Robotics I

June 11, 2012

Exercise 1

The time derivative of a rotation matrix can be given the following two alternative expressions:

$$
\dot{\boldsymbol{R}}=\boldsymbol{R} \boldsymbol{S}(\boldsymbol{\Omega}), \quad \dot{\boldsymbol{R}}=\boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}
$$

Prove the correctness of both expressions and give the physical interpretation of $\boldsymbol{\omega}$ and $\boldsymbol{\Omega}$.

Exercise 2

Figure 1: Planar RPR robot
For the planar RPR robot shown in Fig. 1, derive the 2×3 Jacobian matrix $\boldsymbol{J}(\boldsymbol{q})$ relating the joint velocity $\dot{\boldsymbol{q}} \in \mathbb{R}^{3}$ to the Cartesian velocity $\dot{\boldsymbol{p}} \in \mathbb{R}^{2}$ of the end effector, and find all its singularities. Keeping q_{1} as arbitrary, choose a singular configuration of this robot and denote the Jacobian in this configuration as $\overline{\boldsymbol{J}}=\overline{\boldsymbol{J}}\left(q_{1}\right)$. For each of the following linear subspaces,

$$
\mathcal{R}(\overline{\boldsymbol{J}}) \quad \mathcal{N}(\overline{\boldsymbol{J}}) \quad \mathcal{R}\left(\overline{\boldsymbol{J}}^{T}\right) \quad \mathcal{N}\left(\overline{\boldsymbol{J}}^{T}\right)
$$

provide the symbolic expression of a unitary basis (i.e., a set of linearly independent unit vectors spanning the whole subspace).

Exercise 3

Figure 2: A planar 2 R robot with the second link at $q_{2}=\pi / 2$
Consider a planar 2R robot, with links of length $\ell_{1}=1$ and $\ell_{2}=0.5[\mathrm{~m}]$, in the configuration shown in Fig. 2. The two motors at the joints are equipped with incremental encoders, respectively providing r_{1} and r_{2} pulses/turn. The gear ratios of the transmission/reduction systems of the two motors are $N_{1}=100$ and $N_{2}=80$. Determine the minimum resolutions of the two encoders so that they can be used to sense a displacement at the robot end-effector level as small as $\Delta p=10^{-4}[\mathrm{~m}]$, alternatively in one of two arbitrary orthogonal directions.

Solution

June 11, 2012

Exercise 1

As presented in the lecture slides, we consider first the identity $\boldsymbol{R} \boldsymbol{R}^{T}=\boldsymbol{I}$. Taking the time derivative:

$$
\frac{d}{d t}\left(\boldsymbol{R} \boldsymbol{R}^{T}\right)=\dot{\boldsymbol{R}} \boldsymbol{R}^{T}+\boldsymbol{R} \dot{\boldsymbol{R}}^{T}=\left(\dot{\boldsymbol{R}} \boldsymbol{R}^{T}\right)+\left(\dot{\boldsymbol{R}} \boldsymbol{R}^{T}\right)^{T}=\boldsymbol{O}
$$

Therefore, the matrix $\dot{\boldsymbol{R}} \boldsymbol{R}^{T}$ is skew symmetric. We can write

$$
\dot{\boldsymbol{R}} \boldsymbol{R}^{T}=\boldsymbol{S}(\boldsymbol{\omega}) \quad \Rightarrow \quad \dot{\boldsymbol{R}}=\boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}
$$

where the angular velocity $\boldsymbol{\omega}$ is expressed in the base (unrotated) frame.
Similarly, consider the identity $\boldsymbol{R}^{T} \boldsymbol{R}=\boldsymbol{I}$. Taking the time derivative:

$$
\frac{d}{d t}\left(\boldsymbol{R}^{T} \boldsymbol{R}\right)=\dot{\boldsymbol{R}}^{T} \boldsymbol{R}+\boldsymbol{R}^{T} \dot{\boldsymbol{R}}=\left(\boldsymbol{R}^{T} \dot{\boldsymbol{R}}\right)+\left(\boldsymbol{R}^{T} \dot{\boldsymbol{R}}\right)^{T}=\boldsymbol{O}
$$

Therefore, the matrix $\boldsymbol{R}^{T} \dot{\boldsymbol{R}}$ is skew symmetric. We can write

$$
\boldsymbol{R}^{T} \dot{R}=\boldsymbol{S}(\boldsymbol{\Omega}) \quad \Rightarrow \quad \dot{R}=\boldsymbol{R} \boldsymbol{S}(\Omega)
$$

where the angular velocity $\boldsymbol{\Omega}$ is now expressed in the body (rotated) frame.
Form this interpretation, it also follows that

$$
\omega=\boldsymbol{R} \boldsymbol{\Omega}
$$

and so

$$
\dot{R}=S(\omega) R=S(R \Omega) R=R S(\Omega)
$$

This implies that (see Exercise 3.1 in the textbook)

$$
\boldsymbol{S}(\boldsymbol{R} \boldsymbol{\Omega})=\boldsymbol{R} \boldsymbol{S}(\boldsymbol{\Omega}) \boldsymbol{R}^{T}
$$

Conversely,

$$
\boldsymbol{S}\left(\boldsymbol{R}^{T} \boldsymbol{\omega}\right)=\boldsymbol{R}^{T} \boldsymbol{S}(\boldsymbol{\omega}) \boldsymbol{R}
$$

Exercise 2

The direct kinematics of the considered RPR planar robot is

$$
\boldsymbol{p}=\boldsymbol{f}(\boldsymbol{q})=\binom{q_{2} c_{1}+L c_{13}}{q_{2} s_{1}+L s_{13}}
$$

Therefore, the Jacobian of interest is

$$
\boldsymbol{J}(\boldsymbol{q})=\frac{\partial \boldsymbol{f}(\boldsymbol{q})}{\partial \boldsymbol{q}}=\left(\begin{array}{ccc}
-\left(q_{2} s_{1}+L s_{13}\right) & c_{1} & -L s_{13} \\
q_{2} c_{1}+L c_{13} & s_{1} & L c_{13}
\end{array}\right)=\left(\begin{array}{ccc}
\boldsymbol{J}_{1} & \boldsymbol{J}_{2} & \boldsymbol{J}_{3}
\end{array}\right) .
$$

To check the singularities (i.e., where $\operatorname{rank} \boldsymbol{J}<2$), we consider the three 2×2 minors:

$$
\operatorname{det}\left(\begin{array}{ll}
\boldsymbol{J}_{1} & \boldsymbol{J}_{2}
\end{array}\right)=\left(q_{2}+L c_{3}\right), \quad \operatorname{det}\left(\begin{array}{ll}
\boldsymbol{J}_{1} & \boldsymbol{J}_{3}
\end{array}\right)=L q_{2} s_{3}, \quad \operatorname{det}\left(\begin{array}{cc}
\boldsymbol{J}_{2} & \boldsymbol{J}_{3}
\end{array}\right)=L c_{3} .
$$

They are simultaneously zero iff $\left\{q_{2}=0\right.$.AND. $\left.c_{3}=0\right\}$. Let then q_{1} be arbitrary, $q_{2}=0$, and choose for instance $q_{3}=+\pi / 2$. In this configuration,

$$
\overline{\boldsymbol{J}}=\overline{\boldsymbol{J}}\left(q_{1}\right)=\left(\begin{array}{ccc}
-L c_{1} & c_{1} & -L c_{1} \\
-L s_{1} & s_{1} & -L s_{1}
\end{array}\right)
$$

Unitary bases for the range and null spaces of interest are provided as follows:

$$
\begin{gathered}
\mathcal{R}(\overline{\boldsymbol{J}})=\operatorname{span}\left\{\binom{c_{1}}{s_{1}}\right\} \quad \mathcal{N}\left(\overline{\boldsymbol{J}}^{T}\right)=\operatorname{span}\left\{\binom{s_{1}}{-c_{1}}\right\}, \\
\mathcal{R}\left(\overline{\boldsymbol{J}}^{T}\right)=\operatorname{span}\left\{\frac{1}{\sqrt{1+2 L^{2}}}\left(\begin{array}{c}
L \\
-1 \\
L
\end{array}\right)\right\} \mathcal{N}(\overline{\boldsymbol{J}})=\operatorname{span}\left\{\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right), \frac{1}{\sqrt{1+L^{2}}}\left(\begin{array}{c}
1 \\
L \\
0
\end{array}\right)\right\} .
\end{gathered}
$$

Exercise 3

Denote by $\Delta \boldsymbol{\theta}$ the vector of motor position variations (the increments measured by the encoders at the motor sides), by $\Delta \boldsymbol{q}$ the associated vector of link position variations, by $\Delta \boldsymbol{p}$ the resulting vector of end-effector position variations, and by \boldsymbol{N} the diagonal matrix of reduction ratios

$$
\boldsymbol{N}=\left(\begin{array}{cc}
N_{1} & 0 \\
0 & N_{2}
\end{array}\right)=\left(\begin{array}{cc}
100 & 0 \\
0 & 80
\end{array}\right) .
$$

We have

$$
\begin{equation*}
\Delta \boldsymbol{p}=\boldsymbol{J}(\boldsymbol{q}) \Delta \boldsymbol{q}=\boldsymbol{J}(\boldsymbol{q}) \boldsymbol{N}^{-1} \Delta \boldsymbol{\theta} \tag{1}
\end{equation*}
$$

with the Jacobian of the 2 R planar robot given by

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{cc}
-\left(\ell_{1} s_{1}+\ell_{2} s_{12}\right) & -\ell_{2} s_{12} \\
\ell_{1} c_{1}+\ell_{2} c_{12} & \ell_{2} c_{12}
\end{array}\right) .
$$

To eliminate the appearance of q_{1}, it is convenient to work in the rotated frame 1 attached to the first link. Since we are working in the plane $(\boldsymbol{x}, \boldsymbol{y})$, it is

$$
{ }^{1} \boldsymbol{J}(\boldsymbol{q})=\boldsymbol{R}_{1}^{T}\left(q_{1}\right) \boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{cc}
c_{1} & s_{1} \\
-s_{1} & c_{1}
\end{array}\right) \boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{cc}
-\ell_{2} s_{2} & -\ell_{2} s_{2} \\
\ell_{1}+\ell_{2} c_{2} & \ell_{2} c_{2}
\end{array}\right)
$$

Therefore, we replace eq. (1) by

$$
\begin{equation*}
{ }^{1} \Delta \boldsymbol{p}={ }^{1} \boldsymbol{J}(\boldsymbol{q}) \boldsymbol{N}^{-1} \Delta \boldsymbol{\theta} . \tag{2}
\end{equation*}
$$

At the given configuration $q_{2}=\pi / 2$,

$$
{ }^{1} \boldsymbol{J} \boldsymbol{N}^{-1}=\left(\begin{array}{cc}
-\ell_{2} / N_{1} & -\ell_{2} / N_{2} \\
\ell_{1} / N_{1} & 0
\end{array}\right) .
$$

The end-effector displacement Δp that is requested to be sensed in either of two orthogonal directions can be defined using again the coordinate axes of frame 1. Let

$$
{ }^{1} \Delta \boldsymbol{p}_{I}=\binom{\Delta p}{0}, \quad{ }^{1} \Delta \boldsymbol{p}_{I I}=\binom{0}{\Delta p}
$$

In case I, we solve from eq. (2)

$$
\Delta \boldsymbol{\theta}_{I}=\boldsymbol{N} \cdot{ }^{1} \boldsymbol{J}^{-1} \cdot{ }^{1} \Delta \boldsymbol{p}_{I}=\binom{0}{-N_{2} \Delta p / \ell_{2}}
$$

Plugging the data $\ell_{2}=0.5, N_{2}=80$, and $\Delta p=10^{-4}$, we obtain the minimum increment that should be sensed by the encoder at motor 2 in case I :

$$
\left|\Delta \theta_{2, I}\right|=16 \cdot 10^{-3}[\mathrm{rad}] .
$$

Since the resolution of this encoder is $\left|\Delta \theta_{2}\right|=2 \pi / r_{2}$, the minimum number of pulses/turn needed is

$$
r_{2}=\frac{\pi}{8} \cdot 10^{3} \simeq 392.7
$$

Being the number r of pulses/turn typically a power of 2 , an incremental encoder with $512=2^{9}$ pulses/turn would be sufficient for joint 2 in this case.

Similarly, in case II

$$
\Delta \boldsymbol{\theta}_{I I}=\boldsymbol{N} \cdot{ }^{1} \boldsymbol{J}^{-1} \cdot{ }^{1} \Delta \boldsymbol{p}_{I I}=\binom{N_{1} \Delta p / \ell_{1}}{-N_{2} \Delta p / \ell_{1}}
$$

Plugging the data $\ell_{1}=1, N_{1}=100, N_{2}=80$, and $\Delta p=10^{-4}$, we obtain the minimum increments that should be sensed by the two encoders in case $I I$:

$$
\left|\Delta \theta_{1, I I}\right|=10^{-2}[\mathrm{rad}], \quad\left|\Delta \theta_{2, I I}\right|=8 \cdot 10^{-3}[\mathrm{rad}] .
$$

Note that the obtained condition on the second encoder will be more stringent in case $I I$ than in case I. From $\left|\Delta \theta_{1}\right|=2 \pi / r_{1}$ and $\left|\Delta \theta_{2}\right|=2 \pi / r_{2}$, the minimum resolutions for the two encoders will be

$$
r_{1}=2 \pi \cdot 10^{2} \simeq 614, \quad r_{2}=\frac{\pi}{4} \cdot 10^{3} \simeq 785.4
$$

Being the number of pulses/turn typically a power of 2 , two equal incremental encoders with $1024=2{ }^{10}$ pulses/turn mounted at the motor sides of the two robot joints would be sufficient to satisfy the requested end-effector sensing accuracy.

