

Robotics 1

Information and Program

Prof. Alessandro De Luca

DIPARTIMENTO DI INGEGNERIA INFORMATICA AUTOMATICA E GESTIONALE ANTONIO RUBERTI

Robotics 1 - 2014/15

- First semester (12 weeks)
 - Monday, September 29, 2014 Friday, December 19, 2014
- Courses of study
 - Master in Artificial Intelligence and Robotics (MARR)
 - Master in Control Engineering (MCER)
 - Master in Computer Science (MINR)
 - Laurea Magistrale in Ingegneria Elettronica (MELR*)
- Credits: 6
 - 48 hours of classes, 2 of laboratory, 75 of individual study
- Classes
 - Monday 15:45-17:15 (room B2, Via Ariosto 25)
 - Friday 10:15-11:45, 12:00-13:30 (room B2)

^{* =} part of a 12-credit integrated course Robotics 1+2

STATE

Contacts

- Email: deluca@diag.uniroma1.it
- Office hours
 - every Tuesday 12:00-13:30 c/o office A-210, left wing, floor 2,
 DIAG, Via Ariosto 25
 - and/or contact me by email (with some advance)
 - check my known travel dates at .../~deluca/Travel.php
- Course web: www.diag.uniroma1.it/~deluca/rob1_en.html
- Course material (pdf of lecture slides, videos, written exams, ...)
 - available on the course website
 - lecture slides all ready, some updates during the course
- Registration to exams
 - www.uniroma1.it/infostud

STONE STONE

General information

Prerequisites

- self-contained course, without special prerequisites
- elementary knowledge on kinematics and automatic control is useful

Aims

 tools for kinematic analysis, trajectory planning, and programming of motion tasks for robot manipulators in industrial and service environments

Textbook

- B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo: Robotics: Modelling, Planning and Control, 3rd Edition, Springer, 2009
- Other strictly related courses
 - Robotics 2: second semester, 6 credits
 - Autonomous and Mobile Robotics: second semester, 6 credits

Programming robot motion

Teaching Cartesian poses and playing them back

KUKA LBR iiwa robot with 7 revolute joints

Programming robot motion

Executing nominal trajectories and "complying" with uncertainties

Programming robot compliance

Controlled reaction to applied forces/torques at robot end-effector

video

video

Programming robot motion

sketch of the original ideaa first need & use of Safephysical Human-Robot Interaction (pHRI)

video

video

the working industrial solution

More videos on the LBR iiwa robot: KUKA Laboratories YouTube Channel

Program

Introduction

- Manipulator arms (and some mobile robots)
- Industrial and service applications

Components

- Mechanical structures
- Actuators
- Sensors
 - proprioceptive (encoder, tacho)
 - exteroceptive (force/torque, tactile, ultrasound, infrared, laser, vision)

Kinematic models

- Minimal representations of orientation
- Direct and inverse kinematics of robot manipulators
- Differential kinematics: analytic and geometric Jacobians
- Statics: Transformations of forces
- Robot singularities

Program (continued)

Planning of motion trajectories

- Trajectory planning in the joint space for robot manipulators
- Trajectory planning in the task/Cartesian space

Control

- Control system architectures
- Kinematic control laws (in joint or in task/Cartesian space)
- Independent joint axis control laws (P, PD, PID)

Programming and Simulation

- Programming languages for industrial robots (KRL)
- Use of Matlab/Simulink and VREP
- Demos in the lab with the KUKA robots (6-dof KR5 and 7-dof LWR4+)

Tracking a Cartesian trajectory with hard position/velocity bounds on robot motion

video Sapienza/Stanford, IEEE ICRA 2012

Robot control by visual servoing with limited joint motion range

Avoiding joint limits with a low-level fusion scheme

Olivier Kermorgant and François Chaumette

Lagadic team INRIA Rennes-Bretagne Atlantique

video INRIA Rennes, IEEE/RSJ IROS 2011

Sensor-based robot control in dynamic environment (coexistence with human)

A Depth Space Approach to Human-Robot Collision Avoidance

F. Flacco*, T. Kröger**, A. De Luca* and O. Khatib**

*Robotics Laboratory, Università di Roma "La Sapienza"

**Artificial Intelligence Laboratory, Stanford University

Safe physical human-robot interaction (sensorless and on a conventional industrial robot!)

DIAG Sapienza, IEEE ICRA 2013

Exams and beyond

- Type: homework + written test + oral examination
- Schedule (ALL sessions of 2014/15 are already open in INFOSTUD)
 - 2 sessions at the end of this semester
 - January 9, 2015 + February 6, 2015
 - 2 sessions at the end of next semester
 - June 5, 2015 + July 10, 2015
 - 1 session after the summer break
 - September 11, 2015
 - 2 extra sessions only for students of previous years, part-time, etc.
 - April 1, 2015 + October 27, 2015
- Master theses
 - available at DIAG Robotics Lab: www.diag.uniroma1.it/labrob
- YouTube Channel with more videos of research performed in the Lab
 - www.youtube.com/user/RoboticsLabSapienza

Preview of Robotics 2 (next semester)

Advanced kinematics / Robot dynamics

- Calibration
- Redundant robots
- Dynamic modeling: Lagrange and (recursive) Newton-Euler methods
- Identification of dynamic parameters

Control techniques

- Free motion: linear and nonlinear feedback control, iterative learning, robust control, adaptive control
- Constrained motion: impedance and hybrid force-velocity control
- Visual servoing (kinematic approach)

Special topics

- Diagnosis and isolation of robot actuator faults
- Human-robot collision avoidance & detection, with safe robot reaction

Robotics 1 16

Other courses about Robotics...

- Autonomous and Mobile Robotics (6 credits), next semester
 - kinematics, planning, control of wheeled mobile robots
 - motion planning with obstacles, navigation, and exploration
 - Prof. Oriolo http://www.diag.uniroma1.it/~oriolo/amr
- Medical Robotics (6 credits), next semester
 - robot surgical systems and more
 - Dr. Vendittelli http://www.diag.uniroma1.it/~vendittelli
- Elective in Robotics (12 credits), starting this semester
 - four modules of 3 credits
 - research-related subjects and seminars
 - multiple teachers http://www.diag.uniroma1.it/~vendittelli/eir
- Robot Programming (module: 3 credits in Elective in AI), in this semester
 - robot programming using C++, ROS, NAO SDK as development frameworks
 - Prof. Nardi http://www.diag.uniroma1.it/~nardi/Didattica/CAI/robpro.html

Robotics 1 17