEBAR 4.1 GLOSSARY OF MATHEMATICAL SYMBOLS

A is an element of

e is not an element of

D is a subset of

� is a proper subset of

g is not a subset of

+ is a superset of

� is a proper superset of

- intersection

, union

-,. implies

3 if and only if
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6¼ is not equal to

U the null set

U the universal set
�A the complement of A

’ for all

( there exists

D such that

| given that

B,: not (negation)

4 and

3 or

Examples of sets are:

� An interval of numbers [7, 21]

� The students in SYST 520 at George Mason University during the spring
semester of 1996

� The categories of inputs to elevator

� The possible states or outcomes that a particular input to the elevator can
take

� The functions of an ATM (automated teller machine)

4.2.1 Writing Set Membership

A set is denoted by capital letter A, B, X, Y, with the exception of sets that are
functions, which will be denoted by a lowercase italic, letter. Members are also
denoted by lowercase letters: a, b, x, y. The mathematical expression of set
membership is

x 2 A : x is an element of A

x =2A or: ðx 2 AÞ :x is not an element of A

4.2.2 Describing Members of a Set

There are at least five ways to describe the members of a set.

1. A is the set of elements, x, that satisfies the property (or predicate), p(x).
A={x|p(x) is true} (braces are the common delimiter of a set’s defini-
tion). The property p(x) must be well-defined, that is, able to be
determined by means of rules. One test of such a property is called the

4.2 SETS 107



clairvoyant’s test — a clairvoyant is able to predict the future or describe
the past/present perfectly. Is the property or rule defined sufficiently well
that the clairvoyant can answer the question? For example, the property
‘‘Is tall’’ does not meet the clairvoyant’s test, but the property ‘‘is taller
than 6 feet 3 inches’’ does.

2. Complete enumeration is the listing of all of the members of the set.

A1 ¼ f0; 1; 2; 3; 4g

A2 ¼ fstudent1; student2; . . . student31g

3. Use the characteristic function of the

mAðxÞ ¼
1 for x ¼ 0; 1; 2; 3; 4

0 otherwise

�

where mA(x) is the characteristic function of set A for elements, x, in the
set, U, of all elements. For conventional (crisp, nonfuzzy) sets, mA(x) may
only take the values 0 for nonmembers or 1 for members.

4. Use recursive definition: A={xi+1=xi+1, i=0, 1, 2, 3; where x0=0}.
Here A is defined by a recursive formula.

5. Use one or more set operators such as union, intersection, and comple-
ment. These operations should be familiar to most readers and will be
defined shortly.

4.2.3 Special Sets

U: the universal set or set of all possible members.

U: the null set, a set with no elements. F and {F} are not the same. F has no
elements, while {F} has one.) We can write F={xAU | x 6¼ x}.

Singleton set: a set with only one element.

Finite set: a set with a finite number of distinct elements.

Infinite set: a set with an infinite number of distinct elements.

For example: A1={1, 2, 3, 4, y, 101} is finite, A2={1, 2, 3, 4,y,} is
infinite, and A3={x, {1, 2}, y, {z}} may be finite or infinite. The finiteness of A3

depends on whether x and y are finite or infinite. (Note {1,2} and {z} are sets,
but each is only one element of A3. Also note that z is not an element of A3, but
{z} is.)

Subsets or set inclusion: if A and B are two sets, and if every element of A is an
element of B, then A is a subset of B, ADB. If A is a subset of B, and if B has
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at least one element that is not in A, then A is a proper subset of B, A�B. See
Figure 4.1.

Equality of sets: if A and B are sets, and A and B have precisely the same
elements, then A and B are equal, A=B.

The following properties follow from the above definitions:

ADA; a set is a subset of itself.

FDA, ADU. The null set is a subset of every set; every set is a subset of the
universal set.

If F 6¼A, then F�A. If a set is not the null set, then the null set is a proper
subset of the set.

If ADB and BDA, then A=B. If two sets are subsets of each other, then
they are equal.

If ADB and BDC, then ADC. Set inclusion is transitive, a property that we
will formally define later.

4.2.4 Operations on Sets

The following operations are performed on sets:

Absolute complement, �A: Let ADU. �A¼fx jx =2Ag ðNote �F¼ U; �U¼F;
��A ¼ AÞ See Figure 4.2.

Relative complement of A with respect to B, B � A: Let A and B be sets, B �
A={x|xAB and xeA}. The relative complement is also called set
difference. See Figure 4.3.

Union of A and B, A,B: A,B={x | xAA or xAB or both}.

A

B

FIGURE 4.1 Set inclusion.

A

A
_u

FIGURE 4.2 Absolute complement.

4.2 SETS 109



Intersection of A and B, A-B: A-B={x | xAA and xAB}. (Note A and B
are called disjoint if A-B=F. See Figure 4.4.

Boolean sum (symmetrical difference), A+B or ADB:

Aþ B ¼ fxjx 2 A or x 2 B; but not bothg ¼ ðA� BÞ [ ðB� AÞ

The following properties of the above set operations can be easily derived:

1. A,F=A, and A-F=F.
2. A,U=U, and A-U=A.

3. Idempotent: A,A=A, and A-A=A

4. Associative:

ðA [ BÞ [ C ¼ A [ ðB [ CÞ
ðA \ BÞ \ C ¼ A \ ðB \ CÞ

5. Commutative: A,B=B,A, and A-B=B-A

6. Distributive:

A [ ðB \ CÞ ¼ ðA [ BÞ \ ðA [ CÞ
A \ ðB [ CÞ ¼ ðA \ BÞ [ ðA \ CÞ

7. DeMorgan’s Laws: ðA [ BÞ ¼ �A \ �B, and ðA \ BÞ ¼ �A [ �B

A

BA ∩ B 

u

FIGURE 4.4 Set intersection.

B

B-A

u

A

FIGURE 4.3 Relative complement.
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Example Use DeMorgan’s laws to prove that the complement of
ð �A \ BÞ \ ðA [ �BÞ \ ðA [ CÞ is ðA [ �BÞ [ ð �A \ ðB [ �CÞÞ.

Solution: Starting with ð �A \ BÞ \ ðA [ �BÞ \ ðA [ CÞ, note that ðA [ �BÞ \
ðA [ CÞ is the same as A [ ð �B \ CÞ.

Step 1: Making this substitution, we want to find the complement

ð �A \ BÞ \ ðA [ ð �B \ CÞÞ.
Step 2: By DeMorgan’s law, the complement of an intersection is the union

of set complements. So this can be written as ð �A \ BÞ [ ðA [ ð �B \ CÞÞ.
Step 3: Again, the complement of an intersection is the union of the set

complements. So this can be written as ðA [ �BÞ [ �ðA [ ðB \ CÞÞ.
Step 4: Also by DeMorgan’s law, the complement of a union is the

intersection of the set complements. So this can be written as

ðA [ �BÞ [ ð �A \ ð �B \ CÞÞ.
Step 5: Again, the complement of an intersection is the union of the set

complements. This yields ðA [ �BÞ [ ð �A \ ðB [ �CÞÞ. QED

4.2.5 Partitions

A partition on a set A is a collection P of disjoint subsets of A whose union is A.
For a collection Bi (i=1, 2, y, n) to be a partition P of A:

1. BiDA for i=1, 2, y, n.

2. Bi-Bj=F for i 6¼ j.

3. for any xAA, xABi for some i; (alternatively B1,B2,y,Bn)

The concept of a partition (Fig. 4.5) is the most basic and far-reaching
mathematical concept to our development of systems engineering. We will talk

A B2

B1
B3

B4

A

 Partition of A Not a Partition of A

B1

B2

B3

B4

FIGURE 4.5 Set partition.
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about the importance of creating a partition of the system’s requirements, and a
partition of the system’s function, and a partition of the system’s physical
resources. This is just the beginning.

4.2.6 Power Set

The power set of a set A is denoted, P(A). The power set is the set of all sets that
are subsets of A. Mathematically, the power set is the family (or set) of sets such
that XDA3XAP(A), or P(A)={X | XDA}.

1. Let A0=F, P(F)={F}, [where A0 is a set with zero elements and P(A0)
has one element].

2. Let A1={a}; P(A1)={F, A1}={F, {a}} [where A1 is a set with one
element and P(A1) has two elements].

3. Let A2={a, b}; P(A2)={F, {a}, {b}, {a, b}} [where A2 is a set with two
elements and P(A2) has four elements].

How many elements does the power set of a set of An have?

Theorem If An is a set with n elements, then P(An) has 2
n elements.

Proof We will use mathematical induction. For n=0, 1, 2, 3,y, let S(n) be the
statement: If An is a set with n elements, then P(An) has 2

n elements.

i. First show that if A0 has 0 elements, then P(A0) has 2
0=1 element.

A ¼ F; PðAÞ ¼ fFg

ii. Assume S(k) is true and then show that S(k+1) is true. Let Ak+1 be a set
with k+1 elements. Define B to be a proper subset of Ak+1 with k of
Ak+1’s elements:

Akþ1¼ fa1; a2; . . . ; ak; akþ1g

B ¼ Ak¼ fa1; a2; . . . ; akg

SoAkþ1¼ fakþ1g [ B:

Therefore, every subset of Ak+1 either contains ak+1, or it does not.

1. If a subset does not contain ak+1, then it is a subset of B, and we know
there are 2k subsets of B, by induction.

2. If a subset does contain ak+1, then it is the union of a subset of B and
ak+1. There must be 2k of these since there are 2k subsets of B.
So there are 2k+2k=2k(1+1)=2k 2=2k+1 subsets of Ak+1 or 2k+1

elements of P(Ak+1).
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The concept of a power set has many potential uses in systems engineering.
For example, the power set of system inputs is an upper bound on the test
sequences required to test the system exhaustively.

4.3 RELATIONS

This section defines relations using the concepts of ordered pairs and Cartesian
products. Important properties of relations are defined, followed by definitions
of partial orderings and equivalence relations.

4.3.1 Ordered Pairs and Cartesian Products

An ordered pair is (x, y) if xAA, yAB. A Cartesian product, A�B, is defined
over two sets, A and B, such that A�B={(a, b) | aAA and bAB}. That is, the
Cartesian product of two sets is the set of all possible ordered pairs of those two
sets. The following are examples of Cartesian products:

1. A={1}, B={2}: A�B={(1, 2)} and B�A={(2, 1)} 6¼A�B.

2. X={students of SYST 520 during the spring semester of 1996}={S1, S2,
y, S31}, Y={A, B, C}: X�Y={(S1, A), (S1, B), (S1, C), y , (S31, A),
(S31, B), (S31, C)}

An ordered n-tuple is defined to be A1�A2 �?�An={(a1, a2,y, an) |
aiAAi, i=1, 2, y , n}, where (a1, a2,y, an).

4.3.2 Unary and Binary Relations

A unary relation on a set A relates elements of A to itself and is a subset, R, of
A�A. R is usually described by a predicate that defines the relation. Examples
are r,=,W, ‘‘taller than,’’ and ‘‘older than.’’ If a1 and a2AA, we write
(a1, a2) A R, which means that a1 R a2 or a1 ‘‘is related to’’ a2.

A binary relation is a relation R that relates elements of A to elements of B
and is a subset of A�B. The domain of R, written as ‘‘dom R,’’ is defined as:
dom R={x | xAA and (x, y)AR for some yAB}. The range of R, written as ‘‘ran
R,’’ is defined as: ran R={y | yAB and (x, y)AR for some xAA}. Again (a1,
b1)AR3a1 R b1.

Example Let R be the relation from A={1, 3, 5, 7} to B={1, 3, 5}, which is
defined by ‘‘x is less than y.’’ Write R as a set of ordered pairs.

Solution:

R={(x, y) | xAA, yAB, xoy}

R={(1, 3), (1, 5), (3, 5)}
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Recall the relations within and between systems engineering classes that were
discussed in Chapter 2. The hierarchy of requirements was defined by the relation
‘‘incorporates’’ in moving from the top of the requirements hierarchy to the
bottom; ‘‘incorporated in’’ was the relation that moved from bottom to top. The
relation ‘‘is decomposed by’’ moved from the top of the functional decomposi-
tion to the bottom; ‘‘decomposes’’ moves in the opposite direction. The physical
hierarchy of a system and its components used the relation ‘‘is built from’’ in
moving from top to bottom and ‘‘is built in’’ for moving from bottom to top.

Binary relations included the tracing from requirements to functions or the
system, the performance of functions by the system and its components, and
inputs and outputs of items for functions. The relation ‘‘is traced to’’ was used
for the binary relations of input/output stakeholders’ requirements being
mapped to functions and for system-wide/technology requirements being
mapped to the system. The binary relation for the system and components
being related to functions used the relation ‘‘pertains.’’ The relations ‘‘inputs’’
and ‘‘outputs’’ addressed functions being related to items.

To discuss the properties of unary relations, some additional information is
needed concerning the possible ways to prove an implication. An implication is
an ‘‘If y, then y’’ statement, which is commonly written as ‘‘If p is true, then
q is true’’ or ‘‘p-q.’’ There are eight common methods for proving implica-
tions of this form.

1. Trivial proof: Show that q is true independently of the truth of p.

2. Vacuous proof: By mathematical convention, whenever p is false, p-q is
true. The vacuous proof involves showing that p is false. This method is
key to understanding the full implications of the properties of unary
relations that are discussed below.

3. Direct proof: Assume that p is true and use arguments based upon other
known facts and logic to show that q must be true.

4. Indirect proof: Use direct proof of the contrapositive of p-q. The
contrapositive of a true implication is known to be true; the contra-
positive of p-q is Bq-Bp (or q is false implies p is false). Here we
assume q is false and prove via logic and known facts that pmust be false.

5. Contradiction-based proof: DeMorgan’s laws can be used to show that
p-q is equivalent toB(p4(Bq)), that is, the statement ‘‘p is true and q is
false’’ is false. Proof by contradiction starts by assuming that (p4(Bq)) is
true and then proving, based on this assumption, that some known truth
must be false. If the only weak link in the argument is the assumption of
( p 4 (Bq)), then this assumption must be wrong.

6. Proof by cases: If p can be written in the form of p1 or p2 or y or pn
( p13p23y3pn), then p-q can be proven by proving p1-q, p2-q, y,
pn-q as separate arguments.

7. Proof by elimination of cases is an extension of the method above: Recall
from the second method that p-q is equivalent to [ (p3q)4(Bp)], that is
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(p and q are true) or (p is false). Now p can be partitioned into a set of
cases as done in 6 and attacked one at a time.

8. Conditional proof: If we are to prove p-(q-r), we can prove the
equivalent (p4q)-r.

4.3.3 Properties of Unary Relations on A

The seven properties discussed here are reflexive, irreflexive, symmetric,
antisymmetric, asymmetric, transitive, and intransitive.

1. Reflexive: x R x for all xAA, e.g., equality, r, Z.

2. Irreflexive: x =Rx for all xAA, for example, greater than, is the father of.

3. Symmetric: If x R y, then y R x ’x, yAA, for example, equality, is spouse
of. Note if x =R y for all x and y in A, then the relation is symmetric by a
vacuous proof.

4. Antisymmetric: If x R y and y R x, then x=y ’x, yAA, for example,
equality,r,Z. Note if there is no situation in which ‘‘x R y and y R x’’ is
true, then the relation is antisymmetric by vacuous proof.

5. Asymmetric: If x R y, then y =R x ’x, yAA, e.g., o, >.

6. Transitive: If x R y and y R z, then x R z ’x, y, zAA, for example, r,
Z,=,W. This property is the most difficult to grasp. If there is no
situation in which ‘‘x R y and y R z,’’ then the relation is transitive by
vacuous proof.

7. Intransitive: If for some x, y, zAA, it is true that x R y, y R z, but x =R z,
the relation is considered intransitive.

Example Let L be the set of lines in the Euclidean plane and let R be the
relation on L defined by ‘‘x is parallel to y.’’ Is R a reflexive relation? Why? Is R
a symmetric relation? Why? Is R a transitive relation?

Solution:

1. This question reduces to whether a line is parallel to itself. If the definition
of parallel is having no points in common (everywhere equidistant), then
a line cannot be parallel to itself because the two lines have every point in
common. So R is not a reflexive relation.

2. R is a symmetric relation. Consider each xAL. x will have an infinite
number of yAL which satisfy the parallel relationship. Each such y is in
turn parallel to x. Thus, (x, y)AR for all x and y that are parallel, and
(y, x)AR, so the relation is symmetric.

3. R is a transitive relation. Again, consider (x, y)AR and (y, z)AR; x will be
parallel to z, so x R z and R is transitive for all x, y, zAL.

Example Let F be the set of functions in the functional decomposition for a
system. Let R be the relation on F defined by ‘‘is decomposed by.’’ Is R a
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reflexive relation? Why? Is R a symmetric relation? Why? Is R a transitive
relation?

Solution:

1. R is not a reflexive relation because a function does not decompose itself.

2. R is not a symmetric relation because if f1 decomposes f0, then f0 cannot
decompose f1.

3. R is not a transitive relation. The function f0 is decomposed by f1, f2 and
f3, and f1 is decomposed by f11, f12 and f13. However f0 is not decomposed
by f11, f12 or f13.

4.3.4 Partial Ordering

A relation R on A is a partial ordering if R is reflexive, antisymmetric, and
transitive. Examples of partial orderings areZ orr on the real number line, or
+ orD on P(A). Examples of nonpartial orderings are o or Won the real
number line,� or � on P(A). (Both of these are asymmetric and
antisymmetric.)

4.3.5 Equivalence Relations

A relation R on a set A is an equivalence relation if R is reflexive, symmetric, and
transitive. An example of an equivalence relation is equality.

4.4 FUNCTIONS

This section defines functions and discusses the composition of functions.

4.4.1 Definitions

Let A and B be two nonempty sets. We write a function f as f : A-B and say
that f maps every element of A (the domain) to one and only one element of B
(the range). If (a, b)Af, then element b is the image of element a under f. Note
that a function can map elements of A onto itself, f : A-A. A function f from A
to B is a relation such that

(a) dom f=A

(i) f is defined for each element of A, aAA.
(ii) ((a, b) where bAB for each element of A, aAA.

(b) if (a, b) A f and (a, c)Af, then b=c; that is, f is single-valued, or no
element of A is related to two elements of B.

A function is called one-to-one or injective if (a, b)Af and (c, b)Af implies a=c.
That is, no two elements of A can be mapped into the same element of B by f.
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A function f : A-B is onto or surjective if and only if the range of f=B, that
is, f is defined for every bAB.

If a function is both one-to-one and onto (or bijective), then the relation f �1

is single-valued and maps every element of B onto some element of A; f �1 is
therefore a function, called the inverse function.

Example If A={1, 2, 3, 4} and B={a, b, c, d}, determine if the following
functions are one-to-one or onto.

(a) f ¼ ð1; aÞ; ð2; aÞ; ð3; bÞ; ð4; dÞf g
(b) g ¼ ð1; dÞ; ð2; bÞ; ð3; aÞ; ð4; aÞf g
(c) h ¼ ð1; dÞ; ð2; bÞ; ð3; aÞ; ð4; cÞf g

Solution:

(a) f is NOT one-to-one since f �1ðaÞ ¼ 1; 2f g. f is NOT onto since
f �1ðcÞ ¼ F.

(b) g is NOT one-to-one since g�1ðaÞ ¼ 3; 4f g. g is NOT onto since
g�1ðcÞ ¼ F.

(c) h is one-to-one since all elements of B correspond to unique elements in
A. h is onto since every element of B has some pre-image in A.

So we have progressed mathematically from sets to relations to functions.

FunctionsDRelationsDSets, or a function is a relation is a set.

As systems engineers we will focus on functional architectures. We will
represent the functions of the system as relations or functions in graph-like
structures. The underlying theory is set theory.

4.4.2 Composition

Let R be a relation from A to B, and S be a relation from B to C. (a, c) is an
element of the composition of R and S, (denoted R �S or R S) if and only if
there is an element bAB such that a R b and b S c. That is, a and c must be
linked together by b; a is mapped to b and b is mapped to c. (Note that some
authors write the composition of R and S as S �R so be careful.)

The composition of functions is defined in the same way as the composition
of relations.

Example Assume R and S are relations from A to A. If A={1, 2, 3, 4},
R={(1, 2), (2, 3), (3, 4), (4, 2)}, and S={(1, 3), (2, 4), (4, 2), (4, 3)}, then
compute R �S, S �R and R �R.

Solution:

R �S={(1, 4), (3, 2), (3, 3), (4, 4)}.
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(1, 2) from R is composed with (2, 4) from S (this is written (1, 2) � (2, 4) )
and yields (1, 4).

(1, 2) from R cannot be composed with any of the other elements of S
because they do not begin with a 2.

(3, 4) � (4, 2)=(3, 2).

(3, 4) � (4, 3)=(3, 3).

(4, 2) � (2, 4)=(4, 4).

S �R={(1, 4), (2, 2), (4, 3), (4, 4)}, which is not equal to R �S.
R �R={(1, 3), (2, 4), (3, 2), (4, 3)}.

As systems engineers we will employ functional decomposition to develop
the functional architecture. Composition is the mathematical property from
which decomposition derives its name. However, as discussed in Chapter 7,
composition is only applicable to functional decomposition in limited
situations.

4.5 SUMMARY

This chapter began with the introduction of a set, the foundation of a branch of
mathematics called discrete mathematics. A great deal of terminology was
introduced to define special sets such as the universal and null sets and
operations on sets.

During the discussion of sets, the concept of partition was defined. The
partition is perhaps the most important mathematical concept introduced in
this chapter for application in this book. A partition is a subdivision of a set
into subsets, which contain no common members, and yet the union of the
subsets contains every element of the original set. In future chapters require-
ments will be partitioned, functional decompositions will be defined to be
partitions, and the physical decomposition will be defined to be a partition.

The power set of a set is the set of all subsets of that set. This notion of a
power set is not exploited fully in this book but will become key to the future
development and application of mathematics to the engineering of systems.

The next major section of this chapter dealt with relations and the key
properties associated with relations. A relation is a set of ordered pairs; the
elements of the ordered pairs come from one or two sets. If the functions of a
system are not fully defined in terms of inputs, then these system functions are,
in fact, mathematical relations. Functions are relations that satisfy certain
properties; a function maps every element of the domain of the function to
some element of the range, but does not map any element of its domain to more
than one element of the range. One-to-one and onto properties of functions
were also discussed. Finally the composition of functions was defined.
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PROBLEMS

4.1 Define the students enrolled in this class during this semester as a set, S.

a. Specify a partition of S into 2 subsets.

b. Specify a partition of S into 3 subsets.

c. Specify a partition of S into 5 subsets.

4.2 Let A1={1, 3, 5, 7, 9, 11}, A2={�2, 6, 9, 11}, A3={�2, 4, 6, 9, 11}.
Show that:

a. A1+A2=(A1�A2),(A2�A1)

b. A1,(A2-A3)=(A1,A2)-(A1,A3)

4.3 Prove that the following relations are true in general:

a. A1+A2=(A1�A2),(A2�A1)

b. A1,(A2-A3)=(A1,A2)-(A1,A3)

4.4 Let R be a relation from A to B and defined ‘‘x is at least twice as big as
y.’’ Write R as a set of ordered pairs for

a. A={1, 3, 5, 7} and B={2, 3, 4, 6}

b. A={0, 1} and B={0, 1}

c. A={1, 2, 3, 4, 5, 6, 7} and B={3, 6}

4.5 Let R be relation from A to B where ‘‘x is greater than or equal to y
squared.’’

Then define R as a set of ordered pairs for the following:

a. A={1, 2, 3, 4, 5}, B={1, 2, 3, 4, 5}

b. A={25}, B={5, 6, 7}

4.6 There are three families defined by the sets A, B, and C; each family has
a dad, mom and three kids:

A={Dad, Mom, Doris, Bill, Tom}

B={Dad, Mom, Doris, Daisy, Debbie}

C={Dad, Mom, Bill, Bob, Biff}

Consider the relations ‘‘is the spouse of,’’ ‘‘is the brother of,’’ and ‘‘is the
blood relative of.’’ (Hints: I am not the brother of myself. Two people
are blood relatives if they share the blood of a common ancestor, who
may or may not be part of sets A, B, or C. I am the blood relative of
myself. Biff is a male.)

Identify which of these relations satisfy which of the seven properties of
unary relations for each of the three sets by placing a yes or no in the
empty cells of the following table.
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‘‘is the spouse of ’’ on A

‘‘is the brother of ’’ on A

‘‘is the blood relative of ’’ on A

‘‘is the spouse of ’’ on B

‘‘is the brother of ’’ on B

‘‘is the blood relative of ’’ on B

‘‘is the spouse of ’’ on C

‘‘is the brother of ’’ on C

‘‘is the blood relative of ’’ on C

4.7 Let R be a relation from A to B and S be a relation from B to C.

a. Find R �S for A={1, 3, 5, 7}, B={1, 2, 4, 5, 7}, C={1, 2, 3, 4, 5, 6},
R={(1, 2), (3, 4), (5, 2), (7, 4)} and S={(1, 2), (2, 4), (4, 3), (7, 5)}.

b. Are any of these relations R, S, R �S functions? One-to-one
functions? One-to-one and onto functions?

4.8 If A1={1, 2, 3, 4} and A2={1, 4, 9, 25}, determine if the following
functions that map A1 onto A2 are one-to-one, onto, or both one-to-
one and onto.

a. f1={(1, 1), (2, 4), (3, 4), (4, 25)}

b. f2={(1, 1), (2, 4), (3, 25), (4, 25)}

c. f3={(1, 1), (2, 4), (3, 9), (4, 25)}

4.9 Develop two relations R (from A to B) and S (from B to C) that have to
do with people. Show the result of R �S.

4.10 Let R and S be relations from A-A, where A={1, 2, 3, 4} and:

R={(1, 1), (2, 2), (3, 3), (1, 2), (2, 3), (1, 3), (2, 1), (3, 1), (3, 2)}

S={(2, 3), (1, 2), (2, 1), (3, 1), (1, 3)}

a. Find if these relations are symmetric, reflexive, and transitive.

b. Find R �S, S �R and R �R.
4.11 Let A be a set of three colors: {red, blue, green}. What are the elements

of the power set of A?

120 DISCRETE MATHEMATICS: SETS, RELATIONS, AND FUNCTIONS



4.12 Let SIBLINGS={Andrea, Bobby, Catherine, David, Eric}. Find the
elements of the power set of SIBLINGS, P(SIBLINGS).

4.13 Show that the P{Andrea, Bobby} is a subset of the P(SIBLINGS) from
Problem 4.12.

4.14 Prove that for any two sets A and B, (P(A)-P(B))=P(A-B).

4.15 Find two sets A and B that show (P(A),P(B)) 6¼P(A,B).

4.16 Prove that for any two sets A and B, (P(A),P(B))DP(A,B).

4.17 Prove that the seven properties of set operations in Section 4.2.4 are
true.
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Chapter 5

Graphs and Directed Graphs
(Digraphs)

5.1 INTRODUCTION

This chapter introduces the mathematics of graph theory, the formal repre-
sentation of a relation (or function) among elements of a set or a pair of sets.
The concept of a relation discussed in this chapter is the same concept
introduced in Chapter 4. A graph in mathematics is a set of nodes and a set
of edges between pairs of those nodes; the edges are ordered or nonordered
pairs, or a relation, that defines the pairs of nodes for which the relation being
examined is valid. As an example, the people working as systems engineers on a
project could be the members of a set. One relation defined over this set could
be ‘‘works for.’’ Another relation could be ‘‘respects.’’ The edges can either be
undirected or directed; directed edges depict a relation that requires the nodes
to be ordered while an undirected edge defines a relation in which no ordering
of the edges is implied. The ‘‘works for’’ and ‘‘respects’’ relations would be
examples of ordered relations. An example of an undirected relation would be
‘‘sits next to.’’

A graph enables us to visualize a relation over a set, which makes the
characteristics of relations such as transitivity and symmetry easier to under-
stand. The reader will hopefully comprehend the power of visualizing math-
ematical concepts, as enabled by mathematical graph theory, by the end of
reading this chapter.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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There is a great deal of terminology associated with graph theory; most of
the basics are introduced in this chapter. Notions such as paths and cycles are
key to understanding the more complex and powerful concepts of graph theory.
There are many degrees of connectedness that apply to a graph; understanding
these types of connectedness enables the engineer to understand the basic
properties that can be defined for the graph representing some aspect of his or
her system. The concepts of adjacency and reachability are the first steps to
understanding the ability of an allocated architecture of a system to execute
properly.

In addition to aiding in the visualization of relations, graph theory is the
basis of many modeling languages. However, there are many more modeling
languages, such as IDEF0, that look like graphs but which have no underlying
mathematics. The material presented in this chapter is necessary but not
sufficient to be able to detect when a modeling language with graphical
representations has a mathematical basis or not. For example, understanding
the seven properties of unary relations presented in this chapter will enable the
reader to detect key assumptions such as transitivity being made or assumed by
a modeling language.

Similarly, understanding the difference between a partial order and a total
order will give the reader an appreciation of the restrictions and power of a
modeling language. A specific example of the use of some of the key concepts
in this chapter relates to total and partial orders of elements of a set based
upon the relation defined over the set. When a relation induces a total order,
the elements of the set over which the relation is defined can be numbered
from 1 to n. However, the concept of a partial order suggests that there is
more than one possible order from 1 to n of the set’s elements that is
consistent with the relation. There are a number of applications of a partial
order in systems engineering. For example, the set of functions being executed
by the system’s components can often be executed in more than one sequence.
Understanding the many partial orders of functional execution is key to
developing test plans to verify the system’s performance characteristics. The
interested reader is referred to Goodaire and Parmentar [1998], Harary
[1972], and Harary et al. [1965] for more details on graph theory. Shin and
Levis [2003] provide a performance prediction model based upon a creative
application of Petri nets, which is a graph theoretic modeling language based
on set theory.

Another specific example of the use of concepts from this chapter relates to
the power of hierarchies in the engineering of systems; hierarchies for require-
ments, functions, and physical components are discussed in Chapter 2. In graph
theory a hierarchy is represented as a directed tree. This chapter introduces the
terminology associated with trees in graph theory.

The state-of-the-art practice in the engineering of systems is to use a number
of graphical concepts that have various amounts of grounding in mathematics
as communication mechanisms. The challenge for the future is to develop
additional modeling techniques that have significantly more grounding in
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mathematics while maintaining the quality of the communication among
the stakeholders and the engineers in the various disciplines. The software
engineering community has been moving in this direction for at least 15 years.
The systems engineering community has just started this trek with SysML.

5.2 TERMINOLOGY

A graph, G, is a pair of sets, V(G) and E(G). V(G)= {n1, n2,y, nN} is the set of
vertices or nodes. E(G)= {eij}D(V(G)�V(G)) is a relation that defines the set
of edges that are unordered, not necessarily distinct pairs of nodes. V(G) is a
finite, nonempty set; E(G) may be empty and is a subset of the Cartesian
product of V(G) with itself.

Due to the undirected nature of the edges in a graph, the edges represent
symmetric relations such as ‘‘____ is next to ____’’, ‘‘____ is the sibling of
____’’, ‘‘____ is married to ____.’’ Due to the symmetry the order in which the
nodes are placed does not matter.

The following Konigsberg bridge problem is one of the earliest known graph
theory problems (See Sidebar 5.1). Euler’s graph of the Konigsberg bridge
problem is known as a multigraph, in which two or more edges connecting the
same nodes is possible. This graph is also known as a simple graph because
there are no loops. A loop is an edge connecting a node to itself, eii.

A directed graph or digraph, G, is a pair of sets, V(G) and E(G); V(G)=
{n1, n2, y, nN} is the set of vertices or nodes. V(G) is again a finite, nonempty
set; E(G)= {eij} is a subset of V�V or ordered pairs of nodes; eij is said to be
from ni to nj. Again E(G) may be empty.

The edges in a digraph represent antisymmetric or asymmetric relations.
Examples are ‘‘____ is a parent of ____’’ and ‘‘____ is higher than ____.’’ Here
the order in which the nodes are placed in the blanks does matter. Examples
include Markov chains and Program Evaluation Review Technique (PERT)
charts.

Figure 5.1 shows a sample digraph for the relation ‘‘is the parent of.’’ Nodes
that are connected by a directed edge are often discussed in terms of parent and
child. The node at the tail of the edge is often called the parent and the node at
the arrow of the edge is called the child.

The definitions of loop and simple digraph are the same as above. A
multigraph digraph requires multiple copies of eij for the same i and j in
E(G). The presence of eij and eji are not sufficient for G to be a multigraph
digraph.

Cardinality of a set A=|A|=the number of elements of A. Note, the
cardinality of f is 0. If A has n elements, then P(A) has cardinality is 2n.

Order of G= |V(G)|= the number of nodes of G.

Size of G=|E (G )|= the number of edges of G.
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SIDEBAR 5.1: THE KONIGSBERG BRIDGE PROBLEM

In the 1700s the inhabitants of Konigsberg in eastern Prussia were
entertained by a puzzle involving seven bridges over the Pregel River.
The puzzle posed by mathematicians was whether it was possible to start
at any one of the four distinct parcels of land (A, B, C, or D) and find a
tour that crossed every bridge once and only once in such a way that the
tourer ends up at the same parcel of land from which the tour began. L.
Euler, the Swiss mathematician, proved that such a tour could not be
done, and in 1736 gave precise conditions for when such a tour could be
defined for any system of interconnected bridges.

1 3

4

5

7

B

C

D

A

6

2

The following graph is a mathematical representation that Euler
created as part of his mathematical proof. The parcels of land are the
nodes and the bridges are the edges. Would it be possible to define a
graph for this problem in which the bridges were nodes and the parcels
were edges?

A

B

C

D

1 2
3

4

5 76
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The incidence of edges (Fig. 5.2) is defined as: (a) eij is incident on ni and nj in
a graph and (b) eij is incident from ni to nj in a digraph.

Degree of node ni= the number of edges connected to ni in a graph, deg(ni).

Out degree of node ni= the number of edges incident from (or exiting) ni in a
digraph, degG

�(ni).

In degree of node ni= the number of edges incident to (or entering) ni in a
digraph, degG

+ (ni).

Adjacency – two nodes ni and nj are said to be adjacent if eij or ejiAE(G).

If V={n1, n2, y, nN} is the set of nodes of an undirected graph G, then

XN
i¼1

degðniÞ ¼ 2jEðGÞj:

Terah

Nahor Hanan Abram

Milchah Sarai

Bethuel Isaac

Rebecca

Esau Jacob

FIGURE 5.1 Sample directed graph for ‘‘is the parent of.’’

ni

ni

nj

nj

FIGURE 5.2 Samples of incidence.
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If G is a digraph, then

XN
i¼1

deg�GðniÞ ¼
XN
i¼1

degþGðniÞ ¼ jEðGÞj:

Edge labeling of a graph or digraph G is a function f: E(G)-D, where D is a
domain of labels.

Node labeling of a graph or digraph G is a function f: V(G)-D, where D is a
domain of labels.

Recall from Chapter 3 that IDEF0 (Integrated Definition for Function
Modeling) uses edge and node labeling.

A bipartite graph is a graph (digraph) whose set of nodes can be partitioned
into two sets A and B such that no edge connects a node in A to another node
in A and, similarly, no edge connects a node in B to another node in B. See
Figure 5.3. Is the family tree in Figure 5.1 a bipartite graph?

5.3 PATHS AND CYCLES

A walk in a digraph is a sequence of one or more nodes {n0, n1,y, nk} and zero
or more edges {e01, e12,y, ek�1,k}. See Figure 5.4. A walk may revisit the same
node more than once. A walk is closed if its initial and end vertices are the same;
otherwise it is open. A walk is nontrivial if it has one or more edges.

A path is a walk in which each node is distinct (i.e., there are no repeats),
except possibly the end nodes. See Figure 5.4. Note since the nodes cannot
repeat, the edges cannot repeat.

FIGURE 5.3 Sample bipartite graph.

a b

c d e

FIGURE 5.4 Digraph with a walk (d-b-a-c-d-e), closed walk, path, and a cycle (a-c-d-b).
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A trail is a walk in which each edge is distinct. Note the same node may be
revisited more than once. A closed trail is a circuit.

A circuit is a nontrivial walk with no repeated edges and whose endpoints are
the same. Figure 5.5 has a circuit: a, b, c, d, e, c, a.

A cycle is a circuit in which all of the nodes are distinct except the first and
last. See Figures 5.4 and 5.5. The nodes a, c, d, b in Figure 5.4 are a cycle. This
cycle could be defined as (d, b, a, c) or (b, a, c, d) or (c, d, b, a) as well, but there
is only a single cycle in this graph.

A nondirected walk (or semiwalk) in a digraph is a sequence of one or more
nodes {n0, n1,y, nk} and zero or more edges {e10 or e01, e21 or e12,y, ek,k�1 or
ek�1,k}. A semiwalk can travel the wrong way on a directed edge.

A semipath (or chain) is a semiwalk in which each node is distinct, again with
the possible exception of the end nodes. See Figure 5.6.

A semicircuit is a nontrivial semiwalk in which the first and last nodes are the
same and no edges are repeated.

A semicycle is semicircuit in which the only repeated nodes are the first and
last. See Figure 5.6.

A digraph is acyclic if there exists no subgraph that is a cycle.
By now most readers are probably wondering how these definitions are

going to be useful. The vocabulary provided by these definitions is very useful
in describing when a graph has the seven unary characteristics (e.g., reflexivity,
transitivity) from Section 4.3.3. In addition, there are other concepts that will
be introduced in this chapter that have general applicability to the engineering
of a system, for which this vocabulary will also be useful.

a

b

c

d

e

FIGURE 5.5 Digraph with 2 cycles (a-b-c and c-d-e) and a circuit (c-a-b-c-d-e-c).

a b

c d e

FIGURE 5.6 Digraph with a semipath (b-a-c-d-e) and semicycle (d-b-a-c).
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5.4 CONNECTEDNESS

Another vocabulary that proves very useful is connectedness. A pair of nodes in
a digraph is weakly connected if there is a semipath between them, for example,
nodes b and c in Figure 5.6. The nodes are unilaterally connected if there is a
path between them, for example, all of the pairs of nodes in Figure 5.6 except b
and c. Finally, the nodes are strongly connected if there is a path in both
directions. No pair of the nodes in Figure 5.6 is strongly connected; every pair
of nodes in Figure 5.5 is strongly connected. Note a pair of nodes that is
strongly connected is also weakly and unilaterally connected.

A digraph is weakly (unilaterally, strongly) connected if every pair of nodes in
the graph is weakly (unilaterally, strongly) connected. The digraph in Figure
5.6 is weakly connected because of the weak connection between nodes b and c.
The digraph in Figure 5.4 is unilaterally connected because node e is
unilaterally connected with the other four nodes, even though each of the
other four nodes is strongly connected to each of the other three. The digraph
in Figure 5.5 is strongly connected. The digraphs in Figures 5.1 and 5.3 are
weakly connected.

A pair of nodes is disconnected if there is no path or semipath between them.
A digraph is disconnected if one of its nodes is disconnected from any other
node of the graph. A graph is connected if it is not disconnected. All of the
digraphs presented so far are connected.

5.5 ADJACENCY AND REACHABILITY*

The adjacency matrix of a graph G, A(G), provides a mathematical representa-
tion of which nodes in a digraph are adjacent to each other. Recall that a
relation fromN(G) toN(G) is defined by the edges of G, E(G). So in fact, A(G) is
a description of the relation E(G) from N(G) to N(G).

AðGÞ ¼ aij
� �

is an N � N Boolean matrix where N is the order (number of nodes) of G.

aij ¼
1 if eij 2 EðGÞ
0 if eij =2EðGÞ

(

Note a Boolean matrix is one whose elements are 0 or 1. The row sums of A(G)
give the out-degrees of the associated node; the column sums give the in-
degrees. If G is not a digraph but a graph, A(G) will be a symmetric matrix.

*Advanced material.
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A node nj of G is said to be reachable from node ni of G if there exists a path
from ni to nj in G. The reachability matrix, R(G), is a Boolean matrix that
indicates which nodes can be reached from which other nodes.

RðGÞ ¼ rij
� �

is anN�N Boolean matrix whereN is the order of G. To compute R(G) we first
compute A, A2, A3, y, A|E(G)|

rij ¼
1 if i ¼ j

1 if a
ðkÞ
ij 40 for some Ak

0 otherwise

8><
>:

Node ni is reachable from node nj if rij= 1. R(G) is also called the transitive,
reflexive closure of E(G) because R(G) is defined to be a reflexive relation that
adds the edges necessary to make E(G) a transitive relation. R(G) is sometimes
denoted R*(G).

The transitive closure, R+(G), is defined to be RþðGÞ¼ rþij

h i
, where

rþij ¼
1 if a

ðkÞ
ij 40 for some Ak

0 otherwise

(

Note in this case the reflexivity of the transitive closure is determined by the
reflexivity of E(G).

The distance between two nodes is the smallest number of edges between the
nodes on any path connecting the two nodes. The distance matrix, D(G),
reflects these numbers.

DðGÞ ¼ dij
� �

is an N�N matrix where N is the order of G.

dij ¼

0 if i ¼ j

k if nj is reachable from ni; k is the exponent

of the first Ak in which a
ðkÞ
ij 40

1 if there is no path from ni to nj

8>>>><
>>>>:

5.6 UNARY RELATIONS AND DIGRAPHS

Now directed graphs will be used to visualize the seven properties of unary
relations that were introduced in Chapter 4.
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Reflexivity: 8x; xRx: That is, all nodes must have loops. The top of Figure 5.7
shows a reflexive relation.

Irreflexivity: 8x; x =Rx: That is, no nodes can have loops. The relations shown in
the digraphs of Figures 5.1 and 5.3 through 6 are irreflexive. The bottom of
Figure 5.7 shows an irreflexive relation.

Note digraphs can depict relations that are neither reflexive nor irreflexive
when some of the nodes have loops and others do not.

Symmetry: 8x; y ; if xRy ; then yRx: That is, there must be a cycle between any
two nodes that are adjacent to each other. There is no limitation about arcs
besides this. The relations shown in the digraphs of Figures 5.4, 5.5, and 5.6
are not symmetric. The relation in the digraph shown in Figure 5.8 is
symmetric.

Antisymmetry: 8x; y ; if xRy and yRx; then x ¼ y: That is, there cannot be a
cycle between any two nodes that are adjacent to each other. Again, there is
no limitation about arcs besides this one; so cycles containing three or more
nodes can exist. Any node can have a loop. The digraphs in Figure 5.1 and
5.3 through 5.6 show antisymmetric relations; the relation in the digraph
shown in Figure 5.8 is not.

Asymmetry: 8x; y ; if xRy; then y =Rx: That is, there can be no cycle between
any two nodes, and there can be no loops. Asymmetric relations must be

c

A Sample Reflexive Relation

a b

A Sample Irreflexive Relation

FIGURE 5.7 Reflexive and irreflexive relations.

a b

c

FIGURE 5.8 Digraph of a symmetric relation.
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irreflexive. Again cycles among three or more nodes are allowed. The
relations in the digraphs shown in Figures 5.1 and 5.3 through 5.6 are
asymmetric; the digraph in Figure 5.8 shows a relation that is not.

Note a relation that is irreflexive but in which no node is adjacent to any
other node (completely disconnected) is symmetric, antisymmetric, and asym-
metric due to the vacuous proof in Chapter 4.

Transitivity: 8x; y; z if xRy and y R z; then x R z: This condition only applies
to triplets of nodes and requires that there be a semicycle among the three
nodes in the triplet. (Note the first and third node in a triplet can be the
same, in which case there must be cycle between the two nodes and loops
at each node.) A relation to which this condition, or left-hand side, is
not applicable (i.e., the ‘‘if condition’’ is never satisfied) will be transitive.
Figure 5.9 shows a transitive relation:

dRa and aRb dRb,

aRb and bRe aRe,

dRb and bRe dRe,

dRa and aRe dRe.

Intransitivity: for some x, y, z, if x =Rz; then xRy and yR z: Relations are
either transitive or intransitive. Cycles may exist in transitive relations; but
note that a transitive relation with cycles that contains three or more nodes
means that there must be a cycle between every pair of nodes that is part of
the cycle, resulting in a symmetric relation with loops for the subset of nodes
in the cycle. The relation in Figure 5.8 is symmetric but not transitive
because aRb and bRa, but a is not related to a; the same applies for nodes b
and c. Figure 5.10 shows the transitive version the relation of Figure 5.8; the
loops are added at each node.

It should be obvious that it is easier to use a directed graph to visualize the
properties of unary relations than the mathematical expressions discussed in

a b c

d e

FIGURE 5.9 Digraph of a transitive relation.
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Chapter 4. Likewise, graphical techniques for visualizing functional relation-
ships together with inputs and outputs are much more comprehensible than
purely written or tabular methods for most people. ‘‘A picture is worth a 1000
words.’’

5.7 ORDERING RELATIONS*

Relation R is a partial order on set A when R is reflexive, antisymmetric, and
transitive on the set A. In this case A is called a partially ordered set, or POSET,
written [A; R]. Therefore a relation that is a partial order cannot have any cycles.
As discussed in the previous section, a relation that is transitive and has cycles
must have pairs of nodes that are symmetric. If any pair of nodes in a relation is
symmetric, then the relation cannot be antisymmetric.

Two elements a1 and a2 inA are said to be comparable underR if either a1R a2
or a2 R a1. Otherwise the elements are incomparable. If every pair of elements is
comparable, then [A; R] is totally ordered.

A Hasse diagram is an undirected graph of the relations between the
elements of a partially ordered set. See Figure 5.11. Each element of A is
represented as a node. Reflexivity is not represented in the Hasse diagram,
thereby eliminating all loops from the graph. Edges that are required by the
transitivity property are also omitted; that is, any edge that depicts a shorter
path to another node than some other combination of edges is deleted. To draw
a Hasse diagram, we place the nodes on a piece of paper such that ai is below aj
if ai R aj. We connect ai to aj with an undirected edge if and only if ai R aj and
there is no ak such that ai R ak and ak R aj. Figure 5.12 provides a second
example of a Hasse diagram and the resulting partial orderings of A.

If there is only one node at the top of the Hasse diagram and only one node
at the bottom, then the poset is called a lattice. That is, with the transitivity
property in force there must be one and only one element, the upper bound or a
of A, such that a R ai ’i, and a second element, the lower bound or z of A, such
that ai R z ’i.

a b

c

FIGURE 5.10 Transitive version of the digraph in Figure 5.8.

*Advanced material.
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a b

c d

Relation R on A

making R a
partial order

c d

ba

making a
Hasse diagram

a

b c

d possible orderings
of elements of A

a, b, c, d
a, c, b, d

FIGURE 5.11 Partial order on a set A, Hasse diagram, and partial orderings of A.

The relation is transitive. Reflexive arcs are
dropped for ease of display.

1

2

3

4

6

9

R = “divides evenly” 
on A = {1, 2, 3, 4, 6, 9}

1

2

3

4

6

9

6

23

4

1

9

Making R a Hasse diagram 16 possible orderings of elements of A:

1, 2, 3, 4, 6, 9  1, 3, 2, 4, 6, 9
1, 2, 3, 4, 9, 6  1, 3, 2, 4, 9, 6
1, 2, 3, 6, 4, 9  1, 3, 2, 6, 4, 9
1, 2, 3, 6, 9, 4  1, 3, 2, 6, 9, 4
1, 2, 3, 9, 4, 6  1, 3, 2, 9, 4, 6
1, 2, 3, 9, 6, 4  1, 3, 2, 9, 6, 4
1, 2, 4, 3, 6, 9  1, 3, 9, 2, 4, 6
1, 2, 4, 3, 9, 6  1, 3, 9, 2, 6, 4

FIGURE 5.12 Second Hasse diagram example.
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5.8 ISOMORPHISMS*

Two graphs, G1= (V1, E1) and G2= (V2, E2), are isomorphic if there exists a
one-to-one and onto function, f, such that f: V1-V2 and f preserves adjacency.
That is, E2= {( f (v), f (w)) | (v, w) A E1}. Note that ‘‘___ is isomorphic to ___’’
is an equivalence relation.

An isomorphism f from G1 to G2 is not necessarily unique. Some necessary
properties for G1 and G2 to be isomorphic are: (1) |V(G1)|= |V(G2)|, (2)
|E(G1)|= |E(G2)|, and (3) if n1 A V(G1), then degþG1

ðn1Þ ¼ degþG1
ð f ðn1ÞÞ and

deg�G1
ðn1Þ ¼ deg�G1

ð f ðn1ÞÞ.

5.9 TREES

A tree is a graph G with no loops in which there is a unique, simple (no loops),
nondirected path (or semipath in the case of a digraph) between each pair of
nodes. Figure 5.13 shows a graph that is a tree.

A rooted tree is a tree in which there is a designated ‘‘root’’ node. In a graph,
the root node must have a degree of 1. In Figure 5.13 nodes a, c, and j could be
root nodes. In a directed tree, the root node must have no parents, or an in
degree of 0. In Figure 5.14, in the left digraph nodes a and c could be root
nodes; in the right digraph only node a can be root node.

A directed tree is a rooted tree in which there is a (directed) path from the
root to every other node. Note that the tree in Figure 5.13 is not a directed tree
because the graph is not a digraph. The right-hand digraph in Figure 5.14 is a
directed tree in which node a is the root. The left-hand graph is a tree because
there exists a semipath from every node to every other node; that is, the graph is
weakly connected. The graph is not a directed tree because there is not a path
from any root (a or c) to every other node.

Note the following statements are consistent with the above definitions:

1. A simple nondirected graph G is a tree if and only if G is connected and
contains no cycles.

2. A tree with n nodes has exactly n�1 edges.

3. A graph G is a tree if and only if G has no cycles and |E(G)|= |V(G)|�1.

A directed tree is a graphic representation of a partition, the fundamental
construct of our requirements, functional and physical decompositions.

5.9.1 Spanning Trees*

A graph H is a subgraph of a graph G if V(H) D V(G) and E(H) D [E(G) -
(V(H)�V(H))]. That is, the nodes in the subgraph must be a subset of the

*Advanced material.
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nodes in the graph, and the edges in the subgraph must be a subset of those in
the graph, with the added stipulation that all of the edges are connected to two
nodes, one on each end of the edge.

Graph H is a proper subgraph of G if V(H) 6¼ V(G).
A graph H is a spanning subgraph of G if H is a subgraph of G and

V(H)=V(G). So a spanning subgraph cannot be a proper subgraph.
Let W be a subgraph of G. The subgraph induced by W is the subgraph H of

G in which V(H)=V(W) and E(H)= [E(G) - (V(W)�V(W))]. That is, H,
the subgraph of G induced by W, contains all of the edges of G that are
consistent with the nodes of W. A subgraph H of a graph G is called a spanning

a b c

d

e f

g h i

j

a b c

d

e f

g h i

j
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FIGURE 5.14 Sample nondirected and directed trees.
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FIGURE 5.13 Sample tree.
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tree of G if (a) H is a tree and (b) V(H)=V(G). A spanning tree that is a
directed tree is a directed spanning tree.

5.9.2 Directed Trees

Two nodes, n1 and n2, in a digraph G are quasi-strongly connected if there exists
a node n3 such that there is a path(s) from n3 to n1 and from n3 to n2. The path
from n3 to n2 can pass through n1.

Digraph G is a quasi-strongly connected digraph if and only if there is at least
one node, r, in G such that there exists a path from r to all of the remaining
nodes of G. See Figure 5.15.

Let G be a digraph with |V(G)|W1. Then the following statements are
equivalent:

(1) G is a directed tree.

(2) There is a node r in G such that there exists a unique path from r to every
node in G.

(3) G is quasi-strongly connected and G – (any edge) is not quasi-strongly
connected.

(4) G is quasi-strongly connected and contains a node r such that the in
degree of r is 0 and the in degree of every other node in G is 1.

The height of a directed tree is the length of the longest path. The height of
the directed tree in Figure 5.14 is 8. A directed tree has levels. Level 0 is
associated with the root of the directed tree. The first level of the directed tree
contains all nodes adjacent to the root, or the children of the root. The second
level contains the children of all nodes in level 1, and so on. See Figure 5.16.
Note that a directed tree need not be symmetric, that is, reach the same level
along every path.

5.9.3 Forest

A directed forest is a collection of directed trees. See Figure 5.17. Forests are
important in systems engineering as we practice concurrent engineering.

a b

cd

e f

FIGURE 5.15 Quasi-strongly connected digraph.
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Recall from Chapter 1 that we must be concerned not only with the system that
will be used during the operational phase but also with the development,
manufacturing, training, deployment, refinement, and retirement systems. The
concurrent requirements form a requirements forest.

5.10 FINDING CYCLES AND SEMICYCLES IN A GRAPH

In very large digraphs it will not always be apparent that there are cycles or
semicycles. To find the cycles, remove all barren nodes (nodes without children)
and border nodes (nodes without parents). Continue this process until there are
no remaining barren or border nodes. If there are any nodes remaining, then
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FIGURE 5.16 Levels of a directed tree.
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FIGURE 5.17 Sample directed forest.
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there are one or more cycles and the remaining nodes are part of at least one of
the cycles.

To find the semicycles in a digraph, first replace all of the directed arcs with
non-directed arcs. Then remove all nodes of degree 1. Continue this process
until there are no remaining nodes of degree 1. If there are any nodes
remaining, then there are one or more semicycles, and the remaining nodes
are part of at least one of the semicycles.

5.11 REVISITING IDEF0 DIAGRAMS

At a superficial level IDEF0 diagrams resemble the digraphs that we have been
discussing. On any IDEF0 page there are nodes, depicted as boxes, and arcs.
All of the boxes and edges are labeled as discussed earlier in this chapter.
However, we need not look too deep to see some major discrepancies between
digraphs and a page of an IDEF0 model. The inputs, controls, outputs, and
mechanisms (ICOMs) coming from external sources to the page are not nodes
but labels on the edges. These edges, associated with the external ICOMs, do
not have a node at one of their ends; this never happened in a digraph since an
edge depicted a relation between two elements of a set A and all of the elements
of A were shown in the graph.

As mentioned in the previous paragraph, each edge on the IDEF0 diagram is
labeled. While there can be labels on the edges in digraphs, all of the digraphs
presented in this chapter had none. In a digraph each edge represents the fact
that a single relation exists between each pair of connected nodes, aRb.

Each node in the IDEF0 diagram is called a function and is named
consistently with our understanding of a function, namely a transformation.
Yet, digraphs represent a specific relation, which may be a mathematical
function if certain conditions are satisfied (see Chapter 4). The relation, or
function, in a digraph is represented by the edges, not the nodes.

At an even deeper level, each label on the edge of an IDEF0 arrow actually
represents a set of possible items that can become an input, control, or output
of the relevant function. All of the possible inputs and controls entering a
function must then be represented by n-tuple of the Cartesian product across all
input and control arrows entering that function. Similarly, the Cartesian
product represents all possible outputs of a function across all output arrows
exiting a function. So, there are, in fact, many important differences between a
digraph and a page of an IDEF0 diagram.

A number of people have attempted to transform an IDEF0 model into a
bipartite graph. The first step is to turn the arc labels into nodes of a second
type, say circles. The IDEF0 diagram (without mechanisms) in the top of
Figure 5.18 is converted into a bipartite graph in the bottom of Figure 5.18.
Each label is replaced by a circular node. Each external label is connected by
the edge entering or leaving the appropriate function. The new nodes for I12
and C12 are now connected by two edges; one going into the new node and one
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coming out of the new node. We have now satisfied the basic requirements of a
bipartite graph; there are two types of nodes and no edge connects two nodes of
the same type. There are, in essence, two types of edges; those that connect
boxes to circles (outputs of the function in the box) and those that connect
circles to boxes (inputs to the function in the box).

However, there are two remaining problems. First, IDEF0 differentiates
between arcs entering a function from the top and left. There is no provision for
such differentiation in digraphs. Other process modeling techniques in Chapter
12 do not differentiate between inputs and controls; it is necessary to drop this
distinction between inputs and controls, as is done in Petri nets, which is the
only graph-theoretic modeling tool discussed in Chapter 12.

Second, there is a problem with branches and joins. There is no analogous
construct in graph theory. To solve this problem a function must be inserted at
each branch to accomplish a divide or copy, and at each join to accomplish a
paste. See Figure 5.19.
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FIGURE 5.18 ICOM labels converted to nodes.
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With all of these workarounds, IDEF0 remains a static snapshot of a
dynamic process. There are potentially infinite dynamic models that can be
created from each IDEF0 model. The information that separates the proper
dynamic model from the rest of the possible dynamic models is not in the IDEF0
model but remains in the mental model of the creator of the IDEF0 model. If a
team (which is most common) creates the IDEF0 model, it is possible, even
likely, that each team member has a mental model of a different dynamic
representation of the static IDEF0 model. This is why creating a dynamic model
from the IDEF0 representation is so important; the communication process
among the systems engineering team must be carried as far as possible.

5.12 SUMMARY

A graph consists of a set of nodes and a set of edges. The edges define a relation
over the set of nodes. The relation can require an order of the nodes in which
case the edges are directed; directed graphs are the most applied in the
engineering of systems. Bipartite graphs are a special form of a directed graph
in which there are two types of nodes, and the edges cannot connect nodes that
are the same type.
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FIGURE 5.19 IDEF0 page with divide and paste functions added.
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Sequences of nodes in a graph can be defined by the terms walk, path, trail,
circuit, and cycle. Graphs can be connected or disconnected; there are variations
of connectedness, ranging from weakly to strongly. Nodes that are not adjacent
to each other in a graph can be reachable via a path in the graph. This notion of
reachability can be critical if attaining some output requires the execution of a set
of functions, but the set of functions is not part of a reachable set.

The properties of reflexivity, irreflexivity, symmetry, antisymmetry, asym-
metry, transitivity, and intransitivity were defined in Chapter 4 and then
redefined in terms of graphs in this chapter. Visualizing these relations provides
a much greater understanding of their meaning and ability to detect their
absence or presence in a graph.

Partial orders of the elements of a set were defined as alternative orders of
the nodes based upon the relation defined over the nodes. The Hasse diagram
was defined and illustrated for finding the partial order on the set and then
enumerating the possible partial orders.

Trees and several variations of trees were introduced as a special form of a
graph. A directed tree describes the notion of a hierarchical decomposition.
Hierarchies of requirements, functions, and components were discussed in
Chapter 2 and will be revisited in Chapters 6 through 11. These hierarchies
must be partitions (as defined in Chapter 4) and can be represented as directed
trees.

Finally the IDEF0 process modeling technique was revisited and discussed
in terms of mathematical graph theory. The reasons why an IDEF0 model is
not a directed graph were discussed, as well as the difficulty associated with
turning an IDEF0 model into a graph.

PROBLEMS

5.1 For the following graph, G1:

b

a

f

d

g

e

c
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a. Find |V(G1)| and |E(G1)|.

b. Write the relation depicted by G1 as a set of ordered pairs.

c. Define the adjacency matrix of G1.

d. What is the out degree of each node of G1? What is the in degree of
each node of G1?

e. Could G1 be a bipartite graph? If no, why? If yes, what is the partition
into two subsets of nodes that makes this a bipartite graph?

f. Is the relation depicted here reflexive? irreflexive? symmetric? anti-
symmetric? asymmetric? transitive? intransitive?

g. What arcs (if any) would you have to add to this relation to make it
transitive

5.2 For the following graph, G2:

b

a

f

d

g

e

c

a. Write the relation depicted by G2 as a set of ordered pairs.

b. Define the adjacency matrix of G2.

c. Could G2 be a bipartite graph? If no, why? If yes, what is the partition
into two subsets of nodes that makes this a bipartite graph?

d. *Is there a cycle in G2? How many?

e. *Is there a semicycle in G2? Which nodes are included?

f. Is the relation depicted here reflexive? irreflexive? symmetric? anti-
symmetric? asymmetric? transitive? intransitive?

g. What arcs (if any) would you have to add to this relation to make it
transitive?

h. *Delete the arc from g to a and draw a Hasse diagram for G2. Why
must we delete the arc from g to a before we can draw a Hasse

*Advanced assignment.
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diagram? Define at least 10 different node orderings consistent with
this Hasse diagram.

5.3

a. Develop a directed graph for the relation ‘‘_____ has defeated ____.’’
using the following won/lost records of the two 1993 Super Bowl
teams. Create a single node for each team and an arc for each defeat.
Note this will be a multigraph.

Buffalo Bills Dallas Cowboys (DC)

(BB) Schedule Schedule

BB 38 NEP 14 DC 16 WR 35

BB 13 DC 10

BB 13 MD 22 DC 17 PC 10

BB 17 NYG 14 DC 36 GBP 14

BB 35 HO 7 DC 27 IC 3

BB 19 NYJ 10 DC 26 SFF 17

BB 24 WR 10 DC 23 PE 10

BB 0 PS 23 DC 20 PC 15

BB 13 NEP 10 DC 31 NYG 9

BB 23 IC 9 DC 14 AF 27

BB 7 KCC 23 DC 14 MD 16

BB 24 LAR 25 DC 23 PE 17

BB 10 PE 7 DC 37 MV 20

BB 47 MD 34 DC 28 NYJ 7

BB 16 NYJ 14 DC 38 WR 3

BB 30 IC 10 DC 16 NYG 13

BB 29 LAR 23 DC 27 GBP 17

BB 30 KCC 13 DC 38 SFF 21

SUPER BB 13 DC 30

b. Is this directed graph reflexive? irreflexive? transitive? asymmetric?

c. *There will be cycles in the graph created in part (a). Break these cycles
by eliminating arcs in favor of the two Super Bowl teams; that is, if
there is a cycle between a Super Bowl team and another team,
eliminate the arc showing that the Super Bowl team was defeated by

*Advanced assignment.
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the other team. Assume the resulting relation is a partial order and
draw a Hasse diagram of the relation.

5.4 For the following adjacency matrix:

a b c d e f g h i

a 0 1 0 0 0 0 0 0 0

b 0 0 1 0 1 0 0 0 0

c 0 0 0 1 0 0 0 0 0

d 1 0 0 0 0 0 0 0 0

e 0 0 0 0 0 0 0 0 1

f 0 0 0 0 0 0 0 0 1

g 0 0 0 0 0 1 0 0 0

h 0 0 0 0 0 0 1 0 0

i 0 0 0 0 0 0 0 1 0

a. Draw the graphical representation, G4, that is defined by the adjacency
matrix.

b. Find |V(G4)| and |E(G4)|.

c. Write the relation depicted by G4 as a set of ordered pairs.

d. What is the out degree of each node of G4? What is the in degree each
node of G4?

e. Could G4 be a bipartite graph? If no, why? If yes, what is the partition
into two subsets of the nodes that makes G4 a bipartite graph?

f. Which of the seven properties (reflexive, irreflexive, transitive, intran-
sitive, symmetric, asymmetric, antisymmetric) does this relation satisfy

5.5 *Drop the arc from b to c in Figure 5.15 and draw a Hasse diagram for
the resulting graph. How many orderings of the nodes in the digraph are
consistent with this Hasse diagram?

5.6 There are three families defined by the sets A, B, and C; each family has
a dad, mom, and three kids:

A={Dad, Mom, Doris, Bill, Tom}
B={Dad, Mom, Doris, Daisy, Debbie}
C={Dad, Mom, Bill, Bob, Biff}

Consider the relations ‘‘is the spouse of,’’ ‘‘is the brother of,’’ and ‘‘is the
blood relative of.’’ (Hints: I am not the brother of myself. Two people are
blood relatives if they share the blood of a common ancestor, who may or
may not be part of sets A, B, or C. I am the blood relative of myself.)

*Advanced assignment.
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Create a digraph for each of the three relations on each of the three sets.
Identify which of these relations satisfy which of the seven properties of
unary relations for each of the three sets by placing a yes or no in the empty
cells of the following table.
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‘‘is the spouse of ’’ on A

‘‘is the brother of ’’ on A

‘‘is the blood relative of ’’ on A

‘‘is the spouse of ’’ on B

‘‘is the brother of ’’ on B

‘‘is the blood relative of ’’ on B

‘‘is the spouse of ’’ on C

‘‘is the brother of ’’ on C

‘‘is the blood relative of ’’ on C

5.7 A city street snapshot is shown in the figure. Note there are streets with
arcs on them indicating one-way streets. The streets with double-headed
arcs are two-way streets. There are 11 intersections, labeled 1 through 11.
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a. Draw a directed graph that represents this street system. (Hint: Use a
node to represent street intersections.)

b. Is this digraph quasi-strongly connected? If not, what is the minimum
number of arcs that must be added and what nodes must they connect
to make it quasi-strongly connected? If yes, why?

c. If you think the digraph in part (a) is quasi-strongly connected, draw a
directed spanning tree for it. If you do not think the digraph in part (a)
is quasi-strongly connected, add arcs so that it is and then draw a
directed spanning tree for it.

d. What is the height of the tree that you have drawn?

5.8 For the set of all possible relations, create a partition using combina-
tions of the properties symmetric, antisymmetric, and asymmetric
where each subset in the partition cannot be empty. As an example, a
partition of all relations using the properties reflexive and irreflexive
would be: (reflexive relations), (irreflexive relations), (relations that
are neither reflexive nor irreflexive). Note the subset of relations that
are both reflexive and irreflexive is left out because this combination is
impossible.

5.9 Consider an IDEF0 model in which the function A0 has two inputs (I1
and I2), three controls (C1, C2, and C3) and three outputs (O1, O2, and
O3). The IDEF0 function, A0, can be considered a relation that maps
elements of D=(I1 X I2 X C1 X C2 X C3) into elements ofP=(O1 X O2

X O3). The 5-tuple for inputs and controls to A0 and the 3-tuple for
outputs are used because each input, control, and output represents a set
of possible inputs, controls, or outputs, respectively. The n-tuples define
all possible combinations of inputs and outputs, respectively. Under
what restrictions is A0 a function? Why?
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Chapter 6

Requirements and Defining
the Design Problem

6.1 INTRODUCTION

Requirements are the cornerstone of the systems engineering process: Stake-
holders’ requirements provide operational statements by the stakeholders
concerning their needs; derived requirements enable the engineers of systems
to partition the design problem into components that can be worked in parallel
while maintaining design control through the requirements partition and the
interfaces between the components; derived requirements enable the verifica-
tion of the configuration items and components during the qualification activity
during development; and stakeholders’ requirements provide the means for
validating the system’s design during qualification.

Requirements do not just show up on the systems engineer’s desk. Obtaining
‘‘good’’ requirements is critical to the successful engineering of a system [Blum,
1992, pp. 68–81; Davis, 2005, pp. 3–39]. The systems engineer must work hard
with the stakeholders of the system to develop the requirements. Fortunately,
there is a tried and true method with some valuable modeling techniques that
can be used in this effort.

There are few references that provide a coherent view of the systems
engineering process for developing stakeholders’ requirements for a system,
including a definition of how these requirements might be usefully character-
ized to aid the generation process. Grady [1993] provides an excellent discus-
sion of what requirements are, how requirements should be written one at a
time and in documents, and how requirements should be allocated. Faulk et al.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
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[1992] describe a software engineering method for real-time requirements that
has many of the characteristics that are important. Crowe et al. [1996] adapt the
method of Faulk et al. [1992] to software-intensive systems; however this
adaptation is incomplete because software engineering assumes systems en-
gineers are their interface to the stakeholders. However, no reference found by
the author discusses systematically how requirements should be developed and
how such constructs as the operational concept, prototyping, objectives
hierarchy, and external systems diagram can be used in this process. This
chapter (an expansion of Buede [1997]) defines such a process that is consistent
with most systems engineering practice.

This chapter begins by discussing what requirements are. Definitions that are
key to putting a system in its context with external systems and the environment
are provided next. Section 6.4 defines the process or method by which
requirements are developed. A discussion of various categories of requirements
found in the literature of systems engineering are then discussed, followed by
the partition of requirements that will be used in this book. The proposed
outline for a stakeholders’ requirements document that addresses all phases of
the system’s life cycle is provided in Section 6.7. The literature on requirements
has proposed a number of characteristics that define either a sound individual
requirement or a set of sound requirements; these characteristics of sound
requirements are given in Section 6.8. The convention for writing requirements
is discussed in Section 6.9.

Sections 6.10 to 6.13 describe in detail the portions of the process for
developing requirements: defining the operational concept for each phase of the
system’s life cycle, creating an external systems diagram for each phase of the
life cycle, establishing an objectives hierarchy for each phase of the life cycle,
and conducting prototyping and usability testing to analyze the potential
requirements in each phase of the life cycle. Section 6.14 provides a detailed
discussion of the four segments of the requirements partition for each phase of
the life cycle: the input/output requirements, the system-wide and technology
requirements, the trade-off requirements, and the qualification requirements.
Finally, the issue of managing requirements during the development of a
system is discussed.

The focus of this chapter is the method for defining requirements for a
system and all of the systems associated with each phase of the system’s life
cycle. There are seven activities associated with this method: developing the
operational concept; defining the system boundary; developing an objectives
hierarchy; developing, analyzing, and refining the requirements (including
prototyping and usability testing); ensuring requirements feasibility; defining
the qualification system requirements; and obtaining approval of the
requirements.

Several models are introduced to support the process for defining require-
ments. A qualitative model, an input/output trace, is described for defining a
scenario that is part of the system’s operational concept. An application of
IDEF0 (Integrated Definition for Function Modeling) modeling is described
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for defining the process of a system’s interaction with other (external) systems;
this external system diagram defines all of the inputs and outputs associated
with the system. A hierarchical decomposition of the objectives for a system is
another example of a qualitative model used in this requirements definition
process.

The exit criterion for this initial activity in the engineering of a system is the
approval of the requirements document by the stakeholders. Often the
engineers of a system are focused on obtaining this approval as quickly as
possible, often without defining all of the requirements suggested in this
chapter. The trade-off and qualification requirements are missing from most
requirements documents. The contention of this chapter is that the real exit
criterion of the requirements definition process is the approval by the
stakeholders of the acceptance plan for the system. If the acceptance plan is
affirmed, then all of the other portions of the requirements document are
presumed to he defined in acceptable detail.

6.2 REQUIREMENTS

Many authors have defined the term requirement. The list below provides
several definitions that highlight key concepts (the italics are the author’s).

Sailor [1990]: identifiable capabilities expressed as performance measurables
of functions that the system must possess to meet the mission objectives.

MIL-STD 499B [Military Standard, 1993]: identifies the accomplishment
levels needed to achieve specific objectives.

Chambers and Manos [1992]: the attributes of the final design that must be a
part of any acceptable solution to the design problem.

Grady [1993]: an essential attribute for a system or an element of a system,
coupled by a relation statement with value and units information for the
attribute.

Davis [2005]: an externally observable characteristic of a desired system.

The requirements for a system set up standards and measurement tools
for judging the success of the system design. These requirements should
be viewed hierarchically. At the top are mission-level requirements that
establish how the stakeholders will benefit by introducing the system in
question into the supersystem of the system. These mission requirements relate
to objectives of the stakeholders that are defined in the context of the
supersystem, not the system itself. For example, Boeing identified two primary
mission requirements when starting on the Boeing 777 commercial aircraft: trip
cost per seat and total trip cost. Each airline company that purchases a 777 is
the meta-system that most influences an aircraft company during the develop-
ment phase.
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Stakeholders’ requirements are developed next in the context of these mission
requirements and should focus on the boundary of the system. If the
stakeholders’ requirements are defined internally to the system, the risk of
having design statements embedded in the requirements goes up substantially.
A major emphasis of this chapter is that the stakeholders’ requirements should
be as design independent as possible. Boeing’s stakeholders’ requirements for
the 777 included such topics as liftable weight of the aircraft at specified
conditions, the empty weight of the aircraft, the drag force on the aircraft for
certain specified flight conditions, and the fuel consumption of the aircraft at
certain specified flight conditions.

As discussed in Chapter 1 system requirements are a translation (or
derivation) of the stakeholders’ requirements into engineering terminology.
Once this translation occurs, the derivation process of requirements continues.
Recall from Chapter 1 that the goal of the design process is to create a system
specification that can be developed into specifications for the system’s compo-
nents, which are then segmented into specifications for the system configuration
items (CIs). As a result the design process creates two hierarchies of require-
ments as shown in Figure 6.1.

The stakeholders’ requirements are produced in conjunction with the
stakeholders of the system, based upon the operational needs of these
stakeholders. Some systems engineers believe the systems engineering process
begins when the Stakeholders’ Requirements Document (StkhldrsRD) arrives;
however the position taken here and supported by Pragmatic Principle 1 [De
Foe, 1993] of the International Council on Systems Engineering (INCOSE) is
that the systems engineers must be involved with the stakeholders to have any
hope of producing a useful StkhldrsRD; note italicized items. In fact, the
process described in this chapter is focused on methods and models for
developing a valid and complete StkhldrsRD.

Mission Requirements

Stake-
holders’

Requirements

System
Requirements

Component
Requirements

CI
Requirements

Derived
Requirements

FIGURE 6.1 Requirements hierarchies.
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The Systems Requirements Document (SysRD), which is derived from the
StkhldrsRD, is a translation from the language of stakeholders to the language
of engineers. The system’s requirements are traced directly from the stake-
holders’ requirements.

Note the term stakeholder is used in the above discussion in place of the
more common term user. This is to emphasize the fact that there are usually
multiple categories of users of a system: owner and/or bill payer, developer,
producer or manufacturer, tester, deployer, trainer, operator, user, victim,
maintainer, sustainer, product improver, and decommissioner. Each stake-
holder has a significantly different perspective of the system and the system’s
requirements. If one perspective is singled out as the only appropriate one, the
developers of the system will miss key information, and the system will be
viewed negatively or as a failure from the other perspectives.

The systems engineering process for creating a system design is decision rich.
That is, the systems engineer is searching via a great deal of analysis and
experience to find a very good (optimum is usually not possible to determine)
solution that satisfies all of the mandatory requirements of the stakeholders and
delivers as much performance as possible within the guidelines of cost and
schedule.

This search process involves making many decisions about the system’s
physical character (or resources) and allocations of functions to resources that
are usually only revisited if absolutely necessary. This search process occurs as
the top-down onion-peeling process of systems engineering occurs. Figure 6.1
shows derived requirements at the component level (which may be several
layers of the onion) and the CI (or bottom) level. Chapters 7 through 10 will
describe this process of architecture development and creation of appropriate
derived requirements, supported by analysis and judgment. To continue the
story of the Boeing 777, Boeing created requirements for a major subsystem of
the 777— the engine. These derived requirements for the engine included the
weight of the engine (derived from the weight of the empty aircraft), the thrust
of the engine at specified conditions (derived from the liftable weight of the
aircraft), the drag of the engine at specified conditions (derived from the drag of
the aircraft), and the fuel consumption of the engine at specified conditions
(derived from the fuel consumption of the aircraft).

A major impediment to this design process being successful is the over-
constraint of the solution space by the stakeholders’ requirements. The systems
engineers job is to work with the stakeholders to define the stakeholders’
requirements so as to make sure that there is significant design freedom within
these requirements and that many feasible designs exist. Stakeholders and (all
too often) engineers are willing to constrain the requirements space very tightly
without fully understanding or appreciating the potential value of the design
options that they are eliminating. The stakeholders’ requirements process
defined in this chapter takes explicit account of this need to have and define
a large tradable region in design space for the systems engineers to search with
quantitative techniques utilizing the priorities of the stakeholders.
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Pragmatic Principle 1 [DeFoe, 1993] Know the Problem, the Customer, and

the Consumer

1. Become the ‘‘customer/consumer advocate/surrogate’’ throughout the
development and fielding of the solution.

2. Begin with a validated customer (buyer) need — the problem.

3. State the problem in solution-independent terms.

4. Know the customer’s (or buyer’s) mission or business objectives.

5. Do not assume that the original statement of the problem is necessarily the
best, or even the right one.

6. When confronted with the customer’s need, consider what smaller objec-
tive(s) is/are key to satisfying the need, and from what larger purpose or
mission the need drives; that is, find at the beginning the right level of
problem to solve.

7. Determine customer priorities (performance, cost, schedule, risk, etc.).

8. Probe the customer for new product ideas, product problem/shortfalls,
identification of problem fixes.

9. Work with the customer to identify the consumer (user) groups that will be
affected by the system.

10. Use a systematic method for identifying the needs and solution preferences
of each customer group.

11. Don’t depend on written specifications and statements of work. Face-to-
face sessions with the different customer/consumer groups are necessary.

12. State as much of each need in quantified terms as possible. However,
important needs for which no accurate or quantified measure exists still
must be explicitly addressed.

13. Clarify each need by identifying the power and limitations of current and
projected technology relative to the customer’s larger purpose, the
environment, and ways of doing business.

6.3 DEFINITIONS

Before discussing the process for developing stakeholders’ requirements, the
definitions presented in Chapter 2 are reviewed.

A system is a set of components (subsystems, segments) acting together to
achieve a set of common objectives via the accomplishment of a set of tasks.

A system task or function is a set of functions that must be performed to
achieve a specific objective.

A human-designed system is (a) a specially defined set of segments (hardware,
software, physical entities, humans, facilities) acting as planned (b) via a
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set of interfaces, which are designed to connect the components, (c) to
achieve a common mission or fundamental objective (i.e., a set of
specially defined objectives), (d) subject to a set of constraints, (e) through
the accomplishment of a predetermined set of functions.

The external systems [Levis, 1993] of a system are a set of entities that
interact with the system via the system’s external interfaces. Note in
Figure 6.2, the external systems can impact the system and the system
does impact the external systems. The system’s inputs may flow from
these external systems or from the context, but all of the system’s outputs
flow to these external systems. The external systems, many or all of which
may be legacy (existing) systems, play a major role in establishing the
stakeholders’ requirements.

The context [Levis, 1993] of a system is a set of entities that can impact the
system but cannot be impacted by the system. The entities in the system’s
context are responsible for some of the system’s requirements. See
Figure 6.2. Wieringa [1995] uses the phrase ‘‘universe of discourse’’ to
label the context and external systems that part of the world about which
the system registers data and controls behavior.

6.4 STAKEHOLDERS’ REQUIREMENTS DEVELOPMENT:
DEFINING THE DESIGN PROBLEM

Developing a good and complete set of requirements is very difficult. First, we
have to figure out what topics we should be writing requirements about. These
topics for the system-level requirements should all be at the same level of
granularity, a level of granularity that is consistent with the system-level and
not the meta-system or subsystems. To facilitate defining these topics we will
introduce the concepts of an operational concept, external systems diagram,
and objectives hierarchy.

System

External Systems

Context

are impacted by “System”

impacts, but not impacted by, “System”

FIGURE 6.2 Depiction of the system, external systems, and context.
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After we determine what the topics of the requirements conversation are
going to be, we can start writing specific requirements. Now we have to
determine what we want to say in that requirement. What is the threshold we
are going to set for the minimum level of acceptable achievement? Here we will
talk about prototyping, analysis, elicitation, and usability testing.

Next the requirements should be analyzed to determine that at least one
feasible solution exists. A common problem is that we have defined thousands
of requirements and together they are so constraining that there is no solution
with enough performance at a low enough cost and a quick enough schedule.
Often it is very difficult to determine that there is a feasible solution so this step
is skipped. Typically the selected design proves to be insufficient for 5 to 20
requirements, meaning it was not a feasible solution. Late in the design process
systems engineers are confronted with the problem of should we search for a
new design or accept the fact the current design cannot meet all of the
requirements.

The last step before approval should be defining qualification or test
requirements that are appropriate for the level of requirements being defined.
When defining system-level requirements these qualification requirements
should address how will system-level verification and validation be done.

So the seven functions of this stakeholders’ requirements development
process are:

1. Develop operational concept

2. Define system boundary with external systems diagram

3. Develop system objectives hierarchy

4. Develop, analyze, and refine requirements (stakeholders’ and system)

5. Ensure requirements feasibility

6. Define the qualification system requirements

7. Obtain approval of system documentation

These seven functions are shown in an IDEF0 diagram in Figure 6.3. This
diagram is taken from the IDEF0 model of the process for engineering a system
in Appendix B. To define this process fully, the first three functions must be
defined in meaningful terms to justify their presence and provide explicit inputs
to the fourth function. The last three functions are important but follow-on
from the development of the StkhldrsRD. The resource that performs
these functions is the systems engineering team; this resource is not shown in
Figure 6.3 to improve the readability of the IDEF0 diagram.

The operational concept is prepared from the perspective of the stakeholders
of the system and describes how these stakeholders expect the system to fit into
their world that contains a number of external systems and has a certain
context. The objectives of each stakeholder group are suggested here. The
operational concept defines the system and external systems in very general
terms (often as a block diagram) and establishes a use case diagram and the
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associated usage scenarios as sequence diagrams. These usage scenarios
describe ways in which the stakeholders will use the system as well as
interactions between the system and other systems. These scenarios define
inputs to and outputs of the system. In addition, the operational concept
includes the mission requirements for the system.

The second step, creating the external systems diagram, makes the bound-
aries between the system and external systems clear, leaving no doubt in
anyone’s mind where the system starts and stops. The development of this
diagram and the explication of the system’s boundaries are nearly always
harder than most people expect. As part of defining the system’s boundaries, all
of the inputs to and outputs of the system are established, as well as the external
system or context with which each input and output is associated.

The third step clarifies the objectives of the stakeholder groups and
formulates a coherent set of objectives for the system. Again, the output of
this step looks like it could have been created in a few hours, but generally takes
days if not weeks. Each objective is part of the value system of one or more
stakeholders for determining their satisfaction with the system. Naturally these
objectives conflict with each other in the sense that gaining value on one
objective (e.g., availability) means it will be necessary to give up value on
another objective (e.g., cost).

The creation of the stakeholders’ requirements, followed by the translation
of these requirements into system requirements, is the fourth step. The
stakeholders’ requirements are created by an analysis of the operational
concept for system functions, an exhaustive examination of the system’s inputs
and outputs, the specification of interfaces of the external systems with which
the system must interact, a thorough examination of the system’s context and
operational concept for system-wide and technology constraints, a detailed
discussion with the stakeholders to understand their willingness to trade-off a
wide range of non-mandatory but desirable system features, and the complete
specification of qualification requirements needed to verify and validate the
system’s capabilities from the stakeholders perspectives. Often a simulation
model that depicts some or all of the interaction between the system and one or
more other external systems is developed. These simulation models often
address timing issues, specific performance issues, reliability or availability,
safety and security, or quality of inputs and outputs. Cost analyses of a system
should be done with the context in which the system is going to operate in mind.
An important tool used during requirements development is prototyping, the
development of replicas of the parts of the system. For user interfaces this
prototyping is particularly important because users often do not know what is
possible with new technology or how they might use this new technology
effectively. For prototyping of user interfaces to be effective some form of
usability testing is commonly used to determine how the users function with the
prototype.

Before proceeding too far into the design process, these requirements must
be examined to ensure that a feasible design exists that meets the requirements.
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For example, building a supersonic transport aircraft that has a production
cost of $1000 is not possible. While this simple, exaggerated example illustrates
the problem, in practice the development of hundreds, or even thousands, of
requirements makes the test for feasibility quite difficult.

The sixth step is the development of requirements for the qualification
system needed to verify and validate the resulting system. This involves the
development of input/output requirements for the qualification system, as well
as system-wide requirements. Trade-off requirements are also needed for the
qualification system. Finally, the qualification system must also be qualified.

Finally, the stakeholders must approve the requirements documents. This
approval process works best when the stakeholders are actively involved in and
understand the previous steps.

Before defining and discussing requirements, noting that requirements must
be developed for each phase of the system’s life-cycle is important. The life-
cycle phases used in this book are:

1. Development (design and integration)

2. Manufacturing or production

3. Deployment

4. Training

5. Operations, maintenance, and support

6. Refinement

7. Retirement

There is a strong correlation between the stakeholders and the life-cycle
phases. These seven functions should be applied to each stakeholder
group and phase of the system’s life cycle. Note that some of these phases
may not be relevant for some systems. Most of the discussion from here
on out will focus on the operations, maintenance, and support phase, but
keep in mind that all phases of the life cycle should be addressed. Table 6.1
discusses who is involved in this requirements generation process and what
their roles are.

6.5 REQUIREMENTS CATEGORIES

Many authors have categorized requirements. Here are some of the often-
discussed categories:

1. Specification Level Stakeholders’, Derived, Implied and Emergent: Stake-
holders’ requirements, derived from operational needs, are those top-level
statements defined in language that is understandable to the stakeholders,
leaving substantial room for design flexibility. Stakeholders’ requirements
should define the essence of the stakeholders’ needs sufficiently clearly for
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TABLE 6.1 Roles and Responsibilities during Requirements Generation

Who has the right to have a stakeholders’

requirement?

Any individual/organization with a need

involved in the development (design and

qualification), production, deployment,

training, operation, maintenance,

support, refinement, decommissioning

of and payment for the system.

What does one call a requirer? Customer or stakeholder

Who must respond to the requirer(s)

having a requirement and how?

System’s requirements team, a collection of

stakeholders and systems engineers.

Response is acceptance, request for

clarification, or rejection.

By what criteria does the Systems

Requirements Team respond?

This team establishes the external systems

diagram and fundamental objectives

hierarchy of the system, and then

determines if the requirement fits within

the scope of the system’s boundary and

fundamental objective. Stakeholders’

requirements also have to be assessed

for the proper level of abstraction. A

requirement should not be too strategic

(mission-oriented) or means (or

solution) oriented.

How does one know that the requirement

is ‘‘right?’’

There is no right or wrong, only acceptable

or unacceptable at this time. Over time,

some of the stakeholders’ requirements

will change.

How are these requirements conveyed to

the people who get involved once a

requirer has enunciated a requirement?

The system’s requirements team

documents the collection of

stakeholders’ requirements. This

stakeholders’ requirements document

(StkhldrsRD) is distributed to the

stakeholders and systems engineers.

Included in this document is a discussion

of the operational concept of the system

and the external systems and context

associated with the system, that is, how

each stakeholder expects to interact with

the system. By reviewing the

stakeholers’ requirements document

each stakeholder can see how the

requirement s/he suggested fits into the

envisioned operation of the system, and

can judge whether this vision makes

sense from her/his perspective.

What does the Systems Requirements

Team do next?

The system’s stakeholders’ requirements

team remains active throughout the

(Continued)
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the stakeholders to be completely satisfied with whatever system results from
the systems engineering process. Derived requirements are those require-
ments defined by the systems engineering team in engineering terms during
the design process. Derived requirements are needed to complete the design
to sufficient detail for the specification to be delivered to the design teams
responsible for the physical configuration items of the system. Implied
requirements are those requirements not specifically identified in the
StkhldrsRD but that can be inferred based upon information in the
StkhldrsRD. Emergent requirements are those requirements that are not
even hinted at in the StkhldrsRD but whose presence is made known by
stakeholders later in the systems engineering process. These last two sets of
requirements are to be avoided if possible by a sound and systematic
stakeholders’ requirements development process.

2. Performance Requirements Versus Constraints. Performance requirements:
define on some index that establishes a range of acceptable performance
from a minimum acceptable threshold to a design goal. Constraints simply
rule out certain possible designs; for example, the system must be painted a
specific shade of green. A performance requirement defines a desired
direction of performance; for an elevator system (which is used throughout
this book as an example), a performance requirement might be to ‘‘minimize
passengers’ waiting time during peak periods.’’ For any performance
requirement there must also be a minimum acceptable performance con-
straint or threshold associated with the index, beyond which designs with
such poor performance are not feasible (e.g., average passengers’ waiting
time during peak periods shall be less than 35 seconds). Often there is also a
maximum threshold or goal on the performance index that states the
stakeholders do not noticeably value performance beyond this point (e.g.,
average passengers’ waiting time during peak periods need not be less than
27 seconds).

3. Application—System Versus Program: System requirements relate to char-
acteristics of the system’s performance (in the broadest sense). Program

TABLE 6.1. Continued

system’s life cycle. During design there

will be many occasions when the

system’s stakeholders’ requirements

must be reviewed and modified. These

occasions will diminish in frequency

once the system is deployed, but the

requirements process is still critical as

requirements changes and system

modifications are envisioned, agreed to,

developed and fielded.
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requirements relate to the first life-cycle phase of the systems engineering
process and usually address the treatment of the cost and schedule for this
phase. Program requirements relate either to the programmatic tasks that
must be performed, programmatic trade offs among cost and schedule, and
programmatic products associated with the systems engineering process
(e.g., the Up & Down Elevator Corporation shall own full rights to the
design data of the elevator).

4. Functional, Interface, or System-wide Requirements: Functional require-
ments relate to specific functions (at any level of abstraction) that the system
must perform while transforming inputs into outputs. As a result, a
functional requirement is a requirement that can be associated with one or
more of the system’s outputs. Interface requirements are usually constraints
that define the reception of inputs and transmission of outputs between the
system and the system’s environment. System-wide requirements (often
called ‘‘-ilities’’) are characteristics of the entire system; examples include
availability, reliability, maintainability, durability, supportability, safety,
trainability, testability, extensibility (growth potential), and affordability
(e.g., operating cost).

6.6 REQUIREMENTS PARTITION

There is great value in having a structure for various types of requirements. If
the requirements are listed in random order in a requirements document, it is
nearly impossible to be sure that a given requirement is not addressed multiple
times in that single requirements document. It is also difficult to find a specific
requirement in a large document. There are other benefits of a requirements
structure, especially if the structure is a partition. A partition is a structure that
has subcategories that are mutually exclusive, meaning a requirement can only
be put in one category. A partition also needs to be exhaustive, meaning every
requirement has some category that is appropriate for it. By creating such a
partition, it is easy to review the partition to ensure that there as many
requirements in that category as expected and every requirement in the
category is appropriate for that category.

The partition that is introduced here has both a vertical spectrum and a
horizontal spectrum. The vertical spectrum was introduced in Figure 6.1, which
shows two vertical levels of requirements written for the stakeholders and three
or more levels of derived requirements written for the engineers. The horizontal
spectrum addresses the life cycle as well as categories of requirements within
each phase of the life cycle. The life-cycle steps or phases include development,
production, operations, etc.; recall Figure 6.1. The categories of requirements
within each phase of the life cycle are discussed next.

Wymore [1993] identifies six types of system design requirements: input/
output, technology and system-wide, performance trade-off, cost trade-off,
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cost–performance trade-off, and test. These six types of requirements are
condensed into four categories: input/output, technology and system-wide,
trade-off, and qualification (test). From a concurrent engineering perspective
each requirements category should be used to address the relevant system (e.g.,
development system, manufacturing system) in each phase of the system’s life
cycle (development, production, deployment, training, operation and main-
tenance, refinement and retirement). Table 6.2 provides examples of various
types of requirements; these examples have been collected from a wide variety
of sources.

1. Input/output requirements: include sets of acceptable inputs and outputs,
trajectories of inputs to and outputs from the system, interface constraints
imposed by the external systems, and eligibility functions that match system
inputs with system outputs for the life-cycle phase of interest. Clearly there
are a number of requirements in this category during the operations phase of
the life cycle. However, the system may have inputs and outputs in all
portions of the system’s life cycle (e.g., training stimulations, standardized
internal interfaces for product improvement); if so, the requirements for these
activities would be found in this category in the appropriate life-cycle phase.
This category is partitioned into four subsets: (a) inputs, (b) outputs, (c)
external interface constraints, and (d) functional requirements. Input require-
ments state what inputs the system must receive and any performance or
constraint aspects of each. Output requirements state what outputs the system
must produce and any performance aspects; Table 6.2 provides an extensive
list of possible performance issues for the outputs of any system, segmented
by quality, quantity, and timeliness. External interface requirements deal with
limitations placed upon the receipt of inputs and transmission of outputs by
the interfaces of the external systems; see Table 6.2. Functional requirements
can be endless unless organized; the functional requirements proposed here
are the two to seven functions that are the first-level decomposition of the
system’s function.

The very strong position being taken here is that the input and output
requirements are the key to defining the needs of the stakeholders in terms
that they can understand. Stakeholders in each phase of the system’s life cycle
can relate to quantity, quality, and timing aspects of the outputs delivered by
the system under question and the ability to deal with quantity, quality, and
timing of inputs. The engineers of the system develop the system’s functions
during the design process. This development of a functional architecture
(see Chapter 7) is a very valuable means for dealing with the complexity of the
engineering problem. But the stakeholders should not care a whit about the
functions being performed by the system as long as they are happy with
the characteristics of the inputs being consumed and the outputs being
produced by the system. The concept of having a major section of require-
ments devoted to the functions of the system is misguided and guaranteed not
to elicit the needs of the stakeholders.
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TABLE 6.2 Exemplary Requirement Dimensions

Requirements Category Exemplary Requirement Dimensions

Input or Output Performance Quality of an output

Accuracy (or precision)

Correctness (or confidence, error rate)

Security (or perishability, survivability)

Quantity of an output

Intensity, Size, or Distance

Number per unit time (throughput, velocity)

Coverage (area or volume served by outputs)

Timing of outputs

Response time (timeliness, time to create an

output)

Update frequency

Availability

Undesired or Unexpected

Inputs

Unexpected or undesired inputs and appropriate

response

Bounds on expected inputs and appropriate response

Interface Constraint Required format of an input or output as defined by

the interface

Timing constraint associated with an interface

Physical form or fit of an interface

Suitability or Quality Issues of

the System

Usability

Weight of the system

Form (volume) and fit (dimensions) of the system

Survivability of the system

Availability, reliability, maintainability of the system

Supportability of the system

Safety of the system

Security

Trainability of the system

Testability of the system

Extensibility (expected changes/growth potential) of

the system

Costs for Various Life Cycle

Phases

Affordability (or operating and maintenance cost) of

the system

Development cost

Production cost (manufacturability) of the system

Deployment and training costs of the system

Decommissioning cost of the system

Schedule for Various Life Cycle

Phases

Development period

Manufacturing time for each unit

Training time to reach proficiency by category of

user

Deployment period

Durability (or operational life) of the system
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2. Technology and system-wide requirements: consist of constraints and
performance index thresholds (e.g., the length of the operational life for the
system, the cost of the system in various life-cycle phases, and the system’s
availability) that are placed upon the physical resources of the system.
Many of the requirements from each phase of the system’s life cycle are
found in this category because these requirements specifically relate to the
physical manifestation of the system. This category can be partitioned into four
subsets: (a) technology, (b) suitability and quality issues, (c) cost for the
relevant system (e.g., development cost, operational cost), and (d) schedule
for the relevant life-cycle phase (e.g., development time period, operational life
of the system).
3. Trade-off requirements: are algorithms for comparing any two alternate
designs on the aggregation of cost and performance objectives. These algo-
rithms can be divided into (a) performance trade offs, (b) cost trade offs, and (c)
cost–performance trade offs. The performance trade-off algorithm defines how
the relative performance of any two alternate designs can be compared in terms
of the system’s performance objectives. These performance objectives are
defined within the input/output and non-cost system-wide requirements. The
performance trade-off algorithm specifically defines how the performance
parameters are to be compared to each other. The cost trade-off algorithm
defines how the relative cost of any two alternate designs can be compared
across all cost parameters (life-cycle phases) of interest to the stakeholders.
Note dollars spent at different times may not be comparable by present value
computations when there are different bill payers at different times. Finally, the
cost–performance trade offs define how performance objectives should be
traded with cost objectives.

These trade-off algorithms could be based upon many different mathema-
tical logics; indeed many have been proposed. The strong position taken in this
book is that these trade-off algorithms must be based upon the value
preferences of the stakeholders. Decision analysis provides a normative basis
for these preference judgments and algorithms, as described in detail in Chapter
13. For applications of these decision analysis techniques (value curves and
swing weights) see Buede and Bresnick [2007], Buede and Choisser [1992],
Daniels et al. [2001], Ross et al. [2004], Thurston and Carnahan [1993], Walton
and Hastings [2004].

The ideal approach for quantifying the trade-off preferences of the
stakeholders would be to obtain these preferences as statements of ‘‘will-
ingness-to-pay’’ (in terms of money for development effort) for enhanced
performance and decreased cost in each of the other life-cycle phases. To
make these statements of ‘‘willingness-to-pay’’ operationally meaningful, the
appropriate contractual arrangements must be established that would permit
the transfer of payments based upon the stated payment preferences. In
addition, a warranty system must be established that requires the developers
to stand behind their developmental phase claims of performance attainment
during the remaining phases of the system’s life cycle. For example, if a
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performance claim made during the development phase is not achieved during
the operational phase, the developer would have to make a warranty payment
to the stakeholders. Although this entire approach is known and obviously
will work, the approach has never been used to the author’s knowledge. In
fact, users are quite cynical about the performance claims made by developers
during the development phase.

4. System qualification requirements: address the needs to qualify the system as
being designed right, the right system, and an acceptable system. There are four
primary elements:

a. Observance: state which qualification data for each input/output and
system-wide requirement will be obtained by (i) demonstration, (ii)
analysis and simulation, (iii) inspection, or (iv) instrumented test.

b. Verification Plan: state how the qualification data will be used to
determine that the real system conforms to the design that was
developed.

c. Validation Plan: state how the qualification data will be used to
determine that the real system complies with the stakeholders’
performance, cost, and trade-off requirements.

d. Acceptance Plan: state how the qualification data will be used to
determine that the real system is acceptable to the stakeholders.

Note the qualification requirements associated with the first objective define
the basis for the requirements for the suite of qualification systems (e.g.,
simulations, instrumented test equipment) needed for the system under devel-
opment. Having technology/system-wide requirements that limit the flexibility
to develop new test equipment is common.

This requirements’ partition provides a solid basis and set of guidelines for
guaranteeing that the system’s requirements are complete, consistent, unique,
comparable, and modifiable. (These terms will be defined a little later.) Success
is not certain with this basis and guidelines but is greatly enhanced over current
industry practice.

Figure 6.4 traces the origins of the performance requirements to the
objectives hierarchy by showing that the objectives hierarchy defines the
performance parameter requiring nonpoint requirements. These performance
parameters can fall within the categories of input, output, ‘‘-ilities,’’ cost, and
schedule requirements. The thresholds and goals for these tradable require-
ments are defined as part of the input, output, ‘‘-ilities,’’ cost, and schedule
requirements. The algorithms that define the tradable space over these
performance parameters are documented in the performance, cost, and cost–
performance trade-off requirements. The performance, cost, and cost–perfor-
mance trade-off requirements combine to define the iso-value lines in the
tradable space; these iso-value lines will be the basis for all design trade offs.

If every set of requirements contained the information defined by Wymore
[1993], there would be far fewer problems in system development efforts. Very few
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requirements documents contain performance, cost, and cost–performance
trade-off requirements as defined by Wymore. These elements should be
defined in the stakeholders’ requirements document from the stakeholders’
perspective; otherwise the systems engineers must guess at the ultimate trade
offs of the stakeholders; the ability of engineers to do a complete and effective
job of guessing iso-value trade offs is questionable at best.

6.7 STAKEHOLDERS’ REQUIREMENTS DOCUMENT (StkhldrsRD)

The format for an StkhldrsRD (Fig. 6.5) should include sections for a brief
overview of the system, references to relevant documents from which the
stakeholders’ requirements have been traced, and the requirements. The
requirements should be organized by life-cycle phase. Within each life-cycle
phase requirements from the four segments of the above taxonomy should
be developed. The life-cycle phases are being called out explicitly to highlight
the criticality of the concurrent engineering nature of the design problem.

Input

Output

Functions

External
Interfaces

Input/Output

Technology

"-ilities"

Cost

Schedule

Technology &
System-Wide

Cost
Trade-offs

Performance
Trade-offs

Cost−Performance
Trade-off

Trade Off

Data for all
qualification

Verification
Plan

Validation
Plan

Acceptance
Plan

System
Qualification

Requirement Partition
by Life-Cycle Phase

Objectives
Hierarchy

Trade
Space

Thresholds & Goals

FIGURE 6.4 Objectives hierarchy, requirements partition, and trade space.
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The designs of the life-cycle systems needed to obtain an operational system are
not that straightforward. Requirements in one phase of the life cycle will often
have a major impact on the design of a system in another phase. For example, a
requirement that the manufacturing system be operational by a specified
date precludes many interesting designs of the operational system. This
interaction of requirements and design options across life-cycle phases is a
major contributing factor to failure in the real world; in addition, this intera-
ction makes the concept of formulating the design problem as an optimization
problem nonsensical to practitioners. Rather, the segregation of requirements
by life-cycle phase is meant to aid in attaining the desired attributes
(e.g., complete, consistent) of requirements discussed in Table 6.3 of the next
section.

Given the organization of the StkhldrsRD shown in Figure 6.5, an overall
tradeoff requirement (Section 3.8 of the StkhldrsRD) that addresses

Stakeholders’ Requirements Document 

1.0 System Overview 
2.0 Applicable Documents
3.0 Requirements 

3.1 Development Phase (Programmatic) Requirements 
3.1.1 Input/Output Requirements for Development 
... 
3.1.4 Qualification Requirement for Development 

3.2 Manufacturing Phase Requirements 
...
3.3 Deployment Phase Requirements 
... 
3.4 Training Phase (if present) Requirements 
... 
3.5 Operational Phase Requirements 

3.5.1 Input/Output Requirements for Operations
3.5.1.1 Input Requirements for Operations 
3.5.1.2 Output Requirements for Operations 
3.5.1.3 External Interface Requirements for Operations 
3.5.1.4 Functional Requirements for Operations

3.5.2 System-wide/Technology Requirements for Operations
3.5.3 Trade-off Requirement for Operations 
3.5.4 Qualification Requirement for Operations

3.6 System Improvement/Upgrade Phase Requirements
... 
3.7 Retirement Phase Requirements 
... 
3.8 Overall Trade-Off Requirement 

Appendix A. Operational Concepts by Phase 
Appendix B. External System Diagrams by Phase 

FIGURE 6.5 Outline of stakeholders’ requirements document.
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comparisons across life-cycle phases is needed to enable coherent evaluations of
design options.

6.8 CHARACTERISTICS OF SOUND REQUIREMENTS

A number of authors [Frantz, 1993; Davis, 1993; Mar, 1994] have developed
various numbers of attributes for requirements. The literature is not in total
agreement about the meaning of these attributes. Table 6.3 is the result of a
detailed examination of the literature. The characteristics are divided into those
that are related to individual requirements and those relevant to groups of
requirements.

In any systems engineering effort, as many correct requirements must be
developed as possible; these correct requirements should be verifiable. In addition,
as many incorrect requirements should he eliminated as possible. In summary, the
requirements document should contain a complete, consistent, comparable,
design independent, modifiable, and attainable statement of the design problem.

6.9 WRITING REQUIREMENTS

Certain procedures have been developed [Grady, 1993; Hooks, 1994] for
writing requirements. These procedures guide requirements writers toward
the achievement of the above attributes. First, a set of terms has been
developed. Specifically, a statement of a requirement includes the use of the
word ‘‘shall’’ to indicate the limiting nature of a requirement; statements of fact
use ‘‘will’’; and goals use ‘‘should.’’ The requirements statement shall include a
subject (the relevant life-cycle system), the word ‘‘shall,’’ a relation statement
(e.g., less than or equal to), and the minimum acceptable threshold with units.
Data clarifying the terms in the requirement can also be added. Examples of
appropriate grammar are:

The system shall provide the customer a receipt at the end of each transaction. The

receipt shall contain Bank Name, Account Number, Date and Time of Day, Type

of Transaction, Account Balance at the end of the Transaction, and Automatic

Teller Location Code Number.

The system shall stop the flow of liquid hydrogen in 0.5 seconds or less. The liquid

stopping time is measured from the time the control signal for stopping is received

until the flow through reaches zero.

It is important to avoid compound predicates and negative predicates:

The system shall fit y, weigh y, cost y (this causes traceability problems).

The system shall noty (attempt to turn this into a positive statement of what the

system shall do).
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Similarly, the ‘‘and/or’’ colloquialism is inappropriate because ‘‘and/or’’
provides the designer with a choice; be specific about whether you mean ‘‘and’’
or ‘‘or.’’ The requirement should not start with an ‘‘If y’’statement. Condi-
tions under which the requirement is true should be placed at the end of the
requirement.

Ambiguous terms are a plague on requirements. Common verbs that are
not specific enough include ‘‘maximize’’ and ‘‘minimize’’ because the system is

TABLE 6.3 Attributes of Requirements

Individual Requirement Attributes

1) unambiguous – every requirement has only one interpretation

2) understandable – the interpretation of each requirement is clear to those

selected to review the requirement

3) correct – the requirement states something required of the system, as judged

by the stakeholders

4) concise – no unnecessary information is included in the requirement

5) traced – each stakeholders’ requirement is traced to some document or

statement of the stakeholders

6) traceable – each derived requirement must be traceable to a higher level

requirement via some unique name or number

7) design independent – each requirement does not specify a particular solution

or a portion of a particular solution

8) verifiable – a finite, cost-effective process can be defined to check that the

requirement has been attained

Attributes of the Set of Requirements

9) unique – requirement(s) is(are) not overlapping or redundant with other

requirements

10) complete – (a) everything the system is required to do throughout the

system’s life cycle is included, (b) responses to all possible (realizable) inputs

throughout the system’s life cycle are defined, (c) the document is defined

clearly and self-contained, and (d) there are no ‘‘to be defined’’ (TBD) or to

be reviewed (TBR) statements; completeness is a desired property but

cannot be proven at the time of requirements development, or perhaps ever

11) consistent – (a) internal – no two subsets of requirements conflict and

(b) external – no subset of requirements conflicts with external documents

from which the requirements are traced

12) comparable – the relative necessity of the requirements is included

13) modifiable – changes to the requirements can be made easily, consistently

(free of redundancy) and completely

14) attainable – solutions exist within performance, cost and schedule constraints

15) organized – grouped according to a hierarchical set of concepts, such as life

cycle and categories.
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seldom operating in an environment in which optimization is possible.
‘‘Accommodate’’ is another example of a vague verb. Adjectives are a major
source of ambiguity; examples include ‘‘adaptable,’’ ‘‘adequate,’’ ‘‘easy,’’
‘‘flexible,’’ ‘‘rapid,’’ ‘‘robust,’’ ‘‘sufficient,’’ ‘‘supportable,’’ and ‘‘user-friendly.’’

Requirements should start with the system of interest, be followed by a verb
phrase starting with the word ‘‘shall’’, be followed by an object that describes
an input, output, etc., and end (if necessary) with conditions under which the
previous was true. Examples include:

The development system shall receive inputs from stakeholders. (Input
requirement)

The manufacturing system shall have a scrap page rate that is less than x%.
The design goal is 0.7x%. (Output requirement)

The deployment system shall accept boxes of x ft3 or less. The design goal is
0.5� ft3. (Input requirement)

The training system shall complete training in x hours per student or less.
The design goal is 0.9x hours. (Output requirement)

The operational system shall have an operational life of x years or more. The
design goal is 2x years. (System-wide schedule requirement)

The refinement system shall be compatible with the following new technol-
ogies (x, y, z) for the central processing unit. (Input requirement)

The retirement system shall retire units for less than $x each. (System-wide
cost requirement)

6.10 OPERATIONAL CONCEPT

An operational concept [Lano, 1990a] is a vision for what the system is (in
general terms), a statement of mission requirements, and a description of how
the system will be used. Hooks and Farry [2001] describes the operational
concept as a ‘‘day in the life of your product.’’ This operational concept is an
opportunity to create a vision that is shared among all of the stakeholders for
the really major interactions of people and things with the system of interest.
The shared vision is from the perspective of the system’s stakeholders,
addressing how the system will be developed, produced, deployed, trained,
operated and maintained, refined, and retired to overcome some operational
problem and achieve the stakeholders’ operational needs and objectives. The
development of the operational concept serves the purpose of obtaining
consensus in the written language of the stakeholders about what needs the
system will satisfy and the ways in which the system will be used. Remember
that there is a system for each phase of the system’s life cycle and that an
operational concept is needed for each of the systems. By describing how
the system will be used, the operational concept is providing substantial

6.10 OPERATIONAL CONCEPT 173



(but incomplete) information about the system’s interaction with other systems
and the context of the system.

Figure 6.6 shows the three primary choices that were considered by the
National Aeronautics and Space Administration (NASA) engineers in deter-
mining an operational concept for landing on the moon during the 1960s
[Brooks et al., 1979; Murray and Cox, 1989]. The NASA engineers called these
concepts modes and started out favoring the direct ascent from Earth to moon
and back to Earth.

However, calculations concerning the thrust required for this concept
quickly proved that the concept was infeasible. As a result the second and
third concepts (Earth rendezvous and lunar rendezvous) were defined and
explored in detail. Werner von Braun had previously developed the concept of
staged rockets for lifting payloads into Earth orbit; with staged rockets the
weight that is no longer relevant can be shed. The same concept applied to
Earth and lunar rendezvous. Many teams conducted calculations and simula-
tions of these two concepts over several years, focusing primarily on cost (using
energy as a surrogate) and safety. The final results estimated that the lunar orbit
rendezvous concept was almost $1.5 billion cheaper and had a 6- to 8-month
shorter timeline for landing on the moon. There was some controversy at the
end about which was safest; many engineers felt they were about equal with
respect to safety, each having different strengths and weaknesses.

Earth

MoonDirect Ascent: 
Earth-Earth Orbit

-Moon-Earth

Earth

MoonEarth Orbit Rendezvous: 
Earth-Earth Orbit-Moon-

Earth Orbit-Earth

Earth

MoonLunar Orbit Rendezvous: 
Earth-Earth Orbit-Lunar Orbit-

Moon-Lunar Orbit-Earth

FIGURE 6.6 Alternate operational concepts for Apollo’s moon landing.
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The operational concept includes a collection of scenarios as described in a
use case diagram (see Fig. 3.1). One or more scenarios are needed for each
group of stakeholders in each relevant phase of the system’s life cycle. The use
case diagram is used to provide a ‘‘big picture’’ of how the individual scenarios
relate to each other in defining how the system is to be employed. Each scenario
addresses one way that a particular stakeholder(s) will want to use, deploy, and
fix the system; the scenario defines how the system will respond to inputs from
other systems in order to produce a desired output. Included in each scenario
are the relevant inputs to and outputs from the system and the other systems
that are responsible for those inputs and outputs. The scenario should not
describe how the system is processing inputs to produce outputs. Rather, each
scenario should focus on the exchange of inputs and outputs by the system with
other systems. It is critical that this shared vision be consistent with the
collection of scenarios comprising the operational concept.

Hunger [1995] uses the phrase ‘‘mission analysis’’ for the development of the
operational concept. The collection of scenarios in the operational concept
includes sortie missions (or scenarios) and life missions, both from the
perspective of the stakeholders. Sortie missions are scenarios that describe
how the system will be used during the operational phase, capturing the reasons
the system has for existing. The life missions address the nonoperational, life-
cycle aspects of the system, resulting in scenarios for each life-cycle phase and
some that cross life-cycle phases. Hunger has suggested using time lines to
better define these system scenarios (or sorties as he calls them).

The mission requirements of the system are the key statements of the needs
of the stakeholders in the context of the stakeholders and other systems with
which the system interoperates. These mission requirements are stated in terms
of the measures relevant to enabling the stakeholders to meet some missions
important to the stakeholders. For example, a major mission requirement for
the Apollo moon landing was ‘‘bringing the astronauts home alive.’’ Within the
elevator case study the output requirements were divided into average wait for
service and average transit time. The mission requirement would be average
time from request for service until service was completed.

In software engineering, Jacobson [1992, 1995] proposed the creation of use
cases to capture the interactions between people (users) of the software system,
as well as among other systems; users and external systems are called actors.
The concept of use cases was embraced so thoroughly by many software
engineers that Cockburn [1997a,b] documents 18 different definitions of a use
case. These definitions of use cases vary along four dimensions: purpose,
contents, plurality, and structure. Cockburn [1997a,b] adopts the same defini-
tion for each of the four dimensions that Jacobson put forth. The purpose of
use cases is to support the development of requirements; the contents are
consistent prose; the plurality is that each use case contains multiple scenarios
(as defined in this book for the operational concept); and the structure of the
use cases is semiformal. A use case is developed around a specific goal; goal is
synonymous with desired output of the system. The use case contains one main
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scenario and as many variations around that scenario as are meaningful. For
our elevator system, variations may relate to the types of people using the
elevator system, for example, blind people, deaf people, small children, people
in wheelchairs. So far a collection of use cases is very consistent with a
collection of scenarios as defined for the operational concept. However, a
number of authors [Jacobson, 1995; Eriksson and Penker, 1998] illustrate the
use case with statements of functions that the system and actors are performing,
rather than the flow of information and physical entities between the system
and the actors. As stressed so far in this chapter, the focus during the
development should be on defining requirements related to inputs and outputs
of the system and not on the functions of the system and functional require-
ments. There is quite a bit of confusion and sloppiness in discussions of use
cases on this issue; several of the authors [Cockburn, 1997a,b; Eriksson and
Penker, 1998] are really clear that the system should be treated as a black
box with no visibility into functions, yet the functions show up in the discussion
and diagrams documenting the use cases [see Jacobson, 1995; Eriksson and
Penker, 1998].

The emphasis in this book has been on defining all aspects of the life-cycle
system. Consistent with Hunger’s [1995] concept for sortie and life missions, the
engineers for a system should develop scenarios for the system of interest in
every phase of the life cycle. There should be scenarios and mission require-
ments for the development, manufacturing, training, deployment, refinement,
and retirement phases unless one or more of these phases is not relevant.

To generate these scenarios, start with the key stakeholder, the operator/
user, and generate a number of simple scenarios. Then scenario generation is
expanded to other stakeholders while staying simple. Finally, complexity is
added to all scenarios for each stakeholder, explicitly addressing atypical
weather situations, failure modes of external systems that are relevant, and
identifying key failure modes, constraints, standards, and external system
interfaces that the system should address in every phase of the life cycle. In
all scenarios the focus should be on what the stakeholders and external systems
do and not on how the systems accomplish their tasks. The system of interest
should be viewed as a black box; that is, the system’s internals are blacked out,
leaving only the inputs and outputs to the system. Table 6.4 shows sample
operational concept scenarios for an elevator.

There are some common operating scenarios for nearly every system:

. Initialization of the system

. Normal steady state operation in standard operating modes of the system
for all possible contexts (environments) in which the system may be placed
(e.g., extreme cold, outer space)

. Extremes of operations due to high and low peaks of the external systems
in each standard operating mode in each context

. Standard maintenance modes of the system
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. Standard resupply modes of the system

. Reaction to failure modes of other systems

. Failure modes due to internal problems, providing as much graceful
degradation of the meta-system as possible

. Shutdown of the system

. Termination (phase out) of the system

The total number of scenarios for a common (relatively simple) system would
be 25 to 50.

The SysML modeling technique called a sequence diagram (formerly called an
input/output trace in the first edition of this book) can be used to make

TABLE 6.4 Sample Operational Concept Scenarios for an Elevator

1) Passengers (including mobility, visually and hearing challenged) request up service,

receive feedback that their request was accepted, receive input that the elevator car is

approaching and then that an entry opportunity is available, enter elevator car,

request floor, receive feedback that their request was accepted, receive feedback that

door is closing, receive feedback about what floor at which elevator is stopping,

receive feedback that an exit opportunity is available, and exit elevator with no

physical impediments.

2) Passengers are receiving transportation in the elevator system when a fire breaks out

in the building; building alarm system sends signal to elevator system to stop elevator

cars at the nearest floor, provide exit opportunity, and sound a fire alarm. Passengers

leave elevator cars. Elevator cars are reactivated by special access available to

maintenance personnel after the building is re-opened.

3) Passengers are entering (exiting) an elevator car when doors start to shut; passengers

can stop doors from shutting and continue to enter (exit).

4) Elevator car stops functioning. Passengers in the elevator car push an emergency

alarm that notifies building personnel to come and help them. Passengers use a phone

system in the elevator car to call a centralized service center and report the problem to

the people that answer. Elevator maintenance personnel arrive and create an exit

opportunity.

5) Too many passengers enter an elevator car and the weight of passengers in the

elevator car exceeds a preset safety limit; the elevator car signals a capacity problem

and provides prolonged exit opportunity until some passengers exit the car.

6) Maintain a comfortable environment in the elevator by sensing the temperature in

the elevator car that is based upon heat loss/gain of the passengers and the building

and then supplying the necessary heat loss/gain to keep the passengers comfortable.

7) A maintenance person needs to repair an individual car; the maintenance person

places the elevator system in ‘‘partial maintenance’’ mode so that the other cars can

continue to pick up passengers while the car(s) in question is (are) being diagnosed,

repaired, and tested. After completion the maintenance person places the elevator

system in ‘‘full operation’’ mode.

8) Electric power is transferred to the elevator from the building.
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the description of each scenario as explicit as possible. A sequence diagram
(see Fig. 6.7) has a time line associated with each major actor (our system and
other systems) in the scenario. The systems involved are listed across the top of
the diagram with the time lines running vertically down the page under each of
the systems. Time moves from top to bottom in an input/output trace; the system
of concern is highlighted with a bold label and heavier line. Interactions
involving the movement of data, horizontal arcs from the originating system
to the receiving system, designate energy or matter among systems. A label is
shown just above each arc to describe the data or item being conveyed. Double-
headed arcs are permissible to represent dialog in a compact manner. Having
two or more arcs in quick succession is also common to illustrate that the same
item is being transmitted from one system to multiple systems or multiple
systems are potentially transmitting the same item to one system. Figure 6.7
shows the first of these scenarios documented as an input/output trace diagram.
See the elevator case study on the author’s web site for more examples.

The purpose of these sequence diagrams is to be more explicit than written
text can be about the systems involved with a specific focus on the time-based
interaction of systems and the transmission of data and items. Compare the
sequence diagram in Figure 6.7 to the first scenario in Table 6.4. These sequence
diagrams are not meant to be exact representations of dynamic interaction. An
interval time scale is not being represented; rather time is ordinal—any arc that

Passenger (including
mobility, visually &
hearing challenged)

Elevator

Up Service Request

Feedback that request was received

Feedback that car is on the way

Entry Opportunity

Floor Request 

Feedback that request was received

Feedback that door is closing

Feedback about floor where stopped

Feedback that door is opening

Exit Opportunity

Feedback that door is opening

FIGURE 6.7 Sequence diagram of first elevator scenario.
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is above another happens earlier, but there is no indication as to how large the
time interval is.

The shared vision, mission requirements, and the use case diagram with
sequence diagrams for the scenarios define the system’s mission and provide
the first hints as to the boundary of the system. The external systems are defined
in the scenarios, also defining the inputs and outputs of the system. The
system’s inputs and outputs cross this boundary, defining the input/output
requirements of the system and the external interfaces. The mission require-
ments suggest the fundamental objectives (objectives hierarchy of the stake-
holders). This objectives hierarchy becomes the basis of the system’s
performance requirements. Finally, the first-level decomposition of the system’s
function can be suggested by examining the operational concept. Thus the
operational concept also leads to the functional requirements.

Recall that multiple systems are being developed concurrently, one for each
phase of the life cycle and a qualification system for each of those systems. Each
of these systems should have an operational concept.

The American Institute of Aeronautics and Astronautics (AIAA) and the
Institute of Electrical and Electronics Engineers (IEEE) have standards docu-
ments for the Concept of Operations and Operational Concept for the
interested reader.

6.11 EXTERNAL SYSTEMS DIAGRAM

The single, largest issue in defining a new system is where to draw the system’s
boundaries; see Figure 6.2. Everything within the boundaries of the system is
open to change and subject to the requirements, and nothing outside of the
boundaries can be changed, leading to many of the system’s constraint
requirements. The external systems’ diagram is the model of the interaction
of the system with other (external) systems in the relevant contexts, thus
providing a definition of the system’s boundary in terms of the system’s inputs
and outputs.

Who is responsible for drawing these boundaries? All of the stakeholders
have a say in drawing these boundaries. However, there are substantial cost and
schedule implications so the procurer of the system typically has a major input.
Nonetheless, all of the stakeholders should be prepared to discuss the impact
upon them of various boundary-drawing options. The systems engineer is
responsible for guiding this boundary-drawing process to a conclusion that the
stakeholders understand and accept. The systems engineer uses these bound-
aries to establish and maintain control of the system’s interfaces.

The system’s boundaries need to be drawn early in the systems engineering
process because so much else in the design phase is dependent upon them. As is
discussed next, the fundamental objectives or measures of effectiveness of the
system need to be focused just beyond the external interfaces of the system. The
operational concept relies upon knowing where the boundaries are for each
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stakeholder. The interface requirements capture the implications of the
boundaries on the system design.

Many graphical modeling techniques (e.g., IDEF0, N2 charts, data flow
diagrams, EFFBDs) can be used to define the system boundary; see Davis,
[1990]. See Chapter 12 for a discussion of these techniques. IDEF0 is used in
this chapter to illustrate external systems diagrams in terms of the elevator. The
boundary for the elevator is defined so as to exclude the passenger, the
maintenance personnel, and the building.

First, the purpose and viewpoint are defined:

Purpose: Explicitly define the system’s boundary and needed interfaces
Viewpoint: Systems Engineering Team

Next the mechanisms or external systems are established, followed by the
functions of these systems. The system and external system come directly from
the input/output traces of the scenarios in the operational concept:

Mechanism (System/External System)

1. Elevator— the system

2. Passengers

3. Maintenance personnel

4. Building

System Function

Provide elevator services

Request and use elevator services

Maintain elevator operations

Provide structural support

Now the inputs, controls, and outputs of these functions are developed to
finish the external system diagram. Recall that as part of this analysis of the
elevator boundaries the focus is on the context or environment of the elevator,
and these key variables are shown in the diagram as controls. See Figure 6.8.

The above discussion has focused on an external systems diagram for the
operational phase of the system, in which the system is interacting with the
system’s users and other systems. External systems diagrams can and should be
developed for every phase of the system’s life cycle.

In addition to the usual syntax and semantics requirements of IDEF0
diagrams, an external systems diagram introduces several new constraints for
the diagram to be valid. First, all of the outputs of the system’s function (the
elevator in this case) have to go to at least one of the external systems’ functions
on the page and cannot exit the diagram. If the output did exit the page, there
would be an external system that was not included in the diagram, invalidating
the purpose of the effort. Similarly, each of the external systems must receive at
least one output of our system; otherwise, the system should be part of the
context. In some cases part of the context could be shown on the external
systems diagram to emphasize the importance of a particular input to the
system.
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6.12 OBJECTIVES HIERARCHY FOR PERFORMANCE REQUIREMENTS

Traditionally, systems engineers have used the terms measure of effectiveness
(MOE) and measure of performance (MOP), some times called a figure of merit
(FOM). A measure of effectiveness describes how well a system carries out a
task or set of tasks within a specific context; an MOE is measured outside the
system for a defined environment and state of the context variables and is used
to define mission requirements. Note that the further outside the system that
the MOE measurement process is established, the more influence the external
systems have on the measurement, yielding less sensitivity in the measurement
process for evaluating the effectiveness of the system. The MOE or MOEs that
were used to define the mission requirements can be divided into additional
MOEs for a given system, often one for each major output of the system.

An MOP (or FOM) describes a specific system property or attribute for a
given environment and context; an MOP is measured within the system. There
are many possible and relevant MOPs for a specific system output; examples
include accuracy, timeliness, distance, throughput, workload, and time to
complete. Usually only a few of these MOPs matter for each output. The
MOPs form the basis of stakeholders’ requirements when they address outputs.
The MOPs that address the performance of system components [e.g., chip
speed of the central processing unit (CPU)] are completely inappropriate for
use as requirements because they address how to achieve the stakeholders’
needs, not how well to meet these needs.

Since the systems engineering design process is decision rich, introducing
some concepts from decision analysis is important. Value-focused thinking
[Keeney, 1992] emphasizes the proper structuring of decisions in terms of a
fundamental objective. The fundamental objective is the aggregation of the
essential set of objectives that summarizes the current decision context and is
yet relevant to the evaluation of the options under consideration. Generally,
this fundamental objective can be subdivided into value objectives that more
meaningfully define the fundamental objective, thereby forming a fundamental
objectives hierarchy or value structure. Keeney [1992] distinguishes this hier-
archy from a means–ends objectives network, which relates means or ‘‘how to’’
variables (the design options and context) to the fundamental objective.

The objectives hierarchy of a system is the hierarchy of objectives that are
important to the system’s stakeholders in a value sense; that is, the stakeholders
would (should) be willing to pay to obtain increased performance (or decreased
cost) in any one of these objectives. Means objectives should not be part of this
objectives hierarchy. These means objectives describe physical ways to achieve
improvements in the fundamental objectives. Means objectives often contain
the variables used in simulation models to estimate the system’s performance
on the fundamental objectives. If there is some scientific relationship among a
set of variables in the objectives hierarchy, then these objectives are very likely
(but not definitely) means objectives and should be removed. Carrying the
decomposition of the fundamental objectives too far is a mistake.
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The process that Keeney [1992] describes for defining this situation-based
fundamental objectives hierarchy is consistent with INCOSE Pragmatic
Principle 2 (as shown in italics) and involves working from both ends, by
generalizing means–ends objectives and operationalizing strategic objectives.
Means–ends objectives are ways to achieve the fundamental objective. Stra-
tegic objectives are beyond the time horizon and immediate control of options
associated with the current system design decision situation. As an example,
one of the set of fundamental objectives for the operation of a new elevator
(see Fig. 6.9) would be ‘‘minimize passenger time in the system.’’ The set
of fundamental objectives define value trade offs among the stakeholders
of the elevator system. A strategic objective would be to ‘‘improve the work-
ing environment in the building’’; there are too many other factors beyond
the elevator that will determine whether this objective is met for the objective
to be a fundamental objective. A means–ends objective would be to ‘‘use a
fuzzy logic controller’’; this statement addresses a means for achieving an
objective.

Next, the fundamental objectives hierarchy is developed by defining the
natural subsets of the fundamental objective. Keeney gives the following
example of a fundamental objectives hierarchy: maximize safety (the funda-
mental objective) is disaggregated into minimize loss of life, minimize serious
injuries, and minimize minor injuries. The trade offs among these objectives
clearly entail one’s values, and only one’s values. This subdivision is contrasted
with a means–ends breakout of maximize safety that starts with minimize
accidents and maximize the use of safety features on vehicles, both of which are
means oriented and involve outcomes for which value trade offs are difficult.
Figure 6.9 provides the fundamental objectives hierarchy for the operation of
the elevator.

Pragmatic Principle 2 [DeFoe, 1993] Use Effectiveness Criteria Based on

Needs to Make System Decisions

1. Select criteria that have demonstrable links to customer/consumer needs
and system requirements.

a. Operational criteria: mission success, technical performance

b. Program criteria: cost, schedule, quality, risk

c. Integrated logistics support (ILS) criteria: failure rate, maintainability,
serviceability

2. Maintain a ‘‘need-based’’ balance among the often-conflicting criteria.

3. Select criteria that are measurable (objective and quantifiable) and
express them in well-known, easily understood units. However, important
criteria for which no measure seems to exist still must be explicitly
addressed.

4. Use trade offs to show the customer the performance, cost, schedule, and
risk impacts of requirements and solutions variations.
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5. Whenever possible, use simulation and experimental design to perform trade
offs as methods that rely heavily on ‘‘engineering judgment’’ rating scales
are more subject to bias and error.

6. Have the customer make all value judgments in trade offs.

Monthly Operating Costs
$1,500 - $1,000, Wt = 0.1

Average Wait (Routine)
35 - 27 sec, Wt = 0.3

Average Wait (Priority)
35 - 30 sec, Wt = 0.35

Average Transit Time
90 - 60 sec, Wt = 0.35

Time in System
Objectives, Wt = 0.35

Max'm Acceleration
1.5 - 1.25 m/s2, Wt = 0.3

Max'm Accel'n Change
2 - 1.5 m/s3, Wt = 0.5

Floor Leveling Error
0.7 - 0.3 cm., Wt = 0.2

Ride Quality
Objectives, Wt = 0.30

Operational MTBF
1 - 1.5 yrs, Wt = 0.5

Operational MTTR
8 - 4 hrs, Wt = 0.5

Availability
Objectives, Wt = 0.35

Operational Performance
Objectives, Wt = 0.9

Operational
Objectives

FIGURE 6.9 Fundamental objectives hierarchy for operational phase of elevator.
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7. Allow the customer to modify requirements and participate in developing the
solution based on the trade offs.

The objectives hierarchy (a directed tree) usually has two to five levels. The
objectives in the hierarchy may include stakeholders explicitly and often include
context (environmental) variables (e.g., weather conditions, peak versus non-
peak loading) from the scenarios in the operational concept. If present, these
scenarios are usually at the top of the hierarchy, shown as varying conditions
for defining the objectives.

To make use of the objectives hierarchy for trade studies, additional
information must be added; value curves must be added for each objective at
the bottom of the objectives hierarchy and value weights for comparing the
relative value of swinging from the bottom of each value scale to top. Figure 6.9
shows the thresholds and design goals for each objective; each threshold and
design goal defines a ‘‘swing’’ in performance that is used to establish the
‘‘swing’’ weights in the value model (see Chapter 13). Figure 6.10 illustrates the
value curves for a simplified objectives hierarchy for an elevator system. See
Sailor [1990] for another example.

As mentioned above, decision analysis uses value curves and weights to
support trade-off decisions. These value curves and weights need to be obtained
from the stakeholders for two important reasons. First, the objectives typically
span several groups of stakeholders, necessitating an agreement among these
groups of stakeholders about the relative importance of one objective with
others. Second, this objectives hierarchy and its associated value curves and
weights represent the value structure needed by the systems engineering team to
make many trade-off decisions during the design process. The values are those
of the stakeholders, not the systems engineers. Far too often the systems
engineers must guess at the stakeholders’ values during design decisions, or
even worse, are not even aware that design decisions have impacts on the
ultimate satisfaction the stakeholders will experience.

The objectives hierarchy is typically used throughout the systems engineering
design process as the cornerstone of all of the trade studies that compare one
design alternative with another. In doing trade studies the evaluation should
reveal which of several design alternatives is preferred; each design alternative
will commonly have one advantage over the others, such as operational cost,
reliability, accuracy of outputs, and the like. Since there is a system and
associated qualification system for each phase of the life cycle, there should also
be an objectives hierarchy for each of these systems.

This decision analysis approach has been used for many military acquisi-
tions, two of which are covered in Buede and Bresnick [2007], in which the
objectives hierarchy, value curves, and weights were developed with govern-
ment users and included in the request for proposal (RFP) to industry; Chapter
13 provides a discussion of one of these two acquisitions. This explicit,
quantitative approach received very positive responses from the industry design
teams. Watson and Buede [1987] describe the analytic methodology that was
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used for these efforts. Other applications include Sailor [1990], Thurston and
Carnahan [1993], and Walters [1994].

6.13 PROTOTYPING, ANALYSES AND USABILITY TESTING

Prototyping can apply to any aspect of the system and is synonymous with
modeling. A prototype is a physical model of the system that ignores certain
aspects of the system, glosses over other aspects, and is fairly representative of a
third segment of aspects of the system. The prototype can range from a subscale
model of the system to a paper display (storyboard) of the user interface of the
system. Prototyping became strongly associated with software development in
the 1980s, and it is this context that will be the focus of this section. Most
discussions of prototyping focus on the development of the prototype and
assume that the answers for requirements and design alternatives magically
appear. However, in the real world the prototype has to undergo usability
testing in order for this information to be gathered reliably.

The development of a prototype for a user interface ranges from a throw-
away prototype to an evolutionary prototype [Connell and Shafer, 1989].
Throwaway prototypes are just what the name implies, prototypes that are
developed for the main purpose of educating the users about the possibilities
and extracting requirements from the users based upon their needs. Evolu-
tionary prototypes are built for these educational and requirements develop-
ment purposes as well, but with the idea that the prototype will eventually be
turned into a working version of the system. The evolutionary prototype
initially will only address a portion of the total functionality of the system, and
that new functionality will be added on as the development and operational
phases evolve together. Both of these concepts of prototyping have proven
effective and continue today. In fact, software products for the rapid develop-
ment of prototypes are now a business area in their own right.

In Chapter 9 we will introduce many types of analyses that should be
conducted as part of the process for engineering systems. These analyses range
from performance analyses to predict how far or well the system might be able
to travel or see; timing analyses to determine how fast the system can respond
or how many outputs the system can deliver per unit time; and ‘‘-ility’’ analyses
to determine how available or safe the system is. There are also many cost and
schedule analyses conducted. During the requirements phase these analyses
should be conducted on the meta-system to determine what difference is made
in the performance, cost, and schedule parameters of the meta-system as the
performance, cost, and schedule of the system being engineered are varied. The
results of these analyses provide very important information for the setting
of minimum acceptable and desired marks in the system’s requirements’
statements.

Coupled with these analyses are many forms of elicitation of the viewpoints
of the stakeholders. These elicitation sessions can be interviews with one or a
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few stakeholders, facilitated group sessions, observations of stakeholder
performance on the current system or with prototypes of the new system,
and questionnaires. Questionnaires are the last resort when no other approach
is available since questionnaires produce lots of random responses from
stakeholders that were too busy or too confused to do better. Valuable
information is usually only achieved through human interactions. Individual
interviews are best at soliciting information from quiet people who might be
silent during group sessions. Facilitated meetings are best used to surface
disagreements and try to find common ground or reasons for the differences of
opinion that trace back to context and external system interactions. Observa-
tions are best for stressful periods during which people do things that they may
not consciously recall during discussions.

Usability testing is the process of obtaining samples of users and eliciting the
reactions of these users about their needs and desires as they interact with
prototypes. The prototypes can be as crude as written samples of screen
interfaces or as sophisticated as working modules of the system. Usability [Bias
and Mayhew, 1994; Nielsen, 1993; Wiklund, 1994] is a discipline associated
with human-computer interaction that became very sophisticated in the 1980s
and 1990s.

The performance elements of usability are ease of learning (learnability),
ease of use (efficiency), ease of remembering (memorability), error rate, and
subjectively pleasing (satisfaction). Table 6.5 provides a sample of common
metrics for each of these elements. Each of these metrics has to be measured in
the context of specific types of users and specific tasks. The tasks come from the
scenarios in the operational concept. For the error rate element, categorizing
errors into categories such as minor, major, and catastrophic is important. Care
must be taken to separate random errors from those caused by the system. If
necessary, baseline capabilities of the users must be measured in order to define
a baseline error rate for categories of users. Satisfaction typically has to be
measured by subjective, categorical questions; see Nielsen [1993].

TABLE 6.5 Metrics for Measuring Usability Elements

Usability
Element

Metrics

Learnability Time to master a defined efficiency level, e.g., 50 words per minute

Time to master a defined skill, e.g., cut and paste

Efficiency Time for a frequent user to complete a defined task

Rate of producing a defined set of products for a frequent user

Memorability Time for a casual user to complete a defined task

Time for a casual user to achieve previously achieved rate of

production

Error Rate Number of errors of a specific type in a given period for a given task

Satisfaction Stress level associated with use

Fun level associated with use
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Users can be categorized along three dimensions: domain knowledge,
computer experience, and system use experience. Segments of users along these
three dimensions should be developed for testing purposes. When a sample of
users is developed for the usability testing, the population of actual system
users must be considered, not the population of people in society.

Many guidelines have been developed for user interfaces. There is insuffi-
cient room to even summarize these guidelines here, but they should be
consulted while developing requirements for user interfaces [see Brown
1988; Chapanis 1996; Marshall et al., 1987; Mayhew, 1992; Reason, 1990;
Shneiderman, 1992].

6.14 DEFINING THE STAKEHOLDERS’ REQUIREMENTS

The framework for defining requirements on the basis of the operational
concept, the external system diagram, and the objectives hierarchy is presented
here in detail. Recall that there are four requirements categories: input/output,
system-wide and technology, trade-off, and qualification. The addendum,
which can be downloaded from the author’s web site, (http://www.theengi-
neeringdesignofsystems.com) provides a detailed example of these requirements
for the life-cycle phases of an elevator.

6.14.1 Input/Output Requirements

Input/output requirements are defined on the basis of the inputs, controls, and
outputs of the system identified while bounding the system with the external
systems diagram. This external systems diagram is the primary tool used to
support the development of input/output requirements.

The systems engineering team must examine each input, control, and output in
detail to discover every requirement associated with each of these items. One or
more input requirements are written for each input and control; similarly, one
or more output requirements are written for each output. For example, the
potential passengers of the elevator have certain characteristics that impact
the provision of information about the floor location of the elevator. The
requirements should state that audible feedback is needed, but this would be
wrong. Rather the requirements should dictate that feedback be provided to all
relevant passengers, letting the engineers design a system to do this.

See Table 6.2 for examples of requirements that may be associated with
inputs or outputs. Note there will be some controls such as policies and
procedures that were included because each function requires at least one
control. These controls are not really data elements that the system receives,
and therefore there need not be any input requirements established for them.

The environment (e.g., weather and elements that are outside the control of
the system) or ‘‘context’’ is typically defined as part of the scenarios of the
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operational concept. This context should be addressed in the requirements. The
questions typically addressed are:

1. What elements of the environment matter?

2. How much variation in the environmental elements must be planned for?
At what priority?

3. How well can these variations be forecasted (predicted)? Can these
forecasts be part of the system?

4. Can the environment be controlled by the system or external system?
Must the system protect itself from the environment?

In addition to input and output requirements there are external inter-
face constraints and the functions that should be used to decompose the
system’s function. Interface constraints address the physical aspects of
the interface to which the system has to connect to obtain the inputs and
disseminate the outputs. Examples include the standard connector type for
electrical and mechanical connections. The characteristics of the power or
data that come across the interface should be part of the input or output
requirement.

Finally, the functional requirements are not meant to be a long list of
specific, detailed functions the system has to perform to produce outputs
needed by the system. Rather, the functional requirements should be the two to
six functions that partition the system function in such a way that all of the
inputs to the system can be transformed into all of the outputs that have been
identified as part of the external systems diagram.

Several examples of input/output requirements are:

The elevator shall receive ‘‘calls’’ from all floors of the building. (Input
requirement)

The elevator shall indicate to a prospective passenger that he/she has
successfully called the elevator. (Output requirement)

The elevator shall use a standard phone line from the building for emergency
calls. (External interface requirement)

6.14.2 System-Wide and Technology Requirements

The system-wide and technology requirements relate to the system as a whole
and not to specific inputs or outputs. These system-wide and technology
requirements are not represented in the external systems diagram and are not
addressed in a substantial way in the operational concept. Yet every system
should have several system-wide and technology requirements that are key to
the system’s success. Recall that the four major categories are technology,
suitability, cost, and schedule.
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A typical category of requirements relates to regulations or laws that pertain
to the system. Consider the following requirement:

The elevator system shall comply with the Americans with Disabilities Act.

This requirement is considered a system-wide requirement because the
requirement, like all system-wide requirements, requires knowledge of the
whole system to determine whether the requirement has been met. This is a
deceptive requirement though because the requirement relates directly to an
external system of the elevator, the passengers, and the ability of a special class
of passengers to use the system. This requirement defines input and output
restrictions with which the elevator must comply. For this reason this require-
ment could be placed in both the input and output sections of the input/output
requirements category. However, there are major disadvantages, as discussed
before, in having one requirement in multiple places of the requirements
document. For this reason placing such a regulation in the system-wide
requirements category of suitability is wise.

Technology requirements are the ones that engineers would prefer not to have
because they really do constrain the engineering creativity and should result
from the other requirements if they are justifiable. These requirements are
usually justified on the basis of interoperability or compatibility with an
existing product line, which ultimately should be reflected in cost savings.
Examples are:

The elevator system’s software shall be written in C++.

The elevator system’s CPU shall be Pentium 4.

Table 6.2 provides a list of common suitability issues, topics that address
quality concerns of a system and are system-wide in scope. There are technical
engineering definitions that are expressed mathematically behind each of these
suitability issues. In fact, many systems engineers make a career by specializing
in one or several of these suitability areas. The detailed discussion of these
suitability issues is critical for understanding the engineering of systems but is
beyond the scope of this book (which is to provide a set of methods and models
for getting to the definition of requirements for these issues and developing a
design that meets such requirements). Conducting analyses of system concepts
or designs related to suitability issues is discussed in more detail in Blanchard
and Fabrycky [1998] and Pohl [2007].

Besides the technology and suitability requirements, cost and schedule
requirements are also part of this segment of the requirements’ partition. A
cost requirement deals with payment of money during the appropriate life-cycle
phase for the system in question to be useful. A schedule requirement deals with
a timing issue for the relevant system for the phase of life cycle in question.
There is nearly always a cost and a schedule requirement for every phase of the
system’s life cycle. Table 6.2 provides examples of some of these.
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The objectives hierarchy should address every system-wide requirement that
is critical enough to be considered a performance requirement. These typically
include the cost and schedule requirements as well as several suitability
requirements.

6.14.3 Trade-Off Requirements

Trade-off requirements in the form of value curves and value weights were
described above during the discussion of the objectives hierarchy. Chapter 13
provides much more detail into the theory and elicitation techniques that can be
used to obtain this requirements information. This set of requirements relies
solely on value judgments of each segment of the stakeholders. These value
judgments must be obtained in a reliable manner from a reasonable sample of
representatives of each segment of the stakeholders. For some segments, such
as the bill payer, determining who should provide the value judgments is easy.
For other systems that will be used by thousands or millions of people, talking
to everyone is not feasible. Care must be taken to define a sufficiently large and
representative sample of these users.

6.14.4 Qualification Requirements

The four elements of the qualification requirements for a system in any life-
cycle phase are: (1) observance: how the estimates (qualification data) for
each input/output and system-wide requirement will be obtained, that is, test,
analysis and simulation, inspection, or demonstration; (2) verification plan: how
the qualification data will be used to determine that the real system conforms to
the design that was developed; (3) validation plan: how the qualification data
will be used to determine that the real system complies with the stakeholders’
requirements; and (4) acceptance plan: how the qualification data will be used
to determine that the real system is acceptable to the stakeholders.

The observance qualification requirements deal with data collection activ-
ities, devices, and facilities. For example, on a consulting project the author
learned that an aircraft manufacturer was developing a detailed qualification
plan for a fire suppression system installed in the cockpit of the aircraft. Specific
derived requirements for the pressure and concentration of a chosen fire
suppression agent existed for the three-dimensional space of the cockpit based
upon the distribution of people and critical equipment. These requirements
were developed based upon calculations and simulations that had been
developed to ensure that the release pressure of the fire suppression system
would be great enough to distribute the agent in the correct spatial concentra-
tion to suppress the fire but not too great to damage the structural elements of
the cockpit. Note all of this analytical work had been done to address a fire
suppression agent that had never been used in a cockpit before, so there was a
great deal of uncertainty about the validity of the calculations. Observance
requirements were developed to identify places in the cockpit to measure the
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concentration of the fire suppression agent at specific times during tests of the
fire suppression system.

The verification plan was to activate the fire suppression system several
times and take measurements of pressure and concentration at the spatial
locations for which requirements had been defined. Note for verification,
there was no test of the fire suppression system’s ability to extinguish a real
fire. This verification plan also addressed the examination of the structural
elements of the cockpit to verify the requirement that there be no structural
damage. The final part of the verification plan defined the criteria for
determining that this verification test was passed or failed. (Note this level
of detail would not be in the stakeholders’ requirements for the aircraft system
but would be in the specification for the fire suppression system, a component
of the aircraft. Nonetheless, analogous system-level qualification information
would be in the stakeholders’ and system requirements for the aircraft system.)
The data collection activity here was part of the observance qualification
requirement.

Next, validation tests for the fire suppression system were defined based
upon three safety scenarios that could be traced to the operational concept for
the specification of the fire suppression system if not the aircraft system. The
safety scenarios were defined for three different potential causes of a fire. The
observance qualification requirement stated that a fire be started in the cockpit
based upon each of three causes, and the test would determine whether the fire
suppression was activated and effectively suppressed the fire. The validation
test requirement defined what was meant by effectively suppressing the fire. A
fourth cause of a fire is from a ballistic hit from a weapon fired at the aircraft
(this was a military aircraft). As a result, the test requirement called for several
test cockpits to be hit by a weapon, a fire started either spontaneously or
through whatever means were necessary (a fire is not guaranteed with a ballistic
hit), and the fire suppression system’s ability to suppress this fourth type of fire
tested. Again, the observance qualification requirement defines that these
ballistic tests will be conducted, and the validation requirement defines what
successful performance is.

The acceptance test requirement provides the stakeholders’ definitions of
what acceptable performance is for the system as a whole. Sometimes this is
based upon the validation tests and is synonymous with the validation test plan.
At other times the acceptance test requirements call for additional tests,
simulations, or inspections with acceptance criteria that are different than
those of the validation criteria. These qualification requirements, for each phase
of the life cycle, are used to design the qualification system to be used during
integration for each phase of the life cycle.

As a final note, the aircraft manufacturer had designed the fire suppression
system so that detailed design changes could be made as part of this integration
phase activity of testing. Since the fire suppression system agent was new, the
manufacturer needed the flexibility to adjust the design of the fire suppression
system if the fire suppression was either less or more effective than expected.
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In fact, two locations had been designed for additional agent distribution
tanks in case the design did not meet the requirements. In addition the tank
pressure in the planned tanks could be increased or decreased as needed. In an
aircraft the total system weight is so important that the manufacturer was
planning additional verification tests to remove as much concentrated agent
from the tanks as possible while meeting the pressure and concentration output
requirements.

6.15 REQUIREMENTS MANAGEMENT

‘‘Requirements Management is the identification, derivation, allocation, and
control in a consistent, traceable, correlatable, verifiable manner of all the
system functions, attributes, interfaces, and verification methods that a system
must meet including customer, derived (internal), and specialty engineering
needs.’’ [Stevens and Martin, 1995, p. 11] This definition of requirements
management is inclusive of everything discussed in this chapter. For example,
requirements management addresses which requirements have been changed,
when and by whom; to what documents does each requirement trace; to which
components has each requirement been allocated. Requirements management
is considered a key element of systems engineering as shown by INCOSE
Pragmatic Principle 3.

A more limited, and perhaps more common, definition is the ‘‘care and
feeding’’ of the requirements, sometimes called requirements traceability. More
formally, requirements traceability ‘‘refers to the ability to describe and follow
the life of a requirement, in both a forwards and backwards direction.’’ [Gotel
and Finkelstein, 1994, p. 95] Numerous techniques for tracing requirements
and their sources and destinations are semantic networks, assumption-based
truth maintenance networks, constraint networks, cross-referencing schemes,
hypertext, integration documents, key phrase dependencies, matrices, and
templates. Relational and object-oriented databases are used to implement
requirements traceability tools.

Pragmatic Principle 3 [DeFoe, 1993] Establish and Manage Requirements

1. Identify and distinguish between specified (fundamental or essential),
allocated, implied, and derived requirements.

2. Carry analysis and synthesis to at least one level broader and deeper than
seems necessary before settling on requirements and solutions at any given
level. (Top down is a better recording technique than it is an analysis or
synthesis technique.)

3. Write a rationale for each requirement. The attempt to write a rationale
for a ‘‘requirement’’ often uncovers the real requirement.

4. Ensure the customer and consumer understand and accept all the
requirements.
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5. Explicitly identify and control all the external interfaces the system will
have —signal, data, power, mechanical, parasitic, and the like. Do the
same for all the internal interfaces created by the solution.

6. Negotiate interfaces with affected engineering staff on both sides of each
interface and get written agreement by the two parties before the customer
approves the interface documentation.

7. Document all requirements interpretations in writing. Don’t count on
verbal agreements to stand the test of time.

8. Plan for the inevitable need to correct and change requirements as insight
into the need and the ‘‘best’’ solution grows during development.

9. Be careful of new fundamental requirements coming in after the program is
underway. They invariably have a larger impact than is obvious.

10. Maintain requirements traceability.

6.16 SUMMARY

Requirements are generally considered the cornerstone of the systems engineer-
ing process because requirements define the design problem. Stakeholders’
requirements are those requirements initially established by the system’s
stakeholders with the help of the systems engineering team. The systems
engineering design process is a mixture of establishing requirements to define
the design problem and partitioning the physical resources of the system into
components that perform functions that meet the requirements (the solution to
the design problem). This partitioning process is decision rich in that many
important decisions are made by the systems engineering team that will
ultimately affect the performance of the system and the satisfaction of the
stakeholders.

This chapter defines requirements and the characteristics that these require-
ments should satisfy. In addition, this chapter provides a method or process for
developing these requirements. This process includes the concepts and asso-
ciated models of an operational concept, external systems diagram, and
objectives hierarchy, all of which are extremely valuable aids in the definition
of requirements.

The key points made in this chapter concerning the systems engineering
design process are that (1) all stakeholders have stakeholders’ requirements
that, taken together, address every phase of the system’s life cycle. Capturing
the complete set of stakeholders’ requirements ensures a concurrent engineering
process. (2) The set of stakeholders’ requirements should ensure a decision rich
design process by not over constraining the design. The following attributes of
requirements are meant to ensure the process is not overconstrained: traced,
correct, unambiguous, understandable, design independent, attainable, com-
parable, and consistent. (3) At the same time the stakeholders’ requirements
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should not underconstrain the design because the stakeholders should be happy
with the system that is created. Complete, verifiable, and traceable require-
ments should guarantee this.

The systems engineering design process defined in this chapter includes the
development of an operational concept for each stakeholder group, external
systems diagram for each life cycle phase, and an objectives hierarchy for each
stakeholder group. These three concepts are then used to develop the stake-
holders’ requirements, organized by life-cycle phase. See Figure 6.11. Wymore’s
[1993] partition of requirements was adopted and modified: input/output
requirements, technology and system-wide requirements, trade-off require-
ments, and system qualification requirements. In particular the trade-off
information defining stakeholder values that is needed to support design
decisions includes performance trade offs, cost trade offs, and cost–perfor-
mance trade off information. This initial systems engineering phase is complete
when the existence of at least one feasible solution is verified, the acceptance
requirements for the qualification system are defined, and the stakeholders have
approved the StkhldrsRD.

CASE STUDY: AIR BAG RESTRAINT SYSTEM

Air bags, a safety device appearing in automobiles in the early 1990s,
became the cause of death for a noticeable number of individuals. This
severe, undesirable impact can be traced to the requirements for the air
bag system. The following requirements issues are paraphrased from
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FIGURE 6.11 Summary of stakeholders’ requirements development.
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those published in 1984 by the National Highway Traffic Safety Admin-
istration (NHTSA) as part of Federal Motor Vehicle Safety Standard
208, Occupant Crash Protection [see Buede, 1998]:

1. The requirements defined a single safety scenario on which to base
the design. This single scenario could only be justified if there was a
single worst-case situation. Note this was not the approach with
seat belts for which requirements were defined for the 50th
percentile 6-year-old, 5th percentile adult female, and 95th percen-
tile adult male.

2. The single, worst-case scenario for safety protection was the 50th
percentile male not wearing a seat belt in a 30 mile per hour frontal
collision. No specific attention was directed toward children and
women, and small or large adults. As the results show, this is the
root of the problem.

3. While there was a requirement that the air bag not deploy on a very
rough or bumpy road or when the car hits a small pole, there was
no requirement that the air bag remain undeployed during acci-
dents at sufficiently slow speeds that no lives are in danger. A
number of people have lost their lives in accidents in which the car
was only moving at 5 or 10 miles per hour, speeds at which there
was almost no chance of a fatality.

4. The test condition was defined such that the test dummy is only in
an upright position with its hands at the 3 and 9 o’clock positions
on the steering wheel, and a frontal accident with the crash force
parallel to the length of the car occurs into a fixed barrier at 30
miles per hour. In fact, frontal accidents are likely to occur when
the driver is not in this nominal driving position. Also there arc
many accidents requiring an air bag safety restraint in which the
crash force is close to being parallel to the length of the car but is
not exactly parallel.

5. There was no requirement that addressed accidents involving pre-
impact braking. For frontal accidents, pre-impact braking is
common. In the case of the current air bag design, pre-impact
braking clearly causes problems because the people being protected
are beginning to move toward the air bag before the sensors for
activating the air bag can be triggered. This leads to a need for even
more rapid inflation of the air bag.

6. The issue of injuries inflicted on drivers and passengers when the
person collides with the deployed air bag was not addressed in the
safety standard. Such a requirement would lead to an evaluation of
the elasticity of alternate fabrics for the air bag, as well as the final
pressure in the inflated air bag. The first generation, fully inflated
air bag is very inelastic.
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7. There was no requirement that the disposal of unused or partially
expanded air bags be safe and free of toxic waste. Sodium azide is
considered a hazardous chemical by some. Also, uninflated air bag
systems can explode when the car is crushed in a junkyard.

The requirements for air bags were placed in a federal regulation. It
takes 16 months on average to change these regulations. ‘‘From 1970
until 1991, federal statutes requiring air bags were debated, imposed,
revoked, and reinstated as consumer and safety groups battled it out with
reluctant automobile manufacturers and mostly Republican administra-
tions. It took a Supreme Court decision in 1983, overturning a Reagan
administration revocation of the standard, before the campaign took on
real momentum.’’ [Ottaway, 1996, p. 48] Unfortunately, while so much
attention was being paid to the concept of air bags, the requirements for
the air bags were overlooked and remained unchanged.

CASE STUDY: APOLLO 13 DISASTER

This case study is excerpted from Lovell and Kluger [1994], the book
associated with the movie titled Apollo 13.

Every major component in an Apollo spacecraft, from gyros to radios to

computers to cryogenic tanks, was routinely tracked by quality control

inspectors from the moment its first blueprints were drawn to the moment it

left the pad on launch day; any anomaly in manufacturing or testing was

noted and filed away. Generally, the thicker the file any part amassed by the

time it was ready to fly, the more headaches it had caused. Oxygen tank

two, it turned out, had quite a dossier.

The problems with the tank began in 1965, around the time Jim Lovell
and Frank Borman were deep in training for the flight of Gemini 7, and
North American Aviation was building the Apollo command-service
module that would ultimately replace the two-man ship.y One of the
most delicate of the delegated tasks was the construction of the spacecraft’s
cryogenic tanks, a job assigned to Beech Aircraft in Boulder, Colorado.

The Apollo spacecraft’s electrical system was designed to operate on
28 volts of current [derived requirement] — the amount of juice provided
by the service module’s three fuel cells. Of all the systems inside the
cryogenic tanks that would be driven by this relatively modest power
system, none required more rigorous monitoring than the heaters.
Ordinarily, cryogenic hydrogen and oxygen were maintained at a con-
stant temperature of minus 340 degrees [derived requirement]. This was
cold enough to keep the frigid gases in a slushy, non-gaseous state, but
warm enough to allow some of the slush to vaporize and flow through the

198 REQUIREMENTS AND DEFINING THE DESIGN PROBLEM



lines that fed both the fuel cells and the atmospheric system of the
cockpit. Occasionally, however, the pressure in the tanks dropped too
low, preventing the gas from moving into the feed lines and endangering
both the fuel cells and the crew. To prevent this, the heaters would
occasionally be switched on, boiling off some of the liquid and raising the
internal pressure to a safer level.

Beech and North American knew that the tanks the new ship needed
would have to be more than just insulated bottles. To handle contents as
temperamental as liquid oxygen, the spherical vessels would require all
manner of safeguards, including fans, thermometers, pressure sensors,
and heaters, all of which would have to be immersed directly in the
supercold slush that the tanks were designed to hold, and all of which
would have to be powered by electricity.

Of course, immersing a heating element in a pressurized tank of
oxygen was, on its face, a risky business, and in order to minimize the
danger of fire or explosions, the heaters were supplied with thermostat
switches that would cut the power to the coils if the temperature in the
tank climbed too far. By most standards, that upper temperature limit
was not very high; 80 degrees was about as hot as the engineers ever
wanted their supercold tanks to get [derived requirement]. But in insulated
vessels in which the prevailing temperature was usually 420 degrees lower,
that was a considerable warm-up. When the heaters were switched on and
functioning normally, the thermostat switches remained closed—or
engaged—completing the heating system’s electrical circuit and allowing
it to continue operating. If the temperature in the tank rose above the 80-
degree mark, two tiny contacts on the thermostat would separate,
breaking the circuit and shutting the system down.

When North American first awarded the tank contract to Beech
Aircraft, the contractor told the subcontractor that the thermostat
switches— like most of the switches and systems aboard the ship—
should be made compatible with the spacecraft’s 28-volt power grid, and
Beech complied. This voltage, however, was not the only current the
spacecraft would ever be required to accept. During the weeks and
months preceding a launch, the ship spent much of its time connected to
launch-pad generators at Cape Canaveral, so that preflight equipment
test could be run [missed operational concept scenario]. The Cape’s
generators were dynamos compared to the service module’s puny fuel
cells, regularly churning out current at a full 65 volts.

North American eventually became concerned that such a relative
lightning bolt would cook the delicate heating system in the cryogenic
tanks before the ship ever left the pad, and decided to change its specs,
alerting Beech that it should scrap the original heater plans and replace
them with ones that could handle the higher launch pad voltage. Beech
noted the change and modified the entire heating system—or almost the
entire heating system. Inexplicably, the engineers neglected to change the
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specifications on the thermostat switches, leaving the old 28-volt switches
in the new 65-volt heaters. Beech technicians, North American techni-
cians, and NASA technicians all reviewed Beech’s work, but nobody
discovered the discrepancy.

Although the 28-volt switches in a 65-volt tank would not necessarily
be enough to cause damage to a tank—any more than, say, bad wiring in
a house would necessarily cause a fire the very first time a light switch was
thrown—the mistake was still considerable. What was necessary to turn
it into a catastrophe were other, equally mundane oversights. The
Cortright Committee soon found them.

The tanks that eventually flew aboard Apollo 13 werey installed in
service module 106. Module 106 was scheduled to fly during 1969s Apollo
10 mission, y and the engineers decided to remove the existing tanks
from the Apollo 10 service module and replace them with newer ones. y

Removing cryogenic tanks from an Apollo spacecraft was a delicate
job. y Rockwell engineers unbolted the tank itself in spacecraft 106 and
began to lift it carefully from the ship.

Unknown to the crane operators, one of the four bolts had been left in
place. When the winch motor was activated, the shelf rose only two
inches before the bolt caught, and the crane slipped, and the shelf
dropped back into place. y The tanks on the dropped shelf were
examined and found to be unharmed. Shortly afterward, they were
removed, upgraded, and reinstalled in service module 109, which was
to become part of the spacecraft more commonly known as Apollo 13.y

One of the most important milestones in the weeks leading up to an
Apollo launch was the exercise known as the countdown demonstration
test. y To make the dress rehearsal as complete as possible, the
cryogenic tanks would be fully pressurized, the astronauts would be fully
suited, and the cabin would be filled with circulating air at the same
pressure used at liftoff.

During Apollo 13’s countdown demonstration test with Jim Lovell,
Ken Mattingly, and Fred Haise strapped into their seats, no significant
problem occurred. At the end of the long dress rehearsal, however, the
ground crew did report a small anomaly. The cryogenic system, which
had to be emptied of its supercold liquids before the spacecraft was shut
down, was behaving balkily. y Oxygen tank two seemed jammed,
venting only about 8 percent of its 320 pounds of supercold slush and
then releasing no more.

y When the tank was dropped eighteen months earlier, they now
suspected, the tank had suffered more damage than the factory techni-
cians at first realized, knocking one of the drain tubes in the neck of the
vessel out of alignment. y

At its present supercold temperature and relatively low pressure, the
liquid in the tank wasn’t going anywhere. But what would happen, one of
technicians wondered, if the heaters were used? Why not just flip the
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warming coils on now, cook the slush up, and force the entire load of 02
out of the vent line? y

But the wrong thermostat switch— the 28-volt switch—was in the
tank, and as it turned out, the heaters stayed on for a long, long timey.
Given the huge load of 07 trapped in the tank, the engineers figured it
would take up to eight hours before the last few wisps of gas would vent
away. Eight hours was more than enough time for the temperature in the
tank to climb above the 80-degree mark, but the technicians knew they
could rely on the thermostat to take care of any problem. When this
thermostat reached the critical temperature, however, and tried to open
up, the 65 volts surging through it fused it instantly shut.

The technicians on the Cape launch pad had no way of knowing that
the tiny component that was supposed to protect the oxygen tank had
welded closed. y

Unfortunately, the readout on the instrument panel wasn’t able to
climb above 80 degrees. y The men who designed the instrument panel
saw no reason to peg the gauge any higher, designating 80 as its upper
limit. What the engineer on duty that night didn’t know—couldn’t
know—was that with the thermostat fused shut, the temperature inside
this particular tank was climbing indeed, up to a kiln-like 1000 degrees.

y At the end of eight hours, the last of the troublesome liquid oxygen
had cooked away as the engineers had hoped it would—but so too had
most of the Teflon insulation that protected the tank’s internal wiring.
Coursing through the now empty tank was a web of raw, spark prone
copper, soon to be reimmersed in the one liquid likelier than any other to
propagate a tire: pure oxygen.

[Lovell and Kluger, 1994, pp. 372–378] The words in italics inside the
braces were inserted by the author of this text.

PROBLEMS

6.1 Use IDEF0 to develop an external system diagram for an information
system to advise undergraduate systems engineering students on the
development of their plans of study. The information system is the
software and hardware system that the undergraduate systems engineer-
ing students will use. Assume the systems engineering faculty will
maintain the accuracy of the courses and prerequisites. Assume the
information system can obtain schedule information over a network
from the registrar’s office. Assume that the information system produces
a written plan of study for each student.

6.2 Use the following operational concept for the operational phase of the
ATM to:

i. Create one additional scenario for the operational concept.
ii. Develop an external system diagram using IDEF0.
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iii. Create an objectives hierarchy for the ATM system.
iv. Develop a set of stakeholders’ requirements. Use the format of the

Stakeholders’ Requirements Document and the taxonomy of four
types of requirements from this chapter. Make every effort to develop
as complete and unambiguous a set of stakeholders’ requirements for
the operational phase as possible using only the information provided
in the following scenarios. Then add three system-wide requirements
and four qualification requirements.

Automatic Teller Machine (ATM) for Money Mart Corporation. The ATM
system is to provide a cost-effective service to bank customers that is
convenient, safe, and secure 24-hour access to a common set of banking
transactions and reduce the cost of providing these basic transaction. The
ATM system shall provide a number of the most common banking
transactions (deposit, withdraw, transfer of funds, balance query) without
involvement of bank personnel.

The operational concept is comprised of a group of scenarios that are based
upon the stakeholders’ requirements and relates to both the bank’s
customers and employees.

Customer Scenarios

1. Customer makes deposits.
a. Customer provides valid general identification information.
b. ATM requests unique identification information.
c. Customer enters unique identification information.
d. ATM requests activity selection.
e. Customer selects deposit.
f. ATM requests account type.
g. Customer identifies account type (i.e., savings, checking, bank

credit card).
h. ATM requests type of deposit (cash vs. check).
i. Customer identifies type of deposit — cash/check.
j. ATM provides a means to physically insert cash/check into ATM.
k. Customer enters deposit.

ATM transmits the transaction to the main bank computer, gives
customer receipt, returns to main menu.

2. Customer requests cash to be withdrawn from an account.
a. Customer provides valid general identification information.
b. ATM requests unique identification information.
c. Customer enters unique identification information.
d. ATM requests activity selection.
e. Customer selects withdrawal.
f. ATM requests account type.
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g. Customer identifies account type (i.e., savings, checking, bank
credit card).

h. ATM requests amount of withdrawal.
i. Customer identifies amount of withdrawal (Creq).
j. ATM contacts the main bank computer and requests the amount

of available funds from the selected account (Fmax).
k. If CreqWFmax, ATM denies request.
l. If CreqWClim, ATM denies request. (Clim is the maximum cash

withdrawal allowed.)
m. CreqWCleft ATM apologizes for inability to satisfy request and

sends message to bank for more funds. (Cleft is amount cash ATM
has left).

n. Else, ATM transmits the transaction to the main bank computer,
gives customer receipt, gives the customer money, and returns to
the main menu.

3. Customer requests transfer of funds from one account to another.
a. Customer provides valid general identification information.
b. ATM requests unique identification information.
c. Customer enters unique identification information.
d. ATM requests activity selection.
e. Customer selects transfer of funds.
f. ATM requests account type for source of funds transfer.
g. Customer identifies source account type.
h. ATM requests account type for destination of funds transfer.
i. Customer identifies destination account type.
j. ATM queries the main bank computer to determine the avail-

ability of funds from the source account (Fmax).
k. ATM requests the amount of the funds transfer.
l. Customer identifies the amount of funds to be transferred (Ftrns).

m. If FtrnsWF max, the ATM denies the request.
n. Else the funds are transferred, ATM transmits the transaction to

the main bank computer, gives the receipt, and returns to the main
menu.

4. Customer requests the status of balance of an account.
a. Customer provides valid general identification information.
b. ATM requests unique identification information.
c. Customer enters unique identification information.
d. ATM requests activity selection.
e. Customer selects balance status of an account.
f. ATM requests account type for balance query.
g. Customer identifies account type.
h. ATM queries the main bank computer to obtain the needed

information, gives customer receipt, and returns to the main
menu.
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5. Customer cancels request
a. Customer provides valid general identification information.
b. ATM requests unique identification information.
c. Customer enters unique identification information.
d. ATM requests activity selection.
e. Customer selects withdrawal.
f. ATM requests account type.
g. Customer identifies account type (i.e., savings, checking, bank

credit card).
h. During the course of a transaction, the customer indicates the

desire to cancel the current transaction.
i. ATM returns to the main menu and gives the customer the choice

to begin another transaction.
j. Customer chooses to end the session.
k. ATM resets for the next customer.

6. Customer input device is not working.
a. Customer attempts to provide valid general identification

information.
b. ATM informs customer that the input device is not working.
c. If this is the third straight customer for which the input device is

not working, then the ATM sends a message to the bank about this
problem.

7. ATM cannot verify the customer identification scheme.
a. Customer provides valid general identification information.
b. ATM requests unique identification information.
c. Customer enters unique identification information.
d. ATM checks unique identification, finds the identification incor-

rect, and requests customer to re-input identification.
e. Customer enters unique identification information.
f. ATM checks unique identification, finds the identification incor-

rect, and requests customer to re-input identification.
g. Customer enters unique identification information.
h. ATM checks unique identification, finds the identification incor-

rect, and alerts the customer that any attempts to re-input
identification will result in an alarm to the bank.

i. Customer leaves.
j. ATM resets for the next customer.

8. ATM does not have receipts.
a. When only 25 receipts remain, ATM sends message to bank to

resupply receipts.

9. Hostile situations
a. Robber attempts to break into ATM.
b. ATM sends message to bank and sounds alarm.
c. ATM shuts down operation.
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Bank Employee Scenarios

1. Routine resupply operation
a. Employee enters code into ATM.
b. ATM provides access to valid employee.
c. Employee opens ATM.
d. Employee loads ATM with cash.
e. Employee loads ATM with blank receipts.
f. Employee removes deposits from ATM.
g. Employee shuts ATM and initializes for operation.

2. Malfunction operations
a. Employee enters code into ATM.
b. ATM provides access to employee.
c. Employee opens ATM.
d. Employee runs built-in diagnostic tests to determine

problem.
e. ATM responds to diagnostic tests.
f. Employee fixes ATM.
g. Employee runs built-in diagnostic tests to determine if problem is

solved.
h. ATM responds to diagnostic tests.
i. Employee shuts ATM and initializes for operation.

6.3 Use the following operational concept for the operational phase of an
automobile system called OnStar to:

i. Create one additional scenario for the operational concept.
ii. Develop an external system diagram using IDEF0.
iii. Create an objectives hierarchy for the OnStar system.
iv. Develop a set of stakeholders’ requirements. Use the format of the

Stakeholders’ Requirements Document and the taxonomy of four
types of requirements from this chapter. Make every effort to develop
as complete and unambiguous a set of stakeholders’ requirements as
possible for the operational phase using only the information pro-
vided in the following scenarios. Then add three system-wide require-
ments and four qualification requirements.

OnStar System for Cadillac. The OnStar system is an information system for
Cadillac owners to provide emergency help and a wide range of support.
Generally, the operational concept involves a satellite communications
link between the car and a control center run by Cadillac.

The operational concept is comprised of a group of scenarios that are based
upon the stakeholders’ requirements and relates to both the OnStar’s
users and maintenance personnel.
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User Scenarios

1. Driver uses cellular phone to contact control center to find directions.
a. Driver pushes a single button on the OnStar cellular phone.
b. OnStar calls control center.
c. Control center person responds and inquires where driver wants to

go via the OnStar cellular phone.
d. Driver responds with location (tourist landmark, restaurant, hotel,

ATM, Cadillac dealer, and gas station) via the OnStar cellular phone.
e. Control center person responds with address and block by block

directions via the OnStar cellular phone.
f. Driver uses OnStar to record these directions and plays them back

as needed.

2. Driver loses car in parking lot.
a. Driver calls control center using a toll-free number from a pay

phone.
b. Control center person sends signal to OnStar.
c. OnStar activates flashing lights and honking horn on driver’s car.
d. Driver goes to car and deactivates lights and horn.

3. Driver locks keys in car.
a. Driver calls control center using a toll-free number from a pay

phone.
b. Control center person requests identification information.
c. Driver provides identification information.
d. Control center person sends signal to OnStar.
e. OnStar unlocks your car.

4. Emergency support when an accident occurs.
a. Car is involved in an accident in which the air bags are activated.
b. OnStar sends a priority signal to the control center, with the exact

location.
c. Control center person calls driver on the OnStar cellular phone.
d. If contact is not made, control center person contacts appropriate

911 number.
e. Control center person provides information on driver’s location,

car, and license number.
f. Police respond to driver.

5. Vandals/thieves break into driver’s car and steal the car.
a. Vandals/thieves break into driver’s car and drive the car away.
b. The security system of car is activated and sends a signal to OnStar.
c. OnStar sends a signal to the control center.
d. The control center person calls 911 and reports the break-in and

provides information on driver’s car to the police.
e. OnStar sends signals to the control center allowing the car to be

tracked.
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f. The control center person provides this tracking information to the
police.

6. Carjackers steal car and kidnap driver and passengers.
a. Thieves carjack the car with the driver (and possibly passengers).
b. Driver pushes a red button on the cellular phone.
c. OnStar sends a carjacking signal to the control center with an open

phone line so that any conversations can be monitored.
d. OnStar sends signals to the control center allowing the car to be

tracked.
e. The control center provides information about the situation and

the location of the car to the police.

7. OnStar is deactivated.
a. OnStar receives its power from the car’s battery.
b. The car’s battery is dead or disconnected causing the deactivation

of OnStar.

Maintainer Scenarios

1. Maintainer checks emergency carjacking capability.
a. Maintainer tests emergency button on the cellular phone to

determine that contact with control center is made. If tests show
a problem, adjustments are made or cellular phone is replaced to
correct any deficiencies.

b. Maintainer tests link to control center to make sure that conversa-
tion can be heard and that car’s location is transmitted. Adjust-
ments or replacements are made as necessary to correct any
deficiencies.

2. Maintainer tests ability of OnStar to unlock car.
a. Maintainer checks that unlock signal is received by OnStar.
b. Maintainer checks that OnStar unlocking signal is activated when

control center unlock signal is received.
c. Maintainer checks that car locks are unlocked when OnStar

unlocking signal is sent.
d. Maintainer makes repairs as needed.

6.4 Use the following operational concept for the development phase of an
air bag system:

i. Create one additional scenario for the operational concept.
ii. Develop an external system diagram using IDEF0.
iii. Create an objectives hierarchy for the air bag development system.
iv. Develop a set of stakeholders’ requirements. Use the format of the

Stakeholders’ Requirements Document and the taxonomy of four
types of requirements from this chapter. Make every effort to develop

PROBLEMS 207



as complete and unambiguous a set of stakeholders’ requirements as
possible for the operational phase using only the information pro-
vided in the following scenarios. Then add three system-wide require-
ments and four qualification requirements.

Vision and Mission Requirement: The systems engineering team for an
upgraded air bag safety restraint system shall design an air bag system
that saves as many lives as possible while not subjecting any drivers or
passengers to unneeded injuries or deaths. Cost of the air bag system will
be kept within bounds and designs will be tailored to various automakers’
needs.

Scenarios

1. The systems engineering team (SET) will review all safety regulations
published by the National Highway Traffic Safety Administration
(NHTSA), send questions and comments to NHTSA on a timely
basis, receive responses, and incorporate these regulations into the air
bag design.

2. The SET will seek out and review all research findings available on air
bag systems, formulate questions and comments to the research teams
on a timely basis, receive and review responses, and ensure that the air
bag design is consistent with the best research available.

3. The SET will send their requirements documents on the air bag system
and the manufacturing system for the air bag system to the appro-
priate corporations for comments and respond to any comments
received from these corporations. Comments related to the cost of
the systems and the fit of the designs will be of special interest.

4. The SET will send the entire set of required test results on its designs to
the NHTSA for review and comment; any questions from NHTSA
will be answered and further tests conducted as needed.

5. The SET will send all safety findings and liability issues and analyses
of their designs to corporate headquarters and respond to corporate
guidance concerning safety and liability issues.

6. The SET will receive ‘‘built to’’ configuration items (CIs) from the air
bag manufacturer, will integrate these items into a test automobile,
and will test the integrated air bag against the test requirements.
Design changes will he identified and incorporated into the require-
ments documents as needed based upon the tests. The revised
requirements documents will be sent to the automakers and manu-
facturers for comment.

7. The SET will use additional ‘‘built to’’ CIs to build and forward
operational test items to the automakers for integration testing into
the automobiles of the automakers. Based upon these operational tests
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the automakers will forward additional comments on the air bag design.
These comments will be incorporated into the requirements documents.

8. The air bag manufacturers will submit engineering change proposals
(ECPs) to the SET as problems are encountered during production.
The SET will adopt those ECPs that are warranted, reject those that
are not warranted, and comment on the remaining so that an
acceptable solution can be found to manufacturing problems.

6.5 Use the following operational concept for the manufacturing phase of an
air bag system:

i. Create one additional scenario for the operational concept.
ii. Develop an external system diagram using IDEF0.
iii. Create an objectives hierarchy for the air bag development system.
iv. Develop a set of stakeholders’ requirements. Use the format of the

Stakeholders’ Requirements Document and the taxonomy of four
types of requirements from this chapter. Make every effort to develop
as complete and unambiguous a set of stakeholders’ requirements as
possible for the operational phase using only the information pro-
vided in the following scenarios. Then add three system-wide require-
ments and four qualification requirements.

Vision and Mission Requirement: The Manufacturing Division for an
upgraded air bag safety restraint system shall design the air bag
manufacturing system to produce the air bag system with as low a
long-term cost as possible. Long-term cost includes the discounted cost
of producing acceptable air bags as well as providing free parts due to
manufacturing flaws. The manufacturing system shall be capable of
producing the tailored designs for various automakers.

Scenarios

1. The Manufacturing Division will review all safety regulations pub-
lished by the National Highway Traffic Safety Administration
(NHTSA), send questions and comments to NHTSA on a timely
basis, receive responses, and incorporate these regulations into the
manufacturing design for air bags.

2. The Manufacturing Division will receive requirements documents on
the air bag system from the development team on a periodic basis. The
Manufacturing Division will provide comments on these documents as
regards any difficulties being forced on the manufacturing of air bags.
These comments will be provided on a timely basis.

3. The Manufacturing Division will produce the appropriate number
of ‘‘built to’’ configuration items (CIs) based upon the design
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documentation and schedule requirements of the development team.
In order to produce these ‘‘built to’’ CIs the Manufacturing Division
will procure the necessary tools, parts, and supplies.

4. The Manufacturing Division will submit engineering change proposals
(ECPs) to the development team as problems are encountered during
production. The development team will adopt those ECPs that are
warranted, reject those that are not warranted, and comment on the
remaining so that an acceptable solution can be found to manufactur-
ing problems. The Manufacturing Division will modify its production
process and equipment in accordance with the accepted ECPs.

5. The automakers will send orders for air bags to Corporate Head-
quarters; Corporate Headquarters will send sales orders to the
Manufacturing Division with delivery instructions; the Manufacturing
Division will produce the needed air bags and send them to the
appropriate automaker; and the Manufacturing Division will send
documentation of delivered air bags to Corporate Headquarters.

6. Corporate Headquarters will send periodic projections of air bag
production requirements to the Manufacturing Division along with
additional corporate guidance regarding cost and quality issues. The
Manufacturing Division will send periodic reports on cost and
performance data regarding the production of air bags.

7. The Manufacturing Division will send request for quotations (RFQs)
to other corporations for the needed tools and parts (CIs) that
comprise the air bag system; the Manufacturing Division will receive
and review quotes from various corporations and select those quotes
providing best value to the Manufacturing Division; and the Manu-
facturing Division will then send orders for the delivery of the tools
and parts on a timely basis and receive these tools and parts.

8. The Manufacturing Division will send request for quotations (RFQs)
to other corporations for the needed consumables and supplies; the
Manufacturing Division will receive and review quotes from various
corporations and select those quotes providing best value to the
Manufacturing Division; and the Manufacturing Division will then
send orders for the delivery of the consumables and supplies on a
timely basis and receive these consumables and supplies.

9. The Manufacturing Division will send that material (unused consum-
ables and supplies, used tools and parts) that needs to be disposed of
to Corporate Headquarters.
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Chapter 7

Functional Architecture
Development

7.1 INTRODUCTION

Time-tested engineering of systems has shown that the design process for a
system has to consider more than the physical side of the system; the functions
or activities that the system has to perform are a critical element for the design
process to be successful on a consistent basis. This is not to say that the designs
of functions and physical resources for the system proceed independently; they
cannot. However, for success these two design elements must be equal partners
in the design process, providing checks on each other and complementing each
other’s progress. The functional architecture of a system contains a hierarchical
model of the functions performed by the system, the system’s components, and
the system’s configuration items (CIs); the flow of informational and physical
items from outside the system through the transformational processes of the
system’s functions and on to the waiting external systems being serviced by the
system; a data model of the system’s items; and a tracing of input/output
requirements to both the system’s functions and items. Note that functional
architecture is called a logical architecture by many people.

There are a number of key terms that need to be defined as part of this
chapter. Early in the chapter distinctions are drawn between modes, states, and
functions for a system. There is considerable difference in meaning in the
literature on systems and software related to the terms of mode, state, and
function; to be clear in our discussions these terms have to be defined
specifically for use in this book. A system mode is a distinct operational
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capability of the system; this capability may use either the full or a partial set of
the system’s functions. An example is the initialization mode versus the full
operational mode for your personal computer. A state is a modeling description
of the status of the system at a moment in time, as defined by the values on a set
of state variables. A function is an activity or task that the system performs to
transform some inputs into outputs. Late in the chapter distinctions are drawn
between failure, error, and fault. Failure is a deviation between the system’s
behavior and the system’s requirements. An error is a problem with the state of
the system that may lead to a failure. A fault is a defect in the system that can
cause an error.

After the initial definition of key terms for describing a functional archi-
tecture, Section 7.3 defines the method for developing a functional architecture
using an IDEF0 (Integrated Definition for Function Modeling) model. This
model of the development process for a functional architecture is explained,
followed by a discussion of using a decomposition process versus a composition
process.

Section 7.4 discusses approaches, examples, and issues for defining a system’s
functions; this discussion is very important because the modeling of a system’s
functions is not a common skill that is found in engineers. Section 7.4.1 describes
several approaches for developing functional decompositions. Section 7.4.2
addresses an important theme of this entire book; namely, there is always
more than one system involved in the engineering of a system. Examples of
functional decompositions for several phases of the life cycle of a system are
presented. Third and perhaps most importantly, the concepts of feedback and
control in a system’s functions are introduced in Section 7.4.3. A common
hypothesis of many systems engineers is that most systems fail because of
inadequate design of the feedback and control functionality into the system.
Finally Section 7.4.4 provides a discussion of evaluation topics that are useful
for critiquing a functional architecture; critical examination of any model is
important for engineers, and Section 7.4.4 provides some metrics for doing so.

Section 7.5 defines the data collection activities associated with developing
the functional model of a system. This section provides some guidance on the
types of data to collect, on the need to try alternate modeling ideas, and then on
the evaluation of these model alternatives in terms of the need to capture the
system’s capabilities and communicate these capabilities to both the stake-
holders and the discipline engineers.

Then in Section 7.6, the introduction of fault tolerance functionality in terms
of the functional architecture is described. Adding fault tolerance functionality
is very important to the success of most systems and is critical to the success of
some systems, for example, air traffic control and life support. Error detection,
damage confinement, error recovery, and fault isolation and reporting are the
types of functions discussed here.

Finally tracing input/output requirements to functions and items in the
functional architecture is described in Section 7.7. This last activity is critical to
the process of developing specifications for each component that comprises the

212 FUNCTIONAL ARCHITECTURE DEVELOPMENT



system in such a way that the component specifications are directly related and
traceable to the System’s Requirements Document (SRD).

The methods described in this chapter relate to the development of the
functional architecture. The method relating to defining the elements of the
functional architecture is described in detail and presented as an IDEF0 model.
In addition, the chapter provides a data collection process for defining the
functional architecture based upon the fundamental approaches behind the
structured analysis and design technique that led to IDEF0.

The primary modeling technique relied upon in this chapter is IDEF0, as
presented in Chapter 3. In addition, feedback and control models are
introduced for evaluating the state of the system and improving the system’s
performance.

The exit criterion for the development of the functional architecture is the
coherent matching of the input/output requirements with the functions and
items in the functional architecture. Every input/output requirement should be
traced to at least one function and one item in the functional architecture. In
addition, every function associated with an external item in the functional
architecture should have at least one input/output requirement traced to the
function, as should every external item. Recall that all elements of the system’s
architectures are developed in increasing layers of detail, so the exit criterion for
the functional architecture will be applied with each completion of a layer of
detail.

7.2 DEFINING TERMINOLOGY FOR A FUNCTIONAL ARCHITECTURE

This section defines the concepts of system modes, states, and functions,
followed by simple and complete functionalities. Modes and functionalities
have long been thought to be critical to the establishment of an understanding
of the logical aspects of a system.

A system mode is defined to be a distinct operating capability of the system
during which some or all of the system’s functions may be performed to a full or
limited degree. Other authors [Wymore, 1993] define the modes of a system to
be functions of the system; that is not the definition presented here. All systems
have at least one standard or fully operational mode. Most systems have
operating modes during which they are partially operational. For example, an
elevator system has a maintenance mode during which one or more of the
elevator cars can be stopped for maintenance, while the others continue in
operation. Often systems have start-up and shutdown modes. A laptop
computer, on which I am writing this paragraph, has several modes of
operation that correspond to the power that is being supplied; all of the
laptop’s functions are available in each of these modes, but not with the same
performance characteristics. Finally, systems often have a number of unwanted
failure modes; car manufacturers have installed switches to enable the use of an
extra gallon of gasoline to try to avoid the failure mode of no gas.
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The state of the system is commonly defined to be a static snapshot of
the set of metrics or variables needed to describe fully the system’s capabilities
to perform the system’s functions. The system is progressing through a
constantly changing series of states as time progresses. In other words, the
state of a system is the values of a long list of variables, called state variables,
at a specific point in time. This list of state variables contains all of the
information needed to determine the system’s ability to perform the system’s
functions at that point in time. The list of state variables does not change over
time, but the values that these variables take does change over time. The
variables can be continuous or discrete. As an example, the state variables for
a laptop computer might include power input rate from the outside, power
level of the battery, input rate for each input source (keyboard, modem,
network), output rate for each output device (parallel port, serial port,
modem, network, screen), central processing unit (CPU) usage, and free
hard disk space.

A function, on the other hand, is a process that takes inputs in and
transforms these inputs into outputs. A function is a transformation, including
the possible changing of state one or more times. Every function has activation
and exit criteria. The activation criterion is associated with the availability of
the physical resources, not necessarily with the start of the transformation
activity. The function is activated as soon as the resource for carrying out the
function is available. When the appropriate triggering input arrives, the
function is then ready to receive the input and begin the transformation
process. The activation criterion for the function then is the combination of
the availability of the physical resource and the arrival of the triggering input.
The exit criterion of a function determines when the function has completed its
transformation tasks.

Chapters 3 and 12 cover a number of behavioral modeling techniques that
address issues related to the activation and deactivation of functions, both as
the result of the natural transformation processes associated with functions as
well as the control structure that controls the functional processing and causes
the system to change modes. Included in Chapter 12 are behavior diagrams,
finite-state machines (state-transition diagrams), statecharts, control flow
diagrams, and Petri nets. Note that state-transition diagrams and statecharts
are related to the definition of mode being used here rather than the definition
of state.

Must a function represent a dynamic process? Can a function be used to
represent a constant process? All of the functions that are shown in Appendix B
for the elevator case study represent a dynamic function; that is, inputs
enter the function over a given time period and some time later the outputs
emerge. Does a pedestal that is holding a vase perform a function? The perspec-
tive taken here is that the pedestal does perform a function in this case; if the
pedestal fails due to fatigue or an earthquake, then a dynamic process that
the system is trying to prevent will occur (the vase will crash to the ground and
be ruined).
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A functionality is a set of functions that is required to produce a particular
output. Now we define simple and complete functionalities:

Simple Functionality: an ordered sequence of functional processes that
operates on a single input to produce a specific output. Note there may
be many inputs required to produce the output in question, but this
simple functionality is only related to one of the inputs. As a result the
simple functionality may not include all of the necessary functional
processes needed to produce the output. Nor does this simple function-
ality trace the only possible sequence of these functional processes. Note
each simple functionality has a specific order associated with the func-
tions that define the simple functionality; for this reason we cannot say
that a simple functionality is an element of the power set of functional
processes because there is no order associated with an element of the
power set. Also we cannot say that this simple functionality is a
mathematical function since a given input may be mapped into more
than one output.

Complete Functionality: a complete set of coordinated processes that oper-
ate on all of the necessary inputs for producing a specific output. There is
usually no specific order associated with the complete set of functional
processes; however a partial order of the functional activities can be
established because some functions will usually have to be activated and
completed before some others. The complete functionality cannot be an
element of the power set of functional processes because there is still some
order information associated with the functions in the complete function-
ality. There is no order information in the sets of functions that comprise
the power set of functions. There is a well-defined set of inputs, which is
one element of the Cartesian product (or n-tuple) of inputs, and is
uniquely associated with the output. This output is also an element of
the Cartesian product, or m-tuple, of outputs.

A functional architecture can be defined at several levels of detail:

1. A logical architecture that defines what the system must do, a decom-
position of the system’s top-level function. This very limited definition of
the functional architecture is the most common and is represented as a
directed tree.

2. A logical model that captures the transformation of inputs into outputs
using control information. This definition adds the flow of inputs and
outputs throughout the functional decomposition; these items that
comprise the inputs and outputs are commonly modeled via a data model
(see Chapter 12). An IDEF0 model without any mechanisms is used as
the modeling technique in this chapter to represent the functional
architecture at this level of detail. Other modeling techniques in Chapter
12 for data and process modeling could also be used.
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3. A logical model of a functional decomposition plus the flow of inputs and
outputs, to which input/output requirements have been traced to specific
functions and items (inputs, outputs, and controls).

An example of a functional architecture for the elevator case study can be
downloaded from the following web site:
http://www.theengineeringdesignofsystems.com.

7.3 FUNCTIONAL ARCHITECTURE DEVELOPMENT

IDEF0 is used here as the graphical process modeling technique to represent
the first elements of the functional architecture defined above. In Chapter 12
several alternate graphical process-modeling techniques are presented that can
be used in place of or in addition to IDEF0. IDEF0 was chosen because IDEF0
has well-defined, standardized syntax and semantics that distinguish between
the inputs to be transformed into outputs and the control information that
guides the transformation process. In addition, IDEF0 has a place to represent
the physical architecture, namely the mechanisms. Later the allocated archi-
tecture can be illustrated using the mechanisms within IDEF0.

It is possible to complete the functional architecture without resorting to any
graphical techniques. Text and tables are sufficient to represent all of the
information conveyed by any of the graphical techniques. However, Jones and
Schkade [1995] provide convincing evidence that most systems and software
professionals resort to graphical techniques during the system or software
engineering process. The graphical techniques contain much greater informa-
tion in a format that can be communicated more effectively and efficiently.

7.3.1 Functional Architecture Process Model

Figure 7.1 shows the IDEF0 model for the development of a functional
architecture. See the full IDEF0 model for engineering a system in Appendix
B. The approach shown in this figure begins by creating many function
sequences, or simple functionalities, that satisfy the scenarios in the operational
concept. These functionalities are created by shining a light into the black box
of Chapter 6, thus turning the black box into a ‘‘white’’ box. Now the functions
that are needed to transform system inputs into system outputs become visible.

Then the engineer synthesizes these many simple functionalities into a
functional decomposition; this synthesis can be accomplished via a top-down
decomposition or a bottom-up aggregation. Section 7.4 examines these two
approaches in more detail. In practice this second step of defining the
functional decomposition combines both aggregation and decomposition.
The flow of inputs and outputs from outside the system are added, and the
necessary internal items are added, creating a functional model. Before
distributing this functional model widely for comment (step three) the scenarios
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from the operational concept are used once more to test the draft decomposi-
tion and ensure that the functional model is consistent with these scenarios.

The third step addresses the data or items that serve as inputs or outputs to
the various functions of the functional architecture. For computer-intensive
systems developing a data mode is critical (see Chapter 12) so that the relations
among the various items flowing through the system are understood at the level
needed for a successful design.

The fourth step is the solicitation of the opinions of other engineers and
stakeholders about missing functions or alternate decompositions that are more
meaningful than have been produced during the second and third steps. During
this third step the allocated architectural activity, which combines the functional
and physical architectures, is proceeding. Feedback from the development of the
allocated architecture often causes changes to the functional model, changes that
enable the functional model and the physical architecture to match more closely.
(Chapter 9 discusses these issues in more detail.)

The final step in the development of the functional architecture addresses the
tracing of input/output requirements to both the functions in the data model
and the items (data elements) flowing through this functional model. Each
input (output) requirement is traced to those functions that have been
designated as receiving (producing) the respective input (output). Similarly,
each input (output) requirement is traced to the item for which the requirement
is defined. The functional requirements are traced to the top-level system
function because this top-level function is responsible for accomplishing these
subfunctions. Each external interface requirement is traced to each item that
will be delivered to the system (or carried away from the system) by that
interface. In addition, each external interface requirement is traced to the
function that is receiving the input or sending the output that has been traced to
that same external interface. This process of tracing input/output requirements
often raises issues about the structure of the functional decomposition, leading
to possible changes in this decomposition. By tracing the input/output
requirements to functions and data in the functional architecture, these
requirements are being ‘‘flowed down’’ so that the allocated architecture will
have all requirements associated with the elements of specifications that are
developed for individual system components.

7.3.2 Decomposition Versus Composition

Decomposition, often referred to as top-down structuring, begins with the top-
level system function and partitions that function into several subfunctions.
This decomposition process must conserve all of the inputs to and outputs from
the system’s top or zero-level function. By conserve, we mean use/produce all
and add no new ones. Next, each of the several first-level functions is
decomposed (partitioned) into a second level set of subfunctions. Note that
not every function must be decomposed; only those for which additional insight
into the production of outputs is needed should be partitioned.
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The success of decomposition is predicated on having a sound definition of
the top-level function of the system and the associated inputs and outputs, that
is, a compete set of requirements. The benefit of having an external systems
diagram is to achieve this complete set of requirements. A major difficulty of
decomposition is the partitioning process to develop the subfunctions of the
system is somewhat unguided. Section 7.4 provides some guidance for this
decomposition. The best decomposition is usually one that will match the
partitioning of the system’s physical resources, the physical architecture. This
way the flow of data and physical items that cross the internal interfaces
between components will be clearly identified.

The opposite approach, composition, is a bottom-up approach. With
composition one starts by identifying the simple functionalities associated
with simple scenarios involving only one of the outputs of the system. Each
functionality is a sequence of input, function, output–input, y, function,
output–input, function, output–input, function, output. The functions in the
functionality are all functions of the system and are relatively low-level
functions in the functional hierarchy. These functions usually show up in third,
fourth, or even lower levels of the hierarchy. For complex systems this initial
step is a substantial amount of work. After the many functionalities have been
defined, one begins the process of grouping the functions in the functionalities
into similar groups. These groups are aggregated into similar groups; this
process continues until a hierarchy is formed from bottom to top.

The advantage of the composition approach is that the composition process
can be performed in parallel with the development of the physical architecture
so that the functional and physical hierarchies match each other. Second, this
approach is so comprehensive that the approach is less likely to omit major
functions. The drawback is that the many functionalities must be easily
accessible during the composition process so that all of this work can be
successfully used; the simple functionalities are often pasted on the walls of a
large conference room. The composition method dates back to the 1960s and
1970s when systems engineering was in its infancy; many systems engineers
continue to prefer this approach. There is no empirical evidence that either the
composition or decomposition approach is better than the other.

Ultimately, using a combination of decomposition and composition ap-
proaches is wisest. This is sometimes referred to as middle-out. Often, one
makes use of simple functionalities associated with specific scenarios defined in
the operational concept to establish a ‘‘sense’’ of the system. Then positing a
top-level decomposition that is likely to match the top-level segmentation of the
physical architecture is common before proceeding to do decomposition that is
reinforced by periodic reference to the functionalities to assure completeness.

Decomposition is efficient and often successful when the system is an update
or variation of an existing system. Composition is strongly recommended when
the system is unprecedented or a radical departure of an existing system.

Before proceeding, it is important to discuss some valuable properties
of the functional hierarchy. Besides the obvious design implications that are
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embodied in this hierarchy, the hierarchy is also important as a communication
tool. This communication is important for both other engineers and the
stakeholders. For this reason, limiting the number of functions at each node
in the functional tree to a number that enhances communication is advisable;
large numbers of functions at a given level of a decomposition turn any
graphical technique into a ‘‘bowl of spaghetti,’’ where the functions are the
meat balls and the arrows are the spaghetti.

7.4 DEFINING A SYSTEM’S FUNCTIONS

As discussed above, assigning functions in the functional architecture in total-
to-one and only one resource in the physical architecture is best. Clearly, the
functional and physical architectures cannot be developed independently and
satisfy this property. In fact, there are times when the decision to allocate a
particular function to one of several resources has substantial performance
implications and is the subject of one or more trade studies. The bottom line is
that the functional architecture may be revised several times as the allocated
architecture is finalized. Therefore, focusing on getting the functional hierarchy
right the first time is improper since this is an impossible task.

7.4.1 Approaches for Defining Functions

There are a number of keys one can use to partition a function into
subfunctions. At the top of the hierarchy we would expect to see functions
devoted to the system’s operating modes, if there are any. For functions that
have multiple outputs, we could partition the function into subfunctions that
correspond with the production of each output. Similarly, we could key on the
inputs and controls to find a partition of the function. More appropriate than
either of these is to decompose on the basis of stimulus–response threads that
pass through the function being decomposed. Finally, there is often a natural
sequence of subfunctions for a particular function. For example, at the bottom
of the functional architecture we would expect to see functions such as receive
input, store input, and disseminate input or retrieve output, format output, and
send output.

Hatley and Pirbhai [1988] developed an architectural template for represent-
ing the physical architecture of the system; Figure 7.2 shows the physical
segments of the template. This template suggests the creation of a generic
partition of six subfunctions, one for each of the Hatley–Pirbhai components.
These six generic functions could be used in any functional architecture:

� Provide user interface: those functions associated with requesting and
obtaining inputs from users, providing feedback that the inputs were
received, providing outputs to users, and responding to the queries of
those users
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� Format inputs: those functions needed to receive inputs from external
interfaces (nonhumans), and other nonhuman system components and to
process (e.g., analog-to-digital conversion) those inputs to put them into a
format needed by the system’s processing functions

� Transform inputs into outputs: the major functions of the system

� Control processing: those functions needed to control the processing
resources or the order in which these processing functions should be
conducted

� Format outputs: those functions needed to convert the system’s outputs
into the format needed by the external interfaces or other nonhuman
system components and then place those outputs onto the appropriate
interface

� Provide structural support, enable maintenance, conduct self-test, and
manage redundancy processing: those functions needed to perform inter-
nal support activities, respond to external diagnostic tests, monitor the
system’s functionality, detect errors, and enable the activation of standby
resources

This partition is a very valid approach at the top of the functional
architecture; the author has used this approach several times to initiate
decomposition with success. Most systems would have all or nearly all of these
functions as an initial partition. Figure 7.3 uses the Hatley–Pirbhai template to
show the four top-level functions of the elevator case study, which can be
downloaded from the following web site: http://www.theengineeringdesignof
systems.com.

As the decomposition of system functions proceeds, we would expect to find
smaller subsets of these six generic functions being embedded within each of the
higher level functions. Figure 7.4 renames the Hatley–Pirbhai [1988] partition

Maintenance, Self-Test,
and Redundancy

Management Processing

Process Model

Input
Processing

Output
Processing

User Interface Processing

Control Model

 

FIGURE 7.2 Architecture template of Hatley and Pirbhai [p. 195, 1988].
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as functions and illustrates the functional decomposition by showing likely
decompositions within the top level functions; the top-level decomposition of
the system function is in the middle of the figure.

McMenamin and Palmer [1984] describe a system’s functions as being
composed of essential or fundamental activities and custodial activities. All
but one of the functions implied by the Hatley and Pirbhai [1988] template are
fundamental activities. The function, ‘‘enable maintenance, conduct self-test,
and manage redundancy processing,’’ performs custodial activities. Additional
custodial activities that could be embedded in this function are the provision of
structural support, maintenance of information archives, provision of security
services, and so forth. In addition, custodial activities maintain the system’s
memory so the system knows what it needs to know to perform its fundamental
activities. This knowledge is called the essential memory of the system; examples
include the storage of data items between the time they become available and the
time they are used by the fundamental activities. McMenamin and Palmer [1984]
recommend separating the custodial activities and the fundamental activities.
This separation is not completely possible at the top-level with the taxonomy
suggested by the Hatley–Pirbhai [1988] template, nor is this separation often
desirable at this high level. However, achieving this separation at lower levels of
the functional decomposition is possible and desirable.

Baylin [1990] provides a number of interesting insights into modeling the
functional aspects of a system by focusing on the system’s objectives. The
purpose of any system is to achieve the objectives that have been defined for
that system. As a result the engineer of a system would be foolish not to use the
system’s objectives as a guide for defining the top-level functions of the system.

Many engineers involved in developing systems have read and suggested
Miller’s [1978] classic titled Living Systems as a guide for defining the functions
of a system. Miller examines seven levels of systems that range from a cell
through a supranational system, and include an organ, an organism, a group, an

“Enable Effective
Maintenance & Service”

“Move Passengers
between Floors”

“Accept Passenger Requests & Provide Feedback”

“Control Elevator Cars”

FIGURE 7.3 Elevator functions within the Hatley–Pirbhai template.
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organization, and a society. One ofMiller’s claims is that there are 19 subsystems
that must be part of any of these living systems. In fact, Miller defines these 19
subsystems in terms of the function that each performs (see Table 7.1); leading
the reader of Living Systems to believe that it is the 19 functions that are most
useful to engineers of human-designed systems. One key to Miller’s study or
living systems is his assertion that these systems either process matter-energy or
information or both. The top two functions in Table 7.1 address the processing
of both matter-energy and information. The functions on the left half of
Table 7.1 process matter-energy; while those on the right process information.
There are blanks left in the table so that functions on the left and right that are
similar can be opposite each other. This assertion is key to understanding the
two columns of subsystems and related functions in Table 7.1.

The common concepts for defining a partition of a function are system
modes, function outputs, function inputs and controls, system objectives,
stimulus-response threads, and the functional template based upon the
Hatley–Pirbhai [1988] architecture template.

7.4.2 Typical Functional Decompositions by Life-Cycle Phase

This section suggests functional hierarchies and segments of functional hier-
archies for the development and the manufacturing phases of the system’s life
cycle. The previous section dealt with the operational phase of the life cycle.

Duffy and Buede [1996] suggest structuring the management portion of
the development phase into three major activities— formulate the development
strategy, execute the development strategy, and evaluate the results of the
development activity. Formulating the development strategy has as many
elements of a development strategy as needed. Common elements of the
development strategy are the procurement, engineering or technical, financing,
communication, technology development, and testing strategies. Other elements
may include the regulatory and risk mitigation strategies. The IDEF0 model of
the systems engineering design and integration process in Appendix B demon-
strates the execution of the engineering elements of the development strategy.

Dietrich [1991, p. 886] defines manufacturing as ‘‘using resources to perform
operations on materials to produce products.’’ A manufacturing system is a ‘‘set
of resources used to manufacture some product, together with the associated
information system and any behavioral requirements imposed by the owners of
the resources.’’ The products being produced are the primary outputs of this
phase; inputs are defined to be bulk material; internal items are called work-in-
progress (WIP). WIP is material upon which some value-added operations have
been performed. Seven types of generic manufacturing functions are defined,
based upon the types of bulk material, WIP, and primary outputs:

� Bulk Operation: manipulate bulk material to produce other bulk material.

� Kitting Operation: transform one or more bulk materials into one or more
units of WIP.
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TABLE 7.1 Subsystems and Functions of Living Systems [after Miller, 1978]

Subsystems which Process Both Matter-Energy and Information

1. Reproducer, the subsystem which is capable of giving rise to other systems similar to

the one it is in.

2. Boundary, the subsystem at the perimeter of a system that holds together the

components which make up the system, protects them from environmental stresses,

and excludes or permits entry to various sorts of matter-energy and information.

Subsystems which Process Matter-Energy Subsystems which Process Information

3. Ingestor, the subsystem which brings

matter-energy across the system

boundary from the environment.

11. Input transducer, the sensory

subsystem which brings markers

bearing information into the system,

changing them to other matter-energy

forms suitable for transmission within

it.

12. Internal transducer, the sensory

subsystem which receives, from

subsystems or components within the

system, markers bearing information

about significant alterations in those

subsystems or components, changing

them to other matter-energy forms of

a sort which transmitted within it.

4. Distributor, the subsystem which carries

inputs from outside the system or

outputs from its subsystems around the

system to each component.

13. Channel and net, the subsystem

composed of a single route in physical

space, or multiple interconnected

routes, by which markers bearing

information are transmitted to all

parts of the system.

5. Converter, the subsystem which

changes certain inputs to the system

into forms more useful for the special

processes of that particular system.

14. Decoder, the subsystem which alters

the code of information input to it

through the input transducer or

internal transducer into a ‘‘private’’

code that can be used internally by the

system.

6. Producer, the subsystem which forms

stable associations that endure for

significant periods among matter-

energy inputs to the system or outputs

from its converter, the materials

synthesized being for growth, damage

repair, or replacement of components

of the system, or for providing energy

for moving or constituting the system’s

outputs of products or information

markers to its suprasystem.

15. Associator, the subsystem which

carries out the first stage of the

learning process, forming enduring

associations among items of

information in the system.

(Continued)
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� Fabrication Operation: fabricate a WIP from another unit of WIP and
bulk material.

� Assembly Operation: assemble two or more units of WIP and bulk material
into a subassembly (higher level WIP).

� Byproduct Operation: transform two or more WIPs of different types into
two or more WIP types that are not identical to the input WIPs).

TABLE 7.1. Continued

Subsystems which Process Both Matter-Energy and Information

7. Matter-energy storage, the subsystem

which retains in the system, for

different periods of time, deposits of

various sorts of matter-energy.

16. Memory, the subsystem which carries

out the second stage of the learning

process, storing various sorts of

information in the system for different

periods of time.

17. Decider, the executive subsystem

which receives information inputs

from all other subsystems and

transmits to them information outputs

that control the entire system.

18. Encoder, the subsystem which alters

the code of information input to it

from other information processing

subsystems, from a ‘‘private’’ code

used internally by the system into a

‘‘public’’ code which can be

interpreted by other systems in its

environment.

8. Extruder, the subsystem which

transmits matter-energy out of the

system in the forms of products or

wastes.

9. Motor, the subsystem which moves the

system or parts of it in relation to part

or all of its environment or moves

components of its environment in

relation to each other.

19. Output transducer, the subsystem

which puts out markers bearing

information from the system,

changing markers within the system

into other matter-energy forms which

can be transmitted over channels in

the system’s environment.

10. Supporter, the subsystem which

maintains the proper spatial

relationships among components of

the system, so that they can interact

without weighting each other down or

crowding each other.
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� Distribution Operation: divide one or more units of a single WIP into two
or more units of possibly different types of WIP.

� Consumption Operation: consume one or more WIPs yielding bulk,
dissipated, or useless material. (Note shipping finished products and
stockpiling subassemblies are considered consumption operations.)

7.4.3 Feedback and Control in Functional Design

It is important to emphasize the use of feedback in the design of the system.
Feedback and control is the comparison of the actual characteristics of an
output with desired characteristics of that output for the purpose of adjusting
the process of transforming inputs into that output (see Sidebar 7.1). Open-
loop control processes may or may not make this measurement, but in either
case make no adjustments to the process once started. See Figure 7.5. The
heating and air-conditioning systems in all but the most expensive cars allow
the driver to set the output temperature of the heater and the fan speed; this is
an example of an open-loop control system. The driver serves as the feedback
process that adjusts the heat and fan speed when a deviation from the desired
temperature is noticed. Closed-loop control processes use measurements of
the output as feedback for the purpose of adjusting or controlling the
transformation process. Heating and air conditioning systems in most houses
have a thermostat for setting the desired temperature; this thermostat adjusts
the length of time that the heating or air conditioning is left on in order to
reach the desired temperature. This is an example of a closed-loop control
system.

SIDEBAR 7.1: HISTORY OF CONTROL SYSTEMS

Mayr [1970] traced the earliest example of a control system to the second
century BC; this control system was a water clock that operates on the
same principles as current flush toilets and is not dissimilar to numerical
integration on a digital computer.

In about 1620 Cornelis Drebbel, a Dutch mechanic and chemist,
designed a system to control the temperature in a furnace used to heat
eggs in an incubator.

About 1787 Thomas Mead invented a centrifugal governor, which was
adapted about a year later by Matthew Boulton and James Watt, who
invented a fly ball governor to control the rotation speed of a grinding
stone for a wind-driven flour mill. The first study of feedback control and
the stability of such systems was described in a paper titled ‘‘On
Governors’’ by J.C. Maxwell in 1868.
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A negative feedback process attempts to close the gap between the current
output and the desired output, thus striving for a stable process. A positive
feedback process attempts to increase the difference between current output and
the desired output, usually creating an unstable situation. In the engineering
design process, feedback and control enable the comparison of the current state
of the system with the desired state for the purpose of repeating parts of the
generation of the current state to obtain a current state that is closer to the
desired state. The concept of feedback comes from the engineering of control
systems, which has been the training ground for many systems engineers.

Closed-loop control processes contain at least four subprocesses: compar-
ison of current and desired output characteristics; control adjustments to the
process based upon the comparison; the transformation process for turning
inputs into outputs; and a sensing process for turning the output into measured
dimension(s) that can be compared to the desired output. The first element is
the comparison process in which current values of key variables are compared
with desired values of those variables. The comparison process requires
definition in advance for what elements of the state of the process are going
to be compared. This comparison inevitably introduces a time lag into the
process. This element of the feedback process is trivial, but at the same time is
the cornerstone. The second element is the control process for deciding what to
do about the difference between the current value of the output and the desired

Control
Variable

Process Input
into OutputInput Output

Process Input
into Output

Input

OutputControl
Process

Desired
Output

Control
Variable

Basic Process

Open Loop Control of Process

Process Input
into Output

Input

Output
Control
Process

Desired
Output

Closed Loop Control of Process

Compare
Desired to

Actual Delta

Sense Output

FIGURE 7.5 Open and closed loop control processes.
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value of the output. The third element of the feedback process is the
transformation process that is being controlled by the feedback process. This
process dictates how a successful feedback process should be created and is
often adapted by the feedback process as part of the correction activity. Sensing
the output of the process being controlled is the final element of the feedback
process.

While most examples of feedback control systems are in lower level elements
of complex systems, there is no reason why such a concept will not also work at
higher levels of abstraction. An example is the ‘‘Develop System Allocated
Architectures’’ function of the IDEF0 model of the process for engineering a
system in Appendix B and repeated in Figure 7.6. There are three feedback and
control loops. The first involves the first and second functions, ‘‘Allocate
Functions & System-wide Requirements to Physical Subsystems’’ and ‘‘Define
& Analyze Functional Activation & Control Structure.’’ Here the second
function performs the measurement, comparison, and control function based
upon the output, functional allocations to components, of the first function.

The measurement, comparison, and control (decision making) in the second
loop are done in the third function ‘‘Conduct Performance & Risk Analyses’’ for
the output of the second function, alternative system-level allocated architec-
tures. The analysis process determines whether the system-level allocated
architectures contain one that is ‘‘good enough’’ to be the finalized design and
then proceeds with documentation. If the decision is that there is not an
allocated architecture that is good enough, then analysis results are passed to the
first two functional processes as controls for making refinements. The intention
here is that the analysis results could be passed to either of these two processes
or the combination of them. The smallest refinements would conclude with
passing analysis results and guidance only to the second process (‘‘Define &
Analyze Functional Activation and Control Structure’’). Large refinements
would require passing results and guidance to both processes.

There is a final feedback loop during documentation, which is when many
questions arise. In this case the third function is reactivated if questions arise
that cannot be answered using the current documentation and analysis results.
If the issue deals with performance and risk analysis, the answer can be
generated and the result passed back to the documentation activity. However, if
the issue has implications for the allocation of function, tracing of require-
ments, or activation and control structures, then the initial feedback loop
discussed above is reenergized.

Besides the feedback control loops that are designed inside the system, the
engineer of the system has to be cognizant to design feedback control for the
system using the external systems. The most common example of such feedback
control occurs when a human is one of the external systems and closes a
feedback loop to improve the system’s performance. The driver of an
automobile adjusts the car’s speed and direction to achieve safe travel; there
are numerous output devices at the driver’s station of the automobile to
enhance the driver’s ability to serve as the controller of the car.
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More detailed literature on feedback control can be found in Dickinson
[1991], Dorny [1993], Franklin et al. [1994], and Van de Vegte [1994]. A graph-
theoretic approach for analyzing control systems has been developed called
signal flow graphs. Signal flow graphs are used to transform a set of processes
with feedback into a single, composite process.

7.4.4 Evaluation of a Functional Hierarchy

A functional architecture can be evaluated for shortfalls and overlaps. A
shortfall is the absence of a functionality that is required to produce a desired
output from one or more inputs. Shortfalls can be divided into the following
categories: absence of the proper functionality for some set of inputs, inability
to produce a desired output, and insufficient feedback control to produce the
desired output.

Recall the definition of a function from Chapter 4. A function maps all
elements of the domain to some element in the range and does not map any
element of the domain into two distinct elements of the range. Whenever there
are potential inputs to the system with which the system’s functionality cannot
deal, the engineer of the system did not create a system function but rather a
system relation. A relation in Chapter 4 includes functions but also includes
those entities that fall short of a function. In fact, the most common types of
shortfall are the absence of or inappropriate functional responses to unexpected
inputs and to failure modes within the system. For example, the elevator system
must be able to respond properly when a fire alarm sounds. Less obvious
unexpected inputs might be the need for a user to stop the elevator immediately.
Therefore the systems engineer must always enumerate all possible inputs,
including those inputs that are not wanted but can arrive. In the mathematical
terms of Chapter 4, a Cartesian product of possible inputs must be formed for
each function in the functional model of the functional architecture. This is
only necessary for the lowest level functions in the functional decomposition.
The Cartesian product of inputs for a function uses each category of input
shown in the functional model for a specific function. For each of these
categories there are usually several possible input states, some of which are not
desired. For example, if there were three possible input categories to a given
bottom-level function and each input category had three possible states, there
would be three-tuple formed by taking the Cartesian product of these three
input categories. The three-tuple would have 27 (3� 3� 3) different combina-
tions. The functional definition of this bottom-level function must account for
every one of these 27 possible combinations.

The second category of shortfall is the inability to produce a needed output.
This type of functionality will be obvious if all of the system’s outputs have been
defined. This is a major benefit of the external systems diagram in Chapter 6 and
the functional architecture discussed in this chapter. Evaluating for this category
of shortfall is not always possible without constructing an overall functional
architecture.
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The final shortfall addresses the quality of the outputs produced. Often this
quality falls short of that desired by the stakeholders because the engineers have
not incorporated sufficient feedback control, either internally to the system or
inclusive of the external systems. Missing needed feedback is a common
mistake made in the functional architecture. This is true not only for the
functional architecture of the system being designed for the operational phase
of the life cycle, but also for the functional architectures of the developmental
and manufacturing systems.

An overlap is a redundancy in functionality that is not needed to achieve
additional performance, for example, reliability. Functional overlaps, unlike
physical overlaps for redundancy, are not needed and therefore can only cause
problems.

A common technique for identifying shortfalls and overlaps is to follow each
scenario in the operational concept (Chapter 6) through the functional
architecture. Each scenario in the operational concept begins with a single
input to the system from one of the external systems and continues with a
sequence of inputs to and outputs from the system to various external systems.
Each scenario was developed by treating the system as a black box. Now is the
time to shine a light into that black box (producing a white box) and see what
functions the system is performing to transform the inputs into outputs. Start
with the first input to the system for a given scenario (see Fig. 7.7); color the line
in the context diagram (A-0 page or node) for that input green (or whatever
color you choose). Find an interesting output of the system in the scenario and
color that output on the context page green also. In Figure 7.7 the input
selected was ‘‘Request for Elevator Service & Entry Support’’ by a potential
passenger, which is shown as a dotted-dashed line since color is too expensive
for a text book. The output selected was ‘‘Elevator Entry/Exit Opportunity’’
when the elevator arrives at the potential passenger’s floor; this output is also
shown as a dotted-dashed line.

Now move to the AO page (node) and color these same two lines green; see
Figure 7.8 for the dotted-dashed lines. Now go to the function on the AO page
that received that input (the Al function in Fig. 7.8) and find the appropriate
output of the function that is needed to get to the output on the context page
and color the line associated with that output green. ‘‘Digitized Passenger
Request’’ is shown with a dotted-dashed line in Figure 7.8. Proceed to this next
function on the AO page and find the most appropriate output to color. This is
like looking through a house for clues to a mystery, searching room by room,
finding a clue in each room that leads to the next room, until finally the room is
found with the already identified path outside. In Figure 7.8, ‘‘Digitized
Passenger Request’’ led to the A2 function, ‘‘Control Elevator Cars.’’ The
appropriate output of this function was ‘‘Assignments to Elevator Cars,’’
leading to A3, ‘‘Move Passengers Between Floors,’’ which is where ‘‘Elevator
Entry/Exit Opportunity’’ was found.

This process continues for every other page of the functional model. Figures
7.9–7.12 show this trace of the input and output from a given scenario
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throughout the entire functional model of the elevator system in the case study
that can be downloaded from http://www.theengineeringdesignofsystems.com.

In addition, defining failure modes for the system and creating error
detection and recovery functionalities within the common operating modes as
well as the failure modes is critical. These functionalities for error detection and
recovery are critical for stakeholder usability. How often has your computer
shut down with no warning and little support for saving open files? The more
mature an operating system is, the more functionality the operating system
commonly has for saving open files as part of the crash, and the more unlikely
such crashes are. Details on functionality for addressing error detection and
recovery are covered later in the chapter.

7.5 DEVELOPMENT OF THE FUNCTIONAL DECOMPOSITION

The literature [Marca and McGowan, 1988] surrounding the structured
analysis and design technique (SADT), which became IDEF0, suggests the
following activities for creating a functional decomposition with inputs,
controls and outputs:

� Determine the purpose and viewpoint.

� Generate a data list, based upon the system’s boundaries (the external
systems diagram).

� Generate an activity list.

� Define the AO diagram, and the level 1 functional decomposition.

� Draw the context diagram, A-0 (this has already been done, based on the
external systems’ diagram).

� Continue this process while decomposing the level 1 functions.

The purpose and viewpoint define the issues that the IDEF0 model will address.
The purpose for systems engineering applications is straightforward, namely to
depict the functional activities of the system in a particular phase of the
system’s life cycle; as can be seen in the elevator case study (available on the
author’s web site) there is a separate IDEF0 model for each phase. Similarly,
the viewpoint is the systems engineering team; this team is creating the
functional architecture, of which the IDEF0 model is a part, for the purposes
of designing the system. Typically, there are a number of stakeholders with a
somewhat diverse set of opinions that are concerned about each phase of the
life cycle; the systems engineering team should include representatives of these
stakeholders and has ultimate responsibility to integrate these opinions.

The data list of inputs, controls, and outputs for the system’s top-level
function should already be available from the external systems’ diagram.
Nonetheless, this is an excellent time to review and critique the data list to
determine if there are any missing or redundant items.
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Next, we have the first of many decomposition decisions. How should the top-
level system function be decomposed? Spending some time gathering information
and brainstorming about system functions for each phase is always a good idea,
in addition to creating an activity list from which to choose or synthesize the
functional decomposition. For the operational phase of the life cycle a previous
section presented the options of starting with the operational modes of the
system or alternatively with the functional taxonomy derived from the Hatley–
Pirbhai [1988] architecture template. At this point in time the systems engineer-
ing team certainly has not finalized the definition of operating modes for the
system. In fact, the functional decomposition will inevitably be modified over
time as the performance of the allocated architecture is evaluated. Figure 7.3
depicted the elevator’s top-level functional decomposition for the operational
phase in terms of the Hatley–Pirbhai template.

There are many ways to gather information:

� Review documents, but watch for viewpoint changes.

� Observe operations, but be careful about the details that you do not know
well enough to recognize and the need to make major changes from the
current system to the system under development.

� Conduct interviews; questionnaires can be used but have very limited
value (be sure you get the right experts).

� Invent a strawman for the experts to critique.

� Create several alternate decompositions and create a composite strawman
based on the best features of each after some critical discussion (this
creativity technique is often called the ‘‘gallery’’).

Once a working version of the functional model is created, the functional
model should be reviewed by individuals that have substantial knowledge and
varying perspectives about the system’s functioning in a given life-cycle phase.
This review process should:

� Try alternate decompositions.

� Disaggregate the functions differently.

� Bundle and unbundle arrows differently.

� Reevaluate functional dominance in terms of feedback and control.

� Catch interface errors.

As part of this review process creating a data model of the inputs, controls, and
outputs using an entity–relationship–attribute or higraph model would be wise.
These techniques are discussed in Chapter 12. The data model often introduces
critical design issues that have been overlooked in the functional or process
model.

How far should the functional decomposition be carried out? Generally
speaking, the functional decomposition should proceed to the second, third,
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or fourth level. At this point the physical and allocated architectures should be
developed and analyzed. The more detailed the operational concept the more
reliably the functional architecture can be developed to the fourth level.
Defining the system’s functions to line up with the physical components is
best so that the inputs, controls, and outputs clearly line up with external and
internal interfaces. The level of detail should be appropriate with the viewpoint
and purpose, that is, the stakeholders and specified phase of the system’s life
cycle. Be sure to eliminate details if they are not helping create the allocated
architecture. Also, see Sidebar 7.2 for a list of common mistakes made in the
development of a functional architecture.

SIDEBAR 7.2: COMMON MISTAKES IN DEVELOPING
A FUNCTIONAL ARCHITECTURE

1. Including the external systems and their functions. The functional
architecture only addresses the top-level function of the system in
question. The external system diagram establishes the inputs, con-
trols, and outputs for this function. A boundary has been drawn
around the system to exclude the external systems and their functions.

2. Choosing the wrong name for a function. The function name
should start with an action verb and include an object of that
action. The verb should not contain an objective or performance
goal such as maximize, but should describe an action or activity
that is to be performed.

3. Creating a decomposition of a function that is not a partition of
that function. For example, a student once decomposed ‘‘AO:
Provide Elevator Services’’ into ‘‘Al: Transport Users,’’ ‘‘A2:
Evaluate System Status,’’ and ‘‘A3: Perform Security & Mainte-
nance Operations.’’ ‘‘Al: Transport Users’’ was then decomposed as
follows: ‘‘All: Provide Access to Elevator,’’ ‘‘Al2: Transport
Users,’’ and ‘‘A13: Provide Emergency Operations.’’ Al2 cannot
be a child of itself. The sub-functions of a function should all be at
the same level of abstraction [Chapman et al., 1992].

4. Including a verb phrase as part of the inputs, controls, or outputs of
a function. Verb phrases are reserved for functions.

5. Violating the law of conservation of inputs, controls, and outputs.
That is, every input, control, and output of a particular function
must appear on the decomposition of that function, and there can
be no new ones.

6. Trivializing the richness of interaction between the functions that
decompose their parent. Consider many possible simple function-
alities that comprise the children of a parent function and then
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develop the inputs, controls, and outputs that enable these simple
functionalities to exist, including the necessary feedback and
control.

7. Creating outputs from thin air. The most common mistake is to
define a function that monitors the system’s status but that does not
receive inputs about the functioning or lack of functioning of other
parts of the system.

7.6 FINISHING THE FUNCTIONAL ARCHITECTURE

Two key areas of the functional architecture that need to be addressed before
the job is finished are (1) defining system errors and the failure modes that
result and inserting the functionality to detect the errors and recover and (2)
inserting the appropriate functionalities for some combination of built-in self-
test (BIST) and external testability. The functionalities described here are
typically not part of the initial drafts of the functional architecture because they
depend to a significant degree on the physical architecture; as a result these
functions are often added once the allocated architecture is taking shape.

Fault tolerance is a laudable design goal, meaning that the system can
tolerate faults and continue performing. In fact, the design goal of every
systems engineering team is to create a system with no faults. However, faults
like friction have to he tolerated at best, even after our best efforts to eliminate
them. This discussion on fault-tolerant functionality depends greatly on
understanding several key terms; see Jalote [1994] and Levi and Agrawala
[1994]. Figure 7.13 provides a concept map based on these definitions.

System: an identifiable mechanism that maintains a pattern of behavior at
an interface between the system and its environment. [Anderson and Lee,
1981]

Failure: deviation in behavior between the system and its requirements.
Since the system does not maintain a copy of its requirements, a failure is
not observable by the system.

Error: a subset of the system state which may lead to a failure. The system
can monitor its own state, so errors are observable in principle. Failures
are inferred when errors are observed. Since a system is usually not able to
monitor its entire state continuously, not all errors are observable. As a
result, not all failures are going to be detected (inferred).

Fault: a defect in the system that can cause an error. Faults can be
permanent (e.g., a failure of system component that requires replacement)
or temporary due to either an internal malfunction or external transient.
Temporary faults may not cause a sufficiently noticeable error or may
cause a permanent fault in addition to a temporary error.

242 FUNCTIONAL ARCHITECTURE DEVELOPMENT



First, note the difference of the definition of system in the fault tolerance
literature and that discussed in Chapters 2 and 6 of this book, which represent
the systems engineering community. The fault tolerance community is focused
on inferring failures by detecting errors. The notions that are central to this
focus are the system’s requirements (or specifications), the boundary between
the system and the system’s environment at which the state of the system is
defined, and the interface that connects the system to its environment. The fact
that a system has objectives, as defined by the stakeholders, and functions (or
tasks), as defined by the systems engineers, is not relevant to the fault tolerance
community and is therefore not found in their definition of a system.

Achieving fault tolerance in a system means using both the designed
functions and physical resources of the system to mask all errors (deviations
between actual system outputs and required system outputs) from the system’s
environment. Fault tolerance can only be achieved for those errors that are
observed. The generic system functions associated with fault tolerance are
(1) error detection, (2) damage confinement, (3) error recovery, and (4) fault
isolation and reporting. The design of physical resources needed for fault
tolerance is discussed in the next chapter.

Error detection is defining possible errors, deviations in the subset of the
system’s state from the desired state, in the design phase before they occur, and
establishing a set of functions for checking for the occurrence of each error. Just
as with requirements development, defining error checking to be complete,
correct, and independent of the design of the system is desirable. Unfortu-
nately, this is not yet possible so error detection will be imperfect. The most
frequent error detection involves errors in data, errors in process timing, and
physical errors in the system’s components. The most common checks for data

System

may have

may have

may lead to

has

has

has

States
may have

Defect

Fault

is-a

can cause
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Requirement
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is

UnobservableObservable

Requirements

FIGURE 7.13 Concept map for fault tolerance terms.
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errors include type and range errors. Type checks establish that the data is the
right type, for example, Boolean versus integer. Range checks ensure that
the value of the data is within a specified range. Knowing the correct values of
the data is not possible so type and range checks are approximations of the
checking that would be most effective if the truth were known. Semantic and
structural checks are also possible on data elements. Semantic checks compare
a data element with the state of the rest of the system to determine whether an
error has occurred. Structural checks use some form of data redundancy to
determine whether the data is internally consistent. A structural check used in
coding is to add extra bits to the data bits; these added hits take on values that
depend on the values of the data bits. Later these extra bits and the associated
data bits can be checked to ensure an appropriate relationship exists; if not, an
error is declared. Similarly robust data structures in software use redundancy in
the data structures to check for data errors. Timing checks are used in real-time
or near-real-time systems. Timing checks assume the existence of a permissible
range for the time allotted to some process being performed by the system. A
timer is activated within a process to determine whether the completion of the
process is within an appropriate range; if not, an error is declared. Hardware
systems typically detect timing errors in memory and bus access. Operating
systems also use timing checks. Finally physical errors in a component of the
system are the province of BIST and will be discussed in the next chapter.

Damage confinement is needed in fault tolerance because there is typically a
time lag between the occurrence of failure and the detection of the associated
error. During this time lag the failure or the implications of the failure may
have spread to other parts of the system; error recovery activities are dangerous
without having knowledge about the extent of damage due to a failure. As
soon as the error detection functionality has declared an error, damage
confinement functionality must assess the likely spread of the problem and
declare the portion of the system contaminated by the failure. The most
common approach to damage confinement is to build confinement structures
into the system during design. ‘‘Fire walls’’ are designed into the system to limit
the spread of failure impacts. With these predesigned fire walls declaring that a
failure is limited to a specific area of the system when an error is declared is
possible. A more sophisticated approach is to reexamine the flow of data just
prior to an error to determine the possible spread of errors due to a failure;
this sophisticated approach requires not only that error detection functionality
be designed into the system but that functionality to record a time history
of data be added so that this information exists when the information is
needed.

Error recovery functionality attempts to correct the error after the error has
been declared and the error’s extent defined. If the error concerns data in the
system, backward recovery is typically employed to reset the data elements to
values that were recorded and acceptable at some previous time. These values
may not be correct in the sense that they are the values the system should have
generated. Rather, these values are acceptable in the sense of type, range, and
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semantics discussed above in error detection. The purpose of backward
recovery is to keep the system from a major failure, not to restore the system
to the correct state. As a result, the system’s users are typically notified as part
of the error recovery process that a failure occurred and are given the chance to
attempt to recover the correct data or restart at an appropriate place to
generate the correct data. Forward recovery is an attempt to guess at what the
correct values of the data should have been; this is dangerous but sometimes
justified in real-time systems where backward recovery and user notification is
not possible. Timing errors are handled by ending a process that is taking too
long and asserting a nominal or last computed value for the process output.
Physical errors are handled by either graceful termination of the system’s
activities or switching to redundant (standby) components when they are
available. In recovering from physical errors, capturing the last available values
of the system’s data structure prior to termination or component switching is
critical.

Fault isolation and reporting functionality attempts to determine where in
the system the fault occurred that caused the failure that generated the error.
To isolate faults the components of the system must be providing information
about their current status.

BIST for a specific component incorporates the functionality to test defined
functionality and provide feedback about the results. These types of BIST are
common during system start-up and routine operation.

The functional architecture must be expanded during the final development
of the allocated architecture to include functions for error detection, damage
confinement, error recovery, and fault isolation and reporting. In accordance
with the fault tolerance community, these functions should be defined for every
state variable of the system, which includes the system’s outputs. In addition,
including error trapping for many of the inputs to the system is important.
Error trapping includes functions for error detection, damage confinement, and
error recovery for user inputs; the system must monitor system inputs to detect
unacceptable inputs and alert the user that a given input is unacceptable and to
reenter a correct input. For example, the system is expecting the user to input a
number as part of a menu selection or data entry task. However, the user, due
to inattention or typing error, enters a letter instead. Most older software
would immediately crash, sometimes crashing the entire computer system.
However, more recent, well-designed software will monitor the input for such
an error and alert the user that this error has been made and request a new
input.

7.7 TRACING REQUIREMENTS TO ELEMENTS OF THE FUNCTIONAL
ARCHITECTURE

There are two elements of the functional architecture that should have input/
output requirements traced to them: the functions and the external items

7.7 TRACING REQUIREMENTS TO ELEMENTS OF THE FUNCTIONAL ARCHITECTURE 245



(inputs and outputs). Both of these tracings can be accomplished in systems
engineering tools such as CORE. All elements of the set of input/output
requirements should be traced to appropriate functions that have been defined
in the functional decomposition. Tracing input requirements and output
requirements to functions should be done throughout the functional decom-
position as is shown in Figure 7.13; this tracing is guided explicitly by the
association of inputs and outputs with functions in the functional architecture.
For example, since ‘‘calls (requests) for up and down service’’ is an input of
‘‘Support Waiting Passengers,’’ all of the requirements related to this input
should be traced to the function ‘‘Support Waiting Passengers’’ and that
function’s predecessors in the functional decomposition. Similarly, external
interface requirements should be traced to the function that is associated with
receiving the input or sending or output, respectively. For example, the phone
line (external interface) transmits and receives items that are associated with the
function ‘‘Support Passengers in Emergency’’; therefore the external interface
requirement to use a phone line to communicate via the building with
maintenance personnel should be traced to this function. Each external inter-
face requirement should also be traced to the predecessors of this function.
Finally, all of the functional requirements should be traced to the top-level
system function. As discussed in Chapter 6 a preferred convention for the
functional requirements is to list the functions in the top-level functional
decomposition that define the system function. This tracing of input/output
requirements to functions is illustrated in Figure 7.14 for a sample of functions
and requirements from the elevator case study, which can be downloaded from
http://www.theengineeringdesignofsystems.com.

The logic for tracing input/output requirements to functions is as follows.
The ultimate product of the systems engineering team is a set of specifications
for each CI. Intermediate products are specifications for the intermediate
components that comprise the system and are built from the CIs. Each of these
specifications will contain requirements that are derived from the system-level
requirements that are derived from the stakeholders’ requirements. In addition,
each of these specifications will contain a functional architecture that is relevant
to the component or CI of interest. This functional architecture for a
component or CI will be a subset of the system’s functional architecture and
will contain input/output requirements traced to these functions at the system
level. These input/output requirements should be contained in the specification.
Tracing system input/output requirements to functions is a method for
ensuring that the appropriate input/output requirements are contained in
each specification that has to be developed during the design process.

In addition, tracing input/output requirements to functions serve as a
consistency check. Does each function have requirements traced to it for
each input and output? Is each input/output requirement traced to at least one
function?

The input and output requirements are also traced to the external item
elements. This tracing is made explicit in the set of input and output
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requirements for the operational phase of the elevator, as shown in Appendix
B. The rationale for tracing the input and output requirements to external items
is that the external interfaces need to satisfy these requirements. The internal
items of the functional architecture will also have the relevant input and output
requirements traced to them later in the design phase so that the internal
interfaces of the system will have derived requirements that they must meet.
This tracing can provide a valuable consistency check: Does each item have at
least one requirement traced to it? Also, does each requirement trace to some
item? If either of these questions is negative for any requirement or item, there
has been a breakdown in the requirements development process. Finally, an
item will be ‘‘carried by’’ a link, which ‘‘comprises’’ an interface. The item will
have one or more input/output requirements traced to it. In addition, the link
will ultimately have derived system-wide requirements traced to it. The inter-
face specifications will be built from the requirements that are traced to the
items being carried by the links comprising the interface as well as the system-
wide requirements that ultimately are traced to the interface.

7.8 SUMMARY

The functional architecture of a system, as defined in this chapter, contains a
hierarchical model of the functions performed by the system, the system’s
components, and the system’s CIs; the flow of informational and physical items
from outside the system through the system’s functions and on to the waiting
external systems being serviced by the system; and a tracing of input/output
requirements to both the system’s functions and items.

This chapter introduces quite a few terms that are key to understanding and
developing a functional architecture. A system mode is an operational
capability of the system that contains either full or partial functionality. A
state is a modeling description of the status of the system at a moment in time.
A function is an activity that the system performs in order to transform an n-
tuple of inputs into an m-tuple of outputs. These concepts are key to the
development of a functional architecture. The system’s modes and functions
should be part of the functional architecture, while the system’s state should be
definable by a set of parameters in any operational mode while performing any
set of functions. The parameters that comprise this state may vary based on the
operational mode and the functions being performed.

Other key terms addressed in this chapter include failure, error, and fault.
Failure is a deviation between the system’s behavior and the system’s require-
ments. An error is a problem with the state of the system that may lead to a
failure. A fault is a defect in the system that can cause an error. To achieve the
desired level of fault tolerance, the system must perform the functions of error
detection, damage confinement, error recovery, and fault isolation and reporting.

A method for developing a functional architecture was defined in this
chapter. Defining the functional architecture is not easy and is a modeling
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process that the engineer of a system must learn. The modeling process uses a
combination of decomposition and composition. The concepts of feedback and
control are critical to defining the system’s functions.

The engineering of a system has to rely upon more than the physical design
of the system. The functions or activities that the system has to perform are a
critical element of the design process and the design of these functions needs to
be given an equal importance to the physical design by the engineers. The
designs of functions and physical resources for the system are not independent;
they must both be done, usually in parallel.

PROBLEMS

7.1 What are the operating modes of your car’s stereo system?

7.2 For the ATM of the Money Mart Corporation:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with the ATM. This functional
architecture should be at least two levels deep and should be four
levels deep in at least one functional area that is most complex. Note
that you will be graded on your adherence to proper IDEF0 semantics
and syntax, as well as the substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can be realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.
If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iii. As part of the systems engineering development team for the ATM,
update your requirements document to reflect any insights into
requirements that you obtained by creating a functional architecture.
That is, if you added, deleted, or modified any input, controls, or
outputs for the system, modify your input/output requirements. Also
update your external systems diagram if any changes are needed.

7.3 For the OnStar system of Cadillac:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with OnStar. This functional
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architecture should be at least two levels deep and should be four
levels deep in at least one functional area that is most complex. Note
that you will be graded on your adherence to proper IDEF0 semantics
and syntax, as well as the substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can be realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.

iii. If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iv. As part of the systems engineering development team for OnStar,
update your requirements document to reflect any insights into
requirements that you obtained by creating a functional architecture.
That is, if you added, deleted, or modified any input, controls, or
outputs for the system, modify your input/output requirements. Also
update your external systems diagram if any changes are needed.

7.4 For the development system for an air bag system:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with the development system
for an air bag. This functional architecture should be at least two
levels deep and should be four levels deep in at least one functional
area that is most complex. Note that you will be graded on your
adherence to proper IDEF0 semantics and syntax, as well as the
substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can he realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.
If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iii. As part of the systems engineering development team for the devel-
opment system for an air bag, update your requirements document to
reflect any insights into requirements that you obtained by creating a
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functional architecture. That is, if you added, deleted, or modified any
input, controls, or outputs for the system, modify your input/output
requirements. Also update your external systems diagram if any
changes are needed.

7.5 For the manufacturing system for an air bag system:

i. As part of the systems engineering development team, use IDEF0 to
develop a functional architecture. The functional architecture should
address all of the functions associated with the manufacturing system
for an air bag. This functional architecture should be at least two
levels deep and should be four levels deep in at least one functional
area that is most complex. Note that you will be graded on your
adherence to proper IDEF0 semantics and syntax, as well as the
substance of your work.

ii. Pick three scenarios from the operational concept and describe how
these scenarios can be realized within your functional architecture by
tracing functionality paths through the functional architecture. Start
with the external input(s) relevant to each scenario and show how
each input(s) is(are) transformed by tracing from function to function
at various levels of the functional decomposition, until the scenario’s
output(s) is(are) produced. Highlight with three different colored pens
(one color for each scenario) the thread of functionality associated
with each of these three scenarios.
If your functional architecture is inadequate, make the appropriate
changes to your functional architecture.

iii. As part of the systems engineering development team for the
manufacturing system for an air bag, update your requirements
document to reflect any insights into requirements that you obtained
by creating a functional architecture. That is, if you added, deleted, or
modified any input, controls, or outputs for the system, modify your
input/output requirements. Also update your external systems dia-
gram if any changes are needed.
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Chapter 8

Physical Architecture
Development

8.1 INTRODUCTION

The physical architecture of a system is a hierarchical description of the
resources that comprise the system. This hierarchy begins with the system
and the system’s top-level components and progresses down to the configura-
tion items (CIs) that comprise each intermediate component. The CIs can be
hardware or software elements or combinations of hardware and software,
people, facilities, procedures, and documents (e.g., user’s manuals).

Section 8.2 introduces the distinction between a generic and instantiated
physical architecture. The generic physical architecture defines the hierarchy in
general terms, for example, two processors with associated software, a person,
and a building. The instantiated physical architecture lays out the specifics of
the processors, software, person, and building in enough detail to permit
performance modeling of the system related to the requirements being
addressed. The intent of systems engineers should not be to design these
components but rather to state representative instantiations for the generic
components that are sufficient to model the performance of the system and
ensure that the requirements decomposition process makes sense.

Section 8.3 defines a method for developing alternatives for the generic and
instantiated physical architectures of the system. The development process
proposed here emphasizes multiple alternatives, especially for the instantiated
physical architecture, based on the supposition that the design process is quite
difficult for even moderate extensions of existing systems. The following quote

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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by Guindon [1990, p. 308] expresses the importance of this approach:

System design often involves novelty. Even though the designer may be thor-

oughly familiar with the design process itself, there may not be any precedent in

the literature for the system to be designed. — It may be a new technology. More

frequently, the system may simply involve some novelty in an otherwise well-

understood problem. The novelty may range from a novel combination of

requirements for a familiar type of system in a familiar problem domain. As a

consequence, there is often no predetermined solution path from the requirements

to the finished artifact [Newell, 1969; Nii, 1986; Reitman, 1965; Rittel, 1972;

Simon, 1973]. Thus system design frequently requires the creation of new

solutions interleaved with the application of known solutions.

Section 8.4 introduces some creativity techniques to aid in the development
of the alternate physical architectures. The morphological box is the primary
technique employed and illustrated in this chapter. The morphological box
dates back to the 1940s and breaks a system into segments as defined by the
generic physical architecture; it then provides for the listing of alternate
instantiated physical components for each segment. Other techniques that
have been proposed and utilized are classified as either brainstorming or
brainwriting and are also discussed. See West [2007]. Selecting one or more
instantiated components from each component produces an alternative for an
instantiated physical architecture for the system.

Engineers commonly resort to describing the system’s architecture in a non-
mathematics-based graphical format. Block diagrams, the commonly used and
non-standardized graphical format, are presented in Section 8.5 to represent the
physical coupling of the system’s components. A block diagram provides a box or
block for each component. The links between the blocks represent the major flows
of energy or information between the components represented by the blocks.

Section 8.6 addresses major issues and associated concepts in the develop-
ment of a physical architecture. The concepts of centralized and decentralized,
distributed, and client–server architectures are discussed and illustrated. Also
redundancies in hardware, software, information, and time are discussed as
ways to achieve fault tolerance via the physical architecture.

The exit criterion for the development of the physical architecture is the
provision of a single physical architecture that is satisfactory in terms of detail,
quantity, and quality for development of the allocated architecture. This
satisfaction of detail, quantity, and quality is typically preceded by the creation
of several alternate physical architectures for consideration during the develo-
pment and refinement of the allocated architecture.

8.2 GENERIC VERSUS INSTANTIATED PHYSICAL ARCHITECTURES

The physical architecture provides resources for every function identified in the
functional architecture. Since every phase of the life cycle is addressed in the
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requirements and is being addressed in the functional architectures, there must
be a physical architecture for each system associated with the system’s life cycle.
Recall the sample physical architecture from Chapter 1 (repeated here as
Figure 8.1). Note that this physical architecture includes the vehicle, the support
resources for the vehicle during the operational and maintenance phases, and the
training resources, which may be training for the operational phase or the
training phase. Also, note that even at the third level of the physical architecture,
the components are combinations of hardware, software, and other devices.

Military standard MIL-STD-881B [1993] contains a Work Breakdown
Structure (WBS) for Defense Material Items. The WBS is often very similar
to the physical architecture because the work is organized along the lines of the
resources that require development or procurement. For an aircraft system
there are 10 elements that partition the system, as shown in the first column of
Table 8.1. These elements span six of the seven life-cycle phases (shown in the
second column) defined in Chapter 1. The only phase that is absent from this
list is retirement, the commonly forgotten phase.

In the same military standard, 17 resource categories, shown in Table 8.2,
are defined as a partition of the generic air vehicle. These lists or partitions of
the resources for the physical architecture are most useful as memory joggers.
For some aircraft, some of these elements are not relevant; for example, airlift
aircraft do not need armament or antisubmarine warfare. More importantly, as
technology advances some of these elements are outdated. With the advent and
advance of distributed computing, the central computer element is not relevant
or misleading. In addition, at this level of the physical architecture it is often
too early to separate hardware and software.

Common resource categories for an aircraft have been described in Figure 8.1
and Tables 8.1 and 8.2. The resource categories for the elevator’s physi-
cal architecture from the case study, which can be downloaded from

F-22 Weapon System

Vehicle Training Support

Avionics
Systems

Utilities &
Subsystems

Cockpit
Systems

Vehicle
Management

System

Electronic
Warfare

Navigation,
Identification

Processing

Controls
&

Displays

Stores
Management

Inertial
Reference

System
Radar

FIGURE 8.1 Sample physical architecture (F-22 Type A Spec) (from Reed [1993]).
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http://www.theengineeringdesignofsystems.com, are shown in Figure 8.2. All of
these resource categories are examples of a generic physical architecture. A
generic physical architecture is a description of the partitioned elements of the
physical architecture without any specification of the performance characteristics
of the physical resources that comprise each element (e.g., central processing
unit). An instantiated physical architecture is a generic physical architecture to
which complete definitions of the performance characteristics of the resources
have been added. An instantiated physical architecture for the elevator system
would be specific about the call announcement component (e.g., liquid crystal
lights), destination control (e.g., push buttons), and the like.

One element that is left out of most physical architectures is the set of
procedures that are developed for the users of the system to follow. These
procedures are explicit operating, maintenance, or support instructions pro-
vided in the font of a user’s or operator’s manual. These manuals usually
accompany the system when the system is delivered. These procedures are the
focus of attention during the training that is delivered to the users, maintainers,

TABLE 8.1 WBS Elements and Related Life Cycle Phases

WBS Elements Life Cycle Phase

Air vehicle Operational

Systems engineering/Program management Development

System test and evaluation Development

Training Training

Data Manufacturing and Refinement

Peculiar support equipment Operational

Common support equipment Operational

Operational/site activation Deployment

Industrial facilities Manufacturing

Initial spares and repair parts Operational

TABLE 8.2 Resource Categories for a Generic Air Vehicle

� Airframe

� Propulsion

� Air vehicle application software

� Air vehicle system software

� Communications/Identification

� Navigation/Guidance

� Central computer

� Fire control

� Data display and controls

� Survivability

� Reconnaissance

� Automatic flight control

� Central integrated checkout

� Antisubmarine warfare

� Armament

� Weapons delivery

� Auxiliary equipment
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or supporters of the system. Systems engineers should not forget or ignore this
element of the system’s physical architecture, as was done with the initial air
bag system that was described as a case study in Chapter 6. After the serious,
and often deadly, effects on children and small adults were noticed, a series of
procedures for the placement (or lack thereof) of children and small adults in
the front seat were released. Common practice in the development of a system is
to accommodate problem issues identified during qualification of the system
(see Chapter 10) by amending and expanding the procedures defining how the
system will be used. Procedures such as these represent the way in which the
system’s functionality moves from the system under development to the users.

Elevator Call
Announcement

Component

Destination
Control

Component

Door
Control

Component

Emergency
Component

Phone
Component

Car Control
Component

Passenger
Interface

Component

Cab
Component

Interior Door
Component

Ventilation
& Lighting

Component

Car Component
Shaft Structural

Component

Exit Component
& Controls

Floor Stop
Component

Leveling
Component

Shaft Switch
Component

Normal
Drive/Brake
Component

Emergency
Braking

Component

Drive/Brake
Component

Elevator
Car/Shaft

Component

Hardware
Component

Software
Component

Control
Component

Maintenance
& Self-Test
Component

Elevator System

FIGURE 8.2 Generic physical architecture from the elevator case study.

256 PHYSICAL ARCHITECTURE DEVELOPMENT



8.3 OVERVIEW OF PHYSICAL ARCHITECTURE DEVELOPMENT

The definition of the physical architecture, as described here, is done one level
of the tree at a time. Our approach here is a top-down process. There are many
systems engineers that have successfully used a bottom-up design process for
the physical part of the system (just as we described the bottom-up approach in
the previous chapter for the functional architecture). Experience and creativity
are critical for this part of the engineering process. While experience is a must;
do not underestimate the importance of creativity.

There are many possible decompositions of the process ‘‘Design
System Physical Architecture.’’ The one chosen here (Figure 8.3, taken from
Appendix B) emphasizes the concepts of generic and instantiated physical
architectures. A second justification of this decomposition is the belief that the
allocated architecture development is predicated on having a variety of
interesting physical architectures to match with the functional architecture.
Therefore, the primary product of this function for designing the physical
architecture is a reasonable number of interesting physical architectures that
can be combined with the functional architecture and evaluated to determine
their effectiveness in meeting the objectives established in the requirements.

The structure of the generic physical architecture is first selected while
working in parallel with the development of the functional architecture. As
discussed in Chapter 7 and elaborated on in Chapter 9, there are great
advantages in defining the internal interfaces of the system to have the
functional and physical architectures match; that is, enable a one-to-one and
onto allocation of functions to components. See Figure 8.4 to review the
distinctions between a relation and a function, and the additional restrictions
for a function that is one-to-one and onto. While there are many advantages to
a one-to-one and onto mapping of functions and components, this may not
always be possible and should not be forced.

First, a generic physical architecture must be developed. The generic
physical architecture provides common designators for physical resources in
a hierarchical decomposition that partitions the system into greater and greater
detail. Although this generic physical architecture has no substance in the sense
of specific physical items, this structure is still very important. Some instan-
tiated physical architectures can be eliminated from consideration just on the
basis of the division of the system into components. Therefore serious thought
and creativity should be devoted to this initial task.

The second function in the decomposition addresses the creation of a
morphological box to assist in generating a set of creative instantiated archi-
tectures to analyze during the development of the allocated architecture. A
morphological box is a matrix in which the columns (or rows) represent the
components in the generic physical architecture. The boxes in a given column (or
row) then represent alternate choices for fulfilling that generic component. Each
option should have well-defined performance (and cost) characteristics. Section 1
describes the morphological box in more detail and provides several examples.
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The third function in this decomposition uses the morphological box to aid
in the selection of as many alternate instantiated physical architectures as are
needed to feed the process of selecting an allocated architecture. An alternative
instantiated physical architecture would be the selection of an option from
each of the generic components in the morphological box. Examples of the
morphological box are provided in the following sections.

The functional decomposition shown in Figure 8.3 suggests that the three
functions are performed in a serial fashion, which is true with the following
caveat: The changes to the physical architecture that are sent from the
development of the allocated architecture trigger the repetition of these three
functions. Each repetition could cause changes to the generic physical archi-
tecture, modifications to the morphological box due to the changed generic
architecture or other changes dictated by the allocated architecture, and a
reselection of alternate instantiated physical architectures.

8.4 CREATIVITY TECHNIQUES

Initially creating more choices than are useful to consider in a detailed analysis
process is wise. This generation of excess alternatives means there is a greater
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FIGURE 8.4 Need for a one-to-one and onto functional allocation of functions to
components.
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chance that the best choices are being considered in the final analysis. There are
many possible creativity enhancing techniques that have been used by engineers
to develop new and interesting solutions to old and new problems. This section
begins by focusing on one technique, the morphological box, that has proven
useful a number of times. Then a larger review of techniques is provided.

8.4.1 Morphological Box

Originally proposed by Zwicky [1969] during World War II and then expanded
by Allen [1962], morphological analysis (more commonly known in some
disciplines as morphological box) divides a problem into segments and posits
several solutions for each segment. In the two-dimensional version, a table is
created with columns (or sometimes rows) pertaining to the generic compo-
nents of the physical architecture. Then the elements of each column are filled
with competing specific instantiations of each component. The instantiations in
a given column need not fit together; in fact, each column corresponds to a
section of a cafeteria (e.g., salads, vegetables, meat, deserts). A meal would then
consist of a selection from each section of the cafeteria. A system’s instantiated
physical architecture, analogously, is a selection of one box from each column
(generic component) of the morphological box. As part of the morphological
analysis, each instantiation (one from each column) will be based upon a subset
of the system’s objectives. For example, one subset of objectives might be low
cost; another, high-speed performance; and a third, high usability. Each of
these instantiations is, in fact, a theme for the design of the system.

Table 8.3 presents a morphological box (generic components and choices)
for a hammer. This morphological box contains five generic components of a
hammer: the length of the handle, the material that the handle is made of, the
size and surface of the head of the hammer used for striking, the weight or
density of the hammer head, and the angle associated with the head of the
hammer used for removing nails. Any hammer is one cell from each of the five
columns. For example, one hammer design is obtained by taking the top cell
of each column: 8-inch handle made of Fiberglass with a rubber grip using a
1 inch diameter flat steel head that weighs 12 ounces and has a steel claw that is
nearly perpendicular to the handle. There are 2� 5� 4� 4� 2=320 different
possible hammers defined in this table, assuming none of the combinations are
infeasible. Yet when you go to the hardware store, there may be only a dozen
choices. For real systems there are usually millions of possible combinations.
Yet many design teams only consider one or two in any detail, making it very
likely that they are missing several creative, high-quality designs. The big
advantage of the morphological box is that it forces the design team to
recognize that there are many possible solutions to the design problem. The
conversation about what design alternative best satisfies the requirements
follows naturally.

While the morphological box is a simple concept, there are a number of
subtle issues that need to be addressed. First and obviously, there should be at
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least one column in the morphological box for each generic component in the
physical architecture. There are certainly situations in which one of the generic
components may have two or more columns associated with the generic
component; these would be the decomposed generic components of the higher
level component.

Second, there is no requirement that each generic component have the same
number of options. Clearly, there is value to having at least two choices for any
generic component; otherwise that particular generic component has been
fixed. Using some of the brainstorming or brainwriting techniques to be
discussed in Section 8.4.2 is common to develop additional alternatives (boxes)
for each generic component (column of the morphological box). There is great
advantage to generating a creative set of choices for any generic component,
even if some of the choices are never selected in the final set of alternate
instantiated physical architectures.

In addition, there are situations in which it is wise to permit more than one
choice from a generic component to be selected for a single instantiated
physical architecture. This possibility of selecting several choices in a single
generic component for a single instantiated physical architecture usually does
not make sense for a central component in the architecture. However, there are
often generic components associated with the ‘‘bells and whistles’’ of the
system. An example would be the list of peripherals that can be added to a
computer or an automobile. There is some efficiency to group all of these under
one generic component for the system rather than have a generic component
for each of the possible peripherals.

Figure 8.5 provides another example of a morphological box; this example
describes alternate designs for an automobile navigation support system. A

TABLE 8.3 Morphological Box for a Hammer

Handle
Size

Handle Material Striking
Element

Weight of
Hammer Head

Nail Removal
Element

8 inches Fiberglass with

rubber grip

1 inch diameter

flat steel

12 oz. Steel claw at

nearly a straight

angle

22 inches Graphite with

rubber grip

1 inch diameter

grooved

steel

16 oz. Steel claw at a 60

degree angle

with handle

Steel with rubber

grip

1.25 inch

diameter flat

steel

20 oz.

Steel I-beam

encased in

plastic with

rubber grip

1.25 inch

diameter

grooved

steel

24 oz.

Wood
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number of automakers are providing such navigation support systems as
peripherals (or extras) now. In addition, a number of peripheral companies
are providing such navigation support systems that can be added to any
automobile. In general, these navigation support systems provide the driver
and passengers with information about where they are on the highway and how
to get where they want to go. However, there are extras that can be provided as
shown in the last column, ‘‘Other System Interfaces.’’ These extras include the
ability to have the car doors unlocked when the owner has locked him/herself
out, notify the police or emergency service if the air bag deploys, and activate
the lights and horn externally if the driver has lost the car in a parking lot.
Selecting more than one option in the second to last column is also possible;
this column represents the generic component associated with the user interface
for the navigation support system. The selection of multiple boxes is also
common for user interface generic components.

There is one major caution that must be provided in the development of a
morphological box. The system concept has to be narrowed down to some degree
before it is possible to define a single morphological box. For example, if the
system is a substantial computer system, a morphological box cannot be defined
before an architecture for the computer system has been selected. For example,
suppose the alternate computer system architectures were a client–server, a
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Map &
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None None  Regular
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Routing Algorithm
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Lincoln’s RESCU

RETKI

FIGURE 8.5 Morphological box for automobile navigation support system.
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mainframe, or a distributed processing architecture connected via several local
area networks (LANs). The generic components that are applicable to a client–
server architecture may not be consistent with those generic components for a
mainframe system or a distributed network. Therefore the design process should
narrow the computer system architecture down to a client–server or mainframe
before developing a morphological box.

Once a reasonable number of possible choices for each component of the
physical architecture have been identified, identifying infeasible combinations
may be wise. Friend and Hickling [1987] have defined a graphical representa-
tion to highlight pairwise infeasible choices across two generic components.
Each generic component is shown as a circular node in a graph. The specific
choices for a generic component are shown as pie-shaped wedges in the relevant
generic component’s node. An infeasible combination of choices from two
distinct generic components is shown as a line between those options.

Pairwise examples of infeasible combinations are shown in Figure 8.6 for the
morphological box of the hammer shown in Table 8.3. In this hypothetical
example the line segment from angled nail removal feature to 22-inch handle
denotes an infeasible combination; an angled nail removal claw cannot be
placed on a 22-inch handle because too much stress would be focused at the
intersection of the handle and hammer’s head. The second line segment shown
between the 22-inch handle and a wood handle eliminates the ability of the user

8 inches

22 inches

Angled

Straight

Fiberglass

Steel

Graphite

Steel
I-beam

Wood

1 inch
flat

1 inch
grooved

1.25 inch
grooved

1.25 inch
flat

Handle Material

Handle Length

Nail Removal
Feature

Striking Feature

24 Oz.

12 Oz.

16 Oz.

20 Oz.

Weight of Hammer Head 

FIGURE 8.6 Pairwise infeasible combinations.
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to apply too much force for the wood handle to absorb. These two line
segments reduce the total number of choices from 320 to 224; the 8-inch handle
still retains 160 possible combinations, but the 22-inch handle only has 64
possible combinations—any of the four striking surfaces with any of the four
weights with the one nail removal generic component with four of the five
possible handle material generic components.

8.4.2 Option Creation Techniques

VanGundy [1988] is an excellent source of brainstorming techniques and has
produced a typology of techniques involving brainwriting or brainstorming; see
Table 8.4. Brainstorming is the generation of ideas via verbal interaction.
Brainwriting is a silent, writing process. VanGundy claims:

Brainstorming, for example, is most useful when there is only a small group of

individuals, time is plentiful, status differences among group members are

minimal, and a need exists to verbally discuss ideas with others. Brainwriting,

on the other hand, is most useful for very large groups, when there is little time

available, status differences need to be equalized, and there is no need for verbal

interaction. In addition, brainwriting often will produce more ideas than brain-

storming, although the uniqueness and quality of these ideas might or might not

be superior to those produced by brainstorming. [VanGundy, 1988, p. 75].

A common characteristic, called deferred judgment, of brainstorming and
brainwriting exercises is that the individual or group operates in an evaluation-
free period where criticism and discussion in general is prohibited. The logic for
this freethinking period is that even the most preposterous idea may stimulate
the generation of a really superior idea. A second principle is that the more
ideas generated the better the chance of finding a high-quality solution. Several
techniques discussed below are analogy, people involved, attribute listing,
collective notebook, brainwriting game, and brainwriting pool.

Analogies are often used in systems engineering because building upon our
experiences with previous systems has a great deal of creative power. An
example of an analogy would be to use the 17 elements of the generic aircraft
in Table 8.2 to develop a physical architecture of an automobile, an air traffic
control system, or an elevator system. Using the physical architecture from a
system recently developed as an analogy for a new generation product is
another example of analogic reasoning. The use of analogies for generating
ideas is by far the most common, efficient, and highly recommended;
however, left unchecked analogic reasoning can produce the most disastrous
results.

Examining the system’s physical architecture in light of the stakeholders
(people involved) affected by the use and maintenance of the system can be
useful in defining the physical architecture for the operational phase. Remem-
ber though that the entire life cycle of the system must be addressed, so there
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will be physical architectures for the manufacturing, deployment, and training
phases as well.

Attribute listing dates back to the 1930s and is based on the concept that
physical architectures can all be traced to modifications of previous architec-
tures. Once the requirements and objectives of the system have been developed
and a generic physical architecture has been created, the individual defines a
feasible (or nearly feasible) instantiation of the generic physical architecture.
Then without detailed evaluation, she systematically modifies the character-
istics of the instantiated physical architecture with key objectives of the system
in mind. For example, VanGundy provides the following example for a
hammer:

To develop a better hammer, for example, the following parts could be listed: (1)

straight, wooden, varnished handle; (2) metal head with round striking surface on

one end and a claw on the other; and (3) metal wedge in the top of the handle to

secure the head to the handle. Of these parts, the basic attributes of handle shape/

composition and the metal wedge could be selected for possible modification. The

handle could be constructed of fiberglass, wrapped with a shock-absorbing

TABLE 8.4 VanGundy’s Typology of Brainwriting and Brainstorming

Brainwriting and Brainstorming Categories Examples

Brainwriting I—an individual works alone to create a

list of ideas.

Analogy, Attribute Listing,

People Involved

Brainwriting II—a group of individuals separated

in space generates ideas separately and the ideas

are collected but not shared

Collective Notebook

Brainwriting III—a group of individuals separated

in space generates ideas separately, the ideas are

shared and additional ideas are generated

Delphi Method

Brainwriting IV—a group of individuals working in the

same room generates ideas separately and the ideas

are collected but not shared and no discussion takes

place

Nominal Group Technique

Brainwriting V—a group of individuals working in the

same room generates ideas separately; all of the ideas

are shared but none are discussed; additional ideas are

generated

Brainwriting Pool

Brainstorming I—a group of individuals generates ideas

via verbal discussion, no defined procedure is used

Unstructured Group

Discussion

Brainstorming II—a group of individuals generates

ideas via verbal discussion within the bounds of

pre-defined procedures

Classical Brainstorming

Brainwriting/Brainstorming I—a group of individuals

generates ideas via predefined written and verbal

procedures

Brainwriting Game
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material, and shaped to better fit the human hand; the metal wedge could be

modified by replacing it with a synthetic, pressure-treated bonding. [VanGundy,

1988, p. 88]

Morphological analysis (sometimes called matrix analysis) results in a
morphological box, which is a systematic extension of attribute listing. This
topic was discussed in detail with examples above.

Haefele [1962] of the Proctor and Gamble Company developed the Collec-
tive Notebook. Each participant in this group-oriented technique keeps a
notebook of ideas over a relatively long time period to solve a specified
problem; Haefele suggested one month. Each participant is to add one idea
each day. At the end of idea collection period, each participant reviews her own
ideas and selects the best one; ideas needing more research or other good ideas
that may relate to other problems are annotated. A coordinator, who collects
this summary information and the notebooks, creates a detailed synopsis of the
ideas generated that can then be reviewed by the participants.

The brainwriting game uses competition among the participants to create the
most improbable solution in hopes that this competition will generate the best
solution. First, the design problem is presented to the group. Each participant
buys a specified number of blank, numbered cards. The participant places her
initials on her cards and then writes an idea that she hopes will win the prize for
the most improbable solution. All of the cards are then displayed to the entire
group. Participants then individually write more practical solutions based upon
concepts taken from the cards detailing improbable solutions. After the
practical solutions are collected, the group votes on the winner of the most
improbable solution. Finally, subgroups are formed that then work on similar,
practical solutions. Finally the group selects its best idea(s).

The brainwriting pool involves a group of five to eight people. The group
leader presents the design problem to the group and each individual begins
writing solutions on a piece of paper. As soon as each individual gets four
solutions documented, he places his paper in the middle of the table and selects
a paper from someone else. He then reviews the ideas on that paper and adds
new ideas triggered from reading the list. After placing another few ideas on
that paper, he exchanges it for another paper in the middle of the table. This
continues for 20 to 30minutes. The group then reviews the ideas.

In addition to the techniques summarized by VanGundy [1988], Altshuller
[Arciszewsti, 1985, Terninks et al., 1996] began the development of a theory of
inventive problem solving (TRIZ) for product development in Russia in 1946.
TRIZ is the result of the analysis of approximately 1.5 million patents from
across the world. The problem-solving methods employed in TRIZ include
Altshuller’s inventive principles, table for engineering contradiction elimina-
tion, standard techniques to eliminate conflicts, standard solutions to inventive
problems, and algorithm for inventive problem solving. This material is still
largely proprietary and is marketed by a number of consultants and seminar
leaders.
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An important creativity concept with which to finish draws upon the
notions of value-focused thinking [Keeney, 1992], introduced in Chapter 6.
This approach is similar to the attribute listing method discussed above. The
individual selects one or more important key performance requirements and
defines an instantiated physical architecture or choices within a single generic
component. Then another single performance requirement or set of perfor-
mance requirements is selected and used to generate an instantiated architec-
ture or set of choices for a single generic component. After continuing this
process for a productive period of time, the results are critiqued and adapted to
feasible solutions.

8.5 GRAPHIC REPRESENTATIONS OF THE PHYSICAL ARCHITECTURE

There are many graphical representations of a physical architecture with little
standardization. The most common graphical format is called a block diagram.
Figure 8.7 illustrates a block diagram for the control system of an aircraft. Each
box inside the dotted line defining the control system represents a physical
component of the control system. The lines between the boxes indicate the flow
of electromechanical energy between the boxes. The boxes outside the dotted
line represent other components of the aircraft system. This block diagram
shows a decentralized controller structure in which there is a central controller
and an actuator controller for each device actuator. Note the feedback loops
inside the control component, as well as the feedback loop involving most of
the elements of the control component and the actuator devices that are part of
the aircraft but outside the aircraft control system.

There was no accepted convention for block diagrams prior to SysML,
which was introduced in Chapter 3. SysML contains two types of block
diagrams: block definition diagrams and internal block diagrams. The block
definition diagram (see Figure 3.14) shows the hierarchical decomposition
shown in Figure 8.1. The internal block diagram (see Fig. 3.16) presents the
information shown in the generic block diagram of Figure 8.7.

8.6 ISSUES IN PHYSICAL ARCHITECTURE DEVELOPMENT

The major issues in designing the physical architecture are (1) functional
performance, (2) availability and other ‘‘-ilities’’ as achieved through such
characteristics as fault tolerance, (3) growth potential and adaptability, and
(4) cost. Achieving sufficient functional performance via the development of the
physical architecture has been addressed initially in previous sections of this
chapter and will be finished in the next chapter during the development of the
allocated architecture. Similarly, most of the system-wide (or suitability) factors
described in Chapter 6 are often achieved by additional physical resources and
associated functionality. Ultimately many of these additional capabilities as
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well as cost are issues of trade offs. These trade offs need to be examined during
the evaluation of alternate allocated architectures. Achieving substantial fault
tolerance is nearly always important for a system. Finally, there are several
issues that impact the ability to grow or adapt a system to changes needed by
the stakeholders. The elusive issue of design flexibility is often discussed but
difficult to achieve in general. Flexibility is related to such topics as modularity,
complexity, and loose versus tight coupling.

Section 8.6.1 addresses the architectural concepts of centralization versus
decentralization and distribution of functions and components. Examples from
automated systems are used to illustrate these concepts. Section 8.6.2 discusses
some new ideas for design flexibility. Section 8.6.3 focuses on the design issues
of a physical architecture associated with increasing fault tolerance and
availability through redundancy of physical assets, software assets, informa-
tion, and time.

CASE STUDY: FBI FINGERPRINT IDENTIFICATION SYSTEM

Since the advent of modern information processing technology the
Federal Bureau of Investigation (FBI) has sought ways to improve and
perfect its fingerprint collection, identification, and archival systems. By
1993 the Bureau’s Integrated Automated Fingerprint Identification
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FIGURE 8.7 Block diagram of an aircraft control system.
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System (IAFIS) consisted of three major interactive segments: the
Identification Tasking and Networking (ITN/FBI) segment, the Inter-
state Identification Index (III/FBI) segment, and the Automated Finger-
print Identification System (AFIS/FBI) Segment. In 1993 proposals were
solicited from industry to address the ITN/FBI segment.

Among the many challenges associated with developing a competitive
technical solution was the subset of requirements related to processing
the fingerprint images. Fingerprint images arrive at the FBI through
several means. The most common is the widely recognized set of
impressions made on a paper form known as a ten-print card. Since
the majority of cards comply with a standard set of dimensions, it is a
straightforward matter to determine the expected size of the binary image
file created when the cards are processed by a digital scanner; both the
front and the back sides are scanned.

The following discussion is concerned with the decompression of the
scanned card image, followed by its presentation to an expert fingerprint
analyst for classification and identification. The FBI’s request for
proposal (RFP) included a detailed specification for the segment and
all sub-elements including the ten-print processing subelement (TPS).
According to the RFP the TPS would consist of workstations organized
into workgroups. Each workgroup would thus be analogous to one of
the many FBI teams engaged in fingerprint analysis. Typically a team
consists of a supervisor and perhaps a dozen expert fingerprint analysts.
The supervisor’s role is to manage the classification and identification of
the numerous fingerprint card submissions that the FBI handles on a
daily basis. The specification also quantified specific processing require-
ments for the daily influx of ten-print cards, which at the time of the
RFP were given to be an average of 30,000 per day. For example, all
incoming cards were required to be scanned and converted to binary
data so that they could be distributed electronically to the finger print
analysts for subsequent processing. To minimize any impact to the
communications infrastructure, the specification required that the
images be compressed at a ratio of 10 to 1 prior to transmission over
the local area network.

Data concerning the processing response time demands on the
fingerprint analysts were also included within the RFP. Chief among
the critical task processing times are (1) the average time for the analyst to
perform a fingerprint image comparison (FIC), given as 60 seconds, and
(2) the time allowed for the display of the human-machine interface
screen, including fingerprint images, given as 1 second from the time of
the request. Thus the average processing time that a fingerprint analyst
requires to complete the task associated with an individual ten-print card
was taken to be 60 seconds. This meant that the component performing
the decompression function needed to be fast enough to sustain an input
queue of ready and available images for each fingerprint analyst.
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A second complicating fact was the decompression algorithm. At
the time the RFP was released, the most popular algorithm available
was based upon a high-quality wavelet scalar quantization (WSQ)
approach. The popularity was based on common knowledge among
the bidders that the National Institute of Science and Technology
(NIST) was about to revise the algorithm specification in preparation
for a formal certification. Public access to the algorithm specification
enabled the competing design teams of the ITN/FBI segment to bench-
mark an implementation of the WSQ algorithm in order to quantify
its processing requirements. In general the implementations were found
to be floating-point arithmetic intensive. As a result it was recognized
that such execution behavior is well suited to the latest family of
high-performance machines known as reduced instruction set compu-
ters (RISC). The specific implementation could be either a software
routine or a custom-fabricated large-scale integration (LSI) chip im-
peded into a math coprocessor card. See Figure 8.8 for a flowchart
illustrating the six decision options with an associated block diagram for
each option.

Based upon the data provided in the RFP, performance data collected
from benchmarks of competing decompression algorithms, and perfor-
mance data collected from the manufacturers of the computer hardware
proposed to host the algorithms, a trade study was conducted to
determine how to best implement the function. The particular study
described here analyzed six alternate allocations for decompressing the
fingerprint images:

a. Implement in software on the workstation within each work group
by increasing the TPS workstation processing capacity to enable all
decompressions to be performed locally on the individual analysts’
workstation.

b. Implement in software on the work group’s server by increasing the
TPS servers processing capacity to enable all or some decompres-
sion to be performed locally on the TPS server for a given work
group.

c. Implement in software by distributing the decompression among
under-utilized workstations and server processors enterprise-wide,
without having to increase the total number of processors or their
inherent processing capacity.

d. Implement in software by distributing the decompression among
under-utilized workstations and server processors on each local
network, without having to increase the total number of processors
or their inherent processing capacity.

e. Implement in hardware on the workstation by adding a WSQ co-
processor card in all TPS workstations to perform the decompres-
sions locally.
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f. Implement in hardware on the server by adding a WSQ coprocessor
hardware card in all TPS servers to perform all or some of the
decompressions.

The bidder on the basis of a thoughtful process developed the set of six
alternatives in Figure 8.8.

Table 8.5 shows a morphological box that contains these six options,
as well as many other possibilities.

The first row shows the generic components that were part of this
segment, as shown in Figure 8.8. The second through fourth rows show
possible instantiations of the generic components. The six alternatives
defined for the trade study shown on the previous page are designated
with the letters a, b, c, d, e, and f at the bottom of each box in the matrix.

The result of producing this morphological box suggested some new
alternatives that would have been competitive with the six analyzed in the
trade study; these are shown as g and h in Table 8.5.

Provided by Tim Parker

8.6.1 Major Concepts for Physical Architectures

Nearly every physical architecture is either centralized or decentralized. A
centralized architecture uses a central location for the execution of the
transformation and control functions of the system. A decentralized architec-
ture has multiple, specific locations at which the same or similar transforma-
tional or control functions are performed. The block diagram for an aircraft
control system in Figure 8.7 shows a decentralized architecture; note that there
is a central controller, but the controllers for each of the aircraft’s actuated
devices have been decentralized. In the decentralized architecture shown in
Figure 8.7, the central controller manages the decentralized device controllers.
A centralized architecture would not have the individual device controllers;
rather, the centralized controller would perform all of the functions.

A distributed architecture is one in which there are two or more autonomous
processors connected by a communications interface and running a distributed
operating system [Coulouris et al., 1994; Shuey et al., 1997]. The distributed
operating system enables the processors to coordinate their actions and share
the system’s resources. The processors can perform the same functions,
depending upon the needs of the system. Processing control issues for a
distributed system are handling the redistribution of processing functions after
partial failures; managing moves, changes, and additions to the processing
activities; and synchronizing processing activities to meet performance and
efficiency objectives. An important distinguishing feature of a distributed
system architecture is that the users are unaware of the distribution of
processing.
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A distributed system can be either homogeneous or heterogeneous. The
earliest distributed systems were homogeneous, that is, comprised of identical
processors, running identical operating system and application software, and
connected via a single communications network. Users on a homogeneous
distributed system view the system as their processor but obtain the benefits of
being able to share data with each other over wide geographic regions.
Eventually some processors become much busier than others and the issue of
load sharing arises; load sharing distributes computational tasks from one
processor to another. Note load sharing is the reallocation of functions to
different resources in the physical architecture and is therefore an issue in the
allocated architecture. Load sharing causes users to access and share multiple
processors and provides increased response times in many cases. Finding the
best approach to load sharing is quite complex.

Heterogeneous distributed systems have two or more types of processors
comprising the processor network, plus operating and application software and
one or more communications networks connecting the processors. The Internet
is the most common example of a heterogeneous distributed system. Specially
designed, heterogeneous distributed systems are, or will, enable medical
support in hospitals by both specialists and generalists, financial transactions,
fingerprint analysis by both experts and automated assistants, review of tax
records by both experts and automated assistants, and analysis of data
collected by satellites by a wide variety of researchers. Each architecture shown
in Figure 8.8 for the FBI fingerprint identification system case study is a
heterogeneous network involving two types of processors, clients and servers.

The major reasons that a distributed processing architecture is attractive in
designing systems are transparency, openness, scalability, resource allocation,
concurrency, and fault tolerance. Transparency means that the users view the
distributed system as a complete system, without any knowledge of how the
hardware and software components are performing. An open architecture is one
for which the hardware and software interfaces are sufficiently well defined so
that additional resources can be added to the system with little or no
adjustment. Sealability means that multiple-sized versions of the system are
available. Resource sharing exists when more than one hardware and software
module can be used to execute the same task with no human intervention. A
concurrent architecture is one in which multiple tasks are being executed
simultaneously. A single processor can perform concurrent operations by
interleaving the operations of multiple tasks; however, multiple, distributed
processors can clearly perform concurrent operations without any direct
knowledge of what the other processors are doing. Finally, fault tolerance is
achieved if the distributed system can adjust its operations when one of the
hardware or software elements fails. Details for achieving fault tolerance are
discussed in Section 8.6.2.

A client–server architecture is a software architecture that is super-
imposed on a distributed system to facilitate processing and management of
the system. The client–server architecture distinguishes between client processes
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(requestors) and server processes (task completors). Each distributed processor
is performing its assigned task; when one processor needs support from another
processor, the processor needing support becomes a client and issues a request
across the network. The processor that accepts the request becomes the server,
responds that it will complete the request, and uses both hardware and software
resources to complete the task and send the result to the client. Note this server
may have just issued a client request of its own and may be waiting for a
response from some other processor. Servers may be set up for database, file,
print, fax, mail, communication, and imaging operations. This client–server
architecture will be discussed in more detail in Chapter 10.

8.6.2 Design Flexibility

Many engineers talk and write about design flexibility, modularity, loose
coupling, complexity and other such topics, but it is usually quite difficult to
find nuggets that prove useful in the real world. This section will explore some
of these ideas.

In Chapter 6 we talked about how much change occurs during the design
process and how this change makes success elusive. In addition, most systems
are designed to last many years or even decades. The mark of a long-lived
system is one that has been upgraded successfully many times. These many
upgrades are only possible if the system’s architecture has provided an
adaptable platform for such upgrades. The Sidewinder missile of the U.S.
Navy and Microsoft’s Windows NT operating system are two examples of
architectures have supported dramatic changes over many upgrades, such that
the original design is no longer present but the ‘‘architecture’’ remains. So in
addition to working hard to keep track of the changes that are occurring in the
requirements, we can also design our systems to be more ‘‘changeable’’ in the
future.

Fricke and Schulz [2005] address this problem by defining four aspects of
changeability: flexibility, agility, robustness, and adaptability.

� ‘‘Robustness characterizes a systems ability to be insensitive towards
changing environments. Robust systems deliver their intended function-
ality under varying operating conditions without being changed (see
Taguchi [1993] and Clausing [1994]). That is, no changes from external to
be implemented into such systems to cope with changing environments.

� Flexibility represents the property of a system to be changed easily.
Changes from external have to be implemented to cope with changing
environments.

� Agility characterizes a system’s ability to be changed rapidly. Changes from
external have to be implemented to cope with changing environments.

� Adaptability characterizes a system’s ability to adapt itself towards chan-
ging environments. Adaptable systems deliver their intended functionality
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under varying operating conditions through changing themselves. That is
no changes from external have to be implemented into such systems to
cope with changing environments.’’

Some examples of each of these should help make the points emphasized by
Fricke and Schulz. An all-terrain automobile such as a jeep might be an
example of a robust vehicle; it can travel reasonably well on many different
surfaces. If this all-terrain vehicle can also have a cloth top that can removed
and stored, this adds to its robustness. A flexible system is one that can
interface easily with many other types of systems, each of which might be
changing. For example, laptop computers with many USB ports in the 2007
time frame can interact with nearly all printers, projectors, and control devices.
The peripherals or other systems that can plug into the USB ports still have to
be changed as the environment changes, but the core computer does not need to
change for these reasons. Flexibility is important for future upgrades. An agile
system is designed to be changed rapidly. Here a race car comes to mind. Race
cars have to be modified dramatically to run well on different race tracks from
one week to the next. A great deal of money is spent on the design to facilitate
these rapid changes. Adaptable man-made systems are being designed but with
some limitations. Microsoft has designed its operating and office products to
learn and adapt to different users so as to facilitate the performance of these
different users. While this has been the goal at Microsoft, many feel (including
this author) that their efforts are far from successful.

Fricke and Schulz [2005] describe three basic design principles that support
all four types of design for changeability and six extending design principles,
each of which supports a subset of the types of design for changeability. The
three basic principles are ideality/simplicity, independence, and modularity/
encapsulation. The six extending principles are integrability, autonomy, scal-
ability, non-hierarchical integration, decentralization, and redundancy. Aspects
of decentralization were discussed above. This next section addresses redun-
dancy for fault tolerance, a form of adaptability.

8.6.3 Use of Redundancy to Achieve Fault Tolerance

Fault tolerance was discussed in Chapter 7 from the perspective of functions
that need to be performed to detect errors, confine the damage, recover from
the damage, isolate the damage, and report the problem. Design issues
associated with the physical architecture are just as important in achieving
fault tolerance. A primary source of high availability and fault tolerance is
redundancy. Often hardware redundancy receives most of the attention.
However, Johnson [1989] identified four elements of redundancy: hardware,
software, information, and time. Hardware redundancy uses extra hardware to
enable the detection of errors as well as to provide additional operational
hardware components after errors have occurred. This hardware redundancy
can be implemented in passive, active, and hybrid forms.
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Passive hardware redundancy masks or hides the occurrence of errors rather
than detecting them; recovery is achieved by having extra hardware available
when needed. The rest of the system and its operators are commonly not even
aware that an error has occurred. This approach only works as long as there are
sufficient hardware replicas to continue to mask errors. The most common
passive implementation is called triple modular redundancy (TMR) and relies on
a majority voting scheme to mask an error in one of the three hardware units.
Figure 8.9 (top left) shows TMR; unfortunately the single ‘‘voter’’ element is a
single point of failure in this system. Therefore TMR is often implemented as
triplicated TMR (Fig. 8.9 bottom right). Triplicated TMR implements three
voters and produces three versions of the output, which are usually sent to
another module that has been implemented as triplicated TMR. Naturally, there
is nothing magical about three; N-modular redundancy (NMR) is the general-
ization of TMR. TMR can mask a single error; 5-MR can mask two errors, etc.

Voting is a common conflict resolution technique used inside a computer, as
well as with groups of people. However, implementing voting inside a system
has some unexpected difficulties. Issues in voting implementation are establish-
ing the time at which the computation was done, the precision of numbers
achievable in a digital computer, and the need to produce a single answer
eventually. Timing of the computations is critical because the hardware and
software components producing inputs to the voter may be performing
repetitive computations on a data stream and be out of synchronization. For
repetitive operations there must be some synchronization mechanism involved
to ensure that the vote is being taken on computations from the same samples
of data stream of inputs.

The precision issue addresses the concern that there is some imprecision in
numerical operations involving digital equipment. Quantization of a number

Component 1

Component 2

Component 3

Voter

Input 1

Input 2

Input 3

Output

Component 1

Component 2

Component 3

Voter

Input 1

Input 2

Input 3

Output 2

Triple Modular Redundancy (TMR)

Triplicated TMR

Voter Output 3

Voter Output 1

FIGURE 8.9 TMR and triplicated TMR (after Johnson [1989]).
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on a digital computer can produce several different valid results. As a result
the voter may see three different outputs from the three components, but the
outputs are the result of normal processing operations. In many cases the
majority voting scheme is replaced with either a selection of the median value or
truncation of the numerical values to some predefined level of significant digits.

The last issue, the production of a single answer, requires that a single point
of failure be introduced. When the final result (e.g., bank account balance or
control signal to the rudder) has to be delivered by the system in question, this
final answer is determined on a single processor.

Finally, voting for passive redundancy can be achieved via hardware or
software. A hardware implementation is faster but usually requires more cost,
space, power, and weight. A software implementation (see Figure 8.10)
provides greater flexibility for change but can also require additional cost,
space, power, and weight in the form of processors if voting is a major part of
the system’s redundancy, which is often the case.

Active hardware redundancy attempts to detect errors, confine damage,
recover from the errors, and isolate and report the fault, as described in
Chapter 7. The basic building block for active hardware redundancy is called
duplication with comparison; see Figure 8.11 for a hardware implementation.
Two identical units are used to compute the same output for the same set of
inputs; these outputs are compared in a ‘‘comparator.’’ If the outputs disagree
by a predefined amount, an error is declared. (Note the issues of synchroniza-
tion and precision also apply here.) Once an error is declared, functionality to
confine the damage, recover from the errors, and isolate the reports is activated.

Hot and cold standby sparing are different than duplication with comparison
and are the most common approaches to active redundancy; see Figure 8.12. In
hot standby sparing multiple replicas of a component are performing identical
functions; only one of them is providing outputs, but all are ready to take over
with no delay. Error detection in standby sparing is not done by comparing
outputs from redundant components, but by examining the output for known
errors or monitoring the component for inactivity. A watchdog timer is an

Two-port
Memory

Two-port
Memory

Two-port
Memory

Two-port
Memory

Two-port
Memory

Two-port
Memory

Input 1

Input 2

Input 3

Sampler

Sampler

Sampler

Processor

Processor

Processor

FIGURE 8.10 Software implementation of voting for triplicated TMR (after Johnson
[1989]).
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example of this latter approach; a watchdog timer declares a fault if it is not
continuously reset by the component with which it is associated.

Cold standby sparing maintains the component replicas in a nonoperational
mode until needed. This is useful for applications where short disruptions are
acceptable or long life is key, for example, spacecraft operations. For real-time
applications, hot standby sparing is critical to success but increases power
consumption and decreases the life of the system. Standby sparing is most
commonly used by providing multiple, excess processors, any of which can be
used to perform necessary system functions. When one processor fails, a
controller no longer assigns tasks to that processor, with the slack being
absorbed by the remaining processors.

The final example of active hardware redundancy, pair-and-a-spare,
combines the features of duplication with comparison and standby sparing.
Figure 8.13 shows a comparison (far right) of the outputs of two active, identical
components to detect an error. If the comparison yields a disagreement, the
‘‘N to 2’’ switch is directed to select alternate components for conducting the
comparison. Note the error detection logic from standby sparing; is also present.

Component 1

Comparator

Component 2

Input 

Output

Agree/
Disagree

FIGURE 8.11 Hardware duplication with comparison (after Johnson [1989]).

Component 1

Component 2

Input Output

Component N

Error
Detection

Error
Detection

Error
Detection

~

~

. .
 .

. .
 .

N to 1
Switch

FIGURE 8.12 Standby sparing with N-1 replicas (after Johnson [1989]).
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Examples of hybrid hardware redundancy are the combination of N-modular
redundancy with spares, and the triple-duplex architecture, which combines
TMR with duplication with comparison. Critical computation systems usually
use passive or hybrid redundancy. Systems that have requirements for long life
and high availability without critical computations employ active redundancy.
Active redundancy is usually less costly; hybrid redundancy is the most costly.

Software redundancy is a second means for detecting and recovering from
errors. N-version software redundancy is a seldom-used approach to provide
multiple operational software components in the event of a software failure.
Each version is programmed by separate groups of programmers, assuming
that while each group may make mistakes, no two will make the same mistake.
More common forms of software redundancy are consistency and capability
checks; both can be used for error detection in standby sparing. Consistency
checks compare the output of a component with known characteristics of that
output, for example, minimum and maximum values. Capability checks are
software designed to run periodic hardware tasks with known answers.

Information redundancy is achieved by adding extra bits of information to
enable error detections using special codes [Johnson, 1989]. Information
redundancy is useful to catch system-induced errors rather than component
faults; however, system-induced errors can be indicative of component faults if
the errors occur with sufficient frequency. Information redundancy is a very
rich area, having many alternate approaches. Information redundancy is one
form of error detection that can be used for standby sparing; see Figure 8.12.

Time redundancy can be used to replace hardware and software in non-real-
time systems to achieve error detection. When extra processing time is
available, computations can be performedmultiple times with a single hardware
and software combination and compared. If discrepancies exist, an error has
been detected. This approach is also used for error detection in standby systems

Component 1

Component 2

Input 

Output

Error
Detection

Error
Detection

Error
Detection

Component N

~
~

. .
 .

. .
 . 

N to 2
Switch 

Compare

Agree/
Disagree

FIGURE 8.13 Pair-and-a-spare active hardware redundancy (after Johnson [1989]).
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and is quite useful in distinguishing between transient and permanent errors.
Time redundancy assumes that additional time exists for functional perfor-
mance to enable the needed error detection and recovery. On the plus side, time
redundancy can save significantly on hardware and software, reducing cost,
weight, power, and other key suitability issues.

8.7 SUMMARY

The focus of this chapter has been the resources that comprise the system, called
the physical architecture. The system is first segmented into its top-level compo-
nents; the segmentation progresses down to the configuration items (CIs), or hard-
ware and software elements, facilities, people, procedures, and user’s manuals.

The physical architecture can be either generic or instantiated; the generic
physical architecture is an abstract separation of the system’s resources into
components before any key performance decisions are made. The instantiated
physical architecture specifies the performance characteristics of each element
of the generic physical architecture to the degree needed for performance
modeling of the system.

Creativity techniques are important to aid the generation of alternate,
instantiated physical architectures. The morphological box was described in
detail and illustrated as an effective technique for gathering creative ideas and
increasing the chances of combining these creative ideas into a sound,
instantiated physical architecture. The morphological box is defined by the
generic physical architecture and then provides slots for alternate ideas for
instantiated physical components of each segment.

Representing the physical architecture using a block diagram was presented
in this chapter. Block diagrams are completely non-standardized representa-
tions of the system’s components, showing the major flows of electromecha-
nical energy between the components.

Finally, key concepts, such as centralized and decentralized and distributed
and client–server architectures were presented. The decentralization of trans-
formation and control functions and the distribution of functional and physical
elements of the architecture have become the norm in most system’s architec-
tures. These concepts were defined and illustrated.

Redundancy in hardware, software, information, and time was presented
since achieving fault tolerance is often a critical design issue that the engineer of
the system must address. Hardware redundancy is the most commonly
discussed and implemented approach to achieving fault tolerance with the
physical architecture. Software redundancy is almost always too expensive to
develop. Information redundancy, adding extra bits to data elements for the
purpose of checking the meaningfulness of data elements later, is used
extensively on communications interfaces that become part of the physical
architecture. Utilizing unused data processing time to repeat computations,
time redundancy, is not a common approach.
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CASE STUDY: COMMERCIAL AIRCRAFT CRASH AT SIOUX CITY,
IOWA

On July 19, 1989, United 232 (a DC-10 aircraft) crashed into a corn field
next to the Sioux City airport in Iowa while trying to make an emergency
landing after losing one of three engines. In all, 110 passengers and one
flight attendant were killed during this emergency landing; 185 people
survived the accident, some without a scratch.

Engine failure is the most commonly trained maneuver in simulators.
The DC-10 has three engines; one on each wing and one on top of the
fuselage in the vertical tail (or horizontal stabilizer). United 232 lost the
engine on top of the fuselage due to the loss of a fan disk; the fan disk
separated from the engine and crashed through the tail. Pilots fought
through the engine loss by porpoising (rotating the thrust levels) the two
remaining engines to land in Sioux City. However, the descent rate of the
landing was too great; the aircraft caught fire upon landing, tumbled, and
broke apart in corn and soybean fields.

The fan disk, about 300 pounds of titanium, on the number two engine
was missing; it had shattered into pieces and crashed through a chamber
designed to contain such a break-up. There are three independent
hydraulic systems on the DC-10 aircraft; a unique engine powers each
hydraulic system. The hydraulic system on an aircraft provides the
forcing function for the aircraft’s stabilization systems: the ailerons on
the wings that permit the aircraft to bank right and left, the rudder that
allows the aircraft to turn right and left, the elevators on the tail that
cause the aircraft’s nose to rotate up or down, and the flaps and slots on
the wings that permit the aircraft to change the amount of lift generated
by the wings. Losing engine number two should have only caused the loss
of one of the three hydraulic systems. However, the three independent
hydraulic systems converge in the tail at the exactly the location that the
fan disk ripped out, the single point of failure for all three hydraulic
systems.

Experts believe there was a preexisting fracture on the fan disk.
Ultrasonic sensors are used to detect fractures during production.
However, these sensors do not provide good results when the fracture
is near the surface. The National Transportation Safety Board (NTSB)
investigators concluded that the fracture had been there since the fan disk
was built. The fracture would have grown with use; the maintenance crew
was blamed for not finding the fracture during routine maintenance
activities. Nonetheless, this does not dismiss the design flaw of a single
point of failure for what were considered to be three redundant hydraulic
systems [Magnuson, 1989; Birnbaum, 1989].

282 PHYSICAL ARCHITECTURE DEVELOPMENT



PROBLEMS

8.1 Create a generic physical architecture for the ATM problem in Chapters
6 and 7. Create a morphological box for your generic physical archi-
tecture of the ATM. Identify three instantiated physical architectures
based upon the morphological box.

8.2 Create a generic physical architecture for the OnStar system in Chapters
6 and 7. Create a morphological box for your generic physical archi-
tecture of OnStar. Identify three instantiated physical architectures
based upon the morphological box.

8.3 Create a generic physical architecture for a personal computer. Create a
morphological box for your generic physical architecture of a personal
computer. Identify three instantiated physical architectures based upon
the morphological box.

8.4 Create a generic physical architecture for a stereo system. Create a
morphological box for your generic physical architecture of a stereo
system. Identify three instantiated physical architectures based upon the
morphological box.

8.5 Create a generic physical architecture for the development system of an
air bag system. Create a morphological box for your generic physical
architecture of the development system. Identify three instantiated
physical architectures based upon the morphological box.

8.6 Create a generic physical architecture for the manufacturing system of
an air bag system. Create a morphological box for your generic physical
architecture of the manufacturing system. Identify three instantiated
physical architectures based upon the morphological box.

8.7 Using the information in Figure 8.7 create a block definition diagram
and an internal block diagram for the ‘‘Aircraft Control Component,’’
which is inside the dotted lines of the figure. Be sure to use the semantics
and syntax of SysML. Note: You will have to ignore any arcs coming
from or going to components outside the dotted line.

8.8 You are on the elevator design team and have just convinced the team
that the block decomposition at the subsystem level (Figure 3.14) is
incorrect. You have convinced the team to add a communications bus
so that the communications between the subsystems can be more
efficiently routed through the communication bus. Modify the block
definition diagram and internal block diagrams shown in Figures 3.14
and 3.16, respectively, for the elevator subsystems to show this design
change. Consider the communications bus to be a new component or
subsystem.
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Chapter 9

Allocated Architecture
Development

9.1 INTRODUCTION

The development process for the allocated architecture is the activity during
which the entire design comes together. The allocated architecture integrates
the requirements decomposition with the functional and physical architectures.
The process of developing the allocated architecture provides the raw materials
for the definition of the system’s external and internal interfaces and is the only
activity in the design process that contains the material needed to model the
system’s performance and enable trade-off decisions. The reader should not
infer from this discussion that the requirements development is started and
finished, followed by the functional architecture, followed by the physical
architecture, followed by the allocated architecture. Rather, the design process
is like peeling an onion; each of these activities in the design process should be
completed at a high level of abstraction (low level of detail), culminating in an
allocated architecture at this high level of abstraction for a set of subsystems
that comprise the system. Then the entire process is repeated at a lower level of
abstraction (greater detail) for the next tier of components (peel of the onion),
consistent with the Vee model discussed in Chapter 1. This repetition at lower
and lower levels of abstraction (greater and greater detail) is continued as long
as useful to the design process. As details determine problems with the design,
decisions are reviewed and changes are implemented at the higher levels of
abstraction as needed.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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This chapter describes the activities involved in developing an allocated
architecture in detail: allocate functions to subsystems; trace non-input/output
requirements and derive requirements; define and analyze functional activation
and control structure; conduct performance and risk analysis; document
architectures and obtain approval; and document subsystem specifications.

The methods introduced in this chapter match the functions that comprise the
development of the allocated architecture. Various methods are discussed for
allocating functions of the system in question to subsystems and components of
the system. The derivation of input/output, system-wide and techno-
logy, trade-off, and qualification requirements is discussed as a key method
for providing the material to complete the component specification. Three
methods for flowing down system-wide and technology requirements that have
been traced to the system are described. Models for defining and analyzing
functional activation and control structures are discussed in Chapter 12 and are
therefore not presented in this chapter. However, critical system-wide issues
associated with functional activation and control are discussed here. A norma-
tive model for conducting trade studies and risk analyses is presented in Chapter
13. Examples of common trade studies and risk analyses are discussed and
illustrated in this chapter. No new models are introduced in this chapter.

The exit criterion for finishing the allocated architecture is the acceptance of
the design by the stakeholders. The acceptance of the design by the stake-
holders should involve a detailed understanding that the requirements devel-
opment process has met the major characteristics of the requirements, as
defined in Chapter 6: thorough understanding of how the allocated architec-
tures of the systems in each life-cycle phase will meet the requirements as
defined, belief that the design trades have accurately reflected the trade-off
requirements, and agreement that the test or qualification systems in each phase
of the life cycle are adequate for qualification requirements as defined.

9.2 OVERVIEW

The allocated architecture provides a complete description of the system design,
including the functional architecture allocated to the physical architecture,
derived input/output, technology and system-wide, trade off, and qualification
requirements for each component, an interface architecture that has been
integrated as one of the components, and complete documentation of the
design and major design decisions.

There are five major activities associated with the development of the
allocated architecture:

. Allocate functions and system-wide requirements to physical subsystems

. Allocate functions to components

. Trace system-wide requirements to system and derive component-wide
requirements
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. Define and analyze functional activation and control structure

. Conduct performance and risk analysis

. Document architectures and obtain approval

. Document subsystem specifications

Figure 9.1 shows these five functions in an IDEF0 (Integrated Definition for
Function Modeling) diagram for developing the allocated architecture; see
Appendix B for the full model. Note that Sections 9.3 and 9.4 address the two
subfunctions under the first function (these were combined to make the
diagram easier to read). As can be seen by the flow of information among
these activities, substantial interaction and feedback is required among the first
four to make sure the design works; this feedback and control was discussed in
Chapter 7. However, viewing the development of the allocated architecture in
isolation would be inappropriate. The developments of the three architectures
(functional, physical, and allocated), which we have been discussing, all have to
proceed in parallel because insight or changes in one have repercussions in the
others. Figure 9.2 puts the allocated architecture development in context with
the other architectures and requirements development.

As discussed in the introduction, the design process proceeds through the
steps shown in Figure 9.2 several times, at decreasing levels of abstraction. The
more complex the system’s functionality and tightly coupled the system’s
components are, the more important is the repetition of the design process at
decreasing levels of abstraction (increasing detail). Initially, the design process
establishes functional and physical decompositions, which are united to form
the allocated architecture. The allocated architecture divides the design
problem into chunks, primarily along the lines of the physical architecture,
namely the system’s components. Naturally, these design decisions should not
be made prematurely; there should be adequate confidence that little or no
modifications will be needed. Yet, as the design process evolves through
additional repetitions of the activities shown in Figure 9.2, the more detailed
simulation models and trade studies may provide justification for modifying
earlier design decisions.

The primary benefit of making major design decisions early using models
and trade studies built at a high level of abstraction is that these initial decisions
are aimed at dividing the design problem into manageable chunks that can
proceed concurrently with a reasonable chance of success. Dividing the
system’s design problem into completely independent chunks is not possible.
To accommodate this interaction there must be design interfaces just as there
are system interfaces. These design interfaces are part of the development
system that is being completed concurrently with the design of the operational
system. It is critical that the development system provide the time to review and
adjust the design chunks; this time can only be provided if the design process
begins at a high level of abstraction. Some engineers argue that this initial peel
of the onion should be completed within weeks (6–12) after having written a
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proposal and been awarded a contract. If the design segmentation is not
finalized until each component has been decomposed into several levels of
detail, there will be no time to adjust this design decision if the division of the
system into components is found to be flawed. There is even less chance that the
flaws will be found if too many details are analyzed too quickly.

Distinguishing between good decisions and good outcomes is important. If
we were in complete control of our environment, then decisions and the
outcomes associated with the decisions could be equated. However, as
discussed in detail in Chapter 13, decisions must be made in the face of
uncertainty with incomplete information and inadequate control of the out-
comes. Therefore, saying that a decision was good or bad because the outcomes
associated with that decision were good or bad, respectively, is illogical. A
decision can be considered good if the people with the best knowledge and
largest stake in the decision were involved in the decision, and these people did
discuss the relevant alternatives, values, and facts with clarity.

As an example, Ford Motor Company designed and introduced the Edsel in
1957. The Edsel had a large, elongated ‘‘0’’ built into the middle of the grill at
the front of the car that caused many people to react negatively on an artistic
basis. The Edsel was a complete failure at least partially because the automobile
industry was in a recession in 1957 and 1958. Were the design decisions
associated with the Edsel bad? It is not possible to tell without knowing more
about what design decisions were made and how the design process was carried
out. Seven years after the Edsel’s introduction, Ford Motor Company
introduced the Mustang, which has been a fantastically successful car and
has achieved classic status. Were the design decisions associated with the
Mustang good? Again, it is not possible to tell without knowing more about
them. With time it is much easier to tell whether the outcomes associated with a
decision are good or bad, but it becomes more and more difficult to tell whether
the decisions that were made were good or bad, especially if those decisions are
not documented.

9.3 ALLOCATE FUNCTIONS TO COMPONENTS

After the definition of the functional and physical architectures, the systems
engineering team must assign functions from the functional hierarchy to the
subsystems and components in the physical architecture. When this is done, the
first step in defining the allocated architecture is completed. This allocation of
functions to components is often the most crucial design decision made by the
engineers of the system. Engineers prefer to allocate processing tasks to
software if there will be a future need to update the processing algorithms.
However, if speed of processing is critical, hardware can perform the computa-
tions much faster. Computer manufacturers experiment with moving some
processing tasks from hardware to software, but often find that the speed of
processing suffers too much and revert to designing hardware for the
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processing tasks. Similar issues arise when considering the decision of allocat-
ing a function to people within the system or a combination of hardware and
software. This allocation decision is discussed in more detail later.

Figure 9.3 expands upon Figure 9.4 for the allocation of the system’s
functions to subsystems and components. Clearly allowing the allocation
decision to be represented as a mathematical relation, and not a function, as
shown in the top left of Figure 9.3 is inadequate; there will be some functions
that are not allocated to any component and some functions that are being
processed by two or more components. Forcing the allocation of functions to
components to be represented as a mathematical function, as shown in the top
right of Figure 9.3, solves these problems. However, there may be some
components with no functions to perform; these components should either be
dropped from the system or the engineers should revisit their functional
architecture to ensure that the functional architecture is complete. There is
also the possibility that some functions will be performed by the same
component; there is nothing wrong with this because the functions can be
aggregated into a single function. If as expected all of the components are

Functions Components

Function for the allocation 
of functions to components

Functions

f2

f3
f4

f1

f5

f2
f3 f4

f1

f1
f2

f3
f4

f5

f6f7
f8

f5

Components

c2

c3

c4

c1

c5

c2

c3
c4

c1

c5

c4

c3

c1 f1
f2

f3
f4

f5

c1
c1

c1
c1

c1

c2

c5

One-to-one and onto 
function for the allocation 

of functions to components

Functions Components

Onto, but not one-to-one 
function for the allocation 

of functions to components

Functions Components

Relation for the allocation 
of functions to components

FIGURE 9.3 Mathematical relations and functions for the allocation of engineering
functions to components.
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needed, the allocation of functions to components will be onto, as shown in the
bottom left of Figure 9.3. An onto functional allocation is one-to-one when the
number of functions and components is the same, as shown in the bottom right
of Figure 9.3.

Note that the mapping of functions to components was picked consciously,
rather than the mapping of components to functions. Allowing two compo-
nents to be mapped to the same function is consistent with the definition of a
mathematical function but should be avoided by the engineers of a system.
When two components are performing the same function, it will not be possible
to segment the responsibilities of the components until the functional and
physical architectures are examined in greater detail; this defeats the purpose of
iterating through the engineering process as suggested by the Vee model and
most engineers of systems.

9.3.1 Define the Allocation Problem

For any single physical architecture and the associated functional architecture,
there are many possible allocated architectures that could be defined. The basis
on which this allocation is done could be formulated as a multi-objective
optimization problem:

1. Maximize the fundamental objective (must be based upon analysis using
the fundamental objectives hierarchy). Note that besides common opera-
tional performance parameters there are often other elements of the
fundamental objectives concerning performance in other phases of the life
cycle (for example, maintenance, deployment, and refinement) about
which to be concerned.

2. Minimize the number and complexity of interfaces. This is often called
modularization, which is nearly synonymous with maximizing the ability
to encapsulate the functions inside the physical entities of the system. By
encapsulation we mean the ability to hide the implementation details of

Task 1

Task 2

Task 1

Task 2

Timing on 
Key Tasks

Error Rates 
on Key Tasks

MTBF

MTTR

Suitability 
Issues

Manufacturing

Operational

Costs

Objectives for 
Functional Allocation

FIGURE 9.4 Sample objectives hierarchy for functional allocation.
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performing the entity’s functions from the remaining parts of the system.
Essentially, the remainder of the system should only need to know the
outputs of each entity, not how those outputs are produced. Software
engineers call this information hiding. The concepts of modularity and
information hiding are also highly related to the concept of coupling.
Many systems and software engineers distinguish between tight and loose
coupling. Loose coupling decreases complexity, enables flexibility, but
often degrades performance. Wikipedia has a nice description of the
many types of coupling found in systems.

3. Maximize early critical testing opportunities so as to give engineers a
chance to find and fix problems. This is often considered risk minimiza-
tion. Opposing criteria may minimize risks:

a. Equalizing risks (difficult requirements) across the physical architec-
ture or

b. Localizing risks in a single element of the physical architecture (the
opposite of equalizing risks)

9.3.2 Approaches for Solving the Allocation Problem

In the 1950s and 1960s the major trade offs addressed by engineers consisted of
choosing between the human in the system and the system’s combined
hardware and software resources for performing certain critical functions. In
the 30 to 40 years since systems engineers first grappled with these decisions,
systems engineers are still using heuristics to resolve these decisions. The
engineering and psychology communities believe that there are certain func-
tions that humans perform better than machines, at least in many situations;
there is not complete agreement about what these functions are, for example,
pattern recognition functions, improvisation, and adaptation. Similarly, hard-
ware and software combined clearly outperform humans in tasks that require
responding quickly to control signals, performing repetitive tasks, and per-
forming many different activities at once. Paul Fitts [1951] was the first to try to
systematize these allocation issues by producing what has come to be known as
a ‘‘Fitts’ list’’ and later known as ‘‘Men are better at—machines are better at’’
or ‘‘MABA—MABA.’’ Fitts’ first list is shown in Table 9.1.

Sheridan and Verplanck [1978] developed a taxonomy of 10 possible
distribution strategies for allocating the functional responsibility of control
between the human and the computational resources of the system. These
allocation strategies range from having the human be the planner, scheduler,
optimizer, and the like, to taking the human out of the system’s functions
completely; see Table 9.2. For example, the first distribution in the table
puts the entire cognitive load on the human, which reflects automation in the
1960s and 1970s, such as machine tools. Entries 5 and 6 reflect the computer
developing suggestions for actions but letting the human have approval or
intervention capability; this reflects much of the automation in military systems
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today. Entries 7 through 9 reflect the status quo in autopilots for aircraft and
trains.

Now that computer-based systems and embedded computer systems are
much more sophisticated and prevalent, the most critical functional allocation
decision facing systems engineers often relates to the allocation of a function

TABLE 9.1 Original Fitts List from 1951

Humans appear to surpass present-day
machines with respect to the following:

Present-day machines appear to surpass
humans with respect to the following:

1. Ability to detect small amounts of

visual or acoustic energy.

2. Ability to perceive patterns of light

or sound.

3. Ability to improvise and use flexible

procedures.

4. Ability to store very large amounts of

information for long periods and to

recall relevant facts at the appropriate

time.

5. Ability to reason inductively.

6. Ability to exercise judgment.

1. Ability to respond quickly to control

signals, and to apply great force

smoothly and precisely.

2. Ability to perform repetitive, routine

tasks.

3. Ability to store information briefly and

then to erase it completely.

4. Ability to reason deductively, including

computational ability.

5. Ability to handle highly complex

operations, i.e., to do many different

things at once.

TABLE 9.2 A Taxonomy of the Distribution of Responsibility between Human
and Computer

1. Human does all planning, scheduling, optimizing, etc., and turns task over to

computer merely for deterministic execution.

2. Computer provides options, but the human chooses between them, plans the

operations, and then turns task over to computer for execution.

3. Computer helps to determine options, and suggests one for use, which human may

or may not accept before turning task over to computer for execution.

4. Computer selects option and plans action, which human may or may not approve,

computer can reuse options suggested by human.

5. Computer selects action and carries it out if human approves.

6. Computer selects options, plans and actions and displays them in time for human to

intervene, and then carries them out in default if there is no human input.

7. Computer does entire task and informs human of what it has done.

8. Computer does entire task and informs human only if requested.

9. Computer does entire task and informs human if it believes the latter needs to know.

10. Computer performs entire task autonomously, ignoring the human supervisor who

must completely trust the computer in all aspects of decision-making.
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between hardware and software. Allocating a function to hardware has the
benefit of reduced development cost and faster processing and response time.
The advantages of allocating to software are the flexibility to modify the
function in the future as design problems are found or new algorithms prove
superior in terms of timing, quality, or quantity measures.

Price [1985] developed the principles (Table 9.3) for functional allocation
that are primarily related to allocating functions between humans and
machines, but which, when generalized, relate to all functional allocation
decisions. Principles 2 and 4 emphasize the creative nature of design that was
emphasized in Chapter 8 on physical architectures; this creativity applies
equally to the functional architecture and the allocated architecture. Principle
3 supports the use of decision analysis (see Chapter 13) for systematizing the
decision process.

Capturing requirements for the refinement phase of the system’s life cycle is
the point of principle 5. The Vee model of the systems engineering process is
compatible with principle 7. The process model for the allocated architecture,
shown in Figure 9.1, supports principle 9.

TABLE 9.3 Price’s Functional Allocation Principles

1. Allocation is part of design—allocation is one part of a larger process.

2. Allocation is invention — there is no formula for allocation, imagination is crucial

to the success of the process.

3. Allocation can be systematized— the inclusion of imagination and invention does

not preclude formalizing allocation as a rational decision process, combining

invention and systematization yields a superior result.

4. Make use of analogous technologies building upon allocation decisions and their

resulting successes and failures expands our allocation expertise.

5. Consider future technology—allocation decisions cannot be based on what exists

now, but must address expected advances of technology.

6. Consider human optimization (realistic system implementation)—allocation cannot

be based upon idealistic expectations of how the system will be realized, but should

be based upon the likely capabilities of the system in its environment.

7. Use cycles of hypothesis and test— like any other part of system design, we are not

smart enough to do it right the first time, so build in stages of and time for iteration.

8. Provide interaction— there are three design decisions that cannot be completely

separated. The engineering decision of what the physical resources of the system are,

the functional allocation of which functions will be performed by each system

resource, and the detailed design decision that implements the allocation. There

must be interaction amongst these decisions during the design process.

9. Provide iteration and decomposition—do not make the allocation final too quickly.

10. Develop tools of cognitive analysis. (human – machine allocation only).

11. Assure interdisciplinary communication— involve experts from all relevant fields in

the allocation process.
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The essence of Price’s principles is that the allocation of functions to
elements of the physical architecture involves conflicting objectives. Making
this selection even more difficult is the fact that the systems engineering team
has to evaluate objectives in more than one time span, for example, short-term
performance versus future performance after possible upgrades have been
completed. For these types of allocation decisions the decision analysis
approach covered in Chapter 13 is recommended. The core of this approach
is the use of an appropriate part of the objectives hierarchy that contains all of
the key performance requirements and their stakeholder trade offs. Figure 9.4
illustrates such an objectives hierarchy for a hypothetical decision.

Another perspective on this allocation problem involves the use of design
structure matrices. See Browning [2001] for more information design structure
matrices. The design structure matrix (DSM) is meant to capture interactions
of all sorts between functions so that intelligent combinations of functions into
components can be derived. This is a bottom-up approach to the allocation
problem, while we have previously been talking about this task as if it could
only be approached from a top-down perspective. As discussed in the func-
tional architecture chapter, there are many systems engineers who prefer the
bottom-up approach.

As an example of a DSM application consider the creation of a development
system architecture for the small block V-8 engine at General Motors
[Eppinger, 1997]. This engine effort called 90% of the parts to be redesigned
and 80% of the manufacturing equipment to be redesigned. As a result 22
product development teams (PDTs) were created, as shown in Figure 9.5. In an
effort to determine the best way to organize the concurrent efforts of these
PDTs, the interactions among the teams was documented and categorized as
monthly, weekly, or daily. The matrix in Figure 9.5 is an example of a DSM.
The three sized dots represent these three levels of interaction. Note the DSM is
not symmetric because the rows represent where the input to a team are coming
from while the columns represent which teams are receiving a given team’s
outputs. So the second column of the first row indicates which kind of
interaction is needed for an input to the DPT A from DPT B. This is the
opposite representation of an N2 diagram.

The main analytic concept behind DSMs is that the information in the
matrix provides a clue as to how to rearrange the rows and columns so that
clusters form along the diagonal of the reorganized matrix. These algorithms
date back to the 1970s. Figure 9.6 shows such a rearranged matrix with four
clusters along the diagonal for four aggregations of the DPTs that should prove
very useful. Note the last DPT is the assembly DPT; it interacts with so many
DPTs that it does not belong to any aggregate team.

So far the functional allocation decision process has been addressed as if the
decisions had to be made during the design process and could only be modified
during system upgrades. However, the computational resources that are now
available for insertion into systems permit the design to include the real-time
reallocation of functions to predefined resources. Typically this reallocation is
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between human and computer (hardware and software), or between one
hardware resource and another, each running the same set of software.
Examples of this dynamic reallocation include distributed processing architec-
tures, parallel processing architectures, flexible manufacturing systems, and
sophisticated command and control systems. This material is beyond the scope
of this book; the interested reader is referred to Chu and Tan [1987], Gobinath
and Gupta [1990], Levis et al. [1994], and Perdu and Levis [1993]. Jackson
[2007] makes a strong case for an adaptive allocation of functions to
components in order to develop more adaptive and resilient systems.

9.3.3 Finishing the Allocation Problem

Part of the critical documentation that is part of systems engineering is
capturing the allocation of functions to the system and the system’s compo-
nents. Every bottom-level function in the functional decomposition should be
allocated to one component of the physical architecture, or physical decom-
position, as discussed in Figure 9.3. This physical decomposition begins with
the system as the root of the tree. The top-level system function, or root of the

A B C D E F G H I J K L M N O P Q R S T U V
Engine Block A A • • • • • • • • • • • • • • •

Cylinder Heads B • B • • • • • • • • • • • • • •
Camshaft/ValveTrain C • • C • • • •••• •

Pistons D • • • D • • • • • •• •
Connecting Rods E • • • E • • • •

Crankshaft F • • • • • F • • • • • • •
Flywheel G • • G • • •

Accesory Drive H • • • • H • • • • • • • • • • • •
Lubrication I • • • • • • • • I ••• • •

Water Pump/Cooling J • • • • • • J • • • • • • •
Intake Manifold K • • • • • • K • • • • •

••

• • • •
Exhaust L • • •• • • L • • • • • • • •

E.G.R. M • • • • • • M • • • • • • •
Air Cleaner N • • • • N • • •

A.I.R. O • • • • • • • • O • • • •
Fuel System P • • • • • • • P • • • •

Throttle Body Q • • • • • • • • Q • • • •
EVAP R • • • R • •

Ignition S • • • • • • • • • • • • • • S • • •
E.C.M. T • • • • • • • • • • • • • • • • T • •

Electrical System U • • • • • • • • • • • • • • • • • U •
Engine Assembly V • • • • • • • • • • • • • • • • • • • V

• Daily interactions • Weekly interactions • Monthly interactions

FIGURE 9.5 Interactions among PDTs for the small V-8 Engine Project at General
Motors (after Eppinger [1997]).
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functional decomposition, is allocated to the system. The functions at the first
level of functional decomposition are then allocated to one component on the
first level of the physical decomposition. This allocation of the first level of
functions may be the level of detail achieved in the first iteration through the
engineering of the system (or first peel of the onion). In IDEF0 this allocation
of functions to components is shown by adding the components as mechanisms
to the functional architecture, thus creating a representation of the allocated
architecture. See Figure 9.7 for an example of this depiction using IDEF0 (and
the IDEF0 model in the elevator case study that can be downloaded from
http://www.vitechcorp.com; see the section called allocated architecture).
CORE utilizes an entity–relationship diagram (see Chapter 12) to show the
allocation of functions to the system and the system’s components. (CORE’s
System Description Document for the elevator case study shows the results of
this allocation process.) Each iteration through the engineering of the system
process adds another layer of bottom-level functions and components to the
functional and physical architectures, respectively. Each bottom-level function
will then be allocated to one component.

To obtain an executable model of the allocated architecture, later discus-
sions will make it clear that the only allocation of functions to components
that matters is the allocation of functions at the bottom of the functional

A F G D E I B C J K P H N O Q L M R S T U V
Engine Block A A • • • • • ••• • • • • • • •

Crankshaft F • F • ••• • • • • • •
Flywheel G • • G • •

Pistons D • • • D • • • • • • • • •
Connecting Rods E • • • E • • • •

Lubrication I • • • • • I • • •• • •
Cylinder Heads B • • • • B • •• • • • • • • • • •

Camshaft/Valve Train C • • • • • C ••• •
Water Pump/Cooling J • • • • • J • • • • • • • •

Intake Manifold K • • • • • K • • • • • ••• • • •
Fuel System P • • • P • • • • • • • •

Accesory Drive H • • • • • •• • H • • • • • • ••• •
Air Cleaner N • • • • N • •

A.I.R. O • • • • • • O • • • • • •
Throttle Body Q • • • • • • • Q • • • • •

Exhaust L • • • • • • • • • L • • • • •
E.G.R. M • • • • • • • • • M • • • •
EVAP R • • • R • •

Ignition S • •• • • • • • • • • • • • S •• •
E.C.M. T • • • • •• • • • • • • • • • • T • •

Electrical System U • • • • • • • • • • • • • • • • • U •
Engine Assembly V • • • • • • • • • • • • • • • • • • • • V

• Daily interactions • Weekly interactions • Monthly interactions

FIGURE 9.6 Reorganized DSM with four Aggregate teams (after Eppinger, 1997).
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architecture to components at the bottom of the physical architecture. How-
ever, it is highly recommended that an executable model be created of the
allocated architecture at several stages in the engineering of the system.
Therefore, it is highly valuable to have a running record of the allocation of
functions to components, so that this executable model is available at any level
of abstraction needed.

As discussed in Chapters 6 and 7, there are tremendous benefits obtained by
having the functional decomposition match the physical decomposition on a
one-to-one basis. That is, for each function in the first level of the functional
decomposition, there is one and only one component to which to allocate the
function. In addition, every component must be allocated to one and only one
function. This one-to-one mapping of functions to components must continue
to the second and all subsequent levels of both the functional and physical
architectures. (Note this definition of a one-to-one allocation of functions to
components is consistent with the definition of a one-to-one function in
Chapter 4.) Such a convenient mapping of functions and components can
only occur if the functional and physical architectures are developed in concert
with each other. The benefit of this one-to-one mapping is the ease with which
input and output items can be allocated to external and internal interfaces. The
true value of this matching will be covered in the next chapter.

9.4 TRACE NON-INPUT/OUTPUT REQUIREMENTS
AND DERIVE REQUIREMENTS

In Chapter 7 on the functional architecture, the discussion of tracing require-
ments addressed the input/output requirements. These input/output require-
ments were traced to specific functions in the functional architecture. When the
functions were allocated to the components as described above, these input/
output requirements were associated with components. There remain several
issues though to complete the derivation of requirements for each component in
the allocated architecture: deriving additional input/output requirements for
each function based upon internal items that the architecture needs, tracing
system-wide and technology requirements to the system and deriving appro-
priate component-wide and technology requirements for each of the compo-
nents, tracing trade-off requirements to the system and deriving trade-off
requirements that are appropriate for each component, and tracing test
requirements to the system, followed by the derivation of test requirements
for each component.

9.4.1 Derive Internal Input/Output Requirements

Deriving input/output requirements based internal items that the system must
create and use is not a difficult process if a graphical model (e.g., IDEF0, data
flow diagram, or N2 chart) of the functional and allocated architectures exists.
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Once the functions have been allocated to the components, derived input/
output requirements can be created based upon internal items (inputs and
outputs) appearing in the functional architecture. Figure 9.7 shows the
allocated architecture for the elevator case study that can be downloaded.
There are five internal items that are created by one function and consumed by
another function at this first level of the allocated architecture: digitized
passenger requests, assignments for elevator cars, elevator position and direc-
tion, sensed malfunctions, and temporary modification to elevator configura-
tion. A derived input and output requirement would have to be created for each
of these items. Each of these derived input and output requirements would be
traced to both the item and the functions responsible for consuming and
creating the item, respectively. For example, Figure 9.7 shows that ‘‘Digitized
Passenger Requests’’ is an internal item produced by the first top-level
subfunction and sent to the second top-level subfunction. For this one internal
item two derived requirements would be created:

The elevator system shall produce digitized passenger requests.

The elevator system shall consume digitized passenger requests.

Each of these derived requirements would be traced to the item ‘‘Digitized
Passenger Requests’’; the first derived requirement would be traced to the
function ‘‘Accept Passenger Requests & Provide Feedback’’ while the second
derived requirement would be traced to the function ‘‘Control Elevator Cars.’’
Additional performance requirements for ‘‘Digitized Passenger Requests’’
would be created if appropriate.

9.4.2 Trace System-Wide Requirements and Derive
Subsystem-Wide Requirements

Tracing the system-wide and technology requirements to the system is a very
easy process. Almost all of these requirements will be traced to the system;
although it is possible that some of these requirements should be traced to
specific components that comprise the system. The most common example of
this is a technology requirement such as ‘‘the system shall employ ‘abc’
technology.’’ A technology requirement that can be traced to a subset of the
components of the system should be.

However, the difficult portion of this task is the derivation of new require-
ments for the components based upon the system-wide requirements traced to
the system. For example, there may be a cost requirement that says, ‘‘The
system shall cost $1000 or less to use per month during its operation.’’ How do
we allocate, or ‘‘flowdown,’’ this requirement among the components of the
system?

Grady [1993] identifies three techniques that are used for flowdown:
apportionment, equivalence, and synthesis. Apportionment spreads a system-
level requirement among the system’s components of the system, maintaining
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the same units. Apportionment is appropriate for cost requirements; the
system-level cost requirement is divided or apportioned out to the system’s
components, not necessarily in equal increments. Keeping a margin, 5 to 10%,
in reserve as a risk mitigation strategy is not uncommon. For example, if the
operating cost for the system is to be $1000 or less as suggested above for the
elevator, the four components of the elevator shown in Figure 9.5 may be
apportioned operating cost requirements of $40, $60, $800, and $50, respec-
tively, with $50 held as risk mitigation.

Other examples for which apportionment is used are reliability, availability,
and durability. In fact, the suitability (or quality or ‘‘-ilities’’) requirements are
commonly apportioned from the system to the components. Note that it is not
required that the apportioned values sum to the system-level requirement, as is
the case of cost when the margin is included. If the system’s components work in
series, the component values for reliability will be larger than the system
reliability. For the elevator case study the minimum threshold for reliability is
0.9, with a design goal of 0.99. The four components identified in Figure 9.5 all
have to be operational for the elevator to be operational; so they are working in
series. The apportioned reliability thresholds for these components may then be
0.96, 0.995, 0.96, and 0.99; the product of these four numbers is 0.91, which
provides a margin of a bit less than 0.01 for risk mitigation. Similarly, there
would be design goals apportioned to the four components of 0.996, 0.9995,
0.996, and 0.999, respectively. An example of a derived reliability requirement is:

The elevator component, Passenger Interface, shall have a reliability of 0.96 or

greater. The design goal is 0.996.

Equivalence is a simple flowdown technique that causes the component
requirement to be the same as the system requirement. An example of a
requirement to which equivalence is appropriate is ‘‘the system shall be olive
green in color.’’ Requirements for which equivalence is appropriate for flow-
down are almost always constraints.

The more complicated technique for flowdown is synthesis. Synthesis
addresses those situations in which the system-level requirement is comprised
of complex contributions from the components, causing the component
requirements that are flowed down from the system to be based upon some
analytic model. The system-level requirement will have significantly different
units than the derived, component requirement has. In this case an analytic or
simulation model must be developed and analyzed to determine how to take the
system-wide requirement and derive component requirements. In fact, this
approach is most often used to derive requirements associated with outputs or
inputs of the system, such as accuracy, range, or thrust. For the elevator case
study, there is an output requirement relating to the average time between the
passenger making a request and being delivered to the requested floor. This
system-level requirement would be flowed-down via synthesis to all four
components shown in Figure 9.7.
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9.4.3 Trace Trade-Off Requirements and Derive Subsystem
Trade-Off Requirements

Deriving trade-off requirements that are appropriate for each subsystem follows
tracing the system’s trade-off requirements to the system. This derivation is based
upon the system-wide trade-off requirements. This step is the third element of
requirements derivation that is part of finishing the allocated architecture.

The trade-off requirements developed for the system all address trade offs
for cost, for schedule and performance, and for cost with schedule and
performance; tracing all of these requirements to the system is therefore
appropriate. Each of these trade-off requirements is related to an individual
input, output, or system-wide requirement. Based upon the derivation of
requirements for each of these input/output or system-wide requirements, it
is straightforward to develop an objectives hierarchy for each component, as
shown in Figure 9.8. Generally every element of the system’s objectives
hierarchy that is related to a system-wide requirement will also become part
of the objectives hierarchy for each component; cost, schedule, and suitability
requirements are generally flowed down to every component, as discussed
above. Similarly, it is inappropriate to create a component-wide requirement
when there is no system-wide requirement from which the component-wide
requirement can be derived.

Before moving on to input/output requirements, the derivation of ranges for
each system-wide requirement, the associated value curve over the derived
range, and the weight to be assigned to that range must also be addressed. First,
the two extremes of the value range must be flowed down from the system to
each component. This should have been done as part of the flowdown process
described above.

The value curve assigned to this derived requirement should ideally have the
same shape as that for the system-wide requirement. However, an example using
reliability can be shown as a counterexample for successfully communicating a
consistent value function from the trade-off requirements at the system level to
the trade-off requirements across the components. Reliability is chosen here
because the system’s reliability is known to be a nonlinear function of the
reliabilities of the components of the system. Suppose the value function for the
system’s reliability was defined by an exponential function exhibiting decreasing
returns to scale. Decreasing returns to scale indicates that unit improvements in
the reliability near the threshold of minimum acceptability would have much
greater value to the stakeholders than unit improvements near the design goal.
This concept of decreasing returns to scale is common in the economics and
decision analysis literature; see Chapter 13 for more details. Suppose the
minimum acceptable system reliability is 0.9 and the design goal is 0.99. There
are two components acting in series that comprise the system. Each of these
components is given a threshold of minimum acceptable reliability equal to the
square root of 0.9 (or 0.95) and a design goal of the square root of 0.99 (or 0.995).
The value curve for the system reliability and the reliability of each component is
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assumed to have the same form, ð1� e�aðr�rminÞÞ=ð1� e�aðrmax�rminÞÞ, that the value
curve for system reliability had. The parameter, a, determines the shape of the
curve. When a equals 1.0, the curve is linear. The greater a is above 1.0, the
greater the bow in the curve and the greater are the decreasing returns to scale.
Figure 9.9 shows the value curve for system reliability on the left for values of a
from 30 to 1.
The right-hand graphs in Figure 9.9 show the value for system reliability as a
function of the reliability for the first component, X, when the system reliability is
held constant at 0.9439. In each of the graphs on the right the value is computed
by the weighted average of the values for the reliabilities of the two components:

Value ¼ 0:5 vðreliability of componentXÞ þ 0:5 vðreliability of componentYÞ

The weights for the two components are assumed equal since the distance
from threshold to goal is the same for both. As can be seen in Figure 9.9, the
value for the reliabilities of the two components is not constant over the range
of values for the reliability of the first component, even though the reliability of
the system is being held constant. The numbers to the far right of Figure 9.9
show the value for the system’s reliability when the system’s reliability is held
constant at 0.9439; the values in the right-hand graphs are also not equal to
these numbers except for the case of the linear value curves. This suggests that
only linear value curves should be used for trade-off requirements.

The final issue in deriving trade-off requirements for each component
concerns those trade-off requirements that address quality, quantity, or time-
liness of the system’s inputs or outputs. Each of these input and output
requirements will already have been traced to a function that was allocated to
a component. Therefore each trade-off requirement for an input or output can
already be associated with one component, assuming the allocation mapping of
the input/output requirement to functions was one-to-one. A complicating issue,
however, is that there may be good reasons to create a trade-off requirement for
an input or output requirement that was derived on the basis of the need for an
internal item produced and consumed by the functional architecture. An
example of this in Figure 9.7 is the ‘‘Digitized Passenger Requests’’ for the first
sub-function. This internal item is related to the elevator objective of ‘‘Waiting
Time’’ shown in Figure 9.8. Such a trade-off requirement must be traceable to a
performance aspect of a stakeholders’ input/output requirement; nonetheless, it
is the only case when the objectives hierarchy will have an element that is not
identical to an element of the system’s objectives hierarchy.

9.4.4 Trace Qualification Requirements and Derive Subsystem
Qualification Requirements

The final element of completing the requirements development for each
individual component is tracing the qualification requirements to the system
and then deriving qualification requirements for each component. Recall that
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the four categories of qualification requirements are observance, verification
plan, validation plan, and acceptance plan. These last two categories only apply
to the system. Therefore, after all qualification requirements have been traced to
the system, derived requirements for the components are developed only from
the first two categories (observance and verification). This derivation process is
quite straightforward; observance requirements relate to specific input/output
and system-wide and technology requirements. Therefore, deriving observance
requirements follows the derivation process of input/output and system-wide
and technology requirements. Deriving a verification plan for each component
should be relatively straightforward, given the verification for the system.

9.5 DEFINE AND ANALYZE FUNCTIONAL ACTIVATION
AND CONTROL STRUCTURE

When discussing IDEF0 (Chapter 3) and functional decomposition (Chapter 7)
the need for activation and termination criteria was mentioned. That is, there
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are criteria that need to be established for each function; these criteria
determine what set of inputs (and associated values) will activate the function
and what set of outputs (and associated values) are sufficient to terminate the
function. The bottom-level functions in the functional architecture must have
their activation and termination criteria completely specified. The intermediate-
and top-level functions are aggregates of the bottom-level functions and as such
are for modeling purposes only; intermediate- and top-level functions do not
have or need activation and termination criteria. However, recall the previous
discussions of peeling the onion and the fact that the bottom-level functions of
an early peel of the onion become intermediate-level functions during later
peels of the onion.

In addition to the activation and termination of a function, the conditions
under which one function precedes or follows another function’s processing
must be clearly defined. Examples of approaches to defining such precedence
conditions can be found in Chapter 12 under behavioral modeling. Most of
these behavioral modeling methods allow the dynamics of the system to be
explored by providing an executable model of the system’s functions. These
executable models are either discrete-time or discrete-event simulations when
implemented on a computer. The reader is referred to Chapter 12 for more
detailed discussions on this subject.

Before discussing the dynamic issues associated with the performance of a
system, the balancing or aligning [Yourdon, 1989; Schmekel and Wingard,
1993] of multiple models of a system should be addressed. At this point the
functional architecture contains a data model and a process model of the
system in question. The generation of activation and termination conditions for
each function plus the control structure associated with the concurrent or
asynchronous behavior of functions with respect to each other is contained in
the behavioral model of the system. Yet each of these models contains
overlapping data elements: Inputs and outputs are in all three models, and
functions are in the process and behavior models. These models better be
consistent and coherent representations of each other or their results will be
worthless to the engineers of the system; in essence, the engineers will have
modeled several different systems while thinking they were addressing only one
system. Schmekel and Wingard [1993] present the most complete treatment of
this topic known to the author.

There are several benefits of executable models. First, the design can be
explored to find major design flaws that are manifested as deadlocks, livelocks,
starvation, surge or race conditions, or oscillatory conditions. The second
major benefit is to permit the systems engineering team to assess the degree to
which the design meets various timing and throughput requirements.

Deadlock, livelock, starvation, surge (race), and oscillation are dynamic
characteristics that are not desired in dynamic, time-varying systems. Deadlock
is an undesired state of the system in which activity ceases and throughput is
nonexistent. Deadlock can occur for two reasons: contention over resources
and waiting for a communication [Levi and Agrawala, 1994]. Contention over
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resources occurs when each of several components requires the same resource
for a task, but none of the components is willing to free the resources it has
accumulated. As a result activity stops while the components wait for addi-
tional resources to complete their assigned tasks. Waiting for a communication
occurs when various components are attempting to synchronize their actions or
verify their status; in either case each component enters a state called ‘‘wait for
communication,’’ but the communication never arrives because the compo-
nents are in a strongly connected wait state.

Deadlock associated with resources is often described using the ‘‘dining
philosophers’’ problem. There are five philosophers sitting around a circular
table preparing to eat spaghetti. There are five forks, one between each of the
adjacent philosophers. Before eating the spaghetti each philosopher requires
two forks to move the spaghetti from the bowl in the middle of the table onto
her/his plate. If each philosopher grabs (and locks) the fork on the left, no
philosopher will be able to eat; this is deadlock. The solution requires the
creation of a conditional locking mechanism on the forks by the philosophers
that ensures that each philosopher obtains both forks for a limited time to
move the spaghetti to her/his plate. After completing this initial task, each
philosopher then releases both forks for a period of time. Once each philoso-
pher has spaghetti on her/his plate, then only one resource is required by each
and all five philosophers can eat simultaneously.

Graph theory is often used to depict the resource sharing problem with
what is called a ‘‘wait-for-resource’’ graph. Define each component as a node.
Define the relation R to be ‘‘awaits a resource possessed by.’’ Figure 9.10
shows a system with four components in which there is a potential deadlock
involving the first three components. Mathematically, it can be shown that
any system having a wait-for resource graph with a cycle can become
deadlocked if several other conditions apply [Levi and Agrawala, 1994]. If
there are many components and the wait-for-resource graph is complex, the
existence of a cycle may not be obvious by inspection. Typical solutions to
eliminating or reducing the chance of deadlock due to resource contention are
to oversize buffers and resource pools, reduce the concurrency of operations,
add delays, institute a manual or automated deadlock detection and recovery
process, and allow preemption of locked resources. Ferrarini and Maroni
[1997] define three generic categories of options: avoidance, prevention, and
recovery.

C1

C3

C2

C4

FIGURE 9.10 Wait-for-resource graph depicting deadlock.
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A ‘‘wait-for-communication’’ graph can be used to examine the possibility of
deadlock due to communication. In this case a cycle (with other conditions) is not
sufficient to guarantee deadlock; a strongly connected, cyclic graph is necessary.
Deadlocks have been studied in communication systems [Duato et al., 1997] for a
long time and procedures have been embedded into most communications
protocols to break communication deadlocks when they occur.

Livelock is a dynamic condition with the same result as deadlock but for a
different reason. In deadlock the system (or part of the system) halts activity
because various activities are holding or utilizing resources needed by other
activities. In livelock the resources are being routed in cycles (oscillating) while
waiting for the proper allocation of resources to enable the completion of
necessary activities; unfortunately this proper allocation of resources is never
achieved and the system cycles continuously, never reaching the desired
outputs. In communication networks livelock can only occur when information
packets are permitted to traverse paths that are not minimal.

Starvation occurs when a function needs a particular resource for execution,
but the resource is always allocated to other functions due to a poorly designed
resource assignment algorithm. This condition is one that can be found with
little trouble as long as a reasonable effort is made to model the dynamics of the
system. However, it can easily be overlooked if no effort is devoted to examine
the system’s dynamic properties.

The dynamic condition called surge or race occurs in relatively uncontrolled
systems when components are competing with each other to perform a task. A
common example is found in older elevator systems during nonpeak times; a
potential passenger pushes the up button and observes that all of the stationary
elevator cars are converging on her floor. She gets into one of the elevator cars.
The next passenger now pushes the down button and the remaining elevator
cars surge to that passenger. The surge condition is a waste of resources while it
is occurring and can leave the system in an undesirable state for future tasks; all
of the elevator cars but one will end up waiting at the same floor for future
passengers.

These negative dynamic conditions can be designed into a system inadver-
tently without the engineers’ knowledge unless the designers undertake a
detailed study of their design. Discrete-event simulations involving Petri nets,
queueing theory, behavior diagrams, or extended function flow block diagrams
are needed to investigate the design of the system via mathematics and
simulation and to understand the degree and extent of such negative behaviors.
Naturally, if negative behaviors exist, design changes can be examined to
eliminate or minimize them.

9.6 CONDUCT PERFORMANCE AND RISK ANALYSES

A wide range of quantitative analyses is commonly performed during the
system development process that fits within the categories of performance,
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trade-off, and risk analyses. The parametric diagrams of SysML can be used to
design and document these analyses. In fact, these analyses can be considered a
system in their own right.

Risk analyses are often completed at the beginning of the development
process to examine the major design options under consideration. For example,
at the earliest stage of development the systems engineering team should
consider a range of divergent concepts. A risk analysis examines the ability
of the divergent concepts to perform up to the needed level of performance
across a wide range of operational scenarios. At this time there remains
substantial uncertainty about the stakeholders’ needs, the state of technology
under consideration, and the details of the allocated architecture. The relative
costs and schedule implications of the various concepts also have to be taken
into account. This is where the stakeholders have to debate how much money
and time they are willing to pay for increased performance in selected
operational scenarios. Addressing uncertainty and multiple objectives in these
early risk analyses is critical; see Chapter 13.

Performance analyses are for the purpose of discovering the range of
performance that can be expected from a specific design or a set of designs
that are quite similar. The performance parameter in question can be associated
with an output of the system or with a system-wide metric; in either case there is
almost always a related objective in the objectives hierarchy and an associated
performance requirement. These performance analyses usually take the shape
of engineering models and simulation models. The simulation models may be
deterministic or stochastic, depending on the issue involved and experience
level of the design team with the technology.

Common system-wide performance analyses address operational feasibility
issues such as reliability, availability, maintainability, usability, supportability,
durability, and affordability. Similarly, performance analyses are conducted to
address concurrent engineering issues related to the impact of the operational
system design on the manufacturing, deployment, training, and disposal
systems. Blanchard and Fabrycky [1998] provide detailed discussions of
many of these topics: design for reliability, for maintainability, for usability,
for supportability, for producibility and disposability, and for affordability.
References for detailed analysis of cost, reliability, maintainability, and avail-
ability include Blanchard and Fabrycky [1998], Frankel [1988], Pages and
Gondran [1986], Pohl [2007], Pohl and Nachtmann [2007], and Sage [1992].

Some organizations have dictated that the system be designed to cost; that is,
there is a cost constraint, and the engineering design team has to guarantee that
the system will meet this cost constraint. Design-to-cost works best by
designing a reduced-capability system with various optional features that can
be added if the cost estimates are low.

A trade study focuses on finding ways to improve the system’s performance
on some highly important objective while maintaining the system’s capability in
other objectives. Trade studies are focused on comparing a range of design
options from the perspective of the objectives associated with the system’s
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performance and cost. For example, aircraft manufacturers always do trade
studies focused on the aircraft’s weight, while maintaining the system’s cost,
safety, and so forth. Similarly, safety, reliability, and cost are among the many
other objectives that are commonly the focus of a trade study.

9.7 DOCUMENT ARCHITECTURES AND OBTAIN APPROVAL

Documenting the system design completely is important. Not only should the
key elements of the requirements process (operational concept, external systems
diagram, objectives hierarchy, and requirements), and the three architectures
(functional, physical, and allocated) be documented, but also the audit trail for
how the results were obtained and why they are what they are. In every system
development activity there are many occasions during the life of the system
when engineers will want to find out why a particular part of the design is the
way it is. This curiosity usually arises because the engineers want to change the
design and need to understand the original rationale for the current configura-
tion; there may have been some issues that the current engineers have not
thought of that would keep them from making the change they are contemplat-
ing. Unfortunately, it is rare to talk to an engineer who went looking for design
rationale on any type of a system and was successful. The design decisions that
are made intuitively and on the spur of the moment (often without even
realizing that a key decision is being made) are seldom documented. The design
decisions that are made consciously with an explicit analytical approach, such
as decision analysis (see Chapter 13), will be very well documented as long as
the analysis material is archived properly.

Obtaining approval of the system’s design, or allocated architecture,
typically requires long meetings with many members of the engineering team
and representatives of the stakeholders. A number of key design decisions are
revisited, arguing for the value of the systematic development and archiving of
the rationale for these decisions. Once the system’s allocated architecture is
approved, it is quite simple to develop a specification for each subsystem with
the information that is available.

9.8 DOCUMENT SUBSYSTEM SPECIFICATIONS

At this point the system design is complete and each major subsystem of the
system can be documented in terms of its own operational concept, external
component diagram, objectives hierarchy, and requirements document. The
requirements document for each component, commonly called a specification
(or spec for short) includes input/output, technology and subsystem-wide,
trade-off, and qualification requirements.

Shortly after the subsystem design activities are initiated, a preliminary
design review should be held with the stakeholders to obtain their input and
approval for proceeding further with the subsystem design.
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9.9 SUMMARY

The allocated architecture combines the physical and functional architectures
so as to meet the stakeholders’ requirements and related derived requirements.
This combination of the physical and functional architectures requires the
allocation of functions to physical resources; at this point the system’s design
can be simulated and analyzed in terms of the stakeholders’ requirements and
operational concept of the stakeholders. As the physical and functional
architectures are integrated, the interfaces of the system (both external and
internal) can also be defined and designed.

The processes that comprise the development of the allocated architecture
are the allocation of functions to components, the tracing of system-wide
requirements to the system, the derivation of requirements, the definition and
analysis of functional activation and control structures, the conduct of
performance and risk analyses, documenting the allocated architecture, and
documenting the specifications.

The allocation of functions to physical resources was addressed in terms of
the appropriate objectives for this major decision. From a historical perspective
the most difficult allocation decision is machine versus human. The allocation
between hardware and software is also discussed. Ultimately, this allocation
process requires trade offs between fast and accurate performance of tasks
versus ability to upgrade and change the processes for performing the tasks. As
such, decision analysis (see Chapter 13) should be used to evaluate alternate
allocation options in terms of the objectives of the stakeholders.

To complete the component specifications additional requirements (input/
output, system-wide and technology, trade-off, and qualification) must be
derived from those that are already available. Examples of these derivations are
provided. Three methods for flowing down requirements that were initially
traced to the system are also described.

Critical system-wide issues associated with functional activation and control
are discussed here. These issues include deadlock, livelock, starvation, and
surge (or racing) of the system.

Decision analysis is discussed as a normative model for conducting risk
analyses, performance analyses, and trade studies. An illustration of a risk
analysis was provided.

The design process has been likened to peeling an onion throughout this
book. The development of the allocated architecture should proceed as though
an onion were being peeled. The first allocated architecture developed should
be for the subsystems of the system at a high level of abstraction (low level of
detail). Then the entire process is repeated at a lower level of abstraction
(greater detail) for the components of the subsystems, consistent with the Vee
model discussed in Chapter 1. This repetition at lower and lower levels of
abstraction yields allocated architectures at higher and higher levels of detail.
The advantage of this approach is that as each new peeling begins the engineers
for each component can work their design processes in relative seclusion from

9.9 SUMMARY 311



the engineers for other components. Each group of engineers has interfaces
between their components and other components and the external systems that
have been defined at an appropriate level of detail, yielding a coherent set of
requirements with which to work. The work of these several teams of engineers
will need to be integrated and coordinated at the newest level of detail before
the allocated architecture can be complete for this more detailed level of
abstraction.

CASE STUDY: WIDE AREA AUGMENTATION SYSTEM OF THE
FEDERAL AVIATION ADMINISTRATION (FAA)*
* PROVIDED BY TIM PARKER

The objective of the U.S. FAA Wide-Area Augmentation System
(WAAS) is to provide a navigation aid, for use by commercial and
general aviation that is derived from the global positioning system (GPS)
standard positioning service (SPS). (GPS employs a constellation of
24 satellites, each of which continually broadcasts its position at the
time of broadcast.) The GPS satellites provide the radio frequency
equivalent of a navigator’s optical star fix. However, the accuracy and
integrity of the SPS broadcast is not the ultra-high quality that the FAA
requires to ensure the safety of civilian aircraft passengers and operators.
Therefore WAAS determines the position of the GPS satellites more
precisely than the SPS, and broadcasts ‘‘corrections’’ in real-time.

To validate the competing designs the FAA required each bidder to
develop a special analysis tool known as a service volume model. The
goal being that specific aspects of the performance of a given system
design could be easily synthesized and simulated using computers. The
results of the simulations are then useful for understanding the effects of
flowing down certain performance allocations as requirements on lower
tier system components such as the placement and number of ground
monitoring antennas used for observing the GPS satellites. Because the
simulation is capable of representing the dynamic nature of the spacecraft
orbits, the tool can analyze the effects of outages resulting from
individual or combinations of component failures (i.e., satellites and
antenna monitor sites). In the case of this particular procurement the
FAA included a task in the statement of work that described the use of
the simulation tool for determining the exact number and location of the
monitoring antennas.

The top-level requirements, that the WAAS simulation helps to
explore, are the selection and geographic location of the ground monitor
sites used to observe the GPS satellites, the number and location of
geostationary satellites used to broadcast the corrections, and the cover-
age area or service volume where the WAAS service is available for use.
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Additionally, the simulation accounts for certain a priori aspects of the
models used to represent the effect on system performance from such
phenomena as pseudo-range measurement error due to receiver noise,
signal propagation delay due to the ionosphere, satellite clock estimation
error, and satellite clock dither prediction error, that is, selective avail-
ability [Braasch, 1990; Kee et al., 1991]. The flowdown to the components
is quite involved since there is a dynamic relationship among the number
and geographic location of the monitor sites, the UPS satellites and the a
priori characteristics of the systems algorithm. Suffice it to say that an
acceptable result based upon specific a priori assumptions could flow to
several components, the allowable receiver noise at the ground monitor
site, the location and number of ground monitor sites (i.e., ground
monitor site geometry), the number and location of the geostationary
satellites for broadcasting the corrections, and the resulting coverage area
or expected service volume, which is a function of both the geosatellite
antenna pattern (i.e., foot print) on the surface of Earth as well as the
geometry of the ground monitor sites.

To support the precision approach phase of aircraft flight operations,
WAAS must deliver data to the user in the form of corrections for each
UPS satellite’s position and clock. This data, when applied to determine
the position of a given user, should yield an answer that is accurate to
better than 7.6 meters (in both the vertical and horizontal dimensions)
99.9% of the time throughout the coverage area.

A simple way to recognize how this relates to the problem of
determining the number and placement of the monitor sites is to first
understand that the problem that WAAS solves is essentially the naviga-
tion satellite user’s problem inverted. By this we mean that normally the
user of the GPS is concerned with tracking at least four satellites whose
spatial relationship to each other and to the user, represented by a unit
less value known as geometric dilution of precision (GDOP), satisfies the
expression GDOPo 7. Visualize this relationship as an inverted pyramid
with the user at the apex and each of the four vertices of the base
representing a GPS satellite. Simultaneously solving the equations for the
range measurement between the user and each of the observed UPS
satellites yields the user’s position.

Now recall that the problem that WAAS must solve is to correct the
broadcast position and clock of each observed GPS satellite based upon
the precisely known location of a set of ground monitor stations. Imagine
the ground monitor sites as independent observers of the UPS satellites
sharing a universal clock. For a given satellite’s position, the ground
monitor stations become the vertices of the base of a polyhedron whose
vertex is represented by an observed GPS satellite. The spatial relation
between the monitor stations and the satellites is analogous to the
relation between the user and the satellites. Through the use of a
continuous Kalman filter the WAAS arrives at an ensemble solution
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for each satellite that is observed by its network of ground monitor
stations.

The top-level physical architecture for WAAS allows for up to 70
monitor sites to be constructed and networked into four master control
sites. As might be expected with any complex system of this nature, the
nonrecurring engineering costs are daunting and every effort is made to
reduce them. Naturally the FAA would not build all 70 ground sites and
then determine if fewer could be used. Instead the simulation tool is
utilized to predict the system performance when specific combinations of
components are synthesized together as a working system. Early results
published by Lockheed Martin Federal Systems (LMFS) (prior to
acquisition by Lockheed, LMFS was originally the Federal Systems
Division of IBM) indicated that based upon their simulation results a far
smaller number of ground antennas would be necessary. The analysis
used the LMFS Service VolumeModel (SVM), a high-fidelity covariance-
based simulation tool used to determine user obtainable navigation
accuracy and service availability.

In addition to these analysis results LMFS undertook the development
and fielding of a Wide-Area Differential Global Navigation Satellite
System (GNSS) Testbed; see Figure 9.11 for the physical architecture
block diagram. The purpose of the testbed, like the simulation, was to
further develop knowledge about the allocated architecture and confirm
the performance of the algorithms being considered for use on WAAS. A
critical activity during the testbed’s life cycle was its deployment into an
operational environment. For this task the SVM simulation tool was used
to determine optimal locations for the GPS receivers and ground
antennas.

The top-level system objectives to be optimized for the testbed are
easily expressed as: (1) minimize user range error, (2) maximize the area
of geographic coverage where the user range error is 7.6 meters or less,
99.9% of the time, and (3) minimize the cost (i.e., deployment and
operational). The first two components require the use of the simulation
while the third component is treated as a simple linear projection of the
costs incurred from acquiring the testbed equipment, leasing test labora-
tory space, and paying periodic operational expenses (i.e., telephone,
electrical, technical personnel, and miscellaneous). The results of the
simulation were combined with cost data for the prospective sites and
evaluated using a simple multiattribute value analysis technique, which
considered the top-level system objectives. Note that the deployment
costs were determined to be roughly equal and for purposes of the
analysis were considered to be equal among each set.

Many preliminary studies were undertaken to identify candidate
locations for the ground monitor sites. Typically these were in
the eastern half of the United States and within close distances to
one another to minimize travel time for deployment and maintenance.
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Of the many possible sites, several were conveniently collocated with an
existing company facility. The site combinations were evaluated to-
gether, as a location set. Different sets, or combinations of the sites, were
evaluated using the SVM to determine if there would be a significant
effect on the expected GNSS testbed performance. The multiattribute
value analysis of the combined simulation and cost results is summarized
in Table 9.4. The table contains error values representing the SVM
prediction for average vertical position accuracy (VPA) and average
horizontal position accuracy (HPA) as well as the average user error,
where user error is defined as the root-sum-square of VPA and HPA.
Coverage represents the percent of evaluated grid points where the
predicted accuracy at each point is less than the required threshold value
of 7.6 meters.

Coverage for sets 2 and 3 were significantly worse than sets 1 and 4,
providing justification to eliminate sets 2 and 3 from consideration.
Although set 4 meets the objectives of maximum coverage and minimum
user error, the high operational cost of set 4 due to the usage of non-
company property makes set 4 look inferior to set 1. Set 1 was preferred
because it offered a reasonable geometry for determining wide-area
corrections, had good coverage, and offered a smaller operational cost
even though the average user error was the worst. The average user errors
were all so close to each other that this objective was not very meaningful
in discriminating among the alternatives.

TABLE 9.4 SVM Site Location Analysis Summary

Set VPAA HPA User
Error

Coverage Monthly
Operational

Cost

Sites

1 7.013 7.358 5.082 84% 100 O, G, Ak, At

2 6.871 7.219 4.983 36% 125 O, G, Ak, N

3 6.837 7.187 4.960 36% 105 O, G, Ak, S

4 6.829 7.1 4.953 84% 130 O, N, Ak, S

Site Key Location

Ak Akron, OH

At Atlanta, GA

G Gaithersburg, MD

N Norfolk, VA

O Owego, NY

S Scranton, PA
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PROBLEMS

9.1 For the ATM system:

i. Allocate your functions to one or more of ATM’s components.
ii. Trace your system-wide and technology requirements to the ATM

system or one or more of its components.
iii. Derive component-wide requirements for each system-wide require-

ment and allocate the appropriate derived requirements to your
components.

iv. Print a System Description Document for ATM.

9.2 For the OnStar system:

i. Allocate your functions to one or more of OnStar’s components.
ii. Trace your system-wide and technology requirements to the OnStar

system or one or more of its components.
iii. Derive component-wide requirements for each system-wide require-

ment and allocate the appropriate derived requirements to your
components.

iv. Print a System Description Document for OnStar.

9.3 For the development system for an air bag system:

i. Allocate your functions to one or more of the development system’s
components.

ii. Trace your system-wide and technology requirements to the develop-
ment system or one or more of its components.

iii. Derive component-wide requirements for each system-wide require-
ment and allocate the appropriate derived requirements to your
components.

iv. Print a System Description Document for the development system.

9.4 For the development system for an air bag system:

i. Allocate your functions to one or more of the manufacturing system’s
components.

ii. Trace your system-wide and technology requirements to the manu-
facturing system or one or more of its components.

iii. Derive component-wide requirements for each system-wide requirement
and allocate the appropriate derived requirements to your components.

iv. Print a System Description Document for the manufacturing system.

9.5 A system that is available 90% of the time is said to have one ‘‘9’’ of
availability. Of the 365 days in a year, such a system would be ‘‘down’’
about 36 days and 12 hours.

i. A system that is available 99% of the time has two ‘‘9’s’’. How many
days and hours per year is this system ‘‘down’’?
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ii. How many days, hours, and minutes is a system with three ‘‘9’s’’ of
availability down?

iii. How many hours, minutes, and seconds is a system with four ‘‘9’s’’ of
availability down?

iv. How many minutes and seconds is a system with five ‘‘9’s’’ of
availability down?

v. How many minutes and seconds is a system with six ‘‘9’s’’ of
availability down?

vi. Where does the general class of personal computers fall in this
spectrum of availability? Where do you think the air control system
of the Federal Aviation Administration for a country should fall in
this spectrum?Where does the telephone system fall? Where does your
Internet provider fall?
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Chapter 10

Interface Design

10.1 INTRODUCTION

Interfaces are common failure points on systems. An interface is a connection
resource for hooking to another system’s interface (an external interface) or for
hooking one system’s component to another (an internal interface). The
systems engineer’s design problem includes identifying the interfaces, both
external and internal, and allocating items (inputs and outputs) to the defined
interfaces. Once these tasks are completed, the requirements for each interface
must be derived from existing system-level requirements. Finally, alternative
interface architecture alternatives must be examined, including the needed
functions and the most cost-effective alternative chosen.

The interface requirements must address total system performance, the
fidelity of the interface, and any system requirements meant to constrain
interface design. Typical system performance requirements of concern in
designing the interfaces are system throughput and response time. The fidelity
of an interface is determined by the integrity of the items being transported, the
guaranteed delivery of the items, and failure detection and recovery within the
interface. In other words the interface should not change the items during
the transmission process, should eventually deliver every item placed on the
interface (and not create any items), and should detect faults early and recover
gracefully (a hard but important word to define).

Section 10.2 discusses the process for developing the interface designs of the
system. Generic architectures, introduced in Section 10.3, can be used as the
architectural concept for any given interface. These generic architectures come
from communication and computer systems. Section 10.4 discusses the im-
portant issue of standards, a major support in the definition and design of

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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interfaces. Sections 10.5 and 10.6 address two major standards, one for
communications systems and one for software architectures. The open systems
interconnection (OSI) reference model serves as the basis for many standards
related to telecommunications and computer networks. This reference model
provides a rich basis for viewing interfaces. The common object request broker
architecture (CORBA) is an industry standard for software systems integration.
Section 10.7 addresses the design of an interface.

The generic interface architectures described in this chapter include message
passing, shared memory, and network. Each of these architectures is described,
followed by a discussion of strengths and weaknesses.

The OSI reference model and CORBA are introduced as well-conceived
architectures for common interfaces. The discussion in this chapter is focused
on the functions performed in these architectures so that the engineer of a
system has samples of functions to draw from for designing any type of
interface.

The exit criterion for completing the design of the system’s interfaces is
acceptance by the engineer responsible for the allocated architecture that the
interface is consistent with the system’s components and configuration items
(CIs) as well as the performance objectives and requirements of the system.

10.2 OVERVIEW TO INTERFACE DEVELOPMENT

An interface is a connection for hooking to another system (an external
interface) or for hooking one system component to another (an internal
interface). The interface of a system contains both a logical element and a
physical element (or link) that are responsible for carrying items (electro-
mechanical energy or information) from one component or system to another.
The interface must ensure that the item is delivered on time and in the same
form as the item was received.

The development of the interface architecture is quite similar to the develop-
ment of the allocated architecture of a system, as shown in Figure 10.1. [See
Appendix B for the entire IDEF0 (Integrated Definition for Function Modeling)
model for engineering a system.] The functions of defining requirements as well
as the functional, physical, and allocated architectures are present. The only new
function is the evaluation and selection of a high-level interface architecture;
Section 10.3 defines and discusses the three major alternate interface architec-
tures in use today in communication and computer systems. This high-level
architecture for the interface is analogous to the concept selection for the system
design. Before proceeding very far in the development of a system, high-level
concepts, each having a different operational concept, are posited and evaluated.

This decomposition of functions for developing an interface architecture
assumes that the functional process will be revisited several times in whole or in
part. As interface changes arrive from the process responsible for the system’s
allocated architecture, the relevant functions for developing the interface
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architecture are triggered and set the whole process in motion to develop a
revised interface architecture.

10.3 INTERFACE ARCHITECTURES

Most interfaces are communication systems or analogies of communication
systems (e.g., a conveyer belt). The principal communications architectures are
message passing, shared memory, and networks. An every day example of each
of these architectures follows:

Message Passing: mail delivery that predictably occurs once or twice a day
and allows those receiving the mail to turn their attention to the mail
immediately or wait until a more opportune time and permits messages of
substantial volume.

Shared Memory: a meeting or conference in which only one person speaks at
a time and conveys relatively compact messages; all can hear what is said
but yet are restrained from other productive work during the meeting.

Network: a telephone conversation that can involve messages of widely
varying lengths and can be instigated at almost any time.

10.3.1 Message Passing Architectures

The message passing architecture is used to allow the predictable exchange of
information. The message passing architecture is commonly found as an
internal interface in systems since the systems engineers have the information
to determine whether the message is predictable. A message passing architec-
ture can also be found as an external interface among a number of systems that
have consistent message traffic.

The physical architecture for message passing typically currently involves up
to 32 nodes on a linear, bus topology connecting the nodes. Included in the
architecture are the bus interchange unit, transceivers for the nodes, and signal
lines.

The message that is transmitted over the bus consists of a protocol and data
segments. The protocol segment includes any information needed by the bus
interchange unit to deliver the message; typically this is information about the
size of the message and address of the node to receive the message.

For each transmitted message the following communication process must be
completed:

1. One node must win control of the communication channel by a priority
scheme implemented by the system.

2. The winning node becomes the master and sends a protocol segment to
the intended receiving node(s), called the slave(s).
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3. The slave node(s) notifies the master that the protocol segment was
successfully received.

4. The master sends (or receives) the data segment to (from) the slave(s).

5. The slave(s) notifies the master that the data segment transfer is complete.

6. The master surrenders control of the communication channel.

The most common application of message passing is for systems that can define
a predictable message transmission schedule upon initialization. Update rates
for messages are on the order of 0.01 to 1 second. Other types of message
passing can occur (such as asynchronous communication that can be predicted
statistically but not predefined) but the message passing architecture is not
preferred if these types of messages are substantial portions of the traffic.

10.3.2 Shared Memory Architectures

Asynchronous communication requests of a byte to a few words in size that can
be defined statistically are ideal for shared memory architectures. The shared
memory architecture is a fast access storage device, typically a memory device,
which is the interface among processors. The shared memory and interacting
processors can either be part of the same hardware component or interface via
global memory. Statistical predictions of message traffic are usually possible
when message updates are within several clock cycles (e.g., nanoseconds).

The communication model for shared memory is:

1. A processor generates a read or write request for another address in
shared memory.

2. The current owner of this variable is notified of the request.

3. The cache memory of the current owner is dumped to local memory.

4. The global variables of the current owner are dumped to shared memory.

5. The read or write request of the processor is completed with a data transfer.

Performance of shared memory systems can be degraded substantially if a
requesting processor needs information that is not in the cache memory of the
shared memory interface. In this case all activity is blocked until the shared
memory can retrieve the variables needed. Shared memory works best in highly
parallel software applications in which the global data of each application must
be accessed frequently by the application and infrequently or never by the other
applications.

10.3.3 Network Architectures

Networks have become commonplace in the workplace with the local area
network (LAN) products. In many ways the network architecture is a
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distributed collection of shared memory systems, in which each shared memory
system has the ability to tap into the shared memory of the other systems on the
network. The best analogy for communication is to a file server with access to
slow storage devices; in this case the communication of information is via a
statistical block transfer process.

The transfer of information typically takes milliseconds to minutes, depend-
ing upon the size of data set, and includes relatively large blocks of data. The
main difference between the network and the message passing architecture is
that a network provides demand-based service while message passing primarily
uses scheduled transfers. Networks can service hundreds of nodes, while
message passing is currently limited to 32 or fewer.

A network system typically includes the communication hardware and a
software package, typically called a network operating system. There are many
such commercial network operating systems. The software provides various
priority-based queueing models, often with separate transmit and receive
queues. The network provides extensive fault checking and does not suffer
from the failure modes of message passing architectures.
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There are many network architectures available. Five of the most common
are shown in Figure 10.2. The pipeline architecture is a serial linkage of
components that is most appropriate when the components only need to
communicate with their neighbor in the network. The bus architecture is the
most general; each component places its information on the bus, and the bus
distributes the information to the appropriate sources. The bus architecture is
most appropriate for a large number of components. The spoke architecture
isolates one component as the central processor that manages the communica-
tion process. The ring architecture is one of the most common architectures in
office settings. The mesh architecture is an irregular connection of components
that provides sufficient redundancy (pathways between any two nodes) for the
system under consideration while stopping short of full interconnection. Duato
et al. [1997] provides many examples of interconnection networks used within
parallel computation devices and telephony systems.

10.4 STANDARDS

Standards help ensure that an interface will enable the connection of two
components. Each component is required to meet a given standard, and the
interface is designed to meet the same standard. As long as the performance
associated with the interface and the associated standard are satisfactory, the
design will be successful.

Standards have different levels of formality: formal, de jure, and de facto.
Formal standards are negotiated and promulgated by accredited standards
bodies, such as the International Organization for Standards (ISO), Interna-
tional Telecommunications Union (ITU), and the American National Standards
Institute (ANSI). Professional societies also develop and promulgate standards.
Examples of such professional societies are the Institute of Electrical and
Electronic Engineers (IEEE) and the Electronics Industry of America (EIA).

Legal authorities mandate de jure standards. For example, the IDEF0
standard is a federal information processing standard (FIPS) that was created
by the National Institute of Standards and Technology (NIST) of the U.S.
government.

De facto standards come into existence without any formal process. Popular
usage creates de facto standards. X Windows and the Windows operating
system are examples of de facto standards.

The benefits normally attributed to using standards are interchangeability,
interoperability, portability, reduced cost and risk, and increased life cycle.
Interchangeability is the ability to interchange components with different
performance and cost characteristics. In this way creating multiple versions
of a system in which one or more components are interchanged is possible
because the adoption of these standards makes the interchange possible. Most
computer manufacturers have adopted sufficient standards so that they create
multiple versions of a specific design with varying central processing unit (CPU)
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performance speeds, varying amounts of random-access memory (RAM), and
varying size hard discs for storage.

Interoperability benefits of adopting standards accrue because the system
can now operate with a wider variety of external systems, systems that have also
adopted the same conventions. For example, computer manufacturers that
adopt the standard parallel and serial interfaces can be interfaced with a wide
variety of peripherals such as printers. The benefits for most systems to be
interoperable with other systems are so great when standards exist that it is
difficult for system designers to deviate from such standards. The answer for
such deviations is limited performance by an aging technology. Predicting if
and when a new technology will provide enough increased performance or
decreased cost to justify changing a standard is often difficult.

Portability is a benefit for systems that operate on another system. Software
systems obtain portability by adopting the standards necessary to run on
multiple platforms with varying hardware or operating systems. Systems that
require power obtain portability by having a power unit that permits power to
be obtained from a standard wall socket. Systems like my laptop computer that
require direct current (dc) current still need the portability to operate using
power from alternating current (ac) sources and include a power unit that
converts ac to dc power.

Adopting certain standards allows a system designer to buy modules that
provide the needed performance characteristics at reduced cost. Standards
promote competition among vendors, competition that provides reduced cost
and reduced risk for equivalent performance.

An increased life cycle for the system is possible when long-lived standards
are adopted. The system can use the interoperability of its components to
upgrade its capabilities as new technologies come along, as long as these new
technologies adopt the standards. Typically the new technologies provide
downward compatibility in the sense that the older products can be replaced
by the new, but not vice versa.

10.5 OPEN SYSTEMS INTERCONNECTION ARCHITECTURE

In 1977 the ISO approved the initiation of work on a standard for the
interconnection of computers comprised of different architectures and tech-
nologies [MacKinnon et al., 1990]. The first meeting, involving 40 experts, was
held in March 1978. At the time a number of proprietary communications
architectures were available (e.g., Digital Network Architecture (DNA) of
Digital Equipment Corporation, Distributed Systems Architecture of Honey-
well, and Systems Network Architecture (SNA) of IBM). In 1983 the ISO and
the International Telephone and Telegraph Consultative Committee (CCITT)
of the ITU approved the reference model for OSI [Schwartz, 1987]. This
reference model defines a seven-layer architecture for network-based commu-
nication between end-user nodes in a telecommunications network. The OS} is
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a set of internationally accepted standards that revolve around this reference
model; these standards were developed in international forums and have been
accepted on an international basis for this reason. The OS} is also a set of
products that conform to these standards.

The OSI reference model contains seven layers: physical, data link, network,
transport, session, presentation, and application. The first four layers are known
as the lower network layers. The last three layers are known as the higher layers;
these higher layers plus the first four layers must be present in each end user or
host node. On the other hand, intermediate nodes in the communications
architecture must only possess the first three layers. Figure 10.3 presents a
common representation of communication between two hosts using a commu-
nications network, such as a LAN or the Internet. Data is being transferred from
an application on the left host node through the physical media and an
intermediate node in the communications network to the host node on the right.
The number of intermediate hosts depends not only on the communication
network but on the route selected through that communication network. In the
communication network at the top of Figure 10.3 at least two intermediate nodes
would be involved in communication between the two hosts shown; it is possible
that all five nodes would be involved.

Some of the key definitions associated with OSI are [MacKinnon et al.,
1990]:

System: an autonomous whole capable of performing information proces-
sing or information transfer.
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Open System: a system than can create, transmit, receive and act upon OSI
messages.

Interconnection: ability to satisfy four types of activity—movement of
digitized data over physical transmission media in a reliable manner;
organization and control of the paths between those open systems that
are the sources and destinations of information; exchange of commands
and data to manage the cooperation of the systems that desire to
interwork to achieve a specified purpose; and provision of a variety of
services and facilities that directly support the user applications.

Service Provider: the subsystem formed by a layer and all layers below it.
This subsystem only serves the layer above it. So the service provider
formed by the transport layer includes the network, data link, and
physical layers and serves the session layer.

Protocol: a complex multipart message that is passed between systems.

Protocol control information (P-N): information that is added at layer N to
the front of a message received from the (N+1) layer above; this
information is used to control the transmission of the message among
entities in layer N.

Protocol data unit (N-PDU): the message at layer N that contains the message
from layer N 4-1 plus the protocol-control-information for layer N.

Interface control information (I-N): information that is added at layer N to
the front (and possibly the end) of the protocol-data-unit of layer N to be
sent to layer N�1.

Interface data unit (N-IDU): the message at layer N that contains the
interface control information plus the protocol data unit of layer N and
that will be sent to layer N�1 for transmission on the N�1 service
provider.

Service access point [(N)-SAP]: the point of interaction between layers
N+1 and N; the point at which I-N is added to the front (and possibly
end) of the N+1-PDU being sent from layer N+1.

Application: a set of distributed tasks that satisfy some real-world informa-
tion processing requirement.

Application entity (AE): the portion of an application that is responsible for
interconnecting via OSI.

Presentation entity (PE): the presentation protocol functionality within an
open system that transforms data syntax so that the data can be
transferred properly.

(N)-entity: the functionality within layer N that adds P-N as one of its
functions.

Subnetwork: a real communication network.

First, note the narrowness of the definition of system chosen in this domain.
Second, the multilayered model of a communication system both enables an
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orderly development of standard products and creates a significant overhead
for communicating information.

Figure 10.4 illustrates the process of moving data from one application to
another over an OSI-compliant network and the overhead associated with that
movement. The adding and stripping of information at each of the seven levels
is necessary to make this movement happen but increases the data size. As data
enters the OSI-compliant product at the application service access point [(7)-
SAP], nI-7 information is added to the front end of the data. This augmented
data is then received at an (AE), where P-7 information is added to the front
end, forming the 7-PDU. An imaginary transfer of the 7-PDU takes place on
the presentation service provider (indicated by the dashed horizontal line in the
application layer). In reality the 7-PDU is sent to the Presentation layer where
1-6 is added at the (6)-SAP and P-7 is added at the PE, forming the 6-PDU.
This process continues through the first layer where the 1-PDU is actually
placed on the physical media and transferred to the correct host. The process is
repeated in reverse with the protocol and interface-control-information being
stripped at successively higher layers until the original data is delivered to the
application on the second host.

Table 10.1 provides a short description and the key functions of each layer
[Levi and Agrawala, 1994; MacKinnon et al., 1990; Schwartz, 1987]. Each
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TABLE 10.1 Summary of OSI Reference Model

Layer Description of Layer Layer Functions

(7) Application Provides necessary

communications between the

end user’s application

processes and the

application-entity. The

application-entity is the key

operator of this layer. The

two primary modes of

communication are

connection and

connectionless. (The

following discussion in this

table addresses the

connection mode.)

. Establish connection (receive

request, send indication,

receive response, send

confirmation)

. Transfer data (receive

request, send indication,

receive data, initialize data,

associate data, send data)

. Release connection (receive

request, send indication)

(6) Presentation Defines data syntax for

communication between

application-entities and

maintains transparency to the

hosts. The presentation-entity

is the key operator of this

layer.

. Establish connection

. Transfer data (receive

request, send indication,

negotiate syntax, receive

data, transform syntax, send

data)

. Release connection

(5) Session Provides connection control for

the hosts by enabling

presentation-entities to

organize the exchange of data

in either full or half-duplex

mode.

. Establish connection

. Transfer data

. Establish synchronization

points

. Manage activity

. Release connection

. Report exceptional

conditions

(4) Transport Establishes transparent and

reliable end-to-end

transmission of data between

host nodes.

. Establish connection

. Transfer data

. Provide error detection and

recovery

. Release connection

(3) Network Determines the establishment

of connection without

concern for the type of sub-

network and handles routing.

Represents the interface

between the communications

carriers (layers 1-3) and the

computer manufacturers

(layers 4-7).

. Establish connection

. Transfer data

. Perform multiplexing

. Provide error control

. Provide sequencing and flow

control

. Release connection

(Continued)
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layer, except the first, is responsible for establishing a connection on the service
provider below it, transferring the data to and from that service provider, and
releasing the connection when finished or required. In addition, the layers
conduct functions such as reporting exceptional conditions, providing error
control, negotiating quality of service, and providing flow control.

While the OSI reference model has received a lot of attention as a standard,
the world of products that incorporate communications systems has largely
passed OSI by in favor of the de jure standard codified by the military:
Transport Control Protocol/Internet Protocol (TCP/IP). This de jure standard
has three layers above the physical layer: the network layer for which the LP is
defined, the transport layer for which the TCP is defined, and the upper layers,
which employ a variety of protocols.

10.6 COMMON OBJECT REQUEST BROKER ARCHITECTURE

From the inception of software applications, one of the most difficult problems
for users is the communication of information among software applications
developed by different organizations or programmers. Most software applica-
tions were designed to be a closed system, often involving proprietary code,
algorithms, and interfaces. On occasion, several software applications were
integrated vertically to address the problems in a single market. The Object
Management Group (OMG) began operations in 1989 in response to this

TABLE 10.1. Continued

Layer Description of Layer Layer Functions

(2) Data Link Establishes reliable

transmission on the physical

layer.

. Establish connection

. Negotiate quality of service

(QOS)

. Transfer data

. Provide flow control

. Reset connection

. Release connection

(1) Physical Defines how the physical

network is accessed in order

to provide bit transparent

transmission on the physical

media. Supports synchronous

and asynchronous

transmission; duplex, half-

duplex, and simplex modes;

and point-to-point and multi-

point topologies.

. Determine presence of

signaling pulses.

. Determine timing of signaling

pulses
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problem. The result is the common object request broker architecture
(CORBA) as a standard that would permit programmers to integrate software
modules resident on the same network by treating each application as an
object. The CORBA standard was developed via a set of request for proposals
developed by the OMG and subsequent development contracts issued to
corporations such as Digital, HP, HyperDesk, and Sun.

The CORBA standard is actually all three standard types: formal, de jure,
and de facto. Part of CORBA, the interface definition language (IDL), is a
formal standard that has been adopted by the ISO and the European Computer
Manufacturers Association (ECMA). The CORBA is a de jure standard in the
United States and among several contractors and a de facto standard elsewhere
in the world. The OMG and X/Open jointly publish CORBA.

The CORBA standard treats software applications as objects, and as such,
sits at the application level of OSI’s seven-layer architecture. See Figure 10.3.
The CORBA is based on a client–server model for distributed computing. The
IDL, a formal standard, is a universal notation for software interfaces defining
a boundary between the client code (requests for services) and the software
objects that implement those services. These software objects may be written to
the standards defined by CORBA or may be legacy software that is ‘‘wrapped’’
by additional code that does adhere to CORBA standards. The IDL is both
platform and language independent and has not changed significantly since first
defined in 1991. In fact, IDL must remain stable or the associated standards
inherent in CORBA will be broken. The IDL standard defines what is exposed
in the interface between the service and its client(s); any other details and
relationships are forbidden. For details on the IDL see Mowbray and Ruh
[1997] or Mowbray and Zahavi [1995].

Although IDL is the key to making CORBA work from both a software
development and architecture perspective, there are four additional categories
of objects that comprise the CORBA architecture and are more important to
this discussion of interfaces: the object request broker, CORBAservices,
CORBAfacilities, and CORBAdomains.

The first object category is the object request broker (ORB), which is the
core of CORBA and is an analogy to a bus network. The ORB is the interface
between the client (software package requesting a service of another package)
and the server (software package performing the service requested). So, in fact,
the ORB can be viewed (Fig. 10.5) as a bus architecture that operates in the
application layer of the OSI network communication model. The main role of
the ORB is to standardize access between software applications, enabling
CORBA to hide the programming, platform, and location peculiarities of client
and server software objects. Each software object registers its interface
characteristics with the ORB. The ORB receives all requests for service by
another software application and knows which application to task with the
request, where that application is, and how the request has to be translated so
that the application will understand the request. The ORB requires that each
software application be written in accordance with CORBA standards as
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defined by the IDL or wrapped in a software application (wrapper) that adheres
to IDL and interfaces with the non-IDL software application. This bus
architecture is the reason that CORBA can be efficient in interfacing software
applications. Without an ORB-like network each application must be able to
interface with every other application; if there were N applications and a new
one is added, the new application must have N new interfaces developed. With
CORBA each new application requires either an IDL wrapper to connect it to
the ORB or the adherence to the IDL architecture.

Parts of the ORB are exposed to the applications (clients and servers), as
shown in Figure 10.6. The dynamic invocation, the ORB interface, and the
dynamic skeleton are defined as part of the CORBA specification and provided
by all ORB environments. The ORB interface contains several general purpose
methods.

The dynamic invocation interface allows the client to request a service
without requiring that precompiled stubs be part of the ORB. Dynamic
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invocation means that interface-related information about the server is
acquired at the time of the invocation, providing great freedom and flexibility.
The dynamic skeleton associated with the server’s interaction with the ORB
provides a dynamic bundling of the information in the request from the client
into input parameters for the server and a dynamic bundling of the results
obtained by the server for return to the client. The combination of dynamic
invocation and dynamic skeletons enable users to create implementations of
objects that form a gateway to often-used applications such as word processing
and databases.

Static invocations (sometimes called stubs) and static skeletons are also
available as extensions of the ORB. A static invocation is precompiled on the
basis of the IDL interface of the client to the ORB and requires that the client
have knowledge of server’s characteristics before the request is made. As
additional objects (software applications) are added to the ORB, a client
relying on static invocation will have to be updated in order to access the new
applications. A client using dynamic invocation will be able to learn the needed
information from the interface repository while building the request. Interest-
ingly CORBA is constructed so that the server is unaware of the nature (static
versus dynamic) of the invocation. (The word ‘‘common’’ was added to
CORBA when the decision was made to implement both static and dynamic
invocations.) The static skeleton is analogous to the static invocation but on the
server side. Static invocations and skeletons have the benefits of being easier to
program, performing faster (dynamic invocations can be up to 40 times slower
than static invocations [Orfali et al., 1997, p. 71], more robust, and easier to
understand.

The final part of the ORB that interacts with servers is the object adapter.
The major function of the object adapter is to define how an object is activated.
One software application that can satisfy many types of requests could use a
different object adapter for each request type. The CORBA standard requires
that a basic object adapter be available in every ORB; this basic object adapter
is sufficient for most applications. The basic object adapter performs the
following functions: installation and registration of an object implementation
(implementation repository), generation and interpretation of object references,
activating and deactivating object implementations, invoking methods and
passing method parameters.

CORBAservices include the types of services that are part of operating
systems and are globally applicable. These services are packaged as objects with
IDL interfaces and are augmentations of the ORB. Table 10.2 describes the
services that currently comprise the ORB-object service (ORBOS) architecture.
Additional services are planned for the future. These services enhance the
effectiveness, efficiency, and security of the ORB and were proposed by
platform and ORB vendors. Each service is implemented as an object so that
it can be used by any application.

CORBAfacilities are objects that provide services to application objects and
are keyed to interoperability issues of the applications. The initial architecture
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TABLE 10.2 Services in the ORBOS Architecture

ORBOS Segment Service Description of Service

Information

Management

Services

Properties Associates named values or properties

with an object.

Relationship Creates and provides mechanisms to

traverse dynamic links between objects.

Query Provides a superset of the structured

query language (SQL) queries, based on

SQL3.

Externalization Processes data structures and object states

into flat representations so that the

information can be transmitted in and

out of objects as a stream.

Persistent Object Provides a protocol for a persistent object

to store its state in an object database,

relational database, or file.

Collection Generically creates and manipulates

common collections of objects.

Task Management

Services

Events Passes event information among sources

and consumers; information can be

multicast to registered objects.

Concurrency Provides a lock management structure

based on either transactions or threads;

includes read, write, upgrade, intention

read, and intention write locks.

Transactions Enables the manipulation of the state of

multiple objects for flat and nested

manipulations.

System

Management

Services

Naming Enables objects to locate other objects by

name, and to bind and resolve to

directories, analogous to the ‘‘white

pages of the phone book.’’

Lifecycle Enables the creation, copying, moving and

deleting of objects on the ORB.

Licensing Allocates objects based upon the number

of licenses obtained from the publisher.

Trader Enables objects to publicize their services

and bid for jobs; analogous to the

‘‘Yellow Pages.’’

Infrastructure

Services and

Elements

Time Synchronizes time in a distributed object

environment.

Security Supports authentication, access control

lists, confidentiality and non-

repudiation; manages the delegation of

credentials between objects.

Messaging Enables asynchronous invocations on the

ORB.
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for CORBAfacilities is divided into user interface management, information
management, system management, and task management. Note these are the
same elements as CORBAservices except that user interface management in
CORBAfacilities replaces infrastructure services and elements in CORBAser-
vices. The applications in CORBAfacilities are likely to change the way the user
views computing and to enable the ORB to distribute the computing associated
with a user’s need across the platforms associated with the ORB in the most
efficient manner.

CORBAdomains is the final category of the CORBA. This category is still
under development and will facilitate vertical application development in
domains such as banking, manufacturing, multimedia conferences, telecom-
munications, and medicine.

CORBA is not unique in its efforts to enable integration of software
applications for users. Other attempts to integrate applications are the distrib-
uted computing environment (DCE) of the Open Software Foundation (OSF)
and Microsoft’s distributed component object model (DCOM). In fact, these
three approaches compete with and complement each other. The remote method
invocation of JAVA is also related to these three approaches. See Mowbray and
Ruh [1997] for a comparison of these approaches.

10.7 INTERFACE DESIGN PROCESS

Interface design is central to the success of the systems engineering process. By
determining what the system’s components are and allocating functions to
these components in the process of defining the allocated architecture. En-
gineers of the system identify those items (inputs and outputs) that pass
between components. The transportation of these items must be allocated to
some physical entity; additional low-level functions must be defined that make
the transition across this transportation entity possible. The IDEF0 diagram in
Figure 10.1 shows the design process of the system-level interfaces. As discussed
earlier, this design process has all of the elements of the system’s design process.

Design of the interface must pay special attention to the system performance
issues associated with the interfaces outputs. Concerns about the timeliness,
accuracy, and reliability of the outputs of the interface need to be considered
carefully. The fidelity of the interface is defined as the insurance of the integrity
and delivery of items being transferred; that is, the item being sent is the same as
the item being delivered, and the item is delivered in a reasonable amount of
time. Clearly the interface needs to be sized to handle some determinable
quantity of items. Finally, there must usually be extensive failure detection and
recovery algorithms to address the integrity and delivery of items.

The design process for an interface includes the steps shown in Figure 10.7.
First, defining the components to be addressed, the items that are transferred
between them, and any interfaces that have already been specified should
bound the interface design problem. Next, we must identify those items that are
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to be included in the interface for which we are concerned. Before getting into
the design, we must derive the requirements for this interface from the current
requirements specification. Included in these requirements are the performance,
cost, and trade-off requirement that will be instrumental in selecting the
interface.

The design steps are to choose an interface architecture (e.g., shared
memory, message passing, bus network); define specific trial interface alter-
natives (e.g., various bus network alternatives); evaluate these alternatives
against the requirements, specifically the performance, cost, and trade-off
requirements; and finally choose a specific interface alternative.

Once the interface has been chosen, the behavior of the interface must be
detailed and added to the functional architecture. Next, functional behavior is
allocated to the existing components and the new interface. Finally, the
performance of the segment containing the components and interface must
be evaluated, and critical fault detection and recovery behavior must be added
to the functional architecture and then allocated to the components and
interface.

Figure 10.8 provides a sample result of the above interface design for an
elevator. The interface is an external one between the elevator and the building
for the purpose of transferring emergency communications between passengers
in the elevator and appropriate emergency response unit (e.g., police). In
this case a standard interface item, a commercial telephone system, is chosen,

• Define Interface Requirements  
• Identify the Items to Be Transported by the Interface 
• Define the Operational Concept 
• Bound the Problem with an External Systems Diagram 
• Define the Objectives Hierarchy 
• Write the Requirements 

• Select a High-Level Interface Architecture  
• Identify Several Candidate Architectures 
• Define Trial Interfaces for Each Candidate 
• Evaluate Alternatives against Requirements 
• Choose High-Level Interface Architecture 

• Develop Functional Interface Architecture  
• Specify Functional Decomposition 
• Add Inputs and Outputs 
• Add Fault Detection and Recovery Functions 

• Develop Physical Interface Architecture  
• Identify Candidates based upon High-Level Architecture 
• Eliminate Infeasible Candidates 

• Develop Allocated Interface Architecture  
• Allocate Functions to Components of the Interface 
• Analyze Behavior and Performance of Alternatives 
• Select Alternative 
• Document Design and Obtain Approval 

FIGURE 10.7 Interface design process.
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making most of the interface design process unnecessary. Commercial stan-
dards are often chosen as interfaces for this reason.

10.8 SUMMARY

Interfaces are the primary responsibility of the systems engineer and are the
most common failure point on systems. Designing the interfaces of a system
begins with identifying the interfaces, both external and internal, and allocating
items (inputs and outputs) to the defined interfaces. Next the requirements for
each interface must be derived from existing system-level requirements. As part
of the system’s requirements, interface requirements will be derived that define
the performance and fidelity of the interface. System throughput and response
time are the common performance issues that are relevant to designing the
interfaces. The fidelity of an interface means ensuring the quality of the items
being carried.

As part of the design process alternative interface architecture options must
be examined and the most cost-effective chosen. These alternatives can be
based on message passing, shared memory, or network architectures, depend-
ing upon the characteristics of the items being transported and the performance
issues associated with the system.

Standards play a major role in the design or selection of an interface. If a
standard can be selected as an interface, then the design information that needs
to be communicated in any component or CI specification is readily available

• Define Interface Requirements  
• Identify the Items to Be Transported: Emergency Communications from the Elevator to the 

Building (and onto the emergency response team) 
• Define the Operational Concept: Passenger encounters emergency and requests ability to make 

emergency known to emergency response team; Elevator provides resource for passenger to use; 
Passenger communicates  

• Bound the Problem with an External Systems Diagram: (skipped) 
• Define the Objectives Hierarchy: Objectives are (1) availability of interface, (2) fidelity of the 

communicated message, (3) operational cost (monthly) and (4) deployment cost. 
• Write the Requirements: (skipped) 

• Select a High-Level Interface Architecture 
• Identify Several Candidate Architectures: (1) Telephone connection to building, (2) Dedicated 

communication system network to emergency response team 
• Define Trial Interfaces for Each Candidate (skipped) 
• Evaluate Alternatives against Requirements: Dedicated network is too expensive to install 
• Choose High-Level Interface Architecture: Telephone connection is chosen 

• Develop Functional Interface Architecture: Not needed because interface is standard 
• Develop Physical Interface Architecture  Not needed because interface is standard 
• Develop Allocated Interface Architecture  Not needed because interface is standard 

FIGURE 10.8 Sample interface design between elevator and the building housing the
elevator.
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and probably well understood. Standards can be formal (adopted by a
recognized standards-setting body), de jure (mandated by legal authorities),
and de facto (adopted via popular usage by many commercial concerns).

Two major standards, the open systems interconnection (OSI) reference
model and the common object request broker architecture (CORBA) were
presented in this chapter. These two standards demonstrate the complexity
associated with most significant interfaces in terms of design issues and
functionality.

CASE STUDY: PATHFINDER COMMUNICATIONS FAILURE

The Pathfinder system that was deployed to the surface of Mars for a
landing on July 4, 1997 was truly a success in many ways. Unique system
design features included a landing on air bags and the small but effective
Sojourner rover.

However, a few days into the mission operators on the ground noticed
that infrequent total system resets were occurring that were causing the
loss of data. The Pathfinder’s information system contained an interface
described as a ‘‘bus or shared memory area’’ [Jones, 1997]. A priority
system had been established for giving various system activities access to
this interface. A bus management task had high priority and ran
frequently to accept specific data elements into the shared memory area
and then distribute them to their proper locations. A task for gathering
and publishing meteorological data had low priority. A particular,
lengthy communications activity employed by the spacecraft had a
medium priority. Mutual exclusion locks were employed to give an
activity access to the interface. A mutual exclusion (mutex) lock is given
to an activity and grants that activity control of the communications
interface until it releases control back to the interface. VxWorks is the
commercial package used on Pathfinder to handle these scheduling
activities on the interface. Wilner [1997] described the problem causing
the system resets and the process used to diagnose and fix this problem.

The meteorological data gathering activity was an infrequent user of
the communications interface and involved the publishing of a substan-
tial amount of data. This data was so voluminous that the meteorological
data activity would have to obtain and release mutexes several times
before it was finished. The meteorological activity was broken into short
enough segments that the high-priority bus management task could
gain control for its important functions during the meteorological
activity. However, the long running, medium-priority communications
activity would infrequently interrupt the meteorological activity during
one of its pauses and gain control of the interface. The durations of this
medium priority communications task and the previous segments of the
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meteorological task were sufficiently long to invoke a watchdog timer
that was employed to ensure that the high-priority bus management task
was executing appropriately. In these rare cases the watchdog timer
would invoke a total system reset as a hedge against the system being in a
deadlock or failure mode. Whenever the reset occurred, the data in the
interface would be lost.

Fortunately, VxWorks had a feature for recording a total trace of
system events. Jet Propulsion Lab (JPL) engineers ran the Pathfinder
replica on Earth in their lab until the reset situation was replicated. They
found that VxWorks had been programmed to run without a feature
called priority inheritance. Enabling this priority inheritance feature
would solve this problem by keeping the medium-priority communica-
tions task from slipping into the middle of the meteorological publishing
task. The JPL engineers uploaded a short C program that enabled the
priority inheritance feature. Pathfinder experienced no more system resets
or loss of data.

PROBLEMS

10.1 Develop a functional, physical, and allocated architecture for an OSI-
compliant communication system using the material presented in this
chapter for the OSI reference model. Note the physical architecture of
the communication system will include the physical communication
network as well as the layers of the OSI reference model.

10.2 Develop a functional, physical, and operational model for a CORBA-
compliant software system. Use a physical architecture comprised of the
IDL, ORB, CORBAservices, CORBAfacilities, and CORBAdomains.

10.3 Select several items for your OnStar project from previous chapters
and design an interface for those items.

10.4 Select several items for your ATM project from previous chapters and
design an interface for those items.
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Chapter 11

Integration and Qualification

11.1 INTRODUCTION

Integration is the process of assembling the system from its components, which
must be assembled from their configuration items (CIs). Qualification is the
process of verifying and validating the system design and then obtaining the
stakeholders’ acceptance of the design. Recall that verification is the determi-
nation that the system was built right while validation determines that the
right system was built. Both of these activities are conducted by the systems
engineering team as part of the development process, primarily during
integration. Validation has critical early elements (conceptual, design require-
ments, and validity) that are completed during the design phase. The system
that is used to qualify the system being designed must be built for that purpose.
So while the operational system is being designed, the qualification system for
the operational system is also being designed and integrated. The operational
phase for this qualification system is during integration and qualification.
Also keep in mind that other systems are being developed concurrently
with the operational system, namely, some or all of the manufacturing,
deployment, training, refinement, and retirement systems. Each of these also
has a qualification system.

The terms testing and qualification are used interchangeably in parts of this
chapter. The word testing is associated with the key words of acceptance,
validation, and verification by most systems engineers. However, the process of
acceptance, validation, and verification comprise what is being called qualifica-
tion in this chapter. The confusing usage arises when an instrumented test is
mentioned as one of four methods that comprise qualification (testing), and the
other three methods do not contain the word test: inspection, demonstration,

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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and analysis and simulation. In fact, these three methods are forms of test.
The word qualification is used in this chapter as often as possible to mean the
process that comprises acceptance, validation, and verification testing. The
word testing will be used with these three terms but is meant to be associated
with the methods used in the qualification process during integration.

This chapter begins by providing a detailed definition of the elements of
qualification: acceptance testing, validation, and verification. Section 11.3
discusses the concept of integration since qualification takes place as integration
is progressing; alternate processes for integration are discussed in Section 11.4.
Then qualification is described in detail, beginning with planning and proceeding
to a detailed discussion of qualification methods. Special topics in acceptance
testing are described in Section 11.7.

The exit criterion for integration and qualification is acceptance of the design
by the stakeholders. This is often done conditionally, that is, with the provision
that certain system elements be revised to enable greater cost-effectiveness
during operation.

11.2 DISTINCTIONS AMONG ACCEPTANCE, VALIDATION
AND VERIFICATION TESTING

In Chapter 1 the concepts of verification, validation, and acceptance were
introduced. (Grady [1997] provides additional detail on the distinctions being
discussed here.) Acceptance is a stakeholder function for agreeing that the
designed system, as tested or otherwise evaluated by the stakeholders, is
acceptable. As such acceptance is driven by the stakeholders, with the knowl-
edge of the results of validation and verification activities that have preceded it.
See Figure 11.1.

Validation is the process of determining that the systems engineering process
has produced the right system, based upon the needs expressed by the
stakeholder. Validation is carried out by the systems engineers, based upon
what they believe the stakeholders’ needs to be. The most reliable and early
statement of the stakeholders’ needs is the operational concept. Therefore
operational validity is the matching of the capabilities of the designed system to
the operational concept; this naturally occurs late in the integration phase after
the designed system has been verified. However, conceptual validity, require-
ments validity, and design validity are important aspects of validity and need to
be addressed early in the design phase. Conceptual, requirements, and design
validity are called early validation, the determination that the right problem is
being defined at the current level of abstraction, given the validity of the
problem definition at a higher level of abstraction.

Conceptual validity is the correspondence between the stakeholders’ needs
and the operational concept. Conceptual validity needs to be established at the
outset of the design process via interactions among the systems engineers and
the stakeholders; however, the systems engineer cannot assume that once
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established there is no more work to be done. Stakeholders’ needs change and
the operational concept must change with those needs. Note operational
validity only makes sense if conceptual validity has been established. If both
conceptual and operational validity are solid, then the stakeholders’ acceptance
should be nearly guaranteed.

Requirements validity is the correspondence between the operational concept
and the stakeholders’ requirements. In requirements validity the operational
concept is assumed to be an accurate reflection of the stakeholders’ needs; the
validation occurs by establishing that the stakeholders’ requirements have
neither introduced new issues nor left issues out of the operational concept,
thus causing the design of a different system than envisioned in the operational
concept. But recall that the operational concept and stakeholders’ requirements
should be stated in design independent terms, making this task of requirements
validity quite difficult. Elements of requirements validity are ensuring there are
input/output requirements for all of the inputs and outputs in the operational
concept; that every objective in the objectives hierarchy has a performance
requirement in the StkhldrsRD; that every external interface to the system
has been considered for an external interface requirement; and so forth.
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Component Specs
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CIs Delivered
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Verification

Conceptual 
Validity
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FIGURE 11.1 Verification, validation, and acceptance.
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The external systems diagram and objectives hierarchy (discussed in Chapter 6)
are key tools for establishing this requirements validity. In addition, inter-
mediate products such as a data model that relates the inputs to and outputs
from the system in the operational concept to the aggregate inputs and outputs
of the system in the external systems diagram can and should be developed to
support requirements validation. At a higher level of abstraction, the systems
engineers should be asking ‘‘Can we get something we do not want even though
these requirements stating our needs are met?’’ In addition they should ask
‘‘Can we get what we want (the problem solved) without getting what we have
asked for in the requirements?’’ If either of these questions can be answered
positively, there is more work to do on the requirements.

Design validity assumes that the Stakeholders’ Requirements Document
(StkhldrsRD) is a valid statement of the stakeholders’ needs and addresses the
congruence between the StkhldrsRD and the derived requirements. The derived
requirements begin with the Systems Requirements Document (SysRD), evolve
to subsystem and component specifications, and culminate in CI specifications.
In Chapter 9 three techniques for flowdown or derivation of requirements were
discussed: apportionment, equivalence, and synthesis. Establishing design
validity for apportionment and equivalence is straightforward. Design valida-
tion when synthesis is involved, on the other hand, requires establishing the
validity of the models used to complete flowdown via synthesis. These models
are used to transform requirements on one or more variables to requirements
on parameters that have a functional relationship with these variables. A
common cause for failure in this synthesis process is that the models being used
were valid in previous engineering efforts but are not valid for the current
system; yet the validity of the models from previous developments of similar
systems is assumed to pertain to the current development. Petroski [1994]
provides extensive evidence of such failures in structural design engineering;
failures of bridges are highlighted in particular. The designers forgot the lessons
of past failure modes and built bridges that were extrapolations of previous
efforts: Extrapolations that were not justified based upon modeling assump-
tions that were not examined in sufficient detail.

Conceptual requirements and design validity are the province of the
systems engineering team and must be undertaken very seriously to ensure
that the requirements development process does not redefine the problem being
solved. There are two chains that must be strong; see Figure 11.2. The first
chain consists of conceptual validity, operational validity, and acceptance
testing. Requirements validity, design validity, verification, and operational
validity comprise the second chain. Each of these chains is only as strong as the
weakest link.

Verification is the matching of CIs, components, subsystems, and the system
to their corresponding requirements to ensure that each has been built right.
This process of design verification is also carried out by the systems engineering
team to ensure that the design problem defined in conjunction with the
stakeholders is being solved appropriately. In order for verification to be
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successful, the originating and derived requirements must be testable; that is,
the requirements must be single statements that are unambiguous, under-
standable, and verifiable (see Chapter 6).

Verification begins in the design phase with the definition of the derived
requirements and becomes the focus of activity early in the integration phase
when the systems engineers can match the derived requirements to the
capabilities of the CIs and the components. However, the design of the test
system to achieve this verification must occur in the design phase of the system.

It is a misconception to picture verification as beginning and ending before
validation, which begins and ends before acceptance testing. In fact, as can be
seen in Figure 11.1, validation has to begin with the definition of requirements
to ensure that there is conceptual validity between the operational concept and
the stakeholders’ needs. Requirements validity also begins almost immediately
to address the congruence between the stakeholders’ requirements and the
operational concept. Finally, design validity addresses the consistency and
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FIGURE 11.2 Two qualification chains. The high level chain consists of conceptual
validity, operational validity, and acceptability. The low level chain consists of design
validity, requirements validity, developmental verification, and operational validity.
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congruence between stakeholders’ requirements and derived requirements. For
example, does every input and output to the system have at least one
requirement associated with it? Does the system have all of the system-wide
requirements it should have? Before operational validation can begin, design of
a qualification system must occur. The IDEFO (Integrated Definition for
Function Modeling) representation in Figure 11.3 of early validation, verifica-
tion, operational validation, and acceptance testing suggests the most likely
sequential ordering. In practice, though, there is substantial concurrency
involving these processes, making the results even more difficult to get right.

Finally, in order for the acceptance test to be successful, there must be clear
agreement between the acceptance thresholds and the early design documents
of the operational concept and stakeholders’ requirements. Therefore, design of
the acceptance test must begin early enough to enable both conceptual and
design validity.

Successful integration relies critically on the complete and consistent
development of stakeholders’ requirements, the proper flowdown of stake-
holders’ requirements into derived requirements and tracing of requirements to
functions and components/CIs, and the analysis of system performance and
cost in light of the stakeholders’ fundamental objectives. These are design
activities associated with the system. The development of test requirements,
including the verification, validation, and acceptance test plans, initializes
integration and helps formalize the design process.

11.3 OVERVIEW OF INTEGRATION

Textbook integration is a bottom-up process (see the top half of Figure 11.4)
that combines multiple CIs into components, and multiple components into
subsystems, and multiple subsystems into the system. At each level of integra-
tion the appropriate interfaces and models of the external systems, compo-
nents, and CIs must exist for this subset of the system. These interfaces and
models are stimulated by defined sets of inputs and tested to determine if
the appropriate outputs are obtained. In addition, the physical combination of
the CIs, components, or subsystems is examined to determine that the fit
of these system elements is acceptable. This is not to say that integration can
only be bottom up and must wait for the last available CI before proceeding
to the component level. In fact, design stubs (shells or model replicas) for
specific CIs, components, or even subsystems can be developed as part of the
integration process to reduce risk, speed up integration, and enhance the testing
effort. Alternate integration processes are discussed later.

Figures 11.4, 11.5 and 11.6 show three different representations of the major
integration functions. The bottom half of Figure 11.4 shows this information as
an IDEFO diagram with the functions and flow of data among the functions;
the major functions are (1) inspect and test the CI (component or subsystem),
(2) identify and fix any correctable deficiencies found in the first function, (3)
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assess the impact of any uncorrectable deficiencies found in the first function,
(4) redesign the CI (component or subsystem) to address unacceptable impacts
of any uncorrectable deficiencies as identified in the third function, (5) modify
the baseline of the design to account for any fixes (function 2) or acceptable
impacts (requirements changes from function 3), and (6) integrate with the
next CI (component or subsystem) and repeat until all CIs (components or
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subsystems) have been integrated. Figure 11.4 addresses component integration
but has the identical structure for the higher level integration at the subsystem
and system levels.

Figure 11.5 shows logic structure of integration at the subsystem level, that
is, integrating every subsystem of the system until all subsystems have been
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integrated. First a selected subsystem is inspected and tested to determine if it
meets the requirements defined in the specification for that subsystem; this is
verification. If the subsystem is not deficient, the next subsystem begins the
verification process. If the subsystem is deficient, modifications and fixes are
made if possible, and the design baseline is modified accordingly. However, if
there are remaining deficiencies, the impact of these deficiencies must be
assessed. If the deficiencies are acceptable, no redesign is necessary and the
requirements baseline is modified. However, if the deficiencies are unaccepta-
ble, the subsystem must be redesigned, usually at great cost and delay in time. If
any changes are made at all, the subsystem must be retested (called regression
testing) in case any new problems were introduced.

These six functions cannot flow in serial sequence. In fact, some functions
may not be executed at all. If there are no deficiencies, functions 2 through 5 are
never executed. If all deficiencies are correctable, functions 3 and 4 are not
executed. Figure 11.6 shows the control structure needed to make these
function work as a function flow block diagram (FFBD). (The details of
reading FFBDs can be found in Chapter 12.) Figure 11.6 shows the functions at
the subsystem level of integration, but again this structure applies equally at the
component and system levels.

11.4 ALTERNATE INTEGRATION PROCESSES

As discussed earlier bottom-up integration is commonly discussed in textbooks
as the desired approach. In fact, in Chapter 1 the Vee model of systems
engineering represented the bottom-up integration process as the appropriate
one. However, there are alternate integration processes (described in Table 11.1)
that are appropriate to systems engineering; these alternate approaches have
been investigated and described by the software engineering community [Perry,
1988]. The top-down integration process was commonly used in software
engineering as part of top-down software design and development. The most
commonly used integration process in the software industry [Perry, 1988] is ‘‘big
bang’’ integration, in which CIs are combined as they become available and have
completed testing.

Top-down integration begins by examining the top-level core of the system,
is followed by adding major components to this core and testing, and ends by
adding the individual CIs to the cores of the components and testing. Top-
down integration is very difficult to accomplish for systems with hardware,
people, and facilities that are designed from scratch. It is difficult to define a
system core that is hardware, people, and facilities unless a large part of the
system already exists, commonly referred to as ‘‘commercial off-the-shelf’’
(COTS) components or CIs. However, as more and more new systems are made
up of larger and larger amounts of COTS components, top-down integration
has greater usefulness in systems engineering.
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TABLE 11.1 Principal Integration Processes

Top-Down � Integration begins with a major or top-level module.

� All modules are called from the top-level module are simulated by

‘‘stubs’’ (shell or model replica).

� Once the top-level module is qualified, actual modules replace the stubs

until the entire system has been qualified.

� This is most useful for systems using large amounts of COTS

components.

Phase Integration: Integration is done from the top down to the lowest

level; one peel of the onion at a time.

Incremental Integration: Integration is done for a specific module from top

to bottom; one slice of the system at a time.

Advantage:

Early demonstration of the system is allowed.

Representation of the test cases is easier.

This is more productive if major flaws occur toward the top of the

system.

Disadvantage:

Stubs have to be developed.

Representation of test cases in the stubs may be difficult.

Observation of test output may be artificial and difficult.

This requires a hierarchical system architecture.

Bottom-Up � Integration begins with the elementary pieces (or CIs) that comprise the

system.

� After each CI is tested, components comprising multiple CIs are tested.

� This process continues until the entire system is assembled and

tested.

� This is the traditional systems engineering integration approach.

Phase Integration: At any point in the integration, all of the subsystems

are at the same stage of integration testing.

Incremental Integration: Integration proceeds one slice of the system at a

time.

Advantage:

It is easier to detect flaws in the tiniest pieces of the system.

Test conditions are easier to create.

Observation of the test results is easier.

Disadvantage:

‘‘Scaffold’’ systems must be produced to support the pieces as they are

integrated.

System’s control structure cannot be tested until the end.

Major errors in the system design are typically not caught until the end.

System does not exist until the last integration test is completed.

This requires a hierarchical system architecture.

Big Bang � Untested CIs are assembled and the combination is tested.

� This is a commonly used and maligned approach.

(Continued)
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Both the bottom-up and top-down integration processes can proceed for the
entire system by adding or peeling a layer of the system as one would an onion;
this is referred to as phase integration. For bottom-up integration this means
that all of the CIs are integrated into their respective components before
any components are integrated. However, it is commonly counterproductive
from schedule and cost perspectives to delay the integration of some of the
components until all of the CIs are ready.

At the other extreme is incremental integration in which one subsystem at a
time is integrated from the CIs up through its components before the
integration of any other subsystem is begun. Just as phase integration is
impractical, so to is pure incremental integration. A major element of test
planning is the creation of a realistic schedule for when each CI will be ready so
that integration can proceed at an orderly pace and test system devices and
models can be ready when needed. This typically involves a mixture of phase
and incremental integration.

Finally, big-bang integration is a relatively undisciplined, but much used,
approach to integration. At the worst extreme this approach begins assembling
CIs as they become available and undertakes testing as an afterthought. Since
there is no serious planning for testing sequences, fault detection and fault
localization and diagnosis become very difficult. At its best this approach
combines bottom-up and top-down integration in a disciplined and rigorous
manner. When done well, this approach often takes more planning and
development of test rigs but can be accomplished more quickly.

Another major element of the development of the qualification system and
qualification planning is the creation of the appropriate test stubs and scaffolds
with drivers for the relevant qualification scenarios. Each CI, component, and
the system as a whole must be stimulated by a given set of inputs for each
qualification case. In addition, test equipment must be put in place to capture the
outputs of these CIs, components, and the system. The qualification plan ensures
that these qualification system elements will be in place at the right time to enable
the planned integration sequence of CIs and components. The plan typically
breaks down when planned tests are failed by specific CIs, components, or the
system. A well-designed qualification plan will address schedule adjustments for
possible qualification failures as part of risk mitigation.

TABLE 11.1. Continued

Advantage:

Immediate feedback on the status of system elements is provided.

Little or no pre-test planning is required.

Little or no training is required.

Disadvantage:

Source of errors is difficult to trace.

Many errors are never detected.
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11.5 SOME QUALIFICATION TERMINOLOGY

The purpose of qualification is not only to find faults and failures but also to
prevent them and to provide comprehensible diagnoses about their location
and cause. Recall the following definitions from Chapter 7:

Failure: deviation in behavior between the system and its requirements. Since
the system does not maintain a copy of its requirements, a failure is not
observable by the system.

Error: a subset of the system state, which may lead to a failure. The system can
monitor its own state, so errors are observable in principle. Failures are
inferred when errors are observed. Since a system is usually not able to
monitor its entire state continuously, not all errors are observable. As a
result, not all failures are going to be detected (inferred).

Fault: defects in the system that can cause an error. Faults can be permanent
(e.g., a failure of system component that requires replacement) or temporary
due to either an internal malfunction or an external transient. Temporary
faults may not cause a sufficiently noticeable error or may cause a
permanent fault in addition to a temporary error.

The qualification designer should realize that the design of the qualification
system is not only important in terms of finding and defining faults and errors
but also in guiding designers to preclude them from introducing faults in the first
place. In addition, the qualification designer must realize that no qualification
procedure is perfect. As Glegg [1981] points out, no procedure can answer all
questions of interest. Some procedures do well at capturing what happened;
others do much better at explaining why these things happened. As a result a
number of complementary procedures must be employed for success. When
complete the qualification design must document the qualification procedures in
detail and the expected qualification results (requirements) for each procedure.
In fact, recall that the qualification process is being conducted by a qualification
system; the qualification design should be tested just as any system would be.

To design the qualification system, some basic knowledge of faults is needed
and some modeling of fault importance should be completed. The software
community [Beizer, 1990] has written much more extensively on these topics
than has the systems engineering community. Beizer [1990] presents three laws
of software testing that are directly relevant to systems:

First Law: The Pesticide Paradox—Every method you use to prevent or
find bugs leaves a residue of subtler bugs against which those methods are
ineffectual.

Corollary to the First Law—Test suites wear out.

Second Law: The Complexity Barrier— Software complexity (and therefore
that of bugs) grows to the limits of our ability to manage that complexity.

Third Law—Code migrates to data.
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For systems, replace the word bug with fault. The third law becomes
‘‘hardware and people migrate to software which eventually migrate to
data.’’ Theoretically Manna and Waldinger [1978 p. 208] summarized the
barriers to verification (the easy part of qualification) as:

� ‘‘We can never be sure that the specifications are correct.’’

� ‘‘No verification system can verify every correct program.’’

� ‘‘We can never be certain that a verification system is correct.’’

These barriers generalize to validation.
Beizer [1990] also provides a taxonomy of bug (fault) consequences:

Mild: The symptom offends us aesthetically, for example, misspelling or
poor formatting.

Moderate: Outputs are misleading or redundant, affecting system
performance.

Annoying: The system’s behavior is dehumanizing, for example, names are
truncated, bills for $0.00 are sent, operators must resort to unnatural
command actions to obtain the desired response.

Disturbing: The system refuses to handle legitimate functions.

Serious: The system loses track of functions and gobbles unique inputs, for
example, your deposit is lost.

Very Serious: The system mixes input and output streams, for example,
your deposit is credited to another account.

Extreme: The problems are not limited to a few situations but occur on a
frequent basis.

Intolerable: The system causes long-term, unrecoverable corruption of the
database and this corruption is not easily detected.

Catastrophic: The system decides on its own to shut down, causing
unrecoverable corruption of the database.

Infectious: The system completes its own functions, but in so doing it
corrupts the functioning of other systems.

This type of fault categorization is the first step in defining the importance of
faults; these categories define distinctions among the consequences of faults.
The other key element of fault importance is the frequency with which the fault
occurs. (Note Beizer’s extreme category is a variation of very serious that
increases the frequency. In a taxonomy on consequences, extreme should be
removed.) Consider the set of scenarios ( j=1, 2, y, J) in the operational
concept (or preferably some aggregation of these scenarios). Develop the
following two metrics for each scenario and each fault category ( i=1, 2,y, I ):

pij = probability of fault i in scenario j;

cij = dollar (or some other value measure) consequence of fault i in scenario j.
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The measure of the importance of the fault types Ii is:

Ii ¼
XJ
j¼1

Vjpijcij

where Vj is the relative measure of the importance of each scenario. (Note, if cij
is in dollars, the term Vi can be set to 1.0; however, if cij is in non-dollar units, Vi

will be needed to calibrate across scenarios.) This measure works well if the
likelihood of each fault type in each scenario is relatively rare. If some fault
types may occur multiple times in a scenario, then a more complex measure
should be used.

Bezier [1990] also presents a taxonomy of ‘‘bugs’’ (software faults) for
software programs based upon the cause or source of introduction of the bug.
This taxonomy includes requirements, features and functionality, structure,
data, implementation and coding, integration, system and software architec-
ture, and testing. Beizer [1990] provides detailed summary statistics for the
frequency of these types of bugs.

11.6 DEFINING THE QUALIFICATION SYSTEM

There are four major levels of qualification planning: Plan the qualification
process, plan the qualification approaches, plan qualification activities, and
plan specific tests. The first three qualification planning functions are con-
ducted for verification, validation, and acceptance testing. The fourth planning
function is conducted for every specific qualification activity identified in the
three prior planning functions. These final plans should stipulate that every
requirement be tested individually. Table 11.2 shows the elements of each of the
four qualification planning functions. Recent research has been conducted in
this area by Meisenzahl et al. [2006], Levardy et al. [2004], and Hoppe et al.
[2003].

The system’s objectives discussed in Chapter 6 become key for the initial
activity of planning the qualification process. These objectives of the system
drive the qualification objectives. A key part of the qualification objectives is
determining whether the test was passed by the system design or not. Defining
the threshold for passing the test is a difficult balancing act; the threshold
cannot be too low or there is no reason to conduct the test. At the same time the
threshold cannot be too high or there is too great a chance that development
money will be wasted fixing deficiencies that were not worth fixing and delaying
the production and delivery of a system that is badly needed by the stake-
holders, especially when competitive advantage is involved. The qualification
objectives must be focused on determining whether the system passes or fails
the threshold criteria. This focus on qualification objectives and pass/fail
thresholds is the identification of alternate concepts for the qualification
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TABLE 11.2 Qualification Planning Functions

Plan the qualification

process

Acceptance test

Validation test

Verification test

� Review system objectives

� Identify qualification system objectives

� Identify pass/fail thresholds

� Define qualification operational concept

� Define qualification requirements

� Define qualification functional architecture

� Define qualification generic physical architecture

� Generate qualification coverage matrices (allocate

requirements to functional architecture and functions to

the generic physical architecture)

� Identify risks and mitigation strategies

� Create master qualification plan

Plan the qualification

approaches

Acceptance test

Validation test

Verification test

� Define subfunctions (or test activities) for the functional

architecture

� Define qualification resources and organizations

(instantiated physical architecture)

� Assign qualification activities to organizations

� Allocate qualification activities to resources

� Develop qualification schedules consistent with

development schedule

Plan qualification

activities

Acceptance test

Validation test

Verification test

� Develop detailed derived qualification requirements for the

test activities

� Develop functional architectures for fulfilling the test

activities

� Define detailed component architectures for the test

resources (identifying what special test fixtures and test

stubs are needed)

� Generate coverage matrices (allocate derived requirements

to functional architectures and functions to physical

architectures)

� Write activity level qualification plans for each

qualification component

� Assign qualification responsibilities

Plan specific tests

Acceptance test

Validation test

Verification test

� Create test scenarios

� Identify required stimulation data for each activity

� Write test procedures

� Write analysis procedures

� Define test and analysis schedules
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system, culminating in the selection of that concept that is deemed most
appropriate. This concept selection decision must trace back to the original
system concept selection.

Once the qualification objectives have been established, the operational
concept for qualification (including key scenarios) can be defined. This
operational concept will produce a definition of all high level inputs and
outputs of the tests. The definition of the qualification scenarios in considera-
tion of the qualification objectives is establishing at a high level what should be
tested and to what precision of confidence. The qualification requirements,
based upon the threshold criteria for passing, determine how well the test
should be conducted in each area. Each specific test should be considered a
system; the major test functions are needed to help define the resources needed
for the test. These qualification functions enable the development of qualifica-
tion requirements; both input/output requirements and qualification-wide/
technology requirements. The qualification requirements in this case involve
the examination of the qualification system design to ensure that it satisfies the
requirements involved in meeting the qualification objectives. Qualification
coverage matrices involve comparisons of the qualification requirements to the
qualification activities; these matrices enable the management of qualification
requirements to ensure that every requirement is being met by some activity.
Even more so than with most systems, there may be risks that the testing
process will not be completed in a timely manner; test failures at certain points
may cause delays in fixing deficiencies or replacing test items. Therefore, extra
effort should be expended to identify risks to meeting qualification-wide
requirements (such as schedule and time) and develop risk mitigation strategies
for dealing with such risks. Finally, the plan for the qualification process should
be documented in a master qualification plan.

The second major qualification planning function of Table 11.2, plan the
qualification approach, involves creating specific test activities (subfunctions)
as well as the physical and allocated architectures for the qualification system.
The physical architecture for a test includes test equipment and facilities, as well
as the organizations (people) that will conduct a specific test. After one or more
generic qualification architectures have been devised and several instantiated
qualification architectures are identified, decisions can be made about the most
cost-effective means for achieving the qualification objectives with a reasonable
risk. As part of this process for selecting an allocated qualification architecture,
the allocation of qualification activities to equipment, facilities, and organiza-
tions must be considered. Planned previous qualification data must also be
considered so that each test does not retest or overtest certain requirements.
Finally, these qualification activities can now be planned in time so that the
qualification resources are used efficiently and development schedule require-
ments are met.

The last two qualification planning functions in Table 11.2 define the
qualification activities in greater detail, that is, at the component and CI levels.
Planning the qualification activities decomposes each activity to two or three
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levels of detail, and matches these subactivities to requirements and resources.
Planning the specific tests takes each test activity and creates detailed scenario
and data specifications of the activity. Test procedures for handling the test
equipment and test data are also produced. Finally detailed schedules are
produced.

Figure 11.7 depicts the design process of the qualification system as an
IDEF0 diagram. Note this is essentially the same process discussed in Chapters
6 to 10 for any system. However, a final activity is added to address the
development of all the models needed for qualification.

11.7 QUALIFICATION METHODS

Four categories of qualification methods are inspection, analysis and simulation,
instrumented test, and demonstration. Table 11.3 summarizes each of these
methods by describing each, discussing when each is used and when each is
most effective.

Inspection is used for physical, human verification of specific requirements.
As automation has come to replace humans in the performance of certain
activities, more and more of inspection can be accomplished by computers,
which falls under instrumented test. A major example of this migration from
inspection to instrumented test is the examination of software code for key
features or the lack of key features. Finally, qualitative models that are now
available with systems engineering tools that allow for extensive inspection
opportunities related to design validity and design verification.

Analysis and simulation involves the use of models to test key aspects of
the system. Models have always been used in engineering; see Chapter 3 and the
discussion of mental models. The most common use of models is to examine the
performance of the system in a range of environmental conditions. Initially
these models support the design process by enabling the comparison of
alternate physical architectures. However, as verification and validation begin,
these same models can be used to augment instrumented test and demonstra-
tion. Initially, the results of the instrumented test are fed back to the models
and used to refine parameters embedded in the model. Later, the models can be
used to predict the results of instrumented tests and demonstrations. As
confidence in a specific model increases, the model can be used to replace
some of the instrumented tests and demonstrations. An important example of
this interplay between models and instrumented tests is the development of
estimates for such parameters as reliability, availability, and durability [see
Holmberg and Folkeson, 1991]. Lee and Yannakakis [1996] provide a detailed
survey of the use of one class of models (finite-state machines) in testing.
Additional advances are being made in the verification of models that directly
relates to verifying systems; see Baier and Katoen [2008].

Table 11.4 describes testing methods that can be used at the system level and
lower. These functional and structural testing methods are used in conjunction
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TABLE 11.3 Qualification Methods

Method Description Used during: Most effective when:

Inspection

(Static Test)

Compare system

attributes to

requirements.

During all segments of

verification,

validation and

acceptance testing

for requirements

that can be

addressed by human

examination.

Success or failure can

be judged by

humans; examples

include inspection

of physical

attributes, code

walk-throughs and

evaluation of user’s

manuals.

Analysis and

Simulation

Use models that

represent some

aspect of the

system.

Examples of models

might address

system’s

environment,

system process,

system failures.

Used throughout

qualification, but

emphasis is early in

verification and

during acceptance.

Physical elements are

not yet available.

Expense prohibits

instrumented test,

and demonstration

is not sufficient.

Often used in

conjunction with

demonstration.

Issue involves all or

most of the system’s

life span.

Issue cannot be tested

(e.g., survive

nuclear blast).

Instrumented

Test

Use calibrated

instruments to

measure system’s

outputs. Examples

of calibrated

instruments are

oscilloscope,

voltmeter, LAN

analyzer.

Verification testing. Engineering test

models through

system elements are

available.

Detailed information

is required to

understand and

trace failures.

Life and reliability

data is needed for

analysis and

simulation.

Demonstration

or Field Test

Exercise system in

front of unbiased

reviewers in

expected system

environment.

Primarily used for

validation and

acceptance testing.

Complete

instrumented test is

too expensive.

High level data/

information is

needed to

corroborate results

from analysis and

simulation or

instrumented test.
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with top-down, bottom-up, and big-bang integration. Functional testing
examines the system at the level of inputs and outputs under mostly nominal
conditions. Structural testing deals with specific characteristics of the outputs
as well as the system-wide properties such as safety, availability, and recovery.
Structural testing pays particular attention to the most extreme environments
that the system will experience.

Samson [1993] postulates four facets for any qualification activity: structural
(relation to system implementation), function (relation to system functions),
environment (relation to environmental conditions), and conditions (relation to
requirement characteristic). The first two of these facets are mutually exclusive
and are described in Table 11.4. The second two need to be added to each
specific structural or functional test to make it complete. In other words there
has to be an environmental facet and a conditional facet for each functional test
and each structural test. Table 11.5 shows Samson’s examples of these facets.

Black box and white box testing methods (Table 11.6) are commonly
employed in software testing. For each method test cases must be specified and
test data generated as inputs. These inputs are then injected into both the system
prototype (which is essentially a model of the eventual system) and a model of the
system. The outputs of the system and the model are compared; any discrepancies
are checked to determine whether the system or the model is incorrect [see
Chusho, 1987; Richardson and Clarke, 1985; Voges and Taylor, 1985].

11.8 ACCEPTANCE TESTING

Acceptance testing is the final step in qualification and is separated from
validation because acceptance testing is conducted by the stakeholders, whereas

TABLE 11.4 Testing Methods

Functional

testing

Test conditions are set up to ensure that the correct outputs are

produced, based upon the inputs of the test conditions. Focus is on

whether the outputs are correct given the inputs (also called black

box testing).

Structural

testing

Examines the structure of the system and its proper functioning.

Includes such elements as performance, recovery, stress, security,

safety, availability. Some of the key elements are described below.

Performance Examination of the system performance under a range of nominal

conditions, ensures system is operational as well.

Recovery Various failure modes are created and the system’s ability to return to

an operational mode is determined.

Interface Examination of all interface conditions associated with the system’s

reception of inputs and sending of outputs.

Stress

testing

Above-normal loads are placed on the system to ensure that the

system can handle them; these above-normal loads are increased to

determine the system’s breaking point; these tests may proceed for a

long period of time in an environment as close to real as possible.
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verification and validation have been conducted by the development team of
systems engineers. In order for the development process to proceed efficiently
and effectively, the thresholds for acceptance need to be defined early in
the requirements development process by the stakeholders with the help of
the systems engineering team. In fact, in Chapter 6 the agreement on the

TABLE 11.5 Examples of Testing Facets

Structural Facet Functional Facet Environmental Facet Conditional Facet

Compliance Algorithm analysis Computer-supported Accuracy

Execution Control Live Adequacy

External Error handling Manual Boundary

Inspection Intersystem Prototype Compliance

Operations Parallel Simulator Existence

Path Regression Testbed Load

Recovery Requirements Location

Security Logic

Quality

Sequence

Size

Timing

Typing

Utilization

TABLE 11.6 Black and White Box Testing

Black box

testing

Outputs are determined correct or incorrect based upon inputs; inner

workings of the module are ignored. Both positive and negative

testing have to be employed. This approach is scalable to system-

level testing

� Positive testing pulls the test data and sequences from the

requirements documents.

� Negative testing attempts to find input sequences missed in the

requirements documents and then determine how the module reacts.

Crash testing is an example.

White box

testing

Inner workings of the module are examined as part of the testing to

ensure proper functioning. Usually used at the CI level of testing;

this method becomes impractical at the system level

� Path testing addresses each possible simple functionality and is based

upon a prescribed set of inputs.

� Path domain testing partitions the input space and then examines the

outputs for each partition of the input space.

� Mutation analysis injects pre-defined errors and tests the error

detection and recovery functionalities.

11.8 ACCEPTANCE TESTING 363



acceptance criteria was defined to be the exit criterion for the requirements
development.

The acceptance test determines whether the stakeholders, especially the bill
payer, is willing to accept the system as it is; accept it subject to certain
changes; not accept it; or accept it after certain changes have been made.
Acceptance testing focuses on the use of the system by true users, typically a
small, but representative sample of users. (During verification and validation,
members of the systems engineering team and discipline engineers conducted
the use of the system.) As a result, usability characteristics of the system are a
major focus. Another characteristic of acceptance testing is the lack of time
and money to conduct thorough, controlled tests of the system with users
from which inferences, based on classical statistics, can be drawn. The two big
issues in acceptance testing are what to test and how to test the usability of
the system.

11.8.1 Deciding What to Test

Common wisdom says that everything possible, including all functionalities or
paths, should be tested. The case study about the Ariane 5 failure is one of
many examples that support this wisdom. In fact, during verification and
validation the key question is not ‘‘what should be tested?’’ but ‘‘what have we
forgotten to test?’’ The more systematic the design process the more likely it is
that key issues for testing will arise. Nonetheless, it is imperative that everyone
involved in the design and integration process constantly question where
problems might arise. If only someone on the Ariane 5 development team
had insisted on running the new flight envelope through the software of the
inertial reference system, the design flaw would have surfaced. This is an area in
which the brainstorming techniques discussed in Chapter 9 can be useful to
generate potential test issues, not all of which will be meaningful, but some of
which may save the system from the disasters of Ariane 5 and Hubble.

The question of ‘‘what should be tested?’’ becomes very relevant during
acceptance testing. Acceptance testing substitutes developmental testers with
real users but must rely on all of the previous testing activities. Exhaustive
repetition of verification and validation is not feasible during acceptance testing
due to the limits of time and money. The focus of acceptance testing is whether
the system is acceptable or not as is; and if not, why. But what does it mean to
say that the system is acceptable? Can we distinguish only between acceptable
and unacceptable? Acceptability is defined here to mean the stakeholders want
to deploy the system as it is as soon as practically possible, with whatever flaws
there are. More flaws are acceptable to stakeholders when the current system’s
deficiencies are causing severe problems for the users in accomplishing their
goals, for the buyers in maintaining market share, or with the victims in
suffering too many losses. However, the stakeholders may be willing to accept
the system, yet still demand major changes quickly. The system is unacceptable
when it will cause more problems than the current system. Similarly, the system
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can be totally unacceptable beyond the possibility of improvement or unac-
ceptable until certain changes are made.

The acceptance test can either be designed under the assumption that the
system is acceptable or that it is not. If the assumption that the system is
acceptable is chosen, the test should be designed to prove it is not. A test
designed to try to prove that the system is not acceptable would probably
include a relatively small set of challenging activities that are key to the system’s
performance. If the system cannot perform some of these challenging activities,
then it can be failed. On the other hand, if the test design assumption is that the
system is not acceptable, then a reasonable amount of standard activity would
be included in the test in order for the test to prove that the system is
acceptable. If the system can pass most of these standard activities, then it
can be accepted. Recall that a statement cannot be proven true by example, but
it can be proven false by example. This latter approach is the more common in
acceptance tests but not the more defensible.

Decision analysis (see Chapter 13) provides a rational, defensible way to
analyze alternate acceptance test designs, including a seldom used option of no
acceptance test or accept the system after verification and validation. The
decision is whether to accept or not accept the system; the other options of
accept but fix and do not accept until fixed should also be included. Now test
designs are ways to gather information about system parameters about which
uncertainty exists. This increased information, when collected during the test,
may update this uncertainty in ways that are sufficient to justify accepting or
not accepting the system.

11.8.2 Usability

In Chapter 6 usability testing with prototypes was discussed as a method of
generating requirements. In qualification, usability testing is again used as part
of acceptance testing to determine the success with which the requirements have
been met.

In fact, usability testing is also used as part of verification testing when an
iterative or evolutionary design process is employed. Limited experimental
results for evaluating the effectiveness of evolutionary design are reported by
Nielsen [1993, p. 107]. The median improvement over four projects was 38%
per iteration, but with a high degree of variability. As a result at least three
iterations are recommended.

Recall from Chapter 6 that usability concerns five aspects of a user’s
interaction with a system: learnability, efficiency or ease of use, memorability,
error rate, and satisfaction. These characteristics should be part of the system-
wide requirements for most systems. These characteristics can typically not be
tested adequately until the entire system has been assembled or simulated.
During validation, the characteristics are tested by specially defined sets of
users. Larger samples of users, often uncontrolled sets of users called beta
testers, address these five aspects during acceptance testing.
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When designing any test queries, there are two central issues: Is the query
reliable and is the query valid? Reliable queries are queries that will result in the
same response when repeated. Reliability is a major problem that cannot be
solved completely due to the large individual differences among users. Segment-
ing the users into relatively homogeneous groups along the dimensions of domain
experience, computer experience, and experience with the system under develop-
ment helps significantly to obtain a reasonable chance of repeatability. To obtain
sample users in this last of the three dimensions, there must be a sustained effort
to train selected users to become very experienced users. Care must be used in
defining homogeneous segments of users. If each of the three dimensions is
categorized at two extremes, there are 8 (23) different combinations. Not all of
these combinations may be that interesting for the system in question. There may
be some interest in user groups that are midrange in one or more of these
dimensions; for most systems the predominant number of users will be neither
naive nor expert along any of these three dimensions. However, there are some
systems for which all users will be trained extensively before even being allowed
access to the system, for example, air traffic control systems, and aircraft.
However, for these systems the memorability factor of usability may be critical.

Valid queries are those that are measuring the right or appropriate aspect of
the system. For usability this will refer back to the five concerns outlined above.
See the metrics in Table 6.5.

The best way to achieve reliability and validity of test measures is to set up
relevant tasks on which tests will be conducted and measures taken. These
tasks should be drawn from the operational concept; each task may be a
complete scenario or a small segment of a scenario, depending on where in the
qualification process the test is being used. Complete scenarios should be used
during acceptance and the latter stages of validation. Segments can be used
during prototyping and the early stages of validation. Each task must define a
realistic setting for the user in terms of the system and its context, a specified set
of circumstances in which to be performing the task, a well-defined outcome
that the user is expected to achieve, and a realistic time interval in which to
complete the task.

Cox et al. [1994] state the most serious obstacles to successful usability tests are:

� Obtaining test participants that represent the real users of the system

� Securing a representative sample that will be predictive of how the total
population will evaluate the system

� Selecting the tasks that are most critical to the usability needs of real users

� Writing test scenarios that accurately represent real task situations that a
user will encounter in the system’s environment

� Predicting which of the user interface characteristics are most critical or
most often used

Yet these obstacles must be overcome for usability testing to be successful.
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11.9 SUMMARY

Integration begins when assemblies of CIs and components are evaluated in
terms of the derived requirements. This process is part of verification,
determining that the system was built right. There are several approaches to
integration, bottom-up being the most common one to systems engineering.
Top-down and big-bang integration are more common in software engineering.
Verification and integration end at the system level.

Qualification consists of verification, validation, and acceptance testing.
Verification addresses the comparison of the specifications for the system’s CIs,
components, subsystems, and the system to the actual designs to make sure the
designs are right, that is, meet the specifications.

Validation consists of early validation and operational validation. Early
validation (conceptual, requirements, and design validity) proceeds during
design to ensure that the design process is valid. Conceptual validity addresses
the congruence between the stakeholders’ needs and the operational concept.
This is the hardest element of validation to complete successfully. Require-
ments validity applies to the conformity between the operational concept and
the stakeholders’ requirements. Design validity addresses the coherence be-
tween the stakeholders’ requirements and the layers of derived requirements
associated with the system, components, and CIs.

Operational validity may begin before verification is complete, but ends
after verification is complete and addresses the conformance of the system
as it has been built with the operational concept. This is the last phase of
the development process under the complete control of the systems engineering
team.

Acceptance testing is controlled by the stakeholders and provides the
stakeholders the final opportunity to review the design and verify that it meets
their needs. Acceptance testing should fully utilize all of the data and analyses
that have been part of verification and validation. At the same time, though,
acceptance testing is focused on the use of the system by representatives of the
stakeholders’ community, whereas verification and validation employ highly
qualified users (i.e., engineers) as stakeholders for the most part. As a result the
system’s usability is a major focus during acceptance testing.

There are two critical chains whose links are checked during qualification.
The top-level chain consists of these links: conceptual validity, operational
validity, and acceptability. The first link is validated early in the design
phase; the last two links are addressed at the end of integration. The second
chain consists of requirements validity, design validity, verification, and
operational validity. Note that operational validity is common to both chains,
and recall that the chain is as strong as its weakest length. Therefore, it is a
mistake to assert that any one of the links is more important than any of the
others.
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CASE STUDY: THERAC-25

The Therac-25 was a computer-controlled machine that provided radia-
tion therapy in the late 1980s. Three patients were killed and one seriously
injured by radiation overdoses in the 1985–1987 time frame when four
different operators entered an acceptable, but infrequently used, sequence
of commands. While this tragedy can be traced to requirements and
design errors, the qualification process should be focused on catching just
this sort of flaw. This was clearly a case in which all possible data entry
sequences should have been tested [Jacky, 1990].

The development of the qualification system should be approached just
as the development of any system, as described in Chapters 6 to 10. The
operational concept, external systems diagram, objectives hierarchy, require-
ments, and architectures (functional, physical, and allocated) are all critical
elements of the development of the qualification system. Besides addressing
verification, validation, and acceptance, the qualification system is often
broken into four methods (or components): inspection, analysis and simula-
tion, instrumented test, and demonstration.

While it is common to visualize the qualification system as the system that
will detect and isolate faults in the product system’s design, design of the
qualification system, when done right, also reinforces the design process and
reduces the introduction of faults into the design of the system.

In summary for Section 2 of this book, the Traditional, Top-Down Systems
Engineering (TTDSE) process has been described in some detail. Figure 11.8
integrates Figures 1.6 and 1.19 to bring the major elements of Chapters 6
through 11 together into a single picture. The point of this figure is that the
process described in Chapters 6 through 11 is repeatedly applied to the process
of ‘‘peeling the onion’’ of the layers of the system. Each preceding layer
provides the starting information for the layer before it. The major difficulty is
getting started when very little needed information is available.

CASE STUDY: FAILURE OF THE ARIANE 5

Ariane 5, a launch vehicle developed by the European Space Agency
(ESA), was first launched on June 4, 1996, with four satellites that would
become the backbone of the Solar Terrestrial Science Programme. These
four satellites were developed by 500 scientists in over 10 years for about
$500 million. But at 37 seconds into the flight Ariane 5 veered off course
and disintegrated shortly after. The failure was traced to the two inertial
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reference systems (SRIs), one of which was in ‘‘hot’’ standby mode for the
other. Both SRIs failed when their software converted a 64-bit floating-
point number to a 16-bit signed integer value. The conversion failed when
the floating-point number was too large for the 16-bit signed integer,
resulting in an operand error for which there was no protection. The
system operated as designed when this failure occurred: the failure was
indicated on the data bus, the failure context was stored in EEPROM
memory, and the SRI processor was shut down.

During the design of the SRI there was a strong theme of designing to
prevent random errors. In addition, a requirement had been set to limit
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FIGURE 11.8 Repeated application of TTDSE to the layers of the system’s design.
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the maximum workload of the SRI computer to 80% of its capacity. An
analysis was done during the development and testing of the SRI
software to determine the vulnerability of the code due to exceptions
such as operand errors. Analysis of conversions from floating-point to
integer numbers yielded seven variables that could cause an operand
error. A deliberate decision was made to protect four of the variables.
The other three, including the one that caused the SRI failure, were
judged to be protected by either physical limitations or a large margin of
safety. A clear trade-off decision was made in this design to risk an
operand error in lieu of increasing the workload on the SRI computer.

The testing and qualification procedures set out for the flight control
system of Ariane 5 consisted of four levels: equipment qualification,
software qualification, stage integration, and system validation. No test
was done on the SRI to examine the operational scenario associated with
the countdown and flight trajectory of the Ariane 5. This scenario could
not be tested with the SRI as a black box. However, the SRI could have
been tested by feeding simulated acceleration signals into the SRI while
the SRI was placed on a turntable to provide realistic movement. This
test was not done because the SRI specification does not require the SRI
to be operational after launch. The purpose of the SRI was to provide
inertial reference data prior to launch. Even though the SRI served no
useful purpose after launch, its operation after launch was sufficient to
cause the destruction of Ariane 5 37 seconds into the flight.

Much of the Ariane 5 requirements and software were inherited from
earlier versions of Ariane. Ten years earlier requirements had been
established that the SRI operate 50 seconds beyond the initiation of
flight mode. Flight mode started at—9 seconds for Ariane-4; this allowed
restarting the countdown without waiting for a normal alignment of the
spacecraft, which takes about 45minutes. However, Ariane 5 had a
different initiation sequence that did not require the SRI being active
during flight. This is one case in which the old adage ‘‘if it ain’t broke, don’t
fix it’’ caused a failure.

The final stage at which this error could have been detected was at the
Functional Simulation Facility (ISF) which tests (1) guidance, naviga-
tion, and control performance in the whole flight envelope, (2) sensor
redundancy operation, and (3) flight software compliance with all
equipment of the flight control electrical system. ‘‘Technically valid
arguments’’ [Lions. 1996] were presented for not having the SRIs in the
loop for the tests conducted at the ISF. As a result the SRIs were never
tested for the Ariane 5 launch. The trajectory profile of Ariane 5 was
sufficiently different than the profiles of previous Ariane launches that
this operand error would always occur; a major requirements’ failure
followed by a failure of test design [Lions, 1996].
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PROBLEMS

11.1 Describe a process of establishing conceptual validity that identifies the
elements of conceptual validity and links between pairs of these
elements. This process should then establish characteristics such as
completeness, consistency, and correctness.

11.2 Describe a process that could be used to establish requirements
validity. This process should identify the elements of moving from
the operational concept to the stakeholders’ requirements, as discussed
in Chapter 6. Additional products beyond those discussed in Chapter 6
should be identified that would enable the validation of such char-
acteristics as completeness, consistency, and correctness when compar-
ing the operational concept to the stakeholders’ requirements.
Examples of comparisons that should be involved are:

� Matching of operational concept elements to elements of the external
systems diagram

� Matching of operational concept elements to input/output
requirements

� Matching the objectives hierarchy to elements of the external systems
diagram

� Matching the objectives hierarchy to input/output requirements

� Matching elements of the external systems diagram to input/output
requirements

� Tracing input/output requirements to external items

� Matching the objectives hierarchy to system-wide requirements

11.3 Describe the types of activities (similar to those in Problem 11.2) that
could be used to establish design validity. Identify intermediate
products that could be used for establishing design validity. In
particular, focus on developing the best definition of completeness
for requirements that you can.

11.4 Develop an operational concept, external systems diagram, objectives
hierarchy, and requirements for the qualification system for a traffic
light system.

11.5 Develop an allocated architecture for the qualification system for a
traffic light system.
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Chapter 12

Graphical Modeling Techniques

12.1 INTRODUCTION

There are three categories of qualitative modeling approaches used as part of
the development of functional and allocated architectures during the engineer-
ing of systems: data modeling, process modeling, and behavior modeling. A
data model addresses the relationships among the inputs and outputs of a
system. A process model defines the functional decomposition of the system
function and the flow of inputs and outputs for those functions. A behavior
model defines the control, activation, and termination of system functions
needed to meet the performance requirements of the system. In addition,
object-oriented engineering is becoming a major force in software engineering
and is beginning to be employed in systems engineering; object-oriented
engineering uses these three domains as well. Within each of these three
approaches, as well as object-oriented engineering, there are a number of
methods that are currently being used in systems and software engineering, as
shown in Table 12.1. This table provides a subset of the modeling approaches
currently in use. This chapter provides a description and sample model
applications of each of the modeling techniques that comprise data, process,
and behavior modeling. SysML and its modeling methods as well as IDEF0
(Integrated Definition for Function Modeling) were covered in detail in
Chapter 3. As discussed in Chapter 9, balancing or aligning the elements of
multiple modeling techniques is important in the development of the functional
and allocated architectures.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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12.2 DATA MODELING

There are many approaches to data modeling. This section describes two
different modeling techniques. Entity–relationship (ER) diagrams are the
oldest form of data modeling. Higraphs are the most formally based approach
and offer the most power.

Two other approaches, IDEF1 and IDEF1X, were developed within the
IDEF community but are not discussed in detail here. IDEF1 models data
using entity classes and relations among entity classes. An entity class has
attributes that describe the entity. The relations that are possible between
classes come from entity–relationship diagrams and address mainly relation-
ships that are one-to-one, one-to-many, and so forth. IDEF1 is an approach for
modeling the structure of information as the information is maintained in an
organization, including the business rules [Griffith, 1994]. IDEF1X also models
data using entity classes and relations among the classes. IDEF1X allows for a

TABLE 12.1 Functions of the design process

Design Function Major Inputs Major Outputs

Define Problem To Be Solved Concerns and

Complaints by

Stakeholders

Definitions of Measures of

Effectiveness and Desired

Ranges

Available Data from

Stakeholders

Constraints

Develop and Evaluate

Alternate Concepts for

Solving Problem

Ideas for Concepts

from All Interested

Parties

Recommended Concept(s)

Objective Hierarchy & Value

Parameters for Meta-

System

Define System Level Design

Problem Being Solved

Stakeholders’ Inputs Stakeholders’ Requirements

Operational Concept

Develop System Functional

Architecture

Stakeholders’

Requirements

Functional Architecture

Operational Concept

Develop System Physical

Architecture

Stakeholders’

Requirements

Physical Architecture

Develop System Allocated

Architecture

Stakeholders’

Requirements

Allocated Architecture

Functional

Architecture

Physical Architecture

Interface Architecture

Develop Interface Architecture Draft Allocated

Architecture

Interface Architecture

Develop Qualification System

for the System

Stakeholders’

Requirements

Qualification System Design

Documentation

Systems Requirements
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fuller definition of subtypes and attributes in terms of their aliases, data type,
length, definition, primary key, discriminator, alternate keys, and inversion
entities than does IDEF1. Similarly, the relationships in IDEF1X may be
defined on the arcs and include one-to-one, one-to-many, and so forth.
IDEF1X is used for designing relational databases [Griffith, 1994]. The
interested reader should see the FIPS PUB 184 [1993] on IDEF1X.

12.2.1 Entity–Relationship Diagrams

Entity–relationship diagrams model the data structure or relationships between
data entities. Art entity is a class of real, similar items (e.g., people, books,
computers). Entity types are shown in boxes; relationships are shown in
diamonds or as labels on the arcs. If diamonds are used, the graph has no
directed edges (with one exception). The relationship is usually read from left to
right or from top to bottom, but this is not universal [see Yourdon, Inc., 1993].
When the edges are directed, the relationship is read in the direction of the edge.
Figure 12.1 shows examples of both directed edges and diamonds.

The exception for directed edges when diamonds and undirected edges are
being used is called an associative entity. The associative entity is important
when there will be important data that is related to the relationship, as well as
the entities connected with the relationship. For example, a bank may wish to
keep data about each transaction (e.g., deposit, withdrawal). In this case, the
relationship is placed in a box, like any entity would be, and the edge
connecting the box housing the relationship to the diamond in which the
relationship would have been placed becomes a directed edge, the direction of
which can be in either direction [see Yourdon, Inc., 1993; Yourdon, 1989].
Figure 12.2 shows an example of an associative entity.

A unique relationship is that of supertype/subtype, which has become
known as a class/subclass relationship and is shown in Figure 12.3. A common
way to define a supertype/subtype relationship is by the relation ‘‘is-a.’’ An is-a
relationship can be based upon a partition of an entity or a subdivision that is

Customer Money

Deposits

Withdraws

Transfers

Deposits

Withdraws
Transfers

Customer Money

FIGURE 12.1 Simple entity–relationship diagram.
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not a partition. For example, if there are only two types of accounts offered by
a bank, the relation shown in Figure 12.3 is based upon a partition; if there was
a third type of account, the relation is not based on a partition. Many of the
entities and relationships associated with systems engineering that we have
discussed so far are shown in Figure 12.4. Are the subtypes shown for
requirement a partition or not?

Another type of relationship is called a binary relationship; this is exactly the
same as the relations that we discussed in Chapter 4 and including both unary
and binary relations. Unary relations are relationships among instances of the
same object. These relationships can be reflexive. Figure 12.4 does not show any
of these relationships because there are no instances of any entities shown.
Binary relationships among instances to two different objects are binary relations
and must be irreflexive. The relationship ‘‘built-from’’ is an example of a binary
relationship. These binary relationships can be one-to-one, one-to-many,
many-to-one, or many-to-many. Some ER methods make the finer distinction
between one and zero-or-one, many, and zero-one-or-many.

12.2.2 Higraphs

Harel [1987] introduced higraphs as a generalization of Venn diagrams and ER
diagrams. Figure 12.5 shows a higraph for a subset of the ER diagram of
systems engineering shown in Figure 12.4. An entity is considered to be a set
with multiple elements, called a blob. A blob is represented as an enclosed area;
see system-wide requirement in Figure 12.5. Atomic sets are blobs with no other
blobs contained within them; the only nonatomic blobs in Figure 12.5 are

Customer Money

Transaction

FIGURE 12.2 Associative entity.

Accounts

Savings Checking

FIGURE 12.3 Class/subclass relationship diagram.

378 GRAPHICAL MODELING TECHNIQUES



requirements, time, and components. (To be correct we should have placed
blobs inside the eight intersections of stakeholders’ and derived requirements
with input/output, system-wide, trade-off, and test requirements. However, this
would have compromised the readability of the figure.) The is-a relationship
from ER diagrams is replaced by representing one entity as a subset of another.
Cartesian products (unordered n-tuples) are shown by placing a dashed line
between blobs inside a larger blob representing the n-tuple. See the time blob,
representing a four-tuple of year-month-day-hour in Figure 12.5. This concept
is not in Figure 12.4.

In higraphs the relation is shown in diamonds with an undirected line
entering the diamond and an arc leaving the diamond to indicate which way the
relation is read.

12.3 PROCESS MODELING

This section addresses data flow diagrams and N2 charts.

12.3.1 Data Flow Diagrams

Data flow diagrams (DFDs) are one of the original diagramming techniques,
popular primarily with the software and information systems communities.
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Requirements
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Requirement
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Requirement

documents

is-a

Input/Output
Requirement

System-wide
Requirement

Function

Functional
ArchitectureFunctional

Decomposition
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Configuration
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External
System
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connectsSystem
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totraced

to

built
from

connects

Derived I/O
Requirement
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to
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traced
to
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Test
Requirement

is-a
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Trade-Off
Requirement

is-a

is-a

produces/transforms

produces/transforms

traced
to

FIGURE 12.4 Complex ER diagram of systems engineering.
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The basic constructs of data flow diagrams, shown in Figures 12.6–12.9, are the
(1) function or activity, (2) data flow, (3) store, and (4) terminator.

The circle is the most standard representation for a function. Arcs again
represent the flow of data or information between functions, or to and from
stores. Double-headed arcs are allowed; these represent dialog between two
functions, for example, a query and a response. The labels for an arc are placed
near each arrow. Branches are allowed and are depicted as forks. Branch
labeling conventions in data flow diagrams are the same as those for IDEF0;
see Figure 12.7. Joins are also permitted [Hatley and Pirbhai, 1988].

A new concept is introduced: the store or buffer, a set of data packets at rest.
Again there are several legal representations of a store, as shown in Figure 12.8.
In fact, a store is a physical solution based upon a number of problems; for
example, unreliable hardware, different programmers implementing software
that uses the same data, or growth potential for future enhancements. There is
no need for a store in a representation of ‘‘the essential requirements of the
system’’ [Yourdon, 1989, p. 151]. Stores are typically only shown on the level
one functional decomposition [Hatley and Pirbhai, 1988].

The final syntactical element of data flow diagrams is the terminator, or
external system in the language of Chapter 6. In fact, an ancestor diagram that
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Requirement
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Requirement

System-Wide
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Test
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Function
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System

performed
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Component
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Time
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defined
on

Trade Off
Requirement

FIGURE 12.5 Partial higraph representation of the systems engineering ER diagram.
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shows the interaction between the external systems, or terminators, and the
system being designed or analyzed, are standard in data flow diagrams (see Figure
12.9). Terminators are shown in boxes with the system being placed in an oval.

Yourdon’s guidelines for constructing DFDs are focused toward both
correctness and communicability:

1. Choose meaningful names for the processes, flows, stores, and
terminators.

2. Number the processes.

3. Redraw the DFD as many times as necessary for aesthetics.

4. Avoid overly complex DFDs.

5. Make sure the DFD is internally consistent and consistent with any
associated DFDs.

Process
Customer
Banking

Transactions

Process
Customer
Banking

Transactions

Process
Customer
Banking

Transactions

These are three equally valid representations of a process. 
Note a process begins with a verb, just as functions or activities
do in IDEF0.

Customer Notice:
   Main Menu
     Selection

This is an example of a “data
flow”. Note it is a noun
phrase and attached to an arc.

Double-headed
arcs signify dialog
between functions

FIGURE 12.6 Semantics of data flow diagram.

x1 ⊆ x, x2 ⊆ x, x3 ⊆ x

x1

x2

x3

x

FIGURE 12.7 Branches in data flow diagrams.
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Note that process names are verb–object phrases and are usually capitalized.
Flows are noun phrases and are not capitalized. Hierarchical numbers are
recommended along with the use of leveled DFDs in order to avoid complex
DFDs. Leveled DFDs follow many of the guidelines of IDEF0 decomposition.

ACCOUNT
NUMBERS

D1 ACCOUNT
NUMBERS

ACCOUNT
NUMBERS

FIGURE 12.8 Alternate representations of a store or buffer.
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FIGURE 12.9 Context diagram using a data flow diagram.
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Finally Yourdon [1989] recommends avoiding processes and stores that are
sinks and sources and labeling all flows and processes.

12.3.2 N-Squared (N2) Charts

Systems engineers [Laws, 1990b] created N2 charts in the 1960s to depict the
data or items that are the inputs and outputs of the functions in the functional
architecture. The N2 elements provide the same description of a hierarchical
decomposition of the system’s functions as does IDEF0 and data flow
diagrams. The N functions that are a partition of some higher level function
are displayed along a diagonal of the diagram with N rows and N columns (see
Figure 12.10). Each function is shown in a rectangle with a numerical box
across the top. In the off-diagonal elements are roundtangles (rectangles with
rounded corners) that contain the names of the items being sent from the box in
the associated row to the box in the associated column. The charts (sometimes
called interface diagrams) are called N2 because the chart contains N2 boxes to
show the flow of items within (or internal to) the N functions. Every item
that exits the first function and enters the second function is in the box to the
right of the first function and above the second function. Items exiting the
second function and entering the first function are shown to the left of
the second function and below the first function. In general, items flowing
from the ith function to the jth function are in the ith row and jth column.
Additional boxes along the top and down the right are added as an option to
show the flow of external items into and out of the set of N functions,
respectively. The N2 charts provide the same information as IDEF0 and data
flow diagrams with the exception of stores in data flow diagrams and control
items in IDEF0. Ancestor diagrams are used to show the items being exchanged
between the system and its external systems. Branches and joins are not used;
rather, items are defined at the lowest level of decomposition relevant to a
particular diagram and are then repeated as often as necessary. See, for
example, the item ‘‘sensed malfunctions’’ in Figure 12.10.

As can be seen in the N2 chart in Figure 12.10, the most obvious value of this
technique is the information concerning where there is no interaction between
functions. Systems engineers have used the N2 chart to allocate functions to
components such that there is minimal interaction among the components; the
order of the functions is modified so that the interactions among the functions
are all grouped close to the diagonal.

12.4 BEHAVIOR MODELING

This section addresses modeling techniques that are used to explore the
dynamics of the system: behavior diagrams, finite-state machines, statecharts,
control flow diagrams and Petri nets. These modeling techniques address
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discrete-event behavior, which is behavior that is triggered by the occurrence of
specific events.

12.4.1 Behavior Diagrams

Behavior diagrams [Alford, 1977] originated as part of the Distributed
Computer Design System of the Department of Defense. System behavior is
described through a progressive hierarchical decomposition of a time sequence
of functions and their inputs and outputs. Functions are represented as verb
phrases inside boxes. There is a control structure represented by lines that flow
vertically, from top to bottom, through the boxes. The control structures (see
Figure 12.11) are identical to that described for FFBDs above. The control
lines have only one entry path into a function, but may have multiple-exit
control paths. Input and output items are represented in boxes with rounded
corners; their entry to and exit from functions is depicted by arcs that enter and
exit the boxes, respectively.

Specific control structures for sequence, selection, iteration, looping, con-
currency, and replication have been defined within behavior diagrams, just as
they have been in FFBDs. A sequence of functions is connected via a vertical
straight line. A selection function is denoted by a function with two or more
control lines emanating from the bottom of the function. The emanating control
lines must be labeled to denote the exit criterion associated with each control line.

The multiple control lines must also be joined lower in the diagram at a
select node, a small circle with a+ inside. Figure 12.11 shows a selection
function on the top middle.

An iterate control structure is set off on a control line by two nodes. Each
node is a circle with an @* inside. There is an arc from the bottom iterate node
to the top iterate node with a DomainSet label that defines at what frequency or
how many times the functions inside the iterate structure are to be exercised; see
the bottom left of Figure 12.11.

An exit loop control structure uses a selection function to determine the
point at which the repetition of a function (or set of functions) should be
terminated. The exit loop control structure is set off by two vertically placed
nodes (circles with an @ inside) that are connected with an arc going from the
bottom node to the top node. The selection function that is responsible for
ending the repetition has multiple exit control lines, one of which ends at an G
node or circle with G inside. An exit loop control structure is shown in the top
right of Figure 12.11. When the exit criterion for the G node is satisfied within
the function, control emanates out the control line with the G node and then
drops below the bottom iterate node to the L node.

The control structure denoting that functions can he executed concurrently
(see the bottom middle of Figure 12.11 and Figure 12.12) is depicted by two
vertically placed nodes designated by circles with & inside. In this special
control structure all of the control lines below the first concurrent node are
activated when control hits this first & node. The control line below the bottom
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concurrent node cannot become active until all of the functions on the
concurrent control lines are finished executing.

Two vertically placed nodes with &* inside denote a replication control
structure, which is a special case of a concurrent control structure. In this case
an identical function is executed concurrently, presumably by multiple copies of
the same resource. A DomainSet on a line that connects the upper and lower
replication nodes labels the number of concurrent resources. The fact that there
are multiple resources executing the same function is made visual by the symbol
for a ‘‘stack of papers’’ on the main control line between the upper and lower
replication nodes. There may be a Coordination function on the line with the
DomainSet label.

Definition of the items within the behavior diagram is equally important.
First, it is possible to use the sequence, concurrent, and replication control
structure to organize the items (or inputs and outputs) associated with
functions. Second, there are various categories of items. An item that enters
the system from outside or is produced by the system for outside consumption
is called an external item; all other items are called internal items. The
roundtangle for an external item is larger than that for an internal item. All
items can be hierarchically decomposed just as functions can. An item that is
decomposed is called a time item and is represented by a clear box with a solid
little square in the upper left corner. An item that is at the bottom of a
decomposition is called a discrete item; a discrete item is represented in a shaded
roundtangle. Discrete items are classified as either message, state, temporary, or
global items. A message item is sent from a function on one control line (or
process) to a function on a different control line (or process) and the message
item triggers the receiving function to execute as soon as the function is enabled
by the control structure. Global items do not trigger the receiving function to
execute. State items are input to and output from functions on the same control
line and are therefore always internal items. A state item is not a trigger.
Temporary items are for special purposes.

12.4.2 Finite-State Machines and State-Transition Diagrams

Machines, a modeling domain for dynamic systems, are partitioned into finite-
state and continuous. Finite-state machines (FSMs) [Denning et al., 1978] have
only discrete-valued inputs, outputs, and internal items. Continuous machines
allow continuous and discrete inputs, outputs, and internal items. Continuous
machines are sometimes called analog machines. When digital computers
became more popular than analog computers, FSMs became the major focus
of attention in engineering due to the finite-state nature of digital computers.
Even so continuous and discrete signals are usually handled very differently by
a digital computer. The continuous variable (e.g., speed or internal temperature
of the elevator car) is represented by a word that typically contains many more
bits than the variable has significant digits. On the other hand a digital variable
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(e.g., operating mode such as fully operational or partially operational or not
operational, and direction of a specific elevator car such as up or down) is
usually represented by a symbolic word that has a relatively few number of
states, say less than 10.

Finite-state machines are usually divided into sequential and combinational;
see the machine partition in Figure 12.13. The focus here is on the sequential
FSM, as represented by a state-transition diagram (STD). A combinational
FSM is one in which its current outputs are characterized only by its current
inputs, a condition of having no memory that is often not met. The sequential
FSM allows past inputs to play a role in the determination of the current
outputs, thus enabling the FSM to have a memory. There is a formal
mathematical theory for an FSM, providing some interesting theoretical results
and simulation capability.

The STD models the event-based, time-dependent behavior of a system.
Recall from Chapter 7, the state of a system is defined to be its status, as defined
by as many variables as needed to determine the system’s ability to meet its
missions. The mode of a system is its operating condition, such as off, idling, or
moving for an automobile. It is the mode of a system that should be modeled by
an STD. However, as shown in Figures 12.14 and 12.15, there is a fine line
between the modes of a system and the functions of a system.

Boxes (or ovals) and arcs are the syntactical elements of STDs; the boxes
represent system modes and the arcs represent the direction of mode change.
Typically the arcs are labeled to show both the input stimulus (or event that
triggers the mode change) and the action or output taken by the system in
response to the event. The event and output are typically separated by a slash or
horizontal line: event/output. Figure 12.14 shows a partially completed STD
for an automatic teller machine. This STD is incomplete because the transitions
to the four customer choices are not labeled; the transitions from the four
customer choices are not depicted via arcs. It is possible that each might be
completed successfully or canceled. The withdrawal might be denied. In each
case the customer can choose another transaction or not. Figure 12.15 shows an
STD for an elevator car (this figure is a modification of one found in Gomaa
[1993]).

Continuous or
Analog Machines

Combinational
FSM

Sequential
FSM

Finite State
Machines (FSMs)

Machines

FIGURE 12.13 Partition of machines.
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It is important to note differences between the view provided by an STD and
the view provided by one of the process models (DFD, IDEF0). The STD
makes no attempt to provide a functional partition of the top-level system
function or any function that is part of its partition. Rather the STD focuses on
key triggering events that will cause the system to transition from one
operational mode to another and identify any key system outputs produced
as a result that transition. Similarly process models are not required to capture
the system’s operating modes. In Chapter 7 the functional architecture was
defined to capture the system’s operating modes as the initial decomposition of
the system’s functions.

12.4.3 Statecharts

Statecharts are a generalization of higraphs by Harel [1987] to extend the
notions of STDs. This generalization of an STD is based on fonnal mathema-
tical principles and leads to theoretical results and simulation models.

A major criticism of STDs has always been that the entire diagram must he
contained on one level, meaning that an STD for a large system quickly
becomes unintelligible and unmanageable. Statecharts, by exploiting the subset

IDLE

WAITING FOR
CUSTOMER

IDENTIFICATION

WAITING FOR
CUSTOMER’S
ACCESS CODE

WAITING FOR
CUSTOMER’S

CHOICE

DEPOSIT WITHDRAWAL TRANSFER ACCOUNT
BALANCE

Cust. ID Presented
Process ID for Validity

Cust. ID Read
CN:‘‘Enter Access Code’’

Access Code Validated
CN:‘‘Main Menu Choices”

Invalid Access Code
CN:‘‘Please Re-enter’’

3rd Invalid Access Code
CN:‘‘Transaction Terminated’’

Unread Cust. ID
CN:‘‘ID Unreadable’’

FIGURE 12.14 State-transition diagram for an ATM.
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properties of higraphs, provide a means to develop hierarchical STDs. The
atomic blobs in a statechart are singleton, or atomic, states.

Figure 12.16 presents an external system representation of a cruise control
system (CCS) [Charbonneau, 1996]; the human operator and the remaining
components in the car are the external systems. Noting how the action ‘‘b’’ and
‘‘b hat’’ affect all three subsystems by causing simultaneous state transitions
with a single event demonstrates an extension by statecharts over the STD. The
states to which the X label is connected indicate the initial condition or state for
the three systems. Note that inside state ON for the automobile are the states of
acceleration, deceleration, and maintain speed.

Arcs in statecharts are labeled, just as they in STDs. Inside the system the
initial state is identified by finding the arc that emanates from a black dot; the
state that this arc enters is the initial state of the system; see Figure 12.17.

Figure 12.17 presents the decomposition of the NOT OFF state of the CCS.
The OFF state was not decomposed. Recall from the discussion on higraphs
that the vertical dotted line indicates a Cartesian product. The INDICATOR
and the SYSTEM STATUS blobs are independent, defining a Cartesian
product. Both INDICATOR and SYSTEM STATUS have two states. The
state DEAD for the INDICATOR is not decomposed.

Elevator Idle,
Door Open

Preparing To
Move Down

Preparing To
Move Up

Elevator
Door Opening

Elevator
Enabling Entry/Exit

Elevator
Moving

Elevator
Stopping

 Elevator
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Checking Next
Destination

Down Request
Close Door

Close Door
Up Request

Door Closed
Up Indicator
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Down Indicator
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Door Opened
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Pause Timer Elapsed
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Up Request
Close Door 

Down Request
Close Door

No Request
Maintain Open Door

FIGURE 12.15 State-transition diagram for an elevator car.
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The ability to represent unordered n-tuples in higraphs enables statecharts to
depict states as being the orthogonal composition of elements from sets of
states. When the initial state is an n-tuple, there must be n initiating arcs to
define which element of the set of n-tuples is the initial state. Similarly, when
there is a transition from (to) a state that is part of an n-tuple to (from) one that
is not, the arc must be joined by an arc from (must branch to) n� 1 other arcs
from other elements of the n-tuple.

Figure 12.18 shows the three states for ALIVE in Figure 12.17 that are
associated with the INDICATOR. The ‘‘w’’ activity in this third-level chart is
the same ‘‘w’’ in the supersystem top-level chart. This single activity, ‘‘w,’’

SUPERSYSTEM

HUMAN

AUTOMOBILE

b

b

CCS
w

OFF

w( b)

b

m

X

NOT OFF

b

b
DRIVE DRIVE

ON OFF

ARC LABEL DEFINITION 

b turn on car 

b hat turn off car 

m

w depress on/off button 

accident occurs 

FIGURE 12.16 External system statechart for a cruise control system (after
Charbonneau [1996]).
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causes state transitions both in depth (all sublevels) and in breadth (all
subsystems).

Figure 12.19 depicts the decomposition of ON in Figure 12.17. The circled
‘‘H’’ is the only new concept introduced in this diagram. When the ON state is
entered from the STANDBY state, it automatically reverts to the conditions it
was in before it transitioned to STANDBY. The circled ‘‘H’’ is read as
Historical. If the ON state is entered from the NOT ON state, it defaults to
maintain because there is no historical reference.

Figure 12.20 integrates the statecharts (Figures 12.17–12.19) for the CCS
with the additional decomposition for the STANDBY state shown in Figure
12.17 for SYSTEM STATUS.

When an event such as an interrupt causes a transition from many states to a
single state, an STD implements this with many arrows to depict the effect of a
single event. In a statechart an arrow can go from a state (blob in higraphs)
containing several atomic states (blobs). As a result an interrupt can be shown
with a single arrow from an aggregate state, demonstrating how the number of

NOT OFF

INDICATOR

DEAD

ALIVE

c
d

SYSTEM STATUS

ON

STANDBY
vr

fevs u

ARC LABEL DEFINITION

c circuit closed (good bulb or fuse)

d circuit open ( bad bulb or fuse)

e brake depressed 

f clutch depressed 

u wheel revolutions > 7920/ (pi*r) where r
is the wheel radius in inches

vr push button to resume / set 

vs push CCS button to standby

FIGURE 12.17 Decomposition of the ‘‘not off’’ State (after Charbonneau [1996]).
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these arrows can be reduced with statecharts. See the transitions between NOT
OFF and OFF in Figure 12.20.

Another extension of statecharts is the ability to nest transitions by using
labels such as a/b. This means that transition ‘‘a’’ will cause another transition
‘‘b.’’ located elsewhere in the statechart, to occur. Harel [1987] calls this
broadcasting because one event can broadcast a trigger that generates a chain
reaction of one or more transitions throughout the statechart.

12.4.4 Control Flow Diagrams

Control flow diagrams (CFDs) are used in conjunction with data flow diagrams
and model changes in the system’s operating mode, thus turning on or off or
restructuring sets of the system’s functions. As defined by Hatley and Pirbhai
[1988], the control structure of a system receives status information from
external systems and sends such information about the system to these external
systems. Control flows are typically discrete variables that can be modeled
symbolically.

Control flow diagrams mimic DFDs in syntax and semantics, except for one
additional symbol. In fact, the functional decomposition of the two should be

ALIVE

BLINK

OFFON

w

w w
vr

f

e

vs

ARC LABEL DEFINITION

e brake depressed

f

vr push button to resume / set 

vs push CCS button to standby 

w depress on/off button 

clutch depressed

FIGURE 12.18 Decomposition of the alive state for the indicator (after Charbonneau
[1996]).
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identical. These two types of diagrams could be superimposed to form a single
diagram; some authors recommend this. There is a context diagram of control
that shows the relationship of the system with the external systems, for
example, the passing of status information concerning the changing of modes.
The control arcs are typically shown as broken lines to distinguish them from
data flow. The additional symbol is a bar or solid line, shown either vertically or
horizontally. All of the bars on a particular diagram represent an FSM
behavior for the functional element being decomposed by the functional
elements shown on the joint DFD/CFD diagram.

12.4.5 Petri Nets

Petri nets (PNs) are based on a rigorous mathematical definition leading to an
executable simulation model and having formal mathematical properties. Petri

ON

MAINTAIN

ACCELERATEDECELERATE

H

vr

k j i

vd va

v v

hPULSE

h

vd

va

ARC LABEL DEFINITION

h non drive wheel RPM not equal to drive wheel RPM 

h(hat) non drive wheel RPM equal to drive wheel RPM 

i wheel RPM decrease from set speed 

j wheel RPM increase from set speed 

k wheel RPM match to set speed 

v(hat) release the CCS button 

va va = push CCS button to accelerate 

vd push CCS button to decelerate 

vr push button to resume / set 

k

FIGURE 12.19 Decomposition of the ‘‘on’’ state for the INDICATOR (after
Charbonneau [1996]).
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nets capture the precedence relations and structural interactions of potentially
concurrent and asynchronous events.

Mathematically, a PN is a bipartite directed multigraph. The two node types
are the place (depicted by a circle) and the transition (depicted by a bar or
rectangle); see Figure 12.21. The arcs are restricted to connect places to
transitions or transitions to places. In addition, PNs contain markings or a
mapping of tokens to places. A transition can fire when a token is present in
each of the places that have arcs entering the transition. So t1 can fire in the top
half of Figure 12.21; after the firing the transition places one token in each place
that has an arc from the token.

A Petri net is defined a four-tuple, or four sets:

P={p1, p2, y, pn}, the set of places,

T={t1, t2, y, tm}, the set of transitions,

A={P �T} , {T�P}, the set of input and output arcs,

M={m1, m2, y, mn), the net’s initial markings (drawn as dots).

The state of the PN is defined by the marking. In ordinary PNs, the tokens
are indistinguishable. The existence of one or more tokens at a place indicates
the availability of a resource for the fulfillment of a condition that is associated
with a transition. Figure 12.22 provides two examples of simple systems for
concurrent processing and a simple communications protocol.

There are many extensions of ordinary PNs. Colored PNs allow more than
one type of token; timed PNs allow varying times for the transitions to occur;
and stochastic PNs allow stochastic transitions. See Murata [1989] for a good
overview of this topic.

p1

p2

p3t1

p1

p2

p3t1

t1 “fires”.

FIGURE 12.21 Simple Petri net example.
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12.5 SUMMARY

The complete model-based examination of a system requires at least the use of
data, process, and behavior modeling. When using multiple approaches to
model a single system, balancing or aligning the elements of the multiple
models is critical. Several approaches for each of these model categories were
presented in this chapter.

Data modeling is the specification of data entities and relationships bet-
ween pairs of entities at a minimum. In addition attributes of each data entity
can be developed. Entity relationship diagrams provide the basic data
modeling capability and are probably the most widely used of the data
modeling techniques. Higraphs extend the data modeling of ER diagrams by

p2

t1

p1 t2

t3

p3

p4

t4

p5

begin end

Concurrent Processing

Simple Communication Protocol

Wait
for ack.

Process 1

Ready
to send

Ack.
received

Message
received

Process 2

Ready
to receive

Ack.
sent

Send
Message

Buffer
full

Buffer
fullReceive

Message
Send
ack.

Receive
ack.

FIGURE 12.22 Petri net models of simple system architectures (after Murata [1989]).
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adding the representation of subset and cross-product relationships among
entities.

The three process modeling techniques covered in this book are IDEF0
(see Chapter 3), data flow diagrams, and N2 charts. Each of these techniques
captures the relationship among functions in the functional decomposition by
representing the transformation of inputs into outputs. The N2 charts are the
simplest but least graphical representation of a process model. Data flow
diagrams are widely used but least standardized of all of the modeling
techniques discussed in this book. IDEF0 was quite standardized since it
was created in the 1970s; the National Institute of Standards and Technology
(NIST) has created a FIPS for IDEF0, thus making an IDEF0 model easy to
read and comprehend. Distinctions between these techniques are that IDEF0
defines at least one control item for each function while the other techniques
treat control items as inputs or ignore them. IDEF0 also includes the
construct of a mechanism to represent the resources that execute the function,
making it the only process modeling technique general enough to represent
portions of the allocated architecture of the system. The control could be a
trigger to activate the function or policy instructions for implementing the
function. Data flow diagrams contain the concept of a data store that is
useful during design to define which data elements will be contained in a
specific database.

Five modeling techniques for behavior modeling were described in this
chapter. FFBDs were described in Chapter 3. Control flow diagrams are the
simplest and by far the least useful. Control flow diagrams add the concept of
transitions to data flow diagrams, which suggests that the system modes and
functions are identical. While this assumption may be useful in simple systems
and software products, it is very limiting in most real systems of hardware,
software, and other resources. Behavior diagrams come from the systems
engineering discipline and add FFBD control structures on top of a process
model to represent serial, concurrent, repetitive, and replicated process
execution as well as the rule-based selection of functional outputs. While no
formal mathematical model has been published to define these control
structures, they have been implemented in software, suggesting that such a
formal model exists and could be specified. Finite-state machines and state-
transition diagrams are used in other engineering disciplines, but are not
sufficiently general to capture the rich behavior possible in a complex system,
for example, concurrent processing. Statecharts are a generalization of state-
transition diagrams that enable many of these limitations to be overcome but
still provide a limited semantics and syntax for modeling complex systems.
Petri nets are the only behavior modeling technique with an underlying
mathematical model that defines what can be done and provides analytical
results without simulation. Unfortunately, Petri net models are quite sophis-
ticated and are not likely to be employed on a widespread basis in the
engineering discipline for systems until their potential benefits are much better
justified and become widely known.
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PROBLEMS

12.1 Expand the ER model in Figure 12.4 to be a complete representation of
the entities and classes discussed in Chapter 2 for the systems
engineering process.

12.2 Create a higraph that is a complete version of Figure 12.4.

12.3 Create a complete behavior diagram model of the process of engineer-
ing a system based upon the IDEF0 model of the engineering of a
system in Appendix B.

12.4 Create a statechart for the functioning of the air bag system from the
time the driver turns the car on until an accident occurs that activates
the air bag or the driver turns the car off.
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Chapter 13

Decision Analysis
for Design Trades

13.1 INTRODUCTION

Decision making is a process undertaken by an individual or organization.
The intent of this process is to improve the future position of the individual
or organization in terms of one or more criteria. Most scholars [Howard,
1968] of decision making define this process as one that culminates in an
irrevocable allocation of resources to affect some chosen change or the
continuance of the status quo. The most commonly allocated resource is
money, but other scarce resources are goods and services and the time and
energy of talented people.

Watson and Buede [1987] have identified three primary decision modes:
choosing one alternative from a list, allocating a scarce resource(s) among
competing projects, and negotiating an agreement with one or more adver-
saries. Decision analysis is the common analytical approach for the first mode,
optimization for the second, and a host of techniques have been applied to
negotiation decisions [Jelassi and Foroughi, 1989]. Concepts of decision
analysis are relevant to the second and third of these modes.

Section 13.2 provides a philosophical discussion of decision making and the
elements of decision making: values, alternatives, and facts. Section 13.3
explains the rational basis of decision analysis in terms of a set of axioms
that provide a compelling structure for some decision makers. Section 13.4
provides an analytical basis for modeling stakeholder values in the face of
conflicting objectives, a critical element in design decisions when faster, better,
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and cheaper are all desired but not mutually compatible. Section 13.5 discusses
the modeling of uncertainty and risk preference for design decisions; decision
trees, relevance diagrams, and influence diagrams are introduced as modeling
tools. A sample application focused on the development of trade-off require-
ments consistent with an objectives hierarchy and performance requirements is
presented in Section 13.6; this sample application is based upon a real
application of decision analysis to requirements development.

This chapter describes a model of uncertainty (probability theory), a model
of value (multiattribute value theory), a model of risk preference (utility
theory), and a normative model for incorporating uncertainty, value, risk
preference, and complexity for aiding the thought and conversation process
needed to make explicit, rational decisions.

13.2 ELEMENTS OF DECISION PROBLEMS

Decision analysis is a normative theory for making a decision (an irrevocable
allocation of scarce resources). The three major elements of a decision
that make its resolution troublesome are the creative generation of alternatives,
the identification and quantification of multiple conflicting criteria, and the
assessment and analysis of uncertainty associated with the what is known and
not known about the decision situation. Howard [1993] has drawn an analogy
between the model building and analysis processes inherent in decision analysis
and a conversation with a decision maker. The conversation (or modeling)
needs to address what the decision maker (stakeholders in systems engineering)
cares about (values), what the decision maker can do (alternatives), and what
the decision maker knows (facts or absence thereof).

Many stakeholders and systems engineers claim to be troubled by the
feeling that there is an, as yet unidentified, alternative that must surely be
better than those so far considered. The development of techniques for
identifying such alternatives is receiving considerable attention [Elam and
Mead, 1990; Friend and Hickling, 1987; Keller and Ho, 1988; Keeney, 1992;
West, 2007].

Ample research [von Winterfeldt and Edwards, 1986] has been undertaken
to identify the pitfalls in assessing probability distributions that represent the
uncertainty of a stakeholder. Research has also focused on the identification of
the most appropriate assessment techniques. Similar research [von Winterfeldt
and Edwards, 1986] has focused on assessing value and utility functions.
Keeney [1992] has recently advanced concepts for the development and
structuring of a value hierarchy for key decisions. While it will never be
possible to turn decision support via decision analysis over to a computer, the
vast number of real-world applications of decision analysis [Kirkwood and
Corner, 1993] demonstrate that this analytic modeling support is well worth the
time and effort.
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13.3 AXIOMS OF DECISION ANALYSIS

There are five basic rules of thought [von Neumann and Morgenstern, 1947;
Howard, 1992] that establish decision analysis: probability, order, equivalence,
substitution, and choice. Probability is adopted as the representation of
uncertainty. This is a well-founded discipline for addressing uncertainty and
is the common approach within engineering.

The order rule states that our preferences are sufficiently well defined that
any possible list of outcomes associated with the design alternatives can be
ordered from least preferred to most preferred on each objective in the
fundamental objectives hierarchy. In addition, once our preferences are
aggregated across all objectives there is a single list of outcomes ordered by
our preferences. Naturally, it is possible to be indifferent between two outcomes
on a specific objective or on the aggregate. Our preference order does not need
to be the same from one objective to the next; in fact, there would be no need to
have multiple objectives if this were the case. The ordered list must be
transitive, which is to say that any outcome can only appear once on any
ordered list. If this is not the case, we become subject to the ‘‘money pump’’
argument; a disinterested party could entice us to put up an infinite amount of
money by offering us a sequence of trades among three alternatives. For
example, I would be intransitive if I stated that I preferred a Lexus to a
Cadillac, a Cadillac to a BMW, and a BMW to a Lexus. With these preferences
and ownership of a Lexus, I would pay to swap for your BMW, pay again to
swap the BMW for your Cadillac, and then pay a third time to swap the
Cadillac for the Lexus I originally owned. By this time I should realize there
was something wrong with my preference structure.

The equivalence rule sets up a situation with three outcomes, A, B, and C,
where A is preferred to (W) B, and BWC. This rule states that there is some
lottery containing a probability, p, of obtaining outcome A and a probability of
(1 � p) of obtaining C that will make us indifferent to obtaining outcome B for
sure.

The substitution rule states that we are willing to substitute any combination
of outcomes in a decision-making situation if we are indifferent between them.
This is just the operational definition of equivalence.

Finally, suppose we have two alternatives, each with exactly the same
outcomes, and the probabilities of the outcomes are the same for all but two.
If one of the alternatives has a higher probability associated with the outcome
that is most preferred, then we should be happy to choose this alternative. This
is the choice rule.

Given these four rules plus the axioms of probability theory, a normative
theory of decision making results that dictates the maximization of expected
utility. Utility in this case needs to be measured on an interval scale; an interval
scale preserves equal intervals of measure and can be multiplied or divided by a
constant and can have a constant added or subtracted from it. A ratio scale of
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measurement for utility could be used but is not necessary. Note that
probabilities are constructed on a ratio scale.

13.4 MULTIATTRIBUTE VALUE ANALYSIS

Multiattribute value analysis is a quantitative method for aggregating a
stakeholder’s preferences over conflicting objectives to find the alternative
with the highest value when all objectives are considered. (Note the phrases
‘‘multiattribute utility analysis’’ and ‘‘multiple objectives decision analysis’’ are
also often used. In this book the word utility is reserved for situations in which
uncertainty has been explicitly modeled and the stakeholder’s risk preference is
being included in the analysis.) Multiattribute value analysis can be addressed
simply as is done in this chapter or with a great deal more sophistication [see
French, 1986; Keeney and Raiffa, 1976]. Additional insights can be found in
Kwinn and Parnell [2007]. Other approaches to value computations are also
available: analytical hierarchy process (AHP) [Saaty, 1980, 1986], percentaging
[Nagel, 1989], the technique for order preference by similarity to ideal solution
(TOPSIS) [Yoon, 1980], a fuzzy algorithm [Yager, 1978], quality function
deployment (QFD) [Akao, 1990], and Pugh matrix [Pugh, 1991]. None of these
other approaches are based on an underlying set of axioms that provide a
foundation for justifying an analytical process except the AHP. However, there
are a number of analytical concerns that have been raised about AHP,
percentaging, TOPSIS, and similar approaches [Buede and Maxwell, 1995;
Dyer, 1990; Harker and Vargas, 1990].

The process for defining the objectives of interest for a system has been
defined in Chapter 6. For the systems engineering application addressed in this
book, the objectives are the performance requirements that have been defined
as described in Chapter 6, as well as derived performance requirements that
have been defined as part of the development of the allocated architecture.

Following the definition of the objectives, a value scale must be defined for
each objective at the bottom of the objectives hierarchy. This value scale
definition begins by defining the minimum acceptable value of performance for
a given objective (constraining requirement) and the most desired value of
performance for the objective (the design goal). Then the relative value of
improving from the minimum acceptable threshold to the design goal is
quantified in the form of a value curve. Objectives that are a combination of
bottom-level objectives are in the hierarchy for ease of aggregation and
communication; as a result these intermediate and the top-level (or funda-
mental) objectives are computed from lower level objectives.

After value scales are defined for each bottom-level objective, value weights
that address the relative value associated with improving from the bottom
(minimum acceptable threshold) of the value scale to the top (design goal) must
be assessed from the stakeholder for all bottom-level objectives as well as the
intermediate objectives. The discussion in this chapter is going to address the
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common, but not universal, case in which the values can be aggregated across
objectives by using a weighted-average formula. The books by French [1986]
and by Keeney and Raiffa [1976] address the general aggregation process and
the assumptions required for various aggregation formulas.

The assumption that the general value function over the vector x of n
bottom-level objectives can be written as a weighted additive function of value
functions on the individual objectives:

vðxÞ ¼
Xn
i¼1

wiviðxiÞ ð13:1Þ

will be adopted from here on out. Note the weights are commonly normalized
to sum to 1.0, and the value functions are normalized to range from either 0 to
1, or 0 to 10, or 0 to 100.

13.4.1 Eliciting Value Functions

The axioms of decision analysis produce the result that the value function
over the vector x of bottom-level objectives must only be an interval function
when the decision maker is risk neutral (the assumption made here). As a result,
the individual value function vi over bottom-level objective xi must also be an
interval-scaled function of x. This interval property is the key to eliciting value
functions from stakeholders about the relative value they assign to improving
from the threshold of acceptable performance of xi, xi

0, to the most desired
value of xi*. Watson and Buede [1987] present the bisection and the equal
differences methods for eliciting these functions.

These value functions take four general forms (see Fig. 13.1): decreasing
returns to scale (RTS), linear RTS, increasing RTS, and an S-curve. The
decreasing RTS signifies a satiation of preference near the most desired value.
Decreasing RTS is commonly encountered when the threshold of acceptable
performance is within the key performance range of interest to the stakeholders
and the most desired value is outside this key performance range where
satiation takes over. The linear RTS is commonly found when both the
threshold of acceptable performance and the most desired value are within
the key performance range of interest, or when there is no possible satiation of
preference. The increasing RTS occurs when (1) the threshold of acceptable
performance has been pushed below (in a value sense) the key performance
range and (2) there is a technological or other cap on the most desired value so
satiation of preference has not begun. Pushing the threshold of acceptable
performance below the key performance range in a value sense means limited
value is obtained by small increases in the performance parameter until some
significant change is achieved. The S-curve reflects a joining of decreasing and
increasing RTS and reflects the case in which the key performance range lies
between the threshold of acceptable performance and the goal. The S-curve
indicates that the range of possible designs has been maximized.
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Note no value curves that increase and then decrease, or decrease and then
increase, have been shown. When value functions that are not monotonic
(always increasing or always decreasing) are elicited, it is highly likely that there
are two underlying objectives that have been combined. These two objectives
should be separated so that the stakeholders are only considering one objective
at a time when being asked to specify their preferences.

Exponential functions are most commonly used to approximate the value
functions of stakeholders [Kirkwood, 1997]. Equation (13.2) shows a standard
form for variables on which more is better and that is normalized to be 0 when
the minimum acceptable threshold is met and 1.0 when the design goal is met.
When a is greater than 1.0, this equation demonstrates decreasing RTS. When a
is equal to 1.0, this equation becomes a straight line. When a is less than 1.0,
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this equation demonstrates increasing RTS.

viðxiÞ ¼
1� e�aðxi�x

0
i Þ

1� e�aðx
�
i
�x0

i
Þ ð13:2Þ

Wymore [1993] has suggested a value function (or figure of merit) family that
can accommodate all of the above value curves to some degree.

13.4.2 Eliciting Value Weights

Before discussing how to elicit the weights that are used in the additive value
function of Eq. (13.1), the meaning of these weights must be made clear. In
words, the weights must reflect the relative value associated with increasing from
the bottom to the top of each value scale. Note in Figure 13.1 each of the value
functions has been normalized to range from 0 to 1. Other normalizations, for
example, 0 to 10, 0 to 100, 14 to 85, are all acceptable, but it is usually most
meaningful to stakeholders and everyone else to have every value function
normalized from the same bottom value to the same top value. Value weights
that reflect the relative value in increasing from the bottom to the top of each
value scale are called swing weights because they represent the value attached to
the swing from bottom to top.

Why must the weights reflect this change in value from the bottom to the top
of the value scale? Consider the most general assumption that we can make
about the value function, namely that the value across all objectives is the sum
of individual value functions, viu(xi), functions that have not yet been normal-
ized in any way; see Eq. (13.3):

vðxÞ ¼
Xn
i¼1

v0iðxiÞ ð13:3Þ

Equation 13.4 normalizes viu(xi) to range from 0 to 1. Recall that the axioms of
decision analysis implied that an interval-scaled value function was sufficient,
meaning that we can add or subtract constants from an interval scale, as well as
multiply or divide by constants and still have an interval scale. The normalized
value function, vi (xi), is computed by subtracting a constant from the
unnormalized value function; this constant is the unnormalized value asso-
ciated with the worst value (xi

0) of xi. This result is then multiplied by a
constant, namely the range in unnormalized value from worst to best (xi*) levels
of xi.Note that when xi= xi*, the numerator and denominator are equal. When
xi= xi

0, the numerator equals 0.

viðxiÞ ¼
1

v0iðxn
i Þ � v0iðx0i Þ

½v0iðxiÞ � v0iðx0i Þ� ð13:4Þ
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Now solving for the unnormalized value function:

v0iðxiÞ ¼ ½v0iðxn

i Þ � v0iðx0i Þ�
nviðxiÞ þ v0iðx0i Þ ð13:5Þ

Substituting (13.5) into (13.3) we get

vðxÞ ¼
Xn
i¼1
ðv0iðxn

i Þ � v0iðx0i ÞÞ
nviðxiÞ þ v0iðx0i Þ

¼
Xn
i¼1
ðv0iðxn

i Þ � v0iðx0i ÞÞ
nviðxiÞ þ

Xn
i¼1

v0iðx0i Þ
ð13:6Þ

The last summation is a constant that has no relevance to distinguishing among
alternatives, so it can be subtracted from both sides of the equation.

Now divide both sides by the constant

Xn
i¼1
½ðv0iðxn

i Þ � v0iðx0i Þ�

and distribute this term throughout the summation on the right side of the
equals sign. The weights for each objective are defined to be

wi ¼
v0iðxn

i Þ � v0iðx0i ÞPn
i¼1
ðv0iðxn

i Þ � v0iðx0i ÞÞ
; ð13:7Þ

Substituting Eq. (13.7) into (13.6),

vðxÞ �
Pn
i¼1

v0iðx0i Þ

Pn
i¼1
½v0iðxn

i Þ � v0iðx0i Þ�
¼
Xn
i¼1

wiviðxiÞ; ð13:8Þ

which is a linear transformation of the original value function and therefore
equivalent to Eq. (13.1). So the value weights in Eq. (13.1) must be defined to be
the relative swing in value from the worst point xi

0 to the best point xi* across
all objectives.

Any mathematical approach employing interval scales that uses Eq. (13.1) to
compute value but does not explicitly call for the use of swing weights is doing the
equivalent of changing money from one currency to another by picking a random
set of exchange rates rather than using the current market-derived exchange rates.
The use of weights that are not swing weights may well suggest an alternative as
best that is not consistent with the stakeholders’ preferences. Some methods
such as the Pugh methodology [Pugh, 1991] hope the objectives can be
developed so that they are nearly equal in relative weight, without even defining
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what the weight means. No application of the authors (out of over a hundred)
has generated a set of objectives that were nearly equal in importance.

While value functions only need to be interval scales, weights must be
defined on a ratio scale. A ratio scale is one on which zero means zero value. In
this case the value at the design goal must be equal to the value at the minimum
threshold: viðxn

i Þ ¼ viðx0i Þ: A weight of zero means that the objective can be
ignored.

Weight elicitation techniques can be divided into two categories: those that
ask directly for numbers and those that ask for indirect ordinal or interval
judgments that are used to derive a ratio scale.

13.4.2.1 Direct Weight Elicitation Techniques. The most common direct
elicitation technique for ratio scale numbers is to ask people to spread 100
points among the objectives at any given level of the objectives hierarchy. This
is a typical technique for eliciting weights in any multiattribute value applica-
tion. The research literature [Watson and Buede, 1987] is not kind to this
technique, and our experience confirms the literature findings. While it is
relatively easy to do, people assign numbers that are far too close together to
meet any ratio scale requirements; this is true no matter how many caveats the
assessor presents to the participants to remember the ratio scale requirements
[Stillwell et al., 1981].

Two other common direct assessment techniques involve anchoring on either
the most important or least important objective. The stakeholder is then asked
to assign the most (least) important a score of 100 (1) and scale the remaining
down (up) based upon ratio scale requirements. The research literature has not
really examined this method. In practice, it has not worked well for making the
initial assessment queries, but has worked reasonably well when it is introduced
later in the assessment process. By this point, the stakeholders have become
accustomed to thinking about ratio scale properties based upon a more detailed
assessment process. The advantage of starting with the most important
objective is that the stakeholders are probably most familiar with it and
therefore, it is a useful anchor. The least important objective may not be that
familiar to the stakeholders. In either case, the weights are normalized to sum
to 1.0 at the end.

Edwards [1977] introduced a multi-attribute utility technique called
SMART that was based upon importance weights. (Edwards describes this
as a self-recognized intellectual error [Edwards and Barron, 1994].) Edwards
and Barron [1994] introduced SMARTS and SMARTER. SMARTS is simply
SMART recast with the intellectually proper swing weights. SMARTS employs
anchoring on the best objective at 100 points and scaling the rest down, then
normalizing the weights to sum to 1.0.

SMARTER involves using the rank-order centroid technique of transform-
ing the swing ranks of criteria into swing weights. Stillwell et al. [1981] offered
several ad hoc ways to translate rank orders into weights. In the following
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equations, ri is the rank of the ith objective, K is the total number of objectives,
and wi is the normalized approximate ratio scale weight of the ith objective.
Rank sum:

wi ¼
K � ri þ 1

PK
j¼1

K � rj þ 1

Rank exponent:

wi ¼
ðK � ri þ 1Þz

PK
j¼1
ðK � rj þ 1Þz

where z is an undefined measure of the dispersion in the weights. The larger z is
the larger is the ratio of the most important objective to the least important
objective.
Rank reciprocal:

wi ¼
1=riPK

j¼1
1=rj
� �

Rank-order centroid (ROC):

wi ¼ 1=Kð Þ
XK
j¼i

1=rj
� �

w1 ¼ ð1þ 1=2þ 1=3þ � � � þ 1=KÞ=K

w2 ¼ ð0þ 1=2þ 1=3þ � � � þ 1=KÞ=K

w3 ¼ ð0þ 0þ 1=3þ � � � þ 1=KÞ=K

wK ¼ ð0þ 0þ 0þ � � � þ 1=KÞ=K

Barron and Barrett [1996] show that ROC weights accurately define the best
alternative 75 to 90% of the time based upon a set of true swing weights elicited
some other way. When the incorrect alternative was identified, the loss of utility
averaged 3 to 7%. The ROC results were at the worst ends of these ranges when
the attribute values of the alternatives were negatively correlated, which
unfortunately is the most common situation in practice. Barron and Barrett
[1996] show that the rank-reciprocal and rank-sum weights were nearly always
worse than the ROC weights. Kirkwood and Corner [1993] use an actual
application by Ulvila and Snider [1980] on oil tanker standards to provide some
results that contradict claims concerning the effectiveness of rank-sum, rank-
reciprocal, and rank-exponent weights.
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SIDEBAR 13.1: ILLUSTRATION OF WEIGHTING TECHNIQUES

To illustrate the weight elicitation techniques, consider the following
engineering design sample problem. Suppose a communication system to
be deployed as part of a data collection system is being designed. As part
of our requirements analysis the following five major performance
parameters that determine successful and profitable data collection
operations (our measure of effectiveness) have been identified and ranked
based upon the importance of the swing from minimum acceptable to
ideal performance:

Performance
Parameter

Minimum
Acceptable
Performance

Design Goal Rank Order

Throughput, mbits/sec 100 120 1

Availability 0.85 0.95 2

Operating life, yrs 5 7 3

Procurement cost, $ 100 85 4

Operating cost, $/mo 1.00 0.70 5

For the rank-based techniques the results in the table below are
obtained. (Note that a 0.4 was used for the parameter in the rank
exponent method.)

Rank
Method

Throughput Availability Operating
Life

Procurement
Cost

Operating
Cost

Rank
sum

0.33 0.27 0.20 0.18 0.07

Rank
exponent

0.25 0.23 0.21 0.18 0.13

Rank
reciprocal

0.44 0.22 0.14 0.11 0.09

ROC 0.45 0.26 0.16 0.09 0.04
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13.4.2.2 Indirect Weight Elicitation Techniques. Indirect assessment of
weights can be obtained via one of several paired comparison techniques and
the use of graphical adjustments on a computer. These techniques are generally
far superior to any of the direct techniques in their ability to capture the
decision maker’s trade offs across objectives.

The paired comparison techniques are the most common and include the
analytical hierarchy process (AHP) [Saaty, 1980], trade offs [Watson and
Buede, 1987], balance beam [Watson and Buede, 1987] judgments, and lottery
questions [Keeney and Raiffa, 1976].

AHP (see Sidebar 13.2) can be used to assess the weights of the objectives. In
the full implementation of AHP, it is not easy to elicit swing weights because the
AHP does not use the full value scale from 0 to 1. In AHP the stakeholders are
asked to compare each objective with every other objective; note it is possible to
skip some comparisons, but the accuracy of the results decreases rapidly as the
number of skipped comparisons grows. The AHP commonly does not ask the
stakeholders to rank order the objectives in terms of overall benefit but begins
by asking the stakeholders to compare objectives two at a time in whatever
order they appear. The stakeholders are given the option of using a verbal scale,
a numerical scale, or adjustable bar graphs. The numerical scale ranges from 9
times more valuable to one ninth as valuable. The verbal choices have numerical
equivalents that also vary from 9 to one ninth. If there are K objectives, AHP
would pose K(K�1)/2 questions of this sort. These responses are used as an
input to form a matrix upon which an eigenvector calculation is performed;
these mathematical operations are justified by a set of axioms that Saaty [1980,
1986] has developed. It is possible that the stakeholders’ judgments have
inconsistencies embedded in them. Saaty [1980] has developed an inconsistency
index based upon the mathematical operations he developed. Typically, the
stakeholders are asked to rethink selected judgments if the inconsistency index is
greater than 0.1. This approach seems to work well when the number of
objectives is greater than 3 and less than 7 or 8. Naturally, it is possible to break
a large number of objectives into subsets too/de this approach more efficient.

Trade offs are used for swing weights and involve using the scores to help
elicit the weights of the objectives. First, the objectives are ranked in order of
their overall swing in value. Next, the stakeholders are asked if the overall
swing weight of the second objective is as great as the swing from the lowest to
some intermediate point of the value scale of the first ranked objective. For
example, the stakeholders are asked whether the overall swing in value of the
second ranked objective was closer to 80 or 60% of the swing in value of the
first ranked objective. Suppose after some discussion the stakeholders agreed
that the swing in value on the second objective was roughly equivalent to a
swing from 0 to 0.7 on the value scale (normalized to a high of 1.0) of the first
objective. This establishes that the weight of the second objective is 70% that of
the first objective. The third ranked objective could now be compared to
intermediate points on either the first or second ranked objectives. This method
works very well when the value curves are firmly established and the value
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curves are continuous. If the value curves change significantly after trade offs
have been used, the weights have to be reassessed.

SIDEBAR 13.2 AHP EXAMPLE

Returning to the example of design trade offs for a communication
system, suppose the stakeholders provide the judgments shown in the
following table into the AHP verbal mode.

Throughput Availability Operating
Life

Procurement
Cost

Operating
Cost

Throughput (Equal) 1 2 4 6 (Absolutely)
9

Availability 1/2 (Equal) 1 4 (Strongly) 5 (Absolutely)
9

Operating
Life

1/4 1/4 (Equal) 1 (Weakly) 3 (Strongly) 5

Procurement
Cost

1/6 1/5 1/3 (Equal) 1 2

Operating
Cost

1/9 1/9 1/5 1/2 (Equal) 1

The normalized eigenvector of the largest eigenvalue for the numerical
version of the above matrix is 0.43, 0.39, 0.11, 0.03, and 0.01. (Note that
the AHP process associates a 9 with absolutely, 7 with very strongly, 5
with strongly, 3 with weakly, and 1 with equal.)

The balance beam approach is another approach for assessing the weights of
the objectives (see Sidebar 13.3). The stakeholders are initially asked to establish
a rank order of the overall swing weights of the objectives. Next, a series of
questions is posed to the stakeholders that begins with ‘‘Is the overall swing in
value of the first objective (a) greater, (b) less than, or (c) equal to the combined
overall swing in values of the second and third most important objectives?’’ To
illustrate this question a balance beam analogy (see Fig. 13.2) is used. If the
stakeholders respond that the first ranked objective has the highest overall swing
weight, the attractiveness of the other choice is increased by adding the fourth
ranked objective to the package of the second and third ranked objectives. If the
stakeholders say the package of second and third ranked objectives has a higher
swing value than the first ranked objective, the attractiveness of the combination
package is decreased by dropping the third ranked objective and adding the
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fourth ranked objective. This process is continued until the stakeholders have
found a package of objectives with an overall swing in value that is comparable
to the first ranked objective. Next, the second ranked objective is compared with
the third and fourth ranked objectives. This continues until only the last two
objectives remain. The process creates a set of inequality and equality equations
that relate the swing weights of the objectives. Typically, a weight of 1 is assigned
to the least weighted objective, the stakeholders are asked to assign a swing
weight to the second least weighted objective, and then the equations are used to
bound the swing weights of the remaining objectives. It is possible that there will
be an inconsistency in a subset of the equations. If such an inconsistency exists,
the balance beam questions posed by this subset of equations are reexamined
until the stakeholders identify their inconsistency and make an adjustment.
This approach generally produces a wide spread in the swing weights for the
objectives.

SIDEBAR 13.3: BALANCE BEAM EXAMPLE

Using the balance beam approach for the communication system design
the stakeholders are asked to compare the swing in benefit of throughput
(T ) to that of the combined swings of availability (A) and operating life
(OL). The stakeholders respond the combination is greater than that of
throughput, or

ToAþOL

However, throughput (T ) is preferred to availability (A) and procure-
ment cost (PC):

T4Aþ PC

Availability is preferred to OL, PC, and operating cost (OC):

A4OL� 1� PCþOC

OL is preferred to PC and OC:

OL4PCþOC

Next, the unnormalized weight of operating cost is fixed at 1 and the
stakeholders are asked to provide a ratio weight for procurement cost;
suppose they say 1.5. Now the weight for operating life is greater than 2.5,
suppose the stakeholders say 3. The stakeholders now know that the
weight for availability is greater than 4.5 (3+1.5) and agree to a weight
of 6. Finally, the weight of throughput is between 7.5 (6+1.5) and 9
(6+3). The stakeholders choose 8. The normalized weights are 0.41,
0.31, 0.15, 0.08, and 0.05.
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Graphical elicitation procedures have been implemented in several software
packages for the elicitation of scores and weights. Bar graph adjustment is most
commonly used, but some software packages contain adjustable pie charts,
where the wedges of the pie represent different objectives.

13.5 UNCERTAINTY IN DECISIONS

This section addresses the analysis of decisions when there is substantial
uncertainty associated with outcomes impacting the relative value of the
decision’s alternatives. In systems engineering this uncertainty could be asso-
ciated with the state of technology at some time in the future; the stakeholders’
needs now and in the future; the ability to achieve cost, schedule, or performance
goals; and environmental variables associated with the use or testing of the
system.

Probability theory is discussed in Section 13.5.1 to refresh the reader’s
knowledge of this subject. Section 13.5.2 discusses the use of relevance
diagrams to represent joint probability distributions. Influence diagrams are
introduced in Section 13.5.3 as a way of representing a decision. The calcula-
tions of expected utility are described in terms of decision trees. Section 13.5.4
addresses risk preference.

13.5.1 Probability Theory

This section is not meant to be a detailed introduction to probability theory; for
such an introduction see Roberts [1992] and Ghahramani [1996]. The reader is

B

C

A

B

C
A D

FIGURE 13.2 Balance beam analogy for paired comparisons.
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assumed to be familiar with the concepts of probability density functions for
continuous random variables, probability mass functions for discrete random
variables, the difference between marginal and conditional probability distri-
butions, the notion of cumulative probability distributions, and joint prob-
ability distributions of two or more random variables. First, the concepts of
probabilistic independence and dependence are discussed. Then two important
equations, the law of total probability and Bayes rule, are provided. Finally,
relevance diagrams are introduced as a way to describe the probabilistic
dependencies among a set of random variables. This entire discussion will be
conducted in terms of discrete random variables because the mathematics is
easier to convey, and discrete random variables are more commonly encoun-
tered is systems engineering problems. In addition, decision analysis commonly
discretizes continuous random variables for computational ease.

The probabilistic independence of two random variables, X and Y, is defined
to occur when the conditional probability distribution on X given Y equals the
marginal probability distribution on X. It can be shown that when the
preceding is true for X, then the probability distribution on Y given X must
also equal the probability distribution on Y. As a result, the joint probability
distribution of instances of X, xi, and Y, yi, can be written as

pðxi; yjÞ ¼ pðxijyjÞ pðyjÞ ¼ pðyjjxiÞ pðxiÞ ¼ pðxiÞ pðyjÞ ð13:9Þ

when X and Y are probabilistically independent. Intuitively, probabilistic
independence means that learning the value of X does not cause us to change
our probability distribution about Y.

The law of total probability allows the computation of a marginal probability
distribution of one random variable by summing over all possible values of a
second random variable that is probabilistically dependent on the first. This
law is used to compute p(xi) when the probabilities on the right-hand side of
Eq. (13.10) are known better than p(xi) (shown in Fig. 13.3):

pðxiÞ ¼
Xm
j¼1

pðxijyjÞpðyjÞ ð13:10Þ

Bayes rule is used to update our uncertainty on one random variable when
information about another random variable becomes available, assuming the

y1
y2 y3

y4

y5y6

xi

FIGURE 13.3 xi as a subset of the universal event, which is partitioned by Y.
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two random variables are probabilistically dependent on each other.

pðyjjxiÞ ¼
pðxijyjÞpðyjÞPn

i¼1
pðxijyjÞpðyjÞ

¼ pðxijyjÞpðyjÞ
pðxiÞ

ð13:11Þ

In the case of Eq. (13.11) information about the value of random variable X is
obtained and is used to update our uncertainty about Y. The left-hand side of
Eq. (13.11) is called the posterior probability distribution of Y when all values
of j=1, 2, y m are considered. The p(yj) in the numerator on the right-hand
side of (13.10) is called the prior probability, the probability of Y before
information on X became available. The values of p(xi|yj) in the numerator and
denominator are called the likelihood values of getting information on X given
values of Y. Finally, the denominator of Eq. (13.10) is called the preposterior
and is in fact equal to p(xi), as computed by the law of total probability
[Eq. (13.10)]. The contrast between the law of total probability and Bayes rule
can be seen by revisiting Figure 13.3. With the law of total probability the
task is to compute the probability of a subset of the universal event using
conditional probabilities that partition the universal event. With Bayes rule the
universal event has been redefined based upon a new state of information,
namely xi is known to be true. Bayes rule provides the process for updating the
probability of any variable based upon this new information.

Adoption of Bayes rule in practice requires a philosophical shift in the
meaning of probabilities for most people. The most common philosophical
interpretation of probability among engineers and statisticians is that of a long-
run frequency associated with a set of events that have been or could be
repeated many times, for example, flipping coins, removing production samples
from a production line. However, in systems engineering the engineer of a
system is typically involved in very early design decisions regarding the
operational system, the test system for the operational system, the manufactur-
ing system of the operational system, the test system for the manufacturing
system of the operational system, and so forth. In these early design decisions
there is typically a great deal of uncertainty about specific outcomes related to
these decisions and very little data. In fact, it is often not possible to
contemplate repeating experiments to develop long-run frequencies within a
reasonable amount of time and money. Bayesian, or subjective, probability
interprets a probability as a state of information about the uncertainty
regarding a variable. Powerful mathematical and logical arguments have
been put forward by Savage [1954], De Finetti [1974], Lindley [1994], and
others for this interpretation of probability. Now that the computational power
that we have on our desks is quite sizable, many theoreticians are becoming
Bayesians due to the theoretical justification of the Bayesian argument. Yet
many of these Bayesian converts still prefer to put uniform priors on the
random variables and let the data shape the posterior distributions. This is
fine when there is a lot of data, as there is late in the systems engineering
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development process. Early in the development process there is precious little
data and uniform priors are not consistent with engineering judgment and
likely to lead to poor design decisions. There is a vast amount of research
available on the ability of humans to provide probability judgments [Hogarth,
1980; Kleindorfer et al., 1993; Wright and Ayton, 1994]. Serious probability
elicitation processes have been developed and used extensively with successful
results [Spetzler and Stael von Holstein, 1975; Merkhofer, 1987].

Bayes rule is useful during the design phase in systems engineering when
there is little hard data available. During this phase there are often significant
results available from analyses and simulations; these results are appropriately
considered as data, making Bayes rule an appropriate tool.

Bayes rule has wide applicability in the world of testing. Before the test we
have some uncertainty about the ultimate value of certain performance, cost, or
schedule parameters. Data is collected during the test regarding the values of
certain system or project characteristics that relate to the parameters of interest.
These data should then be used to update our uncertainty about the parameters
of interest. Test data should always be viewed as likelihood measures. All too
often, the test result is viewed to be the answer, and only the data parameter
associated with the largest likelihood value is reported.

13.5.2 Relevance Diagrams

A relevance diagram is a directed graph, or digraph, that is a statement of the
joint probability distribution among a set of random variables as a factoriza-
tion of conditional and marginal probability distributions. For example, the
three possible factorizations of two random variables, X and Y, are shown
in Figure 13.4. Each random variable is shown as a node with an oval
encapsulation. The top case shows two probabilistically independent random
variables; the absence of an arc indicates this independence. The next two cases
show dependence or relevance in a Bayesian sense of probabilistic updating; the
arc can go in either direction, with the direction reflecting a different condi-
tional and marginal distribution that define the joint distribution. It is obvious
from this simple graph that the arc in the bottom two graphs can be flipped
(have its direction changed) without any repercussions. However, this is not
true in general. A relevance diagram cannot have a cycle (see Chapter 5 for a
definition), so flipping an arc that causes a cycle to form is never possible. In
addition, when flipping an arc does not cause a cycle to be formed, it is possible
that arcs will have to be added to the digraph [see Shachter, 1986].

As an example of relevance diagrams for systems engineering, consider an
elevator design in which the state of technology related to control systems and
power systems is highly uncertain in the time frame of the development effort
(Fig. 13.5). The key performance requirements (design objectives) are elevator
performance in terms of mean wait times; the operational cost of the system;
and the availability of the elevator system. A relevance diagram depicting
the probabilistic dependencies is shown in Figure 13.5. Note that there is no
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dependence between the three key performance requirements; these three
variables are probabilistically independent of each other given the states of
control technology and power technology. This is called conditional indepen-
dence; if the variables for the control and power technologies were not present,
there would be edges between the three requirements nodes (performance,
availability, and cost). As discussed in previous chapters, there is great power to
be gained in communicating the structure of reasoning (modeling) about design
issues by using a graphical representation such as relevance diagrams.

X Y

p(xi, yj) = p(xi) p(yj)

X Y

p(xi, yj) = p(xi|yj) p(yj)

X Y

p(xi, yj) = p(yj|xi) p(xi)

FIGURE 13.4 Relevance diagrams for two variables.

Control
Technology

Elevator
Performance

Elevator
Availability

Elevator
Cost

Power
Technology

FIGURE 13.5 Notional relevance diagram for elevator design.
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As mentioned above, test results always provide likelihood information for
Bayes rule. As a result, a relevance diagram that includes test results will have
arcs going to the test result from the variable relevant to the test. A survey of
power technology to assess the possible state of power technology in two years
is an example of test data for the elevator design problem. This test data would
be shown as a node with an arc coming to it from the Power Technology node
in Figure 13.6. Bayes rule would then be used to flip this arc so that the survey
results could be incorporated in the decision being made.

13.5.3 Influence Diagrams and Decision Trees

Consider a standard design decision faced by systems engineers: Should a
component for the system be bought from an existing supply source or be
developed from more basic components? The uncertainty that may be most
troublesome in this decision is how long it will to take to develop the major
component and how much will it cost. The schedule and cost results could be
better than, equal to, or worse than the result associated with purchasing the
component. For this simple example assume the performance of both alter-
natives is equal. A decision tree depicting this decision is shown in Figure 13.7.
The value computation at the end of each branch of the tree addresses the cost
and schedule issues via a multiattribute value formulation. The decision node at
the beginning of the tree depicts the two alternatives as branches emanating
from a small square. After the Build alternative there are chance nodes (little
circles) that represent the uncertainties concerning cost and schedule. The tree
is ‘‘rolled back’’ by multiplying the value at the end of each branch times the
probability value on the branch just before it. These probability-weighted

Control
Technology

Elevator
Performance

Elevator
Availability

Elevator
Cost

Power
Technology

Survey Results
on Power

Technology

FIGURE 13.6 Relevance diagram with survey data on power technology.
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values are summed at each chance node to get an expected value at that node.
These expected values are then multiplied by the probabilities on the branches
before them and summed again. This process continues until the expected value
of each alternative is available at the decision node. The preferred alternative
should be the one with the highest expected value.

Influence diagrams are a graph-theoretic representation of a decision.
Shachter [1986, 1990] presented the requirements and algorithms needed to
transform an influence diagram from solely a communication tool into a
computation and analysis tool capable of replacing the standard decision
analysis tree. Significant additional research continues into influence diagrams
for structuring decision problems, defining the underlying mathematics and
graph theory of influence diagrams, and analyzing decision problems. When
properly implemented, decision trees and influence diagrams provide identical
solutions to the same problem. They are referred to as isomorphic since the
decision tree can be converted to an influence diagram, and vice versa.

An influence diagram may include four types of nodes (decision, chance,
value, and deterministic), directed arcs between the nodes, a marginal or
conditional probability distribution defined at each chance node, and a
mathematical function associated with each decision, value, and deterministic
node. Each decision node, represented by a box, has a discrete number of states
(or decision alternatives) associated with it; chance nodes, represented by an
oval, must be discrete random variables. Deterministic nodes are represented
by a double oval. A value node may be represented by a roundtangle, diamond,
hexagon, or octagon.

An arc between two nodes (shown by an arrow) identifies a dependency
between the two nodes. An arc between two chance nodes expresses relevance
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FIGURE 13.7 Decision tree for buy vs. build decision.
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and indicates the need for a conditional probability distribution. An arc from a
decision node into a chance or deterministic node expresses influence and
indicates probabilistic or functional dependence, respectively. An arc from a
chance node into a deterministic or value node expresses relevance; that is to
say, the function in either the deterministic or value node must include the
variables on the other ends of the arcs. An arc from any node into a decision
node indicates information availability; that is, the states of these nodes are
known with certainty when the decision is to be made.

Figure 13.8 shows an influence diagram for the buy versus develop decision
described in the decision tree of Figure 13.7. The decision is represented in the
box, the value node in the box with rounded corners, and the two chance nodes
in ovals. Note that the alternatives and chance outcomes that were shown in the
decision tree are not visible in the influence diagram. However, the edges in the
influence diagram provide new information that was not readily available in
the decision tree, namely the probabilistic and value dependencies inherent in
the decision. Both cost and schedule are dependent on which alternative is
selected. Cost and schedule are also probabilistically dependent on each other,
with the influence diagram showing an arc from Build Cost to Build Schedule.
Value only depends on cost and schedule.

The decision node represents a logical maximum (minimum) operation, that
is, choose the alternative with the maximum (minimum) expected value or
utility (cost). A deterministic node can contain any relevant mathematical
function of the variables associated with nodes having arcs into the determi-
nistic node. A value node also can contain any mathematical function of the
variables with arcs entering the value node. In addition, the mathematical
function in the value node defines the risk preference of the stakeholder.

A well-formed influence diagram meets the following conditions: (1) the
influence diagram is an acyclic directed graph, that is, it is not possible to start
at any node and travel in the direction of the arcs in such a way that one returns
to the initial node; (2) each decision or chance node is defined in terms of
mutually exclusive and collectively exhaustive states; (3) there is a joint
probability distribution that is defined over the chance nodes in the diagram
that is consistent with the probabilistic dependence defined by the arcs; (4) there
is at least one directed path that begins at the originating or initial decision
node, passes through all the other decision nodes, and ends at the value node;

Value

Build
Cost

Build
Schedule

Buy vs.
Build

FIGURE 13.8 Influence diagram for build-buy decision.
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(5) there is a proper value function defined at the value node (i.e., one that is
defined over all the nodes with arcs into the value node); and (6) there are
proper functions defined for each deterministic node. An influence diagram that
is well formed can be evaluated analytically to determine the optimal decision
strategy implied by the structural, functional, and numerical definition of the
influence diagram. The analytic operations needed to evaluate an influence
diagram numerically are evidence absorption, deterministic absorption, null
reversal, arc reversal, and deterministic propagation [Shachter, 1986].

The influence diagram in Figure 13.9 shows an example of an influence
diagram for a requirements allocation decision for the design of a new elevator
system. The systems engineer is considering the use of one of two new
technologies (power or controller); the large decision node (center left of
Figure 13.9) defines the three alternatives. The requirements allocation (shown
as three separate decision nodes) of costs, performance, and availability will be
different if one or neither of these technologies is included in the design. Since
this initial decision will be known when the three requirements allocation
decisions are made, there are arcs from the initial decision node to the three
requirements allocation decision nodes. The other arcs between the three
requirements allocation decision nodes indicate the order in which the decisions
will be made: performance, availability, and cost. (The decision maker is free to
select any order among these three nodes.) These allocations and the prior
uncertainty of the systems engineering team about the power and controller
technologies will affect the uncertainty about the elevator’s cost, performance,
and availability. The arcs between the chance nodes are identical to those
shown in Figure 13.5. Note, this diagram shows the uncertainty of elevator
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FIGURE 13.9 Sample influence diagram for requirements allocation.
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performance to be independent of power technology. In this simplified
example, the fundamental objective is comprised of three elements: cost,
performance, and availability.

The results of a case study analysis of the above elevator architecture and
requirements allocation decision are shown in Figure 13.10. First, the value
functions for elevator performance (an index of various passenger waiting times),
life-cycle cost, and availability and their weights are shown. Note that marginal
decreasing returns to scale is shown in each curve as capability moves from
the minimum acceptable threshold to the technological maximum. Next, the
uncertainties associated with the two technologies in question are shown.
The other uncertainties encoded as part of the analysis are not shown here.
The analytical results show that the allocated architecture and the requirements
allocation associated with the advanced power technology should be chosen to
be consistent with the requirements (the value structure captured by the trade-off
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requirements) and the uncertainty about the technologies. The alternative
associated with the control technology is very close; in fact, too close to be
confident that the power technology is preferred given the limitations of value
and probabilistic assessments. The low-risk alternative is clearly inferior;
the design team could feel comfortable choosing either of the new technologies.
The choice of technology would significantly change the requirements allocation
decisions made in the three subsequent decision nodes.

13.5.4 Risk Preference and Expected Utility

Webster’s dictionary defines risk simply as the ‘‘exposure to the chance of loss,’’
and most people have at least an intuitive sense of what risk means to them. But
from a decision-making perspective, it is essential to provide a more formal
definition. The Defense Systems Management College (DSMC), [1989] in their
Risk Management Handbook, defines risk as ‘‘the combination of the prob-
ability of an event occurring and the significance of the consequence of the
event occurring’’ and defines risk management as ‘‘the various processes used to
manage risk.’’

There are several strategies used for dealing with risk: avoidance, transfer-
ence, management, and analysis. Risk avoidance is the selection of the low-risk
alternative; unfortunately, what seems to be low risk intuitively is high risk in
some cases. For example, consider a situation in which you have a sizable
portfolio of U.S.-based stocks and are considering purchasing either another
U.S. stock or what is considered a high-risk international stock. The interna-
tional stock is often the lower risk alternative because its performance is either
negatively correlated or uncorrelated with the performance of your portfolio
while the performance of the low-risk U.S. stock is highly correlated with your
current portfolio.

Risk transference involves options that transfer risk to others, an example
being the purchase of insurance. The insurance purchaser is willing to pay a
fixed price and have the insurance company take the risk of a major loss.

Risk management involves the use of hedging strategies; a hedging strategy is
the maintenance of fallback options in case a riskier option fails. The failure is
not catastrophic because the fall back option can be used. This is common in
systems engineering when multiple contractors are asked to develop the same
component; one contractor is pursuing the high-risk and high-performance
approach that will be used if successful, while another contractor is pursuing a
more conservative approach.

Risk analysis addresses risk explicitly when decisions are made in uncertain
situations. Addressing the uncertainty faced in a decision by assigning
probabilities to the uncertain outcomes, producing a lottery, has been discussed
above. If the outcomes are measured on a numerical scale (e.g., dollars) that
captures the value associated with the outcome, the expected value of the
lottery is used as a measure of the attractiveness of the lottery. However, if the
outcomes of the lottery are substantial compared to the wealth or well being of
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the decision maker, the expected value may not be an appropriate measure of
the value of the lottery, as judged by many decision makers. The value
associated with a lottery is called the certain equivalent, the value the decision
maker would be willing to accept in place of the lottery. Since this notion of
certain equivalence is a subjective judgment that is special to the individual (or
set of stakeholders) and the context at the time of the decision, a mathematical
description of risk preference must be guided by the feelings of decision makers.

A utility or risk preference function, u, is introduced to be a function of the
outcome values of the lottery. If such a function exists, the inverse function of
the expected utility of the lottery is the value of the certain equivalent of the
lottery that can then be used to compare the attractiveness of the lottery with
other lotteries. For example, consider the two lotteries in Figure 13.11 in which
the outcomes are measured in dollars. The expected values (EV) of these two
lotteries are:

EVð1Þ ¼ 0:5 � $1000þ 0:5� $0 ¼ $500

EVð2Þ ¼ 0:1� $100;000þ 0:9��$10;000 ¼ $1000

These expected values indicate that lottery 2 is preferred to lottery 1;
EV(2)WEV(1). Yet many people, who cannot afford a loss of $10,000, would
prefer the first lottery with the lower expected value. In other words, for those
people, the expected utility of lottery 1Wthe expected utility of lottery 2, or

0:5uð$1000Þ þ 0:5uð$0Þ40:1uð$100;000Þ þ 0:9uð�$10;000Þ ð13:12Þ

Mathematically, if the inverse function of u(.) exists, then Eq. (13.12) can be
restated as

u�1½0:5uð500Þ þ 0:5uð0Þ�4u�1½0:1uð100;000Þ þ 0:9uð�10;000Þ� ð13:13Þ

The question is: ‘‘Will such a function generally explain the decision maker’s
risk preference judgments over all possible lotteries?’’ The two expressions on
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FIGURE 13.11 Comparison of two lotteries.
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either side of the inequality in Eq. (13.13) are called the certain equivalents of
the two lotteries.

The risk premium, xp, of a lottery is defined to be the difference between the
expected value of the lottery and the certain equivalent, ~x,

xp ¼ �x� ~x ð13:14Þ

For risk-averse decision makers the certain equivalent will always be less than
the expected value and the risk premium will be positive.

13.5.4.1 Assessing A Risk Preference Function. Discussion of a risk pre-
ference function for a specific decision assumes that the outcomes of the
decision have been characterized by a value function that collapses all
dimensions of value onto one dimension, commonly called the numeraire. A
money equivalent is the most common numeraire, but others are also possible.
The risk preference function is then a function over the value numeraire.

There are two types of questions involving a certain equivalent and a two-
outcome lottery that one can ask a decision maker during a risk assessment
session. These two question types are shown in Figure 13.12. The first question
type assumes the probabilities of the lottery are known and the decision maker
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FIGURE 13.12 Simple risk preference assessment queries.
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is asked to provide one of the outcome values, typically the value of the certain
equivalent. However, one could fix the certain equivalent and ask for the value
of either the best outcome or worst outcome. The second question assumes that
all of the outcome values are known, including the certain equivalent, and the
decision maker is asked to supply the probability value.

Unfortunately, research has shown that people do not provide coherent
answers to these two types of queries. That is, in general the answers to the
second question type are going to suggest much greater risk aversion than
answers by the same individual to the first question type. A not uncommon
response to the first query, which has an expected value of $50, is $35, yielding a
risk premium of $15. Now if $35 is the certain equivalent in the second query,
an individual might respond that the question mark for the probability of $100
in the second lottery would be 0.6. The risk premium for this second lottery is
$25 (the expected value of $60minus the certainty equivalent of $35).

The first question type is asking directly for the response that will be
substituted into various analyses. Therefore, it is somewhat more appropriate
to ask this question. However, very few decision makers have thought seriously
about these issues in general, and even fewer have thought about them with
respect to a specific decision situation. The assessment process is therefore a
learning experience for the decision maker. The responses to the early questions
should be treated as a warm-up process.

A second caution for the risk assessment process is that there is a very
substantial zero effect. That is, people exhibit risk-averse behavior for gains but
risk-seeking behavior for losses. Figure 13.13 shows responses for a certainty
equivalent that demonstrates this behavior. The risk premium is $15 for the top
lottery and �$15 for the bottom lottery. The risk-averse person in the top
lottery would have a certain equivalent of less than�$50 for the bottom lottery.
Generally, people do not want to exhibit this ‘‘zero effect’’ once the seeming
contradiction is pointed out to them and will switch to a consistent risk-averse
(or risk-seeking) policy.

To investigate the decision maker’s risk preference fully in the region of
outcomes associated with the current decision, multiple lottery questions
should be asked in this region. For illustrative purposes, suppose the decision
involves gains of up to $10,000 and losses as great as $10,000. We arbitrarily set
the end points of the utility scale as u($0)=0 and u($10,000)=1. Figure 13.14
provides six such lotteries and the responses of the decision maker shown in the
boxes. Note that the utilities shown under each figure are calculated as in the
following example:

uð$2;500Þ ¼ :5 uð$10;000Þþ:5 uð$0Þ

¼ :5 ð1Þ þ :5 ð0Þ

¼ :5

Figure 13.15 displays the resulting risk preference function. Note the decreasing
rate of increase associated with this curve, mathematically known as a concave
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curve. A risk-neutral decision maker would have a straight line as a risk
preference function; risk-seeking behavior is typified by a convex curve.

13.5.4.2 Exponential Risk Preference. Define the risk aversion coefficient
g ¼ �u00ðxÞ=u0ðxÞ. If g is a constant, it can be shown by simple integration that
the risk preference function must take the form

uðxÞ ¼
k1xþ k2; if g ¼ 0

k1e
�gxþ k2; if g =2 0

(
ð13:15Þ

A common way to write such a risk preference function is

uðxÞ ¼ 1� e�gx

1� e�gxmax
; ð13:16Þ

where xmax is the largest value that x is expected to take. Thus, for any valued
outcome x, the utility of x can be calculated using the exponential utility
function. Note that this format produces

uðxmaxÞ ¼ 1:0

uð0Þ ¼ 0
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FIGURE 13.13 Illustration of the zero effect.
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The risk preference function plotted in Figure 13.15 is an exponential risk
preference function with g=0.00025.

Another important concept in risk preference is the risk tolerance, or the
inverse of the risk aversion coefficient. For the exponential risk preference
function and its constant risk aversion coefficient, the risk tolerance is constant.
In Figure 13.15, the risk tolerance is $4000. For an expected value decision
maker the risk aversion coefficient is zero, making the risk tolerance infinity.

The exponential risk preference function has another very special property,
called the delta property This property is stated as follows: An increase in all
outcomes of the lottery by a constant amount, D, results in an increase of the
certain equivalent by the same amount, A. So, for example, in the first example
above suppose that the certain equivalent for fifty—fifty gamble of $100 and
$0 was $35. Now, if each prize is increased by $100 and the certain equivalent of
a fifty—fifty gamble on $200 and $100 becomes $135, then the delta property is
satisfied for at least this one case. The exponential risk preference function is
the only function that can satisfy this property.

One very important implication of the delta property is that the buying and
selling prices of a lottery are the same. For example, the maximum that a
decision maker was willing to pay, B. for a lottery is the amount that when
subtracted by every outcome made us indifferent to having the lottery and not
having it, or a value of $0. Similarly, the minimum that the decision maker
would sell the lottery for, S, is its certain equivalent; also see Figure 13.16. If the
risk preference function is exponential, it can be proven that B=S through the
use of the delta property. For other risk preference functions the buying and
selling prices of a lottery are not necessarily equal.

There is a ‘‘quick and dirty’’ method for assessing a decision maker’s risk
aversion coefficient for an exponential utility function. The value of R for
which the decision maker is indifferent to accepting the lottery in Figure 13.17
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FIGURE 13.15 Assessed risk preference points.
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is the risk tolerance. That is, the certainty equivalent of the lottery in Figure
13.17 is 0 when R is the risk tolerance of the decision maker. It can be shown
that g= 1/R.

The exponential risk preference function is used as an approximation early
in risk analyses to determine the effect of risk preference on the choice of
alternatives. If this choice is sensitive in the appropriate region of the decision
maker’s risk tolerance, then more detailed analysis of the decision maker’s risk
preference is appropriate.
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FIGURE 13.16 Buying and selling prices are equal for exponential risk preference.
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13.6 SAMPLE APPLICATION

This application demonstrates how decision analysis can be used in the require-
ments development process of systems engineering. The requirements develop-
ment process consists of the development of an operational concept,
identification of the external systems that interact with the system and the
context in which the system operates, an objectives hierarchy for the system’s
performance, and the requirements. These requirements are divided into require-
ments categories of input/output, system-wide and technology, trade-off, and
test. The focus of this application is the use of multiattribute value analysis as the
approach for defining the trade-off requirements that comprise the value model
to be used by the stakeholder in evaluating the available alternatives. Implicit in
this approach is an objectives hierarchy for defining the value space of the
stakeholder (see Sidebar 13.4). Also included is the mathematical structure for
the trade-off requirements.

SIDEBAR 13.4: ECONOMIC MODELS

Hazelrigg [1996] provides strong motivation to use decision analysis tools
in systems engineering design decisions. In his treatment he addresses the
results of Arrow’s impossibility theorem [Sen, 1970] for achieving group
consensus on preferences and recommends the use of the demand
function from economics for defining consumer preferences for alternate
design alternatives. The issue of gaining stakeholder consensus on trade
offs needed during design is real; thus the systems engineering team must
resort to accepting the position of one stakeholder (the bill payer) as king
when these disagreements cannot be resolved. This was the method used
in the application presented in this section.

The notion of a demand function for a military system is not helpful.
However, for a commercial system the multiattribute value function can
be considered to be a first-order, Taylor series approximation of the
demand function. Hazelrigg [1996] does not go into detail about how to
obtain the demand function; the suggestion made in this book is to elicit
stakeholders’ preferences and use the bill payer as king or queen to
resolve disagreements.

Throughout this discussion a system called the Mobile Protected Weapons
System (MPWS) is used to describe the development of the system engineering
and decision analysis concepts. The MPWS was to be a helicopter-transpor-
table, direct-fire support weapons system for the U.S. Marine Corps (USMC),
with an initial operating capability of 1988. The basis of the example was a real
application of decision analysis to the MPWS in 1980. After the evaluation
structure embodied in the objectives hierarchy and trade-off requirements
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discussed below was used to evaluate proposed MPWS designs, the MPWS
was stopped in favor of purchasing similar vehicles ‘‘off-the-shelf,’’ as directed
by Congress. The contractors who received the objectives hierarchy and
trade-off requirements as part of the Request for Proposal were very
complimentary of the USMC for providing this information to guide their
design decisions.

13.6.1 MPWS Overview

An intuitive need for a highly mobile, helicopter-transportable weapons system
that can provide the landing force assault fire support as well as an antiarmor
capability first became apparent to the USMC in the early 1970s. There were
several contributing factors:

� Naval gunfire support assets, so important during an amphibious assault,
were steadily decreasing.

� Navy combatant ships with suitable guns for shore bombardment were
being retired without replacements or being replaced with ships less
capable of providing gunfire support to amphibious forces.

� The retirement from the Fleet Marine Force (FMF) of the ONTOS, a
light, mobile, antitank weapon system carrying six 106-millimeter (mm)
recoilless rifles.

� The retirement of the crew-served individual 106-mm recoilless rifle.

� The deletion of the 3.5-inch rocket launcher from the Marine Corps
inventory.

� At a time when naval gunfire and direct-fire weapons were decreasing, the
Soviet and Soviet aligned forces increased their capability with a wide
array of armored weapons systems, including tanks, armored personnel
carriers, and lightly armored weapons platforms.

In accordance with acquisition procedures contained in Circular A-109 of
the U.S. Office of Management and Budget, Mission Area Analysis (MAA)
was continuous, and a Mission Element Needs Statement was developed
stating that:

� Amphibious forces possess capabilities that are uniquely featured by their
responsiveness to the maritime aspects of the national strategy. Amphi-
bious warfare requires the full spectrum of capabilities from naval combat
effectiveness offshore and in the air to the close combat mission ashore.
The close combat capability provides the mobility, shock action, and
portions of the firepower necessary to enable landing forces to successfully
attack and destroy enemy personnel and materiel, breach their defenses,
link up surface-borne with helicopter-borne forces, defeat infantry and
mechanized counterattacks, and exploit success in combat ashore.
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� Capabilities currently possessed by the landing force provide limited
mobility and direct fire combat power to enable assault units to rapidly
close with and destroy enemy forces. Mobility and direct fire support
capabilities required to enhance current capabilities are:

a. Helicopter transportability of weapons systems by heavy-lift
helicopter

b. Vehicle and crew survivability through armor protection from nearby
artillery airbursts and medium-caliber direct-fire weapons firing at
medium range

c. Rapid cross-country mobility, agility, and endurance without signifi-
cant degradation of on-road capability and capable of competing with
the expected mobility of the threat

d. An on-board weapons suite with a long-range, high-kill probability
capability against armored, light armored, materiel, and personnel
targets characteristic of the threat

e. The ability to engage and defeat the target spectrum in all weather
conditions

f. Nuclear, Biological and Chemical (NBC) detection and protection

The Marine Corps requirements defined an affordable weapons system that
was to be highly mobile, helicopter-transportable, compatible with amphibious
operations, and able to provide direct-fire support during landing force
operations. The weapons system must provide protection from suppressive
fires and be capable of engaging and defeating armored, personnel, and
materiel targets.

13.6.2 Operational Concept for MPWS

In defining the mission needs for the MPWS, three employment scenarios were
considered. These scenarios represent the spectrum of scenarios that drives the
design of MPWS. The relative importance of each parameter in the design
process changes as a function of scenario.

Scenario 1: Offensive Role (assault support with the infantry) MPWS would
be used with the infantry in offensive operations. A red/blue force ratio of
1:4 and a northern NATO environment are established as the base for the
determination of relative capability requirements in this scenario.

Scenario 2: Defensive Role (blocking position) MPWS would be employed
with helicopter-borne forces to establish blocking positions. Friendly
tanks are not available. The mission calls for delaying the enemy and
channelizing his avenues of approach. It is assumed that enemy forces are
mechanized to include T62, T64, and T72 tanks, BMP, BTR, assault
guns, SP artillery, and attack helicopters. MPWS will be operating at
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altitudes higher than sea level. A red/blue force ratio of 4:1 in a Middle
East environment is established as the base in this scenario.

Scenario 3: Subsequent Operations MPWS would be employed with a
combined arms task force and would no longer be in an amphibious
assault role. Blue forces are task organized, and there would most likely
be low-mid-intensity nonnuclear conflict. Red/blue force ratio of 1:4 and
a Middle East/Third World environment are the requirements determina-
tion base.

13.6.3 External Systems Diagram

The external systems of the MPWS during its operational and maintenance
phase would be the operators (driver, gunner, and passengers), maintainers,
targets (light armored vehicles, tanks, personnel, and helicopters), and a heavy
lift helicopter that would have to transport the MPWS.

Figure 13.18 is an external systems diagram showing the inputs to and
outputs from MPWS for the various external systems. This diagram was
completed using the IDEFO Integrated Definition for Function Modeling
process modeling (see Chapter 3). Four external systems are shown in Figure
13.18; the MPWS operators, the MPWS targets, the heavy-lift helicopter that
will carry the MPWS from point to point, and the MPWS maintenance
personnel. The interaction between the MPWS and its operators is shown by
the three arrows; two leaving the operators’ function and one leaving the
MPWS function. Terrain forces are shown as part of the context, entering the
MPWS function as input from outside the set of external systems. The primary
benefits of this analytical construct are to bound the MPWS system very
specifically by showing where MPWS ends and other systems begin, and to
specify the inputs to and outputs of MPWS so that requirements can be defined
to make these inputs and outputs possible.

Figure 13.19 portrays an objectives hierarchy similar to the one developed
by a team of USMC experts and the decision analysts working the project. The
three operational scenarios are the first decomposition of the hierarchy because
the principal objectives of the USMC for the MPWS had different relative
importance depending upon the scenario. The top-level objectives, or measures
of effectiveness (MOEs), were firepower, mobility, availability, and surviva-
bility. Firepower was broken into measures of performance (MOPs): lethality,
servicing rate, stowed kills (a combination of the number of stowed rounds
and the lethality of those rounds), and target acquisition. Lethality is composed
of the various types of targets, followed by the ranges at which those targets
would be engaged. Target acquisition is composed of identification and
recognition in good weather as well as the bad weather capability. Mobility
is broken into capabilities related to cross-country, long-distance airlift, road,
and water. Survivability is measured by means proxies for agility, protection,
and signature.
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FIGURE 13.19 Operational effectiveness performance parameters.
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13.6.4 Requirements

The focus of this application is the set of requirements called trade-off
requirements, algorithms for comparing any two alternate designs on the
aggregation of cost and performance objectives. As discussed in Chapter 6,
these algorithms are divided into (a) performance trade offs, (b) cost trade offs,
and (c) cost-performance trade offs.

In the development of requirements for MPWS substantial attention was
devoted to the trade-off requirements for performance. The structure that
describes the mission-related objectives on which these performance trade offs
were defined is the objectives hierarchy shown in Figure 13.19. The trade-off
requirements consist of a utility or value curve for each bottom-level objective
and a set of weights at each branch in the tree.

13.6.4.1 Utility Curves. Figure 13.19 portrays the many operational effec-
tiveness variable performance parameters whose utility for improvement were
quantified for guidance by the USMC committee. Inherent in these value or
utility curves for the many performance parameters is the notion that design
trade offs are acceptable within the 0-to-100 range of utility; that is, MPWS
performance in some area can be sacrificed to the point of zero marginal utility,
but no further, in order to achieve performance gains in other areas. The zero
utility point on each performance parameter does not mean that a system with
this capability has no utility to the Marine Corps. Rather, it means that this
level of performance is the minimum acceptable to the Marine Corps across its
range of missions. So, for example, to be helicopter-transportable the MPWS
must not weigh any more than 16 ton at 3000 feet on a 91.51F day. The utility
curve for helicopter transportability is shown in Figure 13.20. Increased
performance for each parameter has value to the Marine Corps as shown by
the shape of the utility curves.

The shapes of these utility curves are the same for all of the above scenarios.
However, the relative values of improvements in one parameter compared to
improvements in another parameter do not vary across the three scenarios.
These relative values of performance parameter improvements are described in
Section 13.6.4.2.

13.6.4.2 Weights. Improvements in performance determined from the
curves for each parameter are not equally important in the overall analysis
of an MPWS. Therefore, a weighting procedure is applied to define the relative
value of improving from the 0 to the 100 level of utility on one performance
objective compared to another. The meaning of the weights can be described as
follows: the weight given to parameter A reflects how much more valuable it is
to improve from a score of 0 to 100 in parameter A as compared to the
improvement in parameter B from 0 to 100. Note weights are not a generic
measure of value but are dependent upon the swings from 0 to 100 on the
associated utility curves.

13.6 SAMPLE APPLICATION 439



For MPWS, weights played a large role in distinguishing among scenarios.
While the shapes of utility curves remain constant across scenarios, their
relative importance changed significantly. For example, an improvement in
utility for helicopter transportability was very important in the blocking
position role since the MPWS might have to be lifted into position. This
same improvement was far less important in the subsequent operations role
since the force would be traveling over land. Therefore, the weight that
helicopter transportability has, relative to other operational effectiveness
factors, was greater in the former role than in the latter.

13.6.5 Use of Utility Curves and Weights

Value (or utility) curves and weights can be used as follows: the abscissa (x axis)
of each curve is a measurable attribute that provides input to the curve. The
ordinate (y axis) is a measure of relative value or utility ranging from 0 to 100.
As an example, value or utility curves for V80 and Percent No-Go are shown in
Figures 13.21 and 13.22. Note that an improvement in V80 from 10 to 15 mph
is valued as highly as a gain from 15 to 25 mph. Both improvements would net
50 utility points. Using these curves, a candidate propulsion system yielding a
V80 speed of 15 mph would receive 50 utility points while one with a V80 speed
of 20 mph would receive 80 points; a candidate with 6% No-Go scores 85 while
one with 16% scores 35.

These value or utility scores would not be very meaningful for comparing
systems without a relative measure of importance between attributes. Thus,
a weighting procedure is applied to the scores to allow evaluation based upon
a combination of parameters. Again, consider the value or utility curves
illustrated in Figures 13.21 and 13.22: Suppose propulsion system 1 yields a
V80 speed of 15 mph and Percent No-Go of 6%, while propulsion system 2 had
values of 20 mph and 16%. System 1 scores would be 50 and 85, while system 2
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Helicopter Transpor (Tons, 3000 ft, 91.5)
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0

12 16

FIGURE 13.20 Utility curve for helicopter transportability, measured in tons.
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scores would be 80 and 35. If both V80 and Percent No-Go were equally
important, the weighted scores for both systems would be:

System 1 : 1=2 ð50Þ þ 1=2 ð85Þ ¼ 67:5

System 2 : 1=2 ð80Þ þ 1=2 ð35Þ ¼ 57:5

This would indicate that propulsion system 1 was superior on these factors.
However, if V80 was considered to be two times as important as Percent No-
Go, the weighted scores would be:

System 1 : 2=3 ð50Þ þ 1=3 ð85Þ ¼ 61:7

System 2 : 2=3 ð80Þ þ 1=3 ð35Þ ¼ 65

In this case, propulsion system 2 would be better.
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FIGURE 13.21 Utility curve for V80, speed on the best 80% of terrain.
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FIGURE 13.22 Utility curve for % No Go, % of terrain that is not negotiable.
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It should be clear that the relative weights of the objectives play a major role
in the design and evaluation processes.

13.6.6 Conclusions

As discussed in Chapter 6 the requirements development process is a systematic
one that considers how the system is to be used, how the system is going to
interact with other systems and the general environment, and the user
objectives and priorities. Since user objectives and priorities are inherently
subjective, the ultimate requirements for the system have to be subjective,
reflecting trade offs of the users. This is not to say that substantial analysis is
not critical to the development of good requirements. In the case of the MPWS
the USMC used a great deal of analysis about alternate sites around the world
in which it might be involved in conflict and the capabilities of the CH-53E
helicopter to develop the utility curve for helicopter transportability and its
relative weight to other performance objectives. By using many analysis
techniques and a broad base of experts, logical and explicit statements of
requirements were developed based upon informed consensus. The appropri-
ate, detailed requirements inputs to the process can be obtained at lower
organizational levels using appropriate experts and analyses, yet the more
difficult, high-level requirement questions can be addressed at the highest levels
of the organization.

13.7 SUMMARY

This chapter has introduced the complexities associated with decision making
in general and addressed the difficulty of decision making in the engineering of
a system. With respect to engineering a system, the definition of clear and
meaningful alternatives for the design and integration of a system involves the
use of sophisticated processes and modeling techniques as described in the first
12 chapters of this book. The development of the value structure for selecting
design and integration alternatives was discussed in Chapter 6 and involves
complex trade offs across stakeholders and stages of the system’s life cycle.
Finally, there is significant uncertainty regarding the relative effectiveness and
cost of competing technologies as well as future needs of the stakeholders.

The axioms of decision analysis, as presented in this chapter, provide a
sound basis for a coherent, rational decision-making process that incorporates
meaningful approaches for addressing value trade offs and uncertainty. Multi-
attribute value analysis, a product of the axioms of decision analysis, uses value
functions and weights to quantify the trade offs across objectives. These value
functions and weights require that the stakeholders answer questions that have
meaningful interpretations to them in terms of the decision being made; the
quantification of values is not an ad hoc set of numbers producing an index of
goodness.
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Dealing with uncertainty is a difficult problem; decision analysis relies upon
probability theory to capture the uncertainty faced by the decision maker. In
the engineering of a system the uncertainty is not often described by existing
data and interpretable as the long-run frequency of a set of known events.
Instead the uncertainty deals with processes that change with time and
for which no (or at most a few) known events have occurred. Instead of
ignoring the uncertainty faced in the engineering of a system, decision analysis
permits the engineers to capture the expert judgment of the engineers,
stakeholders, and other experts and use this information to provide insights
about the design choices with the best information available at the time. Recent
advances in decision analysis provide graph-theoretic models for representing
probabilistic dependence (relevance diagrams) and decisions problems (influ-
ence diagrams).

Once uncertainty is modeled explicitly, the risk preference of the decision
maker has to be addressed as part of decision analysis. The concepts of risk
aversion, neutrality, and preference are defined mathematically and illustrated
as part of the decision analysis process. Using the decision maker’s risk
preference requires computing the certainty equivalent as the inverse of the
utility function.

Clearly, it is inappropriate to use the sophisticated tools of decision analysis
for every decision that is part of the engineering of a system. Many times
engineers have described the benefit of thinking about the decision in the terms
of decision analysis. At other times developing the value model and using a
quick scoring and weighting evaluation provides insight into which alternatives
are serious and which should be ignored. For really complex and contentious
decisions, the full power of decision analysis can provide an explicit and
rational process for defining and discussing the alternatives to reach a
conclusion consistent with the values of the stakeholders and the uncertainty
as defined by relevant experts.

PROBLEMS

13.1 In defining reliability of a system, we talk about the probability of a
failure. Failure here is an event or distinction, but not one that passes
the clarity test. As a result, systems engineers work very hard to focus
on the distinction, mission failure, where a mission failure is a failure
that precludes the user from completing her/his mission. This definition
still does not pass the clarity test because we have not defined the
mission, a definition that is system and context dependent.

For the elevator system where you work or go to school,

a. Define mission in a way that meets the clarity test.

b. Define as many failures as possible and show which would be
classified a mission failure. Be sure to keep the clarity test in mind
when defining these failures.
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c. Discuss whether it is sufficient to discuss failures one at a time or
whether it is necessary to examine possible combinations of failures
to define fully all possible mission failures.

13.2 Garbled Communications, Ltd. is designing a new system for special-
purpose use that only requires three signals to be sent and received. The
derived requirements below list the probability that signal si is received
given that signal si is sent:

p(sj received | si sent, &) Receive s1 Receive s2 Receive s3

Send s1 0.80 0.10 0.10

Send s2 0.05 0.90 0.05

Send s3 0.02 0.08 0.90

For the operational concept each signal is equally likely to be sent. The
stakeholders’ requirement for this scenario is that each signal should
have a 0.85 probability of being sent given that it was received. Is this
requirement met if these derived requirements can be satisfied? Note
the symbol ‘‘&’’ on the right-hand side stands for all prior information.

13.3 Garbled Communications, Ltd. has begun producing its new commu-
nications system and has built three assembly lines: LI, L2, and L3. Ll
is the most productive, accounting for 40% of the production; L2 is the
least productive, accounting for 25%. L3 accounts for the rest. Test
data show that L1 has a 2% chance of producing a lemon, L2 a 4%
chance, and L3 a 3% chance. What is the probability that a lemon
picked at random will come from each of the assembly lines?

13.4 Write the joint probability distribution that is consistent with the
relevance diagram shown below.

x9

x6

x7

x8

x1 x2

x5

x4

x3
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13.5 Create a relevance diagram that is consistent with the following joint
probability distribution:

pðx1; x2; x3; x4; x5; x6; x7; x8j&Þ

¼ pðx8jx7;x5;&Þ pðx7jx6; x5; x4;&Þ pðx6jx3;&Þ

� pðx5jx2; x1;&Þ pðx4jx3; x1;&Þ pðx3j&Þ pðx2j&Þ pðx1j&Þ

13.6 You have been tasked with providing a recommendation for a test site
at which an acceptance test will be conducted. There are three possible
test sites (A, B, and C). Site A is the preferred site during good weather.
Site C is the least preferred. Unfortunately, there is a long-range
weather forecast for 3 months from now when the test needs to be
conducted. The weather forecasters described the possibilities for
weather as ‘‘good,’’ ‘‘fair,’’ and ‘‘poor.’’ These possibilities have been
defined very carefully and their forecast for the time period of the test
is: 0.3 for good, 0.6 for fair and 0.1 for poor.

You have tried to find a way to reserve site A for a long enough period
of time that the weather will certainly be good. However, site A is used
by many people, and management has determined that the project
cannot afford to rent site A for this extended time period. The cost at
which the sites can be reserved for the time period in question is $1000
for site A, $700 for site B, and $400 for site C.

Usage of each of these sites has varying positives and negatives for
being able to analyze the results and recommend that the system be
accepted. You have queried your colleagues to determine how much
they would be willing to pay to change a specific site in the different
weather conditions to the preferred site A and weather condition. These
relative dollar values do not include the cost of renting the site for the
needed time period. The relative dollar value equivalents for sites and
weather conditions are shown below:

Weather Is Good Weather Is Fair Weather Is Poor

Site A $1000 $200 $0

Site B $950 $300 $200

Site C $500 $450 $300

That is, site A in good weather is worth $1000 more dollars in terms of
test performance than it is in poor weather. Similarly, site A in good
weather is worth $500 more than site C in good weather.
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a. Draw the influence (or decision) diagram for this problem.

b. Draw the decision tree for the problem.

c. Compute the expected values for the three sites to determine which
site should be recommended.

d. What is the value of perfect information for weather? Show the
influence diagram and decision tree for computing the value of
perfect information.

e. Using the following u curve, what is the best expected utility
decision?

uðxÞ ¼ ð1� e�0:01xÞ=ð1� e�0:01Þ

where x is the total monetary value associated with using the site in
question.

f. What is the value of perfect information using the above u curve.

13.7 As part of the management group of the systems engineering team, Bill
D. Orby has been given the task of recommending whether to ‘‘build’’
or ‘‘buy’’ a particular component. Bill has called several manufacturers
of this component and found the best ‘‘buy’’ alternative will cost
$200,000 for the quantity needed. The performance of this component
that is available from outside is categorized as moderate; this categor-
ization includes many performance parameters and is rather coarse,
but Bill hopes sufficient for an initial analysis.

Next, Bill spent significant time talking to several design engineers
within his company who would be given the task of building this
component, and several others who have built similar components in
the past. There is uncertainty concerning both the cost and ultimate
performance of this component if it is built by Bill’s organization. Bill
has modeled the uncertainty about total cost for developing and
building the total quantity of the component as follows:

Build Cost Probability

$100,000 0.2

$200,000 0.6

$400,000 0.2

The performance of the built component expected by the engineers
with whom Bill spoke is substantially greater than the performance to
be provided by the bought component. Bill has devised three perfor-
mance categories to describe the uncertainty surrounding the built
component: low, moderate, and high. The assessed probabilities of

446 DECISION ANALYSIS FOR DESIGN TRADES



these performance outcomes, which are independent of the cost
uncertainty, are

Build Performance Probability

Low 0.2

Moderate 0.3

High 0.5

The last issue that must be addressed is the combination of costs and
performance, including the difference between spending money outside
the organization for the component versus spending the money inside
the organization. You have found that management can think of an
‘‘equivalent purchase price’’ for the nine possible combinations of
outcomes associated with building the component. The following table
provides this equivalent purchase price. [Note that (1) negative
numbers are equivalent to receiving money and (2) the cost of building
the component has been included in the values in the table.]
Table of Equivalent Outside Purchase Price as a Function of ‘‘Built
Performance’’ and ‘‘Built Cost’’

Built Cost inside the organization

Built Performance $100,000 $200,000 $400,000

High �300,000 �200,000 0

Moderate 0 100,000 300,000

Low 100,000 200,000 400,000

Note that management prefers to build the component inside because
the $200,000 build cost with moderate performance is equivalent to
spending $100,000 outside. Assume that management’s value function
on ‘‘Outside Purchase Price’’ is a linear function with coefficient of �1.
a. Draw an influence diagram for this problem.

b. What is the best expected value decision?

c. What is the expected value of perfect information for built perfor-
mance? for built cost? and for the combination of built performance
and built cost? Show the influence diagram for each of these perfect
information calculations.

13.8 Consider Problem 13.6. The first paragraph holds except we will drop
the fair weather condition. The probability of good weather is 0.3; the
probability of poor weather is 0.7.
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We are now going to enhance this model to address the need to test our
system under a specified test condition. The weather affects the ability
of each site to provide the necessary elements (e.g., terrain, visibility)
that define the test condition. Our test experts visit each site and return
with probabilities that each site can do a ‘‘good’’ versus ‘‘poor’’ job of
reproducing the needed test condition. Assume that we have defini-
tions of good and poor that meet the clairvoyant’s test. (Note we could
have defined more than two categories if we felt we needed to achieve
more accuracy.)

Site Weather p(test condition good|site,
Weather, &)

p(test condition poor|site,
Weather, &)

A Good 1.0 0.0

A Poor 0.5 0.5

B Good 0.9 0.1

B Poor 0.5 0.5

C Good 0.7 0.3

C Poor 0.2 0.8

The test engineers have determined that they would be willing to pay
$10,000 to move from a test site providing a poor version of the test
condition to a test site providing a good version of the test condition.

Which site should we choose? Remember the rental cost of each site.
What is the value of perfect information on the weather?

13.9 Now we are going to take Problem 13.8 and increase the modeling
complexity by defining three different test conditions that must be
reproduced by the test site. We call these test conditions X, Y, and Z.
We first generate descriptions of ‘‘good’’ and ‘‘poor’’ for each test
condition. Then we ask the wizard to help us elicit the values for having
good versus poor representations of the three test conditions. We
respond that having a poor representation of each test condition is
worth no money to us. Test condition X is the most important for
obtaining a good representation and we would pay $10,000. Similarly,
we would pay $5000 to obtain a good representation of Y and $1667 to
obtain a good representation of Z.

If we were using multiattribute value theory, what would our swing
weights be for these three test conditions?
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Site Weather p(test condition
X is good|site,
Weather, &)

p(test condition
Y is good|site,
Weather, &)

p(test condition
Z is good|site,
Weather, &)

A Good 1.0 1.0 1.0

A Poor 0.5 0.5 0.5

B Good 0.9 0.9 0.6

B Poor 0.5 0.5 0.5

C Good 0.7 0.5 0.7

C Poor 0.2 0.2 0.2

Which site should we choose? Remember the rental cost of each site.

What is the value of perfect information on the weather?

13.10 Returning to Problem 13.6, there is another way in which we
could have expanded the analysis from this point. In fact, the
systems engineers and stakeholders have to determine whether the
system is acceptable after these tests are over and the test results
are in; that is, they have to make a decision. In addition, going
into the test, they are not sure whether the system has acceptable
performance for the stakeholders. If the system does, and it is
accepted, then there should be relatively few and inexpensive
fixes needed relative to the case where the system’s perfor-
mance is unacceptable, but the decision is made to accept the
system.

So we have two decision nodes: which test site to choose and whether
to accept the system for use by the stakeholders.

The weather has two states and associated probabilities as in
Problem 13.8.

The ability of the three sites to reproduce good versus poor test
conditions in the weather conditions is as it was in Problem 13.8.

Now we must introduce our prior probabilities on the acceptability
of the system’s performance. Suppose we start with only two
possibilities (acceptable and unacceptable) with probabilities of 0.8
and 0.2.

We must also introduce our uncertainty that the test will say the
system is ‘‘acceptable.’’ This uncertainty is dependent on the system’s
actual performance and our ability to reproduce the test condition.
The table below describes this probability distribution.
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Actual System
Performance

Ability to Reproduce
the Test Condition

p(test says
accept|system is., test
condition is, &)

Acceptable Good 0.95

Acceptable Poor 0.60

Unacceptable Good 0.10

Unacceptable Poor 0.25

The quality engineers are called in to help us determine what the
relative value of accepting a system is given it is or is not acceptable,
over the life time of the system. These engineers conduct an analysis
over the 10-year life time of our system and present the net present
value (NPV) to our organization for the following conditions:

Actual System
Performance

Decision to
Accept or Not

Justification for Last
Column

NPV over
System Life
Time

Acceptable Accept Best profit $100,000

Acceptable Do Not Accept Make some unneeded
fixes

$80,000

Unacceptable Accept Have many repairs
under warranty,
damage reputation

�$10,000

Unacceptable Do Not Accept Make needed fixes,
delay hurts sales

$20,000

Which site should we choose? Remember the rental cost of each site.

What is the expected value of perfect information on the weather?
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Appendix A

Outline of Systems Engineering
Documents

Problem Situation or Mission Element Needs Statement (MENS)

A. History of the Problem and the Present System
B. Stakeholders

1. Bill Payers

2. Owners (if different than bill payers)

3. Users

4. Operators

5. Victims

6. Systems Engineers

7. Manufacturers

8. Deployers

9. Trainers

10. Maintainers
C. System Context and Environment

1. System Context (social, economic, environmental)

2. External Systems
D. Major System Objectives

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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Systems Engineering Management Plan (SEMP)

1.0 Integration
2.0 Technical Program Planning and Control
2.1 Responsibilities and Authority
2.2 Standards, Procedures, and Training
2.3 Program Risk Analysis
2.4 Work Breakdown Structure
2.5 Program Reviews
2.6 Technical Reviews
2.7 Technical Performance Measurement
2.8 Change Control Procedures
2.9 Engineering Program Integration

2.10 Interface Control
2.11 Milestones and Schedule
2.12 Other Plans and Controls
3.0 Systems Engineering Process
4.0 Engineering Specialty and Integration Plans and Procedures
4.1 Integration Design Plans
4.2 Integration System Qualification Plans

Stakeholders’ Requirements Document (StkhldrsRD)

1.0 System Overview
2.0 Applicable Documents
3.0 Requirements
3.1 Development Phase (Programmatic) Requirements

3.1.1 Input/Output Requirements for Development
y

3.1.4 Test Requirement for Development
3.2 Manufacturing Phase Requirements
y

3.3 Deployment Phase Requirements
y

3.4 Training Phase (if present) Requirements
y

3.5 Operational Phase Requirements
3.5.1 Input/Output Requirements for Operations

3.5.1.1 Input Requirements for Operations
3.5.1.2 Output Requirements for Operations
3.5.1.3 External Interface Requirements for Operations
3.5.1.4 Functional Requirements for Operations

3.5.2 System-wide/Technology Requirements for Operations
3.5.3 Trade-off Requirements for Operations
3.5.4 Test Requirements for Operations

3.6 System Improvement/Upgrade Phase Requirements
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y

3.7 Retirement Phase Requirements
y

3.8 Overall Trade-off Requirement
Appendix A. Operational Concepts by Phase Appendix
Appendix B. External System Diagrams by Phase

System Requirements Document (SRD)

1.0 System Overview
2.0 Applicable Documents
3.0 Requirements
3.1 Development Phase (Programmatic) Requirements

3.1.1 Input/Output Requirements for Development
y

3.1.4 Test Requirement for Development
3.2 Manufacturing Phase Requirements
3.3 Deployment Phase Requirements
3.4 Training Phase (if present) Requirements
3.5 Operational Phase Requirements

3.5.1 Input/Output Requirements for Operations
3.5.1.1 Input Requirements for Operations
3.5.1.2 Output Requirements for Operations
3.5.1.3 External Interface Requirements for Operations
3.5.1.4 Functional Requirements for Operations

3.5.2 System-wide/Technology Requirements for Operations
3.5.3 Trade-off Requirements for Operations
3.5.4 Test Requirements for Operations

3.6 System Improvement/Upgrade Phase Requirements
3.7 Retirement Phase Requirements
3.8 Overall Trade-off Requirement
Appendix A. Operational Concepts by Phase Appendix
Appendix B. External System Diagrams by Phase

System Requirements Validation Document (SRVD)

1. Development Phase (Programmatic) Requirements Validation

2. Manufacturing Phase Requirements Validation

3. Deployment Phase Requirements Validation

4. Training Phase (if present) Requirements Validation

5. Operational Phase Requirements Validation

6. System Improvement/Upgrade Phase Requirements Validation

7. Retirement Phase Requirements Validation

8. Overall Requirements Validation
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System Description Document (SDD)

1. Top-Level System/Component Description

2. Stakeholders’ Requirements

3. Design Constraints

4. Performance Objectives

5. Issues & Decisions

6. Risk Management

7. Functional Behavior Models

8. Item Dictionary

9. Components

10. Derived Interfaces

11. Logical/Physical Interfaces

12. Verification Cross-Reference Matrix

13. Requirements Traceability Matrix
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Glossary

Acceptance: takeholder function for agreeing that the designed system, as
tested or otherwise evaluated by the stakeholders, is acceptable.

Acceptance Plan: how the qualification data will be used to determine that the
real system is acceptable to the stakeholders.

Allocated Architecture: complete description of the system design, including
the functional architecture allocated to the physical architecture; derived
input/output; technology, system-wide, trade-off, and qualification require-
ments for each component; an interface architecture that has been integrated
as one of the components; and complete documentation of the design and
major design decisions.

Apportionment: requirements flowdown approach that spreads a system-level
requirement among the system’s components of the system, maintaining the
same units.

Attainable: solutions exist within performance, cost, and schedule constraints.

Behavior Model: defines the control, activation, and termination of system
functions that are needed to meet the performance requirements of the
system.

Bipartite Graph (Digraph): graph (digraph) whose set of nodes can be parti-
tioned into two sets A and B such that no edge connects a node in A to
another node in A and, similarly, no edge connects a node in B to another
node in B.

Black Box Testing: outputs are determined correct or incorrect based upon
inputs; inner workings of the module are ignored. Both positive and negative
testing have to be employed.

The Engineering Design of Systems: Models and Methods, Second Edition. By Dennis M. Buede
Copyright r 2009 John Wiley & Sons, Inc.
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Cartesian product of two sets, A x B: set of all possible ordered pairs of those
two sets.

Centralized Architecture: architecture with a central location for the execution
of the transformation and control functions of the system.

Client–Server Architecture: architecture that distinguishes between client pro-
cesses (requestors) and server processes (task completors).

Comparable: pertaining to requirements, the relative necessity of the require-
ments is included.

Complete: pertaining to requirements: (a) everything the system is required to
do throughout the system’s life cycle is included; (b) responses to all possible
(realizable) inputs throughout the system’s life cycle are defined; (c) the
document is defined clearly and self-contained; and (d) there are no ‘‘to be
defined’’ (TBD) or ‘‘to be reviewed’’ (TBR) statements. Completeness is a
desired property but cannot be proven at the time of requirements develop-
ment, or perhaps ever.

Component: subset of the physical realization (and the physical architecture) of
the system to which a subset of the system’s functions have been (will be)
allocated. A component could be the integration of hardware and software,
a specific piece of hardware, a specific segment of the system’s software, a
group of people, facilities, or a combination of all of these.

Conceptual Validity: correspondence between the stakeholders’ needs and the
operational concept.

Concise: pertaining to requirements, no unnecessary information is included in
the requirement.

Configuration Items: lowest level components in the physical architecture.

Consistent: pertaining to requirements (a) internal—no two subsets of re-
quirements conflict and (b) external—no subset of requirements conflicts
with external documents from which the requirements are traced.

Context of a System: set of entities that can impact the system but cannot be
impacted by the system.

Correct: pertaining to requirements, what the system is in fact required to do.

Cost Requirement: requirement addressing the payment of money during the
appropriate life-cycle phase for the system in question to be useful.

Data Model: defines the relationships among the inputs and outputs of a
system.

Deadlock: undesired state of the system in which activity ceases and through-
put is nonexistent. Deadlock can occur for two reasons: contention over
resources and waiting for a communication.

Decentralized Architecture: architecture with multiple, specific locations at
which the same or similar transformational or control functions are
performed.
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Decision: irrevocable allocation of resources to affect some chosen change or
the continuance of the status quo.

Definitive Model: addresses the question of how an entity should be defined.

Descriptive Model: attempts to predict answers to questions for which the truth
may or may not be obtained in the future.

Design: preliminary activity that has the purpose of satisfying the needs of the
stakeholders. Design begins in the mind of the lead engineer but has to be
transformed into models employing visual formats in a highly skilled
manner for success to be achieved.

Design Independent: pertaining the requirements, each requirement does not
specify a particular solution or a portion of a particular solution.

Design Validity: congruence between the Originating Requirements Document
(ORD) and the derived requirements.

Directed Graph or Digraph: pair of sets, V(G) and E(G). V(G) {n1, n2,y, nN} is
the set of vertices or nodes. V(G) is a finite, non empty set. E(G)=eij is a
subset of V � V or ordered pairs of nodes. eij is said to be from ni to nj. E(G)
may be empty.

Distributed Architecture: architecture in which there are two or more auton-
omous processors connected by a communications interface and running a
distributed operating system.

Early Validation: determination that the right problem is being defined at the
current level of abstraction given the validity of the problem definition at a
higher level of abstraction.

Engineering: discipline for transforming scientific concepts into cost-effective
products through the use of analysis and judgment.

Engineering of a System: engineering discipline that develops, matches, and
trades off requirements, functions, and alternate system resources to achieve
a cost-effective, life-cycle balanced product based upon the needs of the
stakeholders.

Entity–Relationship Diagrams: model of the data structure or relationships
between data entities.

Equivalence: simple requirements flowdown approach that causes the compo-
nent requirement to be the same as the system requirement.

Error: subset of the system state that may lead to a failure. The system can
monitor its own state, so errors are observable in principle.

External Interface Requirements: limitations placed upon the receipt of
inputs and transmission of outputs by the interfaces of the external
systems.

External Systems Diagram: model of the interaction of the system with other
(external) systems in the relevant contexts, thus providing a definition of the
system’s boundary in terms of the system’s inputs and outputs.
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Failure: deviation in behavior between the system and its requirements. Since
the system does not maintain a copy of its requirements, a failure is not
observable by the system.

Fault: defect in the system that can cause an error. Faults can be permanent
(e.g., a failure of system component that requires replacement) or temporary
due to either an internal malfunction or external transient.

Feedback and Control: comparison of the actual characteristics of an output
with desired characteristics of that output for the purpose of adjusting the
process of transforming inputs into that output.

Figure of Merit (FOM): describes a specific system property or attribute for a
given environment and context; an FOM is measured within the system.
Also called a measure of performance (MOP).

Function (Mathematical): binary relation from A to B such that every element
of A is mapped one and only one element of B.

Function (Engineering): process that transforms inputs into outputs.

Functional Architecture: (a) logical architecture that defines what the system
must do, a decomposition of the system’s top-level function. This very
limited definition of the functional architecture is the most common and is
represented as a directed tree. (b) Logical model that captures the transfor-
mation of inputs into outputs using control information. This definition
adds the flow of inputs and outputs throughout the functional decomposi-
tion. (c) Logical model of a functional decomposition plus the flow of inputs
and outputs, to which input/output requirements have been traced to
specific functions and items (inputs, outputs, and controls).

Functional Requirements: the two to seven functions that are the first-level
decomposition of the system’s function.

Fundamental Objective: aggregation of the essential set of objectives that
summarizes the current decision context and is yet relevant to the evaluation
of the options under consideration.

Functionality: set of functions required to produce a particular output. Simple
functionality is an ordered sequence of functional processes that operates on
a single input to produce a specific output. Note there may be many inputs
required to produce the output in question, but this simple functionality is
only related to one of the inputs. Complete functionality is a complete set of
coordinated processes that operate on all of the necessary inputs for
producing a specific output.

Fundamental Objectives Hierarchy: subdivision of the fundamental objective
into value objectives that more meaningfully define the fundamental
objective, thereby forming a value structure.

Graph, G: a pair of sets, V(G) and E(G). V(G)={n1, n2, y, nN} is the set of
vertices or nodes. E(G)={eij} D V(G) � V(G) is a relation that defines the
set of edges that are unordered, not necessarily distinct pairs of nodes. V(G)
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is a finite, nonempty set. E(G) may be empty and is a subset of the Cartesian
product of V(G) with itself.

Hardware Redundancy: use of extra hardware to enable the detection of errors
as well as to provide additional operational hardware components after
errors have occurred. Passive hardware redundancy masks or hides the
occurrence of errors rather than detecting them; recovery is achieved by
having extra hardware available when needed. Active hardware redundancy
attempts to detect errors, confine damage, recover from the errors, and
isolate and report the fault.

ICOMs: the inputs, controls, outputs, and mechanisms of a function in
IDEF0.

IDEF0: IDEF acronym comes from the U.S. Air Force’s Integrated Compu-
ter-Aided Manufacturing (ICAM) program that began in the 1970s. IDEF is
a complex acronym that stands for ICAM Definition. The number, 0, is
appended because this modeling technique was the first of many techniques
developed as part of this program. More recently, the U.S. Department of
Commerce [the National Institute of Standards and Technology (NIST)] has
issued Federal Information Processing Standard (FIPS) publication 183 that
defines the IDEF0 language and renames the acronym, Integrated Definition
for Function modeling.

Information Redundancy: addition of extra bits of information to enable error
detections using special codes.

Input/Output Requirements: requirements about sets of acceptable inputs and
outputs, trajectories of inputs to and outputs from the system, interface
constraints imposed by the external systems, and eligibility functions that
match system inputs with system outputs for the life-cycle phase of interest.
This category is partitioned into four subsets: (a) inputs, (b) outputs, (c)
external interface constraints, and (d) functional requirements.

Input/Output Trace: a time line associated with each major actor (our system
and other systems) in the scenario. The systems involved are listed across the
top of the diagram with the time lines running vertically down the page
under each of the systems. Time moves from top to bottom in an input/
output trace; the system of concern is highlighted with a bold label and
heavier line. Interactions involving the movement of data, horizontal arcs
from the originating system to the receiving system designate energy or
matter among systems. A label is shown just above each arc to describe the
data or item being conveyed. Double-headed arcs are permissible to
represent dialog in a compact manner. Having two or more arcs in quick
succession is also common to illustrate that the same item is being
transmitted from one system to multiple systems or multiple systems are
potentially transmitting the same item to one system.

Input Requirements: inputs the system must receive and any performance or
constraint aspects of each.
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Integration: process of assembling the system from its components, which must
be assembled from their configuration items (CIs).

Interface: connection for hooking to another system (an external interface) or
for hooking one system component to another (an internal interface). The
interface of a system contains both a logical element and a physical element
(or link) that are responsible for carrying items (electromechanical energy or
information) from one component or system to another.

Items: inputs that are received by the system, the outputs that are sent by the
system to other systems, and the inputs that are generated internally to the
system and sent to other parts of the system to assist in the transformation
process for which the system is responsible.

Life Cycle: begins with the gleam in the eyes of the users or stakeholders, is
followed by the definition of the stakeholders’ needs by the systems
engineers, includes developmental design and integration, goes through
production and operational use, usually involves refinement, and finishes
with the retirement and disposal of the system.

Livelock: undesired state of the system in which resources are being routed in
cycles (oscillating) while waiting for the proper allocation of resources to
enable the completion of necessary activities; unfortunately the proper
allocation of resources is never achieved and the system cycles continuously,
never reaching the desired outputs.

Manufacturing: using resources to perform operations on materials to produce
products.

Measure of Effectiveness (MOE): variable that describes how well a system
carries out a task or set of tasks within a specific context; an MOE is
measured outside the system for a defined environment and state of the
context variables.

Measure of Performance (MOP): variable that describes a specific system
property or attribute for a given environment and context; a MOP is
measured within the system.

Mental Model: abstraction of thought.

Mission Requirements: requirements that relate to objectives of the stake-
holders that are defined in the context of the supersystem, not the system
itself.

Mode of a System: distinct operating capability of the system during which
some or all of the system’s functions may be performed to a full or limited
degree.

Model: any incomplete representation of reality, an abstraction. The essence of
a model is the question or set of questions that the model can reliably answer
for us.

Modifiable: pertaining to requirements, changes that can be made easily,
consistently (free of redundancy), and completely.
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Morphological Box: matrix in which the columns (or rows) represent the
components in the generic physical architecture. The boxes in a given
column (or row) then represent alternate choices for fulfilling that generic
component.

Multiattribute Value Analysis: quantitative method for aggregating a stake-
holder’s preferences over conflicting objectives to find the alternative with
the highest value when all objectives are considered.

Normative Model: model that addresses how individuals or organizational
entities ought to think about a problem and guide decision making.

Objectives Hierarchy: hierarchy of objectives that are important to the system’s
stakeholders in a value sense; that is, the stakeholders would (should) be
willing to pay to obtain increased performance (or decreased cost) in any one
of these objectives. It is also the definition of the natural subsets of the
fundamental objective into a collection of performance requirements.

Observance Requirement: requirement stating how the estimates (qualification
data) for each input/output and system-wide requirement will be obtained.
Typically one of the four major qualification methods (test, analysis and
simulation, inspection, or demonstration) is assigned to each input/output
and system-wide requirement.

Open Architecture: architecture in which the hardware and software interfaces
are sufficiently well defined that additional resources can be added to the
system with little or no adjustment.

Operational Concept: vision for what the system is (in general terms), a
statement of mission requirements, and a description of how the system
will be used. The shared vision is based on the perspective of the system’s
stakeholders of how the system will be developed, produced, deployed,
trained, operated and maintained, refined, and retired to overcome some
operational problem and achieve the stakeholders’ operational needs and
objectives. The mission requirements are stated in terms of measures of
effectiveness. The operational concept includes a collection of scenarios (one
or more for each group of stakeholders in each relevant phase of the system’s
life cycle).

Operational Validity: matching of the capabilities of the designed system to the
operational concept; this naturally occurs late in the integration phase after
the designed system has been verified.

Output Requirements: requirements that state what outputs the system must
produce and any performance aspects.

Overlap in the Functional Architecture: redundancy in functionality that is not
needed to achieve additional performance.

Partition on a Set A: collection P of disjoint subsets of A whose union is A.
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Performance Analysis: analysis for the purpose of discovering the range of
performance that can be expected from a specific design or a set of designs
that are quite similar.

Performance Requirement: requirement defined on some index that establishes
a range of acceptable performance from a minimum acceptable threshold to
a design goal.

Physical Architecture: resources for every function identified in the functional
architecture. The generic physical architecture is a description of the parti-
tioned elements of the physical architecture without any specification of the
performance characteristics of the physical resources that comprise each
element (e.g., central processing unit). An instantiated physical architecture is
a generic physical architecture to which complete definitions of the perfor-
mance characteristics of the resources have been added.

Physical Model: representation of an entity in three-dimensional space. A
physical model can be divided into full-scale mock-up, subscale mock-up,
breadboard, and electronic mock-up.

Power Set of Set A: set of all sets that are subsets of A.

Process Model: model that defines the functional decomposition of the system
function and the flow of inputs and outputs for those functions.

Prototype: physical model of the system that ignores certain aspects of the
system, glosses over other aspects, and is fairly representative of a third
segment of aspects of the system. The prototype can range from a subscale
model of the system to a paper display (storyboard) of the user interface of
the system.

Qualification: process of verifying and validating the system design and then
obtaining the stakeholders’ acceptance of the design.

Qualification Methods: inspection, analysis and simulation, instrumented test,
and demonstration.

Qualification Requirements: requirements that address the needs to qualify the
system as being designed right, the right system, and an acceptable system.
There are four primary elements: (a) observance: to state which qualification
data for each input/output and system-wide requirement will be obtained by
(i) demonstration, (ii) analysis and simulation, (iii) inspection, or (iv)
instrumented test; (b) verification plan: to state how the qualification data
will be used to determine that the real system conforms to the design that
was developed; (c) validation plan: to state how the qualification data will be
used to determine that the real system complies with the originating
performance, cost and trade-off requirements; and (d) acceptability: to state
how the qualification data will be used to determine that the real system is
acceptable to the stakeholders.

Qualitative Model: model that provides symbolic, textual, or graphic answers.
Symbolic models are based on logic or set theory. Textual models are based
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on verbal descriptions. Graphical models use either elements of mathema-
tical graph theory or simply artistic graphics to represent a hierarchical
structure, the flow of items or data through a system’s functions, or the
dynamic interaction of the system’s components.

Quantitative Model: model that provides answers that are numerical; these
models can be either analytic, simulation, or judgmental models.

Regression Testing: retesting a portion of the system after a change has been
made to ensure that new problems were not introduced.

Relation (Binary): relation that relates elements of A to elements of B and is a
subset, R, of A � B.

Relation (Unary) on a Set A: relation that relates elements of A to itself and is a
subset, R, of A � A.

Requirements Flowdown: derivation of requirements from one level of the
operational architecture for a lower level of the architecture. A requirements
flowdown includes three approaches: apportionment, equivalence, and
synthesis.

Requirements Statements: defines the needs and objectives of stakeholders.

Requirements Validity: correspondence between the operational concept and
the originating requirements.

Risk: combination of the probability of an event occurring and the significance
of the consequence of the event occurring.

Risk Analysis: analysis done early in the development process to examine the
ability of the divergent concepts to perform up to the needed level of
performance across a wide range of operational scenarios. At this time there
remains substantial uncertainty about the stakeholders’ needs, the state of
technology under consideration, and the details of the operational
architecture.

Risk Avoidance: selection of the low-risk alternative; unfortunately what seems
to be low risk intuitively is high risk in some cases.

Risk Management: use of hedging strategies; a hedging strategy is the main-
tenance of fallback options in case a riskier option fails.

Risk Transference: transfer of risk to others, an example being the purchase of
insurance.

Scenario: defines how the system will respond to inputs from other systems in
order to produce a desired output. Included in each scenario are the relevant
inputs to and outputs from the system and the other systems that are
responsible for those inputs and outputs. The scenario should not describe
how the system is processing inputs to produce outputs; rather, the scenario
focuses on the exchange of inputs and outputs by the system with other
systems.
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Schedule Requirement: requirement addressing a timing issue for the relevant
system for the phase of life cycle in question.

Semantics: study of relationships between signs and symbols and what they
represent.

Set: a collection of well-defined objects called elements or members.

Shortfall in the Functional Architecture: absence of a functionality that is
required to produce a desired output from one or more inputs.

Software Redundancy: use of multiple versions of the same software function-
ality to provide multiple operational software components in the event of a
software failure.

Specification: collection of requirements that completely define the constraints
and performance requirements for a specific physical entity that is part of the
system.

Stakeholder: owner and/or bill payer, developer, producer or manufacturer,
tester, deployer, trainer, operator, user, victim, maintainer, sustainer,
product improver, and decommissioner. Each stakeholder has a significantly
different perspective of the system and the system’s requirements.

Stakeholders’ Requirements: statements by the stakeholders about the system’s
capabilities that define the constraints and performance parameters within
which the system is to be designed. These stakeholders’ requirements focus
on the boundary of the system in the context of these mission requirements,
are written in the stakeholders’ language, are produced in conjunction with
the stakeholders of the system, and are based upon the operational needs of
these stakeholders.

Stakeholders’ Requirements Document (StkhldrsRD): document that contains
the stakeholders’ requirements. Sometimes called the Originating Require-
ments Document (ORD) or Operational Requirements Document.

Starvation: undesired state of the system that occurs when a function needs a
particular resource for execution, but the resource is always allocated to
other functions due to a poorly designed resource assignment algorithm.

State of the System: static snapshot of the set of metrics or variables needed to
describe fully the system’s capabilities to perform the system’s functions.

Suitability Requirements: requirements that address quality concerns of a
system and are system-wide in scope. Examples are availability and safety.

Surge or Race: undesired state of the system that occurs in relatively uncon-
trolled systems when components are competing with each other to perform
a task.

Syntax: way in which words are put together to form phrases and sentences.

Synthesis: requirements flowdown approach for those situations in which the
system-level requirement is comprised of complex contributions from the
components, causing the component requirements that are flowed down
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from the system to be based upon some analytic model. The derived
requirements for each component will have significantly different units
than the system-level requirement had.

System: set of components (subsystems, segments) acting together to achieve a
set of common objectives via the accomplishment of a set of tasks.

System Context: set of entities that can impact the system but cannot be
impacted by the system.

System (Human-Designed):

� specially defined set of segments (hardware, software, physical entities,
humans, facilities) acting as planned,

� via a set of interfaces, which are designed to connect the components,

� to achieve a common mission or fundamental objective (i.e., a set of
specially defined objectives),

� subject to a set of constraints,

� through the accomplishment of a predetermined set of functions.

System Requirements: translation (or derivation) of the originating require-
ments into engineering terminology.

System Requirements Document (SysRD): document that contains the system
requirements.

System Task or Function: set of functions that must be performed to achieve a
specific objective.

Systems (External of a System): set of entities that interact with the system via
the system’s external interfaces.

Technology and System-wide Requirements: constraints and performance index
thresholds that are placed upon the physical resources of the system. This
category can be partitioned into four subsets: (a) technology, (b) suitability
and quality issues, (c) cost for the relevant system (e.g., development cost,
operational cost), and (d) schedule for the relevant life-cycle phase (e.g.,
development time period, operational life of the system).

Technology Requirement: constraints for the engineering creativity and should
result from the other requirements if they are justifiable. These requirements
are usually justified on the basis of interoperability or compatibility with an
existing product line, which ultimately should be reflected in cost savings.

Time Redundancy: use of extra processing when time is available to perform
the same computation multiple times with a single hardware and software
combination and then compare the results.

Trade Study: analysis that focuses on finding ways to improve the system’s
performance on some highly important objective while maintaining the
system’s capability in other objectives.
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Tree: graph, G, with no loops in which there is a unique, simple (no loops),
nondirected path (or semipath in the case of a digraph) between each pair of
nodes. A rooted tree is a tree in which there is a designated ‘‘root’’ node. In a
graph, the root node must have a degree of 1. In a directed tree, the root
node must have no parents, or an in degree of 0. A directed tree is a rooted
tree in which there is a (directed) path from the root to every other node.

Traceable: pertaining to requirements, each derived requirement must be
traceable to an originating requirement via some unique name or number.

Traced: pertaining to requirements, each requirement is traced to some
document or statement of the stakeholders.

Trade-off Requirements: algorithms for comparing any two alternate designs
on the aggregation of cost and performance objectives. These algorithms
can be divided into (a) performance trade offs, (b) cost trade offs, and (c)
cost–performance trade offs.

Unambiguous: pertaining to requirements, every requirement has only one
interpretation.

Understandable: pertaining to requirements, interpretation of each require-
ment is clear.

Unique: pertaining to requirements, those that are not overlapping or redun-
dant with other requirements.

Usability: includes ease of learning (learnability), ease of use (efficiency), ease
of remembering (memorability), error rate, and subjectively pleasing
(satisfaction).

Usability Testing: obtaining samples of users and eliciting the reactions of
these users about their needs and desires as they interact with prototypes.

Validation: process of determining that the systems engineering process has
produced the right system, based upon the needs expressed by the
stakeholder.

Validation Plan: how the qualification data will be used to determine that the
real system complies with the originating requirements.

Verifiable: finite, cost-effective process has been defined to check that the
requirement has been attained.

Verification: matching of Configuration Items (CIs), components, subsystems,
and the system to their corresponding requirements to ensure that each has
been built right.

Verification Plan: how the qualification data will be used to determine that the
real system conforms to the design that was developed.

White Box Testing: inner workings of the module are examined as part of the
testing to ensure proper functioning. Usually used at the CI level of testing;
this method becomes impractical at the system level.
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