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Trajectories in Cartesian space 

  in general, the trajectory planning methods proposed in the 
joint space can be applied also in the Cartesian space 
  consider independently each component of the task vector (i.e., a 

position or an angle of a minimal representation of orientation) 

  however, when planning a trajectory for the three 
orientation angles, the resulting global motion cannot be 
intuitively visualized in advance 

  if possible, we still prefer to plan Cartesian trajectories 
separately for position and orientation 

  the number of knots to be interpolated in the Cartesian 
space is typically low (e.g., 2 knots for a PTP motion, 3 if a 
“via point” is added) ⇒ use simple interpolating paths, such 
as straight lines, arc of circles, …  
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Planning a linear Cartesian path 
(position only) 

pi 

pf 

GIVEN 
pi, pf, vmax, amax 

vi, vf (typically = 0) 

path parameterization 
p(s) = pi + s (pf - pi) 

s ∈ [0,1] 

L 

setting s = σ/L, σ ∈ [0,L] is the arc length 
        (gives the current length of the path) 

p(s) = s = (pf - pi) s 
dp 

ds 

. . . 
p(s) = s2 

d2p 

ds2 

. . . 
= (pf - pi) s s 

dp 

ds 

. . 
+ 

. . 

pf - pi 

L 
σ 
. 

= σ = 
pf - pi 

L 
. . 

unit vector of directional 
cosines of the line 

pf - pi 

║pf - pi║ 
= 

L = ║pf - pi║ 
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Timing law with trapezoidal speed - 1 

σ(t) 

σ(t) 

σ(t) 

. 

. . 

Ts T-Ts T 

t 

t 

t 

bang- coast- bang 
amax 

vmax 
vmax 

amax 
Ts = 

L amax + vmax
2
 

amaxvmax 
T = 

L 

given*: L, vmax, amax 
find: Ts, T  

Vmax (T - Ts) = L = area of the  
speed profile 

a “coast” phase exists iff: L > vmax
2/amax 

* = other input data combinations are possible (see textbook) 
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Timing law with trapezoidal speed - 2 

σ(t) 

σ(t) 

σ(t) 
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. . 

Ts T-Ts T 
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amax 

vmax 

L 

amax t2/2 

vmax t - 

- amax (t-T)2/2 + vmax T - 
vmax

2 

amax 

vmax
2 

2 amax 
σ(t) = 

t ∈ [0,Ts] 

t ∈ [Ts,T-Ts] 

t ∈ [T-Ts,T] 

can be used also 
in the joint space! 
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Concatenation of linear paths 

A 

C 

B =“via point” 

A’ 
C’ 

B - A 

║B - A║ 
= KAB 

C - B 

║C - B║ 
= KBC 

unit vectors of 
direction cosines 

given: constant speeds  v1 on linear path AB 
                                v2 on linear path BC 
desired transition: with constant acceleration for a time ΔT 

x 

z 

y 

x(t) 
y(t) 
z(t) 

p(t) = t ∈ [0, ΔT] (transition starts at t = 0) 

over-fly 

note: during over-fly, the path remains always in the plane specified  
by the two lines intersecting at B (in essence, it is a planar problem) 

no need to pass 
(and stop!) there 
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Time profiles on components 

t 

t 

t 

t 
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x(t) 
.. 

x(t) 
. 

y(t) 
. 

z(t) 
. 

y(t) 
.. 

z(t) 
.. 

v1 KAB,x 

v2 KBC,x 

v1 KAB,y 

v2 KBC,y 

v1 KAB,z 

v2 KBC,z 

ΔT 

ΔT 
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Timing law during transition 

A 

B 

C A’ 
C’ 

B - A 

║B - A║ 
= KAB 

C - B 

║C - B║ 
= KBC 

unit vectors of 
direction cosines 

x 

z 

y 
x(t) 
y(t) 
z(t) 

p(t) = t ∈ [0, ΔT] (transition starts at t = 0) 

p(t) = 1/ΔT (v2 KBC - v1 KAB) 
.. 

     p(t) = v1 KAB + t/ΔT (v2 KBC - v1 KAB) 
. 

     p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB) 

⌠ 
⌡ 

⌠ 
⌡ thus, we obtain a 

parabolic blending 
(see textbook 

for this same approach 
in the joint space)  
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Solution 
(various options) 

A 

B 

C A’ 

C’ 

B - A’= d1 KAB 

C’ - B = d2 KBC 

     p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB) 

d1 

d2 

ΔT = 2d1/v1 d2 = d1 v2/v1  
by choosing, e.g., d1 

(namely A’) 

1 

 - B + A’ + ΔT/2 (v1 KAB + v2 KBC) = C’ - B 

     p(ΔT) = A’ + ΔT/2 (v1 KAB + v2 KBC) = C’ 

d1 KAB + d2 KBC = ΔT/2 (v1 KAB + v2 KBC) 

d1 = v1 ΔT/2  d2 = v2 ΔT/2  

1 
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A numerical example 
  transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from v1=1 to v2=2 
  exploiting two options for solution (resulting in different paths!) 

  assign transition time: ΔT=4 (we re-center it here for t ∈ [-ΔT/2, ΔT/2]) 
  assign distance from B for departing: d1=3 (assign d2 for landing is handled similarly) 

ΔT=4 

A 

B C 

d1=3 

A 

B C 

A’ 
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A numerical example (cont’d) 

actually, the same vel/acc profiles only with a different time scale!! 

first option: ΔT=4 (resulting in d1=2, d2=4)  

second option: d1=3 (resulting in ΔT=6, d2=6) 
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Alternative solution 
(imposing acceleration)  

A 

B 

C A’ 

C’ 
p(t) = 1/ΔT (v2 KBC - v1 KAB) 
.. 

v1 = v2 = vmax (for simplicity) 

║p(t)║ = amax 

       .. 

           ΔT = (vmax /amax) ║KBC - KAB║  

      = (vmax /amax) √ 2 (1 - KBC,xKAB,x - KBC,yKAB,y - KBC,zKAB,z) 

then, d1 = d2 = vmax ΔT/2  
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Application example 
plan a Cartesian trajectory from A to C (rest-to-rest)  
that avoids the obstacle O, with a ≤ amax and v ≤ vmax 

on AA’ →  amax     on A’B and BC’ →  vmax     on C’C  →  - amax  
+ over-fly between A” e C” 

A 

B 

C 

A” 
C” 

O 
A’ 

C’ 

add a via point B 
“sufficiently far” from O 
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Other Cartesian paths 

  circular path through 3 points in 3D (often built-in feature) 
  linear path for the end-effector with constant orientation 
  in robots with spherical wrist: planning can be decomposed into a path 

for wrist center and one for E-E orientation, with a common timing law 
  though more complex in general, it is often convenient to parameterize 

the Cartesian geometric path p(s) in terms of its arc length (e.g., with     
s = Rθ for circular paths), so that 

  velocity: dp/dt = dp/ds · ds/dt 
  dp/ds = unit vector (║·║=1) tangent to the path: tangent direction t(s) 
  ds/dt = absolute value of tangential velocity (= speed) 

  acceleration: d2p/dt2 = d2p/ds2 · (ds/dt)2 + dp/ds · d2s/dt2 

  ║d2p/ds2║ = curvature κ(s) (= 1/radius of curvature) 
  d2p/ds2·(ds/dt)2 = centripetal acceleration: normal direction n(s) ⊥ to the 

path, on the osculating plane; binormal direction b(s) = t(s) × n(s)  
  d2s/dt2 = scalar value (with any sign) of tangential acceleration 
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Definition of Frenet frame 
  For a generic (smooth) path p(s) in R3, parameterized by s (not 

necessarily its arc length), one can define a reference frame as in figure 

s 

t(s) n(s) 

b(s) 

p’ = dp/ds p’’ = d2p/ds2 
derivatives w.r.t. the parameter 

t(s) = p’(s)/║p’(s)║ 

n(s) = p’’(s)/║p’’(s)║ 

b(s) = t(s) × n(s) 

unit tangent vector 

unit normal vector 
(∈ osculating plane) 

unit binormal vector 

  general expression of path curvature (at a path point p(s)) 

κ(s) = ║p’(s) × p’’(s)║/║p’(s)║3  
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Optimal trajectories 

  for Cartesian robots (e.g., PPP joints) 
1.  the straight line joining two position points in the Cartesian space is one path 

that can be executed in minimum time under velocity/acceleration constraints 
(but other such paths may exist, if (joint) motion can also be not coordinated) 

2.  the optimal timing law is of the bang-coast-bang type in acceleration (in this 
special case, also in terms of actuator torques) 

  for articulated robots (with at least a R joint) 
  1. e 2. are no longer true in general in the Cartesian space, but time-optimality 

still holds in the joint space when assuming bounds on joint velocity/acceleration  
  straight line paths in the joint space do not correspond to straight line paths 

in the Cartesian space, and vice-versa 
  bounds on joint acceleration are conservative (though kinematically tractable) 

w.r.t. actual ones on actuator torques, which involve the robot dynamics  
  when changing robot configuration/state, different torque values are needed 

to impose the same joint accelerations 
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Planning orientation trajectories 

  using minimal representations of orientation (e.g., ZXZ Euler angles φ,θ,ψ), 
we can plan independently a trajectory for each component  
  e.g., a linear path in space φ θ ψ, with a cubic timing law  

 ⇒  but poor prediction/understanding of the resulting intermediate orientations 

  alternative method: based on the axis/angle representation 
  determine the (neutral) axis r and the angle θAB: R(r,θAB) = RA

T RB (rotation   
matrix changing the orientation from A to B ⇒ inverse axis-angle problem) 

  plan a timing law θ(t) for the (scalar) angle θ interpolating 0 with θAB (with 
possible constraints/boundary conditions on its time derivatives) 

  ∀t, RAR(r,θ(t)) specifies then the actual end-effector orientation at time t 

A B 
xA 

yA 

zA zB 

yB 

xB 
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Uniform time scaling 
  for a given path p(s) (in joint or Cartesian space) and a given timing law 

s(τ) (τ=t/T, T=“motion time”), we need to check if existing bounds vmax 
on (joint) velocity and/or amax on (joint) acceleration are violated or not  
  … unless such constraints have already been taken into account during the 

trajectory planning, e.g., by using a bang-coast-bang acceleration timing law 

  velocity scales linearly with motion time 
  dp/dt = dp/ds·ds/dτ·1/T  

  acceleration scales quadratically with motion time 
  d2p/dt2 = (d2p/ds2·(ds/dτ)2 + dp/ds·d2s/dτ2)·1/T2 

  if motion is unfeasible, scale (increase) time T → kT (k>1), based on the 
“most violated” constraint (max of the ratios |v|/vmax and |a|/amax) 

  if motion is “too slow” w.r.t. the robot capabilities, decrease T (k<1) 
  in both cases, after scaling, there will be (at least) one instant of saturation 

(for at least one variable)  
  no need to re-compute motion profiles from scratch after the scaling! 
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Numerical example - 1 

  2R planar robot with links of unitary length (1 [m]) 
  linear Cartesian path p(s) from q0=(110°, 140°) ⇒ p0=f(q0)=(-.684, 0) [m] 

to p1=(0.816, 1.4), with rest-to-rest cubic timing law s(t), T=1 [s] 
  bounds in joint space: max (absolute) velocity vmax,1= 2, vmax,2= 2.5 [rad/s], 

max (absolute) acceleration amax,1= 5, amax,2= 7 [rad/s2] 
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path length L=2.0518 [m] 
zero initial and 

final speed 

p0 

T=1 

p1 

q0 

non-zero 
(symmetric) 
acceleration 

s=s(t) 

smax≈3 [m/s] 
. 



Numerical example - 2 

  violation of both joint velocity and acceleration bounds with T=1 [s] 
  max relative violation of joint velocities: kvel = 2.898  
  max relative violation of joint accelerations: kacc = 6.2567  

  minimum uniform time scaling of Cartesian trajectory to recover feasibility           
       k = max {1, kvel , √kacc} = 2.898   ⇒   Tscaled = kT = 2.898 > T 
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Numerical example - 3 
  scaled trajectory with Tscaled = 2.898 [s] 

  speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically] 
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at least 1 instant of saturation! 

traced Cartesian path  
and associated joint paths 

remain the same! 


