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as x* — ¥ and p* ~ ¥a'- Therefore, 25 & — oo (ie, r* ~ (), Kinematic Control Equations for Simple Manipulators

r*e (Xn( yk, xt )' /h.(.“f )) -0, RICHARD P. PAUL, SENIOR MEMBER, IEEE, BRUCE SHIMANOQ,

AND GORDON E, MAYER
that is,

RV L Abstract— The basis '(or all advanced manipulator control is » relation-
P, ( »x ) =Ly %), ship between the Cartesian coordinates of the end-effector and the manipy.
o ) ' lator joint coordinates, A direct method for assigning link coordinate
which implies the existence of a positive integer X 2 such that systems and obtaining the end-effector position in terms of joint coord).

\ nates is reviewed, Techniques for obtaining the solution 1o these equations
| P! (y"k’ xk) "’“fn(y«"- f)l <e, for all k > K, (25) lor'kinemau'c'ally simple manipulators, which includes all commercially
. available manipulators, are presented,

for ¢ in (23). Besides, from the continuity of{/, at any ( y,,; x), we

have the existence of a positive integer X; such that .. ) INTRODUCTION
’ . . A serial link manipulator consists of a sequence of mechanical
(50 £) = 1 (ﬁ,,"(x“ ), x& ))l <e¢, forallk> K,. links connected togcthc‘r by actuated Joints, Such a structure

(26) developed by Denavit and Hartenberg [10). The results of this

_ . . analysis are the matrix cquations expressing manipulator end-
Set K = max(K,, k,, K}). Then, using (25), (23), and (26), in  effector Cartesian position and orientation in terms of the joint
turn, we have the following relations for all k > K. coordinates. Th, i

Py, )< Sy ®) + ¢ In this correspondence we first review the method of obtaining
=550 %) = c<f( 32(2*), x4)) (27) frames to include simple manipulators which Have many zero

Since ¢ > 0, these ki.ncmal.ic ¢quations for any manipulator itis their solution
1, ( ﬁnr‘( ), x") < P,,"( ),",l( k), ¢ ) (28) orient'al'ion of the manipulator's cndoeffcctor what are the neces-

. . ' position corresponding to a given set of joint coordinates, there
Equations (27) and (28) yield . arl:l cz;l number of configurations of the manipulator’s links all of
Aok k Aot ey s which place the end-effector in the same position and orientation,

Pr(pk )<# " (.V:i' ( x ) x )’ forallk > k. Normally only one solution corresponding 1o a given kinematic
This relation and (24) contradict that ®xYis optimal for (3) in Configuration is desired (&8 clbow up or down, auc.), rather than

response to x* and ,*, Therefore, any accumulation point is embedded in a real-time servo loop and only a very minimum
optimal for (4) with 3. ’

Existence and Op smality of the Limit Point: Since the optimal the manipulator geometry is simple and well understood
solution J,(£) to (4) with 2 5 pmque under the assumption d), trigonometric solution may often be obtained [(1-3). (8], [9). .
the accumulation point of { r{x ) is also unique. Therefore, However, six-degree-of-freedom manipulators are  sufficiently
o, accumulation p oxnsgccgmcs  limit pomnt of { 5 (x*)). Thus, complex that the direct trigonometric method is too difficult 1o
e can conclude that 5 (x*) converges 10 $,(£). apply. We present a method of obtaining a solution to the
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COORDINATE FRAMES

A serial link manipulator consists of a sequence of links
connected together by actuated joints. For an n-degree-of-freedom
manipulator, there wili be n links and # joints. The base of the
manipulator is link 0 and is not considered one of the six links.
Link 1 is connected to the base link by joint 1. There is no joint
at the end of the final link. The only significance of links is that
they maintain a fixed relationship between the manipulator Jjoints
at each end of the link (7). Any link can be characterized by wo
dimensions: the common normal distance a,, and a, the angle
between the axes in a plane perpendicular 10 a,,. It is customary
to call a, “the length™ and a,, “the twist” of the link (see Fig. 1).
Generally, two links are connected at each joint axis (see Fig. 2).
The axis will have two normals connected to it, one for each link.
The relative position of two such connected links is given by d,,
the distance between the normals along the joint n axis, and 8,
the angle between the normals measured in a plane normal to the
axis. d,, and 6, are called ‘the distance™ and “the angle” between
the links, respectively.

In order to describe the relationship between links, we will
assign coordinate frames to each link. We will first consider
revolute joints in which 4, is the joint variable. The origin of the
coordinate frame of link » is set to be at the intersection of the
common normal between joints n and n + | and the axis of joint
n+ 1. In the case of intersecting joint axes, the origin is at the

" point of intersection of the joint axes. If the axes are parallel, the

origin is chosen to make the joint distance zero for the next link
whose coordinate origin is defined. The z axis for link n shall be
aligned with-the axis of joint n + 1. The x axis will be aligned
with any common normal which exists and is directed along the
normal from joint n to joint n + 1. In the case of intersecting
joints, the direction of the x axis is parallel or antiparallel to the
vector cross product z,_, X z,. Notice this condition is also
satisfied for the x axis directed along the normal between joints n
and n + 1. For the nth revolute joint when x,., and x, are
parallel and have the same direction, 4, is at its zero position.

In the case of a prismatic joint the distance d, is the joint
variable. The direction of the joint axis is the direction in which
the joint moves. Although the direction of the axis is defined,
unlike a revolute joint, its position in space is not defined (sce
Fig. 3). In the case of a prismatic joint the length a, has no

. meaning and is set to zero. The origin of the coordinate frame for

a prismatic joint is coincident with the next defined link origin.
The z axis of the prismatic link is aligned with the axis of joint.
n + 1, The x, axis is parallel or antiparallel to the vector cross
product of the direction of the prismatic joint and z,. For a
prismatic joint, we will define its zero position, with d, = 0, 10 be
when x,., and x, intersect. With the manipulator in its zero
position, the positive sense of rotation for revolute joints or
displacement for prismatic joints can be decided and the sense of
the direction of the z axes determined. ) :

The origin of the. base link (zero) will be coincident with the

origin of link 1. If it is desited 10 define a different reference

coordinate system then the relationship between the reference

‘aiid base coordinate systéms can be described by a fixed homoge-
_neous transformation [6). At the end of the manipulator the final

displacement d or rotation 6 occurs with respect to z5. The

origin of the coordinate system for link 6 is chosen to be’

coincident with that of the link § coordinate system. If a 100l or
end-effector is used whose origin and axes do not coincide with
the coordinate system of link 6, the iool can be related by a fixed
homogeneous transformation to link 6. g

Having assigned coordinate frames to all links according to the
preceding scheme, we can establish the relationship between
successive frames n — 1, n by the following rotations and transla-
tions. ’ . -

Rotate about z,,_,, an angle §,.
Translate along z,,_,, a distance d,,.

Joing n

daint nel

Fig. 1. Lecogth a, and twist a, of a link.

Translate along rotated x,_; = x,, a length a,,.
Rotate about x,,, the twist angle a,,.

This may be expressed as the product of four homogencous
transformations relating the coordinate frame of link n to the
coordinate frame of link # — 1. This relationship is called an A
matrix:

C8 —S6Ca S6Sa  aCl

= 59 CiCa —ClSa aSO
A 0 Sa- Ca d O
0 0 0 1

where S and C refer to sine and cosine, respectively. For a
prismatic joint the A matrix reduces to

C6 —S6Ca  S6Sa O

~| S8  C8Ca ~—ClSa 0O
’.‘" 0 . Sa Ca df @)

0 0 0 1

Once the link coordinate frames have been assigned to the
manipulator the various constant link parameters can be tabu-
lated: d, a, and o for a link following a revolute joint and, € and
« for a link following a prismatic joint. Based on thes¢ parame-
ters, the constant sine and cosine values of a may be evaluated
and the values for the six A, transformation matrices determined.

KiNEMATIC EQUATIONS
Having assigned coordinate frames to. a manipulator it is

"possible to obtain the Cartesian position and orientation of ‘the

manipulator erd-effector when given the joint coordinates,

The description of the end of the manipulator, link coordinate
frame 6, with respect 1o link coordinate frame n — 1 is given by
U, where

U-|=An"4n+|‘3""46- (3)

The end of the manipulator with respect to the base, known as
T, is given by U;:

= U= A= Aye Ay Ayv Ago A, )

If the manipulator s related 10 a reference coordinate frame by a

transformation Z and has a tool attached to its end described by

E, we have the description of the end of the 100l with respect to
the reference coordinate system described by X as follows (4):

‘ X=2Z+T,sE. ()

In Fig. 4 the PUMA arm (Unimate 600 Robot) is shown with

“coordinate frames assigned to the links. The parameters are

shown in Table I.
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The A matrices for the PUMA arm are as follows:

. - a0

&0

4=|S 0 ¢ o
0 -1 o0 o

L0 0 0 1
[, -5, 0 a,G; |
A2= Sz C: 0 a;s;
0 0 1 o
.0 0 o 1]
!-Cg 0 SJ C’C3-
A4,=|S 0 -G a8

o 1 o dy
L0 0 0 l J

(6)

™

@)
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Joint nt)
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dn ln-'l
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[ 0 -5, 0
S, 0 G O
Ag=] 04 9
o -1 o do| SN
L0 0 1 i
(¢ 0 s o]
S 0 —~¢C 0
Ae=198 H lO)
A R TP ¢
L0 0 0 1
(G -S, 0 0]
Ag= S G 0 o (i
0 0 1 o
L0 0 0 1]

wheré S, refers to sin(6,) and C, refers to cos (6,). The product of
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Fig. 4. PUMA manipulator.

TABLEI
LiNk PARAMETERS FOR PUMA ArM
Joint  ~ a® 9° d a Range

1 -9%° 6, 0 0 6,2+ /- 160°

2 0 8, 0 a, 8y: 445 ~ ~225°

3 90° 8, dy a 6,:225° — —45°

4 -9%0° 6, d¢ O O+ /=-170°

5 90° 4 0 O Og:+ /—135°

6 0 6 0 O O+ /—170°
a;= 17000 a;=0.75 :
dy=4937 d,= 17000

the 4 matrices, starting at link 6 and working back to the base,
for the PUMA arm are

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. sMC-| 1. NO. 6. JUNE 198}

where S:; refers 1o sin (8, + 8,) and C., refers 10 cos (8, + ).
n, o, a, p,

_ n, o
U= Al=T = n. o

I I
0 0 0 1
where
n, = C[Coy(CelCo = S486) — S:JSsC«]~
= SUSCCe + CS5) (18
n, = s,[q,(c{qq ~ 5.5) = 5:5,C]
+C\[S.CsCo + €S (19
n.= “Szia(CACsC\s = 8486) — 355G (20)
0, = Gy~ Cos(CiCs S + S4C) + 52355 5¢)
=S\~ 8. S + CG) @n

0, = Si[~ Coa(CiCs S5 + 84Cs) + S238554)
+C|[_S‘C586 + C4C¢l (2:)

0. = Spy(CCs S+ S¢G) + Cay S5 (23
8, = C(CpCeSs+ 523C5) — §,8.5s (29
a, = §(CyCeSs+ §3Cs) + C,5,S; %
8, = —S53CeSs+ CnCs 26)
2= C(diSyy + a0y + a,Gy) ~ S1dy an
Py = S(d Sy + ayCyy + a,G,) + Cd,y (28
p:= ~(—dCyt+ aySy+a,5) (29

In order to compute the right hand three columns of 7g, we
require 12 transcendental function calls, 34 multplics, and 16
additions. The first column of 7 can be obtained as the vector
cross product of the second and third columns.

If the joint coordinates are given, the position and orientation
of the hand are obtained by evaluating these equations 10 obtain
T;. The position and orientation of a tool with respect to a base

Uy = A (12) coordinate frame can now be obtained from (5).
CG ~GS S 0 SOLUTION
U= AU, = 5iG —58 ~G 0 (13) In order to control the manipulator, we are interested in the .-
Se G [ reverse problem, that is. given X in (5), what are the correspond-
0 0 . 0 1 ing joint coordinates?
We may first obtain T from (5) as
CAQQ" S4Ss “C4C_sss‘ S& CGSs 0 J— - (30)
U= A =| SGG+CS —5GS+CG S8 0 . To= 27 e XuE
e -8C 858 G d, and then the traditional approach is 1o solve the matrix equation
ot ' 0 0o 1] ‘ To=AyeAys Ayo Ays Ags Ag (31)
: = (14)
G(CCC— 5iSs) = 535G —Cy(CuGsSe+ SiCe) + 5,558 C:CuSy+ 55C diSyt+aGy
Uy= AU, = $5(CCCe— 8u8) + G58,G —S1(CGsSs + SC,) - G858 $iCiSs— GG —d,Gy T ay§) (15)
. S.C,C, + C4S6 h S4C586 + C‘CG S‘Ss d:l
0 ' 0 0 1
U, =AUy = L _
Cu(CiCiCo— 5u56) = Su8:G = Cu(CCsSe+ SiG) + SuSiSe CuCuSy+ SuCs dSu+ ayCnasCa
525(CiCsCo— 848¢) + CnSsCs * —Sn3(CCsSe+ SiG) = C38sS¢  $33CaSs— CayCs  —dCpy+ 38y + a35; (16)

S‘Cs q + C4 S‘
0 0

- S4Css6 + C4C6

SeSs dy
0 1

I L e s e
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where Ty is given numeric values. With numeric values assigned
to the elements of 7g, the required values of 8, 6,, 8,, 4,, 8, and
6; can be obtained by simultaneously solving (18)-(29). This
approach is difficult for the following reasons: the equations are
transcendental; we will need both the sine and cosine in order to
determine angles uniquely and accurately; the manipulator ex-
hibits more than one solution for a given position; and we have
twelve equations in six unknowns.

There are, however, six other matrix ¢quations obtained by
successively premultiplying (31) by the A matrix inverses:

AT T= U (32)

Tledi T = () (33)

AT AT e AT e Ty = U, (34)

AT AT AT e AT T = U (35)

AT AT AT AT AT T = (36)

The matrix elements of the left sides of these equations are
functions of the elements of T; and of the first n — | joint
variables. The matrix elements of the right hand sides are either
zero, constants, or functions of the nth to 6th joint variables. As
matrix equality implies clement by element equality we obtain 12
equations from each matrix equation, that is, one equation for
each of the components of the four vectors a, o, a and p.
Equating elements of these matrix equations frequently results in
equations yielding joint variables explicitly. We will iliustrate the
various forms of these equations by developing the equations for
the PUMA arm-

If we premultipy (31) by A;* we obtain

AT s T =Aye Aye A e Ao A (37)
AT T = U, (38)
The left side of (38) is given by
G S 0 o] [rni o a p,
R R I B g
0 0 0 1 0 0 0 1
(39)

The inverse of a homogencous transformation is simple 0 obtain

.(see Appendix I) and the product of these two matrices is

n(n)  fule) fula) fu(p)
AT VeT, = Ha(n)  fu(e)  fi(a) fu(p)

0
15s(n) folo) fol@) fulp)| @
0 0 0 1
where, B
fu=Cx+ 8§y (41)

fu=—z ' ) (42)
fs= =Six+ Cyy (43)

and x, y, and z refer to components of the vectors given as
arguments 10 fyy, fy,, and f,,, for example
fin) = Cin + Syn,. (44)

'Ii:c right side of (38) is obtained from (16) and is gjv;q by

Cz:(QCsQ" 5485) = SnSsCe .
U= S (GGG — Si5) + CiySiC
‘ S.CG+ C.S,
0 : 0
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All the elements on the right side of (45) are functions of 4. §
3 Uy,

4, b, b5, and 8, except for clement 34, e m
s Vas Vs ¢ d a 3
elements 10 obtain ¥ cquate the 34

fulp) =4, (46)
or
“Sipet Cip = ~d,. (47)

In order 10 solve cquations of this form we make the follow!
trigonometric substitutions:

p =rcosé (48)
po=rsing (49)

ing

where

/2

r=+(pi+p?) (50)

¢=m-'(-§t). (s1)

X

As cither the numerator or denominator of (51) can be zero we

.will use the arctangent function of (wo arguments to obtain

values of ¢. This arctangent function uses the sign of the numera-

tor and denominator to determine the correct quadrant for the

resulting angle and is defined over the range —7 < ¢ < 7. Sub-
stituting for p, and P, in (47) we obtain

5¢C6,~ C4S6,=dy/r - (52)
with
0<dy/r<1.
Equation (52) reduces to
S(¢ —8,)=dy/r (53)
with

0<¢p—-0, <=
We may obtain the cosine as

Co—=8,) = =yl ~ (dy/r) (54)

where the minus sign corresponds 10 a left-hand shoulder config-
uration of the manipulator and the plus sign corresponds to a
right-hand shoulder configuration. Finally,

O.ilan"(-&\—tan"'—‘d’ . (3%)
Px! xyr?— g}

Having determined 6, the left side of (38) is now defined.
Whenever we have the left side of one of (32)-(36) defined. we
examine the right side for elements which are a function of
individual joint coordinates. In the case of the PUMA arm. as
with any arm with two or more joint axes parallel, the 7, matrix
is expressed in terms of sums or differences of the angles relating
10 the parallel axes. In order 10 solve the kinematid equations, the

. sum or difference of the angles must be determined before the

angles themselves can be found. In addition the solution for {hcsc
sums of angles involves the sum of the squares of two equations.
Such is the case in order 10 solve for 8, and §,. The 14 and 24

“elements of (38) are -

dySyy+ a;Coy + a,C,= C,p, + S p, (56)
~dCpy+ aySy+ axS,= —p, (57)

~Cu(CGSe+ SiG) +.5u8s5%
~Su(CCSe+ SiG) = Cu$iSe  SuCSs— CuG
| =SG58+ CG 5.5, dy

d‘Su + a,Cn + 0‘262
"'d4C2’ + a,Sz, + 01S2

Co3CeSs + $53C
. (49)
0 1
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where
Cp + $ip.=fup
‘“P.-:fup-
Squaring, adding, and simplifying: .
Sip+ 5~ di—ad~ ai=2a,d S, + 2a;a,Cy. (60)

Since the left side is known and the only variables are 8y and G,
this equation is of the form of (47). It can be solved to yield

(59)

a, d
8= arctan—2~ ~ arc tan —%e

—d, ::y’fe.:—arz (61
where
d=fi,+ 1%, ~ d}—a}~ a2 (62)
e=4a}a}+ dald? (constant). (63)
Evaluating the elements of (33) we obtain
leE”) fa(o) fu(a) f:l(l’() ")02
Ja(n 4 a fa(p =
f:;("; 2;§0; ;’::Eag fs(p) R
0 0 0 1
where
f1=G(Cix + 8,5) — §uz (65)
2= =85(Cix + $i¥) = ;2 (66)
S3=—Six + Q. (67)
Since this yields nothing, we cvaluate‘ (34 as
i(a)  fue) fula) fulp) - a;Cy— ay
Fa(n)  fy(0)  fy(a) falp) + dy =y,
Fs(n)  fa(o) fi(a)  fiu(p) - a,5;
0 0 0 1
(68)
1= Cy(Cix + Sy) = Sz (69)
fa==8x+Cy (70)
f3= 8p(Cix + Sy ) + Cpyz (m
equating the 14 and 34 terms we obtain
Cosfrip = S3p. = a;,Cs+ ay (12)
Safup+ Cyp,=do+ a,5,. (73)

Since Cyy and S, are the only variables, we can-solve the above
equations simultaneously to yield: .

_ Wil wipy

a9

» ) flzlp + p:z
w + wyp, .
Gy = 1Lip* ¥2ps (75)
fllp +pz
where '
w1 = ayCy + a, (76)
sz d4+ azss } v (77)
therefore ‘ . .
w. -wp -
by = arctan2 e = WP (78)

wifu,+wap,

(s8) .
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and

by=6.,~¢,. (79)
With the left side of (6%, now defined, we check the right side for
functions of single vaziables. Te 13 and 23 clements give yg
equations for the sine and cosine of B4 i sin(8) is not zero,
When sin; = 0, 6, = 0 znd the manipulator becomes degencrate
with both the axes of Jjeint 4 and joint 6 aligned. In this state it is
only the sum of 6, and ¢ which :s significant. If b5 is zero we are
free to choose any valie for 6.. The current value i frequently

assigned:
CSs= C:}(Clar - Slay) = Sua, (80)
8:Ss= =~Sa.+ Cl“}» (81)
and
_ ~Sa,+ Ca,
b= tan RN (P Sia) . Spya. (82)
if
8> 0
and
Qu=0,+180° ifé,<0, (83)
Evaluating the elements of (35) we obtain
Ja(n)  fu(o)  fu(a) o GG ~CS, S 0
fa(n) Ja(o) fa(a) o =] G =SS -G 0
Jas(n) Jas(o) fu(a) 0 S5 G 0 0
0 0 0 | 0 0 0 1
(84)

. where

Ju=C[Cu(Cx + 5,y) - Suzl+ 8, [~8x + Gy} (85)

Ja= =Sy(Cx + $,y) - G2 (86)

Jo= =S Cu(Cix + §,5) - Snz]+ C[=Sx+ Cy].
(87)

From the right side of {84), we can then obtain cquations for S,
G, 8 and G by inspection. When both sine and cosine are
defined we obtain a unique value for the joint angle. We obtain a
valee for 6, by equating the 13 and 23 elements of (84):

Ss=C[Cu(Cia, + Sya,) - Sua] + S[~Sa,+ Ca,]
(88)
CG= 823(C,a,, + S,a»,,) + Csza, (89)
and obtain 6 as
m_,ﬂcz,(c,a, +S5a,) = Spa,] + S‘[*S.a, +Ca,] ‘
Su(Cia + Sia,) + Gyya,
- (%)

While we have equations for both Ss and Cy, the equation for S
is in terms of elements of the first column which involves the use
of the n vector of T;. The n vector of T¢ is not usually made
available as it represents redundant information. It can always be
computed by the vector cross product of the o and a vectors. By
cvaluating the elements of (36) we can obtain equations for Se
and G as a function of the o vector:

4=

fa(n) fule) 0 0] g -5 0 o
£an)  flo) 0 o0 =% G 00 (91)
f3(n) fu(e) 1 0 0 0 10
0 0 0 1 0 o o 1
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where
f51= C{Ce[Crs(Cix + §,p) - Syi)+ Sl=Sx + Cirl}
+Ss{“S23(C|X+Sl)')'"C:E:} (2)

f2= =S5, [Cu(Cix + Sy) - Spi] = Gl-Sx+ Cy] (93)
f3= Ss{Cul Cn(Cyx + Siy) = Suz]+ S[=Sx + Cirl}
+C{Su(Cix + S1y) + Gy} (94)

By equating the 12 and 22 clements we obtain expressions for S
and Cg:

S = ~G{C[Cu(Cio + S10,) - Su0] + S.[~ 510,
+Ci0,]} + S {Su(Cio, + S0,) + Co,) (%)
C6= m'?‘[cn(clox + Sloy) - SZJO:] + C‘[—Slox + Cloy] .
(%)

We obtain an equation for 6 as:

455
Its inverse is given by
’A' ’y l: ~p-l
T-l=|Mx m, m, ~p'm
ne o on, ~pen (99)

".’
0 0 o 1
where the terms of the right-hand column are obtained using
vector dot product. That (99) represents thewinverse s casily

verified by forming the matrix _produet and checking that the
result is an identity matrix:

Even in the case where 8, is undefined because the manipulator
configuration is degenerate, once a value is assigned to 4, the
correct values for f; and 6; are determined by these equations.
This solution corresponds to 16 transcendental function calls, 38
multiplies, and 25 additions.

EXTENSION TO OTHER MANIPULATORS

This solution technique, demonstrated with the PUMA manj-
pulator, is valid for kinematically simple manipulators, including
all commercially available manipulators for which solutions have
been obtained. There are, however, some manipulators whose
configurations mandate a slightly different approach to the solu-
tion. In the case of a manipulator with an offset at the hand, the
problem was inverted and the solution to the kinematic problem
to position the base at 7™ was solved.

There are two common pitfalls in obtaining solutions which
should be avoided. One of these is division by the sine or cosine
of an angle. The other is not maximizing the use of common
expressions. For example, after solving for 8, from (82), a possi-
ble method to determine 85 would be to equate the 2,3 and 3,3
elements of (68). In order to do this. the 2,3 element (S48s)
would have to be divided by S,. This leads to inaccuracy when §,
is near or equal to zero. By extending the method one more step
and premultiplying by 45! both problems were avoided.

SUMMARY

We have reviewed the method of assigning coordinate frames
to the links of a manipulator. In terms of these coordinate frames
the kinematic equations can be developed in a straightforward
manner. These equations can be obtained for any manipulator, If
the manipulator is kinematically “simple,” the solution to the

kinematic equations can be obtained in a very straightforward, -

error-free manner.

APPENDIX |

Given a homogeneous transformation represented by four vec-
tors I, m, n, and p i .

IX mx nx PX

r={l ™ o P (98)
I, m, a, p,
00 o0 1

8 = ta-" -C,{Q[C;,(C,o, + 5i0,) — st".-] + S‘[—S.lox-l- Cyo, ) + 855 {S;(Cro + S$10,) + Cy0.}
¢ : =SCu(Cio + S0,

L "ty 0 =pa] [t my ng p,
T'eT= m, m, m, —-pm 1., m, n. p,
ny, n, n, -=p-n Iy m, n. p,
0 0 0 1 O 0 0 1
(100)
. 97)
) - 5230.,] + C‘[“"S|o, + C‘Oy]
L lm Im 90
“t,r=iml mm ma 0 101
T T al am nn Q (1on
0 0 0 i
As the three vectors 1, m, and n are orthogonal we have
IH=mm=npn=1, (102)
and
Ilm=la=nm=0 (103)

and thus (101) reduces 10 an identity matrix.

ACKNOWLEDGMENT

Mickey Krebs was responsible for the document preparation
and Marc Ream for preparing the drawings.

REFERENCES

[1] R. A, Lewis, “Autonomous manipulations on a robot: Summary of
- manipulator software functions.” Jet Propulsion Laboratories, Pasadena.
CA, T™™ 33-679, 1974,

{21 C. Rosen er al., “Exploratory research in advanced automation.” 2nd
R9cp.. Stanford R h Insttute, Stanford Unix., Stanford, CA. Aug.
1974, : C

{31 R. Paul, “Modelling, trajectory calculation. and servoing of a computer

- lled arm,” Stanford Artificial Intelligence Lab.. Stanford Univ.,
Stanford, CA, Memo. AIM-77, Nov. 1972,

(4] -~ “Advanced industrial robot control systems,™ Ist Rep. Purdue
Univ., Lafayette, IN, Memo. EE 78- 25, May 1978.

{5) D. L. Pieper, “The ki ics of ipulators under computer control,”
Stanford Qnificial Intelligence Project, Stanford, CA. Memo. AIM-72,
Oct, 1968. ! .

{6] L. G. Roberts, “Homogencous matrix representation and manipulation
of N-dimensional constructs,” M.LT., Lincoln Labs., Document MS-1045,
May 1965, .

{7} B. Roth, “Performance cvalustion of manipulators from a kinematic

. viewpoint,” National Burcau Standards, Rep. SP-459, 1976.

{8] 'T. Binford er al, “Exploratory studics of computer integrated assembly
systems,” National Science Foundation Progress Rep., Stanford Astifi-
cial Intelligence Lab., Standford, CA. Memo, AIM-285, July 1976.

9] R. H. Taylor, “Planning -and cxecution of straight-line manipulator
traj jes.” IBM R h Rep. RC 6657, July 1977,

{10] J. Denavit and R. S. Hartenberg, “A kinematic notation for lower-pair
mechanisms based on matrices,” J. Appl. Mech.. pp. 215-221, June 1955.

AT e




