
Robotics 1

Trajectory planning
in Cartesian space

Prof. Alessandro De Luca

Robotics 1 1

Trajectories in Cartesian space

  in general, the trajectory planning methods proposed in the
joint space can be applied also in the Cartesian space
  consider independently each component of the task vector (i.e., a

position or an angle of a minimal representation of orientation)

  however, when planning a trajectory for the three
orientation angles, the resulting global motion cannot be
intuitively visualized in advance

  if possible, we still prefer to plan Cartesian trajectories
separately for position and orientation

  the number of knots to be interpolated in the Cartesian
space is typically low (e.g., 2 knots for a PTP motion, 3 if a
“via point” is added) ⇒ use simple interpolating paths, such
as straight lines, arc of circles, …

Robotics 1 2

Planning a linear Cartesian path
(position only)

pi

pf

GIVEN
pi, pf, vmax, amax

vi, vf (typically = 0)

path parameterization
p(s) = pi + s (pf - pi)

s ∈ [0,1]

L

setting s = σ/L, σ ∈ [0,L] is the arc length
 (gives the current length of the path)

p(s) = s = (pf - pi) s
dp

ds

. . .
p(s) = s2

d2p

ds2

. . .
= (pf - pi) s s

dp

ds

. .
+

. .

pf - pi

L
σ
.

= σ =
pf - pi

L
. .

unit vector of directional
cosines of the line

pf - pi

║pf - pi║
=

L = ║pf - pi║

Robotics 1 3

Timing law with trapezoidal speed - 1

σ(t)

σ(t)

σ(t)

.

. .

Ts T-Ts T

t

t

t

bang- coast- bang
amax

vmax
vmax

amax
Ts =

L amax + vmax
2

amaxvmax
T =

L

given*: L, vmax, amax
find: Ts, T

Vmax (T - Ts) = L = area of the
speed profile

a “coast” phase exists iff: L > vmax
2/amax

* = other input data combinations are possible (see textbook)
Robotics 1 4

Timing law with trapezoidal speed - 2

σ(t)

σ(t)

σ(t)

.

. .

Ts T-Ts T

t

t

t

amax

vmax

L

amax t2/2

vmax t -

- amax (t-T)2/2 + vmax T -
vmax

2

amax

vmax
2

2 amax
σ(t) =

t ∈ [0,Ts]

t ∈ [Ts,T-Ts]

t ∈ [T-Ts,T]

can be used also
in the joint space!

Robotics 1 5

Concatenation of linear paths

A

C

B =“via point”

A’
C’

B - A

║B - A║
= KAB

C - B

║C - B║
= KBC

unit vectors of
direction cosines

given: constant speeds v1 on linear path AB
 v2 on linear path BC
desired transition: with constant acceleration for a time ΔT

x

z

y

x(t)
y(t)
z(t)

p(t) = t ∈ [0, ΔT] (transition starts at t = 0)

over-fly

note: during over-fly, the path remains always in the plane specified
by the two lines intersecting at B (in essence, it is a planar problem)

no need to pass
(and stop!) there

Robotics 1 6

Time profiles on components

t

t

t

t

t

t

x(t)
..

x(t)
.

y(t)
.

z(t)
.

y(t)
..

z(t)
..

v1 KAB,x

v2 KBC,x

v1 KAB,y

v2 KBC,y

v1 KAB,z

v2 KBC,z

ΔT

ΔT

Robotics 1 7

Timing law during transition

A

B

C A’
C’

B - A

║B - A║
= KAB

C - B

║C - B║
= KBC

unit vectors of
direction cosines

x

z

y
x(t)
y(t)
z(t)

p(t) = t ∈ [0, ΔT] (transition starts at t = 0)

p(t) = 1/ΔT (v2 KBC - v1 KAB)
..

 p(t) = v1 KAB + t/ΔT (v2 KBC - v1 KAB)
.

 p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB)

⌠
⌡

⌠
⌡ thus, we obtain a

parabolic blending
(see textbook

for this same approach
in the joint space)

Robotics 1 8

Solution
(various options)

A

B

C A’

C’

B - A’= d1 KAB

C’ - B = d2 KBC

 p(t) = A’ + v1 KAB t + t2/2ΔT (v2 KBC - v1 KAB)

d1

d2

ΔT = 2d1/v1 d2 = d1 v2/v1
by choosing, e.g., d1

(namely A’)

1

 - B + A’ + ΔT/2 (v1 KAB + v2 KBC) = C’ - B

 p(ΔT) = A’ + ΔT/2 (v1 KAB + v2 KBC) = C’

d1 KAB + d2 KBC = ΔT/2 (v1 KAB + v2 KBC)

d1 = v1 ΔT/2 d2 = v2 ΔT/2

1

Robotics 1 9

A numerical example
  transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from v1=1 to v2=2
  exploiting two options for solution (resulting in different paths!)

  assign transition time: ΔT=4 (we re-center it here for t ∈ [-ΔT/2, ΔT/2])
  assign distance from B for departing: d1=3 (assign d2 for landing is handled similarly)

ΔT=4

A

B C

d1=3

A

B C

A’

Robotics 1 10

A numerical example (cont’d)

actually, the same vel/acc profiles only with a different time scale!!

first option: ΔT=4 (resulting in d1=2, d2=4)

second option: d1=3 (resulting in ΔT=6, d2=6)

Robotics 1 11

Alternative solution
(imposing acceleration)

A

B

C A’

C’
p(t) = 1/ΔT (v2 KBC - v1 KAB)
..

v1 = v2 = vmax (for simplicity)

║p(t)║ = amax

 ..

 ΔT = (vmax /amax) ║KBC - KAB║

 = (vmax /amax) √ 2 (1 - KBC,xKAB,x - KBC,yKAB,y - KBC,zKAB,z)

then, d1 = d2 = vmax ΔT/2

Robotics 1 12

Application example
plan a Cartesian trajectory from A to C (rest-to-rest)
that avoids the obstacle O, with a ≤ amax and v ≤ vmax

on AA’ → amax on A’B and BC’ → vmax on C’C → - amax
+ over-fly between A” e C”

A

B

C

A”
C”

O
A’

C’

add a via point B
“sufficiently far” from O

Robotics 1 13

Other Cartesian paths

  circular path through 3 points in 3D (often built-in feature)
  linear path for the end-effector with constant orientation
  in robots with spherical wrist: planning can be decomposed into a path

for wrist center and one for E-E orientation, with a common timing law
  though more complex in general, it is often convenient to parameterize

the Cartesian geometric path p(s) in terms of its arc length (e.g., with
s = Rθ for circular paths), so that

  velocity: dp/dt = dp/ds · ds/dt
  dp/ds = unit vector (║·║=1) tangent to the path: tangent direction t(s)
  ds/dt = absolute value of tangential velocity (= speed)

  acceleration: d2p/dt2 = d2p/ds2 · (ds/dt)2 + dp/ds · d2s/dt2

  ║d2p/ds2║ = curvature κ(s) (= 1/radius of curvature)
  d2p/ds2·(ds/dt)2 = centripetal acceleration: normal direction n(s) ⊥ to the

path, on the osculating plane; binormal direction b(s) = t(s) × n(s)
  d2s/dt2 = scalar value (with any sign) of tangential acceleration

Robotics 1 14

Definition of Frenet frame
  For a generic (smooth) path p(s) in R3, parameterized by s (not

necessarily its arc length), one can define a reference frame as in figure

s

t(s) n(s)

b(s)

p’ = dp/ds p’’ = d2p/ds2
derivatives w.r.t. the parameter

t(s) = p’(s)/║p’(s)║

n(s) = p’’(s)/║p’’(s)║

b(s) = t(s) × n(s)

unit tangent vector

unit normal vector
(∈ osculating plane)

unit binormal vector

  general expression of path curvature (at a path point p(s))

κ(s) = ║p’(s) × p’’(s)║/║p’(s)║3

Robotics 1 15

Optimal trajectories

  for Cartesian robots (e.g., PPP joints)
1.  the straight line joining two position points in the Cartesian space is one path

that can be executed in minimum time under velocity/acceleration constraints
(but other such paths may exist, if (joint) motion can also be not coordinated)

2.  the optimal timing law is of the bang-coast-bang type in acceleration (in this
special case, also in terms of actuator torques)

  for articulated robots (with at least a R joint)
  1. e 2. are no longer true in general in the Cartesian space, but time-optimality

still holds in the joint space when assuming bounds on joint velocity/acceleration
  straight line paths in the joint space do not correspond to straight line paths

in the Cartesian space, and vice-versa
  bounds on joint acceleration are conservative (though kinematically tractable)

w.r.t. actual ones on actuator torques, which involve the robot dynamics
  when changing robot configuration/state, different torque values are needed

to impose the same joint accelerations

Robotics 1 16

Planning orientation trajectories

  using minimal representations of orientation (e.g., ZXZ Euler angles φ,θ,ψ),
we can plan independently a trajectory for each component
  e.g., a linear path in space φ θ ψ, with a cubic timing law

 ⇒ but poor prediction/understanding of the resulting intermediate orientations

  alternative method: based on the axis/angle representation
  determine the (neutral) axis r and the angle θAB: R(r,θAB) = RA

T RB (rotation
matrix changing the orientation from A to B ⇒ inverse axis-angle problem)

  plan a timing law θ(t) for the (scalar) angle θ interpolating 0 with θAB (with
possible constraints/boundary conditions on its time derivatives)

  ∀t, RAR(r,θ(t)) specifies then the actual end-effector orientation at time t

A B
xA

yA

zA zB

yB

xB

Robotics 1 17

Uniform time scaling
  for a given path p(s) (in joint or Cartesian space) and a given timing law

s(τ) (τ=t/T, T=“motion time”), we need to check if existing bounds vmax
on (joint) velocity and/or amax on (joint) acceleration are violated or not
  … unless such constraints have already been taken into account during the

trajectory planning, e.g., by using a bang-coast-bang acceleration timing law

  velocity scales linearly with motion time
  dp/dt = dp/ds·ds/dτ·1/T

  acceleration scales quadratically with motion time
  d2p/dt2 = (d2p/ds2·(ds/dτ)2 + dp/ds·d2s/dτ2)·1/T2

  if motion is unfeasible, scale (increase) time T → kT (k>1), based on the
“most violated” constraint (max of the ratios |v|/vmax and |a|/amax)

  if motion is “too slow” w.r.t. the robot capabilities, decrease T (k<1)
  in both cases, after scaling, there will be (at least) one instant of saturation

(for at least one variable)
  no need to re-compute motion profiles from scratch after the scaling!

Robotics 1 18

Numerical example - 1

  2R planar robot with links of unitary length (1 [m])
  linear Cartesian path p(s) from q0=(110°, 140°) ⇒ p0=f(q0)=(-.684, 0) [m]

to p1=(0.816, 1.4), with rest-to-rest cubic timing law s(t), T=1 [s]
  bounds in joint space: max (absolute) velocity vmax,1= 2, vmax,2= 2.5 [rad/s],

max (absolute) acceleration amax,1= 5, amax,2= 7 [rad/s2]

Robotics 1 19

path length L=2.0518 [m]
zero initial and

final speed

p0

T=1

p1

q0

non-zero
(symmetric)
acceleration

s=s(t)

smax≈3 [m/s]
.

Numerical example - 2

  violation of both joint velocity and acceleration bounds with T=1 [s]
  max relative violation of joint velocities: kvel = 2.898
  max relative violation of joint accelerations: kacc = 6.2567

  minimum uniform time scaling of Cartesian trajectory to recover feasibility
 k = max {1, kvel , √kacc} = 2.898 ⇒ Tscaled = kT = 2.898 > T

Robotics 1 20

= joint 2 = joint 1

Numerical example - 3
  scaled trajectory with Tscaled = 2.898 [s]

  speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

Robotics 1 21 = joint 2 = joint 1

at least 1 instant of saturation!

traced Cartesian path
and associated joint paths

remain the same!

