
ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

Arduino Lab 1 - The Voltage Divider

1. Introduction

In this lab, we will endanger a cute animal, create a portal to another dimension, and
invent a new genre of music. Along the way, we will learn about breadboarding, voltage
dividers, photoresistors, and using the TOMYUM SynthScope with MATLAB.

2. Some Basic Circuit Theory

Circuits are generally designed to accomplish some sort of fixed task, such as blinking a
light or amplifying a sound signal. Often, however, you will want to add user input to
your circuit, so that you can change its behavior on the fly (for example, setting the blink
rate or adjusting volume). A common way of doing this is to use a potentiometer. A
potentiometer looks like this:

A potentiometer is a three‐terminal device. The resistance between the two outermost
terminals, R1‐3, is constant (this constant value is in fact written on the side of the
potentiometer), but the center terminal (2) acts as a “wiper” that slides back and forth
along the resistor as you rotate the potentiometer. Therefore, R1‐2 and R2‐3 change, but
their sum R1‐2 + R2‐3 = R1‐3 is constant. Note that the potentiometer is symmetrical.

In this case, we will be using the potentiometer as an input to a MATLAB program, with
the TOMYUM SynthScope as an intermediary. However, the SynthScope— like many
devices— measures voltages, not resistance, so we must find a way to convert a
change in resistance into a change in voltage.

Enter the voltage divider.

1

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

Here is a circuit schematic showing a potentiometer used as a voltage divider:

Through simple circuit analysis, it can be shown that:

Now, since R1‐3 is constant, and R2‐3 will range from 0 Ω to R1‐3 Ω, we can see that
Vout will vary linearly from 0 V to Vin V, proportional to R2‐3. In essence, we have created
a simple way for the user to control the voltage Vout (by turning the potentiometer).

3. Introduction to the Arduino Platform

In front of you is a highly capable micro-controller – the Arduino Duemilanove:

Yours will look like the one on the right, as it has the protoshield attached. This is an
extension board that extends the pin headers on the main board while also providing a
breadboard prototyping surface. You’ll find that the board has plenty of connections. In
this lab, we will be connecting the board with the USB connection (no external power
supply is required) and then using the Analog Inputs and power connections on the
board.

2

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

PLEASE FOLLOW ALL DIRECTIONS!

If your computer already has ArduinoUploader please skip to “Flashing the Arduino”

The first step in this lab is to download the software required. The necessary files can
be found on the ESE 205 website under the Arduino link. You will need the compiled
firmware file (main.hex), the Arduino Uploader folder (ArduinoUploader), and the folder
containing the MATLAB functions (synthscope-lab).

1. Save both the firmware file and the Arduino Uploader folder to the C drive (C:\users).

a. NOTE: RCA computers only need main.hex if not present in C:\users.
2. Cut or copy main.hex and place it in the ArduinoUploader folder.

a. NOTE: Not required on RCA computers
3. Save the MATLAB functions to your S drive (remember this location).

a. NOTE: MATLAB Functions are found on 205 website, not BlackBoard.

-Flashing the Arduino- (Windows XP/Vista)

1. Connecting Arduino to computer
a. Right-click on “My Computer” on the desktop
b. Click “Properties”
c. Change the tab to “Hardware”
d. Click “Device Manager”
e. Click “OK” when error message opens
f. Open up “Ports (COM & LPT)” by clicking the “+” sign
g. Knowing which ports are currently displayed, plug USB cable into Arduino

and then a free USB socket on computer
h. The new COM port number is the Arduino board
i. If this new COM number is greater than 9 (ie, contains 2 digits)

Example, COM10, COM 24, etc
i. Right-click on the port
ii. Select “Properties”
iii. Click the “Port Settings” tab
iv. Click “Advanced”
v. Change “COM Port Number” to a lower, single digit port that is

open (not present In the list)
Example: if COM12, change to COM5

vi. Click “OK”
vii. Click “OK”
viii. After this, even though the port number did not change in the list

the Arduino will be assigned this new number

3

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

j. Make a note of this number

2. Opening command prompt
a. Click “Start” button
b. Click “Run”
c. Type “cmd” for the command prompt
d. Type in (if not already in C:\users) :

chdir C:\users\

i. If installed on home computer, use directory where Arduino

Uploader is located
e. In the command prompt, type the following with a single space in between:

avrdude (the program to flash the board)

-c stk500v1 (the programmer used)

-P comX (the COM port – replace X)

-p m328p (the microcontroller model)

-b 57600 (the controller baud rate)

-U flash:w: main.hex

(flash the board by writing the file to the chip)

This should look like the following:

(Remember: replace X with your COM port –if Arduino is on COM port 8, use “com8”)

4

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

4. Moving from Hardware to Software

Let’s try building this voltage divider circuit and measuring Vout from MATLAB.

Like many digital devices, the maximum voltage that the SynthScope can safely be
connected to is 5V. For that reason, let’s use the 5V power bus on the SynthScope as
our Vin. To measure the output voltage Vout, it must be connected to one of the analog
inputs.

Using a potentiometer and some spare wires, construct the voltage divider circuit from
the previous page on your SynthScope’s breadboard.

Once you’ve set up your circuit on the breadboard, you can connect your SynthScope to
the computer with a USB cable and begin reading voltages into MATLAB. You will need
to download the SynthScope MATLAB files for this lab from BlackBoard, and change
your working directory in MATLAB to be this downloaded folder.

Once you’ve set up MATLAB, try running the following commands. Replace CHANNEL
with the number of the analog input that you connected Vout to.

s = SynthScope();

 If this doesn’t work, try : s=SynthScope(‘COMX’);

voltage = readAnalog(s, CHANNEL)

5

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

The readAnalog command tells MATLAB to measure the voltage at the SynthScope’s
input pin. To view visually how this value changes over time, try running the following
command:

showScope(s, CHANNEL)

Notice how the value changes as you move the potentiometer. Is this what you
expected? What happens if you flip the potentiometer around?

5. Practical Example #1: Rotating a Marmoset

Here, on the left, we have included for you an ordinary
marmoset.

Problem is, he’s been sitting in this lab manual for as long as
he can remember and has really become quite bored. Notice
his concerned expression and unnatural tenseness.

Let’s use what we’ve learned so far to entertain him.

We will now use the voltage output from the potentiometer to control the behavior of a
software application, in effect creating a new input device for the computer. With the
same circuit setup as before, try running the program in marmoset.m and rotating the
potentiometer around.

Now, you may find that rotating your marmoset is more fun than you could ever have
anticipated. Just be careful not to rotate him too far, lest he slip off and injure himself.

What does each command in the above program do? Can you add to the program to
make MATLAB display a warning message when the marmoset reaches a dangerous
incline? (Hint: try using the msgbox command)

What other things could you control with the potentiometer?

6

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

On second thought, the marmoset actually doesn’t seem too happy with all this moving
around. Can you construct a voltage divider using fixed resistors such that he will
constantly remain at a comfortable 30 degrees?
6. Practical Example #2: A Dimension-Piercing Flashlight

Voltage dividers are also very useful when using photoresistors, a special type of
resistor that changes resistance according to the amount of light that hits it. The more
illuminated the photoresistor is, the lower its resistance; the less light hits it, the higher
its resistance. In order to sense light intensity, we again wish to convert this change in
resistance into a change in voltage, so we will use a voltage divider as shown in the
following diagram:

Using the circuit above, construct two separate light sensors (one facing leftwards and
one facing rightwards) on your breadboard and connect the output voltage of each to an
analog input on the SynthScope. For R1, choose any value of resistor (100Ω to 10kΩ)
for now; we will fine‐tune it momentarily.

Use the analogRead command again to see what voltages are being output by your
voltage dividers in ambient light. Since we will want to sense both increases and
decreases in light, with the maximum possible dynamic range, we ideally would like the
ambient light voltage to be 2.5 V (why?). Try calculating a more appropriate value for R1
to satisfy this design goal, and replace the resistor in your circuit.

Now try using the showScope command again to see how these voltages change as
you play around with a flashlight:

showScope(s, [CHANNEL1, CHANNEL2]);

7

ESE 205 Arduino Lab 1 – The Voltage Divider Fall 2009

8

nging

rmaps.)

Try running the flashlight.m example program to see an
example of how to use these two light sensors in tandem to
locate the source of a light (you will need to change
CHANNEL1 and CHANNEL2 in the program to match your
circuit setup). Can you figure out how the program is
working? For a brief non‐educational distraction, try cha
the colormap command’s argument. (Hint: type help

graph3d into the MATLAB prompt to find a list of colo

7. Design Challenge: Synthesizer

Try using what you have learned so far to make your own new kind of musical
instrument, using the potentiometer and/or light sensors. To generate sound, connect a
buzzer to the Digital Out 9 pin, and use the following two commands:

writeWave(s, ’SINE’) will start sound output; you only need to run this once

setWaveFreq(s, FREQUENCY) will change the frequency of the sound output

Remember that frequencies around 3kHz sound best with the buzzer we are using.

Go for it!

