Robotics 1
B: preferred for 5 credits

January 12, 2010

Exercise 1
Consider the Cartesian path defined by

x(s) Rcoss
p=p(s)=| y(s) | =| Rsins |, s€][0,+00)
z(s) hs

where R > 0 and h > 0. This path is a spiral around the z-axis. Define a timing law s = s(t)
having a trapezoidal speed profile in t € [0,T], for a given and sufficiently large final time T > 0,
such that the resulting planned trajectory p,(t) = p(s(t)) satisfies the following conditions:

e py(0) =py(T) =0;
o |p,(t)|| <V, for a given V > 0;
e ||[p;(t)|| < A, for a given and sufficiently large A > 0.

Provide in particular the reached height z4(T") in closed form.

Moreover, define a coordinated motion for the orientation along the above path, by specifying a
moving frame that has its x, axis always pointing and orthogonal to the central axis of the spiral
(the z-axis) and its z, always parallel to it. What is the maximum value reached by the norm of
the angular velocity, ||w||, associated to the planned trajectory?

Finally, evaluate the solution found for the following numerical data:
R=03[m], h=01[m], V=1[m/s], A=5[m/s?’, T=4]Is.
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Figure 1: A cylindrical manipulator

Derive the 6 x 3 geometric Jacobian for the cylindrical manipulator in Fig. 1 and find the singu-
larities of its linear velocity part. Consider a desired motion p,(t) of the end-effector position that

. . . T

is twice-differentiable w.r.t. time. Taking the joint accelerations § = ( 0, do ds ) as control

inputs and assuming that only g and ¢ are measured, define a Cartesian kinematic controller at

the acceleration level that assigns (out of singularities) the closed-loop behavior to the system
é+ Kpé+ Kpe=0,

where e = p; — p, and K p and K p are positive definite, diagonal matrices.
[150 minutes; open books]
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The velocity vector along the path is given by

—Rsins
Dg = dpa(t) _ dp(s) ds(t) _ Rcoss |3
d dt ds di h |

and thus
B4l = v R + h? |$(1)].

The constraint ||p,(¢)|| <V on the Cartesian velocity becomes

v

5(t)| £ —= =: Vinax
s8] < VR2 + 1?2
for the speed profile s.
The acceleration vector along the path is given by
—Rsins —Rcoss
. d*p,(t)  dp(s).. d*p(s) .5 . . .2
Py = 5 = 5(t) + 55 (t) = Rcoss |5+ | —Rsins | &%,
dt ds ds h 0
and thus

1B4(0)ll = V/(R? + h?) 3(t) + (R $2(1)).

The constraint ||p(¢)|] < A on the Cartesian acceleration can be rewritten as
(R* + h?) 8°(t) < A* — (R$*(t))°

for the acceleration profile §. Since this constraint has to be satisfied for all ¢ € [0, T], one should
consider the worst case, i.e., [$| = Vinax- We obtain

2
- (e
max-

3(t)] < e

In order to have a feasible Ay« > 0, the value of A should be sufficiently large, i.e.,
RV?
: (1)
R?2 + h?
At this stage, given the total time T and the computed limits Viax and Apax, the timing

law with trapezoidal speed profile is fully specified. In particular, we have for the accelera-
tion/deceleration interval time

A>

TS — Xmax — V - .
max A2 — (RIEKW )2

In order to have a complete trapezoidal profile (with at least one instant where Vi,.x is reached),
the total time 7" should be sufficiently large, i.e.,

2
T > 2T, = v — (2)
A% — (7H5e)?




The total displacement of the parameter s at time ¢ = T is then

V2 TV V2
max := S(T) = (T — Ts)Vinax = TVinax — 225 = - :
Sma S( ) ( s) a a: Amax \/RQ +h2 \/(R2 +h2)A2 _ (RV?2)2
R2+4h2

Therefore, the reached height at the final time ¢t = T is
24(T) = h s(T) = h Smax-
For completeness, we compute also the curvature of the given parametric path:
dp d’p
ds ds?|| R
3 - R2 + h2’

-]

X
dp
ds

Indeed, «(s) is constant for all s and collapses to 1/R for h = 0.
For planning the requested orientation trajectory, which has to be coordinated with the position
trajectory, we define a moving frame as a function of the same parameter s. This is given by

—coss sins 0
R(s) = ( zo(s) wo(s) zo(s) )= —sins —coss 0
0 0 1

Note that this moving frame is not the Frenet frame associated to the parametrized path. Using
the notations p’(s) = dp(s)/ds and p”(s) = d*p(s)/ds?, the Frenet frame is specified as

/

Rivenei(s) = ( H(s) m(s) b(s) ) = ( ||£’8|| pu(sgn ) x n(s) )

1/

[p"(s

R g P __h g
\/WSIHS COS s \/msms

— __R _ & I

= \/WCOSS s s \/WCOSS

__h 0 __R

VvV R2+h2 VR2+h2

In fact, the two frames coincide (modulo a rotation of 7/2 around the z-axis) only when h = 0.
Setting R4(t) = R(s(t)), the angular velocity vector is computed from

) sins(t) coss(t) O —coss(t) —sins(t) 0 0 =5t
S(w) = R4RY = 5(t) | —coss(t) sins(t) 0 sins(t) —coss(t) 0 | =1 s(t) 0
0 0 0 0 0 1 0 0

As expected (being the rotation of the moving frame only around the z-axis and counterclockwise),

0
w=1| 0 = lwll =131,
$(t)

and the maximum value of the norm of the angular velocity vector is obviously Viax.
With the given numerical data, which satisfy both inequalities (1) and (2), we obtain:

Vinax = V10 = 3.1623,  Amax = 4V10 = 12.6491, T, = 0.25,

Smax = 3.75V/10 = 11.8585,  z4(T) = 0.375v/10 = 1.1859..
In the following, we show plots of the planned trajectory obtained in Matlab (code available).
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Figure 2: The spiral Cartesian trajectory (with coordinates of the final reached point at time
T=45)
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Figure 3: Timing law: Path parameter s(¢), speed 5(t), and acceleration §(¢)
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Figure 4: Components of Cartesian trajectory: Position, velocity,
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Figure 5: Norms of the Cartesian velocity and
Py(t)]] <5 are always satisfied during motion
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acceleration: The given bounds ||p,(¢)|| < 1 and
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The Jacobian for the cylindrical (RPP) manipulator with q = (01, ds,d3) is
- ZoXP z1 =229
J(q) - < 20 0 0 ) 9

with the axes of the three joints being

0 cos 01
Zo =21 = 0|, =z2= sin 64 ,
1 0

and the end-effector position vector given by

ds cos 01
p=k(q)=| dgsiny |. 3)
do

Then, the expression of the geometric Jacobian is

—dszsinf; 0 cosf,
dzcosf; 0 sinf,
0 1 0
J(q) = 0 0 0 ,
0 0 0
1 0 0

which reveals that it is inherently impossible to rotate about the axes xo and y,.
The Jacobian relative to the end-effector linear velocity can be extracted by considering only
the first three rows, i.e.,
—dszsinfl; 0 cosf,
Jr(q) = dzcosfy 0 sin6; |,
0 1 0

which coincides indeed with the differentiation w.r.t. g of the direct kinematics function k(q) in (3).

Its determinant is
det JL(q) = dg,

vanishing at the singularity ds = 0. This occurs when the end-effector is located along the axis
of joint 1, a situation conceptually similar to the shoulder singularity of an anthropomorphic 3R
arm.
Since p = J1.(q)q, the differential kinematics at the acceleration level is

p=Ji(@)d+Ji(q)q,

where
. 7d.3 sinf, — ds 91 costly 0 70'1 sin 04 9:1 -2 dg 91 sinf, — ds 0% cos 01
Jr(q)g = d3cosf; —dsfisinf; 0 61cosb; d,2 = 2d3 6, cos By — d3 67 sin 6,
0 0 0 ds 0

Therefore, designing the joint acceleration vector as

G=J;"(@Q)(By+KpBy— JL(a)q) + Kp(ps — k(q)) — JL(q)q) (4)



yields
P=Dq+ Kp(Ps— D)+ Kp(ps—p),
namely the desired closed-loop behavior. Note that (4) is implemented using only the measurements

of g and ¢, beside the knowledge of the desired trajectory (up to its second time derivative) and
of the arm direct and differential kinematics.
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