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Trajectories in Cartesian space

in general, the trajectory planning methods proposed in the
joint space can be applied also in the Cartesian space
« consider independently each component of the task vector (i.e., a
position or an angle of a minimal representation of orientation)
however, when planning a trajectory for the three
orientation angles, the resulting global motion cannot be
intuitively visualized in advance

if possible, we still prefer to plan Cartesian trajectories
separately for position and orientation

the number of knots to be interpolated in the Cartesian
space is typically low (e.g., 2 knots for a PTP motion, 3 if a
“via point” is added) = use simple interpolating paths, such
as straight lines, arc of circles, ...
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Planning a linear Cartesian path
(position only)

GIVEN

L pi/ pfl VmaXI amax
Vi, V¢ (typically = 0)

Ps

Pi

L = "Pf' pi"

path parameterization P:- Pi _ unit vector of directional
p(s) = p; + s (ps- p;) lpe- i cosines of the line

s € [0,1] «— Setting s = o/L, o € [0,L] is the arc length
' (gives the current length of the path)

] do . . - d2o . dp . .
p(s)=—ps=(pf-pi)s p(S)=—psZ+ —ps=(pf-pi)s
ds ds? ds
_ pf' pi O _ pf' pi 0
L L
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Timing law with trapezoidal speed - 1

ang- coast- bang |

o(t) dax given®: L, V, .., Qax

find: T, T

= area of the
speed profile

Viax (T-T) =L

I
I'\Vmax

: t Vimax
I

|

l T. =
l ° amax
!
— L
O(t) : I T = L Amax T Vmax2
I ! AmaxYmax
| | t

TT, T

a “coast” phase exists iff: L > v, 2/a .,

* = other input data combinations are possible (see textbook)
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Timing law with trapezoidal speed - 2

amax

o(t) '\vm
| L

o

T, TT, T
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o(t) = <

.

Amax t4/2 te[0,T]
Vmax2
Vmax t- ) te [TS,T-TS]
max
y) Vmax2
~ dmax (t'T) /2 + Vimax T-
max
te [T-T,,T]

can be used also
in the joint space!



Concatenation of linear paths

B ="via point” no need to pass B- A

(and stop!) there = K
IB-A " .
unit vectors of
C C-B direction cosines
lc-8]

given: constant speeds v, on linear path AB
v, on linear path BC
desired transition: with constant acceleration for a time AT

: x(t)\
p(t) = | y(t)| te][0, AT] (transition starts att = 0)

\ Z(t) /

note: during over-fly, the path remains always in the plane specified
by the two lines intersecting at B (in essence, it is a planar problem)
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Time profiles on components

X(t)

. AT
y(t) |

Z(t)
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V, Kge i
t

X(t)

y(t)

/ oo
Vi Kagy

t
z(t)

_\_ v, KBC,z

AT t

Vi Kag 2



= Kag
" B - A” unit vectors of
C-B ) direction cosines
lc-Bl
| X(t) | t € [0, AT] (transition starts at t = 0)
p(t) = | y(t) ’
Z(t)
p(t) = 1/AT (v, Kgc - V4 Kag) P(t) = vy Kag + t/AT (v, Kge - vy Kpg)
thus, we obtain a
, parabolic blending
— A - book
p(t) A + Vl KABt + t /ZAT (V2 KBC Vl KAB) for trSissegatnew)étaggroach

in the joint space)
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Solution
(various options)

C" B - d2 KBC

D(AT) = A’ + AT/2 (v, Kug + Vo Kgo) = C’

@ d; Kag + dy Ko = AT/2 (v Kpg + V5 Kpe)

T | dy= v, AT/ H d, = v, AT/2 I

by choosing, e.g., d _
(namely A) 1 AT = 2d,/v; == d,=d; Vy/v;
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= transition from A=(3,3) to C=(8,9) via B=(1,9), with speed from v,=1 to v,=2

A numerical example

= exploiting two options for solution (resulting in different paths!)
= assign transition time: AT=4 (we re-center it here for t € [-AT/2, AT/2])

= assign distance from B for departing: d,=3 (assign d, for landing is handled similarly)

Cartesian path

Cartesian path

10 : » : 10 :
.| B _ C .| B _
8t gl
Th N 7r
6F o\ 6
= 5F N R T e
4_ 4_. ..........................
3 3_. ........ ..............
A A
2t ' 2f
1} 1}
% 2 4 B 10 % 2 : 6
X X
AT= d,=3
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A numerical example (cont'd)

first option: AT=4 (resulting in d;=2, d,=4)

position profiles during transition velocity profiles during transition acceleration profiles during transition
5 T T T T T T T 2 T T T T T T T 2 T T T T T T T
al ] 15F 1 15F : 4
2 %
z, g 1 ' 18 1 1
E 3r 8 € 2
x o 05f 1 Ex 05F 3
©
2r 1 of 1 of : 1
1 i i i i i i i 05 i i i i i i i 05 i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 15 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
t (sec) t (sec) t (sec)
depart at A’ = (1.6325,7.1026) and land at C’ = (5,9) speed: before transition = 1 m/sec, after transition = 2 m/sec transition time = 4 sec
9 T T T T T T 1 T T T T T T T 1 T T T T T T T
] 0.8} 1 05 4
— R
ig,,i 06} 1 8 of .
] £ £
> 04f 1 S 05) 1
il 0.2t : , 1k : ]
7 i i i i i i i 0 i i i i i i i 15 i i i i i i i
-2 -1.5 -1 -0.5 0 0.5 1 15 2 -2 -1.5 -1 -0.5 0 0.5 1 15 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
t (sec) t (sec) t (sec)
- - -
L] — — —
second option: d,;=3 (resulting in AT=6, d,=6)
position profiles during transition velocity profiles during transition acceleration profiles during transition
8 T T T T T 2 T T T T T 1.5 T T T T T
15F i 1k |
— o
g 1r 1 8 osp i
£ E
ox 051 1 :x or 8
or 1 -05F .
0 i i i i i 05 i i ; ; i _a i i i i i
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
t (sec) t (sec) t (sec)
depart at A’ = (1.9487,6.154) and land at C’ = (7,9) speed: before transition = 1 m/sec, after transition = 2 m/sec transition time = 6 sec
9 T T T T 1 T T T T T 1 T T T T T
0.8 1 0.5 .
i = “—
g osf 1 8 of .
£ £
| o 0.4r 8 *«} -0.5[ 1
0.2F 4 -1F 1
6 i i i i i 0 i i . . i 15 i i i i i
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
t (sec) t (sec) t (sec)

actually, the same vel/acc profiles only with a different time scale!!
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Alternative solution
(imposing acceleration)

p(t) = 1/AT (v, Kgc - vy Kyp)

vy =V, = V... (for simplicity)

[P = anax

AT = (Vmax /amax) " Kac - KAB"

= (Vmax/@max) V 2 (1 - Kac xKag x = Kec yKag,y = Kac 2Kap 2)

then, d; = d, = v, AT/2
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Application example

plan a Cartesian trajectory from A to C (rest-to-rest)
that avoids the obstacle O, witha <a ., and v < v,

add a via poin;c B
B “sufficiently far” from O

onAA - a,, onABandBC — v,,, onCC — -a.,
+ over-fly between A" e C”
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Other Cartesian paths

= circular path through 3 points in 3D (often built-in feature)
= linear path for the end-effector with constant orientation

= in robots with spherical wrist: planning can be decomposed into a path
for wrist center and one for E-E orientation, with a common timing law

= though more complex in general, it is often convenient to parameterize
the Cartesian geometric path p(s) in terms of its arc length (e.g., with
s = R0 for circular paths), so that

= Vvelocity: dp/dt = dp/ds - ds/dt
= dp/ds = unit vector (||*[|=1) tangent to the path: tangent direction t(s)
= ds/dt = absolute value of tangential velocity (= speed)
= acceleration: d?p/dt? = d?p/ds? - (ds/dt)? + dp/ds - d?s/dt?
| d?p/ds?|| = curvature «(s) (= 1/radius of curvature)

= d?p/ds?:(ds/dt)? = centripetal acceleration: normal direction n(s) L to the
path, on the osculating plane; binormal direction b(s) = t(s) x n(s)

= d?s/dt2 = scalar value (with any sign) of tangential acceleration
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Definition of Frenet frame

= For a generic (smooth) path p(s) in R3, parameterized by s (not
necessarily its arc length), one can define a reference frame as in figure

p’ = dp/ds p” = d?p/ds?

derivatives w.r.t. the parameter
b(s)

t(s) = p'(s)/ [P ()|
—— % unit tangent vector
n(s) = p"(s)/ || p"(s)||

unit normal vector
A (€ osculating plane)

b(s) = t(s) x n(s)
unit binormal vector

= general expression of path curvature (at a path point p(s))
k(s) = [[p'(s) x p") ||/ [|p'(s) |
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Optimal trajectories

= for Cartesian robots (e.g., PPP joints)

1. the straight line joining two position points in the Cartesian space is one path
that can be executed in minimum time under velocity/acceleration constraints
(but other such paths may exist, if (joint) motion can also be not coordinated)

2. the optimal timing law is of the bang-coast-bang type in acceleration (in this
special case, also in terms of actuator torques)
= for articulated robots (with at least a R joint)

= 1. e 2. are no longer true in general in the Cartesian space, but time-optimality
still holds in the joint space when assuming bounds on joint velocity/acceleration

= straight line paths in the joint space do not correspond to straight line paths
in the Cartesian space, and vice-versa

= bounds on joint acceleration are conservative (though kinematically tractable)
w.r.t. actual ones on actuator torques, which involve the robot dynamics

= when changing robot configuration/state, different torque values are needed
to impose the same joint accelerations
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Planning orientation trajectories

= using minimal representations of orientation (e.g., ZXZ Euler angles ¢,06,y),

A

N\

7

;@ B

we can plan independently a trajectory for each component
= e.g., alinear path in space ¢ 6 1y, with a cubic timing law

= but poor prediction/understanding of the resulting intermediate orientations

= alternative method: based on the axis/angle representation

= determine the (neutral) axis r and the angle 6,5: R(r,0,5) = R," R (rotation
matrix changing the orientation from A to B = inverse axis-angle problem)

= plan a timing law 6(t) for the (scalar) angle 6 interpolating 0 with 6,5 (with
possible constraints/boundary conditions on its time derivatives)

= Vi, RyR(r,0(t)) specifies then the actual end-effector orientation at time t

Robotics 1
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Uniform time scaling

= for a given path p(s) (in joint or Cartesian space) and a given timing law
s(t) (z=t/T, T="motion time"), we need to check if existing bounds v,
on (joint) velocity and/or a.,, on (joint) acceleration are violated or not

= ... unless such constraints have already been taken into account during the
trajectory planning, e.g., by using a bang-coast-bang acceleration timing law

= Vvelocity scales linearly with motion time
» dp/dt = dp/ds'ds/dt-1/T
= acceleration scales quadratically with motion time
« d2p/dt2 = (d?p/ds?:(ds/dt)? + dp/ds-d2s/dt2)"1/T?2
= if motion is unfeasible, scale (increase) time T — KT (k>1), based on the
“most violated” constraint (max of the ratios |v|/v, . and |a|/a )

if motion is “too slow” w.r.t. the robot capabilities, decrease T (k<1)

= in both cases, after scaling, there will be (at least) one instant of saturation
(for at least one variable)

= Nno need to re-compute motion profiles from scratch after the scaling!
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2R planar robot with links of unitary length (1 [m])

Numerical example - 1

linear Cartesian path p(s) from q,=(110°, 140°) = p,=f(qy)=(-.684, 0) [m]
to p;=(0.816, 1.4), with rest-to-rest cubic timing law s(t), T=1 [s]

bounds in joint space: max (absolute) velocity v, 1=
max (absolute) acceleration a, ., ;=

2,

15F

1_

05}

g Of
-0.5
-1

-1.5F

-2
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5 amax 2

path length L=2.0518 [m]

N

s=s(t)

i i i i
-0.5 0 0.5 1
m

j
2

2,V

max, 2

/ [rad/sz]

Sma>

zero initial and

E
1.5
1 3
final speed
0.5 4
0 D.‘I 0‘2 0‘3 0.‘4 0‘5 O‘S D.‘7 D.‘E 0.‘9 1
time [s]

. acceleration on path (linear)
€——_ nhon-zero
10

(symmetric)
acceleration

2.5 [rad/s],

~3 [m/s]
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Numerical example -2

= violation of both joint velocity and acceleration bounds with T=1 [s]

[rad/s]

Robotics 1

max relative violation of joint velocities: k ., = 2.898
max relative violation of joint accelerations: k,.. = 6.2567
minimum uniform time scaling of Cartesian trajectory to recover feasibility

k = max {1, Ko, VKoe} = 2.898 = T, oq=kT =2.898>T

[rad/s?]

—— =joint 2

—— =joint1

-30
0
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Numerical example - 3

= scaled trajectory with T__,,.q = 2.898 [s]

= Speed [acceleration] on path and joint velocities [accelerations] scale linearly [quadratically]

25 cubic timing law on path (scaled total time T = 2.898) 14 speed on path (quadratic), scaled by k = 2.898 acceleration on path (linear), scaled by squared k = 8.3982
. T T T E T T T T 15 T T T T T
121
1k
2L
1|
05+
15
081
= 7 o |
E E g 0

1 traced Cartesian path o | -

and associated joint paths | | ‘ | | B | | | | ‘
remain the same! ' et | oo T 2 :

evolution of joint variables (scaled total time T = 2.898) /1 evolution of joint velocities, scaled by k = 2.898 evolution of joint accelerations, scaled by squared k = 8.3982
T T T T T T T T T T

0 0.5

25 8
/ L B e s s s Hs M
6l
25
151 =
| at least 1 instant of saturation!
ol
ol
E 15 % N% 0
-2
1}
-4}
051
-6}
00 0%5 ‘1 1?5 é 2%5 3 _2'50 015 ‘1 1 ‘,5 I2 215 3 _80 015 ; 115 é 215 3
time [s] time [s] time [s]
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