
Robotics I
Test — November 29, 2013

Exercise 1 [6 points]

A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a
joint axis passing through its base. The motor is connected to the link by means of two trans-
mission/reduction elements placed in series: a spur gear (SG) made of two toothed wheels, and a
harmonic drive (HD). The output shaft of the motor drives the smaller toothed wheel (of radius
r1). The output axis of the larger wheel (of radius r2 > r1) is connected to the wave generator of
the HD. Finally, the output axis of the flexspline is the joint axis of the robot link. The motor de-
livers a maximum torque Tm,max = 2.2 [Nm], while the inertia of its rotor is Jm = 0.0012 [kg·m2].
The smaller wheel of the gear has radius r1 = 2 [cm]. The flexspline of the HD has 70 outer teeth.
Finally, the link has an inertia J` = 5.88 [kg·m2] around its rotation axis (at the link base).

a) Neglecting dissipative effects and other inertial loads except rotor and link inertias, determine
the radius r2 of the larger toothed wheel of the spur gear so that the reduction ratio n > 1 of
the complete transmission is optimal in terms of motor torque needed to accelerate the link.

b) With the resulting optimal value n∗, determine the maximum angular acceleration θ̈`,max of
the link that can be realized using this motor/transmission unit.

Exercise 2 [12 points]

The K-1207 robot developed by Robotics Research Co. (USA) is a modular 7-dof manipulator
having all revolute joints and no spherical wrist or shoulder. Figure 1 shows a picture of the robot
(mounted on an inclined base) and a few snaphots of the robot in motion (mounted on a vertical
base), in order to illustrate its dexterity.

Figure 1: The Robotics Research K-1207 robot

A drawing of the K-1207 robot for a particular configuration is shown in Fig. 2, with indication of
the seven revolute joint axes and the physical sizes (in inches). Origin O0 and axis x0 of the base
frame as well as origin O7 and axis z7 of the last frame are assigned as in the figure.

a) Assign the link frames and the table of parameters according to the Denavit-Hartenberg
convention (use the extra sheet for your sketch of the frames).

b) Provide the numerical values of the constant parameters and of the joint variables associated
to the configuration shown in Fig. 2.
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Figure 2: Drawing of the K-1207 robot: In this configuration, joint axes 1, 3, 5, and 7 are on a
common plane, while joint axes 2, 4, and 6 are normal to this plane

Exercise 3 [12 points]

Consider the planar RPR robot shown in Fig. 3, and the definition of joint variables q =
(
q1 q2 q3

)T
given therein. The three-dimensional task vector is r =

(
pT α

)T = f(q), where p =
(
px py

)T
is the position of the end-effector and α is the orientation angle of the last link w.r.t. the x0 axis.
Assume that q2 ≥ 0 holds for the prismatic joint variable.

a) Solve the inverse kinematics problem for a given rd, providing the expression of all feasible
solutions in closed form.

b) Compute the solutions q associated to rd =
(
−2 −2 π/2

)T [m,m,rad] (i.e., such that
f(q) = rd) using the data L1 = 1 [m] and L3 = 0.7 [m], and sketch the robot configurations.

c) Draw the primary workspace in the plane of robot motion for generic values of L1 and L3,
assuming that the prismatic joint range is bounded as |q2| ≤ D (with D > 0).
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Figure 3: A planar RPR robot with the definition of joint variables

[210 minutes; open books]
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Solutions
November 29, 2013

Exercise 1 [6 points]

a) The reduction ratio of the gear is obtained by equating the absolute value of the linear velocities
of the two wheels at the point of contact between the meshing teeth (the wheels rotate in opposite
directions). Denoting by ωi the angular velocity of toothed wheel i (1 = input, 2 = output),

|ω1| r1 = |ω2| r2 ⇒ nSG =
∣∣∣∣ω1

ω2

∣∣∣∣ =
r2
r1

=
r2
2
.

The reduction ratio of the harmonic drive is

nHD =
# teeth of flexspline

# teeth of circular spline−# teeth of flexspline
=

70
2

= 35,

since the number of (inner) teeth of the circular spline always exceeds that (in the outer side) of
the flexspline by 2. The complete transmission has then reduction ratio

n = nSG · nHD =
r2
2
· 35 = 17.5 r2.

The optimal value of the reduction ratio that minimizes the motor torque needed to accelerate the
link at a desired value θ̈` is

n∗ =
√

J`

Jm
=

√
5.88

0.0012
=
√

4900 = 70.

Thus, such reduction ratio is obtained by choosing r2 = 70/17.5 = 4 [cm] (nSG = 2).

b) The torque balance for the complete motor/transmission/load system is then

Tm = Jmθ̈m +
1
n∗
J`θ̈` = Jm

(
n∗θ̈`

)
+

1
n∗

J`θ̈` =

(
Jm

√
J`

Jm
+ J`

√
Jm

J`

)
θ̈` = 2

√
J`Jm θ̈`(

or also . . . =
1
n∗

(
n∗2Jm + J`

)
θ̈` =

2 J`

n∗
θ̈`

)
.

As a result, the maximum angular acceleration of the link is

θ̈`,max =
Tm,max

2
√
J`Jm

(
=
n∗Tm,max

2 J`

)
=

2.2
0.168

= 13.095 [rad/s2].

Exercise 2 [12 points]

a) A feasible assignment of the Denavit-Hartenberg frames is shown in Figure 4. The associated
parameters are given in Table 1. We note that the mechanical (modular) structure of joints 2, 4,
and 6 leads to the kinematic identities |a1| = |a2|, |a3| = |a4|, and |a5| = |a6| (the absolute value
is needed because of different possible choices for the positive directions of the xi axes).

b) The numerical values of the constant parameters ai and di are specified (in inches) in the same
Table, together with the values of the joint variables qi = θi ∈ (−π,+π] when the robot is in the
shown configuration. In this configuration, the zi axes not lying in the plane (i.e., for i = 2, 4, 6)
are pointing outwards.
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Figure 4: Assignment of Denavit-Hartenberg frames for the K-1207 robot

i αi ai di θi

1 π/2 a1 = 4.00” d1 = 13.64” q1 = 0

2 π/2 a2 = 4.00” 0 q2 = π/4

3 −π/2 a3 = 3.375” d3 = 21.50” q3 = 0

4 −π/2 a4 = 3.375” 0 q4 = −π/4

5 π/2 a5 = −2.25” d5 = 21.50” q5 = 0

6 −π/2 a6 = 2.25” 0 q6 = π/4

7 0 0 d7 = 11.00” q7 = 0

Table 1: Denavit-Hartenberg parameters for the K-1207 robot (associated to the frames in Fig. 4)
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Exercise 3 [12 points]

a) The direct kinematics for the given task is

r =

(
p

α

)
=

 px

py

α

 =


L1 cos q1 + q2 cos

(
q1 +

π

2

)
+ L3 cos

(
q1 + q3 +

π

2

)
L1 sin q1 + q2 sin

(
q1 +

π

2

)
+ L3 sin

(
q1 + q3 +

π

2

)
q1 + q3 +

π

2



=


L1 cos q1 − q2 sin q1 − L3 sin (q1 + q3)

L1 sin q1 + q2 cos q1 + L3 cos (q1 + q3)

q1 + q3 +
π

2

 = f(q).

From a given r (= rd), we can easily write the position w of the end-point of the second link as

w =

(
wx

wy

)
= p− L3

(
cosα
sinα

)
=

(
L1 cos q1 − q2 sin q1
L1 sin q1 + q2 cos q1

)
.

Squaring and summing the components of w yields

q2 = +
√
w2

x + w2
y − L2

1 = +
√

(px − L3 cosα)2 + (py − L3 sinα)2 − L2
1. (1)

Only the positive sign has been kept in (1), since we have assumed that only q2 ≥ 0 is feasible.
Indeed, the value of q2 is real if and only if ‖w‖ ≥ L1 (namely, when the position w of the tip of
the second link is in the workspace of the sub-structure RP made by the first two joints and links).
With q2 from (1), we can always solve the following linear system for cos q1 and sin q1(

L1 −q2
q2 L1

)(
cos q1
sin q1

)
=

(
wx

wy

)
,

yielding (
cos q1
sin q1

)
=

1
L2

1 + q22

(
L1wx + q2wy

L1wy − q2wx

)
.

Being L2
1 + q22 > 0, we can skip division by this quantity when evaluating q1 with the ATAN2

function. Thus,

q1 = ATAN2 {L1wy − q2wx, L1wx + q2wy}
= ATAN2 {L1 (py − L3 sinα)− q2 (px − L3 cosα) , L1 (px − L3 cosα) + q2 (py − L3 sinα)}

(2)

Finally, we have
q3 = α− q1 −

π

2
. (3)

There is only one feasible solution to the inverse kinematics problem, as given by eqs. (1)–(3).

b) With the data L1 = 1 [m], L3 = 0.7 [m], and rd =
(
px py α

)T =
(
−2 −2 π/2

)T [m,m,rad],
the above formulas yield (the resulting robot configuration is sketched in Fig. 5)

q =
(
q1 q2 q3

)T =
(

2.8062 3.2078 −2.8062
)T [rad, m, rad]

=
(

160.7855 3.2078 −160.7855
)T [deg, m, deg].

(4)
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c) In order to determine the robot primary workspace for |q2| ≤ D, we have to distinguish two
cases. When L1 ≥ L3, the primary workspace is an annulus with inner and outer radius given by

Rin,L1≥L3
= L1 − L3 ≥ 0, Rout =

√
L2

1 +D2 + L3 > 0.

Figure 6 shows the actual construction of the workspace in the case of a length L1 strictly larger
than L3. In particular, for equal link lengths L1 = L3, the workspace is a circle of radius Rout.
When L1 < L3, the additional mobility provided by the prismatic joint allows to reduce, at least
in part, the ‘hole’ (of radius L3 −L1) at the center that would characterize the workspace of a 2R
planar arm. It is easy to see that, starting with q2 = 0 and with the third link folded on the first
one, the robot end-effector can access this inner part by progressively extending the second joint
and pivoting with the third link (or with its prolongation) about the origin. When the second joint
reaches its limit, the end-effector will be at a distance |Rin,L1<L3

| from the origin, with

Rin,L1<L3
= L3 −

√
L2

1 +D2, ⇒ Rin,L1<L3
= 0 ⇐⇒ D2 = L2

3 − L2
1.

Therefore, the workspace will be an annulus with inner radius Rin,L1<L3
> 0 and outer radius Rout

when D2 < L2
3 − L2

1, or a circle of radius Rout when D2 ≥ L2
3 − L2

1.
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Figure 5: The inverse kinematic solution (4) associated to rd = (−2 − 2 π/2)T [m, m, rad]
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Figure 6: Primary workspace of RPR robot with prismatic joint in range [−D,+D], for L1 > L3
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