
Robotics I

Classroom Test — November 21, 2014

Exercise 1 [6 points]

In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of
link 2 (upper arm) and is connected to the joint axis through a train of transmission elements (see
Fig. 1). The output shaft of the motor (code 506-1612) is connected to an idler assembly (code
500-2401) through a bevel gear, which changes the axis of rotation by 90◦ and has a reduction
ratio nbg = 10.88. In turn, the idler assembly is connected via a spur gear (code 500-0941) to the
axis of joint 2, moving thus the second link. The two engaged wheels in the spur gear have radius
rin = 1.1 [cm] and rout = 10.86 [cm], respectively.

a) What is the reduction ratio nr of the complete transmission from motor 2 to link 2?

b) The inertia (of the rotor) of this motor is Jm = 0.0002 [kg·m2]. If the reduction ratio used
by Unimation were optimal, what should be the target inertia of the load (link 2)?

c) The maximum rated torque produced at the motor shaft is τm = 0.3 [Nm]. With the
values found in a) and b), neglecting dissipative effects, gravity, and all other dynamic
couplings, what would be the maximum angular acceleration θ̈2 of link 2 realized by this
motor/transmission unit?

JT2 IDLER ASSY 
500-2401 

JT2 IDLER ASSY 
500-2401 

JT2 MOTOR 
506-1612 

JT2 MOTOR 
506-1612 

JT2 GEAR OUTPUT 
500-0941 

Figure 1: Two inside views of the upper arm of the Unimation Puma 560 robot, showing in
particular the motor and gear train driving joint 2

(continues)
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Exercise 2 [6 points]

Figure 2 shows again the Unimation Puma 560, a 6R articulated robot having a spherical wrist,
with a set of link frames and relevant distances labeled from A to E. For the sake of drawing clarity,
frames may be shown displaced from their actual placement; in particular, the origin of frame 5 is
at the wrist center, while the origin of frame 6 is midway between the gripper jaws. Verify that
the frame assignments are correct according to the Denavit-Hartenberg (DH) convention. If so,
determine the associated table of DH parameters, using the distances A to E (with signs) and
providing the values of the joint variables in the shown configuration.
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Figure 2: The Unimation Puma 560 robot with assigned link frames

Exercise 3 [6 points]

Consider a 3R planar manipulator with links of generic lengths l1, l2, and l3. Assuming that each
joint has unlimited rotation, determine the primary workspace for the end-effector of this robot.
Verify your analysis by drawing the workspace in the following two numerical cases (both have the
same value for the sum of the link lengths):

a) l1 = 1, l2 = 0.4, l3 = 0.3 [m];

b) l1 = 0.5, l2 = 0.7, l3 = 0.5 [m].

(continues)
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Exercise 4 [12 points]

A large Cartesian robot has 3 prismatic joints, followed by a spherical wrist with center W . Table 1
provides the DH parameters of this 6-dof robot. A variety of tools can be mounted on the robot
end-effector, each having the Tool Center Point (TCP) placed along the approaching axis. The
distance of the TCP from the wrist center W is specified by the parameter dTCP > 0.

i αi ai di θi

1 −π/2 0 q1 0

2 −π/2 0 q2 −π/2

3 0 0 q3 0

4 −π/2 0 0 q4

5 π/2 0 0 q5

6 0 0 dTCP q6

Table 1: Denavit-Hartenberg parameters of a 3P-3R robot with spherical wrist

a) Given a desired position of the TCP (with its dTCP ) and a desired orientation of the robot
end-effector frame (i.e., of frame 6), provide an analytic solution in closed form to the inverse
kinematics problem. Is the solution unique?

b) Apply your results to the data

dTCP = 0.15 [m], pd =

 5.0
2.0
1.5

 [m], Rd =


−0.5 0.5 −

√
2/2

√
2/2

√
2/2 0

0.5 −0.5 −
√

2/2

 ,

and provide the numerical value of at least one joint configuration q =
(
q1 q2 q3 q4 q5 q6

)T
solving the inverse kinematics.

[210 minutes; open books]
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Solutions
November 21, 2014

Exercise 1 [6 points]

a) The reduction ratio of the spur gear is nsg = rout/rin = 10.86/1.1 = 9.87. The complete
transmission has then reduction ratio

nr = nbg · nsg = 10.88 · 9.87 = 107.38.

b) Assuming that this is the optimal value of the reduction ratio (i.e., the one that minimizes the
motor torque needed to accelerate the link at a desired value θ̈2 = a), then the inertia J2 of link 2
around its rotation axis should satisfy

n∗r = 107.38 =
√
J2

Jm
=

√
J2

0.0002
=⇒ J2 = 0.0002 · (107.38)2 = 2.3061 [kg·m2].

Note that in this analysis we have considered the inertia of the intermediate gears as negligible
w.r.t. motor and link inertias. In the Puma 560, this is reasonable as the inertia of the gear train
for joint 2, when reflected to the axis of motor 2, is less than 2% of the rotor inertia of the motor.

c) When using the optimal reduction ratio, there is a balanced partition of the torque produced
by the motor:

τm = Jmθ̈m +
1
n∗r
J2θ̈2 =

(
Jmn

∗
r +

1
n∗r
J2

)
θ̈2 = 2

√
JmJ2 θ̈2 = 2 Jmn

∗
r θ̈2.

Thus, the maximum acceleration of link 2 (to be intended in absolute value) is

θ̈2 =
τm
2

1
Jmn∗r

= 0.15
1

0.0002 · 107.38
= 6.9845 [rad/s2].

Exercise 2 [6 points]

The assignment of link frames is feasible according to the (classical) Denavit-Hartenberg conven-
tion. The associated DH parameters are given in Table 2.

i αi ai di θi

1 −π/2 0 0 q1 = π/2

2 0 A > 0 D > 0 q2 = 0

3 −π/2 E > 0 0 q3 = −π/2

4 −π/2 0 B > 0 q4 = π

5 π/2 0 0 q5 = 0

6 0 0 C > 0 q6 = 0

Table 2: Denavit-Hartenberg parameters of the Unimation Puma 560 robot associated to the link
frames and to the specific configuration shown in Fig. 2
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Since the first two joint axes intersect, the origin O1 must be set at the intersection point, which
is where also O0 is, and so a1 = d1 = 0. Also, the drawing may not be 100% clear on the sign of
a3: here, we took a3 = E > 0, i.e., along the positive direction of x3 (as it is in reality).

Exercise 3 [6 points]

Denote the lengths of the longest and shortest links, respectively with

lmax = max {li, i = 1, 2, 3}, lmin = min {li, i = 1, 2, 3},

and with lmed the length of the intermediate link of intermediate length. If two or more links have
equal lengths, their relative ordering is irrelevant. No matter how the links of different length are
placed within the kinematic chain, the workspace of the planar 3R will have as outer boundary a
circumference of radius

Rout = lmin + lmed + lmax = l1 + l2 + l3,

and as inner boundary a circumference of radius

Rin = max {0, lmax − (lmed + lmin)}.

This last formula means that when lmax ≤ lmed + lmin, there will be no forbidden area internal to
the workspace, which is then a circle of radius Rout centered at the robot base. Otherwise, there
will be a circular ‘hole’ of radius lmax − (lmed + lmin〉 0 in the center of the workspace. Consider
next the two case studies.

a) Here, lmax = l1 = 1, lmed = l2 = 0.4, and lmin = l3 = 0.3. Since lmax = 1 > 0.7 = lmed + lmin,
the workspace will be an annulus with inner radius Rin = 0.3 and outer radius Rout = 1.7. Figure 3
shows the geometric construction of the workspace in this case.

q3 

q2 

l2 +l3 =0.7 

|l2 !l3 |=0.1 

q1 = 0 

q1 

Rin =l1 !(l2 +l3) =0.3 

Rout =l1 +l2 +l3 =1.7 

sweep by q1 

Figure 3: Construction of the primary workspace of a 3R robot with link lengths l1 = 1, l2 = 0.4,
and l3 = 0.3: [Left] the workspace of the second and third link (keeping q1 fixed) contains an
unreachable circular area centered at the second joint; [Right] sweeping by q1 will eliminate this
area, although the workspace of the robot still contains a central ‘hole’ of radius Rin = 0.3

b) In this case, lmax = l2 = 0.7, lmed = lmin = l1(or l3) = 0.4. Since lmax = 0.7 < 0.8 = lmed+lmin,
the workspace will be a full circle of radius Rout = 1.7.
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Exercise 4 [12 points]

From the DH table, we first compute the direct kinematics. The first three prismatic joints provide
a homogeneous transformation matrix

0T 3(q1, q2, q3) =

(
0R3

0p03(q1, q2, q3)

0T 1

)
=


0 0 1 q3

0 −1 0 q2

1 0 0 q1

0T 1

 .

It is clear that prismatic joints do not change orientation, up to a (signed) permutation of the
Cartesian axes. The position of the wrist center is pW = 0p03(q1, q2, q3). Performing the complete
computation (in case, by using a straightforward adaptation of the symbolic code dirkin SCARA.m
available on the course web page) yields

0T 6(q) =

(
0R6(q4, q5, q6) 0p06(q)

0T 1

)
(1)

where

0R6(q4, q5, q6) =

(
n(q4, q5, q6) s(q4, q5, q6) a(q4, q5)

)

=

 − sin q5 cos q6 sin q5 sin q6 cos q5
− sin q4 cos q5 cos q6 − cos q4 sin q6 sin q4 cos q5 sin q6 − cos q4 cos q6 − sin q4 sin q5
cos q4 cos q5 cos q6 − sin q4 sin q6 − cos q4 cos q5 sin q6 − sin q4 cos q6 cos q4 sin q5


(2)

and

0p06(q) = p(q) =

 q3 + dTCP cos q5
q2 − dTCP sin q4 sin q5
q1 + dTCP cos q4 sin q5

 . (3)

a) Since the robot has a spherical wrist, we can find the solution to the inverse kinematics problem
in a partitioned way, first determining the values of the joint variables q1, q2, and q3 for the main
axes, and then (for each solution found in the first step) finding the values of the joint variables q4,
q5, and q6 for the spherical wrist. Indeed, things are particularly simple in the first step because
this sub-structure is a PPP (Cartesian) robot. From eqs. (1–3), we obtain directly the first part
of the solution by means of the expression

p(q)− dTCP a(q4, q5) = (pW =)

 q3

q2

q1

 (4)

There is indeed a unique solution to step 1 (note also the reordering of the first three variables).
In the second step, since the rotation matrix 0R3 independent from the joint variables q1, q2, and
q3, it is not necessary to isolate the rotation matrix

3R6(q4, q5, q6) = 0RT
3

0R6(q4, q5, q6) = . . . (this matrix is associated to a ZYZ Euler sequence!).
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In fact, we can just equate the expression (2) with that of a generic orientation matrix R = {rij}
of the end-effector frame. Using a compact notation, we have −s5c6 s5s6 c5

−s4c5c6 − c4s6 s4c5s6 − c4c6 −s4s5
c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s5

 =

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (5)

Proceeding as in the solution of an inverse problem of minimal representation of orientation by a
generic Euler sequence, we can isolate q5 from the elements in the last column or in the first row
of (5) as

q5 = ATAN2
{
±
√
r223 + r233, r13

}
or q5 = ATAN2

{
±
√
r211 + r212, r13

}
. (6)

Provided that s5 6= 0, which should be checked in advance as r223 + r233 6= 0 (or, equivalently,
r211 + r212 6= 0) on the given data, we can solve for q4 and q6 from the last column and first row
in (5):

q4 = ATAN2 {−r23/s5, r33/s5} , q6 = ATAN2 {r12/s5,−r11/s5} . (7)

In the regular case, two solutions are obtained from eqs. (4), (6), and (7). Instead, when s5 = 0
the robot is in a wrist singularity (occurring for q5 = 0 or π), and two cases arise. If q5 = 0, we
can only solve for the sum of the two angles q4 + q6. In fact, setting s5 = 0 and c5 = 1 in (5) and
considering a compatible orientation matrix R, eq. (5) becomes 0 0 1

−s46 −c46 0
c46 −s46 0

 =

 0 0 1
r21 r22 0
r31 r32 0

 ,

from which
q4 + q6 = ATAN2 {−r21, r31} .

Similarly, if q5 = π we can only solve for the difference q4 − q6 of the two remaining joint angles
of the robot wrist. In both cases, we will have a (simple) infinity of inverse solutions. Note that
often the situation q5 = π is ruled out by the presence of a limited range for joint 5 around its zero
value.

b) From the given numerical data for the desired pose, with ad being the third column of Rd, we
perform the same operation as in eq. (4) and obtain the values (fully specified by the data, without
the need to compute q4 and q5 first) q3

q2

q1

 = pd − dTCP ad =

 5.0
2.0
1.5

− 0.15

 −
√

2/2
0

−
√

2/2

 =

 5.1061
2.0

1.6061

 [m]. (8)

Moreover, since r223,d + r233,d = 0.5 6= 0, the robot is not in a wrist singularity. Applying then
eqs. (6–7), we obtain

q
(+,−)
5 = ATAN2

{
±1/
√

2,−1/
√

2
}

= ± 3π
4

[rad]

and

q
(+,−)
4 = ATAN2 {0,∓1} = {π, 0} [rad], q

(+,−)
6 = ATAN2

{
±
√

2
2
,±
√

2
2

}
= {π/4,−3π/4} [rad].
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As a result, there are two regular solutions for the robot wrist angles. The complete inverse
kinematics solutions are then(

q1 q2 q3 q+4 q+5 q+6
)

=
(

1.6061 2.0 5.1061 π
3π
4

π

4

)
and (

q1 q2 q3 q−4 q−5 q−6
)

=
(

1.6061 2.0 5.1061 0 −3π
4
−3π

4

)
.

Hint: It is always good practice to feed the obtained solutions into the direct kinematics and check
if the results coincide with what should be expected.

∗ ∗ ∗ ∗ ∗
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