
Robotics I
B: preferred for 5 credits

January 12, 2010

Exercise 1
Consider the Cartesian path defined by

p = p(s) =

 x(s)
y(s)
z(s)

 =

 R cos s
R sin s
h s

 , s ∈ [0,+∞)

where R > 0 and h > 0. This path is a spiral around the z-axis. Define a timing law s = s(t)
having a trapezoidal speed profile in t ∈ [0, T ], for a given and sufficiently large final time T > 0,
such that the resulting planned trajectory pd(t) = p(s(t)) satisfies the following conditions:

• ṗd(0) = ṗd(T ) = 0;

• ‖ṗd(t)‖ ≤ V , for a given V > 0;

• ‖p̈d(t)‖ ≤ A, for a given and sufficiently large A > 0.

Provide in particular the reached height zd(T ) in closed form.
Moreover, define a coordinated motion for the orientation along the above path, by specifying a
moving frame that has its xo axis always pointing and orthogonal to the central axis of the spiral
(the z-axis) and its zo always parallel to it. What is the maximum value reached by the norm of
the angular velocity, ‖ω‖, associated to the planned trajectory?
Finally, evaluate the solution found for the following numerical data:

R = 0.3 [m], h = 0.1 [m], V = 1 [m/s], A = 5 [m/s2], T = 4 [s].

Exercise 2B

Figure 1: A cylindrical manipulator

Derive the 6 × 3 geometric Jacobian for the cylindrical manipulator in Fig. 1 and find the singu-
larities of its linear velocity part. Consider a desired motion pd(t) of the end-effector position that
is twice-differentiable w.r.t. time. Taking the joint accelerations q̈ =

(
θ̈1 d̈2 d̈3

)T
as control

inputs and assuming that only q and q̇ are measured, define a Cartesian kinematic controller at
the acceleration level that assigns (out of singularities) the closed-loop behavior to the system

ë + KDė + KP e = 0,

where e = pd − p, and KP and KD are positive definite, diagonal matrices.
[150 minutes; open books]
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Solutions
January 12, 2010

Exercise 1

The velocity vector along the path is given by

ṗd =
dpd(t)
dt

=
dp(s)
ds

ds(t)
dt

=

 −R sin s
R cos s
h

 ṡ,

and thus
‖ṗd(t)‖ =

√
R2 + h2 |ṡ(t)|.

The constraint ‖ṗd(t)‖ ≤ V on the Cartesian velocity becomes

|ṡ(t)| ≤ V√
R2 + h2

=: Vmax

for the speed profile ṡ.
The acceleration vector along the path is given by

p̈d =
d2pd(t)
dt2

=
dp(s)
ds

s̈(t) +
d2p(s)
ds2

ṡ2(t) =

 −R sin s
R cos s
h

 s̈+

 −R cos s
−R sin s

0

 ṡ2,

and thus
‖p̈d(t)‖ =

√
(R2 + h2) s̈2(t) + (R ṡ2(t))2.

The constraint ‖p̈d(t)‖ ≤ A on the Cartesian acceleration can be rewritten as

(R2 + h2) s̈2(t) ≤ A2 − (R ṡ2(t))2

for the acceleration profile s̈. Since this constraint has to be satisfied for all t ∈ [0, T ], one should
consider the worst case, i.e., |ṡ| = Vmax. We obtain

|s̈(t)| ≤

√
A2 − ( RV 2

R2+h2 )2

R2 + h2
=: Amax.

In order to have a feasible Amax > 0, the value of A should be sufficiently large, i.e.,

A >
RV 2

R2 + h2
. (1)

At this stage, given the total time T and the computed limits Vmax and Amax, the timing
law with trapezoidal speed profile is fully specified. In particular, we have for the accelera-
tion/deceleration interval time

Ts =
Vmax

Amax
=

V√
A2 − ( RV 2

R2+h2 )2
.

In order to have a complete trapezoidal profile (with at least one instant where Vmax is reached),
the total time T should be sufficiently large, i.e.,

T ≥ 2Ts =
2V√

A2 − ( RV 2

R2+h2 )2
. (2)
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The total displacement of the parameter s at time t = T is then

smax := s(T ) = (T − Ts)Vmax = TVmax −
V 2

max

Amax
=

TV√
R2 + h2

− V 2√
(R2 + h2)A2 − (RV 2)2

R2+h2

.

Therefore, the reached height at the final time t = T is

zd(T ) = h s(T ) = h smax.

For completeness, we compute also the curvature of the given parametric path:

κ(s) =

∥∥∥∥dpds × d2p

ds2

∥∥∥∥∥∥∥∥dpds
∥∥∥∥3 =

R

R2 + h2
.

Indeed, κ(s) is constant for all s and collapses to 1/R for h = 0.
For planning the requested orientation trajectory, which has to be coordinated with the position

trajectory, we define a moving frame as a function of the same parameter s. This is given by

R(s) =
(

xo(s) y0(s) zo(s)
)

=

 − cos s sin s 0
− sin s − cos s 0

0 0 1

 .

Note that this moving frame is not the Frenet frame associated to the parametrized path. Using
the notations p′(s) = dp(s)/ds and p′′(s) = d2p(s)/ds2, the Frenet frame is specified as

RFrenet(s) =
(

t(s) n(s) b(s)
)

=
(

p′(s)
‖p′(s)‖

p′′(s)
‖p′′(s)‖ t(s)× n(s)

)

=


− R√

R2+h2 sin s − cos s h√
R2+h2 sin s

R√
R2+h2 cos s − sin s − h√

R2+h2 cos s

h√
R2+h2 0 R√

R2+h2

 .

In fact, the two frames coincide (modulo a rotation of π/2 around the z-axis) only when h = 0.
Setting Rd(t) = R(s(t)), the angular velocity vector is computed from

S(ω) = ṘdR
T
d = ṡ(t)

 sin s(t) cos s(t) 0
− cos s(t) sin s(t) 0

0 0 0

 − cos s(t) − sin s(t) 0
sin s(t) − cos s(t) 0

0 0 1

 =

 0 −ṡ(t) 0
ṡ(t) 0 0
0 0 0

 .

As expected (being the rotation of the moving frame only around the z-axis and counterclockwise),

ω =

 0
0
ṡ(t)

 ⇒ ‖ω‖ = |ṡ(t)|,

and the maximum value of the norm of the angular velocity vector is obviously Vmax.
With the given numerical data, which satisfy both inequalities (1) and (2), we obtain:

Vmax =
√

10 = 3.1623, Amax = 4
√

10 = 12.6491, Ts = 0.25,

smax = 3.75
√

10 = 11.8585, zd(T ) = 0.375
√

10 = 1.1859 .

In the following, we show plots of the planned trajectory obtained in Matlab (code available).
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Figure 2: The spiral Cartesian trajectory (with coordinates of the final reached point at time
T = 4 s)
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Figure 3: Timing law: Path parameter s(t), speed ṡ(t), and acceleration s̈(t)
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Figure 4: Components of Cartesian trajectory: Position, velocity, and acceleration (x in blue, y in
green, z in red)
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Figure 5: Norms of the Cartesian velocity and acceleration: The given bounds ‖ṗd(t)‖ ≤ 1 and
‖p̈d(t)‖ ≤ 5 are always satisfied during motion
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Exercise 2B

The Jacobian for the cylindrical (RPP) manipulator with q = (θ1, d2, d3) is

J(q) =
(

z0 × p z1 z2

z0 0 0

)
,

with the axes of the three joints being

z0 = z1 =

 0
0
1

 , z2 =

 cos θ1
sin θ1

0

 ,

and the end-effector position vector given by

p = k(q) =

 d3 cos θ1
d3 sin θ1
d2

 . (3)

Then, the expression of the geometric Jacobian is

J(q) =


−d3 sin θ1 0 cos θ1
d3 cos θ1 0 sin θ1

0 1 0
0 0 0
0 0 0
1 0 0

 ,

which reveals that it is inherently impossible to rotate about the axes x0 and y0.
The Jacobian relative to the end-effector linear velocity can be extracted by considering only

the first three rows, i.e.,

JL(q) =

 −d3 sin θ1 0 cos θ1
d3 cos θ1 0 sin θ1

0 1 0

 ,

which coincides indeed with the differentiation w.r.t. q of the direct kinematics function k(q) in (3).
Its determinant is

det JL(q) = d3,

vanishing at the singularity d3 = 0. This occurs when the end-effector is located along the axis
of joint 1, a situation conceptually similar to the shoulder singularity of an anthropomorphic 3R
arm.

Since ṗ = JL(q)q̇, the differential kinematics at the acceleration level is

p̈ = JL(q)q̈ + J̇L(q)q̇,

where

J̇L(q)q̇ =

 −ḋ3 sin θ1 − d3 θ̇1 cos θ1 0 −θ̇1 sin θ1
ḋ3 cos θ1 − d3 θ̇1 sin θ1 0 θ̇1 cos θ1

0 0 0

 θ̇1
ḋ2

ḋ3

 =

 −2 ḋ3 θ̇1 sin θ1 − d3 θ̇
2
1 cos θ1

2 ḋ3 θ̇1 cos θ1 − d3 θ̇
2
1 sin θ1

0

 .

Therefore, designing the joint acceleration vector as

q̈ = J−1
L (q)(p̈d + KD(ṗd − JL(q)q̇) + KP (pd − k(q))− J̇L(q)q̇) (4)
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yields
p̈ = p̈d + KD(ṗd − ṗ) + KP (pd − p),

namely the desired closed-loop behavior. Note that (4) is implemented using only the measurements
of q and q̇, beside the knowledge of the desired trajectory (up to its second time derivative) and
of the arm direct and differential kinematics.

∗ ∗ ∗ ∗ ∗
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