
Robotics I
January 9, 2015

Exercise 1

A planar 2R robot with links of length l1 = 0.1492 m and l2 = 0.1905 m and actuated by direct-
drive motors is equipped at the two joints with incremental encoders, providing respectively 8192
and 4096 pulses per turn. When the robot is in the nominal configuration θ̂1 = 45◦, θ̂2 = −60◦,
determine the maximum uncertainty (in norm) that affects the measure of the Cartesian end-
effector position.

Exercise 2

Consider a 2-dof planar RP robot with the following kinematic constraints:

joint ranges q1 ∈ [0, 120◦] , q2 ∈ [0.5, 1] [m],

joint velocity limits | q̇1| ≤ 40◦/s, | q̇2| ≤ 1.5 [m/s].
(1)

Assume that both joint velocities can switch their value instantaneously (in practice, this simpli-
fying assumption is reasonable when the physical limits on joint accelerations are very high). Plan
a straight line trajectory between two points in the Cartesian space (say, A and B) such that i)
the entire path belongs to the robot workspace, ii) the path has the maximum possible length, iii)
the trajectory satisfies the velocity limits in (1), and iv) the transfer from A to B is realized in
minimum time T (provide this value).

Exercise 3

A 3R anthropomorphic robot is characterized by the D-H parameters given in Tab. 1.

i αi ai [m] di θi

1 π/2 0 0 θ1

2 0 1.5 0 θ2

3 0 1 0 θ3

Table 1: Denavit-Hartenberg parameters of the 3R robot

A desired trajectory pd(t) is specified for the position p = f(θ) of the robot end effector as a straight
line rest-to-rest motion from point A =

(
0 −2 0.5

)T to point B =
(

1 0 0.5
)T [m], with

a trapezoidal velocity law having maximum speed vmax = 0.5 [m/s] and maximum acceleration
amax = 5 [m/s2]. The initial configuration of the robot is θ(0) =

(
−π/2 0 π/6

)T . Let the
joint velocity θ̇ be the command input. Design a controller so that the robot asymptotically tracks
the desired trajectory. Furthermore, determine also the smallest feedback gains in the control law
so that the norm of the Cartesian error e = pd − p is brought definitely below 5% of the initial
value ‖e(0)‖ as soon as one fourth of the nominal motion time of the desired trajectory has passed.
Provide the expressions of all terms involved in the control law. Sketch the time evolution of the
three Cartesian error components ex, ey and ez. Does the robot encounter singular configurations
during motion? Will all robot joints move while performing this control task?

[210 minutes; open books]
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Solution
January 9, 2015

Exercise 1

The limited accuracy in the indirect measure of the end-effector position is due to the resolution
of the incremental encoders, and is related to the robot Jacobian in the nominal configuration θ̂.
We have (with the usual shorthand notation)

p = f(θ) =

(
l1 cos θ1 + l2 cos (θ1 + θ2)
l1 sin θ1 + l2 sin (θ1 + θ2)

)
⇒ J(θ) =

∂f(θ)
∂θ

=

(
− (l1s1 + l2s12) −l2s12
l1c1 + l2c12 l2c12

)
.

From the Taylor expansion, it is

p = f(θ) ≈ f(θ̂) + J(θ)|θ=θ̂

(
θ − θ̂

)
= p̂+ J(θ̂)∆θ. (2)

From the given data, it is

p̂ =

(
0.2895
0.0562

)
[m], ∆θ =

(
± 2π/8192
± 2π/4096

)
[rad].

The small joint position uncertainty due to the resolution of the encoders can be applied in two
different ways to (2), depending on the choice of signs in the components of ∆θ —never use degrees
here! These signs are either the same (say, positive, leading to ∆θ1) or opposite (say, the first
negative and second negative, leading to ∆θ2). The two other combinations lead to values of
∆p = p− p̂ which are the opposite of what already found, and so with same norms. We have thus

∆p1 = p1 − p̂ = J(θ̂)∆θ1 =

(
−0.0562 0.0493
0.2895 0.1840

)(
0.0008
0.0015

)
=

(
0.0325
0.5043

)
[mm]

and

∆p2 = p2 − p̂ = J(θ̂)∆θ2 =

(
−0.0562 0.0493
0.2895 0.1840

)(
0.0008
−0.0015

)
=

(
−0.1187
−0.0602

)
[mm].

Therefore,

max ‖∆p‖ = max {‖∆p1‖, ‖∆p2‖} = max {0.5054, 0.1331} = 0.5054 [mm],

i.e., the maximum Cartesian uncertainty is about half a millimeter (which makes sense). Note that
the given data are the actual ones for the Quanser underactuated robot (Pendubot) available in
the Robotics Lab at DIAG.

Exercise 2

Drawing the workspace WS of the planar RP robot based on the joint ranges in (1), we obtain
part of a circular sector with inner radius 0.5 m and outer radius 1 m. With reference to Fig. 1,
the longest segment contained in this workspace is AB (tangent to the inner boundary of WS at
point E), which connects two vertices of the admissible area. It is

A =

(
1
0

)
, B =

 −0.5
√

3
2

 , L = ‖B −A‖ =
√

3 ≈ 1.7321 [m].
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A = (1, 0) 

D = (!  0.25, "3/4) 

C = (0.5, 0) 

B = (!  0.5, "3/2) 

E = (0.25, "3/4) 

q1 

q2 

Figure 1: Workspace of the planar RP robot with the segment AB of maximum length as path

The desired Cartesian path and velocity can be parametrized as follows:

pd(s) = A+
B −A
L

s =

 1− 1.5 s√
3

0.5 s

, s ∈ [0, L]; ṗd(s) =
B −A
L

ṡ =

 −1.5√
3

0.5

 ṡ. (3)

The direct and inverse kinematics of the PR robot are1

p =

(
px

py

)
=

(
q2 cos q1
q2 sin q1

)
= f(q) ⇒ q =

(
q1

q2

)
=

 ATAN2{py, px}√
p2

x + p2
y

 = f−1(p), (4)

where we have chosen only the positive solution for q2. Corresponding to points A, E (midpoint
of the trajectory), and B, we have thus

qA = f−1(A) =

(
0
1

)
, qE = f−1(E) =

(
60◦

0.5

)
, qB = f−1(B) =

(
120◦

1

)
.

Finally, the differential kinematics of the PR robot is

ṗ =

(
−q2 sin q1 cos q1
q2 cos q1 sin1

)(
q̇1

q̇2

)
=

(
−py cos q1
px sin q1

)(
q̇1

q̇2

)
= J(q)q̇. (5)

From the robot type and the shape of the path, the joint trajectories will display some symmetry
in time while moving from A to E and from E to B. Moreover, considering the numerical values
of the velocity limits, it is clear that the revolute joint will need more time to complete its motion.
Joint 1 will thus proceed at maximum positive speed, switching from rest to V1 = 40 rad/s at
t = 0 and vice versa at the (yet unknown) final time t = T . Simultaneously, the prismatic joint
will reduce its extension during the first half of the trajectory and reverse this motion during the

1We have not used here the standard DH coordinate θ1 as q1. In that case, everything would remain the same
modulo a clockwise rotation of WS and of the planned path by π/2 around the Cartesian origin.
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second half, so as to keep the robot end effector on the linear Cartesian path between A and B. In
particular, the velocity of joint 2 in the segment from A to E (reached at t = T/2) will be negative
(but neither at its maximum value nor constant, otherwise the end effector would not travel along
the straight Cartesian path). The velocity profile will mirror itself for t = (T/2, T ] according to
the rule q̇2(t) = −q̇2((T/2)− t).

For this intuitively described trajectory to be also the desired time optimal solution, we just need
to compute the resulting velocity of joint 2 and check its feasibility against the limit V2 = 0.5 m/s
during the entire motion interval [0, T ]. The time profile of the first joint is

qd1(t) = qd1(0) + V1t, t ∈ [0, T ], with qd1(0) = 0 ⇒ T =
∆q1
V1

=
120◦

40◦/s
= 3 s. (6)

A closed-form solution for the time profile qd2(t) of joint 2 and for the timing law s(t) along the
Cartesian path are obtained with the following method, which provides also q̇d2(t) and ṡ(t):

1. For each instant t (sampling uniformly the interval [0, T ], say every Tc = 1 ms), equate the
desired path position pd(s), expressed from the task side by (3) as a function of s, with the
direct kinematics of the end effector, as given by (4) from the robot side: 1− 1.5 s√

3
0.5 s

 =

(
q2 cos qd1

q2 sin qd1

)
⇒

 cos qd1
1.5√

3
sin qd1 −0.5

( q2

s

)
=

(
1
0

)
. (7)

2. Solve the linear system (7) for q2 = qd2(t) and s = s(t), and substitute therein q1 = qd1 = V1t:(
qd2(t)
s(t)

)
=

1
0.5 cosV1t+ 1.5√

3
sinV1t

(
0.5

sinV1t

)
. (8)

3. Similarly, equate at the differential level the desired Cartesian velocity on the path, expressed
from the task side by the second relation in (3), with the velocity of the end effector, as given
by (5) from the robot side, substituting therein p = pd(s), with s = s(t), and q̇d1 = V1: −1.5√

3
0.5

 ṡ =

(
−pdy(s)
pdx(s)

)
q̇d1 +

(
cos qd1

sin qd1

)
q̇2 =

 −0.5 s(t)

1− 1.5 s(t)√
3

V1 +

(
cosV1t

sinV1t

)
q̇2

or  cosV1t
1.5√

3
sinV1t −0.5

( q̇2

ṡ

)
=

 0.5V1 s(t)

−V1

(
1− 1.5 s(t)√

3

)  . (9)

4. Solve the linear system (9) for q̇2 = q̇d2(t) and ṡ = ṡ(t):

(
q̇d2(t)

ṡ(t)

)
=

V1

0.5 cosV1t+ 1.5√
3

sinV1t


(

0.25 +
(

1.5√
3
)
)2
)
s(t)− 1.5√

3

cosV1t+
(

0.5 sinV1t− 1.5√
3

cosV1t
)
s(t)

 , (10)

where the expression of s(t) from (8) should be be used.
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Note that the above steps 3 and 4 can be replaced (approximately) by a numerical derivative of
the expressions (8), e.g., by finite differences at the sampling rate 1/Tc. The final check is indeed

|q̇d2(t)| ≤ V2 = 1.5 [m/s], ∀t ∈ [0, T ]. (11)

The following simple Matlab code implements the above method:

V1=40*pi/180; T=3;

Tc=0.001; t=[0:Tc:T];

% solution for desired q2 and s

dets=0.5*cos(V1*t)+(1.5/sqrt(3))*sin(V1*t);

qd2=0.5./dets;

sd=sin(V1*t)./dets;

% solution for desired velocity of q2 and s

dotqd2=V1*(0.25*sd+(1.5/sqrt(3))^2*sd-(1.5/sqrt(3)))./dets;

dotsd=V1*((0.5*sin(V1*t)-(1.5/sqrt(3))*cos(V1*t)).*sd+cos(V1*t))./dets;

With the obtained values, we can verify that the constraint (11) is indeed always satisfied. There-
fore, the optimal solution is given by the joint trajectory qd(t) already found in (6) and (8).
Figure 2 shows the actual Cartesian path that has been planned, while Figs. 3–4 report the time
evolution of all the relevant variables. Note in particular that the speed ṡ(t) on the linear path is
not constant.
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Figure 2: Actual Cartesian path obtained with the planned joint trajectories
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Figure 3: Timing law s(t) for the path parameter in (3) and its speed ṡ(t), as computed from (8)
and (10). The minimum speed is at point E, where the motion of joint 2 is orthogonal to the path
and only joint 1 contributes with ‖E‖ · V1 ≈ 0.35 m/s
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Figure 4: Planned trajectories in position (blue) and velocity (red) for the revolute (top) and
prismatic (bottom) joints, as computed from (6), (8), and (10). As anticipated, motion of joint 2
is symmetric vs. the path midpoint E, and its velocity is maximum at the initial and final points
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Exercise 3

The length of the desired path is L = ‖B −A‖ =
√

5 ≈ 2.2361 m. Since

L =
√

5 > 0.05 =
v2
max

amax
,

the existence of a coast phase at constant speed is verified, and the nominal motion time to trace
the path with a trapezoidal velocity profile can be computed as

T =
Lamax + v2

max

vmax amax
= 4.5721 s.

The desired trajectory is written in parametrized form as

pd(t) = A+
B −A
L

s(t), for t ∈ [0, T ]→ s(t) ∈ [0, L], ṗd(t) =
B −A
L

ṡ(t) =
1√
5

 1
2
0

 ṡ(t),

with

s(t) =


2.5 t2, t ∈ [0, 0.1]

0.5 (t− 0.05), t ∈ [0.1, T − 0.1]

−2.5 (t− T )2 + 0.5 (T − 0.1), t ∈ [T − 0.1, T ]

and

ṡ(t) =


5 t, t ∈ [0, 0.1]

0.5, t ∈ [0.1, T − 0.1]

−5 (t− T ), t ∈ [T − 0.1, T ].

The nominal path is internal to the primary workspace and never crosses the axis of joint 1 (the
minimum distance to z0 is about 0.89 m) nor reaches the external boundary (where the links 2
and 3 would be stretched). Thus, if the end effector were always on this desired path, the robot
would not encounter any kinematic singularity.

Using the values in Tab. 1, we have for the direct kinematics of the robot end-effector position

p = f(θ) =

 cos θ1 (a2 cos θ2 + a3 cos (θ2 + θ3))
sin θ1 (a2 cos θ2 + a3 cos (θ2 + θ3))

a2 sin θ2 + a3 sin (θ2 + θ3)

 , with a2 = 1.5, a3 = 1 [m].

The associated Jacobian is

J(θ) =
∂f(θ)
∂θ

=

 −s1 (a2c2 + a3c23) −c1 (a2s2 + a3s23) −a3c1s23

c1 (a2c2 + a3c23) −s1 (a2s2 + a3s23) −a3s1s23

0 a2c2 + a3c23 a3c23

 .

In the initial configuration θ(0) =
(
−π/2 0 π/6

)T , we have

p(0) = f(θ(0)) =

 0
−2.3660

0.5

 ⇒ e(0) = pd(0)− p(0) = A− p(0) =

 0
0.3660

0

 ,
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so that only the ey(0) component is different from zero, while ex(0) = ez(0) = 0.

The kinematic control law that allows to obtain the desired characteristics has to be designed
on the Cartesian error, and with a Cartesian velocity feedforward, as

θ̇ = J−1(θ) (ṗd +K (pd − f(θ))) , with K = diag{kx, ky.kz} > 0, (12)

where the expressions of the required terms f(θ), J(θ), pd(t), and ṗd(t) have already been given.
In fact, the law (12) guarantees that the Cartesian tracking error e(t) = pd(t)− p(t) behaves as

ė = −Ke ⇒ ei(t) = ei(0) exp(−kit)→ 0 for t ≥ 0, i = x, y, z.

Any choice of strictly positive values for kx, ky, and kz will work. In this case, being the initial
errors on two Cartesian components already zero, it will be ex(t) = ez(t) = 0 for all times —this
is a consequence of the Cartesian decoupling achieved by the control law (12). Note also that
‖e(t)‖ = |ey(t)| holds for all t ≥ 0. For the gain ky, the requested minimum value is found by
imposing at t = T/4 = 1.1430 s

ey(T/4) = ey(0) exp(−kyT/4) = 0.05 ey(0) ⇒ ky = − 4
T

ln 0.05 = 2.6209.

Figure 5 shows the evolution of the norm of the Cartesian tracking error with this choice, and
confirms the satisfaction of the error reduction as soon as t ≥ T/4.
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Figure 5: Evolution of the norm of the Cartesian tracking error with ky = 2.6209

Moreover, the y-component of the Cartesian trajectory followed by the robot end effector
will not overshoot its initial value and will always be larger than that of the nominal trajectory,
practically coinciding with the desired one after five times the time constant τ of the exponential
trajectory (i.e., for t ≥ 5τ = 5 · (1/ky) ≈ 1.9 s). As a consequence, also the actual path executed
by the robot will never encounter kinematic singularities. Finally, all joints will be simultaneously
in motion during the execution of the controlled task.

∗ ∗ ∗ ∗ ∗
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