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Inversion of differential kinematics 

!  find the joint velocity vector that realizes a desired end-
effector “generalized” velocity (linear and angular) 

!  problems 
!  near a singularity of the Jacobian matrix (high q) 
!  for redundant robots (no standard “inverse” of a rectangular matrix) 

in these cases, “more robust” inversion methods are needed 

. 

v = J(q) q 
. 

q = J-1(q) v 
. 

J square and 
non-singular 

generalized velocity 
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Incremental solution 
to inverse kinematics problems 

!  joint velocity inversion can be used also to solve on-line and 
incrementally a “sequence” of inverse kinematics problems 

!  each problem differs by a small amount dr from previous one 
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! 

dr =
"fr(q)
"q

dq = Jr(q)dq

  

! 

r " r +dr

  

! 

r = fr(q)
direct kinematics differential kinematics 

  

! 

q = fr
"1(r +dr)

then, solve the inverse  
kinematics problem 

  

! 

dq = Jr
"1(q)dr

first, solve the inverse  
differential kinematics problem 

  

! 

r +dr = fr(q)
first, increment the 

desired task variables 

  

! 

q" q+dq
then, increment the 

original joint variables 



Behavior near a singularity 

!  problems arise only when 
commanding joint motion by 
inversion of a given Cartesian 
motion task 

!  here, a linear Cartesian 
trajectory for a planar 2R robot 

!  there is a sudden increase of 
the displacement/velocity of the 
first joint near !2=- " (end-
effector close to the origin), 
despite the required Cartesian 
displacement is small 

Robotics 1               4 

motion 
start 

q = J-1(q) v 
.

constant 
v 



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = J-1(q) v 
.
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a line from right to left, at #=170° angle with x-axis, 
executed at constant speed v=0.6 m/s for T=6 s$

start 

end 

regular case 



Simulation results 
planar 2R robot in straight line Cartesian motion 

Robotics 1               6 

path at 
#=170°  

regular 
case 

q1 

q2 

error due 
only to 

numerical 
integration 

(10-10) 



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = J-1(q) v 
.
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a line from right to left, at #=178° angle with x-axis, 
executed at constant speed v=0.6 m/s for T=6 s$

close to singular case 

start end 



Simulation results 
planar 2R robot in straight line Cartesian motion 
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path at 
#=178°  

close to 
singular 

case 

q1 

q2 

still very 
 small, but 
increased 
numerical 
integration 

error 
(2·10-9) 

large 
peak 
of q1 

. 



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = J-1(q) v 
.
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a line from right to left, at #=178° angle with x-axis, 
executed at constant speed v=0.6 m/s for T=6 s$

close to singular case 
with joint velocity saturation at Vi=300°/s 

start end 



Simulation results 
planar 2R robot in straight line Cartesian motion 
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path at 
#=178°  

close to 
singular 

case 

q1 

q2 

actual 
position 
error!! 
(6 cm) 

saturated 
value 
of q1 

. 



Damped Least Squares method 

!  inversion of differential kinematics as an optimization problem 
!  function H = weighted sum of two objectives (minimum error norm on 

achieved end-effector velocity and minimum norm of joint velocity) 
!  ! = 0 when “far enough” from a singularity                             
!  with ! > 0, there is a (vector) errorε(= v – Jq) in executing the 

desired end-effector velocity v (check that                             !), but the 
joint velocities are always reduced (“damped”) 

!  JDLS can be used for both m = n and m < n cases 

equivalent expressions, but this one is more convenient in redundant robots! 
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JDLS 

! 

" = # #Im+ J JT( )$1v
. 



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = JDLS(q) v 
.
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a line from right to left, at #=179.5° angle with x-axis, 
executed at constant speed v=0.6 m/s for T=6 s$

a comparison of inverse and damped inverse Jacobian methods 
even closer to singular case 

start end 

q = J-1(q) v 
.

start end 

some 
position 
error ... 



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = JDLS(q) v 
.
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q = J-1(q) v 
.

here, a very fast 
reconfiguration of  

first joint ... 

a completely different inverse solution, 
around/after crossing the region  

close to the folded singularity 

path at 
#=179.5°  



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = JDLS(q) v 
.
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q = J-1(q) v 
.

extremely large 
peak velocity 
of first joint!! 

smooth 
joint motion 
with limited 

joint velocities! 

q1 

q2 



Simulation results 
planar 2R robot in straight line Cartesian motion 

q = JDLS(q) v 
.
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q = J-1(q) v 
.

minimum 
singular 
value of 

 JJT and %I+JJT 

error (25 mm) 
when crossing 
the singularity,  

later recovered by 
feedback action 

(v ⇒ v+Ke) 

increased 
numerical 
integration 

error 
(3·10-8) 

they differ only  
when damping 

factor is non-zero 

damping factor 
% is chosen 
non-zero 

only close to 
singularity! 



"  if                   , the constraint is satisfied (    is feasible) 

"  else                  where        minimizes the error    

Use of the pseudo-inverse 

such that 

solution pseudo-inverse of J 

a constrained optimization (minimum norm) problem 
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orthogonal projection of    on  



Properties of the pseudo-inverse 

!    

!  if rank & = m = n: 

!  if & = m < n: 

it is the unique matrix that satisfies the four relationships 

it always exists and is computed in general numerically 
using the SVD = Singular Value Decomposition of J  
(e.g., with the MATLAB function pinv) 
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Numerical example 

Jacobian of 2R arm with l1 = l2 = 1 and q2 = 0 (rank & = 1) 

x 

y 

l1 l2 

is the minimum norm 
joint velocity vector that 
realizes q1 
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General solution for m<n 

“projection” matrix in the kernel of J 

all solutions (an infinite number) of the inverse differential kinematics problem 
can be written as 

any joint 
velocity... 

this is also the solution to a slightly modified constrained optimization problem 
(biased toward the joint velocity ', chosen to avoid obstacles, joint limits, etc.) 

such that 
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! 

vactual = J ˙ q = J J #v + (I " J #J)#( ) = JJ #v + (J " JJ #J)# = JJ # (Jw) = (JJ #J)w = Jw = v
verification of which actual task velocity is going to be obtained 

  

! 

if v "#(J)$ v = Jw, for some w



Higher-order differential inversion 
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!  inversion of motion from task to joint space can be performed 
also at a higher differential level 

!  acceleration-level: given q, q 

!  jerk-level: given q, q, q 

!  the (inverse) of the Jacobian is always the leading term 

!  smoother joint motions are expected (at least, due to the 
existence of higher-order time derivatives r, r, ...)  

. .. 

. 

  

! 

˙ ̇ q = Jr
"1(q) ˙ ̇ r " ˙ J r(q)˙ q ( )

  

! 

˙ ̇ ̇ q = Jr
"1(q) ˙ ̇ ̇ r " ˙ J r(q)˙ ̇ q "2˙ ̇ J r(q)˙ q ( )

.. ... 



Generalized forces and torques 

(1 

(2 

(i 

(n 

(3 

"  ( = forces/torques exerted by the motors at the robot joints 

"  F = equivalent forces/torques exerted at the robot end-effector  

"  Fe = forces/torques exerted by the environment at the end-effector  

"  principle of action and reaction:   Fe = - F  

 reaction from environment is equal and opposite to the robot action on it 
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F •   

environment 

Fe 

“generalized” vectors: may contain 
 linear and/or angular components 

convention: generalized forces are 
positive when applied on the robot 



Transformation of forces – Statics 

"  what is the transformation between F at robot end-effector and ( at joints?  

in static equilibrium conditions (i.e., no motion):  

"  what F will be exerted on environment by a ( applied at the robot joints?  
"  what ( at the joints will balance a Fe (= -F) exerted by the environment?  

in a given configuration 
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(1 

(2 

(i 

(n 

(3 

F •   

environment 

Fe 

all equivalent formulations 



Virtual displacements and works 

infinitesimal (or “virtual”, i.e., satisfying all possible  
constraints imposed on the system) displacements 

at an equilibrium 

the “virtual work” is the work done by all forces/torques 
acting on the system for a given virtual displacement  

dq1 

dq2 

dqi 

dqn 

dq3 

dp 
) dt = J dq 

"  without kinetic energy variation (zero acceleration) 
"  without dissipative effects (zero velocity) 
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Principle of virtual work 

the sum of the “virtual works” done by all  
forces/torques acting on the system = 0 

(1dq1 

(2dq2 
dp 
) dt = - FT J dq 

(3dq3 (idqi 

(ndqn 

- FT 

principle of 
virtual work 
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Fe = - F 



Duality between velocity and force 

velocity  
(or displacement     ) 

in the joint space 

generalized velocity  
(or e-e displacement  
in the Cartesian space  

J(q) 

generalized forces    
at the Cartesian e-e 

forces/torques 
at the joints 

JT(q) 

the singular configurations 
for the velocity map are the same  

as those for the force map 
&(J) = &(JT) 

) 
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Dual subspaces of velocity and force 
summary of definitions 
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Velocity and force singularities 
list of possible cases 

& = rank(J) = rank(JT) * min(m,n) 

1.  & < m 

2.  & = m  

1.  det J = 0 

2.  det J + 0  

1.  & < n 

2.  & = n  

m 

n 

& 
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Example of singularity analysis 

planar 2R arm with generic 
link lengths l1 and l2 

J(q) =  
- l1s1-l2s12   -l2s12 
l1c1+l2c12    l2c12 

det J(q) = l1l2s2 

singularity at q2= 0 (arm straight) J =  
- (l1+l2)s1   -l2s1 
 (l1+l2)c1   l2c1 

,(J) = #  -s1 
 c1 

-(JT) =  #  c1 
s1 

,(JT) = -(J) = 
l1+l2 
  l2 

.  
    l2 
-(l1+l2) 

.  

,(J) and -(JT) as above  

-(JT) 

,(J) 

singularity at q2= " (arm folded) J =   (l2-l1)s1     l2s1 
-(l2-l1)c1   -l2c1 

1 
0 

.  
l2-l1 

   l2 
.  -(J) = ,(JT) = 

0 
1 

.  (for l1= l2 ,            ) 
    l2 
-(l2-l1) 

.  (for l1= l2 ,           ) 
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Velocity manipulability 

!  in a given configuration, we wish to evaluate how “effective” 
is the mechanical transformation between joint velocities and 
end-effector velocities  
!  “how easily” can the end-effector be moved in the various directions 

of the task space 
!  equivalently, “how far” is the robot from a singular condition 

!  we consider all end-effector velocities that can be obtained 
by choosing joint velocity vectors of unit norm 

task velocity 
manipulability ellipsoid (J J T)-1 if & = m 
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note: the “core” matrix of the ellipsoid 
equation vT A-1 v=1 is the matrix A! 



Manipulability ellipsoid 
in velocity 

                                                

direction of principal axes: 
(orthogonal) eigenvectors 
associated to %i 

length of principal (semi-)axes: 
singular values of J (in its SVD) 

in a singularity, the ellipsoid 
loses a dimension  

(for m=2, it becomes a segment)  

planar 2R arm with unitary links 
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! 

w = det JJT = " ii=1

m
# $ 0

proportional to the volume of the 
ellipsoid (for m=2, to its area) 

manipulability ellipsoid 

manipulability measure 

scale of 
ellipsoid 1 0 

1 0 2 
0 

1 

0 

1 

1 0 2 



Manipulability measure 

planar 2R arm with unitary links: Jacobian J is square 
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! 

det JJT( ) = det J" det JT = det J = # ii=1

2
$

!2 r r 

max at !2="/2 max at r=/2 

01(J) 

02(J) 

best posture for manipulation 
(similar to a human arm!) 

full isotropy is never obtained 
in this case, since it always 01!02   



Force manipulability 

!  in a given configuration, evaluate how “effective” is the 
transformation between joint torques and end-effector forces 
!  “how easily” can the end-effector apply generalized forces (or balance 

applied ones) in the various directions of the task space 
!  in singular configurations, there are directions in the task space where 

external forces/torques are balanced by the robot without the need of 
any joint torque 

!  we consider all end-effector forces that can be applied (or 
balanced) by choosing joint torque vectors of unit norm 

task force  
manipulability ellipsoid 

same directions of the principal 
axes of the velocity ellipsoid, but 
with semi-axes of inverse lengths 
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Velocity and force manipulability 
dual comparison of actuation vs. control 
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planar 2R arm with unitary links 

! 

area" det JJT( ) = #1(J)$ #2(J)

! 

area" det JJT( )#1 =
1

$1(J)
%
1

$2(J)

note:  
velocity and force 

ellipsoids have here 
a different scale 
for a better view 

Cartesian actuation task (high joint-to-task transformation ratio):  
preferred velocity (or force) directions are those where the ellipsoid stretches 

Cartesian control task (low transformation ratio = high resolution):  
preferred velocity (or force) directions are those where the ellipsoid shrinks 



Velocity and force transformations 
!  the same reasoning made for relating end-effector to joint forces/

torques (static equilibrium + principle of virtual work) is used also 
for relating forces and torques applied at different places of a rigid 
body and/or expressed in different reference frames 

relation among generalized velocities 

relation among generalized forces 
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Example 1: 6D force/torque sensor 

RFB 

RFA 

f 

m 

frame of measure for the forces/torques 
(attached to the wrist sensor) 

frame of interest for evaluating 
forces/torques in a task 

with environment contact 

JBA 

JBA
T 
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Example 2: Gear reduction at joints 

motor 

transmission element  
with motion reduction ratio N:1 

link 

um !m 

. 
u ! 

. 

!m 

. 
! 

. 
= N 

u = N um 
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one of the simplest applications 
of the principle of virtual work! 


