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Abstract 
 

Process capability analysis is an important element of any quality improvement 
initiative. However, estimating process capability is often problematic when it comes to 
non-normal distributions since the conventional methods sometimes give misleading 
results.  

In this Master’s thesis, a new method for estimating process capability of non-normal 
distribution with only lower specification limit is proposed. The proposed method only 
considers the left tail of the distribution rather than taking all of the data points. For 
estimating the process capability, it employs least squares technique and normal 
approximation to the selected observations from the left tail.  

Furthermore, the proposed method is tested on log-normal, 3-parameter Weibull, and 3-
parameter Gamma distributions. Simulations and real-world data analysis are used for 
verification and validation purpose, respectively. An easy and practical guideline is also 
developed. Following the proposed guideline, capability of a non-normal process can be 
estimated with a relatively high success rate. 

 

Keywords: process capability analysis, non-normal distribution, lower specification 
limit. 
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1. Introduction 
In this section, a general description of process capability analysis and its importance in 
industry are provided. This is followed by the formulation of the problem of interest. The 
purpose and research questions draw the directions that the study follows and finally 
delimitations determine the scope of the study. 

1.1. Background 
The concept of quality evolved since the beginning of the twentieth century as the frontiers of 
quality have ever enlarged. What was once started as quality inspection – that is, checking 
finished products for defective units followed by scrapping or reworking – has evolved into 
quality management which encompasses actions for improving quality not only after 
production but actions before and during production as well (Hoerl and Snee, 2010a). As 
manufacturers started to realize the high costs of poor quality, which are related to both direct 
and indirect costs of quality defects, and feel the ever-growing pressure of customer demand 
and expectations; quality improvements become crucial for companies’ survival and to keep 
their competitive edges (Feigenbaum, 1999; Bergman and Klefsjö, 2010). 

There are indeed several different strategies – one can even name them philosophies – for 
deploying quality improvement efforts to various stages of manufacturing: TQM, Six Sigma, 
Design for Six Sigma, and so forth can be considered as examples (Snee, 2004; Nonthaleerak 
and Hendry, 2006). While differing in various attributes, these quality improvement strategies 
share some common features as well.  Whether TQM or Six Sigma or any other strategy is 
employed, “Statistical Thinking” philosophy is amongst the common features for quality 
improvement (Hoerl and Snee, 2010b). Hoerl and Snee (2010a) discuss that the key elements 
of Statistical Thinking are process, variation, and data. These elements are intertwined with 
each other. For example, without proper contextual understanding of the data, faulty data 
analysis or analysis with no useful interpretations can be made. However, in order to develop 
such contextual insight first the process, which produces the data, has to be understood. Once 
the process and the context of data is appropriately comprehended, the direction chosen to 
reduce the variation is the utilization of statistical methods (Hoerl and Snee, 2010b). Through 
using statistical methods, companies aim at identifying and eliminating variation in their 
processes, measuring the performance of their processes and so forth (Bergman and Klefsjö, 
2010). Statistical Process Control (SPC) and its two cardinal functions, control charts and 
process capability analysis (PCA), constitute the central pillar of statistical methods which are 
utilized in industry today (Wu, et al., 2009; Hoerl and Snee, 2010a). A key element in PCA is 
to measure the capability of a process through process capability indices (PCIs), which make 
a statistical assessment possible (Kotz and Johnson, 1993). 

PCA studies intrigue academics, practitioners, and also students. Practitioners sometimes 
cooperate with academics or students for investigating the capability of their processes. An 
example of such cooperation can be seen in Li and Chen (2009). Li and Chen (2009) have 
conducted a process capability analysis within the scope of their Master’s thesis for Vestas, 
Denmark, the world leading supplier of wind power solutions. The study was based on the 
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assessment of the capability of the painting process of wind turbine blades. After a closer 
examination of the PCA methodology employed in the company, it was found out that the 
methodology of analyzing painting process capability was not accurate due to the non-
normality of the process distribution. Further investigation showed that the process capability 
indices computed with non-normal data gave inconsistent results for different assumed non-
normal distributions. This problem requires further research; therefore a theoretical Master’s 
thesis was proposed in order to investigate an appropriate approach for dealing with non-
normally distributed processes.   

1.2. Problem Formulation 
In order to be able to identify the problem, it is important to state the environment and the 
conditions where the problematic results first manifested themselves. In the following sub-
sections, the blade painting process is described briefly and a short summary of the analysis of 
Li and Chen (2009) is provided. Then, the problem is defined based on the given information.  

1.2.1. Blade Painting Process 
Vestas manufactures the blades which are used as parts of the wind turbine. The 
manufacturing process can be summarized as (1) production of the parts of the blade, (2) 
assembly of the parts, (3) surface finishing treatment, and (4) painting of the blade. During 
surface finishing treatment, the blade goes through cleaning, grinding and repairing processes 
in order to make the blade ready for painting. The painting of the blade is essentially covering 
every facet of the blade with a layer of chemical material. This chemical layer provides 
protection from adverse environmental conditions, delays erosion and so forth. The 
performance of the painting process is crucial for the overall quality of the blades; therefore it 
is measured and analyzed.  

Before starting the painting process, labels are stuck on every seven lightning receptors on 
two sides of the blade, resulting in total 14 labels. These labels are then used to measure the 
thickness of paint on the blade. Paint thickness is directly related to the protection of the blade 
from environmental conditions and it highly affects the durability and reliability of the blades. 
Painting operation is done by two painters manually using a spraying gun.  

Li and Chen (2009) identified paint thickness as a quality characteristic of blade 
manufacturing process. It is used as the quality characteristic of interest when computing 
process capability indices. The paint thickness data were obtained by measuring the levels of 
paint on the labels which are placed on lightning receptors. For a single blade 14 
measurements were taken from each receptor and these measurements were repeated three 
times. For each receptor, the average value of the three measurements were computed and 
checked whether the average satisfied the minimum level of paint thickness (100 µm). 
Otherwise, the blade would require re-painting.  

1.2.2. Overview of the Findings from Li and Chen (2009) 
Although paint thickness data does not have an upper specification limit, it has a lower 
specification limit, which is 100 µm. Since the painting is done manually, painters might 
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sometimes paint deliberately thicker in order to avoid re-work. Therefore some outliers might 
be found in the right tail of the process distribution.  

Li and Chen (2009) have collected  two batches of paint thickness data over two months time 
period. Thus, for each measurement point (i.e. lightning receptor), two batches of data have 
resulted in 28 measurement points. When the normality of the 28 measurement points were 
tested, it was found out that seven of them are not normally distributed. Therefore, it would be 
incorrect to analyze these non-normally distributed points together with the normally 
distributed ones because the results would be misleading. Li and Chen (2009) applied 
goodness-of-fit tests on non-normally distributed data sets and found out that some data sets 
fit log-normal, 3-parameter Weibull, and 3-parameter Gamma distributions. For illustration, 
the goodness-of-fit test results for one of the non-normally distributed receptor data is 
provided in Figure 1. Minitab software is utilized. 
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Figure 1. Goodness-of-Fit test of non-normal receptor data 

1.2.3. Problem Definition 
It has been stated in the previous section that analysis on the paint thickness data has revealed 
that the process did not always follow normal distribution pattern. For the normally 
distributed data, process capability indices, Cpk or Ppk, could be used without any problem. 
However, pooling the normal and non-normal data together and treating them as the same is a 
wrong approach. Although, non-normal distribution approximations may fit the paint 
thickness data well for some distributions such as log-normal, 3-parameter Weibull, and 3-
parameter Gamma, when the process capability indices are calculated for the same process 
characteristic (i.e. paint thickness), varied Cpk values are obtained, depending on which non-
normal distribution is assumed. Figures 2, 3, and 4 show the different Cpk results obtained 
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from the receptor sample data, which is used in the previous section, for log-normal, 3-p 
Weibull, and 3-p Gamma distributions, respectively.    
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Figure 2. PCA of non-normal receptor data assuming log-normal distribution 
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Figure 3. PCA of non-normal receptor data assuming 3-p Weibull distribution 
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Figure 4. PCA of non-normal receptor data assuming 3-p Gamma distribution 

It is shown in the figures that for the same process data, different Ppk (the software calculates 
only Ppk for non-normal distributions) results are obtained for different distributions. For 
example, assuming that the underlying distribution is log-normal, Ppk equal to 1.19 and 
expected ppm equal to 44.98 are obtained. However, assuming 3-p Weibull distribution the 
Ppk is 1.30 and expected proportion of non-conformity is zero. Furthermore, assuming 3-p 
Gamma distribution, expected proportion of non-conformity is 0 but Ppk is 1.44. Such results 
raise the question of which Cpk result should be assumed to reflect the capability and which 
ppm result should reflect the expected non-conformity of the process. In other words, without 
knowing which Cpk to be used, capability of the process cannot be correctly assessed.  

The circumstances stated above draw the outline of the problem, which will be investigated in 
this master’s thesis. In order to overcome the problem faced when dealing with non-normal 
data, a new approach will be developed for process capability analysis and will be tested 
through simulations. The process characteristic, which will be simulated in this thesis, shares 
common properties with the blade painting process in the company, particularly with paint 
thickness data. The process of interest investigated does not have two-sided specification limit 
but only a lower specification limit. Moreover, the process is non-normally distributed with a 
positive skew, which results in higher values in the right tail of the process. The first two 
moments of the process characteristic (i.e. mean and standard deviation) are chosen and 
simulated in such a manner that they would be consistent with the paint thickness data in the 
company. Finally, according to the results of the simulation procedure, the precision (i.e. 
measure of spread) and the accuracy (i.e. measure of bias) of the proposed method will be 
examined.  
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1.3. Purpose  
The purpose of this master’s thesis is to develop a non-normal process capability analysis 
method for processes with one-sided specification limit. The proposed method should be 
designed in such a manner that it would be applicable to a variety of non-normal distributions 
and should estimate the Cpk index within the acceptable levels of accuracy and precision.  

The expected outcome of this study could be regarded in two aspects. The first aspect is to 
establish a better approach to estimate PCIs, which handles the misleading PCI results 
mentioned above. The second aspect is to be able to assess the performance of blade painting 
process in Vestas, which do not follow normal distribution, more accurately.  

1.4. Research Questions 
The focus of the study should be guided by research questions in order to fulfill the purpose at 
the end of the study. Considering the problem identified, two research questions are 
formulated as part of this thesis: 

1. Is the process capability of a non-normally distributed process with lower specification 
limit could be estimated by only taking the left tail of the distribution into account? 

2. What are the factors that affect the performance of the estimates? 

The first question reflects the ability of assessing process capability with regard to the 
proposed estimation method. In order to answer this question, the performance of the 
estimation method has to be examined. The simulation procedure constructed in this study 
aims at providing the performance examination, which is required to evaluate the applicability 
of the proposed method. The second research question relates to the investigation of whether 
or not process characteristics (for example, population size and its skewness or kurtosis) 
and/or method properties (for example, number of observations taken from the) have an effect 
on the estimated results.  

1.5. Delimitations 
The delimitations in this thesis can be regarded in three aspects. First, since this is a 
theoretical thesis and no company is involved, the data required for the testing of the method 
is randomly generated by running simulations in the software “R”. 

Second, the capability index utilized in this study is the Cpk index based on percentile 
approach and the process investigated has only lower specification limit. Accordingly the Cpk 
computed through the simulations equals to the Cpl. For any other type of process capability 
indices and/or different process properties, such as two-sided specification limits, only upper 
specification limit, and so forth, the performance of the proposed method may be different.  

Finally, the non-normal distributions investigated are limited to log-normal, 3-p Weibull, and 
3-p Gamma distributions and the performance of the proposed method is evaluated only 
relative to these three distributions.  
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2. Research Methodology 
Establishing a well-defined research methodology at the outset of a research project guides 
the researcher(s) about which research design to employ and which actions to take throughout 
the study. Bryman and Bell (2007) argues that any type of research methodology has different 
facets, such as the link between theory and research, epistemological and ontological 
considerations, which are inherent in its context. These facets deeply influence the way a 
research is conducted such as the choice of method, data collection techniques, analysis of 
data and so forth. The link between theory and research could be inductive, deductive or both 
which results in, in the most general sense, choosing a research strategy either qualitative, 
quantitative or mixed methods (Bryman and Bell, 2007).  

2.1. Research Strategy: A Quantitative Approach 
Quantitative research strategy can be described as a systematic collection of numerical data 
and analysis of the data through mathematically-driven, mostly statistical models in order to 
explain a certain phenomena (Muijs, 2004). As a result of the statistical approach, which is 
maintained in quantitative research, the data is used objectively to measure the reality of the 
phenomena (Williams, 2007).   

As it is stated earlier in the purpose of this thesis, the aim is to develop a method for process 
capability analysis. At the most basic level, process capability indices are quantitative, 
dimensionless measures which indicate the performance of the process in relation with the 
process parameters and the process specifications (Kotz and Johnson, 1993). Therefore, in 
order to calculate any class of PCIs for a process with any type of underlying distribution, first 
one needs to collect numerical data about the process which would be followed by their 
statistical analysis. When these characteristics of the research are considered, it is seen that 
the most appropriate research strategy would be a quantitative research strategy.    

According to Balnaves and Caputi (2001) in any type of research, one has to know what to 
research (i.e. problem exploration, description and explanation) and how to research (i.e. 
literature research, research design, research method, data analysis methods). In order to know 
these “what” and “how”, an organized quantitative research should entail the following steps: 

 Step 1: Problem Definition 
The first thing to do is to formulate the research questions, which the research is 
supposed to answer at the end of the study. In the context of this study, two 
research questions are provided:  

1. Is the process capability of a non-normally distributed process with lower 
specification limit could be estimated by only taking the left tail of the 
distribution into account? 

2. What are the factors that affect the accuracy and precision of the estimates? 
 Step 2: Literature Review 

Literature research is an invariable element of any kind of research project since 
through existing literature; researchers are able to assess the utility of their 
research questions and to elaborate on their research design (Bryman and Bell, 
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2007). A literature review is conducted in order to deepen the understanding of the 
subject. This review encompasses the literature in process capability with 
emphasis on non-normal data with given lower specification limit.  

 Step 3: Research Design 
 Step 4: Research Method 
 Step 5: Data Analysis 

Steps 3, 4, and 5 are critically important in a research methodology. Therefore, their concepts 
and their utilization in the context of this study are explained in detail in the upcoming sub-
sections. 

2.2. Research Design: An Experimental Approach 
As the next step in defining the research methodology, a framework, which lays out the 
decisions about the collection and analysis of data, has to be built. This framework is called 
research design and it designs how the research method should be executed and how the 
analysis of data should be undertaken (Bryman and Bell, 2007). 

Research designs for a quantitative approach could be classified into three categories: 
descriptive, experimental and causal comparative (Williams, 2007). Descriptive research 
analyzes the attributes of a phenomenon in their current environment. Causal comparative 
research examines the relationship between independent variable and dependent variable 
while no manipulation is introduced between them (Williams, 2007). On the other hand in 
experimental design, the independent variable is manipulated in order to see the effect on the 
dependent variable and draw cause-and-effect relationship between them (Bryman and Bell, 
2007).  

In the case of this master’s thesis, the independent variable, which is the simulated data, is 
manipulated through the proposed method and the effect on the dependent variable, which is 
the resulting PCI value, is analyzed. Therefore, an experimental research design is found to be 
more appropriate.  

2.3. Research Method: Data Collection through Simulations and Data Analysis 
The last step in research methodology is to decide which research method to employ for 
collecting data (Bryman and Bell, 2007) and how to analyze the results. Since this is a 
theoretical thesis and no company is involved, the data required for the testing of the method 
is generated by running simulations in R software which is used for statistical computing and 
graphics. The data generated is then used to test the applicability of the proposed method. 

The analysis of the results is based on the simulation results. R, Minitab and JMP are utilized 
in conjunction with each other for data analysis. Multiple criteria are used to evaluate the 
performance of the proposed method.  These criteria are explained in detail in Section 5. 

2.4. Evaluating the Research: Reliability, Validity and Verification 
Even though, when a research methodology is developed for a particular study, one still needs 
to evaluate it. Two dominant evaluation criteria for quantitative research are reliability and 
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validity (Muijs, 2004). Reliability evaluates the consistency of the results of a study over time 
and whether or not the results are repeatable. Particularly in quantitative research, the 
reliability of a research instrument is assessed through the stability of a measurement over 
time and when replication is applied by someone else (Golafshani, 2003). Validity is 
concerned with the gap between what is intended to be measured and what is actually 
measured. If there is found to be no integrity between the conclusions of the measures, the 
research instrument is hardly valid (Bryman and Bell, 2007). This could be due to the 
inaccurate measurements of the research instruments and/or the instrument is not simply 
measuring what it should measure (Golafshani, 2003).  

In order to provide reliability, the codes written for simulations are provided in Appendix A, 
B, and C for log-normal, 3-p Weibull, and 3-p Gamma distributions, respectively. Further, 
verification and validation studies are conducted in order to ensure the validity of this 
Master’s thesis. Verification of the proposed method is obtained through simulations and for 
validation; the proposed method is applied on the real-world data, which are presented in 
Section 1.2. 



10 

 

3. Theoretical Study 
In this section, relevant literature about non-normal process capability analysis is summarized. 

3.1. Process Capability Analysis 
Measuring a process’ performance and acting upon the assessments based on the 
measurements are critical elements of any continuous quality improvement efforts (Spiring, 
1995). Companies make assessments of process performance based on different indicators. 
Most common of these indicators can be described in terms of process yield, process expected 
loss and capability indices of a particular process characteristic (Chen, et al., 2001). Among 
these indicators, Process Capability Indices (PCIs) have gained substantial attention both in 
academic community and several types of manufacturing industries since 1980s (Somerville 
and Montgomery, 1996; McCormack Jr, et al., 2000; Kotz and Johnson, 2002; Wu, et al., 
2009). This increase in popularity is mainly due to the fact that companies require some 
numerical indicators of how well the process is performing regarding its specification limits 
(Anis, 2008). PCIs are unitless, statistical quantifications which compare the actual 
performance of a process characteristic in relation to its tolerance limits, which are 
determined by customers’ requirements. 

3.2. Process Capability Indices  
The first process capability index proposed in the literature is the Cp index, which is defined 
as: 

 
ܥ =

ܮܷܵ − ܮܵܮ
ߪ6  

(1) 

where USL and LSL denote the upper and lower specification limits, respectively, and σ is the 
standard deviation of the process characteristic of interest. The Cp index measures the process 
spread in relation to its specification range. Since Cp does not take the process mean of the 
quality characteristic into account, it does not give any information about whether the process 
is centered (Bordignon and Scagliarini, 2002). In order to overcome this problem, a second 
generation PCI, the Cpk index, is introduced. The Cpk can be defined as:  

 
ܥ = min[

ܮܷܵ − 	µ
ߪ3 	 ;	

µ − ܮܵܮ
ߪ3 ] = min	[ܥ௨	;  [ܥ

(2) 

where µ and σ are the mean and the standard deviation of the quality characteristic studied, 
respectively. The mean of the process characteristic has an influence on the Cpk index and 
therefore it is more sensitive to departures from centrality than the Cp index (Anis, 2008).  

The Cp and Cpk indices are the most commonly used process capability indices in industry and 
they are called standard or basic PCIs (Deleryd and Vännman, 1999; Kotz and Johnson, 2002; 
Anis, 2008). The earlier practical applications of these basic PCIs require the fulfillment of 
two assumptions: 

i. The process has to be in statistical control. 
ii. The process characteristic of interest has to be normally distributed. 
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Utilization of the basic PCIs when these underlying assumptions are not satisfied may lead to 
incorrect assessments and misleading interpretations of process capability (Chen, 2000). 
There has been studies showing that varying results of process capability analysis could be 
obtained from different underlying distributions with the same mean and the same standard 
deviation (Kotz and Johnson, 1993). In other words, different non-normally distributed 
processes, which have the same mean and the same standard deviation, could give the same 
capability output but different proportion of non-conformity. This could be explained due to 
the fact that the basic PCIs only uses the mean and the standard deviation of a process but for 
non-normally distributed processes, the mean and the standard deviation are usually not 
enough to reflect the characteristics of a process.  

3.3. Process Capability Indices for Non-normally Distributed Data 
Non-normally distributed processes are not uncommon in practice. Combining this fact with 
the misleading results of applying basic PCIs to non-normal processes while treating them as 
normal distributions forced academicians and practitioners to investigate the characteristics of 
process capability indices with non-normal data (Kotz and Johnson, 2002; Spiring, et al., 
2003; Yum and Kim, 2010).  

Literature review shows that the research for PCIs under non-normality has been grouped into 
two main streams: (1) examination of PCIs and their performances for various underlying 
distributions and (2) construction of new generation process capability indices and/or 
development of new approaches specially tailored for non-normally distributed outputs.  
Although much effort has been put into these studies, there is not yet any standard approach 
or standardized PCI accepted by academicians and practitioners when non-normal data is 
handled.  

The former main stream of research focuses on exploring the properties of different PCIs 
under different conditions and provides comparisons between them and suggests some of 
them for specific circumstances. These specific circumstances can be exemplified by different 
underlying process distributions, one-sided or two-sided specifications limits, the 
corresponding proportion of non-conformity of PCIs, and so forth. The latter main stream of 
research attempts to provide new approaches or new PCIs which would be robustly applicable 
to non-normal data. However, there is no information about how widely these new indices are 
utilized by practitioners for some of the new indices require a rather involved statistical 
knowledge and might be rather confusing for practitioners.  

The second stream of PCI research can be categorized into five groups (Shore, 1998; Kotz 
and Johnson, 2002): 

1. Data transformation methods 
2. Development of quality control procedures for certain non-normal distributions 
3. Distribution fitting for empirical data 
4. Development of distribution-free procedures 
5. Construction of new PCIs. 
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In the following sub-sections previous research about these five categories will be explained 
briefly.  

3.3.1. Data Transformation Methods 
Data transformation approaches aim at transforming the non-normal process data into normal 
process data. Several methods have been proposed for approximating normally distributed 
data by using mathematical functions. Most known amongst these methods are Johnson 
transformation system, which is based on derivation of the moments of the distribution, and 
Box-Cox power transformation. The main rationale behind these methods is to first transform 
the non-normal data into normal data and then use standard process capability indices, which 
are based on the normality assumption, for the transformed data. However, transformation 
methods have drawbacks which inherent in their utilization. First, transformation methods are 
computing-extensive (Tang and Than, 1999). Second, practitioners are hesitant to use these 
methods because of the problems associated with translating the computed results with regard 
to the original scales (Kotz and Johnson, 2002; Ding, 2004).   

3.3.2. Quality Control Charts for Non-normal Distributions 
Some research has been devoted to investigate process capability with certain underlying non-
normal distributions. In these studies, the question of whether or not the process is in 
statistical control is to be answered by the statistical control charts of that particular 
distribution and PCI estimations are derived from these control charts. There are control 
charts developed for log-normal and Weibull distributions (Shore, 1998). Lovelace and Swain 
(2009) proposed to use midrange and ratio charts in order to track central tendency and 
dispersion for log-normally distributed data and then estimate PCIs based on empirical 
percentiles. However, in reality the distribution itself cannot be identified precisely or it 
requires a great magnitude of data for a solid identification. Combining this with the unknown 
parameters, which have to be estimated in order to compute PCIs, using quality control charts 
and their respective PCIs for non-normal distributions are not highly favored by practitioners 
(Shore, 1998; Kotz and Johnson, 2002). 

3.3.3. Distribution Fitting for Empirical Data 
Distribution fitting methods use the empirical process data, of which the distribution is 
unknown. These methods later fit the empirical data set with a non-normal distribution based 
on the parameters of the empirical distribution (Shore, 1998). Clements’ Method is one of the 
most popular distribution approaches (Kotz and Johnson, 2002). The method employs both a 
new process capability index based on percentiles and a distribution fitting approach. The 
basic Cp index is calculated by using the 99.865th and the 0.135th percentiles of the 
distribution of quality characteristic instead of 6σ, which is meaningful only when the process 
is normally distributed. Therefore, the percentile-based Cp is obtained by: 

ܥ  =	
ܮܷܵ − ܮܵܮ

.ଽଽ଼ହߦ .ଵଷହߦ	−
 

(3) 

where ξ0.99865 and ξ0.00135 denote the upper and lower 0.135th percentiles of the process 
distribution, respectively.  
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Following the same logic, the Cpk index can be obtained using a percentile approach: 

 
ܥ = ݉݅݊ 

ܮܷܵ .ହߦ	−
.ଽଽ଼ହߦ .ହߦ	−

	 ; 	
.ହߦ − ܮܵܮ	

.ହߦ .ଵଷହߦ	−
൨ = min[ܥ௨	;	ܥ] 

(4) 

where ξ0.5 is the median of the process distribution, which is used instead of the process mean, 
because the process mean is not indicative of the centrality of a non-normal distribution 
especially when skewness of the distribution is taken into account (Anis, 2008). The 
denominators of Cpu and Cpl represent the distance between the upper or the lower 0.135th 
percentile and the process median, which could be interpreted as 3σ under normality 
assumption (Tang and Than, 1999). Padgett and Sengupta (1996) named this Cpk index which 
is based on percentile approach as the Cpk-Extended (CpkE). 

In Clements’ Method, the percentiles required in the equations (3) and (4) are obtained 
through estimating the first four moments (i.e. mean, standard deviation, skewness and 
kurtosis) of the unknown underlying distribution of the empirical data, matching these 
moments to a suitable Pearson system distribution and using the percentile values of the 
selected distribution (Clements, 1989).  

There are several other distribution fitting approaches for different distribution families and 
various distribution types. For further information, Kotz and Johnson (2002) provide a wide 
range of references about the methods. However, there is a common drawback inherent in 
distribution fitting approaches. That is, in order to provide reliable skewness and kurtosis 
estimations, a rather large sample size of empirical data is required. Therefore, these methods 
may not be appropriate for cases dealing with relatively small sample sizes (Tang and Than, 
1999; Chang, et al., 2002).  

3.3.4. Distribution-Free Approaches 
These approaches either aim at establishing distribution-free specification intervals or at 
adjusting PCIs through heuristic methods (Kotz and Johnson, 2002). Chan et al. (1988) 
proposed obtaining distribution-free PCIs by using distribution-free specification interval 
estimations, which are assumed to be independent of the underlying distribution of the 
process.  However, the construction of tolerance intervals is derived from normal distribution 
intervals. Therefore, this approach was criticized by Kotz and Johnson (1993) because of the 
dependency of a “distribution-free” approach on normal distribution.  

A heuristic weighted variance method is proposed by Choi and Bai (1996). The essence of 
weighted variance method is to divide a non-normal skewed distribution into two different 
distributions such that the resulting distribution would be normally distributed with same 
mean but different standard deviations. This segmentation requires no assumption of the 
distribution; therefore it makes the approach distribution-free (Wu, et al., 1999). The method 
modifies standard PCIs based on weighted variance method in such a manner that the 
skewness and kurtosis of a distribution are also taken into account (Choi and Bai, 1996). 
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3.3.5. New PCIs for Non-Normal Data 
Significant amount of work has been put into developing PCIs which would be robust against 
the non-normality of the process.  

Wright’s Index, Cs, has been proposed as an index which is sensitive to skewness (Wright, 
1995). The Cs index adds a skewness correction factor on the Cpmk index by taking the 
skewness of the process data into account.  

A flexible PCI, Cjkp, is introduced by Johnson, et al.(1994). The index is based on the Cpm 
index and is assumed to be flexible because the asymmetry of a non-normal process is 
considered with regard to the difference of variability below and above the target value, which 
is reflected upon the index by treating the two specification limits differently (Deleryd, 1999; 
Wu and Swain, 2001). 

More specific process conditions are also investigated by some researches. Vännman and 
Albing (2007) have constructed a new class of process capability index, CMA (τ, v), which is 
specially designed for cases with only upper specification limit, a target value equal to zero 
and with a skewness influence over the zero-bound process distribution.   

3.4. Confusion between Process Capability Indices and Process Performance 
Indices 

In practical application and literature, confusion between process capability indices (PCIs) 
and process performance indices (PPIs), and about their notations (Cp, Cpk vs. Pp, Ppk) can 
sometimes rise. This problem is addressed in the discussion sections of Kotz and Johnson 
(2002). Although these two indices aim at indicating the performance of a process, they 
differentiate when the estimations of the indices are calculated. In other words, the method of 
estimating the standard deviation of a process is different for PCIs and PPIs. For standard 
PCIs, Cp and Cpk, the standard deviation of a process is estimated within sub-groups by using 
control charts. Since it uses the variation within sub-groups, this type of estimation measures 
the short-term variation of a process. This type of estimation is denoted as  ߪො௦௧ for preventing 
confusion and is obtained by 

ො௦௧ߪ  =	
തܴ
݀ଶൗ  (5). 

On the other hand, the standard deviation estimations computed for PPIs (Pp, Ppk) are based on 
individual measurements and they indicate the long-term variation of a process. This type of 
estimation is denoted as ߪො௧ and is obtained by 

 

ො௧ߪ = 	ඩ
1

݊ − 1(ݔ ଶ(ݔ̅	−


ୀଵ

 

 

 

(6). 
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Even though many academicians prefer the estimation of long-term variation for process 
capability calculations, the notation Cp and Cpk is widely used in literature. However, in 
industry, especially in automotive industry, the Pp and Ppk notations are used for the second 
type of estimations as well (Kotz and Johnson, 2002). This dichotomy in notations creates 
confusion. A consensus on a standard notation is required in order to lessen and solve this 
confusion. For the sake of coherence with the academic society, “Cpk” notation will be used in 
this study. 

3.5. Log-Normal Distribution 
One of the non-normal distributions investigated in this study is the log-normal distribution. 
Suppose that there exists a normally distributed random variable, namely W. Then the 
distribution of X, a random variable, is assumed to follow a log-normal distribution if there 
exists a relationship between X and W such that	݈݊(ܺ) = ܹ. In other words, X is log-normally 
distributed if the natural logarithm of X is normally distributed, that is, W is normally 
distributed (Montgomery and Runger, 2003). Log-normal distribution follows an 
asymmetrical and positively skewed behavior. It is a two-parameter distribution of which 
probability density function is obtained by 

 
;ݔ)݂ ,ߠ	 ߱) = 	

1
ߨ2√ߪݔ

ݔ݁	 ቈ−
(ln ݔ − ଶ(ߠ	

2߱ଶ  ,					0 < ݔ < ∞ 
(7) 

where θ and ω2 are the mean and the variance of normally distributed W, respectively. It 
should be noted that the parameters of the log-normally distributed variable, X are θ and ω2 
which are the location and shape parameters, respectively.  The mean (µ) and variance (σ2) of 
X can be expressed as 

ߤ  = 	 ݁ఏ	ା	ఠమ ଶ⁄    and   ߪଶ = ݁ଶఏ	ାఠమ 	൫݁ఠమ − 	1൯ (8, 9). 

In order to avoid confusion, the parameters, the mean and variance of both normal and log-
normal distributions are given in Table 1. 

Table 1. Parameters, Mean and Variance of Normal and Log-normal Distributions 

 Parameters Mean Variance 
Normal Distribution (ߠ, ߱ଶ) ߠ ωଶ 
Log-Normal Distribution (ߠ, ߱ଶ) ݁ఏ	ା	ఠమ ଶ⁄  ݁ଶఏ	ାఠమ	൫݁ఠమ − 	1൯ 
 

When the probability density functions with a constant θ = 1 and four different values of ω are 
analyzed in Figure 5, it is seen that as ω increases the skewness and the kurtosis of the 
distribution augment rapidly, whereas for small values of ω, the departures of normality in 
terms of skewness is smaller. 

This shift in the distribution shape and the distribution skewness, which occurs as distribution 
parameters change, makes the log-normal distribution an eligible distribution to analyze non-
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normal process data because it covers several tail behaviors and distribution types (Somerville 
and Montgomery, 1996; Chen, 2000). 

 

Figure 5. Log-normal distribution shapes with different scale values 

Since the parameters of a log-normally distributed random variable X are θ and ω, in order to 
generate log-normally distributed random variates (xi) with given mean (µ) and standard 
deviation (σ), θ and ω have to be expressed as functions of µ and σ. Following this logic; by 
taking the logarithms of µ and σ; 

 ln(ߤ) = ߠ	 +	1 2ൗ ߱ଶ (10) 

 ln(ߪଶ) = 	 ߠ2) +	߱ଶ)	݈݊൫݁ఠమ − 	1൯	 (11) 

are obtained. From equation (10), θ is extracted and from equation (11), ω is extracted. 
Therefore, these two parameters are expressed as: 

ߠ  = ln(ߤ) −	1 2ൗ ߱ଶ (12) 

 ߱ =	ඥln(ߪଶ (ଶߤ	+ − 	2݈݊  .(13) 	(ߤ)

The simulations in this study are run with pre-determined process means and standard 
deviations of log-normally distributed X variables. Therefore the two transformations, which 
are shown above, are utilized for calculating the parameters of X in order to generate random 
variates of X. 

3.6. Three-Parameter Weibull Distribution 
Three-parameter Weibull distribution is commonly used in reliability applications in the 
industry. It represents several different shapes based on the chosen parameters which are the 
shape, the scale, and the location parameters. The location parameter (or the shift parameter) 
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positions the distribution on the x axis. The probability density function of the 3-parameter 
Weibull distribution is defined as: 

 
;ݔ)݂ ,ߜ	 ,ߚ (ߛ = 	 ቈ

ݔ)ߚ − ఉିଵ(ߛ	

ఉߜ
 ݔ݁	 ቈ−

( ݔ − ఉ(ߛ	

ఉߜ
 ݔ					, ≥  ߛ

(14) 

where δ, β, and γ are shape, scale, and location parameters, respectively.  

The mean and standard deviation of the 3-parameter Weibull distribution are defined as 
follow: 

ߤ  = ߛ	 + ߁	ߜ ቀఉାଵ
ఉ
ቁ   and   ߪଶ = ߁ଶߜ ቀఉାଶ

ఉ
ቁ ଶߜ	− ቂΓ ቀఉାଵ

ఉ
ቁቃ
ଶ
 (15, 16). 

where Γ(x) is the gamma function. 

The probability density function of 3-parameter Weibull distribution for different values of β 
when δ = 2 and γ = 1 is represented in Figure 6.  

 

Figure 6. 3-parameter Weibull distribution shapes with different scale values 

Note that γ affects the distribution’s location of origin but not the shape nor the scale. 
Increasing or decreasing the value of γ slides the distribution. If γ > 0, the probability of 
obtaining a Weibull variate x smaller than γ is zero. Furthermore, as β increases the 
distribution gets more skewed to the right and gets less peaked. 

Since, process mean and standard deviation are used as input values for simulations in this 
study, the parameters of 3-p Weibull distribution have to be extracted for a specific set of 
mean and standard deviation. In order to obtain the shape and scale parameters, “mixdist” 
package in R software is used. “weibullpar” function in this package compute the shape 
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and scale parameters for Weibull distribution given the mean, standard deviation, and location 
(Macdonald, 2010). The location parameter is chosen to be 130 due to the fact that it reflects 
the real-world data from Vestas. Further, since R does not provide an in-built function for 3-
parameter Weibull random generator, “rweibull3” function in the package “FAdist” is 
utilized for random number generation (Aucoin, 2011). 

3.7. Three-parameter Gamma Distribution 
Three-parameter Gamma distribution (also known as Pearson Type III distribution) is widely 
used in modeling life data due to the variety of skewed shapes it can take based on the chosen 
distribution parameters. It is characterized by shape, scale, and location parameters. The 
probability density function of the 3-p Gamma distribution is defined as follows: 

 
;ݔ)݂ ,ݎ	 ,ߣ (ߛ = 	

ݔ)] − [ିଵ(ߛ	
(ݎ)Γߣ ݔ݁	 −

( ݔ − (ߛ	
ߣ ൨ ݔ					, ≥  ߛ

(17) 

where r is the shape, λ is the scale, γ is the location parameters, and Γ(.) is gamma function. 
The mean and variance of 3-p Gamma distribution is obtained by 

ߤ  = ߛ	 + ଶߪ   and				ߣݎ =  .ଶ (18, 19)ߣݎ

The probability density function of 3-p Gamma function for different shape parameters is 
shown in Figure 7. The location parameter does not have any effect on the shape of the 
distribution; it only changes the origin of the distribution. Note that as the shape parameter 
increases, the right skewness of the distribution decreases.  

 

Figure 7. 3-parameter Weibull distribution shapes with different scale values 

 

In order to be able to generate random 3-p Gamma variates with a given mean and standard 
deviation, the parameters of the distribution have to be transformed into expressions that can 
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be obtained through mean and standard deviation. From equation (18), the scale parameter (λ) 
is extracted as follows: 

 
ߣ = 	

ଶߪ

ߤ −  ߛ	
(20). 

Using equation (20), the shape parameter r is obtained: 

 
ݎ = 	

ߤ) − ଶ(ߛ	

ଶߪ  
(21). 

These two transformations are used when computing the parameters of the 3-p Gamma 
distributions. Furthermore, the function “rgamma3” in the “FAdist” package is utilized for 
random number generation (Aucoin, 2011). 

3.8. Conclusions from Theoretical Study 
The literature research conducted in the context of this study shows that there has been 
substantial amount of research and developments in the area of process capability indices, 
especially when non-normally distributed data are of interest. New approaches for dealing 
with non-normality and new PCIs have been proposed by various researchers. The 
examinations and comparisons of these methods have also been provided. Amongst all these 
methods, however, not even one is accepted by both academicians and practitioners as a de 
facto standard to non-normally distributed process capability analysis. Furthermore, some of 
these methods are criticized by Kotz and Johnson (2002) due to their heavy statistical 
structures regardless of their practical relevance and utilization, which enlarges the gap 
between theory and practice.  

Comparative studies of different approaches and different PCIs have been conducted to find 
the best performing process capability analysis for certain circumstances (Padgett and 
Sengupta, 1996; Tang and Than, 1999; Wu and Swain, 2001). 

Padgett and Sengupta (1996) have examined the performance of the standard PCI, Cpk, and 
the PCI based on the percentile approach, which they named Cpk-Extended (CpkE). Their 
analysis is based on the behaviors of estimators of these indices, which are obtained through 
simulations, when the process follows Weibull or log-normal distribution. According to the 
results, they conclude that the Cpk index performs poorly for the investigated conditions and 
that the capability index based on the percentile approach, CpkE, should be used whenever the 
underlying distribution is Weibull or log-normal (Padgett and Sengupta, 1996).  

Tang and Than (1999) have conducted an extensive study in which they compared the 
performances of distribution-free tolerance interval method, weighted variance method, 
Clements’ method, Box-Cox transformation, Johnson transformation and Wright’s PCI, Cs for 
log-normal and Weibull distributions. They argued that amongst the studied methods, the 
Box-Cox transformation method outperformed the other approaches for sample sizes greater 
than 100. However, when the considerations about this method (Section 3.3.1) are taken into 
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account, this method does not seem to be the best way to deal with non-normality (Tang and 
Than, 1999).  

Wu and Swain (2001) have analyzed the weighted variance method, the Clements’ method 
and the flexible index, Cjkp, through simulations for both symmetrical and skewed 
distributions. According to results, they argued that for symmetric distributions the 
performance of the Clements’ method is superior to the others. However, it is noted that for 
skewed cases, none of the methods performed well (Wu and Swain, 2001). 

One final remark should be made about the rarity of published works which investigate 
specific characteristics of distributions. For example, most of the work devoted to this 
research area is concerned with two sided specification limits. However, there is not much 
literature about one-sided specification limits. Vӓnnman and Albing (2007) and Albing (2009) 
address the cases with one-sided specification limits in their papers and test their new PCI on 
processes which exhibit such behaviors.  
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4. Simulation Procedure 
In this study, the performance of the proposed method is analyzed with regard to the Cpk index 
based on the percentile approach, which is defined in equation (4). Since the focus is on 
processes with only lower specification limits, the Cpk would be equal to Cpl. The rationale 
behind choosing this percentile-based index rather than the standard Cpk calculation is two-
fold. First, it is due to the non-normality of the data for which the mean is not representative 
of the central tendency. Therefore it is more sensible to use the median (ξ0.5) as an indicator of 
centrality rather than the mean. Second, the measure of variation utilized in the standard 
calculation of Cpk, which is 3σ, relates specifically to the normality assumption. It does not 
accurately represent the spread of non-normal data. Therefore, using percentiles for 
computing the spread would be more appropriate than 3σ. 

Distributions studied in the simulations are log-normal, 3-parameter Weibull, and 3-parameter 
Gamma distributions. These distributions are mainly chosen due to findings from Li and Chen 
(2009). Furthermore, the characteristics of these three distributions represent a variety of 
distribution shapes and tail behaviors depending on the chosen parameters.   

The simulation procedure is applied to a set of chosen mean and standard deviation values and 
three non-normal distributions which are stated above. The procedure is as follows: 

1. Assume a non-normal distribution that fits the data:  
The simulations are tested on log-normal, 3-parameter Weibull, and 3-p Gamma 
distributions. 
 

2. Set the distribution parameters  and compute the targeted Cpk value: 
By using the process mean and standard deviation the corresponding distribution 
parameters are obtained. The targeted Cpk is computed based on equation (4) with 
respect to the assumed distribution. Targeted Cpk, which is referred to as “Ideal Cpk” 
henceforth, is then used to evaluate the performance of the proposed method through 
comparisons of the Cpk estimates obtained from simulations.  
 

3. Generate random variates of size N for the assumed distribution:  
Random variates of size N = 50, 100, and 200 are generated for each underlying 
distribution according the distribution parameters determined in Step 2. For 
illustration, assume that a process with 100 data points is randomly generated for the 
underlying log-normal distribution with a mean of 260 and standard deviation of 80. 
The histogram of this process can be seen in Figure 8. Note that the distribution 
exhibits a positive skew, which reflects the characteristics of the real-world data. 
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Figure 8. Histogram of Log-normal random variates with mean = 260 and standard deviation = 80. 

4. Plot all the generated data into Normal Probability Plot: 
The generated random variates are then plotted into a normal probability plot.  

5. Select the first n observations from the left tail of the distribution: 
The n ranges from 5 to 15. The simulation starts from the first five observations and 
continues by increasing the number of observations in subsequent iterations. The 
reasons for considering only a small part of the sample in the left tail are two-fold. 
First, the process has only lower specification limit; therefore the right tail’s effect on 
process performance is not as important as the left tail’s. Second, the right tail has the 
risk of involving a few assignable causes, such as the tendency of the painters to paint 
thicker deliberately in order to avoid being blamed.  
 

6. Calculate the estimated mean and standard deviation of the selected n values using 
least square estimation: 
For the first n observations selected, a line that best fits them is drawn using linear 
regression approach. Using least squares estimation, the mean and standard deviation 
of the selected sample are estimated. In Figure 9, the normal approximation of the first 
11 observations is shown.  
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Figure 9. Illustration of the proposed model for N = 100 and observation size n = 11 

For the sake of clarity, a simple example, which illustrates the computation of mean 
and standard deviation, is provided. Consider the NPP given in Figure 10, which has a 
regression line with the equation ܻ = ܽܺ + ܾ.  

 

Figure 10. An example of estimating mean and standard deviation from NPP 

When the Y axis is equal to 0, the corresponding value at the X axis is the mean of the 
distribution. Therefore,  

ݕ  = ܽ + 	ݔܾ ⇒ 0 = ܽ + 	ܾμ	 ⟺ 	μ = 	−ܽ ܾൗ  (22) 

is obtained. Since the difference between µ and z is created by the one unit shift of 
standard deviation, the following set of equations is obtained and standard deviation 
estimate is derived: 
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 ቄ1	ߪ = ݖ − 	μ
1 = ܽ + ݖܾ

� 	⇒ ߪ	 = ൬
1 − ܽ
ܾ ൰ − ቀ

−ܽ
ܾ ቁ 

(23). 

Following the logic of this simple example, the mean and standard deviation of the 
selected values from the tail are estimated according to the normal distribution 
approximation based on the least square line. 

7. Compute the coefficient of variation (CV): 
Using the estimated mean and standard deviation calculated in Step 6, the coefficient 
of variation (CV) is obtained. This results in total 11 estimates of mean, standard 
deviation, and CV (i.e. given a process mean and standard deviation, one set of values 
including estimated mean, standard deviation, and CV is computed for each 
observation size from 5 to 15). 
 

8. Compute the standard Cpk estimate of the selected n values:  
Using the estimated mean and standard deviation obtained in Step 6, the Cpk estimate 
of the selected n observations is computed based on standard Cpk calculation (i.e. 
given a process mean and standard deviation, in total 11 Cpk estimates are computed).  
 

9. Compare the Ideal Cpk defined in Step 1 to the Cpk estimates obtained in Step 8 for 
various n: 
In this step, the estimated Cpk values are analyzed with regard to their precision and 
accuracy when compared to the Ideal Cpk value. 
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5. Analysis and Results 
In this section, the results of the simulations are analyzed. First, the proposed method is tested 
on normal distribution in order to see its applicability. In the following sub-sections, the 
method is applied to log-normal, 3-p Weibull, and 3-p Gamma distributions and their results 
are presented.  

5.1. Experimentation on Log-normal Distribution 
The applicability of using only a part of the left tail of a distribution for estimating the 
capability of a process is first tested on log-normal distribution. For this test, log-normally 
distributed 100 data points are generated and replicated 100 times. After plotting the data into 
a normal probability plot, first n observations are selected (n ranges from 5 to 15) and the 
mean and standard deviation of the n data points are estimated through the least squares 
method. By using the estimated mean and estimated standard deviation, the Cpk estimate of 
the process is computed. The results of the estimates are presented via violin plots.  Violin 
plot representation is chosen over the traditional box-plot representation due to the fact that 
violin plots combine box plots with density trace (or smoothed histogram). Apart from 
accompanying the four main features of box plots (i.e. center, spread, asymmetry and 
outliers), the violin plots also make use of density traces, which enable a better graphical 
illustration of the distributional characteristics of the variables studied. This combination of 
box plot and density trace result in a fast and revealing comparison of data since violin plots 
give information about the peaks, valleys and bumps in the distribution (Hintze and Nelson, 
1998). In order to build the violin plots for graphical illustration, “violins” function in 
“caroline” package is utilized in R (Schruth, 2011). 

In Figure 11, the Cpk estimation results of a process sample with mean equals to 275 and 
standard deviation equals to 90 is shown. The 11 violin plots represent the number of 
observations taken from the left tail of the distribution starting from 5 to 15. The red dashed 
line indicates the Ideal Cpk, which is 1 in this case. 

 

Figure 11. Violin Plots of Cpk estimates for log-normal distribution with process mean=250 and standard deviation=50 
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This experimentation shows that it is actually possible to estimate the capability of a log-
normal process by taking only the left tail of the distribution into account. As it can be seen 
from Figure 11, the median of the estimates is around 0.9 for every sample size taken from the 
left tail. There are also some outliers, but their densities are low. However, the objective is to 
propose such a method that the Cpk estimates are found within close proximity of the red 
dashed line. Therefore, the conditions, which provide better estimates, should be investigated.    

5.2. Proposed Guideline 
In order to find out the conditions underlying good Cpk estimations, further investigation is 
conducted. First, the Cpk estimates which give a plus/minus 0.05 deviation from the Ideal Cpk 
are chosen for different sets of mean and standard deviation. The chosen estimates showed 
that there is a relationship between the CV estimates and Cpk estimates. It is found out that 
there is a range of CV values for different mean and standard deviation that gives plus/minus 
0.05 accuracy in Cpk estimates. According to this relationship, a practitioner’s guide is 
developed.  

The proposed guideline is built for a range of Ideal Cpk values from 0.5 to 2.5. Randomly 
distributed samples assuming log-normal, 3-p Weibull, and 3-p Gamma distributions with 
different mean and standard deviation values are simulated 10000 times for each combination 
of mean and standard deviation for population sizes 50, 100, and 200 in order to obtain a 
three-dimensional contour plot where the estimated CVs are the response values and mean 
and standard deviation are the x and y axis. The mean and standard deviation values used for 
this study are provided in Table 2.  

Table 2. Mean and standard deviation values used for CV contour plot 

 
Ideal Cpk Min Mean Max Mean Min St. Dev. Max St. Dev. 

Log-Normal 0.5 – 2.5 180 300 30 90 

3-p Weibull  
(location=130) 1.2 – 2.5 220 300 30 90 

3-p Gamma  
(location=130) 1.3 – 2.5 220 300 30 85 

 

Every combination of mean in increments of 10, and of standard deviation in increments of 5 
is simulated. The mean and standard deviation values, as well as the location parameter of the 
Weibull and Gamma distributions, are chosen based on the nature of the problem defined in 
Section 1.2. In Section 5, only the graphs for sample size N=100 are provided. In Figures 12, 
13, and 14, the CV contour plots for log-normal, 3-p Weibull, and 3-p Gamma distributions 
built for 100 data points are presented. The CV contour plots for N=50 and N=200 are given 
in Appendices D, E and F, respectively.  
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Figure 12. Contour plot for CV values vs. mean and standard deviation for Log-normal distribution and N = 100 

Note that, for log-normal distribution and for sample size 100, there are nine CV ranges. On 
the other hand, for 3-p Weibull and 3-p Gamma distributions seven CV ranges are obtained. 

 

Figure 13. Contour plot for CV values vs. mean and standard deviation for 3-p Weibull distribution and N = 100 
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Figure 14. Contour plot for CV values vs. mean and standard deviation for 3-p Gamma distribution and N = 100 

Following the CV contour plots, the practitioner’s guideline is suggested step-by-step as 
follows: 

1. Apply a goodness-of-fit test to the sample data in order to see if the data is non-
normally distributed. 

2. Use the process mean and standard deviation in order to find the suitable CV range in 
the contour plot. Note that different number of data points will require slightly 
different ranges (i.e. the ranges may differ for sample sizes 50, 100, and 200). 

3. Plot all the points in a normal probability plot. 
4. Start selecting the first n observations from the left tail of the distribution. It is 

recommended to start with the first 5 data points.  
5. Draw a straight line that can cover as many selected points as possible. Estimate the 

mean and standard deviation of the line. 
6. Compute the CV from the line and check if it falls within the range as prescribed in 

the contour plot. If it does, proceed to the next step. If not, add more data points and 
go back to the previous step. 

7. Calculate the Cpk estimate for the selected observation set of size n based on the mean 
and standard deviation of the line.  

5.3. Effect of Sample Size on the Proposed Method 
As a preliminary analysis, the question of whether sample size taken from the left tail of the 
distribution has an effect on the proposed method is investigated. Therefore, for some data 
points (a data point means a specific set of mean and standard deviation), the individual 
normal approximations of every of observation size 5 to 15 are extracted from the simulations 
along with the information regarding the skewness and kurtosis of the empirical distributions. 
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Individual visualization analysis revealed that the sample size (from the first 5 observations to 
the first 15 observations) does indeed matter for the proposed method. It is found out that for 
the same empirical data set, some sample sizes may fail to meet the prescribed CV range, 
whereas the other sample sizes extracted from the same distribution may successfully fall 
within the range. In order to exemplify this situation, a failed and a successful case are 
provided in Figure 15 and 16 for 3-p Weibull distribution with mean and standard deviation 
equal to 290 and 53. 

Figure 15 illustrates the linear regression applied to the first 10 observations taken from the 
left tail. It is labeled as a failed case since the estimated CV is computed as 0.114, whereas it 
should be between 0.13 – 0.14 to be qualified as a successful case (see Figure 13).  

 

Figure 15. Visualization of a failed case of the first 10 sample, 3-p Weibull dist., mean = 290, stdev = 53. 

On the other hand, Figure 16 represents a successful case as a result of the linear regression 
applied on the first 12 samples.  

 

Figure 16.  Visualization of a successful case of the first 12 sample, 3-p Weibull dist., mean = 290, stdev = 53. 
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Note that these two cases are derived from the same distribution with the same skewness and 
kurtosis values. This example shows that it is possible to find both successful and failed cases 
within the same distribution depending on the size of the samples taken from the tail. Similar 
examples are also found for log-normal and 3-p Gamma distributions (see Appendices G and 
H).  

These findings imply that the practitioner would compute the CV estimates starting from the 
first 5 observations until it finds the first successful case where the estimated CV falls within 
the prescribed range and then compute the Cpk estimate for that sample size.  

Since the sample size has an effect on the proposed method, it is interesting to see that given a 
set of mean and standard deviation, how often a set of samples makes CV estimations that 
would fall within the prescribed range. Following the 3-p Weibull example, the data point 
(290; 53) is replicated 10000 times and the frequencies of sample sizes, which estimate CV 
within the prescribed range, are shown in Figure 17. 

 

Figure 17. Histogram of successful results grouped according to sample size 

It can be seen from Figure 17 that by using the first five observations, one can find CV 
estimates which fall within the prescribed CV range most of the time. However, taking the 
first successful Cpk estimation incorporates some risks as well. For instance, there is a 
possibility that better estimates can be obtained through other sample sizes. 

Individual visualization also revealed that good Cpk estimations can sometimes be labeled as 
failed cases due to the fact that their corresponding CV estimates miss the prescribed CV 
range by very small differences.  

5.4. Performance Analysis of the Proposed Method 
In order to be able to assess the performance of the proposed Cpk estimation method, there is a 
need for certain evaluation criteria which reflect the performance of the proposed method in 
terms of precision, and accuracy. In this study, the chosen performance criteria are the mean 
squared error (MSE), variance and bias. These three indicators are widely used in relevant 
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literature for assessing the performance of estimators (Padgett and Sengupta, 1996; Deleryd, 
1999; McCormack Jr, et al., 2000).  The MSE, variance and bias are obtained through the 
following formulas: 

ܧܵܯ  = ܧ ቂ൫ߠ − ൯ߠ	
ଶቃ (24) 

ݎܸܽ  = ܧ	 ቀߠ ቁߠ	−
ଶ
൨      (25) 

ݏܽ݅ܤ = ܧܵܯ√	 −  (26) ݎܸܽ

where ߠ is the estimator of ߠ and 	ߠ is the average of the estimates, ߠ.  

The mean squared error of an estimator captures the difference between the estimator and the 
parameter value that is estimated. In this case, the MSE indicates the error that the Cpk 

estimates (ܥ ) make by how much they differ from the Ideal Cpk value. Variance of an 
estimator indicates the dispersion of the estimates, thus reflecting the precision of the 
estimates. Bias, on the other hand, is the difference between MSE and variance and is an 
indicator of the accuracy of the estimates.  

It is worth highlighting that the CV estimate does not always fall within the prescribed range. 
Therefore, another performance criterion, which would indicate how often this happens, is 
needed. This criterion, which is called “success rate”, reflects the chance of finding the 
estimated CV value that falls within the CV range prescribed according to the process mean 
and standard deviation. The Cpk estimate is calculated if and only if the estimated CVs of the 
first n observations fall within the CV range (see Figure 12 - 14). Thus, success rate can be 
regarded as a measure of being able to estimate process capability via this proposed method.  

For analysis, different data points (i.e. different sets of process sample mean and standard 
deviation) are chosen from each CV contour plot for population sizes N=50, 100 and 200 with 
log-normal, 3-p Weibull, and 3-p Gamma as underlying distributions. Furthermore, the data 
points are categorized according to their resulting Ideal Cpk values. Four Ideal Cpk ranges are 
used for this categorization: from 0.5 to 1, from 1 to 1.5, from 1.5 to 2 and from 2 to 2.5. For 
log-normal as the assumed distribution, 83 data points, for Weibull 60, and for Gamma 70 
data points are tested. Each data point is then replicated 10000 times and the evaluation 
criteria discussed above are computed.  

Once all the assessment results for every data point are grouped according to the CV range 
and the Ideal Cpk range, the minimum and maximum values of MSE, variance, bias, and 
success rate amongst different data points are recorded within a certain category. For MSE, 
variance and bias, the minimum and the maximum values can be regarded as the error margin 
that the practitioner would endure if this method is used for that specific category. For success 
rate, on the other hand, the minimum and maximum values indicate the highest and the lowest 
chance of being able to estimate Cpk with this method. In Table 3, 4, and 5 the results of the 
simulations for log-normal, 3-p Weibull and 3-p Gamma distributions are provided.  
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Table 3. Log-normal Distribution Simulation Results 

  0.5<=Cpl ideal<=1 1<Cpl ideal<=1.5 1.5<Cpl ideal<=2.0 2.0<Cpl ideal<=2.5 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
 =

 5
0 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.275 - 0.300 0.040 0.045 0.007 0.008 0.181 0.190 49 48                         
0.250 - 0.275 0.037 0.047 0.008 0.010 0.171 0.191 45 40                         
0.225 - 0.250 0.031 0.043 0.007 0.010 0.155 0.181 41 32                         
0.200 - 0.225 0.014 0.037 0.005 0.012 0.091 0.156 38 32                         
0.175 - 0.200 0.005 0.014 0.004 0.006 0.017 0.089 38 29 0.004 0.008 0.003 0.003 0.030 0.068 43 38                 
0.150 - 0.175 0.006 0.010 0.006 0.005 0.000 0.073 44 30 0.005 0.013 0.004 0.004 0.017 0.095 48 39                 
0.125 - 0.150 0.006 0.008 0.006 0.008 0.000 0.014 39 31 0.005 0.013 0.005 0.004 0.010 0.093 52 39 0.009 0.024 0.008 0.008 0.039 0.127 52 48         
0.100 - 0.125         0.011 0.018 0.011 0.012 0.025 0.080 45 38 0.012 0.031 0.012 0.018 0.010 0.115 55 42 0.054 0.073 0.019 0.019 0.188 0.232 58 57 

0.075 - 0.100                         0.060 0.091 0.044 0.057 0.059 0.217 57 44 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
 =

 1
00

 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.275 - 0.300 0.028 0.036 0.005 0.006 0.151 0.173 50 47                         
0.250 - 0.275 0.028 0.040 0.005 0.006 0.153 0.184 51 50                         
0.225 - 0.250 0.028 0.043 0.005 0.007 0.151 0.189 49 44                         
0.200 - 0.225 0.024 0.040 0.005 0.008 0.137 0.179 46 34                         
0.175 - 0.200 0.004 0.016 0.003 0.005 0.030 0.107 44 33 0.004 0.007 0.002 0.003 0.030 0.069 47 40                 
0.150 - 0.175 0.005 0.009 0.005 0.004 0.000 0.072 47 33 0.004 0.008 0.003 0.003 0.014 0.067 48 36                 
0.125 - 0.150 0.004 0.005 0.004 0.005 0.010 0.017 41 36 0.005 0.018 0.005 0.005 0.014 0.111 53 41 0.010 0.023 0.006 0.007 0.057 0.125 53 51         
0.100 - 0.125         0.009 0.019 0.007 0.010 0.048 0.093 48 41 0.010 0.019 0.010 0.016 0.000 0.051 51 44 0.071 0.047 0.019 0.018 0.230 0.171 57 57 

0.075 - 0.100                         0.059 0.062 0.048 0.052 0.059 0.103 57 46 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
 =

 2
00

 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.275 - 0.300 0.013 0.030 0.004 0.006 0.093 0.154 41 27                         
0.250 - 0.275 0.014 0.023 0.004 0.004 0.103 0.139 47 37                         
0.225 - 0.250 0.015 0.025 0.003 0.004 0.110 0.146 51 47                         
0.200 - 0.225 0.016 0.029 0.004 0.005 0.113 0.156 51 45                         
0.175 - 0.200 0.005 0.015 0.003 0.005 0.042 0.101 49 40 0.004 0.006 0.002 0.002 0.039 0.065 50 47                 
0.150 - 0.175 0.004 0.008 0.004 0.004 0.010 0.065 48 36 0.003 0.011 0.003 0.003 0.010 0.089 52 37                 
0.125 - 0.150 0.004 0.004 0.004 0.004 0.000 0.017 47 38 0.004 0.014 0.004 0.005 0.000 0.096 53 41 0.007 0.022 0.007 0.007 0.000 0.120 52 49         
0.100 - 0.125         0.007 0.013 0.005 0.009 0.040 0.066 48 43 0.012 0.038 0.012 0.013 0.000 0.158 56 48 0.035 0.067 0.016 0.018 0.137 0.222 56 55 

0.075 - 0.100                         0.057 0.082 0.054 0.049 0.054 0.181 58 49 
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Table 4. 3-parameter  Weibull Distribution Simulation Results 

  1<Cpl ideal<=1.5 1.5<Cpl ideal<=2.0 2.0<Cpl ideal<=2.5 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
50

 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.14 - 0.15 0.0026 0.0075 0.0025 0.0047 0.0100 0.0533 26 21                 
0.13 - 0.14 0.0040 0.0087 0.0029 0.0026 0.0323 0.0782 27 20 0.0027 0.0032 0.0027 0.0030 0.0032 0.0155 27 25         
0.12- 0.13 0.0040 0.0077 0.0038 0.0045 0.0158 0.0564 25 20 0.0031 0.0117 0.0030 0.0027 0.0089 0.0948 34 27         
0.11 - 0.12 0.0058 0.0101 0.0049 0.0045 0.0290 0.0748 30 25 0.0039 0.0094 0.0038 0.0031 0.0063 0.0791 34 29         
0.10 - 0.11 0.0049 0.0077 0.0042 0.0046 0.0268 0.0560 31 28 0.0041 0.0078 0.0041 0.0040 0.0000 0.0615 33 31 0.0048 0.0079 0.0041 0.0039 0.0259 0.0628 36 33 

0.09 - 0.10 0.0044 0.0051 0.0042 0.0049 0.0134 0.0138 31 29 0.0062 0.0066 0.0033 0.0053 0.0539 0.0354 41 30 0.0057 0.0230 0.0053 0.0051 0.0203 0.1338 40 34 

0.08 - 0.09 0.0051 0.1511 0.0041 0.0090 0.0323 0.3770 52 37         0.0091 0.0331 0.0073 0.0081 0.0417 0.1581 41 37 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
10

0 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.14 - 0.15 0.0025 0.0047 0.0024 0.0018 0.0055 0.0545 40 32                 
0.13 - 0.14 0.0028 0.0044 0.0028 0.0022 0.0063 0.0469 45 35 0.0019 0.0045 0.0019 0.0020 0.0063 0.0505 38 35         
0.12- 0.13 0.0027 0.0050 0.0027 0.0025 0.0089 0.0506 51 38 0.0023 0.0042 0.0022 0.0023 0.0071 0.0434 39 35         
0.11 - 0.12 0.0027 0.0046 0.0026 0.0026 0.0105 0.0452 58 45 0.0029 0.0097 0.0026 0.0023 0.0179 0.0864 43 33         
0.10 - 0.11 0.0024 0.0041 0.0021 0.0021 0.0173 0.0451 59 42 0.0022 0.0068 0.0022 0.0028 0.0045 0.0628 57 41 0.0035 0.0042 0.0033 0.0035 0.0152 0.0251 42 40 

0.09 - 0.10 0.0027 0.0036 0.0017 0.0025 0.0307 0.0329 63 55 0.0020 0.0051 0.0020 0.0043 0.0078 0.0283 62 40 0.0049 0.0251 0.0047 0.0041 0.0123 0.1448 50 39 

0.08 - 0.09 0.0020 0.0055 0.0020 0.0021 0.0000 0.0581 63 48         0.0072 0.0143 0.0070 0.0077 0.0141 0.0812 49 47 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
20

0 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.14 - 0.15 0.0014 0.0026 0.0013 0.0014 0.0078 0.0346 50 43                 
0.13 - 0.14 0.0016 0.0018 0.0016 0.0015 0.0000 0.0170 56 49 0.0016 0.0028 0.0015 0.0016 0.0127 0.0346 46 44         
0.12- 0.13 0.0012 0.0029 0.0010 0.0016 0.0164 0.0355 56 41 0.0018 0.0039 0.0016 0.0018 0.0032 0.0485 46 45         
0.11 - 0.12 0.0013 0.0022 0.0010 0.0015 0.0032 0.0276 57 28 0.0022 0.0033 0.0016 0.0022 0.0130 0.0346 51 46         
0.10 - 0.11 0.0012 0.0031 0.0011 0.0011 0.0105 0.0449 59 34 0.0030 0.0060 0.0023 0.0022 0.0259 0.0616 50 48 0.0030 0.0039 0.0029 0.0032 0.0127 0.0276 49 49 

0.09 - 0.10 0.0008 0.0050 0.0008 0.0011 0.0000 0.0621 31 27 0.0042 0.0047 0.0038 0.0032 0.0187 0.0386 51 49 0.0150 0.0150 0.0046 0.0046 0.1017 0.1017 52 50 

0.08 - 0.09                 0.0063 0.0104 0.0063 0.0075 0.0084 0.0539 53 52 
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Table 5. 3-parameter  Gamma Distribution Simulation Results 

  1<Cpl ideal<=1.5 1.5<Cpl ideal<=2.0 2.0<Cpl ideal<=2.5 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 
N

50
 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.14 - 0.15 0.0030 0.0060 0.0021 0.0029 0.0100 0.0566 32 25                 
0.13 - 0.14 0.0032 0.0067 0.0029 0.0035 0.0000 0.0566 31 26 0.0028 0.0047 0.0022 0.0032 0.0100 0.0469 33 25         
0.12- 0.13 0.0031 0.0069 0.0030 0.0041 0.0100 0.0539 33 26 0.0026 0.0055 0.0026 0.0028 0.0000 0.0566 35 31         
0.11 - 0.12 0.0039 0.0075 0.0036 0.0051 0.0000 0.0624 35 24 0.0031 0.0063 0.0028 0.0033 0.0000 0.0592 37 31         
0.10 - 0.11 0.0047 0.0074 0.0038 0.0047 0.0000 0.0574 36 27 0.0038 0.0069 0.0036 0.0048 0.0100 0.0574 37 29 0.0040 0.0052 0.0039 0.0040 0.0000 0.0361 34 33 

0.09 - 0.10 0.0046 0.0061 0.0042 0.0053 0.0100 0.0436 39 31 0.0047 0.0111 0.0043 0.0045 0.0141 0.0825 41 35 0.0055 0.0166 0.0050 0.0059 0.0000 0.1034 40 35 

0.08 - 0.09 0.0041 0.0049 0.0035 0.0043 0.0245 0.0245 46 38         0.0102 0.0145 0.0082 0.0076 0.0447 0.0831 37 35 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
10

0 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.14 - 0.15 0.0018 0.0040 0.0018 0.0019 0.0000 0.0458 42 36                 
0.13 - 0.14 0.0021 0.0043 0.0021 0.0025 0.0000 0.0424 46 37 0.0019 0.0038 0.0019 0.0026 0.0000 0.0346 39 37         
0.12- 0.13 0.0025 0.0048 0.0024 0.0026 0.0100 0.0469 51 37 0.0021 0.0058 0.0020 0.0025 0.0100 0.0574 39 35         
0.11 - 0.12 0.0028 0.0031 0.0025 0.0021 0.0173 0.0316 56 43 0.0025 0.0062 0.0025 0.0025 0.0000 0.0608 42 35         
0.10 - 0.11 0.0023 0.0036 0.0023 0.0022 0.0000 0.0374 60 53 0.0029 0.0059 0.0027 0.0032 0.0100 0.0520 44 35 0.0046 0.0133 0.0035 0.0430 0.0332 0.0948 40 37 

0.09 - 0.10 0.0022 0.0034 0.0021 0.0023 0.0100 0.0332 63 56 0.0039 0.0108 0.0038 0.0036 0.0100 0.0812 43 40 0.0049 0.0171 0.0045 0.0053 0.0200 0.1086 40 39 

0.08 - 0.09 0.0038 0.0045 0.0021 0.0022 0.0412 0.0490 64 61         0.0098 0.0128 0.0069 0.0084 0.0374 0.0768 39 37 

  MSE Variance Bias Success Rate MSE Variance Bias Success Rate MSE Variance Bias Success Rate 

N
20

0 

RANGE best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst best worst 

0.14 - 0.15 0.0013 0.0026 0.0013 0.0012 0.0000 0.0374 46 42                 
0.13 - 0.14 0.0014 0.0030 0.0012 0.0015 0.0000 0.0412 49 43 0.0014 0.0032 0.0013 0.0014 0.0000 0.0436 44 41         
0.12- 0.13 0.0014 0.0029 0.0011 0.0017 0.0000 0.0387 51 42 0.0017 0.0038 0.0017 0.0018 0.0000 0.0458 41 38         
0.11 - 0.12 0.0012 0.0036 0.0010 0.0018 0.0100 0.0458 53 33 0.0018 0.0057 0.0017 0.0023 0.0100 0.0600 48 38         
0.10 - 0.11 0.0011 0.0023 0.0010 0.0020 0.0100 0.0200 51 40 0.0025 0.0054 0.0020 0.0030 0.0141 0.0490 46 39 0.0043 0.0073 0.0031 0.0032 0.0332 0.0648 40 38 

0.09 - 0.10 0.0010 0.0063 0.0010 0.0012 0.0000 0.0714 30 20 0.0035 0.0097 0.0030 0.0034 0.0100 0.0819 45 42 0.0044 0.0092 0.0040 0.0050 0.0100 0.0648 40 37 

0.08 - 0.09                 0.0092 0.0122 0.0065 0.0079 0.0361 0.0755 40 38 
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Table 3, 4 and 5 are divided into matrix-like tables according to population sizes and Ideal Cpk 
ranges. The first column gives the CV range and the following columns give the simulation 
results. The maximum values are labeled as “best” and minimum values are labeled as 
“worse”. The blank cells indicate that there are no data points which result in the specified 
Ideal Cpk within that CV range. For example, In Table 3, four data points are tested for the CV 
range 0.275 – 0.300. These data points are (181; 82), (188; 89), (181; 89) and (183; 86). The 
best values of MSE, variance, bias, and success rate are obtained with the data point (181; 
82), whereas the worst values are obtained with (181; 89). The rationale of providing the 
minimum and maximum values is to show the worst and best performances of the method 
within that specific CV range. 

When Table 3 is analyzed, it can be seen that for Ideal Cpk range from 0.5 to 1.0, MSE of the 
method improves starting from CV range 0.175 – 0.200. Accordingly, the bias results exhibit 
a similar behavior. Furthermore, it is observed that as Ideal Cpk gets higher, the performance 
of the method decreases slightly. 

The log-normal simulation results report that the proposed method works better for CV ranges 
that are found in the middle of the CV contour plot (see Figure 12).  In other words, for 
processes with low mean and high standard deviation (i.e. high CV and low Ideal Cpk) and for 
processes with high mean and low standard deviation (i.e. low CV and high Ideal Cpk), MSE 
is higher which indicates that the proposed method makes more errors when estimating the 
process capability. Furthermore, an overall impression of the proposed method for log-normal 
distribution is that the success rate can be as high as 1 in 2 chances, which is not bad. 

For both 3-p Weibull and 3-p Gamma distributions, the results are grouped according to 7 CV 
ranges and 3 Ideal Cpk ranges (see Tables 4 and 5). Due to the chosen parameters, there is no 
set of mean and standard deviation that results in an Ideal Cpk value within the range 0.5 – 1.0. 
It can be seen from the Tables 4 and 5 that the method performs less well for Ideal Cpk range 
from 2.0 to 2.5 in terms of MSE, variance and bias. Moreover, as the CV values increase, 
small increases in MSE and bias are observed. This finding, which can be interpreted as the 
method returns better results for the values taken from the middle of the contour plot, is in 
accordance with the findings from log-normal simulation. 

When the results for log-normal, 3-p Weibull and 3-p Gamma distributions are compared, it 
can be seen that the proposed method performs better for 3-p Weibull distribution and 3-p 
Gamma distribution in terms of MSE, variance and bias. In other words, the error margin is 
lower; precision and accuracy are higher when the method is applied to 3-p Weibull and 3-p 
Gamma distributions. On the other hand, the success rate of the method does not seem to 
differ substantially for different distributions, and for different population sizes. 

After the analyzing the simulation results, two questions have arisen concerning the proposed 
method. The first question relates to the circumstances when the proposed method gives good 
results and when it gives bad results. It can be seen from the tables that different data points, 
which are taken from the same CV range, result in different values of MSE, variance and bias. 
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The second question relates to the success rate of the proposed method. In order to investigate 
these two questions, a further analysis is conducted on the proposed method. 

In order to answer the first question, certain data points are selected from a specific CV range 
and analyzed individually. As for the second question, the coefficients of determination (R2) 
of the regression line used in normal approximation are compared for both successful and 
failed cases. Moreover, skewness and kurtosis of the randomly generated distributions are 
analyzed in order to see whether there is a relationship between the success of the proposed 
method and the distribution’s moments.  

5.4.1. Studies Regarding the Good Results and the Bad Results 

In order to investigate the reasons of why the proposed method performs better for some data 
points within the same CV range, individual data points are taken from different locations 
within the corresponding CV range. Different locations imply that some sets of mean and 
standard deviation are chosen from the borders of the corresponding CV range and some of 
them are chosen from the middle of the corresponding CV range. 

Through simulation tests, it is found out that the proposed guideline leads to rather worse 
results for borderline cases in the contour plot compared to the middle values extracted. In 
order to exemplify this condition; some data points are taken for population size N=100. The 
data points are presented in Table 6. For each distribution, six data points are simulated 10000 
times. Note that two sets of mean and standard deviation, which result in the same Ideal Cpk 
value, are tested within the same CV range. These points are chosen due to the fact that they 
would reflect as closely as possible the real-world data. Furthermore, if the data points are to 
be considered as pairs, it could be seen that a pair of data points are extracted within the same 
CV range and has the same Ideal Cpk value. 

Table 6. Data points and their locations 

Distribution Mean Standard Deviation Ideal Cpk CV Range Data Point Location 

L
og

-n
or

m
al

 260 80 1.0 0.175 – 0.200 Middle 
243 71 1.0 0.175 – 0.200 Lower contour border 
280 52 1.5 0.125 – 0.150 Middle 
241 40 1.5 0.125 – 0.150 Upper contour border 
293 40 2.0 0.100 – 0.125 Middle 
258 32 2.0 0.100 – 0.125 Lower contour border 

3-
p 

W
ei

bu
ll 290 53 1.5 0.13 – 0.14 Middle 

272 49 1.5 0.13 – 0.14 Lower contour border 
257 33 2.0 0.09 – 0.10 Middle 
263 35 2.0  0.09 – 0.10 Upper contour border 
290 33 2.5 0.08 – 0.09 Middle 
294 35 2.5 0.08 – 0.09 Upper contour border 

3-
p 

G
am

m
a 260 58 1.5 0.12 – 0.13 Middle 
271 61 1.5 0.12 – 0.13 Right contour border 
285 40 2.0 0.10 – 0.11 Middle 
267 37 2.0 0.10 – 0.11 Lower contour border 
291 31 2.5 0.08 – 0.09 Middle 
297 32 2.5 0.08 – 0.09 Upper contour border 
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Figures 18, 19, and 20 illustrate the Cpk estimates via violin plots for log-normal, 3-p Weibull, 
and 3-p Gamma distributions, respectively. Each figure includes six violin plots, which 
correspond to the data points provided in Table 6. Three pairs of data illustrate different Ideal 
Cpk results, whereas the data points within the pair represent different locations in the CV 
contour plot.  

 

Figure 18. Cpk estimates for log-normal distribution, N=100 

 

Figure 19. Cpk estimates for 3-p Weibull distribution, N=100 
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Figure 20. Cpk estimates for 3-p Gamma distribution, N=100 

Figures 18-20 have two implications. First, even though two data points are taken from the 
same CV range and they return the performance of the proposed method differ. Second, as 
Ideal Cpk increases the precision and accuracy of the method decreases. Numerical indicators 
of Figures 18-20 are provided in Table 7. For every data point tested, the MSE, variance, bias, 
and success rate are provided. In addition to these, the first, second, and the third quartiles of 
the Cpk estimates along with the maximum and minimum values are given. 

Table 7. Simulation Results for middle point and borderline cases 

 (Mean; StDev) Ideal Cpk Min Q1 Q2 Q3 Max MSE Var Bias Success Rate % 

Lo
g-

no
rm

al
 

260; 80 1.0 0.753 0.923 0.959 0.994 1.135 0.0051 0.0029 0.0475 42 

243; 71 1.0 0.703 0.891 0.925 0.959 1.151 0.0070 0.0027 0.0657 44 

280; 52 1.5 1.289 1.427 1.485 1.566 1.717 0.0068 0.0068 0.0055 48 

241;40 1.5 1.194 1.319 1.370 1.440 1.584 0.0162 0.0053 0.1046 53 

293; 40 2.0 1.658 1.793 1.892 2.037 2.195 0.0195 0.0174 0.0454 53 

258; 32 2.0 1.586 1.683 1.771 1.912 2.062 0.0441 0.0149 0.1709 57 

3-
p 

W
ei

bu
ll 

290; 53 1.5 1.382 1.498 1.528 1.557 1.665 0.0021 0.0020 0.0084 34 

272; 49 1.5 1.308 1.443 1.474 1.504 1.606 0.0044 0.0020 0.0494 37 

257; 33 2.0 1.853 2.001 2.050 2.108 2.243 0.0046 0.0045 0.0071 42 

263; 35 2.0 1.905 2.018 2.069 2.126 2.268 0.0111 0.0046 0.0809 37 

290; 33 2.5 2.307 2.418 2.489 2.576 2.706 0.0084 0.0076 0.0274 47 

294; 35 2.5 2.306 2.430 2.504 2.584 2.723 0.0108 0.0080 0.0531 44 

3-
p 

G
am

m
a 

260; 58 1.5 1.333 1.458 1.490 1.523 1.655 0.0022 0.0021 0.0100 39 

271; 61 1.5 1.338 1.499 1.531 1.563 1.673 0.0032 0.0023 0.0300 37 

285; 40 2.0 1.844 1.955 1.995 2.048 2.161 0.0039 0.0034 0.0224 39 

267; 37 2.0 1.755 1.886 1.923 1.972 2.094 0.0085 0.0032 0.0728 39 

291; 31 2.5 2.322 2.446 2.511 2.608 2.739 0.0086 0.0083 0.0173 39 

297; 32 2.5 2.340 2.471 2.543 2.632 2.776 0.0102 0.0079 0.0480 38 
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Table 7 proves the implications stated above. It is found out that the proposed method 
performs slightly worse for the data points extracted from the borders of the contours than the 
points taken from the middle of ranges. In order to exemplify this situation, consider the pair 
of data (290; 53) and (272; 49) for 3-p Weibull distribution. The former data point is taken 
from the middle of the CV contour, and the latter is from the borderline (see Table 6). It can 
be seen that although the variance of the estimates of these data points are almost the same, 
MSE and, accordingly, bias increases. These borderline cases are present in all of the three 
distributions.  

Moreover, for higher Ideal Cpk values, the proposed method performs relatively worse. The 
MSE, variance, and bias of the estimates increase. This could be also observed from the 
spread of the estimates in terms of the maximum, minimum values, and the quartiles (see 
Table 7).  Higher Ideal Cpk means higher process mean and lower process standard deviation. 
Therefore, it can be said that better estimates are obtained with moderate values of process 
mean and standard deviation. Finally, it can be seen from Table 6 that the method works 
slightly better for 3-p Weibull and 3-p Gamma distributions than for log-normal distribution. 

5.4.2. Studies Regarding the Success Rate 

It is interesting to investigate what make the success rate of the proposed method – that is, 
what the parameters, if they exist, affect the success or the failure of the method. Since the 
success or failure of the method depends on the CV estimate, it concerns how the normal 
approximation is done and the characteristics of the empirical distribution. Two areas, which 
are hypothesized to have an effect on the success of the method, are identified. These areas 
are the R2 (coefficient of determination) results from the linear regression line and the 
skewness and kurtosis of the empirical distribution. In order to analyze these areas, three sets 
of mean and standard deviation are chosen for each of the three distributions, and simulations 
are conducted in order to see the relationship, if it exists, between the R2, skewness, and 
kurtosis values of successful and failed cases. The data points and their corresponding Ideal 
Cpk values and CV ranges are given in Table 8. Each point is replicated 10000 times. 

Table 8. Data points for R2, skewness, and kurtosis analysis 

 Mean Standard Deviation Ideal Cpk CV Range 
Log-Normal 
N = 100 

260 80 1.0 0.175 – 0.200 
280 52 1.5 0.125 – 0.150 
293 40 2.0 0.100 – 0.125 

3-p Weibull 
N = 100 

290 53 1.5 0.13 – 0.14 
257 33 2.0 0.09 – 0.10 
290 33 2.5 0.08 – 0.09 

3-p Gamma  
N = 100 

260 58 1.5 0.12 – 0.13 
285  40 2.0 0.10 – 0.11 
291 31 2.5 0.08 – 0.09 

 

5.4.2.1. Simulation Results of Coefficient of Determination (R2) 
Since R2 is a measure of how well the regression line approximates the data points, an initial 
argument was that there could be a relationship between successful and failed cases with 
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respect to R2 results. Again, a successful case implies the situation when the estimated CV 
falls within the prescribed CV range, whereas a failed case represents the situation when the 
estimated CV fails to meet the assigned range. The results are then illustrated via violin plots. 

Only the graphical results of the data points for 3-p Weibull distribution is presented here (see 
Figure 21) due to the fact that results for log-normal and 3-p Gamma are almost the same. 
Therefore, same interpretations apply to these distributions. The R2 plots for log-normal and 
3-p Gamma distribution can be found in Appendix I. 

 

Figure 21. R2 plot for 3-p Weibull distribution 

Note that the thick vertical black lines inside the plots, which indicate the 25th and 75th 
quartiles, and the medians of the data, are almost the same for both successful and failed 
cases. This indifference of R2 results between the successful and failed cases implies that the 
R2 value of regression lines does not have an effect on the performance of the proposed 
method. In other words, there is no clear difference which indicates the success or the failure 
of estimating Cpk in terms of R2. 

5.4.2.2. Simulation Results for Skewness and Kurtosis 
The second argument regarding the success of the method is related with the third and the 
fourth moments of the distribution. There have been studies in the literature analyzing the 
effect of skewness and kurtosis on process capability estimates (Choi and Bai, 1996; Deleryd, 
1999; Chang, et al., 2002). Therefore, as it is done with R2, simulations are conducted in order 
to see the relationship, if it exists, between the skewness and kurtosis values of successful and 
failed cases.  

Figures 22 and 23 illustrate the skewness and kurtosis plots for 3-p Weibull distribution. 
Since the results for log-normal and 3-p Gamma distributions do not reveal any other 
substantial information, they will not be presented here. Therefore, interpretations for Weibull 
are also applied to the other distributions. The skewness and kurtosis of skewness and kurtosis 
for log-normal and 3-p Gamma distributions can be found in Appendices J and K, 
respectively. 
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Figure 22. Skewness plots for 3-p Weibull distribution 

 

Figure 23. Kurtosis plots for 3-p Weibull distribution 

Skewness and kurtosis plots exhibit similar interpretations with that of R2 results. The first, 
second and third quartiles are almost the same, as well as the range of results for both 
successful and failed cases. However, some outliers are observed for kurtosis values but they 
are present both for successful and failed cases. The skewness and kurtosis of the distribution 
do not reveal any information about the reasons of failure of the method.  

5.5. Validation: An Application on Real-World Data 
In order to validate the proposed method, two batches of real-world data, of which the first 
batch is presented in Section 1.2, are used. Each batch of data consists of 41 data points; 
therefore the contour plots built for N=50 is used for analysis (see Appendices D, E, and F). 
The mean and standard deviation of Batch 1 is equal to 262 and 52, whereas for Batch 2, the 
mean and standard deviation are 260 and 69, respectively. It is worth noting that the the mean 
and standard deviation of the first batch is found in the middle of the contour plots. However, 
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the data point for the second batch is found close to the borderlines in the contour plots. The 
results are provided in Table 9. 

Table 9. Results of the real-world data 

  IdCpk (Minitab) IdCpk (R) Est. Cpk Sample Size CV Range 

B
at

ch
 1

 Log-normal 1.40 1.35 1.407 7 Prescribed 
3-p Weibull 1.37 1.36 1.407 7 Prescribed 
3-p Gamma 1.63 1.58 1.599 10 Prescribed 

B
at

ch
 2

 Log-normal 1.19 1.11 1.026 8 Widened 
3-p Weibull 1.30 1.29 1.026 8 Widened 
3-p Gamma 1.44 1.40 1.026 8 Widened 

 

For the first data batch all results are obtained within the prescribed ranges. However, for the 
second data batch the proposed method did not give any results when the prescribed ranges 
are used. Therefore, as it is proposed in Section 4.1, the CV ranges are widened.  

If these results are to be interpreted for the first batch, it could be said that the practitioner 
would have to take 7 samples from the tail of the distribution for log-normal and 3-p Weibull 
distribution and would estimate the process capability with a difference of 0.05 and 0.04, 
respectively if the Ideal Cpk from R is considered. For 3-p Gamma distribution, 10 
observations from the tail are needed to estimate process capability with a difference of 0.01. 
However, the proposed method gives varied Cpk estimates itself depending on the assumed 
distribution.  

On the other hand, the same Cpk estimate is obtained for the second data batch when CV 
ranges are widened. Although the estimations are worse in terms of comparison with the Ideal 
Cpk values, this example shows that with this method it is also possible to estimate the same 
process capability regardless of the assumed distribution. Furthermore, in this case another 
question arises about how accurate is the Ideal Cpk computation.  

Since this method is designed to be applicable to any non-normal distributions, which 
distribution to assume for estimation is left at the discretion of the practitioner.  

With respect to the research questions, the answers can now be provided. The first question 
related to the ability of estimating process capability of non-normal distributions with only 
taking the left tail of the distribution into account. As an answer to the first question, it can be 
said that the capability of a process can be estimated with only a few points from the tail since 
it is proven by verification through simulations and validation on real data.  

The second research question was about the parameters that affect the performance of the 
proposed method. It is also found out that sample size (i.e. observations taken from the tail) 
affects the success or failure of the method in terms of estimating the CV within the 
prescribed CV range. For the same empirical data set, some sample sizes may be successful 
and some may not. R2 results of the linear regression, and skewness and kurtosis of the 
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empirical distributions are also analyzed. However, these are not found to have an impact on 
the performance of the method. Furthermore, the process mean and standard deviation seem 
to affect the performance of the method. 
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6. Discussion 
The proposed method and guideline has both strengths and weaknesses that require further 
investigation. 

Although, the problem identified at the beginning of this study is based on the probability of 
obtaining varied Cpk results for the same process depending on the assumed distribution, the 
proposed method itself can give varied estimates. However, it has two practical advantages. 

The first advantage of the method is that it estimates the process capability of a non-normal 
distribution by considering only few data points from the left tail and by avoiding probable 
assignable causes in the right tail. Second, it is an easy method to apply for practitioners. 
However, there seems to be some critical parameters that affect the accuracy and precision of 
the estimations. The mean and the standard deviation of the distribution, and consequently the 
CV, can be considered as critical parameters. For higher mean values and lower standard 
deviation values result in relatively worse Cpk estimates. 

Another problematic circumstance is also identified for the proposed method. If the CV of the 
population is close to contour borderlines in the contour plot, then the Cpk estimates are rather 
poor compared to the Cpk estimates extracted from the CV values in the middle of the 
contours.  

The conditions that parameterize the success rate of the proposed method are also 
investigated. It is shown that the sample size taken from the left tail of the distribution plays a 
critical role while estimating the process capability. Not every sample size may lead to a 
successful process capability estimate. If any sample size does not estimate the CV within the 
prescribed, the practitioner is recommended to take more data points from the left tail until it 
results in a successful estimate. Furthermore, it is found out that good Cpk estimations can 
sometimes be labeled as failed cases. In these cases, the CV ranges can be widened in order to 
obtain successful cases.  
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7. Conclusion 
Estimating process capability when non-normal data is encountered can be rather problematic 
due to the violation of the basic assumption of normality. In this study, a new method was 
proposed for estimating process capability of non-normal data with only lower-specification 
limit. This method only takes the left tail of the distribution into account. The reason for this 
is justified by the fact that the process does not have upper specification limit; therefore the 
influence of the observations in the right tail is insignificant and could sometimes be 
misleading.  

By simulating various values of process mean and standard deviation, a practitioner’s 
guideline is suggested. This guideline can serve as an easy and practical tool for estimating 
process capability of non-normal data. 

The proposed method is tested on log-normal, 3-parameter Weibull, and 3-parameter Gamma 
distributions. Moreover, an application on the real-world data taken from the company is 
provided. The results show that it is possible to estimate process capability with only taking 
the left tail into consideration with a relatively high success rate.  

The proposed method does not always give the best accuracy and precision. For some 
borderline cases and high mean – low standard deviation situations, the performance of the 
method decreases. Furthermore, borderlines in the contour plots appear to be problematic. 
These conditions require further research in order to increase the performance of the method.  

Another future research area could be devoted to building up confidence intervals for 
estimation. Moreover, the applicability of the proposed method to different process 
characteristics, such as negatively skewed distributions, processes with only upper 
specification limits, deserve further investigations. 

 

 

 

 

 

 

 
 
 



46 

 

References 
 

Albing, M. (2009). Process Capability Indices for Weibull Distributions and Upper 
Specification Limits. Quality and Reliability Engineering International. 25 (3) pp. 317 – 334. 
 
Anis, M. Z. (2008). Basic Process Capability Indices: An Expository Review. International 
Statistical Review. 76 (3) pp. 347 - 367. 
 
Aucoin, F. (2011). Package "FAdist". Accessed in: 05.08.2011. http://cran.r-
project.org/web/packages/FAdist/FAdist.pdf 
 
Balvanes, M. and Caputi, P. (2001). Introduction to Quantitative Research Methods: An 
Investigative Approach. Ed. Wiltshire: SAGE Publications. 
 
Bergman, B. and Klefsjö, B. (2010). Quality: From Customer Needs to Customer 
Satisfaction. 3 Ed. Poland: Studentlitteratur. 
 
Bordignon, S. and Scagliarini, M. (2002). Statistical Analysis of Process Capability Indices 
with Measurement Errors. Quality and Reliability Engineering International. 18 (4) pp. 321–
332. 
 
Bryman, A. and Bell, E. (2007). Business Research Methods. 2 Ed. New York: Oxford 
University Press. 
 
Chan, L. K., Cheng, S. W. and Spiring, F. A. (1988). The Robustness of Process Capability 
Index Cp to Departures from Normality in Statistical Theory and Data Analysis. (Ed: K. 
Matusita). 2 ed. North Holland, Amsterdam. 
 
Chang, Y. S., Choi, I. S. and Bai, D. S. (2002). Process capability indices for skewed 
populations. Quality and Reliability Engineering International. 18 (5) pp. 383–393. 
 
Chen, J. P. (2000). Re-evaluating the Process Capability Indices for Non-normal 
Distributions. International Journal of Production Research. 38 (6) pp. 1311 – 1324. 
 
Chen, K. S., Huang, M. L. and Li, R. K. (2001). Process Capability Analysis for an Entire 
Product. International Journal of Production Research. 39 (17) pp. 4077 – 4087. 
 
Choi, I. S. and Bai, D. S. (1996). Process Capability Indices for Skewed Distributions in 
Proceedings of 20th International Conference on Computer and Industrial Engineering. 
Kyongju, Korea. pp.1211 - 1214 
 
Clements, J. A. (1989). Process Capability Calculations for Non-normal Distributions. 
Quality Progress. 22 pp. 95 - 100. 
 
Deleryd, M. (1999). The Effect of Skewness on Estimates of Some Process Capability 
Indices. International Journal of Applied Quality Management. 2 (2) pp. 153 – 186. 
 



47 

 

Deleryd, M. and Vännman, K. (1999). Process Capability Plots—A Quality Improvement 
Tool. Quality and Reliability Engineering International. 15 (3) pp. 213 - 227. 
 
Ding, J. (2004). A Method of Estimating the Process Capability Index from the First 
Moments of Non-normal Data. Quality and Reliability Engineering International. 20 (8) pp. 
787 – 805. 
 
Feigenbaum, A. V. (1999). The New Quality for the Twenty-First Century. The TQM 
Magazine. 11 (6) pp. 376 – 383. 
 
Golafshani, N. (2003). Understanding Reliability and Validity in Qualitative Research. The 
Qualitative Report. 8 (4) pp. 597 – 607. 
 
Hintze, J. L. and Nelson, R. D. (1998). Violin Plots: A Box Plot - Density Trace Synergism 
The American Statistician. 52 (2) pp. 181 - 184. 
 
Hoerl, R. W. and Snee, R. D. (2010a). Statistical Thinking and Methods in Quality 
Improvement: A Look to the Future. Quality Engineering. 22 (3) pp. 119 - 129. 
 
Hoerl, R. W. and Snee, R. D. (2010b). Moving the Statistics Profession Forward to the Next 
Level. The American Statistician 64 (1) pp. 10 - 14. 
 
Johnson, N. L., Kotz, S. and Pearn, W. L. (1994). Flexible Process Capability Indices. 
Pakistan Journal of Statistics. 10 pp. 23 - 31. 
 
Kotz, S. and Johnson, N. L. (1993). Process Capability Indices. Ed. Suffolk: Chapman & 
Hall. 
 
Kotz, S. and Johnson, N. L. (2002). Process Capability Indices – A review, 1992 – 2000/ 
Discussion/Response. Journal of Quality Technology. 34 (1) pp. 2 – 53. 
 
Li, G. and Chen, Z. (2009). A Study on Measuring Painting Process Performance at Vestas 
Blade. MSc. Chalmers University of Technology. Gothenburg. (E2009:100). 
 
Lovelace, C. R. and Swain, J. J. (2009). Process Capability Analysis Methodologies for Zero-
Bound, Non-Normal Process Data. Quality Engineering. 21 (2) pp. 190 – 202. 
 
Macdonald, P. (2010). Package 'mixdist': Finite Mixture Distribution Models. Accessed in: 
25.07.2011. http://cran.r-project.org/web/packages/mixdist/mixdist.pdf 
 
McCormack Jr, D. W., Harris, I. R., Hurwitz, A. M. and Spagon, P. D. (2000). Capability 
Indices for Non-Normal Data. Quality Engineering. 12 (4) pp. 489 – 495. 
 
Montgomery, D. C. and Runger, G. C. (2003). Applied Statistics and Probability for 
Engineers. 3 Ed. New York: John Wiley & Sons. 
 
Muijs, D. (2004). Doing Quantitative Research in Education with SPSS. Ed. London: SAGE 
Publications. 
 



48 

 

Nonthaleerak, P. and Hendry, L. C. (2006). Six Sigma: Literature Review and Key Future 
Research Areas. International Journal of Six Sigma and Competitive Advantage. 2 (2) pp. 105 
– 161. 
 
Padgett, W. J. and Sengupta, A. (1996). Performance of Process Capability Indices for 
Weibull and Lognormal Distributions of Autoregressive Processes. International Journal of 
Reliability, Quality and Safety Engineering. 3 (3) pp. 217 – 229. 
 
Schruth, D. M. (2011). A Collection of General Purpose Functions for R: Package "caroline". 
Accessed in: 04.08.2011. http://cran.r-project.org/web/packages/caroline/caroline.pdf 
 
Shore, H. (1998). A New Approach to Analysing Non-normal Quality Data with Application 
to Process Capability Analysis. International Journal of Production Research. 36 (7) pp. 
1917 - 1933. 
 
Snee, R. D. (2004). Six Sigma: The Evolution of 100 Years of Business Improvement 
Methodology. International Journal of Six Sigma and Competitive Advantage. 1 (1) pp. 4 – 
20. 
 
Somerville, S. E. and Montgomery, D. C. (1996). Process Capability Indices and Non-Normal 
Distributions. Quality Engineering. 9 (2) pp. 305 – 316. 
 
Spiring, F., Leung, B., Cheng, S. and Yeung, A. (2003). A Bibliography of Process Capability 
Papers. Quality and Reliability Engineering International. 19 (5) pp. 445 - 460. 
 
Spiring, F. A. (1995). Process Capability: A Total Quality Management Tool. Total Quality 
Management & Business Excellence. 6 (1) pp. 21 – 34. 
 
Tang, L. C. and Than, S. E. (1999). Computing Process Capability Indices for Non-Normal 
Data: A review and Comparative Study. Quality and Reliability Engineering International. 15 
(5) pp. 339 – 353. 
 
Vännman, K. and Albing, M. (2007). Process Capability Indices for One-Sided Specification 
Intervals and Skewed Distributions. Quality and Reliability Engineering International. 23 (6) 
pp. 755 – 765. 
 
Williams, C. (2007). Research Methods. Journal of Business & Economics Research. 5 (3) 
pp. 65 - 72. 
 
Wright, P. A. (1995). A Process Capability Index Sensitive to Skewness. Journal of Statistical 
Computation and Simulation. 52 (3) pp. 195 - 203. 
 
Wu, C. W., Pearn, W. L. and Kotz, S. (2009). An Overview of Theory and Practice on 
Process Capability Indices for Quality Assurance. International Journal of Production 
Economics. 117 (2) pp. 338 – 359. 
 
Wu, H.-H. and Swain, J. J. (2001). A Monte Carlo Comparison of Capability Indices when 
Processes Are Non-normally Distributed. Quality and Reliability Engineering International. 
17 (3) pp. 219–231. 



49 

 

 
Wu, H.-H., Swain, J. J., Farrington, P. A. and Messimer, S. L. (1999). A Weighted Variance 
Capability Index for General Non-Normal Processes. Quality and Reliability Engineering 
International. 35 (5) pp. 397–402. 
 
Yum, B.-J. and Kim, K.-W. (2010). A Bibliography of the Literature on Process Capability 
Indices: 2000–2009. Quality and Reliability Engineering International. 27 (3) pp. 251 - 268. 
 
 



50 

 

 Appendix A: Simulation Code for Log-normal Distribution 
lognormal_sim <- function (mean, stdev, LSL, N, replicate, minrange, maxrange) { 
## Transformation of log-normal parameters  
SdLN<-sqrt(log(stdev^2+mean^2)-2*log(mean)) 
MeanLN<-log(mean)-0.5*(SdLN^2) 
## Compute theoretical Cpk 
median <- qlnorm (0.5, MeanLN, SdLN) 
lower_percentile <- qlnorm (0.00135, MeanLN, SdLN) 
numer <- (median - LSL) 
denom <- (median - lower_percentile) 
IdealCpk <- numer / denom 
## Prepare Y-axis for NPP 
Srs<-c(1:N)/(N+1) 
Y<-qnorm(Srs) 
## Create a matrix for log-normal random variates 
LnormDataMat <- matrix (0,nrow=replicate, ncol=N, byrow = TRUE) 
## Generate Random Variates 
LnormData <- replicate (replicate,rlnorm(N, MeanLN, SdLN)) 
LnormDataMat <- t(LnormData) 
## Create matrices and lists for results 
Results <- matrix (0, nrow = 11, ncol = replicate, byrow = TRUE) 
Mean_Results <- matrix (0, nrow = 11, ncol =replicate, byrow = TRUE) 
StDev_Results <- matrix (0, nrow = 11, ncol =replicate, byrow = TRUE)  
est_CV_results <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
coef1_Mat <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
coef2_Mat <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
Cpk_list <- list(0) 
get.Cpk <- vector(mode="numeric") 
MSE <- vector (mode="numeric") 
Var <- vector (mode="numeric") 
Bias <- vector (mode="numeric") 
Success_Rate <- vector (mode="numeric") 
## Sort each replicate of the log-normal variate matrix  
LnormDataMat <- apply(LnormDataMat, 1, function(x) x[order(x)]) 
## Least Squared Estimation on every replication for sample sizes 5 to 15 
LnormDataFrame <- data.frame (LnormDataMat) 
 for (j in 5:15){ 
 coef1 <- as.vector(sapply (LnormDataFrame[1:j,], function (x) 
(lsfit(x,Y[1:j])$coefficients[1]))) 
 coef2 <- as.vector(sapply (LnormDataFrame[1:j,], function (x) 
(lsfit(x,Y[1:j])$coefficients[2]))) 
 coef1_Mat [j-4,] <- coef1 
 coef2_Mat [j-4,] <- coef2 } 
## Normal estimation of mean and standard deviation for sample sizes 5 to 15 
Mean_Results <- (-coef1_Mat)/coef2_Mat 
StDev_Results <- ((1 - coef1_Mat)/coef2_Mat) - Mean_Results 
## Compute estimated Coefficient of variance:CV 
est_CV_results <- StDev_Results/Mean_Results 
## Compute the Cpk estimate 
Results <- ((Mean_Results - LSL)/(3*StDev_Results)) 
## Subset the Cpk estimates which satisfy the prescribed CV range  
## Compute the evaluation criteria 
 for (i in 1:11){ 

get.Cpk <- subset(Results[i,], est_CV_results[i,]>=minrange & 
est_CV_results[i,]<=maxrange) 

  Cpk_list [[i]] <- get.Cpk 
MSE [i] <- round(sum((get.Cpk - IdealCpk)^2) / length(get.Cpk),digits=4) 
Var [i] <- round(sum((get.Cpk - mean(get.Cpk))^2) / length(get.Cpk),digits=4) 

  Bias [i] <- round(sqrt(MSE[i] - Var[i]),digits=4) 
  Success_Rate[i] <- length (get.Cpk)} 
## Build a data table for simulation Results 
IdCpk <- round(IdealCpk, digits=4) 
Evaluation <- data.frame (MSE, Var, Bias,Success_Rate,IdCpk) 
names (Evaluation) <- c("MSE","Variance","Bias","Success Rate","Ideal Cpk") 
return (Evaluation)} 
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Appendix B: Simulation Code for 3-p Weibull Distribution 
weibull_sim <- function (mean, stdev, LSL, N, replicate,minrange,maxrange) { 
library(mixdist) 
library(FAdist) 
location <- 130 
            repeat {  
            wpar <- weibullpar(mean,stdev,location) 
  location <- location + 5 
  if(wpar$shape>=1 & wpar$shape<2.9) {break} } 
## Computing theoretical Cpl 
median <- qweibull3 (0.5, wpar$shape, wpar$scale, wpar$loc) 
lower_percentile <- qweibull3 (0.00135, wpar$shape, wpar$scale, wpar$loc) 
numer <- (median - LSL) 
denom <- (median- lower_percentile) 
IdealCpl <- numer / denom 
## Preparing Y-axis for NPP 
Srs<-c(1:N)/(N+1) 
Y<-qnorm(Srs) 
## Generate Random Variates 
WeibullDataMat <- matrix (0,nrow=replicate, ncol=N, byrow = TRUE) 
WeibullData <- replicate (replicate,rweibull3(N, wpar$shape, wpar$scale, wpar$loc)) 
WeibullData <- t(WeibullData) 
## Create matrices for results 
Results <- matrix (0, nrow = 11, ncol = replicate, byrow = TRUE) 
Mean_Results <- matrix (0, nrow = 11, ncol =replicate, byrow = TRUE) 
StDev_Results <- matrix (0, nrow = 11, ncol =replicate, byrow = TRUE)  
est_CV_results <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
coef1_Mat <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
coef2_Mat <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
Cpk_list <- list(0) 
get.Cpk <- vector(mode="numeric") 
Success_Rate <- vector (mode="numeric") 
MSE <- vector (mode="numeric") 
Var <- vector (mode="numeric") 
Bias <- vector (mode="numeric") 
## Sort each replicate (row) of the Weibull variate matrix  
WeibullDataMat <- apply(WeibullData, 1, function(x) x[order(x)]) 
## Least Squared Estimation on every replication for sample sizes 5 to 15 
WeibullDataFrame <- data.frame (WeibullDataMat) 
 for (j in 5:15){ 
 coef1 <- as.vector(sapply (WeibullDataFrame[1:j,], function (x) 
(lsfit(x,Y[1:j])$coefficients[1]))) 
 coef2 <- as.vector(sapply (WeibullDataFrame[1:j,], function (x) 
(lsfit(x,Y[1:j])$coefficients[2]))) 
 coef1_Mat [j-4,] <- coef1 
 coef2_Mat [j-4,] <- coef2 } 
## Normal estimation of mean and standard deviation for sample sizes 5 to 15 
Mean_Results <- (-coef1_Mat)/coef2_Mat 
StDev_Results <- ((1 - coef1_Mat)/coef2_Mat) - Mean_Results 
## Compute estimated Coefficient of variance:CV 
est_CV_results <- StDev_Results/Mean_Results 
## Compute the Cpk estimate 
Results <- ((Mean_Results - LSL)/(3*StDev_Results)) 
## Subset the Cpk estimates which satisfy the prescribed CV range  
## Compute the evaluation criteria 
 for (i in 1:11){ 
 get.Cpk <- subset(Results[i,], est_CV_results[i,]>=minrange & 
est_CV_results[i,]<=maxrange) 
  Cpk_list [[i]] <- get.Cpk 
  MSE [i] <- round(sum((get.Cpk - IdealCpk)^2) / length(get.Cpk),digits=4) 
  Var [i] <- round(sum((get.Cpk - mean(get.Cpk))^2) / length(get.Cpk),digits=4) 
  Bias [i] <- round(sqrt(MSE[i] - Var[i]),digits=4) 
  Success_Rate[i] <- length (get.Cpk)} 
## Build a data table for simulation Results 
IdCpk <- round(IdealCpk, digits=4) 
Evaluation <- data.frame (MSE, Var, Bias,Success_Rate,IdCpk) 
names (Evaluation) <- c("MSE","Variance","Bias","Success Rate","Ideal Cpk") 
return (Evaluation) } 
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Appendix C: Simulation Code for 3-p Gamma Distribution 
gamma_sim <- function (mean, stdev, LSL, N, replicate,minrange,maxrange) { 
library(FAdist) 
location <- 130 
## Transformation of gamma parameters  
r_shape <- ((mean-location)^2) / (stdev)^2 
lambda_scale <- (stdev)^2/(mean - location) 
## Computing theoretical Cpl 
median <- qgamma3 (0.5, r_shape, lambda_scale,location) 
lower_percentile <- qgamma3 (0.00135, r_shape, lambda_scale,location) 
numer <- (median - LSL) 
denom <- (median- lower_percentile) 
IdealCpl <- numer / denom 
## Preparing Y-axis for NPP 
Srs<-c(1:N)/(N+1) 
Y<-qnorm(Srs) 
## Generate Random Variates 
GammaDataMat <- matrix (0,nrow=replicate, ncol=N, byrow = TRUE) 
GammaData <- replicate (replicate,rgamma3(N, r_shape, lambda_scale,location)) 
GammaDataMat <- t(GammaData) 
## Create matrices for results 
Results <- matrix (0, nrow = 11, ncol = replicate, byrow = TRUE) 
Mean_Results <- matrix (0, nrow = 11, ncol =replicate, byrow = TRUE) 
StDev_Results <- matrix (0, nrow = 11, ncol =replicate, byrow = TRUE)  
est_CV_results <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
coef1_Mat <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
coef2_Mat <- matrix (0, nrow=11, ncol=replicate, byrow=TRUE) 
Cpk_list <- list(0) 
get.Cpk <- vector(mode="numeric") 
Success_Rate <- vector (mode="numeric") 
MSE <- vector (mode="numeric") 
Var <- vector (mode="numeric") 
Bias <- vector (mode="numeric") 
## Sort each replicate (row) of the Weibull variate matrix  
GammaDataMat <- apply(GammaDataMat, 1, function(x) x[order(x)]) 
## Least Squared Estimation on every replication for sample sizes 5 to 15 
GammaDataFrame <- data.frame (GammaDataMat) 
 for (j in 5:15){ 
 coef1 <- as.vector(sapply (GammaDataFrame[1:j,], function (x) 
(lsfit(x,Y[1:j])$coefficients[1]))) 
 coef2 <- as.vector(sapply (GammaDataFrame[1:j,], function (x) 
(lsfit(x,Y[1:j])$coefficients[2]))) 
 coef1_Mat [j-4,] <- coef1 
 coef2_Mat [j-4,] <- coef2  } 
## Normal estimation of mean and standard deviation for sample sizes 5 to 15 
Mean_Results <- (-coef1_Mat)/coef2_Mat 
StDev_Results <- ((1 - coef1_Mat)/coef2_Mat) - Mean_Results 
## Compute estimated Coefficient of variance:CV 
est_CV_results <- StDev_Results/Mean_Results 
## Compute the Cpk estimate 
Results <- ((Mean_Results - LSL)/(3*StDev_Results)) 
## Subset the Cpk estimates which satisfy the prescribed CV range  
## Compute the evaluation criteria 
 for (i in 1:11){ 
 get.Cpk <- subset(Results[i,], est_CV_results[i,]>=minrange & 
est_CV_results[i,]<=maxrange) 
  Cpk_list [[i]] <- get.Cpk 
  MSE [i] <- round(sum((get.Cpk - IdealCpk)^2) / length(get.Cpk),digits=4) 
  Var [i] <- round(sum((get.Cpk - mean(get.Cpk))^2) / length(get.Cpk),digits=4) 
  Bias [i] <- round(sqrt(MSE[i] - Var[i]),digits=4) 
  Success_Rate[i] <- length (get.Cpk)} 
## Build a data table for simulation Results 
IdCpk <- round(IdealCpk, digits=4) 
Evaluation <- data.frame (MSE, Var, Bias,Success_Rate,IdCpk) 
names (Evaluation) <- c("MSE","Variance","Bias","Success Rate","Ideal Cpk") 
return (Evaluation)} 
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Appendix D: CV Contour Plots for Log-normal Distribution 

 N=50, CV vs. Mean and Standard Deviation  

 

 

N=200, CV vs. Mean and Standard Deviation 
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Appendix E: CV Contour Plots for 3-p Weibull Distribution 

N = 50, CV vs. Mean and Standard Deviation  

 

 

N = 200, CV vs. Mean and Standard Deviation  
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Appendix F: CV Contour Plots for 3-p Gamma Distribution 

N = 50, CV vs. Mean and Standard Deviation  

 

 

N = 200, CV vs. Mean and Standard Deviation  
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Appendix G: Linear Regression of Data Point (260; 80) for Log-normal           
Distribution, CV Range 0.175 – 0.200 

Failed Case, Estimated Cpk = 0.966, Estimated CV = 0.174 

 

 

Successful Case, Estimated Cpk = 0.941, Estimated CV =0.183 
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Appendix H: Linear Regression of Data Point (260; 58) for 3-p Gamma           
Distribution, CV Range 0.12 – 0.13 

Failed Case, Estimated Cpk = 0.57, Estimated CV = 0.118 

 

 

Successful Case, Estimated Cpk = 1.55, Estimated CV =0.120 
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Appendix I: R2 Simulation Results  

Log-normal Distribution 
 

 

 

Three-parameter Gamma Distribution 
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Appendix J: Skewness and Kurtosis Results for Log-normal Distribution 

Skewness Simulation Results 

 

 

Kurtosis Simulation Results 
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Appendix K: Skewness and Kurtosis Results for 3-p Gamma Distribution 

Skewness Simulation Results 
 

 

 

Kurtosis Simulation Results 
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