Robotics 1
February 6, 2015

Exercise 1

Consider the 3R robot in Fig. 1 (this is the same robotic structure of an exercise assigned in
September 2007). The base frame and an additional end-effector frame are already specified.

Figure 1: A robot with three revolute joints.

e Given a desired orientation R, of the end-effector frame, solve the inverse kinematics problem
in symbolic form. Consider also possible singular cases.

e Apply your result and determine all numerical solutions q for the following two sets of data:

0 1 0 10 0
Rii=| 0 0 -1 |; Rspe=[010]=rI
-1 0 0 00 1

e Provide for this robot the relation between ¢ and the angular velocity wg of the end-effector
frame (expressed in the base frame).

e Determine a joint velocity ¢ in the configuration ¢ = 0 that produces the desired angular
velocity wgg=(0 0 3 )T [rad/s]. Has this problem a solution? If so, is it unique?

o “This Tobot is of little use for positioning the end-effector in 3D space.” Do you agree with
this statement? Why?

FEztra e Based on the analysis you have performed, can this robot realize any pointing task with its
end-effector axis zg? If so, is there a unique solution in the generic case? Are there singular
situations? (If you reply correctly to the extra questions, you get a bonus)



Exercise 2

Given the two points

A<—O3) ] and B(0.7132> fm]

on the plane, connect them with the arc (of minimum length) of a circle having radius R = 2 [m]
and parametrize this path by its arc length s. Design a timing law s = s(t) with trapezoidal speed
profile so as to obtain a rest-to-rest circular trajectory p(t) from A to B that performs the transfer
in minimum time 7" under the maximum velocity and acceleration constraints

PO < Vinaz, PO < Amaw, £ €[0,T],
and the bound on the normal acceleration p,,(¢) to the path
1D, (DIl < An.maz, €0, T].
Solve this Cartesian trajectory planning problem with the data
Vinaw = 3[m/s],  Apar =4[m/s?], Ay nar = 2[m/s?,
providing also the numerical values of the associated minimum time 7.

[180 minutes; open books]



Solution
February 6, 2015

Exercise 1

For the assignment of DH frames and the associated table of parameters, see Fig. 2 and Tab. 1.
We need also an additional transformation matrix 3T g relating the third DH frame RF; to RFg:

0 01 0
3Ry 0 0 10 0
3 B
Ty = - 1
E<0T1> 100 0 (1)
0 0 0 1

Figure 2: Denavit-Hartenberg frames for the robot of Fig. 1.

il oo |a; | d;| 0
1|72 0]A|aq
2| 7/210 |0 |q
3 0 C | B|gs

Table 1: Denavit-Hartenberg parameters associated to the frames chosen as in Fig. 2.

Using Tab. 1 and (1), the direct kinematics for the orientation is computed as

°Rp = °Ri(q1) 'R2(q2) *R3(q3) * R (2)
—C0sq1Singe  singj cosgs — cosqy COS g sings  sinqp sin gz + cos g oS g2 COS q3
= | —singisings —cosq cosqs — sing; cos g sings sin gy cos ga cos g3 — cos ¢y sings |
COS @2 — sin g5 sin q3 sin gs cos g3



which is independent of A, B, and C.

The Jacobian matrix in ®wg (= %ws) = J(q) @ = ( °z0 21 "22 ) ¢ is given by
0 0 0 0 singg cosqisings
J(q) = 0 ‘Ri(q1) | 0 ‘Ri(q1)'Ra(q2) | O =] 0 —cosqu singisings |,
1 1 1 0 — COS @2

with det J(q) = sin gz.

For a desired orientation of the end-effector frame, represented by a given rotation matrix
R; = {R;;}, one can determine the inverse kinematics solution using the elements in (2). First,

compute
q3 = ATAN2 {,/Rg2 + R§3,R31} :

If R%, + R3; # 0, which means sin gy # 0, we are in the regular case. A second distinct solution

for ¢, is computed as
qél = ATAN2 {\ / R§2 + R§3, Rgl} .

Moreover,
—Ryi —R —Ry1 —R
q{:ATANz{ 2 1}} q{I=ATAN2{. = 1,1,}
sings ' sing; singy’ " sings
and

g5 = ATAN2 { “fge R } . ¢l = ATAN2{ s R33} .

sing!’ singl sin g7 sin ¢!

When R3; = R33 = 0, we are in a singular situation. This occurs if and only if sings = 0, thus
when either ¢go = 0 or g2 = 7. If g2 = 0, we can solve only for the difference ¢; — gs:

0 sin(q1 —g3) cos(qr —q3)

0 —cos(qn —g3) sin(q1 —gs3) =  qi-3:=q —q3 = ATAN2{Ry3, R13},
1 0 0

ORE|

q2=0 "~

leading to an infinity of solutions of the form
q:(a 0 a—ql_g)T, Va € R.
Similarly, when go = 7 we can solve only for the sum ¢; + ¢3:

0  sin(q1+g3) —cos(q1+gs3)
Rp| = 0 —cos(q1+gq3) —sin(q1+gs) = qu43 = q1+q3 = ATAN2{Ry2, —Ri3},
-1 0 0

leading to an infinity of solutions of the form
T
q= (8 ™ q4—0), V3 € R.

Applying these results to the given data, we have that

0 1 0
Ry, = 0O 0 -1 = a singular case with ¢; = 7,
-1 0 O



leading to the solutions ¢ = (8 =« w/2—-p )T, for any 8. On the other hand, Ry = I is a
regular case leading to the pair of solutions

ad=(r 72 0)", q7T=(0 —x/2 7)"

The Jacobian matrix J(q) is singular in the zero configuration ¢ = 0. However,

0 0 0 0 0 0
JO)=10 -1 0 = wgpqa=| 0| €R(J(0)) =span ~ 1,10
1 0 -1 3 0 5

Therefore, there exists an infinite number of joint velocity solutions ¢ providing wg 4, all having
g2 = 0 and with ¢ — ¢3 = 3 [rad/s]. In particular, ¢ = J#(O)wE,d = ( 1.5 0 —-15 )T [rad/s]
provides the minimum norm solution.

Due to its kinematics this robot has a limited use for positioning tasks, since the primary
workspace is very restricted. In fact, it is a thin spherical mantle/surface, placed on top of the
surface of the sphere described by the tip position of the second link (a 2R polar sub-structure).

The solution to the last (extra) question is left as an exercise.

Exercise 2

The specified path from A to B can be constructed easily in a geometric way, by defining a
circumference of given radius R passing through two points, as illustrated in Fig. 3. The shortest
path from A to B on the circle of radius R centered in C; is shown as a bolded arc (the arrow
indicates its clockwise rotation).

(@ (b) (©

Figure 3: Geometric steps for constructing a circle of radius R through two points A and B (there
are two solutions in the regular case).

In general, an infinitesimal arc length on a circle of radius R can be written as ds = R df, where
df is the angle spanning the arc from the circle center C. Using simple trigonometry, the path
parametrization by the arc length is given by

cos (i% + qb)

sin (:I:% + (;5) 7

p(s)=C+R s € [0, L], (3)



where the sign in =+ is chosen positive if the path is traced counterclockwise, negative otherwise.
L is the total arc length (from point A to point B), while the phase ¢ is chosen so as to be in A
for s = 0.

A nice feature of the problem is that one does not have to determine the center C of the circle,
nor the circle itself, in order to satisfy all the design specifications on the trajectory! Even the
path length L can be directly computed from the known formula (see, e.g., wikipedia) relating the
distance d of two points A and B with the length L of the (shortest) arc of a circle of radius R
passing through the two points:

L=R0sp, d=|B— Al =2Rsin (933) = L =2Rarcsin (;;) .

With the length L and the generic expression (3), we can solve completely the assigned problem.

D=(-12) A
* L =57/3
p@s)
0,5 = 5/6 / B=(0.7321,1)
A=(-30) C=(-10) E=(10)

Figure 4: The actual geometric path p(s) constructed with the problem data, using a circle of
radius R = 2 m with center at C = (—1,0).

Nonetheless, due to the specific data values that were given, a center C' can be found rather
immediately by visual inspection —see Fig. 4. By imposing p(0) = A, the parametrization of the
clockwise circular path becomes

cos(—%) se0,I], L=RT =5 _ 5936 m] (4)
sin (—%) ’ o " ’ | |

where the phase ¢ = 7 chosen in the argument of the trigonometric functions in (3) leads to the
minus sign in front of the first R. The length L is obtained from the angle 6 4p spanning the whole
path (equal to 150°, if expressed in degrees) multiplied by the radius R = 2.

p(s)=C—R

For a generic s = s(t), the first and second time derivatives of p(s) in (4) are given by

 dpds sin ()

T o (2)



and

. S S

... d d? Sm(f) 1 COS(*)
p:pt—ypn:d—ps—kdizz)SQ i{ 54+ — RS 32

T os () —sin ()

S S
cos (—) sin (—) $2/R $2/R
O () ) ()
—sin (E> cos (E) $ $
with a decomposition in tangential and normal acceleration to the path, respectively p, and p,,.

The 2 x 2 matrix Rot(6) is a planar rotation by an angle 8, acting on 2-dimensional vectors. Thanks
to the used parametrization by the arc length, we have the following properties for the norms

1 §2 2\,
IR R 7
&= Il =T bl = /() +s

We consider now a generic a trapezoidal profile for $(¢) of duration T, with symmetric initial
and final acceleration/deceleration phases of absolute value A and equal duration T}, and a central
constant cruising speed V > 0 to be kept for T' — 2T}, seconds. The four quantities V', A, T}, and
T have to be determined so as to cover the total path length L, while minimizing T and satisfying
the constraints specified by Vinaz, Amaz, and Ay maz-

d*p
ds?

H H—I@IM—MN— ]

The important thing to note is that the curvature 1/R of the path and the bound on the normal

acceleration p,,
32
Hpn” - E S An max
may impose a more severe limit on $ than the bound V4, on the norm of p. In fact, we have that

[$] < min {Vmam, \/RAn’max} = min{3, \/41} —9—. V. (7)

To evaluate the constraint on the total acceleration p, we distinguish two situations for the tan-
gential acceleration: constant § = £A4 # 0 (in the initial and final phases) and § = 0 (in the cruise
phase at constant speed). During the cruise phase, it is

22
1Bl = % < Apar = |3 < VR Apae = V8=V, 8)
As a result, combining (7) and (8), we have for the maximum constant speed $ during cruising

$(t) =V =min{V', V"} =2, t € [Ts, T — T

In the constant acceleration phase (a specular argument applies to the constant deceleration phase),
the speed increases linearly from 0 at ¢ = 0 (start at rest) to V at t = T,. The largest value for
the norm of the total acceleration is approached when ¢t = T,. Thus, we impose satisfaction of the
constraint in the worst case:

V2 V2 2
BTl = (R>hw<Amw = dsy[a. - () -V

Since a minimum transfer time is requested, we choose the maximum feasible value of the acceler-
ation norm (i.e., ||p(Ts)|| = Amaz), leading to A = /12.



With the above values for V and A, having already computed the length L of the path, we
determine the remaining unknowns with the usual formulas:

1% 2
Tszizi
A V12

We obtained T > 2T, confirming that the actual speed profile is trapezoidal.

_ L 5
—0577]s), (T-T)6V=L = T:Ts+§=0.577+%=3.195[s].

* %k ok ok ok



