Robotics 1
June 15, 2010

Exercise 1

For a planar RP robot, consider a class of one-dimensional tasks defined only in terms of the
y-component of the end-effector Cartesian position

Y =py(q1,q2)-

a) Study the singularity conditions for the robot performing this class of tasks.

b) Given a desired task trajectory yq(t), admitting second time derivative, provide the expression
of a kinematic control law that is able to zero the task error e = y4 —y in an exponential way
starting fron any initial robot condition (g(0),g(0)), when the available control commands

are the joint accelerations q.

Exercise 2

For a minimal representation of the orientation of a rigid body given by Euler angles ¢ = («, 3,7)
around the sequence of mobile axes Y X’Z”, determine the relation

w=T($)¢

between the time derivatives of the Euler angles and the angular velocity w of the rigid body. Find
the singularities of T'(¢), and provide an example of an angular velocity vector w that cannot be
represented in a singularity.

[90 minutes; open books]



Solutions
June 15, 2010

Exercise 1

The direct kinematics associated to the end-effector position of the RP robot is

p=( P )= ( 2cosn
Dy g2singr )’
where a ‘natural’ set of coordinates has been chosen, with ¢; being the angle between the x axis
and the second link of the robot!.

Being the task defined only in terms of the p, component, it is

py=( qcosq sing )g=J(q)q
and )
Py =J(@)q+J(@)qg=J(q)g+ ( G2cosqi — gasingigi  cosqigi ) q.

The task Jacobian J is then singular when
singg =0 AND ¢ =0.

In this case, the rank of the J matrix is zero and the one-dimensional task cannot be correctly
performed. Out of singularities, all the joint accelerations g that realize a desired 4 can be written
in the form

q=I%(a) (i — I (@) + (I - T (@) (a)) do.

being the task redundant (M = 1) for the RP robot (N = 2). Setting g, = 0 one obtains the
solution with minimum joint acceleration norm. Assuming full rank (equal to 1) for the task
Jacobian J, its pseudoinverse has the explicit expression

Py p—— )

43 cos? q; + sin? ¢ sin g1

A kinematic control law with the requested performance is defined by
G = J%(a) (fa + kaGa — Py) + kplya — py) — T (@)

where kg > 0 and &k, > 0 and we set for simplicity g, = 0. A more convenient choice would be
to include an acceleration g, = —K pq, with a diagonal, positive definite matrix K p, in the null
space of the task Jacobian. As a matter of fact, such additional term allows to damp possible
increases of internal joint velocity without perturbing the task.

I'When using the Denavit-Hartenberg formalism, one would define qIQDH = g2 = 5. The rest of the developments
follows accordingly in a similar way.



Exercise 2

The orientation of a rigid body is represented, using the Euler angles ¢ = («, 3,7) around the
sequence of mobile axes Y X’'Z”, by the product of elementary rotation matrices

R = Ry ()Rx/(B)Rz (7).

The angular velocity w due to ¢ can be obtained as the sum of the three angular velocities
contributed by, respectively, & (along the unit vector Y'), 3 (along X'), and + (along Z")

w:wd—i—wﬁ'—l—wﬁ:Yd—i—X’ﬂ.—i—Z”ﬁ

where the unit vectors Y, X e Z” are expressed with respect to the initial reference frame. It is

0 1 0
Y=(1], X' =Ry(e)[ 0], Z'"=Ry(e)Rx/(8)| O
0 0 1

Thus, it is sufficient to compute

cosa 0 sina 1 0 0
Ry (a) = 0 1 0 , Rx/(B)=1| 0 cosB —sinf |,
—sina 0 cosa 0 sinfg cospf

x * sinacosf
Ry(a)Rx/(B)=| * = —sin g
x % cosacos

in order to obtain

0 Cos ) sin acos 3 0 cosa sinacospf Qz .
w=|[| 1 |a+ 0 8+ —sin g3 =11 0 —sin g3 B | =T(¢)o.
0 —sina cos a cos 3 0 —sina cosacosf A

Note also, as a general property, that matrix T' depends only on the first two Euler angles. Matrix
T is singular when

detT = —cosf=0 <+ ﬁ:ig.

In this condition, an angular velocity vector (with norm k) of the form
sin o

w=k Coga ¢R{T(a,i§)}

cannot be represented by any choice of qb
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