
Robotics I
February 6, 2015

Exercise 1

Consider the 3R robot in Fig. 1 (this is the same robotic structure of an exercise assigned in
September 2007). The base frame and an additional end-effector frame are already specified.
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Figure 1: A robot with three revolute joints.

• Given a desired orientation Rd of the end-effector frame, solve the inverse kinematics problem
in symbolic form. Consider also possible singular cases.

• Apply your result and determine all numerical solutions q for the following two sets of data:

Rd,1 =

 0 1 0
0 0 −1
−1 0 0

 ; Rd,2 =

 1 0 0
0 1 0
0 0 1

 = I.

• Provide for this robot the relation between q̇ and the angular velocity ωE of the end-effector
frame (expressed in the base frame).

• Determine a joint velocity q̇ in the configuration q = 0 that produces the desired angular
velocity ωE,d =

(
0 0 3

)T [rad/s]. Has this problem a solution? If so, is it unique?

• “This robot is of little use for positioning the end-effector in 3D space.” Do you agree with
this statement? Why?

Extra • Based on the analysis you have performed, can this robot realize any pointing task with its
end-effector axis zE? If so, is there a unique solution in the generic case? Are there singular
situations? (If you reply correctly to the extra questions, you get a bonus)
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Exercise 2

Given the two points

A =
(
−3
0

)
[m] and B =

(
0.732

1

)
[m]

on the plane, connect them with the arc (of minimum length) of a circle having radius R = 2 [m]
and parametrize this path by its arc length s. Design a timing law s = s(t) with trapezoidal speed
profile so as to obtain a rest-to-rest circular trajectory p(t) from A to B that performs the transfer
in minimum time T under the maximum velocity and acceleration constraints

‖ṗ(t)‖ ≤ Vmax, ‖p̈(t)‖ ≤ Amax, t ∈ [0, T ],

and the bound on the normal acceleration p̈n(t) to the path

‖p̈n(t)‖ ≤ An,max, t ∈ [0, T ].

Solve this Cartesian trajectory planning problem with the data

Vmax = 3 [m/s], Amax = 4 [m/s2], An,max = 2 [m/s2],

providing also the numerical values of the associated minimum time T .

[180 minutes; open books]
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Solution
February 6, 2015

Exercise 1

As usual, the first step is to assign the DH frames and fill the associated table of parameters,
see Fig. 2 and Tab. 1. Note that the end-effector frame RFE cannot be the last reference frame
RF3 of the DH frame assignment. In fact, its orientation cannot be generated by a suitable choice
of feasible DH parameters (in the last row of the table), since the xE axis is not incident and
orthogonal to the last defined joint axis, i.e., z2. Therefore, we need also an additional (constant)
transformation matrix 3TE relating RF3 to RFE .
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Figure 2: Denavit-Hartenberg frames for the robot of Fig. 1.

i αi ai di θi

1 π/2 0 A q1

2 π/2 0 0 q2

3 0 C B q3

Table 1: Denavit-Hartenberg parameters associated to the frames chosen as in Fig. 2.

Using Tab. 1, we compute the homogeneous matrices i−1Ai(qi), for i = 1, 2, 3. The additional
constant transformation matrix from RF3 to the specified end-effector frame RFE is

3TE =

(
3RE 0

0T 1

)
=


0 0 1 0
0 1 0 0
−1 0 0 0
0 0 0 1

 .
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Indeed, there are other possible assignments of DH frames. In particular, one could also place
the origin of the last DH frame RF3 coincident with that of frame RF2 (at the robot shoulder).
Such situation is shown in Fig. 3, together with the new DH table and the (different) transformation
matrix 3TE . The last row of the DH table is made of zeros, except for θ3 = q3.

i !i" ai di #i"

1 $/2" 0 A q1 

2 $/2" 0 0 q2 

3 0 0 0 q3 
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Figure 3: An alternative assignment of the last Denavit-Hartenberg frame RF3, with the associated
table and additional transformation to the end-effector frame RFE .

The complete direct kinematics1 is given by

0TE(q1, q2, q3) = 0A1(q1) 1A2(q2) 2A3(q3) 3TE =

(
0RE(q1, q2, q3) 0p0E(q1, q2, q3)

0T 1

)
,

with

0RE =

 0xE(q1, q2) 0yE(q1, q2, q3) 0zE(q1, q2, q3)

 (1)

=

 − cos q1 sin q2 sin q1 cos q3 − cos q1 cos q2 sin q3 sin q1 sin q3 + cos q1 cos q2 cos q3
− sin q1 sin q2 − cos q1 cos q3 − sin q1 cos q2 sin q3 sin q1 cos q2 cos q3 − cos q1 sin q3

cos q2 − sin q2 sin q3 sin q2 cos q3


and

0p0E =

 B cos q1 sin q2 + C sin q1 sin q3 + C cos q1 cos q2 cos q3
B sin q1 sin q2 − C cos q1 sin q3 + C sin q1 cos q2 cos q3

A−B cos q2 + C sin q2 cos q3

 .

During the computations, we saved also

0z1 = 0R1(q1)

 0
0
1

 =

 sin q1
− cos q1

0

 , 0z2 = 0R1(q1)1R2(q2)

 0
0
1

 =

 cos q1 sin q2
sin q1 sin q2
− cos q2

 .

1The outcome is exactly the same in the two situations of Fig. 2 and Fig. 3.
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Thus, the Jacobian matrix relating the joint velocity q̇ to the angular velocity 0ωE of the end-
effector frame is given by

0ωE

(
= 0ω3

)
= J(q) q̇, J(q) =

(
0z0

0z1
0z2

)
=

 0 sin q1 cos q1 sin q2
0 − cos q1 sin q1 sin q2
1 0 − cos q2

 ,

with det J(q) = sin q2. This dependence shows that only the angle q2 (the only one that is
intrinsically defined by the spatial disposition of the joint axes of this robot) matters for the
angular mobility of the end effector.

Note that the actual values of A, B, and C play no role at all in the orientation kinemat-
ics (as we could have expected), since these length parameters appear only in the expression of
0p0E . Therefore, we can proceed directly to the solution of the inverse kinematics problem for the
orientation without this information.

For a desired orientation of the end-effector frame, represented by a given rotation matrix
Rd = {Rij}, one can determine the inverse kinematics solution using the elements in the third row
and first column of (1). First, compute

qI2 = ATAN2
{√

R2
32 +R2

33, R31

}
.

If R2
32 + R2

33 6= 0, which means sin q2 6= 0, we are in the regular case. A second distinct solution
for q2 is computed as

qII2 = ATAN2
{
−
√
R2

32 +R2
33, R31

}
.

Moreover,

qI1 = ATAN2
{
−R21

sin qI2
,
−R11

sin qI2

}
, qII1 = ATAN2

{
−R21

sin qII2
,
−R11

sin qII2

}
,

and

qI3 = ATAN2
{
−R32

sin qI2
,
R33

sin qI2

}
, qII3 = ATAN2

{
−R32

sin qII2
,
R33

sin qII2

}
.

When R32 = R33 = 0, we are in a singular situation. This occurs if and only if sin q2 = 0, thus
when either q2 = 0 or q2 = π. If q2 = 0, we can solve only for the difference q1 − q3:

0RE

∣∣
q2=0

=

 0 sin(q1 − q3) cos(q1 − q3)
0 − cos(q1 − q3) sin(q1 − q3)
1 0 0

 ⇒ q1−3 := q1 − q3 = ATAN2 {R23, R13} ,

leading to an infinity of solutions of the form

q =
(
α 0 α− q1−3

)T
, ∀α ∈ R.

Similarly, when q2 = π we can solve only for the sum q1 + q3:

0RE

∣∣
q2=π

=

 0 sin(q1 + q3) − cos(q1 + q3)
0 − cos(q1 + q3) − sin(q1 + q3)
−1 0 0

 ⇒ q1+3 := q1+q3 = ATAN2 {R12,−R13} ,
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leading to an infinity of solutions of the form

q =
(
β π q1+3 − β

)T
, ∀β ∈ R.

Applying these results to the given data, we have that

Rd,1 =

 0 1 0
0 0 −1
−1 0 0

 ⇒ a singular case with q2 = π,

leading to the solutions q =
(
β π π/2− β

)T , for any β. On the other hand, Rd,2 = I is a
regular case leading to the pair of solutions

qI =
(
π π/2 0

)T
, qII =

(
0 −π/2 π

)T
.

The Jacobian matrix J(q) is singular in the zero configuration q = 0. However, it takes a form
that allows to realize the given angular velocity ωE.d. In fact,

J(0) =

 0 0 0
0 −1 0
1 0 −1

 ⇒ ωE,d =

 0
0
3

 ∈ R (J(0)) = span


 0
γ

0

 ,

 0
0
δ


 .

Therefore, there exists an infinite number of joint velocity solutions q̇ providing ωE,d, all having
q̇2 = 0 and with q̇1 − q̇3 = 3 [rad/s]. In particular, q̇ = J#(0) ωE,d =

(
1.5 0 −1.5

)T [rad/s]
provides the minimum norm solution.

Due to its kinematics this robot has a limited use for positioning tasks, since the primary
workspace is very restricted. In fact, it is a thin spherical mantle/surface, placed on top of the
surface of the sphere described by the tip position of the second link (a 2R polar sub-structure).

The solution to the last (extra) question is left as an exercise.

Exercise 2

We construct first the specified path from A to B. This can be done easily in a geometric way
by defining a circumference of given radius R passing through two points, as illustrated in Fig. 4
(the construction needs only a ruled set square and a compass): (a) given the points A and B,
(b) draw the line L1 through them, define the midpoint (A + B)/2 of the segment AB, and draw
the line L2 orthogonal2 to L1 and passing through the midpoint (L2 contains all points that are
equidistant from A and B); (c) the center of the circle will be on L2, at a distance that can be
determined by Pythagoras theorem. There are in general two solutions C1 and C2, which are
fully equivalent in the present context. The shortest path from A to B on the circle of radius R
centered in C1 is shown as a bolded arc (the arrow indicates its clockwise rotation in this case).

Indeed, we may prefer an algebraic solution. The above procedure can be simply programmed
as a Matlab function, called by passing the coordinates of points A and B, and the radius R > 0.
For simplicity, in the following piece of code we have not considered the possible non-regular cases
(e.g., when 2R is less than the distance d = ‖B −A‖).

2All orthogonal lines to a line ax + by + c = 0 in the plane xy can be written as ay − bx + d = 0.
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Figure 4: Geometric steps for constructing a circle of radius R through two points A and B. There
are two solutions in general.

function CircleCenter(xA,yA,xB,yB,R)
d = sqrt((xB-xA)^2+(yB-yA)^2);
xM = (xA+xB)/2;
yM = (yA+yB)/2;
% only the regular case of two solutions
disp(’first center’)
cx1 = xM - sqrt(R^2-(d/2)^2)*(yA-yB)/d
cy1 = yM - sqrt(R^2-(d/2)^2)*(xB-xA)/d
disp(’second center’)
cx2 = xM + sqrt(R^2-(d/2)^2)*(yA-yB)/d
cy2 = yM + sqrt(R^2-(d/2)^2)*(xB-xA)/d

Using this code on the problem data, we obtain the two centers

C1 =
(
−1
0

)
[m] and C2 =

(
−1.268

1

)
[m].

We choose (arbitrarily) C = C1. Due to the specific data values that were given, this solution
could have been found rather immediately also by visual inspection —see Fig. 5.

A = (-3,0) 

p(s) 

R = 2 

C = (-1,0)  

B = (0.7321,1) 

D = (-1,2) 

E = (1,0) 

!AB = 5"/6   

L = 5"/3   

Figure 5: The actual geometric path p(s) constructed with the problem data, using the circle of
radius R = 2 m with center at C = (−1, 0).

The infinitesimal arc length on a circle of radius R can be written as ds = Rdθ, where dθ is the
angle spanning the arc. Moreover, the path is traced clockwise, which is the negative convention
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for the angles. Using simple trigonometry, the path parametrization by the arc length is given
then in general by

p(s) = C +R

 cos
(
− s
R

+ φ
)

sin
(
− s
R

+ φ
)
 , s ∈ [0, L]. (2)

By imposing p(0) = A, the required path parametrization becomes

p(s) = C −R

 cos
(
− s
R

)
sin
(
− s
R

)
 , s ∈ [0, L], L = R

5π
6

=
5π
3

= 5.236 [m], (3)

where the phase φ = π of the trigonometric functions has been tuned suitably (giving the minus
sign in front of R, outside the parentheses). Note also that the total length L is obtained from
angle θAB spanning the whole path (equal to 150◦, if expressed in degrees) multiplied by the radius
R = 2.

While the above computations may appear cumbersome, a nice feature of the problem is that
one does not have to determine the center C of the circle, nor the circle itself, in order to satisfy all
the design specifications on the trajectory! We need C only to define/draw the actual path p(s).
Even the path length L can be directly computed from the known formula (see, e.g., wikipedia)
relating the distance d of two points with the length L of the (shortest) arc of a circle of radius R
passing through the two points:

L = Rθ, d = ‖B −A‖ = 2R sin
(
θ

2

)
⇒ L = 2R arcsin

(
d

2R

)
(= 5.236 [m]).

With the length L and the generic expression (2), we can solve completely the assigned problem.
Nonetheless, in the following we shall continue with the simpler path expression obtained in (3).

For a generic s = s(t), the first and second time derivatives of p(s) in (3) are given by

ṗ =
dp

ds

ds

dt
=

 sin
( s
R

)
cos
( s
R

)
 ṡ (4)

and

p̈ = p̈t + p̈n =
dp

ds
s̈+

d2p

ds2
ṡ2 =

 sin
( s
R

)
cos
( s
R

)
 s̈+

1
R

 cos
( s
R

)
− sin

( s
R

)
 ṡ2

=

 cos
( s
R

)
sin
( s
R

)
− sin

( s
R

)
cos
( s
R

)
( ṡ2/R

s̈

)
= RotT

( s
R

)( ṡ2/R

s̈

)
,

(5)

with a decomposition in tangential and normal acceleration to the path, respectively p̈t and p̈n.
The 2×2 matrix Rot(θ) is a planar rotation by an angle θ, acting on 2-dimensional vectors. Thanks
to the used parametrization by the arc length, we have the following properties for the norms∥∥∥∥dpds

∥∥∥∥ = 1 ⇒ ‖ṗ‖ = |ṡ|, ‖p̈t‖ = |s̈|,
∥∥∥∥d2p

ds2

∥∥∥∥ =
1
R
⇒ ‖p̈n‖ =

ṡ2

R
, ‖p̈‖ =

√(
ṡ2

R

)2

+ s̈ 2.
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As requested, we consider now a generic a trapezoidal profile for ṡ(t) (i.e., a bang-coast-bang
profile for s̈(t)) of duration T , with symmetric initial and final acceleration/deceleration phases of
absolute value Ā and equal duration Ts, and a central constant cruising speed V̄ > 0 to be kept
for T − 2Ts seconds (assuming T − 2Ts ≥ 0, which needs to be checked at the end). The four
quantities V̄ , Ā, Ts, and T have to be determined so as to cover the total path length L, while
minimizing T and satisfying the constraints specified by Vmax, Amax, and An,max.

The important thing to note is that the curvature 1/R of the path and the bound on the normal
acceleration p̈n

‖p̈n‖ =
ṡ2

R
≤ An,max

may impose a more severe limit on ṡ than the bound Vmax on the norm of ṗ. In fact, we have that

|ṡ| ≤ min
{
Vmax,

√
RAn,max

}
= min{3,

√
4} = 2 =: V̄ ′. (6)

To evaluate the constraint on the total acceleration p̈, we distinguish two situations for the tan-
gential acceleration: constant s̈ = ±Ā 6= 0 (in the initial and final phases) and s̈ = 0 (in the cruise
phase at constant speed). During the cruise phase, it is

‖p̈‖ =
ṡ2

R
≤ Amax ⇒ |ṡ| ≤

√
RAmax =

√
8 =: V̄ ′′. (7)

As a result, combining (6) and (7), we have for the maximum speed ṡ(t) during cruising

ṡ(t) = V̄ = min
{
V̄ ′, V̄ ′′

}
= 2, t ∈ [Ts, T − Ts].

In the constant acceleration phase (a specular argument applies to the constant deceleration phase),
the speed increases linearly from 0 at t = 0 (start at rest) to V̄ at t = Ts. The largest value for
the norm of the total acceleration is approached when t = Ts. Thus, we impose satisfaction of the
constraint in the worst case:

‖p̈(Ts)‖ =

√(
V̄ 2

R

)2

+ Ā 2 ≤ Amax ⇒ Ā ≤

√
A2
max −

(
V̄ 2

R

)2

=
√

12.

Since a minimum transfer time is requested, we choose the maximum feasible value of the acceler-
ation norm (i.e., ‖p̈(Ts)‖ = Amax), leading to Ā =

√
12.

With the above values for V̄ and Ā, having already computed the length L of the path, we
determine the remaining unknowns with the usual formulas:

Ts =
V̄

Ā
=

2√
12

= 0.577 [s], (T − Ts)V̄ = L ⇒ T = Ts +
L

V̄
= 0.577 +

5π
6̄

= 3.195 [s].

We obtained T > 2Ts, confirming that the actual speed profile is trapezoidal.

∗ ∗ ∗ ∗ ∗
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