
Robotics 1 1

Robotics 1

Programming
Supervision and control architectures

Prof. Alessandro De Luca

Robot programming

!  real-time operating system
!  sensory data reading
!  motion control execution
!  world modeling
!  physical/cognitive interaction with the robot
!  fault detection
!  error recovery to correct operative conditions
!  programming language (data structure + instruction set)

programming environments will depend also
on the level at which an operator has access

to the functional architecture of the robot

Robotics 1 2

Programming by teaching

!  “first generation” languages
!  programming by directly executing (teaching-by-showing)

!  the operator guides (manually or via a teach-box) the robot along
the desired path (off-line mode)

!  robot joint positions are sampled, stored, and interpolated for later
repetition in on-line mode (access to the primitives level)

!  automatic generation of code skeleton (later modifications of
parameters is possible): no need of special programming skills

!  access to the primitive level
!  early applications: spot welding, spray painting, palletizing
!  examples of languages: T3 (Milacron), FUNKY (IBM)

Robotics 1 3

Robot-oriented programming

!  “second generation” languages: structured programming
with characteristics of an interpreted language (interactive
programming environment)

!  typical instructions of high-level languages are present
(e.g., logical branching and while loops)
!  ad-hoc structured robot programming languages (more common)
!  development of robotic libraries in standard languages (preferred)

!  access to the action level
!  handle more complex applications where the robot needs to

cooperate/synchronize with other machines in a work cell
!  examples of languages: VAL II (Unimation), AML (IBM),

PDL 2 (Comau), KRL (KUKA)

Robotics 1 4

KUKA user interfaces

"  Teach pendant

"  KRL programming

"  Ethernet RSI XML

"  Fast Research Interface

Robotics 1 5

KRL language

"  basic instruction set:

Robotics 1 6

"  basic data set: frames, vectors + DECLaration

DO

KRL language

"  typical motion primitives

PTP motion
(point-to-point, linear

in joint space)

LIN motion
(linear in

Cartesian space)

CIRC motion
(circular in

Cartesian space)

PTP motion
(linear in RPY angles)

CONST orientation

end-effector
orientation

Robotics 1 7

KRL language

"  multiple coordinate frames (in Cartesian space) and jogging
of robot joints

Robotics 1 8

KUKA Ethernet RSI
Robot Sensor Interface

"  cyclical data transmission from the robot controller to an external
system (e.g., position data, axis angles, operating mode, etc.) and
vice versa (e.g., sensor data) in the interpolation cycle of 12 ms

"  influencing the robot in the interpolation cycle by means of an
external program

"  direct intervention in the path planning of the robot

"  recording/diagnosis of internal signals

Robotics 1 9

"  communication module with access to
standard Ethernet via TCP/IP protocol as
XML strings (real-time capable link)

"  freely definable inputs and outputs of the
communication object

"  data exchange timeout monitoring

Example of RSI use - 1

Robotics 1 10

"  deburring task with robot motion controlled by a force sensor

 work piece to be deburred along the
edge under force control

 tool with force sensor

 robot
 robot controller

FX measured force in the X direction of
the BASE coordinate system
(perpendicular to the programmed path)

 v direction of motion

LIN_REL = linear Cartesian path relative
to an initial position (specified here by the
force sensor signal)

ZBASE

XBASE

YBASE

Example of RSI use - 2

Robotics 1 11

"  redundancy resolution on cyclic Cartesian paths
"  task involves position only (m=3, n=6 for the KUKA KR5 Sixx)

"  without joint range limits or including virtual limits

video

Example of RSI use - 3

Robotics 1 12

"  human-robot interaction through vocal and gesture commands
"  voice and human gestures acquired through a Kinect sensor

video

Kinect RGB-D sensor
(with microphone)

simple vocabulary, e.g.:
•  listen to me
•  give me
•  follow
-  right/left hand
-  the nearest hand
•  thank you
•  stop collaboration

Fast Research Interface (FRI)
for KUKA Light Weight Robot (LWR-IV)

Robotics 1 13

"  UDP socket communication up to 1 KHz (1÷100 ms cycle time)

available
at DIAG

Robotics Lab
since Sep 2012

here, we develop
our C++/ROS code for:
•  trajectory planning
•  kinematic control
•  redundancy resolution
•  torque/dynamic control
•  physical HRI
•  ...

Kinematic control using the FRI
KUKA Light Weight Robot (LWR-IV)

Robotics 1 14

"  joint velocity commands that mimic second-order control laws (defined in
terms of acceleration or torques), exploiting task redundancy of the robot

"  discrete-time implementation is simpler and still very accurate

video

Other uses of the FRI

Robotics 1 15

" haptic feedback to the user

" coordinated dual-arm motion

Omega-7
haptic device

Robot research software

Robotics 1 16

"  a (partial) list of open source robot software
"  for simulation and/or real-time control
"  for interfacing with devices and sensors
"  research oriented

Player/Stage playerstage.sourceforge.net
"  networked robotics server (running on Linux, Mac OS X) as an

abstraction layer supporting a variety of hardware + 2D robot
simulation environment

"  Gazebo: 3D robot simulator (with ODE physics engine and
OpenGL rendering), now an independent project

VREP (edu version) www.coppeliarobotics.com

"  each object/model controlled via an embedded script, a plugin,
a ROS node, a remote API client, or a custom solution

"  controllers written in C/C++, Python, Java, Matlab, ...

Robot research software (cont’d)

Robotics 1 17

Robotics Toolbox (free addition to Matlab) www.petercorke.com

"  study and simulation of kinematics, dynamics, and trajectory
generation for serial-link manipulators

OpenRDK openrdk.sourceforge.net
"  “agents”: modular processes dynamically activated, with

blackboard-type communication (repository)
ROS (Robot Operating System) www.ros.org/wiki

"  middleware with: hardware abstraction, device drivers, libraries,
visualizers, message-passing, package management

"  “nodes”: executable code (in Python, C++) running with a
publish/subscribe communication style

Pyro (Python Robotics) pyrorobotics.org

Task-oriented programming

!  “third generation” languages (for research, not yet
available on the market)

!  similar to object-oriented programming

!  task specified by high-level instructions performing actions
on the parts present in the scene (artificial intelligence)

!  understanding and reasoning about a dynamic environment
around the robot

!  access to the task level

Robotics 1 18

Functional control architecture

reference model

S

S

S

S

M

M

M

M

D

D

D

D

 sensors

global m
em

ory

interface

. . .

. . .
.

.

.

actuators

operator

sensor
processing

knowledge
models

decision
strategies

task
level

action
level

primitives
level

servo
level

Robotics 1 19

Functional architecture: Modules

reference model

S

S

S

S

M

M

M

M

D

D

D

D

 sensors

global m
em

ory

interface

. . .

. . .
.

.

.

actuators

operator

sensor
processing

knowledge
models

decision
strategies

task
level

action
level

primitives
level

servo
level

SENSORY MODULES
acquisition, processing and
integration of sensory data

Robotics 1 20

horizontal decomposition

Functional architecture: Modules

reference model

S

S

S

S

M

M

M

M

D

D

D

D

 sensors

global m
em

ory

interface

. . .

. . .
.

.

.

actuators

operator

sensor
processing

knowledge
models

decision
strategies

task
level

action
level

primitives
level

servo
level

MODELING MODULES
a priori knowledge about

robot + environment system,
updated using information

from sensory modules

Robotics 1 21

horizontal decomposition

Functional architecture: Modules

reference model

S

S

S

S

M

M

M

M

D

D

D

D

 sensors

global m
em

ory

interface

. . .

. . .
.

.

.

actuators

operator

sensor
processing

knowledge
models

decision
strategies

task
level

action
level

primitives
level

servo
level

DECISION MODULES
• decomposition (in time and space)
of tasks into actions of lower level
• choice and processing of strategies

Robotics 1 22

horizontal decomposition

Functional architecture: Modules

reference model

S

S

S

S

M

M

M

M

D

D

D

D

 sensors

global m
em

ory

interface

. . .

. . .
.

.

.

actuators

operator

sensor
processing

knowledge
models

decision
strategies

task
level

action
level

primitives
level

servo
level

GLOBAL MEMORY
data and information relevant
to all levels (updated estimate
of robot + environment state)

Robotics 1 23

horizontal decomposition

Functional architecture: Modules

reference model

S

S

S

S

M

M

M

M

D

D

D

D

 sensors

global m
em

ory

interface

. . .

. . .
.

.

.

actuators

operator

sensor
processing

knowledge
models

decision
strategies

task
level

action
level

primitives
level

servo
level

OPERATOR INTERFACE
allows intervention by an

operator at any level of the
functional hierarchy

Robotics 1 24

horizontal decomposition

Reference model: Levels

!  task level: objective of the task (as specified by the
user) analyzed and decomposed into actions (based
on knowledge models about the robot and the
environment systems)

!  action level: symbolic commands converted into
sequences of intermediate configurations

!  primitives level: reference trajectories generation for
the servo level, choice of a control strategy

!  servo level: implementation of control algorithms,
real-time computation of driving commands for the
actuating servomotors

IN
FO

R
M

ATIO
N

 CO
M

PLEXITY
TE

M
PO

R
AL

 C
O

N
ST

R
AI

N
TS

Robotics 1 25

A functional architecture
for industrial robots

M S

S M

D

D

D

camera

force velocity position

actuator
commands

action

primitives

servo

reference frames
path points
interpolation modes

request

request

data

data
state

state

Robotics 1 26

qdes qdes

.
qdes

..

control algorithm

A functional architecture
for industrial robots

M S

S M

D

D

D

camera

force velocity position

actuator
commands

action

primitives

servo

reference frames
path points
interpolation modes

request

request

data

data
state

state

Robotics 1 27

ACTION LEVEL
• interpreter of high-level commands
• task decomposition made by human
operator

• no sensory and modeling modules
(unless a multi-modal cognitive
human-robot interaction is possible)

vertical decomposition

qdes qdes

.
qdes

..

control algorithm

A functional architecture
for industrial robots

M S

S M

D

D

D

camera

force velocity position

actuator
commands

action

primitives

servo

reference frames
path points
interpolation modes

request

request

data

data
state

state

Robotics 1 28

vertical decomposition

qdes qdes

.
qdes

..

control algorithm PRIMITIVES LEVEL
• S: (only for an active interaction with the environment)

 world geometry, interaction state
• M: direct and inverse kinematics, dynamic models
• D: command encoding, path generation, trajectory

 interpolation, kinematic inversion, analysis of servo
 state, emergency handling

A functional architecture
for industrial robots

M S

S M

D

D

D

camera

force velocity position

actuator
commands

action

primitives

servo

reference frames
path points
interpolation modes

request

request

data

data
state

state

Robotics 1 29

vertical decomposition

qdes qdes

.
qdes

..

control algorithm

SERVO LEVEL
• S: signal conditioning, internal state of manipulator, state of

 interaction with environment
• M: direct kinematics, Jacobian, inverse dynamics
• D: command encoding, micro-interpolation, error handling,

 digital control laws, servo interface

Interaction among modules

horizontal
activation

(sequential)

plan changes to world

identify object

monitor changes

build map

explore

wander

avoid obstacles

perception

m
odeling

planning

task execution

m
otor control

sensors actuators

vertical
activation on demand

(subsumption)
sensors actuators

Robotics 1 30

LAAS architecture

!  alternative example by
LAAS/CNRS in Toulouse

!  five levels
!  decision
!  execution (synchronization)
!  functional (modules)
!  logical for interface
!  physical devices

Robotics 1 31

F
un

ct
io

na
l

Le
ve

l

R. Alami et al.
“An Architecture for Autonomy,”
Int. J. of Robotics Research, 1998

Development of architectures - 1

!  hierarchical system
!  initial localization
!  off-line planning
!  on-line motion control
!  possible acquisition/update of

a model of the environment
= map (at a slow time scale)

Robotics 1 32

example: a navigation task
for a wheeled mobile robot

Development of architectures - 2

!  pure reactive system
!  global positioning task (goal)
!  on-line estimate of the local

environment (unknown)
!  local reaction strategy for

obstacle avoidance and
guidance toward the goal

Robotics 1 33

Development of architectures - 3

!  hybrid system
!  SLAM = simultaneous

localization and mapping
!  navigation/exploration on

the current model (map)
!  sensory data fusion
!  on-line motion control

Robotics 1 34

IPA robotic cell for garbage collection
and separation for recycling

semi-automatic version
at Fraunhofer IPA
Stuttgart, 1997

Robotics 1 35

video

objective: replace operator

 d

CCD camera
Laser beam

Reference line

Conveyor belt

X

Y

! h

Sensory module
in fully automatic version

operator
+

touch-screen

replaced by

structured light vision
+

neuro-fuzzy system
for object localization

and classification

operation principle
of the structured light sensor

Robotics 1 36

Sensory data interpretation

shadow
cone

imperfect
reflection

line projected
on a vertical surface

possible sources of lack of information on a single line scan

Robotics 1 37

Sensory data interpretation

line 1

line 2

S 11

S 23S 22

S 12

S 21

S 13

O1object
O2object

O3object

integration of data collected
in successive sampling instants

conveyor
belt

direction
of motion

processing
order

Robotics 1 38

Decision module

structure of the object localization and classification module

Rule-Level I

Rule-Level II

1h 4h2h 3h ... vector of height
samples

a1e1s 1
a2e2s 2

list of “segments” in the sampled profile
(start point, end point,

average height, ...)

zyx

objects geometric features
(center point, average height,...)

Classification results

Robotics 1 39

Modeling module

example of models for objects on the conveyor belt

Robotics 1 40

Functional architecture of the IPA cell

compute h
on each
line scan

current model
of objects

on conveyor
localization

classification

object
present in

gripper

M S

S M

D

D

D

camera
+ laser

force
(gripper) velocity position

actuator
commands

actions

primitives

servo

pdes

request

request

data

data
state

state
reference frames
path points
interpolation modes

Robotics 1 41

Test results

Robotics 1 42

work by Dr. Raffaella Mattone (PhD @ DIS)

includes optimal scheduling of pick & place operations
to maximize throughput (minimize loss of pieces)

video

Flow diagrams of operation

!  places (p1,…,p4)
 states or functional blocks:
active if a “token” is present
(e.g., p1 and p3)

!  transitions (t1,…,t3)
 changes from a state to another
state, fired by events: if enough
(at least one) tokens are present
in all input places of a transition,
tokens are moved to the output
places; transitions may be timed
(e.g., t1 and t3)

PETRI NETS

oriented graphs with
two types of nodes

p1

p2 p3

t1 (T1)

t2 t3
(T3)

p4

Robotics 1 43

Petri net model of the IPA cell

!  p1: robot picking & placing
!  T1: pick & place time

!  p2: robot ready
!  p3: new part on conveyor
!  p4: waiting for a part

!  T3 (random variable):
time interval between two
successive parts

p1

p2 p3

t1 (T1)

t2 t3
(T3)

p4

initial marking/state:
robot ready, waiting for a part

Robotics 1 44

Hardware architecture

BUS

SYSTEM KINEMATICS DYNAMICS

SERVO FORCE VISION

I/O

EXTERNAL
MEMORY

TEACH
PENDANT KEYBOARD

CAMERA MONITOR
force

sensor
position/velocity

transducers
POWER

AMP

servomotors

SYSTEM includes: one/multiple
microprocessor(s), local/shared
RAM, EPROM, interrupt handler, …

Robotics 1 45

Hardware architecture
Example of the IPA cell

BUS

SYSTEM

SERVO FORCE

I/O

EXTERNAL
MEMORY

TEACH
PENDANT KEYBOARD

CAMERA + LASER

MONITOR

force
sensor

position/velocity
transducers

POWER
AMP

servomotors

STRUCTURED
VISION

KINEMATICS SCARA
robot

Robotics 1 46

Hardware architecture
Example including vision in an open controller

Robot
CPU Servo

CPU Power
amplifiers

! BUS VME

User
interface
modules

! COMAU – C3G 9000 open

Robot COMAU
SMART-3S

Board
BIT 3

! BUS AT

Board
BIT 3

Control
PC

! Control - PC (RTAI-Linux)

Vision
PC

MATROX
GENESIS

MATROX
GENESIS

! Vision - PC

BU
S AT

RS232
SONY XC
8500 CE

SONY XC
8500 CE

Board
BIT 3

Robot
CPU Servo

CPU Power
amplifiers

! BUS VME

User
interface
modules Board

BIT 3

R6AX R7AX

Robotics 1 47

