

Robotics 1

Dynamic control of a single axis

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Dynamic control (single axis)

- when dynamic issues associated to the desired motion become relevant, one should consider robot mass/inertia and dissipative effects (friction) in the control design
- for a multi-dof articulated robot, the dynamics of each link is subject also to forces/torques due to
 - motion couplings with other links (inertial, centrifugal)
 - its own motion simultaneous with that of other links (Coriolis)
 - static loads (gravity, contact forces)
- the effects of these nonlinear couplings and loads can be partly "masked" in the dynamic behavior of a joint axis/motor load
 - if transmissions with high reduction ratios ($N \ge 100$) are used
- we will consider next the dynamic control design for a single joint axis of a robot (decentralized approach)

Robotics 1 2

Dynamic model of a single robot axis

P control

closed-loop transfer function

$$\frac{\theta(s)}{\theta_{d}(s)} = \frac{\theta/e}{1+\theta/e} = \frac{\frac{K_{p} k_{i}}{NR J_{eff}} \frac{1}{s^{2} + \frac{R B_{eff} + k_{i} k_{b}}{R J_{eff}} s + \frac{K_{p} k_{i}}{NR J_{eff}}}$$

always ASYMPTOTICALLY STABLE for $K_p>0$

Comments on P controller

- for θ_d = constant, the steady-state error is always zero
 - type 1 control system
- just one control design parameter (the gain K_P)
 - the (two) closed-loop poles cannot be independently assigned
 - in particular, the natural frequency ω_n and damping ratio ζ of this (complex) pole pair are coupled
- transient response and/or disturbance rejection features may not be satisfactory

note: variable measured for feedback is most often the motor position $\theta_{\rm m}$ (where the encoder is usually mounted) $\Rightarrow \theta = \theta_{\rm m}/N$

Robotics 1 5

PD control

closed-loop transfer function

$$\frac{\theta(s)}{\theta_{d}(s)} = \frac{\theta/e}{1+\theta/e} = \frac{\frac{K_{p} k_{i}}{NR J_{eff}}}{\frac{s^{2} + \frac{RB_{eff} + k_{i}(k_{b} + K_{D}k_{t})}{R J_{eff}}} \frac{1}{s + \frac{K_{p} k_{i}}{NR J_{eff}}}$$

always ASYMPTOTICALLY STABLE for K_P , $K_D > 0$

STONE STONE

Comments on PD controller

- for θ_d = constant, \dot{e} = $-\dot{\theta}$, this scheme implements a PD action on the position error
- for $\theta_d \neq$ constant, in order to obtain a "true" PD action on the position error e (on the load side), the input reference to the control loop should be modified as

$$\theta_d + \dot{\theta}_d (Nk_t K_D)/K_P$$
 often neglected for large K_P

- K_P and K_D are chosen so as to yield smooth/fast transients
 - damping ratio $\zeta \ge 0.7$ (at $\zeta = 1$, two coincident negative real poles)
 - natural frequency $\omega_n < 0.5 \omega_r$, where ω_r is the (lowest) resonance frequency of the joint assembly structure (with "braked" motor)
 - such a resonance (caused by the un-modeled elasticity of the transmission gears) should non be excited by the control law
 - current industrial robots have typically $f_r = \omega_r/2\pi = 4 \div 20$ Hz

Simulation data

Matlab/Simulink

% Simulation parameters for the first (base) joint of the Stanford robot arm

% motor (U9M4T)

Ki = 0.043; % torque/current constant [Nm/A]

Bm = 0.00008092; % viscous friction coefficient [Nm s/rad]

Kb = 0.04297; % back emf constant [V s/rad]

L = 0.000100; % inductance of the equivalent armature circuit [H], negli

R = 1.025; % resistance of the equivalent armature circuit [Ohm]

Ja = 0.000056; % inertia of motor+tachometer assembly [Nm s^2/rad]

% velocity tachometer (Photocircuits 030/105)

Kt = 0.02149; % tachometer conversion constant [V s/rad]

% reduction

n = 0.01; % inverse of reduction ratio (= 1/N)

% load

JI = 5; % inertia on the link side [Nm s^2/rad] (varies from 1.4 to 6.17)

BI = 0; % viscous friction coefficient on the link side (N/A) omr = 25.13;% resonant frequency (at nominal JI) [rad/s] (4 Hz)

% computed parameters

Beff = $Bm + Bl*n^2$; % effective viscous friction coefficient

Jeff = $Ja + Jl*n^2$; % effective inertia

% reference input

qdes = 1; % desired joint angle value (for step input case) [rad] Kram = 2; % angular coefficient (for position ramp input) [rad/s]

% possible "hard" nonlinearities

Fm = 0.042; % dry friction torque [Nm]

D = 0.0087; % reduction gear backlash [rad] (0.5 deg) Tmax = 4; % motor torque saturation level [Nm]

motor, velocity tachometer, optical encoder

Simulink block diagram

dynamic model and P/PD control

- P control law: $K_p = 4.2$ (the maximum value that guarantees motion transients without oscillations)
- PD control law: $K_p = 209$, $K_D = 15.4$ (such as to obtain a \approx critically damped transient behavior)

P/PD control results

General case (n joints)

T_d = disturbance torque due to inertial couplings with other links/axes, centrifugal/Coriolis terms, and gravity (only position-dependent)

in order to obtain zero error at steady state at least for a constant disturbance (robot at rest, under gravity), an integral action should be added in the direct path before the disturbance entry point (astatic control behavior)

$$G(s) = PID$$
 controller

PID control

(Proportional-Integral-Derivative)

- $G(s) = K_P + K_I/s + K_D s$
 - as usual, the derivative (anticipative) action must be low-pass filtered in order to be physically realizable
- closed-loop transfer function

$$\frac{\theta(s)}{\theta_d(s)} = \frac{\left(K_D s^2 + K_P s + K_I\right) k_i}{NRJ_{eff} s^3 + \left(NRB_{eff} + Nk_b k_i + K_D k_i\right) s^2 + k_i K_P s + k_i K_I}$$

asymptotic stability if and only if (Routh criterion)

$$0 < K_{I} < K_{P}/RJ_{eff}(RB_{eff} + K_{D}k_{i}/N + k_{b}k_{i})$$

$$> 0$$

$$> 0$$

control system of type 2 and astatic w.r.t. disturbance

Simulink block diagram

dynamic model and PID control

- gain after some tuning: $K_P = 209$ (as for PD law), $K_D = 33$, $K_I = 296$
- type 2 control system ⇒ zero steady-state error on position ramp inputs

PID control results

Final remarks

- there are many non-linear physical phenomena that cannot be directly considered in control design and analysis based on linear models
 - actuator saturations
 - transmission/gear backlash (delay, hysteresis)
 - dry friction and static friction
 - sensor quantization (encoder)
 - **...**
- approximate mathematical models can be obtained and then simulated in combination with the already designed control law, for a more realistic validation of system behavior and control performance
- similarly, uncertainties on nominal parameters of robot kinematics/dynamics can be included in the simulation

Robotics 1 15

Simulink block diagram

dynamic model with nonlinear phenomena and PD control

- actuator saturation, dry friction, backlash in reduction gears
- PD control

PD control results

step (1 rad) response with non-idealities

gears are always engaged (already when motion starts)

gears initially engaged, but not when velocity inversion occurs → "chattering" due to backlash